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ABSTRACT

Understanding the conditions that govern the stability and coexistence of species in

ecological systems remains a central challenge in theoretical ecology. In this thesis, we

explore this problem through three distinct but complementary approaches grounded in

random matrix theory and consumer-resource dynamics.

We begin by revisiting May’s stability criterion for large random ecosystems and

extend it using the Circular Law. By incorporating sparsity and variance scaling, we

derive analytical stability conditions and validate them through numerical simulations.

Next, we revisit the competitive exclusion principle within the framework of consumer-

resource models, demonstrating how resource availability and half-saturation constants

(which quantify the resource level at which a species achieves half its maximum growth

rate) govern species persistence and extinction. Finally, we investigate how asymmetric

migration between habitats can promote coexistence beyond classical resource-based

constraints. We derive conditions for stable stationary states and analyze how e↵ective

competition coefficients shape biodiversity outcomes.

Together, these investigations o↵er insights into the spectral and ecological mecha-

nisms that underpin the stability and diversity of complex ecosystems.
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Chapter 1

Introduction

Nature is a dynamic system of remarkable diversity and complexity. From lush rain-

forests to microscopic communities in a drop of water, ecosystems sustain life through

intricate networks of interactions among species and their environments. Yet, these sys-

tems are fragile — they can shift dramatically or collapse when disturbed by climate

change, habitat fragmentation, species invasions, or other perturbations. A central ques-

tion in ecology and sustainability science therefore emerges: What makes an ecosystem

stable? And under what conditions can many species coexist despite competition for

limited resources?

This question becomes even more critical today, as biodiversity declines and human

impacts intensify. Understanding how and when species-rich communities persist is not

only a theoretical challenge but a practical necessity — one that underpins conservation,

food security, and climate resilience strategies worldwide [1, 2, 3].

Theoretical ecologists have long pursued this question using mathematical models.
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Classic work by Lotka [4] and Volterra [5] introduced deterministic di↵erential equations

to capture predator-prey and competitive interactions. While these models o↵er founda-

tional insights, they typically consider only a few species and often assume equilibrium

conditions. Real ecosystems, by contrast, involve hundreds or thousands of species,

non-linear interactions, spatial heterogeneity, and stochastic events [6, 7].

A paradigm shift occurred in 1972 with the work of Robert May, who asked whether

complexity begets stability or undermines it. Using random matrix theory (RMT), May

modeled the interaction matrix of species in an ecosystem as a large random matrix and

showed that beyond a critical threshold of interaction strength or network complexity,

the system becomes unstable [8, 9]. His now-famous result — that stability requires


p
NC < 1, where  is the standard deviation of interaction strength, N the number

of species, and C the connectance— challenged the prevailing intuition that biodiversity

guarantees resilience.

This result spurred decades of research. Ecologists, physicists, and mathematicians

extended May’s ideas, exploring the spectral properties of random matrices and applying

tools like the Circular Law, which describes how eigenvalues of large random matrices

with independent and identically distributed entries are uniformly distributed in a disk

of radius
p
NC in the complex plane [10]. Allesina and Tang [11] further adapted

these models to biological realism by distinguishing between mutualistic, competitive,

and trophic interactions. Extensions have also explored the e↵ects of empirical network

structures, modularity, and correlation patterns on stability [12, 13, 14]. These spectral

approaches provide statistical predictions for the probability that a random ecosystem is

stable — a “null model” baseline against which real ecological networks can be compared.

However, such global or “top-down” models have limitations. They lack mechanis-
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tic specificity: they tell us whether random interactions could be stable, but not why

a particular set of species does or does not coexist. To address this, bottom-up ap-

proaches revisit the classical competitive exclusion principle (CEP) — the idea that no

two species can coexist if they compete for the exact same limiting resource under fixed

environmental conditions [15, 16].

Using the consumer-resource framework originally developed by MacArthur [17] and

later extended by Tilman [18], researchers analyze how species traits, resource avail-

ability, and consumption strategies determine whether coexistence or exclusion occurs.

Geometric tools like Zero Net Growth Isoclines (ZNGIs) provide intuitive and visual

insights into these dynamics. These models highlight the importance of niche di↵erenti-

ation and trade-o↵s in promoting biodiversity [19, 17].

Yet, in nature, coexistence often arises under conditions that seem to contradict clas-

sical theory. One key reason is spatial structure. Species inhabit patchy landscapes

and often migrate between habitats. Migration creates spatial refuges, alters e↵ective

interactions, and allows species to persist even when local competition would drive them

extinct. Asymmetric migration, in which movement rates di↵er between species or di-

rections, can play a crucial role in shaping regional coexistence. This spatial dimension

brings ecological modeling closer to real-world dynamics, linking local interaction rules

to landscape-level persistence [20, 21].

In this thesis, we develop and analyze models that explore how structural complexity,

resource competition, and migration interact to determine the stability and coexistence of

ecological communities. Our work integrates random matrix theory, consumer-resource

dynamics, and spatial modeling to gain new insights into when biodiversity is maintained

or lost in competitive ecosystems.
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Chapter 2

Stability of Random Ecosystem

2.1 Introduction

In the previous chapter, we outlined the central ecological challenge of understanding

the conditions under which species coexist and ecosystems remain stable. One influ-

ential approach to this problem was developed by Robert May, who applied random

matrix theory to study the stability of large ecological networks [8]. His work showed

that increasing complexity — in terms of the number of species, the strength of their

interactions, and the density of connections — can lead to a loss of stability, contrary to

earlier ecological intuition [22, 23].

This chapter presents a theoretical and computational investigation of how the struc-

ture and strength of species interactions influence ecosystem stability. Here, stability

refers to whether the system returns to its equilibrium after a small disturbance — a

condition determined by the eigenvalues of the community matrix.
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To ground this abstract idea in an ecological context, consider the following story:

Imagine a dense forest full of life — towering trees, chirping birds, buzzing

insects, hidden fungi, and stealthy predators. Each species plays a role in a

vast web of interactions: pollination, predation, decomposition, and compe-

tition. Now, imagine a sudden disruption: a fungal disease wipes out one

of the dominant tree species, a keystone that many others relied on for food,

shelter, or structure. What happens next depends on the forest’s ability to

adapt.

In one forest, the system manages to absorb the shock. Birds find new trees

to nest in. Herbivores adjust their diets. Over time, other tree species spread

into the open space. The web of interactions rearranges itself, and the ecosys-

tem settles into a new, stable state.

In another forest, however, the same loss sets o↵ a chain reaction. Insects

that depended on the dead tree vanish. Birds that relied on those insects for

food or the tree for nesting space disappear. Predators lose their prey. One

disruption leads to another, and the ecosystem begins to collapse.

What makes the di↵erence? Stability is not just about the number or diver-

sity of species, but about how they interact and how these interactions are

structured.

May’s framework o↵ers a way to study such questions mathematically, treating the

ecosystem as a network and analyzing its stability through the lens of linear dynamics

and random matrices. May’s theory allows us to ask whether such resilience can be

predicted just from the structure of the interaction network — without needing to model

every species in detail.
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In this chapter, we revisit and extend this framework. We analyze how features such

as sparsity in the interaction matrix [11], variance scaling [12], and nontrivial eigenvalue

distributions [24] modify the classical Circular Law [25, 26] and a↵ect the conditions for

local stability.

To do this, we begin by introducing the key mathematical background, including

random variables, probability distributions, and the construction of random matrices.

We then define the community matrix and describe how its eigenvalues relate to local

stability. Using numerical simulations, we verify theoretical predictions and examine how

increasing complexity and structural properties influence the resilience of large ecosys-

tems.

This approach not only deepens our understanding of when complex ecosystems can

remain stable, but also provides a benchmark—a null model—against which more struc-

tured, biologically realistic systems can be compared [27, 28].

2.2 Random variable

A random variable represents a quantity that can attain di↵erent values, with each

value occurring based on a certain probability. The outcome is determined by a random

process.
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2.2.1 Types of random variables

Discrete random variables

A discrete random variable can only take specific, separate values. These values are

usually countable, such as the number of customers arriving at a small café in an hour.

Let Z represent this number. The café might receive 0, 1, 2, 3, . . . customers, but it

cannot receive a fractional number of customers (like 2.5).

Continuous random variables

A continuous random variable can attain any value within a defined range. These values

are not limited to distinct numbers but instead span a continuum. For example, a

person’s age can be measured to arbitrary precision within a certain range.

2.3 Probability distribution and related functions

2.3.1 Probability distribution

A probability distribution defines how the probability of a random variable is spread

across its possible values. It describes the chances of di↵erent outcomes occurring in a

given situation. Depending on the type of random variable, a probability distribution

can be either discrete, where the values are distinct, or continuous, where the values

form an uninterrupted range.
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Discrete probability distribution

A discrete probability distribution applies when a random variable can assume a specific

set of separate, countable values. For instance, the number of times a bus arrives at a

stop within an hour follows a discrete probability distribution, as the count can only be

whole numbers like 0, 1, 2, and so on.

Continuous probability distribution

A continuous probability distribution represents situations where a random variable can

take endlessly many values within a certain range. For example, the time a runner takes

to finish a race follows a continuous probability distribution, since it can be measured

with infinite precision within a given interval.

2.3.2 Probability Mass Function (PMF)

The probability mass function characterizes the likelihood distribution of a discrete ran-

dom variable by assigning a probability to each specific outcome it can attain. A fun-

damental property of the PMF is that the cumulative sum of these probabilities across

all conceivable values of the random variable must be exactly 1. For example: Sup-

pose a robotic sensor detects objects moving past a checkpoint and registers the count

per minute. If the sensor can detect up to five objects in a given minute with equal

probability, then the probability mass function is:

P (Z = zi) =
1

5
, for zi 2 {1, 2, 3, 4, 5} . (2.1)
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2.3.3 Probability Density Function (PDF)

A probability density function characterizes how a continuous random variable dis-

tributes its likelihood over an interval of possible values. Unlike discrete cases where

individual outcomes hold specific probabilities, a PDF instead describes the tendency of

the variable to manifest within a given range. The probability of the variable assuming

a value between two points, say a and b, is obtained by computing the integral of the

PDF over that interval:

P (a  Z  b) =

Z b

a

fZ(z) dz . (2.2)

Since the continuous variable can take infinitely many values, the total accumulation

of probabilities over all possible outcomes—represented by the area under the PDF

curve—must sum to exactly one.

