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ABSTRACT

Binary black holes (BBH) embedded in active galactic nuclei (AGN) discs is a promising system
for understanding the astrophysical phenomenon that can produce both gravitational wave (GW) and
electromagnetic (EM) signals. This work addresses how the dense, dynamic conditions within such discs
influence the evolution and eventual merger of binary black holes. The study is motivated by recent GW
detections and the possibility of associated EM counterparts, which suggest that mergers within AGN discs
may be more common or more easily observable than previously thought. Previous research has often
relied on simplified models that do not fully capture the complexity of binary—disc interactions in these
environments. To address this, we employ high-resolution hydrodynamical simulations to investigate
the impact of mass ratio, orbital orientation and accretion dynamics on BBH systems within AGN
discs. The simulations incorporate a systematic post-processing framework to quantify key parameters
including mass accretion, torque and minidisc mass, to comprehensive model the binary’s secular orbital
evolution. Our results reveal that the orientation of the binary with respect to the disc and the mass
ratio of the components significantly affect the transfer of angular momentum, accretion variability and
minidisc structure around each black hole. The mean mass accretion rate onto the binary system exhibits
dependence on the accretor’s mass. These inflows display substantial variability, with their primary
modulation frequency corresponding to the binary’s orbital period for circular orbital configurations. We
find that the smaller/secondary black hole often dominates accretion, especially in systems with unequal
masses and that retrograde (oppositely aligned to the disc flow) binaries experience more chaotic flows
and stronger angular momentum loss than prograde systems. Our results reveal that the behaviour of
embedded within AGN discs deviates significantly from that of binaries evolving in isolated circumbinary
environments. Moreover, we find that the orbital hardening of these binaries proceeds on time-scales
considerably shorter than their migration through the disc. These findings have important implications
for interpreting GW events, predicting EM and understanding the role of gas-rich environments in driving
binary black hole mergers. This work contributes to a more complete picture of mergers in AGN and

informs future multi-messenger (MM) observational strategies.
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CHAPTER 1
INTRODUCTION

Binary black holes (BBHs) mergers are one of the most energetic events in the Universe,
releasing huge amount of energy in the form of gravitational waves (GW). Heavy BBH mergers
observed so far, on average, have released approximately ~ 1-3 Myc? (where M, is the solar
mass) in GW energy. For example, GW 150914 emitted (3.0+0.5) Myc? ~ (5.4+0.9)x10%* erg,
with peak luminosities reaching 200 Moc? s™! (~ 3—4 x 10°% erg/s) (Abbott et al., 2016). The
largest luminosities are achieved in equal-mass systems with aligned spins, where both black
holes (BH) rotate at their maximum rates.

These mergers have become a focal point of study following the pioneering detections by
the LIGO/Virgo/KAGRA (LVK) collaboration which highlighted the importance of dynamical
channels in BBH formation. While the gravitational wave signals from these events offer
significant insights into the mass, spin and possible eccentricities of the merging black holes,
the information they provide about the surrounding environment is limited. Understanding the
influence of different environments on BBH mergers is crucial for a complete picture of BBH
evolution, as environmental factors can affect orbital decay, accretion rates, and torque exerted

on the binary.

1.1 Why study mergers?

Discs around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) present a
promising pathway for producing merging BHs. Within these discs, BHs may undergo growth
through super-Eddington accretion and repeated mergers, potentially giving rise to high mass
BBH systems whose GW events can be observed (Gerosa and Fishbach, 2021). Graham et al.
(2023) presented a new opportunity with a detection of an electromagnetic (EM) candidate
counterpart to a GW event. Notably, these two recently observed GW events have been

suggested as possible mergers of BBHs within AGN discs:

* GW190521, merging of two BHs with a combined mass of approximately 150 solar mass
(Mg), where one BH likely exceeded 65 My (Abbott et al., 2020a,b). This event was



Figure 1.1: Merging binary black hole (Credit: NASA GSFC).

linked to an EM counterpart detected by the Zwicky Transient Facility (ZTF), originating
from a known AGN that is spatially coincident with the GW localization (Chen et al.,
2022; Graham et al., 2020).

* GW170817A, another GW signal detected on the same day as the neutron star merger
GW170817, identified in a later independent analysis by Zackay et al. (2021); Gayathri
et al. (2020). The large mass and spin alignment of this event has been interpreted as

signatures of a merger occurring within an AGN disc.