To illustrate, consider an autonomous vehicle equipped with a sensor that measures

the precise reaction time of its braking system, recorded in seconds. If the reaction time

Z is uniformly distributed between 2 and 4 seconds, the corresponding PDF is:

fZ(z) =

8

>

<

>

:

1
2
, 2  z  4 ,

0, otherwise .

(2.3)

If we wish to determine the probability that the braking reaction time falls between

2.5 and 3.2 seconds, we integrate the PDF over this interval:

10



P (2.5  Z  3.2) =

Z 3.2

2.5

1

2
dz =

3.2 2.5

2
= 0.35 . (2.4)

This example highlights how a PDF provides insight into the behavior of continuously

varying phenomena, where probabilities are associated with ranges rather than distinct

values.

2.3.4 Cumulative Distribution Function (CDF)

The cumulative distribution function quantifies the probability that a random variable

Z assumes a value no greater than a given threshold z. Unlike probability mass and

density functions, which describe probabilities at specific points, the CDF provides a

cumulative perspective, capturing the aggregated probability up to a certain value. This

formulation is applicable to both discrete and continuous variables.

For a discrete random variable, the CDF is obtained by summing the probabilities of

all possible values up to z:

FZ(z) = P (Z  z) =
X

ziz

P (Z = zi) . (2.5)

Consider an intelligent lighting system in a building that randomly activates between

1 and 5 ceiling lights at any given time. If the system distributes this activation uniformly,

the probability of having up to 3 lights turned on at a particular moment is given by:

FZ(3) = P (Z  3) = P (Z = 1) + P (Z = 2) + P (Z = 3) =
3

5
. (2.6)
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For a continuous random variable, the CDF is computed by integrating the proba-

bility density function from negative infinity up to z:

FZ(z) = P (Z  z) =

Z z

1

fZ(z) dz . (2.7)

As an example, suppose an automated co↵ee machine dispenses liquid volumes be-

tween 150 ml and 250 ml in a uniformly random manner. The corresponding CDF

is:

FZ(z) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 , z < 150 ,

z150
100

, 150  z  250 ,

1 , z > 250 .

(2.8)

This implies that the probability of receiving a volume of co↵ee no greater than z

increases linearly between 150 ml and 250 ml, starting at zero and reaching certainty at

the upper bound.

2.4 Normal distribution or Gaussian distribution

The normal distribution is a fundamental concept in probability theory, describing how

values of a continuous random variable are symmetrically dispersed around a central

location. This distribution naturally emerges in numerous real-world scenarios due to

the Central Limit Theorem, which states that the sum of independent and identically

distributed random variables typically has a normal distribution. Its PDF is given by:

12



fZ(z) =
1p
2⇡2

e
(zµ)2

22 , z 2 R . (2.9)

Here, µ signifies the average or expected value of the distribution, while  quantifies

the extent of dispersion around the mean, determining how widely the values fluctuate.

A compelling example of this distribution appears in precision manufacturing. Sup-

pose a factory produces high-precision metal rods, each intended to be exactly 10 cm

in length. However, due to microscopic variations in the manufacturing process, the ac-

tual lengths deviate slightly from this ideal value. When measured, the lengths of these

rods cluster around 10 cm, with minor variations symmetrically distributed on either

side—forming a normal distribution. This pattern allows engineers to quantify produc-

tion consistency, identify defects, and optimize the process to minimize deviations.

2.5 Uniform distribution

The uniform distribution describes a probability distribution where every outcome in a

given range is equally probable. Its probability density function remains constant within

a specified interval [c, d] and is given by:

fZ(z) =
1

d c
, for c  z  d . (2.10)

In this distribution, the values c and d define the lower and upper limits, respectively. A

practical illustration of this distribution can be found in automated packaging systems.

Imagine a robotic arm that randomly places identical items into boxes within a desig-

nated area. If the robot is programmed to position objects uniformly across a conveyor

13



belt spanning from position c to position d, then the likelihood of an item being placed

at any specific point in this range is constant. This uniform probability distribution

enables optimized loading strategies and efficient space utilization.

2.6 Exponential distribution

The exponential distribution characterizes the likelihood of waiting times between occur-

rences of randomly occurring events that are independent and follow a constant average

rate. It is particularly relevant in scenarios where the timing of the next event depends

only on the present moment and not on past occurrences. Its probability density function

(PDF) is given by:

fZ(z) = ez , z  0 , (2.11)

where  is a positive rate parameter that signifies how frequently events take place

per unit time.

A distinctive example of this distribution can be found in the context of self-checkout

stations at supermarkets. Imagine a system where customers arrive at random, and

each person takes an unpredictable amount of time to complete their transaction. The

duration between successive checkouts follows an exponential distribution, as each cus-

tomer’s speed is independent of the previous one. Understanding this pattern helps

store managers optimize the number of machines required to minimize congestion while

maintaining efficiency.
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2.7 Log-Normal distribution

The log-normal distribution describes a scenario where the logarithm of a random vari-

able exhibits a normal distribution. In other words, if a variable Z follows a log-normal

distribution, then ln(Z) conforms to a normal distribution. This distribution is particu-

larly valuable when analyzing data that grow multiplicatively or display a right-skewed

pattern. The probability density function (PDF) of a log-normal distribution is given

by:

fZ(z) =
1

z
p
2⇡

e
(ln(z)µ)2

22 , z > 0 , (2.12)

where µ and  represent the mean and standard deviation of ln(Z), respectively.

A unique example of this distribution emerges in the analysis of technological inno-

vation lifespans. Consider the time it takes for a newly introduced product, such as a

smartphone model, to reach peak adoption and subsequently decline in usage. Unlike

a normal distribution, where deviations are symmetric around the mean, technological

adoption rates often experience a rapid rise followed by a slower decline—closely resem-

bling a log-normal pattern. Understanding this distribution helps companies predict the

longevity of innovations and optimize product life cycles.

So far, we have focused on various probability distributions to model the behavior of

individual random variables. However, many systems of interest involve a large number

of interacting components, where randomness appears not in isolation but collectively.

In such cases, instead of studying scalar random variables, we consider matrices whose

entries are drawn from these distributions. This shift allows us to capture the complexity

15



of high-dimensional systems, and leads us to the framework of random matrix theory —

where the properties of large matrices with random entries reveal deep insights about

stability, dynamics, and structure.

2.8 Random matrix

In a random matrix, some or all of its elements are random variables (Sec. 2.2), meaning

their values are determined according to specified probability distributions (Secs. 2.4, 2.5,

2.6, and 2.7). Random matrices are used to model complex systems where uncertainty

or randomness plays a central role. Their analysis often focuses on statistical properties

such as the distribution of eigenvalues, singular values, or the behavior of entries as the

matrix size grows.

2.8.1 Types of random matrices

Random matrices are classified based on the distributions of their entries and struc-

tural properties. Below, we describe several common types of random matrices, their

definitions, and examples.

Gaussian random matrix

A matrix where all entries are independently drawn from a Gaussian (normal) dis-

tribution, typically with mean µ and variance 2 [29]. The entries are real-valued,

Aij ⇠ N (µ, 2). For example: A 3 ⇥ 3 Gaussian random matrix with µ = 0 and

16



2 = 1:

A =

2

6

6

4

0.31 1.44 0.79

0.54 0.93 1.01

1.22 0.43 0.67

3

7

7

5

. (2.13)

This type of matrix is commonly used in signal processing, machine learning, and

modeling physical systems due to the well-understood statistical behavior of Gaussian

distributions.

Wigner random matrix

A symmetric matrix where the diagonal entries are real-valued random variables, and

the o↵-diagonal entries are independent and identically distributed random variables

[30]. The matrix satisfies Aij = Aji, and typically the diagonal entries are also drawn

from a normal distribution. Specifically, Aii ⇠ N (0, 1) and Aij ⇠ N (0, 1) for i 6= j. For

example: A 3⇥ 3 Wigner matrix with o↵-diagonal entries Aij ⇠ N (0, 1):

A =

2

6

6

4

1.21 0.65 0.45

0.87 0.58 1.01

0.65 1.03 1.11

3

7

7

5

. (2.14)

Wigner matrices are central to spectral analysis and are widely applied in nuclear

physics and the study of random graphs.
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Wishart random matrix

A positive semi-definite matrix obtained by multiplying a data matrix X (with random

entries) by its transpose: W = X>X [31]. If the entries of X are drawn from a multi-

variate normal distribution, then the resulting matrix W follows a Wishart distribution.

Specifically, for X ⇠ N (0,⌃), the matrix W is a Wishart matrix.

However, if the entries of X are drawn from a distribution other than the normal

distribution, the resulting matrix W = X>X will not follow a Wishart distribution, but

it may still have properties relevant for specific applications, depending on the chosen

distribution. For example: Let X be a 3⇥ 2 matrix with Xij ⇠ N (0, 1):

X =

2

6

6

4

1.2 0.5

0.7 1.3

0.4 0.8

3

7

7

5

. (2.15)

The Wishart matrix is W = X>X:

W =

"

2.13 0.41

0.41 2.38

#

. (2.16)

Wishart matrices play a key role in covariance estimation, multivariate statistics, and

financial modeling, where understanding the structure of variability is essential.

Uniform random matrix

A matrix where each entry is independently drawn from a uniform distribution over an

interval [c, d] [32]. The entries are real-valued, Aij ⇠ Uniform(a, b). For example: A
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2⇥ 2 uniform random matrix with entries drawn from [0, 1]:

A =

"

0.31 0.86

0.43 0.24

#

. (2.17)

Uniform random matrices are frequently used in Monte Carlo simulations and certain

machine learning applications where uniformly distributed randomness is desired.

Exponential random matrix

A matrix where each entry is independently drawn from an exponential distribution

with rate parameter  > 0 [33]. The entries are real-valued, Aij ⇠ Exponential(). For

example: A 2⇥ 2 exponential random matrix with  = 2:

A =

"

0.23 0.78

0.45 0.12

#

. (2.18)

These matrices find applications in reliability engineering, queuing theory, and stochas-

tic modeling where waiting times or decay processes are modeled.

Sparse random matrix

A matrix where most of the entries are 0, and nonzero entries are random variables,

often drawn from a specific distribution [34]. The sparsity is controlled by a parameter

p, which represents the fraction of non-zero elements in the matrix. For example: A 4⇥4
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sparse random matrix with sparsity p = 0.25, and nonzero entries Aij ⇠ N (0, 1):

A =

2

6

6

6

6

6

4

0 0 0.45 0

0 0.67 0 0

0 0 0 1.23

0.89 0 0 0

3

7

7

7

7

7

5

. (2.19)

Sparse random matrices are essential in network analysis and modeling large-scale

systems, particularly when only a small fraction of interactions or connections are active.

Log-Normal random matrix

A matrix where each entry is independently drawn from a log-normal distribution. The

logarithm of the entries follows a normal distribution: Aij ⇠ LogNormal(µ, 2) [35]. For

example: A 2⇥ 2 log-normal random matrix with µ = 0 and  = 1:

A =

"

1.75 3.22

0.85 4.56

#

. (2.20)

Log-normal matrices are useful in modeling financial returns and multiplicative growth

processes, where the logarithm of the variable of interest is normally distributed.

Having introduced various types of random matrices and their applications, we now

turn to one of the central results in random matrix theory—the circular law. This law

characterizes the asymptotic distribution of eigenvalues for large non-Hermitian random

matrices with independent, identically distributed entries. Understanding this result is

crucial for analyzing the stability of complex systems, where the eigenvalue spectrum
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determines the response to perturbations.

2.9 Circular Law

2.10 Stability Analysis and the Circular Law

In dynamical systems analysis, assessing stability fundamentally revolves around scru-

tinizing the eigenvalues of the system’s Jacobian matrix. Stability is established when

every eigenvalue of this matrix possesses a real part that is strictly negative, ensuring

perturbations diminish over time rather than amplify [36].

A fascinating insight from random matrix theory, known as the Circular Law [26],

characterizes the spectral behavior of large random matrices whose elements are inde-

pendently drawn from identical probability distributions. This law reveals that as the

matrix dimension grows, its eigenvalues asymptotically scatter within a circular region

in the complex plane, o↵ering profound implications for understanding stability in high-

dimensional, complex systems.

2.10.1 Circular Law Discussion

May’s analysis of ecosystem stability leads to the consideration of random matrices in

determining system behavior. The stability of a large ecological community can be stud-

ied using the eigenvalues of the interaction matrix M , which is drawn from a distribution

with mean zero and variance 2. A key result in random matrix theory is the circular
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law, which states that as the matrix size grows (N ! 1), the eigenvalues of M become

uniformly distributed within a circle of radius
p
N in the complex plane [26, 25].

Specifically, consider a system with N variables (in an ecological application these are

the populations of the N interacting species) which in general may obey some quite non-

linear set of first-order di↵erential equations. The stability of the possible equilibrium or

time-independent configurations of such a system may be studied by Taylor-expanding

in the neighborhood of the equilibrium point, so that the stability of the possible equi-

librium is characterized by the equation:

dx

dt
= Mx . (2.21)

Here, in an ecological context, x is the N ⇥1 column vector of the disturbed populations

xi, and the N ⇥N interaction matrix M has elements Mik which characterize the e↵ect

of species k on species i near equilibrium. The structure of M reflects the underlying

ecological interactions: an entry Mik is zero if species k does not directly a↵ect species

i, and its sign and magnitude encode the nature and strength of the interaction. For

example, mutualistic, competitive, or predator-prey relationships correspond to di↵erent

combinations of signs and magnitudes in M .

To understand the dynamics of species populations in such systems, we consider

Eq. (2.21). The stability of the system depends on whether the real parts of the eigen-

values of M are negative; if at least one eigenvalue has a positive real part, the system

is unstable.

This formulation provides a direct connection between May’s stability criterion and

the spectral properties of random matrices, highlighting the importance of eigenvalue

distributions in ecological and complex system dynamics.
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A natural extension of this idea is to analyze how the eigenvalue distribution of a

random matrix changes under di↵erent assumptions about its entries. This leads to a

more general formulation of the circular law, which helps refine our understanding of

stability conditions in large systems.

2.10.2 Stability Criteria

The “circular law” states that for a large N⇥N matrix M , whose entries (both diagonal

and o↵-diagonal) are independently drawn from a distribution with mean 0 and variance

1, the eigenvalues of M become uniformly distributed within a circle in the complex

plane as N ! 1 (see Figs. 2.1 and 2.2). This result is crucial in understanding the

spectral properties of large random matrices. The radius of this circle, centered at the

origin (0, 0), is given by:

R =
p
N . (2.22)

To normalize the eigenvalues and ensure a scale-independent analysis, we consider

the matrix M/
p
N . Plotting its eigenvalues reveals a circular distribution centered at

the origin with a unit radius.

Extending the Circular Law with Rescaling

Now, consider another matrix M 0 of size N ⇥ N , where all elements are drawn from a

distribution with zero mean and variance 2. By rescaling, we define:
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Figure 2.1: Eigenvalue distribution of random matrices whose elements are independently
sampled from a normal distribution with variance 1 and mean 0. Panels (a), (b), and (c)
correspond to N = 50, N = 500, and N = 5000, respectively. Eigenvalues (blue dots)
are plotted in the complex plane after rescaling by

p
N . The red dashed line represents

the unit circle.

Figure 2.2: Eigenvalue distribution of random matrices whose elements are independently
sampled from a uniform distribution with variance 1 and mean 0. Panels (a), (b), and
(c) correspond to N = 50, N = 500, and N = 5000, respectively. Eigenvalues (blue dots)
are plotted in the complex plane after rescaling by

p
N . The red dashed line represents

the unit circle.
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M =
1


M 0 , (2.23)

which ensures that M has zero mean and unit variance. Consequently, normalizing by
p
N gives:

Mp
N

=
1p
N

M 0 , (2.24)

where each side retains a unit radius and is centered at the origin. This step illustrates

how variance scaling a↵ects the eigenvalue distribution.

Introducing Probability-Dependent Sparsity

Next, we introduce an additional probability parameter C. Suppose each element Z is

drawn as Z = 0 with probability 1 C and X = 1 with probability C.

Using this sparsity model, we define a modified matrix M 00:

M 00 = ZM 0 , (2.25)

which means that only a fraction C of the entries in M 0 contribute to M 00. The mean of

each element in M 00 remains zero, while its variance is computed as:

Var(M 00

i,j) = Var(ZM 0

i,j) . (2.26)

Since Z and M 0

i,j are independent, we can express the variance as:
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Var(M 00

i,j) = E[X2]E[(M 0

i,j)
2] E[X]2E[M 0

i,j]
2 . (2.27)

Given that E[M 0

i,j] = 0, we simplify:

E[X2] = 12C + 02(1 C) = C , (2.28)

which results in:

Var(M 00

i,j) = C2 . (2.29)

Thus, the normalized matrix takes the form:

Mp
N

=
1


p
NC

M 00 , (2.30)

where again, the eigenvalues lie within a unit-radius circle centered at the origin. This

derivation highlights how sparsity influences the spectral properties of the matrix.

Shifting the Eigenvalues and Stability Condition

Now, we define a new matrix:

B = M 00
 dI , (2.31)
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where I is the identity matrix. This operation shifts the diagonal elements of M 00 by d,

meaning they now have a mean of d and variance C2. The impact of this shift on the

eigenvalues can be analyzed by considering:

B = M 00  d . (2.32)

When plotting the eigenvalues of B, we observe that a complete circular distribution

only emerges when the variance of the diagonal elements approaches zero (see Figs. 2.3

and 2.4). This requirement ensures stability, which is formally expressed as:

Re[M 00 ] d < 0 . (2.33)

Since the largest eigenvalue of M 00 lies at the boundary of a circle with zero mean

and radius
p
NC, the stability condition simplifies to:


p
NC < d . (2.34)

This inequality establishes the criterion for stability in terms of matrix parameters

and the probability C, emphasizing how sparsity and shifting a↵ect the system’s stability.

The condition ensures that no eigenvalue crosses the real-axis threshold at the origin,

preventing instability.

To verify the stability condition Eq. (2.34), we performed numerical simulations using

random interaction matrices. The elements of these matrices were drawn from both
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Figure 2.3: Eigenvalue distributions of sparse random matrices with normally distributed
diagonal elements. The blue dots represent the rescaled eigenvalues, and the red dashed
curves indicate the theoretical circular boundary with radius 1, centered at (d, 0) with
d = 1 in this case. Panels (a), (b), and (c) correspond to Diagonal variance = 0, 20, and
40. The matrix parameters are N = 1000, connectivity C = 0.2, and standard deviation
 = 1.

normal and uniform distributions, and we analyzed the eigenvalue spectra to determine

when instability occurs.

Figures 2.5 and 2.6 illustrate the comparison between the theoretical prediction and

numerical results for normal and uniform distributions, respectively. Each figure consists

of multiple panels representing di↵erent values of N . As the number of species increases,

the results from numerical simulations converge towards the stability condition predicted

by the theory. This agreement supports the asymptotic validity of the theoretical frame-

work, consistent with the predictions of the Circular Law and the classical results of May

[8] on the stability of large random ecosystems.
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Figure 2.4: Eigenvalue distributions of sparse random matrices with uniformly dis-
tributed diagonal elements. The blue dots represent the rescaled eigenvalues, and the
red dashed curves indicate the theoretical circular boundary with radius 0.58, centered
at (d, 0) with d = 1 in this case. Panels (a), (b), and (c) correspond to Diagonal
variance = 0, 20, and 40. The matrix parameters are N = 1000, connectivity C = 0.2,
and standard deviation  = 1.The elements are sampled from a uniform distribution in
the range [, ].
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Figure 2.5: Stability probability as a function of connectance and variance for ecosystems
with interactions sampled from a normal distribution with mean 0. Panels (a), (b),
(c), and (d) correspond to ecosystems with 10, 20, 30, and 40 species, respectively.
The red curve marks the analytical stability boundary based on theoretical predictions
[Eq. (2.34)].
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Figure 2.6: Stability probability as a function of connectance and variance for ecosystems
with interactions sampled from a uniform distribution with mean 0. Panels (a), (b),
(c), and (d) correspond to ecosystems with 10, 20, 30, and 40 species, respectively.
The red curve marks the analytical stability boundary based on theoretical predictions
[Eq. (2.34)].
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2.11 Conclusion

In this chapter, we investigated the stability of large ecological systems using random

matrix theory. We revisited May’s framework and provided a detailed derivation of

the stability condition, extending the analysis to include structural features such as

sparsity, variance scaling, and diagonal shifts. We complemented this theoretical work

with numerical simulations, which validated the predictions and demonstrated how these

structural parameters influence the eigenvalue spectrum and, consequently, the stability

of complex ecosystems.