The event GW190521 has captured considerable attention from gravitational wave as-
tronomers since its detection in 2019. GW 190521 represents both the most massive black hole
binary merger observed by LVK and the first detection of a merger involving an intermediate
mass black hole (IMBH). This aspect is especially intriguing to researchers interested in the
formation and evolution of black holes as IMBHs spanning roughly 100 to 100,000 Mg lack
obvious formation pathways. The challenge arises from the fact that stars exceeding around
50-80 Mg are not expected to directly collapse into black holes. This upper limit is influenced
in part by pair instability supernovae which disrupts the star before it can form such a massive
black hole. Additionally, most stars do not reside in dense enough environments to allow the
extensive accretion required for stellar black holes to grow into the intermediate mass range
especially at a rate that would make these black holes common. This theoretical absence of
black holes within this mass range is known as the “upper mass gap.” Observational data (still
inconclusive) suggests a decline in merger rates for systems with primary masses approaching
this boundary, around 80 M (Abbott et al., 2023).
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Figure 1.2: ZTF photometry for ZTF19abanrhr (Credit: Graham et al. (2020))

Further interest in GW190521 was sparked when only 34 days from its detection, ZTF
observed a second rare event near the predicted sky location of GW190521. This event, a
sudden brightening in the photometric observation of AGN J124942.3+344929, was designated
ZTF19abanrhr shown in Fig 1.2. Such “flares” are expected outcomes of some models for black
hole mergers within AGN discs, as the merger’s dynamical interactions can heat surrounding
gas. Given that AGN J124942.34+344929 had shown stable light emission in the months
preceding this flare, the possibility of a connection between these two rare astrophysical events
has intrigued researchers even further (Graham et al., 2020, 2023).

Although the potential connection of these events to BBHs in AGN discs remains spec-
ulative (Ashton et al., 2021), these observations suggest a potential new channel for BBH
formation that warrants further investigation. Studies of merging binary black holes in AGN
discs have commonly relied on simplified models, primarily doing population synthesis calcu-
lations (McKernan et al., 2012, 2014, 2018, 2019, 2022; Yang et al., 2019; Tagawa et al., 2020,
2021). While such modelling helps build a statistical understanding of the overall process and its
observational implications, they largely simplify the interaction between BBHs and AGN discs.
Most binary—disc interaction prescriptions in these models are adapted from theories developed
for circumstellar and protoplanetary discs, however such environments differ significantly from
AGN conditions.



1.2 Numerical studies

1.2.1 HydroDynamical studies

To date, only alimited number of two-dimensional (2D) simulations have examined the dynamics
of BBHs embedded in AGN discs (Baruteau et al., 2010; Li et al., 2021, 2022; Li and Lai,
2022). These studies typically assume that the binary loses angular momentum through its
interaction with the surrounding disc, particularly the outer regions (Pringle, 1991; MacFadyen
and Milosavljevi¢, 2008), leading to a contraction of the binary separation. This assumption
originates from extending the classical theory of satellite—disc interactions, traditionally applied
to extreme mass ratio systems, into the binary regime (Lin and Papaloizou, 1979). In this
theoretical framework, the binary exchanges angular momentum with the disc through Lindblad
resonances. Because the circumbinary disc (CBD) rotates more slowly than the binary, the
gas response lags behind, producing non-axisymmetric density waves that exert a net negative
torque on the binary.

However, recent high-resolution numerical studies challenge this picture, showing that
isolated binaries often undergo orbital expansion instead (Tang et al., 2017; Moody et al.,
2019; Muiioz et al., 2019, 2020; Duffell et al., 2020; Tiede et al., 2020; Dittmann and Ryan,
2021, 2022; D’Orazio and Duffell, 2021; Zrake et al., 2021). This apparent discrepancy arises
primarily from the omission of circumsingle discs (CSDs) (or minidisc) structures in these
earlier analyses. These minidiscs, which form around each black hole, are now understood to
significantly alter the torque balance, typically contributing positive angular momentum to the
binary system. Although such expansion has raised questions about whether BBHs in AGN
discs can merge efficiently, this behaviour appears to be specific to configurations with circular,
equal-mass binaries.

Ultimately, the coupled evolution of the binary and its gaseous environment, driven by
gravitational and accretion torques plays a critical role in determining the binary’s fate. A
comprehensive understanding of disc—binary interactions is therefore vital for modelling the
distribution of stellar and black hole binaries, and for explaining the mechanisms by which a
CBD can promote orbital inspiral and hence a merger.

Numerous studies (eg.Armitage and Natarajan (2002); Farris et al. (2014) ) have modelled
the loss of angular momentum from binary systems to the surrounding disc, suggesting that disc-
gas-assisted orbital migration may play a crucial role in facilitating supermassive BBH mergers
at separations too wide for GW radiation ( > 0.1 pc) to contribute significantly to angular
momentum loss. However, there have been conflicting reports in previous studies regarding
how the average mass accretion rate of a binary compares to a single star of equivalent mass.
Li and Lai (2022) (hereafter LL.22) conducted a series of 2-D hydrodynamical simulations

of binaries embedded in AGN discs using a shearing box model. Their results indicate that
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Figure 1.3: An illustration depicting a typical BH with its surrounding accretion disc and jet. Insets show a
time-lapse sequence of radio observations capturing jet activity in the microquasar GRS 1915+105, alongside an
optical image of the quasar M87’s jet. (Image credit: Hubble Heritage Team (STScI/AURA), NASA



the accretion around the binary evolves into a quasi-steady state after a significant amount of
viscous time. These findings suggest that the hydrodynamical evolution of binaries embedded
in AGN discs may differ substantially from the behaviour of isolated binaries interacting with
their own CBD.