While this spectral approach o↵ers powerful insights into system-level patterns, it ab-

stracts away species-specific interactions and ecological mechanisms. In the next chapter,

we turn to consumer-resource models to explore the dynamics of species competition and

the conditions under which coexistence or exclusion occurs in ecosystems with shared

limiting resources.
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Chapter 3

Competitive exclusion principle

3.1 Introduction

Having examined global stability through statistical models in the previous chapter, we

now shift to a mechanistic understanding of species interactions at the steady state. This

chapter focuses on the classical Competitive Exclusion Principle (CEP), which states that

two species competing for the same limiting resource cannot coexist indefinitely under

constant environmental conditions [15, 16].

The goal of this chapter is to analytically characterize the conditions under which

species coexist or exclude one another in simple consumer-resource systems, and to inter-

pret these results geometrically and biologically. By steady state, we mean a condition

where species abundances and resource levels remain constant over time, assuming no

further perturbations.

We study coexistence and exclusion using the consumer-resource model [17, 18], which
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allows us to track species abundances and resource levels over time until they reach a

steady state. We analyze systems with one or two species competing for one or two

resources, and derive analytical conditions for the stationary states of these systems.

Using geometric tools such as Zero Net Growth Isoclines (ZNGIs) [18], we interpret how

resource supply, species traits, and consumption dynamics determine whether species

coexist or whether one excludes the other.

To illustrate this idea, consider the following scenario:

In a remote village, two families share a single well. One family wakes early,

uses water efficiently, and wastes none. The other needs more, arrives late,

and loses water to evaporation. As the dry season continues, the well runs

low. Eventually, only one family remains — not because the other didn’t try,

but because they couldn’t survive on what was left.

This is the essence of the Competitive Exclusion Principle: when two groups

compete for the same limited resource, the one that survives with less will

outlast the other.

This approach provides a concrete and biologically grounded framework for under-

standing coexistence in ecological communities, and sets the stage for exploring how

additional factors like spatial structure and migration might alter these outcomes.

3.2 Consumer-Resource Model

In this section, we write the dynamical equations of n number of species competing for

r number of resources (i.e., the consumer-resource model):
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1

Ni

dNi

dt
= ri

r
X

j=1

Rj

Rj + ki
mi , (3.1)

dRj

dt
= a(Sj Rj)

n
X

i=1

riNi

i

Rj

Rj + ki
, (3.2)

where Ni is the population density of species i, Rj is the availability (in concentration)

of resource j, ri is the growth rate of species i, mi is the mortality-rate of species i, i is

the number of individuals of species i produced per unit of resource consumption, Sj is

the amount of resource j being supplied to the system, a is the rate constant for resource

supply, and ki is the resource availability at which growth-rate of species i reaches half

of its value; therefore, we call ki as the the half saturation constant. On the right-hand

side (RHS) of Eq. (3.1), the first and second terms, respectively, represent the growth-

and mortality-rate of species i. The first and second terms on the RHS of Eq. (3.2)

represent the supply and consumption rate of resource j respectively.

To predict the stationary-state outcome of resource competition via Eqs. (3.1) and

(3.2), we need four pieces of information. These are the reproductive or growth response

of each species to the resources the first term on RHS of Eq. (3.1), the mortality rate

of each species, the supply rate Sj of each resource, and the consumption rate ri of

each resource by each species. Then, the stationary-state is reached when the resource-

dependent reproduction of each species balances its mortality-rate. Additionally, when

resource supply balances the total resource consumption for each resource. Mathemat-

ically, these stationary-state conditions can be written using Eqs. (3.1) and (3.2) as
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follows:

ri

r
X

j=1

R⇤
j

R⇤
j + ki

= mi , (3.3)

a(Sj R⇤
j ) =

n
X

i=1

riN
⇤
i

i

R⇤
j

R⇤
j + ki

, (3.4)

where N⇤
i and R⇤

j are the stationary-state population density of species i and availability

of resource j respectively.

Notice that the stationary-state {N⇤
i , R

⇤
j}i,j can be either stable or unstable. This

depends on the fact that if we perturb our system from its stationary-state, then, if

the system goes away from its stationary-state, this stationary state will be unstable;

otherwise, it is stable [36].

3.3 Competition for a single resource

In the previous section, we introduced the general dynamical equations for n species

competing for r resources in the consumer-resource model [Eqs. (3.1) and (3.2)]. While

this model provides a comprehensive framework for understanding multispecies competi-

tion, analyzing the system may become complex due to the interactions between multiple

species and resources.

To gain deeper insight of the system, it is useful to first explore a simpler case. To this

end, we first focus on the interaction between a single species and a single resource. This

reduced model captures the essential dynamics of resource competition while allowing

us to derive analytical expressions for the stationary-state conditions. By examining
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this simpler scenario, we can develop intuition that will later guide our understanding

of more complex multispecies interactions.

3.3.1 One species and one resource

To analyze the steady-state behavior of a single species competing for a single resource,

we focus directly on the stationary-state condition for the population N and the resource

concentration R. At stationary state, the system reaches a condition where the species’

growth rate is balanced by its mortality rate, and the resource supply is balanced by the

consumption rate. These stationary-state conditions are represented by the following

equations:

rN
R⇤

R⇤ + k
mN⇤ = 0 , (3.5)

a(S R⇤)
rN⇤



R⇤

R⇤ + k
= 0 . (3.6)

Here, we have two equations and two unknowns: R⇤ and N⇤. When we solve both

equations, we get the equilibrium values of R⇤ and N⇤ as:

R⇤ =
mk

r m
, (3.7)

N⇤ =
a(S R⇤)

r

R⇤ + k

R⇤
, (3.8)

For a real system, it is essential that both R⇤ and N⇤ should be positive. Thus, from

Eqs. (3.7) and (3.8), we can derive the necessary conditions for the positivity of R⇤ and

N⇤: r must be greater than m and the resource supply S must exceed R⇤ [Eq. (3.8)].

Figure 3.1a demonstrates a scenario where the resource supply is insufficient to sustain
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the population [i.e., S < R⇤, see Eq. (3.8)]. As a result, the population density declines

towards zero indicating extinction while the resource concentration stabilizes to a non-

zero value [(3.7)].

Figure 3.1b illustrates a contrasting scenario where the resource supply is sufficient.

Here, the system reaches a stable stationary state where both the population and resource

stabilize at non-zero values as predicted by Eqs. (3.8) and (3.7).

The above two discussed scenarios highlight how the availability of resources deter-

mines the fate of the species. In Fig. 3.1a, the limited resource supply leads to species

extinction, while in Fig. 3.1b, sufficient resource supply results in a stable population

and resource concentration. These results align with the analytical expressions for the

stationary-state values of N⇤ and R⇤ derived earlier [Eqs. (3.7) and (3.8)], demonstrating

how resource availability plays a critical role in the long-term dynamics of the population

and resource in the system.

3.3.2 Two species and one resource

Building upon the insights from the previous subsection, which examined the dynamics

of a single species competing for a single resource, we now extend our analysis to two

species competing for the same resource. The foundational understanding of how resource

availability impacts population dynamics become essential in this context. In the one-

species model, we established the critical conditions for species survival based on resource

supply and growth rate. As we transition to the two-species model, these principles

will illuminate the competitive interaction between species and the influence of resource

distribution on their coexistence or exclusion.
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Figure 3.1: Time evolution of population density (blue) and resource concentration
(green) for a one-species one-resource model. (a) When the resource supply is insuf-
ficient (S = 7 < R⇤), the population density declines to extinction (N ! 0), while the
resource concentration stabilizes at a non-zero value, as predicted by Eq. (3.7). (b) When
the resource supply is sufficient (S = 20 > R⇤), both the population and resource con-
centrations stabilize at non-zero values, as predicted by Eqs. (3.8) and (3.7). Solid lines
represent the population and resource dynamics over time, while dashed lines represent
the stationary-state values derived from the analytical solutions [Eqs. (3.7) and (3.8)].
The parameters used are growth rate r = 0.4, mortality rate m = 0.2, half-saturation
constant k = 8, resource supply rate constant a = 1, and resource consumption efficiency
 = 1. The dynamics [Eqs. (3.1) and (3.2)] were solved via numerical integration using
Euler’s method (see Appendix 6).
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To analyze the competition between two species for a single resource, we start with

the stationary state conditions derived from Eqs. (3.1) and (3.2). These conditions are

expressed as follows:

riN
⇤
i

R⇤

R⇤ + ki
miN

⇤
i = 0 , (3.9)

a(S R⇤)
2
X

i=1

riN
⇤
i

i

R⇤

R⇤ + ki
= 0 . (3.10)

From the Eq. (3.9), we derive the stationary state resource concentration R⇤:

R⇤ =
miki

ri mi

. (3.11)

This indicates how the resource concentration depends on species-specific parameters:

the growth rate ri, the mortality rate mi, and the half-saturation constant ki.

When both species have di↵erent value of R⇤

Here, we focus on a case of two species (with di↵erent R⇤) competing for one resource.

In Eq. (3.10), we need to determine two unknowns N⇤
1,2 after substituting the value of

R⇤ from Eq. (3.11). At this point, we have one equation and two unknowns. To solve

this equation, we need to set one of the unknowns equal to zero. We decide which Ni to

set to zero based on the value of R⇤: the species with the greater value of R⇤ will have

its population density set to zero, as observed in our simulations (see Fig. 3.2). In this

case, the population density of the other species is given by:

N⇤ =
a(S R⇤)

r

R⇤ + k

R⇤
. (3.12)
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Here k is the half-saturation constant corresponding to the survived species. We get

above equation from Eq. (3.10). When we have two di↵erent species competing for a

single resource, and both species have di↵erent value of R⇤, only one species will survive.

In this scenario, the species with the lower value of R⇤ will outcompete the other species,

displacing it from the habitat. This phenomenon, known as competitive exclusion, means

the fittest species–defined by having the lower R⇤–outcompetes the other.

Figure 3.2 clearly shows this process. At first, when the resource levels are above

R⇤
2, both species grow, as seen in the blue and orange lines. However, as they consume

resources, the levels start to drop. Species 1’s reaches its maximum when resources

reach R⇤
1, while species 2 can keep growing until the resources hit R⇤

2. When that

happens, species 1 can’t find enough resources to survive and is displaced by species 2.

This example illustrates how having di↵erent resource thresholds can lead to one species

outcompeting the other.

When both species have the same value of R⇤

When both species have the same value of R⇤ [Eq. (3.11)], the population densities of

both species will be non-zero because the resource availability is sufficient to support

both species. This occurs under the assumption that the resource is abundant enough,

allowing for coexistence rather than competitive exclusion. In this case, we obtain a

constraint for both species when solving Eq. (3.10):

r1N
⇤
1

1

R⇤

R⇤ + k1
+

r2N
⇤
2

2

R⇤

R⇤ + k2
= a(S R⇤) . (3.13)

If the value of R⇤
1 and R⇤

2 are same, then the initial resource level is greater than R⇤
1 (or

R⇤
2), both species will increase in population density. As the population size increase,
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the resource level decreases. The population size of species 1 and species 2 will stop

increasing when the resource level decreases to R⇤
1 (or R

⇤
2). In this case, both species can

coexist because the resource level does not fall below R⇤
1 (or R⇤

2). Both species will have

sufficient resources to maintain stable populations.

Figure 3.2(b) shows this situation, where both species grow together as there are

plenty of resources. The blue and orange lines rise until the resource levels drop to R⇤
1

(or R⇤
2). At this point, both species reach a stable population size, as shown by the

flattening of the curves. The resource level stays above R⇤, allowing both species to

thrive together, highlighting how sharing resources can help maintain diversity among

species.

3.4 Competition for two resources

In this section, we explore how n species compete for two resources in a habitat. If

the available resources in the habitat are less than what is required for a species to

survive, the species will die. Therefore, the correct balance of resources is essential for

the existence of species in a particular habitat. This balance is described by the Zero

Net Growth Isocline (ZNGI), which represents the conditions where a species’s growth

rate equals its mortality rate. A species can survive only if the resource supply point is

above the ZNGI; otherwise, it will not be able to maintain a stable population and will

eventually die. We will examine this condition in two scenarios: first, when only one

species present in the habitat, and second, when two species present in the habitat.

If we extend Eq. (3.1) and Eq. (3.2) to model the consumption of two resources by n
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Figure 3.2: Dynamics of two competing species and a single shared resource. Species 1:
Blue. Species 2: Orange. Resource: Green. Panel (a) illustrates a situation where species
1 has a higher resource concentration threshold/requirement (R⇤

1 > R⇤
2), derived from

Eq. (3.11). Here, the purple dashed line represents R⇤
1, while the green dashed line is for

R⇤
2. Panel (b) depicts a scenario where both species have the same resource concentration

threshold (R⇤
1 = R⇤

2). Dashed lines in panel (a) represent the stationary-state values for
population densities and resource levels derived from the analytical solutions [Eqs. (3.12)
and (3.11)] and in panel (b) there is only one dashed line which represents resource level
derived from the analytical solution [Eqs. (3.11)]. The parameters used are growth rates
r1 = 0.4 and r2 = 0.2, mortality rates m1 = 0.25 and m2 = 0.1, half-saturation constants
k1 = 8 and k2 = 6, resource consumption efficiencies 1 = 2 = 1, resource supply rate
constant a = 1 and resource supply S = 20. For panel (b) all other parameters are
same except m1 = 0.2 and k2 = 8. The dynamics [Eqs. (3.1) and (3.2)] were solved via
numerical integration using Euler’s method (see Appendix 6).
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species, the resulting equations are:

1

Ni

dNi

dt
= ri

2
X

j=1

Rj

Rj + ki
mi , (3.14)

dRj

dt
= a(Sj Rj)

n
X

i=1

riNi

i

Rj

Rj + ki
. (3.15)

We will now solve these equations for two cases: n = 1 or one species (see Sec. 3.4.1)

and n = 2 or two species (see Sec. 3.4.2).

3.4.1 Two resources and one species

Before we consider competition between multiple species, it is helpful to understand how

a single species interacts with two resources in the environment. This will provide the

foundation for analyzing more complex scenarios where multiple species compete for the

same resources.

To analyze the stationary-state behavior of a single species interacting with two

resources, we focus directly on the stationary-state condition for the population N and

the resource concentrations R1 and R2. At this stationary state, the growth rate of the

species is balanced by its mortality rate, and the resource supply is balanced by the

consumption rate. These stationary-state conditions are represented by the following
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equations:

r
2
X

j=1

R⇤
j

R⇤
j + k

m = 0 , (3.16)

a(Sj R⇤
j ) rN⇤

R⇤
j

R⇤
j + k

= 0 . (3.17)

From Eq. (3.16), we derive the zero net growth isocline (ZNGI). Figure 3.3 displays

the zero net growth isocline (ZNGI), derived from Eq. (3.16), indicating the boundary

between population stability and decline.

Equation (3.17) shows the stationary state population of species N⇤ as a function of

R⇤
1 and R⇤

2. Additionally, we impose the condition that at stationary state, the population

density of the species must be greater than zero; otherwise, the species cannot persist

over time:

N⇤ =
a(Sj R⇤

j )(R
⇤
j + k)

rR⇤
j

> 0 . (3.18)

In Eq. (3.18), we see that N⇤ remains positive when Sj > R⇤
j for j = 1, 2. Therefore,

when the supply point lies below or on the ZNGI (see Fig. 3.3), the species cannot sustain

a positive population density. This emphasizes the critical resource levels required for

the species’ survival, highlighting the importance of resource availability in maintaining

stable population dynamics.

Figure 3.4 demonstrates how the population density of a single species and the re-

source levels evolve at di↵erent supply points (A, B, and C from Fig. 3.3).

In Fig. 3.4a, we observe that the population density of the species approaches zero

over time. This decline indicates that the corresponding supply point is below the zero
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net growth isocline (see Fig. 3.3). Consequently, the species cannot sustain a positive

population density under these conditions. Similarly, Fig. 3.4b also shows a decrease in

population density, suggesting that this supply point fails to support the species.

In contrast, Fig. 3.4c illustrates a scenario where the population density stabilizes over

time, indicating that the conditions at this supply point are sufficient for the species to

persist. This behavior aligns with the stationary-state conditions described in Eq. (3.17).

Overall, Fig. 3.3 underscores the critical relationship between resource availability

and population stability, emphasizing that supply points below or on the ZNGI lead to

population decline, while points above this threshold can support a stable population.

3.4.2 Two resources and two species

Having examined the dynamics of one species competing for two resources, we now

extend this understanding to a scenario where two species compete for two resources.

This allows us to explore the potential for coexistence or competitive exclusion between

species in a shared environment.

To analyze the stationary-state behavior of two species interacting with two shared

resources, we consider the stationary-state conditions for the populations N1, N2, and

resource concentrations R1, R2. At stationary state, the growth rate of each species

balances with its mortality rate, and the resource supply balances with consumption.

These stationary-state conditions are represented by the following equations:
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Figure 3.3: The zero net growth isocline (ZNGI), derived from Eq. (3.16), indicating
the conditions under which the species can maintain a stable population of one species.
Points A, B, and C represent distinct supply points. The parameters used are growth
rate r = 0.4, mortality rate m = 0.2, resource saturation constant k = 7.0, and resource
supply a = 1.
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Figure 3.4: Population density and resource levels at supply points A, B, and C (see
Fig. 3.3) as functions of time. Panels (a), (b), and (c) illustrate the system’s behavior
at these respective supply points. Dashed lines represent the analytical values [obtained
numerically by solving Eq. (3.16)] of resources and the species’ population density at the
stationary state, as described by Eq. (3.18). The parameters used in this figure are the
same as those specified in Fig. 3.3. The dynamics [Eqs. (3.1) and (3.2)] were solved via
numerical integration using Euler’s method (see Appendix 6).

ri

2
X

j=1

R⇤
j

R⇤
j + ki

mi = 0, (i = 1, 2) , (3.19)

a(Sj R⇤
j )

2
X

i=1

riN
⇤
i

R⇤
j

R⇤
j + ki

= 0, (j = 1, 2) . (3.20)

From Eq. (3.19), we derive the zero net growth isocline (ZNGI) for both species. We

can then express N⇤
1 and N⇤

2 as functions of the resource concentrations R⇤
1 and R⇤

2 by
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Eq. (3.20) The stationary-state populations are given by:

N⇤
1 =

a(S1 R⇤
1)

R⇤

2

R⇤

2+k2
 a(S2 R⇤

2)
R⇤

1

R⇤

1+k2

r1

h

R⇤

1

R⇤

1+k1

R⇤

2

R⇤

2+k2


R⇤

1

R⇤

1+k2

R⇤

2

R⇤

2+k1

i > 0 , (3.21)

N⇤
2 =

a(S1 R⇤
1)

R⇤

2

R⇤

2+k1
 a(S2 R⇤

2)
R⇤

1

R⇤

1+k1

r2

h

R⇤

1

R⇤

1+k1

R⇤

2

R⇤

2+k2


R⇤

1

R⇤

1+k2

R⇤

2

R⇤

2+k1

i > 0 . (3.22)

These expressions, Eqs. (3.21) and (3.22), show how population densities depend on

resource availability and species’ parameters, determining whether species coexist or one

competitively excludes the other.

Figure 3.5 establishes the framework by illustrating the zero net growth isoclines

(ZNGI) for both species. The intersections of these isoclines, marked as Points A and B,

are pivotal as they represent the stationary states where each species can sustain itself

based on the available resources.

Figure 3.6 delves into the stability of these stationary points (in Fig. 3.5) under

di↵erent supply levels. It indicates that stability is highly contingent on the combination

of resource supply rates S1 and S2. The observed outcomes demonstrate that certain

supply combinations can either stabilize the populations or lead to declines, emphasizing

the critical nature of resource availability in determining competitive interactions.

In Fig. 3.7, ZNGI is explored across multiple supply points, illustrating the feasible

solutions derived from the stationary-state conditions. The shaded regions highlight

the circumstances under which both species can coexist, while the lines indicate ZNGI.

When the stationary solution (marked by circles) lies in that feasible region, both species

survive.
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Figure 3.5: Contour plot for the competition for two resources between two species. The
blue and orange curves represent the Zero Net Growth Isoclines (ZNGIs) [Eq. (3.19)] for
each species. The blue and red points indicate the intersection of the ZNGIs, highlighting
potential stationary states of resource availability for the two species. The parameters
used are growth rates r1 = 0.4 and r2 = 0.2, mortality rates m1 = 0.25 and m2 = 0.15,
resource carrying capacities k1 = 5 and k2 = 3.5, and resource supply rate constant
a = 1.
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Figure 3.6: Stability of stationary Points A and B (Point A and B are the same points
as shown in Fig. 3.5) under di↵erent supply levels S1 and S2, represented in panels (a)
and (b). Each panel examines di↵erent combinations of supply levels across two time
intervals: 1000 and 10,000 time units. The parameters used in this figure are the same
as those specified in Fig. 3.5.
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Figure 3.7: The zero net growth isoclines (ZNGIs) (Fig. 3.5) for both species for di↵erent
supply points, as shown in panels (a), (b), and (c). The orange and blue lines represent
the ZNGI for species 1 and species 2, respectively [Eq. (3.19)]. The shaded regions
indicate the feasible solutions obtained from Eqs. (3.21) and (3.22). The parameters
used in this figure are the same as those specified in Fig. 3.5.

Figure 3.8 displays the species populations under various resource supply scenarios. It

reveals that under specific conditions, both species can thrive, as demonstrated by Points

A and B being situated within the feasible region (as discussed in Fig. 3.7). Conversely,

scenarios where one species declines illustrate the potential for competitive exclusion,

underscoring how sensitive these dynamics are to resource supply levels.

Finally, we extend our analysis (shown in Fig. 3.8) for di↵erent supply points (S1, S2).

Figure. 3.9 portrays the temporal evolution of the system, showcasing the gradual shift

from coexistence to competitive exclusion over time. As time progresses, the coexistence

region shrinks, indicating that competitive pressures can escalate, resulting in the decline

of one or both species in areas where resources are limited.
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Figure 3.8: The dynamics of the two resources and two species model under various
supply conditions. In panel (a), the population of species 1 declines, indicating that
both stable points lies outside the feasible region Fig. 3.7(a). In panel (b), both species
survive as the population is supported by Point A, which is located within the feasible
region Fig. 3.7(b). Panel (c) also shows both species surviving, this time due to Point
B being situated in the feasible area Fig. 3.7(c). The parameters used in this figure are
the same as those specified in Fig. 3.5. The dynamics [Eqs. (3.1) and (3.2)] were solved
via numerical integration using Euler’s method (see Appendix 6).

Figure 3.9: Number of surviving species (out of two) competing for two shared resources
at three di↵erent times: (a) Time = 100, (b) Time = 1000, and (c) Time = 10000. The
region colored in purple represents areas where both species survive, while the black
regions indicate areas where at least one species survives. The parameters used in this
figure are the same as those specified in Fig. 3.5. We keep the species population’s
threshold 1010, such that if the population is below this threshold, we consider that
species is extinct.
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3.5 Conclusion

This chapter provided a detailed analysis of the competitive exclusion principle using

consumer-resource dynamics. We demonstrated how coexistence depends on species-

specific parameters such as growth rates, mortality, half-saturation constants, and re-

source availability. The Zero Net Growth Isocline (ZNGI) approach o↵ered a visual and

analytical framework for interpreting stationary states and extinction thresholds.

However, these models assume spatially isolated communities. In reality, migration

between habitats is common and can change competition outcomes. In the next chapter,

we incorporate spatial structure via patch-based models and explore how asymmetric

migration facilitates coexistence, even in systems where classical models predict exclu-

sion.
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Chapter 4

Species Coexistence via Asymmetric

Migration

4.1 Introduction

The previous chapter showed how resource competition determines whether species co-

exist or exclude one another. However, real ecosystems are spatially structured, and

individuals often migrate between habitats. Migration can modify local interactions and

enable coexistence under otherwise exclusionary conditions [37, 38].

In this chapter, we explore species coexistence through asymmetric migration between

two patches. By asymmetric migration, we mean that the rate at which individuals move

from patch A to patch B is not necessarily equal to the rate from B to A. Using a two-

patch Lotka–Volterra competition model, we study how di↵erent migration rates a↵ect

the stationary states — the long-term equilibrium of species densities in each patch —
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and the stability of the system. We derive analytical coexistence conditions and interpret

how migration reshapes e↵ective competition. This analysis highlights spatial movement

as a novel mechanism for promoting biodiversity.

To motivate this idea, consider a continuation of the earlier village story:

After one family is forced to leave the original well, they travel to a neigh-

boring village where another well exists. This new well is smaller and harder

to reach, but it provides just enough water to sustain them. Over time, the

two families begin to move between the two wells depending on the season and

need.

Now, instead of one family being excluded, both survive — not by sharing

a single limited resource, but by spreading out and using resources in space.

This is how migration can support coexistence even when competition alone

would lead to exclusion.

Through this lens, we show that spatial movement allows species to reduce direct

competition and create conditions for coexistence that would not emerge in a single,

well-mixed environment.

4.2 Asymmetric Migration Model

In this section, we explore how migration plays an important role in the coexistence of

species. To this end, we consider a habitat, where two species are competing for a single

resource. Additionally, to introduce the concept of spatial migration, we divide this
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Figure 4.1: Illustration of asymmetric migration dynamics between two patches. The
schematic shows two patches, patch-1 and patch-2, each containing two species (birds
and ducks) and a shared resource (apples). Arrows represent migration between patches,
with black arrows for the bird migration and brown arrows for the duck migration. The
direction of the arrows indicates the direction of migration, while the parameters k, k̄,
m, and m̄ represent the migration rates. Specifically, k̄ and k denote the migration rates
of species 1 (birds) from patch-1 to patch-2 and from patch-2 to patch-1, respectively,
while m̄ and m denote the migration rates of species 2 (ducks) from patch-1 to patch-2
and from Patch-2 to Patch-1, respectively.
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habitat into two parts, referred to as patch-1 and patch-2 (see Fig. 4.1). In each patch,

both species (species 1 and 2) and resource are present. We assume the asymmetric

migration of species from one patch to another, i.e., the migration rates from patch-1 to

patch-2 and conversely from patch-2 to patch-1 are not the same for each species. The

local dynamics in each patch is governed by the Lotka-Volterra competition model (in

the absence of migration). The dynamics of species in the presence of migration between

two patches is given by the following equations:

dn
(1)
1

dt
= ✏r1n

(1)
1

 

1
n
(1)
1

K
 ↵12

n
(1)
2

K

!

+
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1 + kn
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, (4.1a)
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dn
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2
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!

+
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m̄n
(1)
2 mn

(2)
2

⌘

, (4.1d)

where n
(1)
1 and n

(2)
1 represent the population densities of species 1 in patch-1 and patch-2,

respectively. Similarly, n
(1)
2 and n

(2)
2 , respectively, represent the population densities of

species 2 in patch-1 and patch-2. The parameters k̄ and k represent migration rates of

species 1 from patch-1 to patch-2 and from patch-2 to patch-1, respectively, while m̄

and m are the migration rates of species 2 from patch-1 to patch-2 and from patch-2

to patch-1, respectively. The parameter ✏ is a scaling factor that modulates the speed

of population dynamics. This can be used to rescale the time as t✏ ! t, and similarly,

the migration rates can be rescaled in the units of ✏, and therefore, in what follows we

will drop it for convenience. r1 and r2 are the intrinsic growth rates of species 1 and

species 2, respectively. K is the carrying capacity of the environment, representing the
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maximum population density that can be sustained in each patch. For simplicity, we

are assuming that each patch has same carrying capacity, but for the case of di↵erent

carrying capacities, one can do the following calculations along the same line. ↵12 is the

competition coefficient indicating the e↵ect of species 2 on species 1, while ↵21 indicates

the e↵ect of species 1 on species 2. For simplicity, we assume these competition coefficient

to be patch independent.

4.3 E↵ective Asymmetric Migration model

We simplify the system by introducing two new variables that represent the total popula-

tion densities of each species across the two patches: n1(t) ⌘ n
(1)
1 (t) + n

(2)
1 (t) for species

1 and n2(t) ⌘ n
(1)
2 (t) + n

(2)
2 (t) for species 2. These total densities, called global vari-

ables, stay constant when migration happens on a much faster time scale compared to

local processes like growth and competition. Notice that the migration only redistributes

species’ individuals between the patches but does not change their overall numbers.

When migration is fast, the populations in each patch quickly settle into stable pro-

portions, even though the total densities n1 and n2 remain fixed. In this case, the first

term can be considered to be vanishingly small in each of the Eq. (4.1). To find these

stable proportions, we assume that n1 and n2 are constant and calculate the stationary

states of the migration terms using Eq. (4.1). For species 1, we obtain

n
(1),⇤
1 =

k

k + k̄
n1 ⌘ ✓⇤1n1 ,

n
(2),⇤
1 =

k̄

k + k̄
n1 ⌘ ✓⇤2n1 ,

(4.2)
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and for species 2, we have

n
(1),⇤
2 =

m

m+ m̄
n2 ⌘ µ⇤

1n2 ,

n
(2),⇤
2 =

m̄

m+ m̄
n2 ⌘ µ⇤

2n2 ,
(4.3)

where the constants ✓⇤1 and ✓⇤2 represent the fast equilibrium proportions of species 1

in patch-1 and patch-2, respectively, while µ⇤
1 and µ⇤

2 represent the fast equilibrium

proportions of species 2 in patch-1 and patch-2, respectively.

Now, returning to the complete model in Eq. (4.1), we express the system in terms of

n1 and n2. To write the equations in terms of n1 and n2, we sum Eqs. (4.1a) and (4.1b),

and Eqs. (4.1c) and (4.1d) of the full system (4.1). This results in

dn1
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and similarly:
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Substituting the fast equilibria from equations (4.2) and (4.3)

n
(1)
1 = ✓⇤1n1 , (4.6a)

n
(2)
1 = ✓⇤2n1 , (4.6b)

n
(1)
2 = µ⇤

1n2 , (4.6c)

n
(2)
2 = µ⇤

2n2 , (4.6d)

(these values of n
(1)
1 , n

(2)
1 , n

(1)
2 and n

(2)
2 are not at their stationary state values. The
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stationary state values are given in Eqs. (4.2) and (4.3)) in Eqs. (4.4) and (4.5), we

obtain leads to the following governing dynamical equations for species’ population n1

and n2:
dn1

dt
= r1n1
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Further, by redefining N1 ⌘
(✓⇤1)

2+(✓⇤2)
2

K
n1 and N2 ⌘

(µ⇤

1)
2+(µ⇤

2)
2

K
n2, we obtain the e↵ec-

tive dynamical equations for the species’ population when species are migrating among

two patches:

dN1

dt
= r1N1(1N1  a12N2) , (4.8)

dN2

dt
= r2N2(1 a21N1 N2) , (4.9)

where we also redefine the competing stength as

a12 ⌘ ↵12
✓⇤1µ

⇤
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(µ⇤
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a21 ⌘ ↵21
✓⇤1µ
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1 + ✓⇤2µ
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(✓⇤1)
2 + (✓⇤2)

2
. (4.11)

N1 and N2 represent the scaled total population densities of species 1 and species 2,

respectively. a12 indicates how strongly species 2 competes with species 1, relative to

their resource needs, while a21 describes how strongly species 1 competes with species 2,

relative to their resource utilization patterns.
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4.4 Species coexistence: Stationary state and stabil-

ity analysis

insight into potential ecological scenarios such as coexistence, dominance, or extinction

of species. This subsection explores two key aspects of stationary states: their existence,

determined by the interplay of migration rates and competitive interactions, and their

stability, assessed by their resilience to small perturbations or tendency to shift under

changing conditions. This analysis complements the broader mechanisms discussed ear-

lier, enhancing our understanding of how asymmetric migration and competition shape

the system’s behavior.

4.4.1 Stationary states of the system

Stationary states correspond to the points in the system where population densities no

longer change over time. These are also called the critical or the fixed points. Henceforth,

we label the critical point by ‘CP’. For the asymmetric migration-competition model,

the CPs are obtained when the rate of change of the population densities is zero. This

implies solving the system of di↵erential equations [Eqs. (4.8) and (4.9)]

dN1

dt
= r1N1 (1N1  a12N2) = 0 , (4.12)

dN2

dt
= r2N2 (1 a21N1 N2) = 0 , (4.13)

simultaneously forN⇤
1 and N⇤

2 . Then, we obtain four critical points in the (N⇤
1 , N

⇤
2 ) plane:

1) CP1⌘ (0, 0), 2) CP2 ⌘ (0, 1), 3) CP3⌘ (1, 0), and 4) CP4⌘

✓
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,
1 a21

1 a12a21

◆
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Figure 4.2: Plot illustrating the conditions for positive population densities of two
species based on interaction coefficients a12 and a21. The shaded region represents sce-
narios where both species have population densities greater than zero. In contrast, the
unshaded regions show conditions where only one species maintains a positive population
density.

The first critical point, CP1=(0, 0), represents both species going extinct, which,

though mathematically valid, is typically a rare scenario unless driven by external factors.

The second critical point, CP2=(0, 1), occurs when species 1 goes extinct while species

2 persists at a density of 1. This reflects a situation where migration or competition

favors the survival of species 2 over species 1. Conversely, the critical point CP3=(1, 0)

represents species 2’s extinction and the persistence of species 1, occurring when species

1 outcompetes species 2 or benefits more from migration.

The fourth critical point CP4 corresponds to coexistence, where both species maintain

positive, non-zero population densities, which imposes constraints on the competition

coefficients a12 and a21 for this state to be feasible.
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Together, these stationary states o↵er insight into possible long-term outcomes for the

system. While the extinction states (0, 0), (0, 1), and (1, 0) suggest scenarios where one

or both species fail to persist, the coexistence state CP4 represents a balanced scenario

where both species survive.

The phase diagram in Fig. 4.2 illustrates the relationship between the interaction

coefficients a12 and a21 and the population dynamics of two competing species. The

plot divides the parameter space into regions where di↵erent stationary states (critical

points) occur. The shaded region represents the conditions where both species can

coexist, maintaining positive population densities at stationary state, corresponding to

critical point CP4. In contrast, the unshaded regions correspond to conditions where

one species outcompetes the other, leading to competitive exclusion and the extinction

of one species, as seen at critical points CP2 and CP3. The diagram visually summarizes

the stability of these di↵erent outcomes based on the interaction coefficients, guiding

predictions about the system’s long-term behavior.

In the following analysis, we will assess the stability of these stationary states to

determine which outcomes are more likely to occur under typical system conditions.

4.4.2 Stability analysis

The stability of stationary states (or critical points, CP) is critical for determining

whether the system will return to these states after small perturbations or diverge to-

ward alternative outcomes. Stability is analyzed using a Jacobian matrix [39], which

is a matrix of partial derivatives that describes the dynamics of the system for small

deviations around a given CP=(x⇤, y⇤). For a system with two variables, the Jacobian
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matrix is given by:

J =
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@f1
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x⇤,y⇤

, (4.14)

where f1(x, y) and f2(x, y) represent the system’s governing functions, and x and y are

the variables describing the system’s state. The eigenvalues of the Jacobian matrix

dictate stability: if both eigenvalues have negative real parts, the state is stable, and

the system will return to it after perturbations. If both eigenvalues have positive real

parts, the state is unstable, and the system will move away from it. States where one

eigenvalue is positive and the other is negative are termed saddle points, which are stable

along one direction but unstable along other (see Chapter 6 in Ref. [39] for more details

on this topic).

For the extinction state CP1=(0, 0), where both species are absent, the eigenvalues

(1,2) of the Jacobian matrix are the intrinsic growth rates r1 and r2 of the species.

Since these growth rates are typically positive, the extinction state is unstable, and

small perturbations in population densities lead to population growth and movement

away from this state.

For the single-species dominance states (0, 1) and (1, 0), stability depends on the

competition coefficients. At (0, 1), where species 2 persists at its carrying capacity and

species 1 is extinct, the eigenvalues are r2 and r1(1a12). If a12 > 1, species 2 strongly

outcompetes species 1, and the state is stable. Conversely, if a12 < 1, the state becomes a

saddle point. Similarly, at (1, 0), where species 1 persists and species 2 is extinct, stability

depends on the eigenvalues r1 and r2(1a21). If a21 > 1, species 1 outcompetes species

2, resulting in stability, whereas a21 < 1 renders the state a saddle point.

The coexistence stationary state,
⇣

1a12
1a12a21

, 1a21
1a12a21

⌘

, represents a scenario where
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both species persist at non-zero population densities. However, the eigenvalues of the

Jacobian matrix for this state are cumbersome, making direct analysis of their signs

challenging. To determine stability, we examine the sum and product of the eigenvalues.

The sum of the eigenvalues is:

1 + 2 =
r1(1 a12) + r2(1 a21)

1 + a12a21
, (4.15)

and the product is:

12 =
(1 + a12)(1 + a21)r1r2

1 + a12a21
. (4.16)

For the coexistence state to be stable, the sum of the eigenvalues must be negative as

well as the product should be positive. These conditions depend on the interplay of

competition coefficients (a12 and a21) and growth rates (r1 and r2). If either of the

conditions on the sum and products of eigenvalues is violated, the coexistence state is

not stable fixed point, reflecting mixed stability properties. These conditions highlight

the delicate balance required for coexistence and underscore the sensitivity of this state

to changes in growth rates and competition coefficients. To check the stability of CP4

in the regions where 0 < a12 < 1 and 0 < a21 < 1 and a12 > 1 and a21 > 1, we analyze

the sum (4.15) and product (4.16) of the eigenvalues.

In the first case, where 0 < a12 < 1 and 0 < a21 < 1, we check the sum of the

eigenvalues (4.15). Since both 1  a12 and 1  a21 are positive and the 1 + a12a21 is

also positive, the sum of the eigenvalues is negative, satisfying the condition for stability.

Additionally, when we check the product (4.16), it will be positive, as the terms in the

numerator and denominator remain positive. This indicates that CP4 is stable in this

region.

In the second case, where both a12 > 1 and a21 > 1, we check the product of the
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Figure 4.3: Stability regions for critical points (CPs) in the parameter space of a12 and
a21. The plot is divided into four regions: region I (light orange) where CP4 is stable,
region II (light pink) where CP2 is stable, region III (light blue) where both CP2 and
CP3 are stable, and region IV (light green) where CP3 is stable.
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Figure 4.4: Time evolution of scaled population densities of species 1 (blue) and species
2 (orange) under di↵erent interaction scenarios. In this plot, outcomes from the original
system (Eq. (4.1)) are shown with dotted lines, the results from the simplified (Eqs. (4.8)
and (4.9)) are represented by solid lines, and the analytical results are indicated by
dashed lines. Panel a represents the case where 0 < a12 < 1 and 0 < a21 < 1. Panel b
corresponds to the scenario where a12 > 1 and 0 < a21 < 1. Finally, panel c depicts the
case where 0 < a12 < 1 and a21 > 1. The parameters used are r1 = 0.2 and r2 = 0.3,
representing the growth rates of species 1 and 2, respectively. The migration rates of
species 1 are k = 0.9 (from patch-2 to patch-1) and k̄ = 0.1 (from patch-1 to patch-
2), while the migration rates of species 2 are m = 0.7 (from patch-2 to patch-1) and
m̄ = 0.3 (from patch-1 to patch-2). The scaling factor ✏ = 0.1 modulates the speed of
population dynamics, and the carrying capacity is K = 5. The interaction coefficients
a12 and a21 represent the e↵ects of species 2 on species 1 and species 1 on species 2. The
dynamics [Eqs. (4.8) and (4.9), and Eqs. (4.1a), (4.1b), (4.1c) and (4.1d) ] were solved
via numerical integration using Euler’s method (see Appendix 6).
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Figure 4.5: Time evolution of scaled population densities of species 1 (blue) and species
2 (orange) for the case where a12 > 1 and a21 > 1 (a12 = 1.7, a21 = 1.7). In this
plot, outcomes from the original system (Eq. (4.1)) are shown with dotted lines, the
results from the simplified (Eqs. (4.8) and (4.9)) are represented by solid lines, and the
analytical results are indicated by dashed lines. Panel a represents the dynamics with
initial population densities N1 = 0.5 and N2 = 1.2. Panel b shows the dynamics with
initial population densities N1 = 1.2 and N2 = 0.5. The parameters used are r1 = 0.2 and
r2 = 0.3, representing the growth rates of species 1 and 2, respectively. The migration
rates of species 1 are k = 0.9 (from patch-2 to patch-1) and k̄ = 0.1 (from patch-1 to
patch-2), while the migration rates of species 2 are m = 0.7 (from patch-2 to patch-1)
and m̄ = 0.3 (from patch-1 to patch-2). The scaling factor ✏ = 0.1 modulates the speed
of population dynamics, and the carrying capacity is K = 5. The interaction coefficients
a12 and a21 represent the e↵ects of species 2 on species 1 and species 1 on species 2. The
dynamics [Eqs. (4.8) and (4.9), and Eqs. (4.1a), (4.1b), (4.1c) and (4.1d) ] were solved
via numerical integration using Euler’s method (see Appendix 6).
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eigenvalues (Eq. (4.16)), we find that it is negative because both 1 + a12 and 1 + a21

are positive and 1 + a12a21 is also positive, violating the stability condition that the

product must be positive. This shows that CP4 is unstable in this region.

In conclusion, CP4 is stable in the region where 0 < a12 < 1 and 0 < a21 < 1, but it

is unstable in the region where a12 > 1 and a21 > 1.

Figure 4.3 shows how the stability of the critical points (CPs) a↵ects the survival of

the species. In region I, where CP4 is stable, both species survive and coexist. In region

II, where CP2 is stable, species 2 survives while species 1 goes extinct. In region III,

both CP2 and CP3 are stable, meaning one species will survive and the other will die,

depending on the initial conditions. In region IV, where CP3 is stable, species 1 survives

and species 2 dies. The stability of these critical points does not depend on the values

of r1 and r2, but only on the values of a12 and a21. This shows that the stability of the

CPs is determined by these parameters alone.

Figure 4.4 demonstrates that when both a12 and a21 are greater than zero but less

than one, both species coexist (panel a). When a12 exceeds one and a21 is greater than

zero but less than one, species 2 survives while species 1 extinct (panel b). Conversely,

when a12 is greater than zero but less than one and a21 exceeds one, species 1 survives

while species 2 goes extinct (panel c). These outcomes align with the predictions made

in Fig. 4.3 regarding the stability of di↵erent critical points for varying values of a12 and

a21.

Figure 4.5 demonstrates that changing the initial conditions (initial population den-

sities of species) while keeping the interspecific interaction coefficients constant leads to

di↵erent outcomes, highlighting the bistable nature of the system. In panel a, species

2 survives while species 1 goes extinct, and in panel b, species 1 survives while species
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2 goes extinct. This supports the result discussed in Fig. 4.3, where high values of the

interspecific interaction coefficients lead to two stationary states, (1, 0) and (0, 1)

In Figs. 4.4 and 4.5 we also numerically simulated the full dynamics (4.1) and

compared with the e↵ective dynamics (4.8) and (4.9), we found an excellent agreement

in the long-time limit, as expected.

4.4.3 Coexistence condition in terms of original competition

coefficients (↵12 and ↵21)

From Eqs. (4.10) and (4.11), we have the relationships between the rescaled competition

coefficients (a12 and a21) and the original competition coefficients (↵12 and ↵21). Using

these relationships and the coexistence condition derived from Fig. 4.3, we can express

the coexistence condition directly in terms of ↵12 and ↵21.

As defined earlier in Eqs. (4.10) and (4.11), a12 and a21 depend on ↵12, ↵21, and the

dimensionless parameters. For coexistence, the condition a12 < 1 and a21 < 1 must hold.

Substituting the expressions for a12 and a21 into the coexistence condition, we rewrite

it in terms of ↵12 and ↵21:

↵12
(1 + m)(1 + mk)

(1 + k)(1 + 2
m)

< 1, (4.17)

↵21
(1 + k)(1 + mk)

(1 + m)(1 + 2
k)

< 1, (4.18)

where k =
k
k̄
and m = m

m̄
are dimensionless quantities, with k, k̄, m and m̄ representing

migration rates as defined earlier.
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Figure 4.6: Coexistence regions in the m and k parameter space for di↵erent values
of the original competition coefficient ↵12 (↵12 = 0.6, 1.0, and 1.4). The shaded regions
indicate where coexistence occurs. The black arrows show the direction of increasing
↵21, illustrating how coexistence conditions change with its variation.

Figure 4.6 demonstrates how changes in ↵12 and ↵21 influence the coexistence regions

in the m and k parameter space. Each panel corresponds to a di↵erent value of ↵12,

while the colored regions within each panel represent the coexistence for di↵erent values

of ↵21, where ↵21 increases in the direction of the black arrow.

As the values of ↵12 and ↵21 increase, the coexistence region decreases. This result

aligns with theoretical expectations: increasing ↵12 and ↵21 reflects intensifying com-

petition between species. When competition outweighs migration, coexistence becomes

less feasible. Thus, these plots illustrate the critical interplay between competition and

migration in determining the conditions for coexistence.
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4.5 Conclusion

In this chapter, we showed that asymmetric migration can promote species coexistence in

competitive environments. Migration alters the e↵ective competition coefficients and en-

ables species to persist even when classical CEP models predict exclusion. Our analytical

results and simulations illustrate how spatial coupling expands the range of coexistence.

Having now examined ecological stability from statistical, mechanistic, and spatial

perspectives, we conclude this thesis with an Outlook chapter. There, we reflect on the

broader significance of these findings and suggest directions for future theoretical and

empirical research.
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Chapter 5

Summary and outlook

Understanding the stability and coexistence of species in ecological systems remains

one of the most fundamental challenges in theoretical ecology. In this thesis, we ap-

proached this problem from three distinct yet interconnected perspectives: spectral sta-

bility in large ecosystems, mechanistic competition via consumer-resource dynamics, and

migration-enabled coexistence in spatially structured systems.

Our exploration began with random matrix theory, where we revisited May’s stabil-

ity criterion and extended it using tools like the Circular Law, sparsity, and variance

rescaling. These results provided system-level insights into how complexity a↵ects sta-

bility and highlighted the power of statistical methods for analyzing high-dimensional

ecological networks.

We then transitioned to a species-centric perspective using consumer-resource mod-

els. Here, we revisited the classical competitive exclusion principle and examined how

species traits and resource supply conditions determine coexistence or exclusion. Using
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geometric tools such as Zero Net Growth Isoclines (ZNGIs), we developed intuition for

how niche overlap and resource availability influence ecological outcomes.

Finally, we introduced spatial structure and studied how asymmetric migration be-

tween habitat patches reshapes e↵ective competition. Migration not only weakens local

exclusionary dynamics but also creates opportunities for species to persist across land-

scapes. This spatial perspective enriches our understanding of biodiversity maintenance

in fragmented or heterogeneous environments.

Future Directions

While the models and results presented here o↵er valuable insights, they also open up

several directions for future research:

• Beyond two patches: Extending the migration model to multiple patches or

networked landscapes could capture richer spatial dynamics, including source-sink

e↵ects and metacommunity structure [40, 41, 42].

• Temporal variability: Incorporating time-varying resource supply or migration

rates would allow exploration of how environmental fluctuations a↵ect stability and

coexistence [43, 44].

• Eco-evolutionary dynamics: Coupling ecological interactions with evolutionary

change (e.g., in resource use traits or dispersal strategies) may reveal feedback loops

that further shape biodiversity patterns [45, 46, 47].
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• Empirical testing: It would be valuable to connect these theoretical predictions

with data from real ecosystems, particularly microbial communities or island net-

works where migration and competition are both observable [48, 49, 50].

• Interdisciplinary extensions: The frameworks developed here—especially the

spectral and dynamical systems approaches—may also be applied to other complex

systems, such as social, technological, or economic networks where stability and

persistence are of interest [51, 52, 53].

In sum, this thesis contributes to a deeper understanding of how species persist in

competitive environments and how complexity, structure, and movement shape ecological

outcomes. We hope that the perspectives developed here will serve as a foundation for

further theoretical development and real-world application.
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Chapter 6

APPENDIX

In this appendix, we describe Euler’s method, a basic numerical technique for approx-

imating solutions to ordinary di↵erential equations [54]. This method is employed in

the numerical simulations throughout the thesis. Specifically, for all figures and results

involving the time evolution of di↵erential equation-particularly those derived from our

dynamical system models—Euler’s method was used to compute approximate solutions.

This chapter outlines the mathematical basis of the method and includes an analysis of

its numerical error.

6.1 Euler’s Method

Euler’s method is a simple numerical technique used to approximate the solution of a

first-order di↵erential equation of the form:
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dy

dx
= f(x, y), y(x0) = y0 . (6.1)

The goal is to estimate the values of y at discrete points x = xr = x0 + rh for

r = 1, 2, 3, . . . , where h is a small step size.

To derive Euler’s formula, we integrate both sides of the di↵erential equation from

x0 to x1 = x0 + h:

y1 = y0 +

x1
Z

x0

f(x, y) dx . (6.2)

If we assume that f(x, y) remains approximately constant over this small interval

and take its value at (x0, y0), we obtain the following approximation:

y1 ⇡ y0 + hf(x0, y0) . (6.3)

Similarly, for the next step from x1 to x2, integrating the di↵erential equation gives:

y2 = y1 +

x2
Z

x1

f(x, y) dx . (6.4)

Approximating f(x, y) by its value at (x1, y1) results in:

y2 ⇡ y1 + hf(x1, y1) . (6.5)
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By continuing this process, we derive the general formula for Euler’s method:

yn+1 = yn + hf(xn, yn), n = 0, 1, 2, . . . . (6.6)

6.1.1 Error Analysis in Euler’s Method

Euler’s method introduces numerical errors because it assumes that f(x, y) remains

constant over each step. To analyze the error, we derive the local truncation error

and the global error.

Local Truncation Error

Using Taylor series expansion, the exact solution at xn+1 = xn + h is:

y(xn+1) = y(xn) + hy0(xn) +
h2

2
y00(xn) +

h3

6
y000(xn) +O(h4) . (6.7)

Since y0(xn) = f(xn, yn), substituting this in the expansion gives:

y(xn+1) = yn + hf(xn, yn) +
h2

2
y00(xn) +O(h3) . (6.8)

Comparing this with Euler’s approximation:

y
(Euler)
n+1 = yn + hf(xn, yn) , (6.9)
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we find that the local truncation error at each step is:

Elocal = y(xn+1) y
(Euler)
n+1 =

h2

2
y00(xn) +O(h3). (6.10)

Thus, the local error is proportional to h2, meaning that for small h, the error at

each step is approximately O(h2).

Global Error

The global error is the accumulation of local errors over multiple steps. Suppose we

approximate the solution over an interval from x0 to xN , using N steps of size h, where

N = xNx0

h
.

Since the local error at each step is O(h2), the total error after N steps is:

Eglobal = N ·O(h2) . (6.11)

Substituting N = xNx0

h
:

Eglobal =
xN  x0

h
·O(h2) . (6.12)

Simplifying,

Eglobal = O(h). (6.13)
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This result shows that Euler’s method has a global error of order O(h), meaning

the overall error decreases linearly as h ! 0. However, this also implies that for better

accuracy, we need a very small step size, which increases computational e↵ort.
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