1.2.2 MagnetoHydroDynamical studies

The study of BBH mergers within gaseous environments is gaining considerable interest, partic-
ularly in the context of AGN discs where dense ambient gas can influence the orbital evolution
of the binary. A critical extension of these studies involves the incorporation of magnetic fields,
which are ubiquitous in astrophysical discs and can substantially alter the dynamics of gas flow
and accretion behaviour near the binary.

While early hydrodynamical simulations of BBH mergers in circumbinary discs focused
on purely viscous or pressure-driven accretion processes, recent efforts have begun to explore
magnetized disc environments. A handful of simulations have incorporated magnetic fields into
the disc structure, providing deeper insight into the nature of gas inflow and angular momentum
transport in such systems (Mishra and Calcino, 2024; Ressler et al., 2025; Most and Wang,
2024).

Most and Wang (2024) performed high-resolution 3-D Newtonian MHD simulations to
investigate the behaviour of magnetized circumbinary discs. Their study revealed that, under
certain conditions, the inner cavity surrounding the binary can host magnetically arrested disc
(MAD) configurations. In these cases, magnetic flux accumulation near the binary leads to a
suppression of continuous accretion. Instead, accretion proceeds in episodic bursts triggered
by large-scale magnetic flux eruptions. This behaviour deviates significantly from the quasi-
steady accretion observed in non-magnetized or weakly magnetized discs and has important
implications for the variability of EM signatures associated with BBH mergers.

The variable nature of accretion in such environments introduces a new avenue for de-
tecting and interpreting potential EM counterparts to BBH mergers. For instance, the sudden
reconnection and rearrangement of magnetic fields during flux eruptions can produce transient
high-energy flares or jet-like outflows, particularly if a small-scale magnetized disc forms around
one or both black holes. These periodic features could manifest as precursors or afterglows
in the EM spectrum, providing complementary observables alongside the gravitational wave
signal (Most and Wang (2024) and references therein).

Moreover, magnetic stresses can contribute to angular momentum transport in regions
where viscosity alone is insufficient, potentially enhancing the inspiral rate and modifying the
final coalescence dynamics. The interaction between magnetic fields and the mini-discs or
circumbinary gas may also affect the spin alignment of the binary components, which is a key

observable in gravitational wave parameter estimation.



As magnetic field effects become increasingly incorporated into general relativistic magneto-
hydrodynamic (GRMHD) frameworks, future simulations will enable more accurate modelling
of both the dynamics and potential observables of BBH mergers in astrophysically realistic
environments. These developments underscore the necessity of including MHD effects in any

comprehensive treatment of BBH systems embedded in dense, magnetized media.

1.3 Key Findings

This section summarizes key findings from recent simulation efforts, particularly those con-
ducted with the AREPO code (Muiioz and Lai, 2016; Muiioz et al., 2020; Siwek et al., 2022),
alongside complementary results obtained using the PLUTO code (Miranda et al., 2016). Where
appropriate, we also incorporate insights from other numerical studies to present a broader
perspective on the current understanding of binary—disc interactions. The simulations under
consideration predominantly investigate systems with near-equal mass binaries (¢ ~ 1), em-
bedded in discs modeled as extended or effectively infinite, where a constant mass inflow is

maintained at large radii.

1.3.1 Accretion Variability

For extended disc models with a sustained mass injection rate M at the outer boundary, the
binary—disc system may evolve toward a quasi-steady configuration. In this state, the time-
averaged accretion rate through the CBD and onto the binary components satisfies (M) =
(M) + (M), equating to M. Despite this steady average, the instantaneous accretion onto
the cavity and the individual black holes often displays pronounced variability on timescales
comparable to the binary orbital period (Mufioz and Lai, 2016; Miranda et al., 2016). This
modulation reflects the dynamic nature of gas inflow near the cavity edge and the episodic
structure of the accretion streams feeding the minidiscs.

Simulating circumbinary accretion over extended periods presents unique challenges due
to the broad spatial scales and diverse timescales involved. Over longer simulation times, the
binary’s orbit may evolve toward mass equality between its components. Contrary to previous
assumptions that circumbinary accretion universally causes binary orbital decay, recent findings
reveal that the secular evolution of binary orbits may depend heavily on factors like eccentricity

ep, mass ratio g and thermodynamics of the gas being accreted (Lai and Mufioz, 2023).



1.3.2 Evolution of Unequal Mass Binaries

The total torque on the binary, (7,), can be computed by directly summing the gravitational,

pressure and accretion torque from the gas onto each component of the binary:

(Tp) = <7Z>grav + (T )ace + <7Z>pres,

where 7, denotes the angular momentum rate. For a binary separation a, much larger than
the component radii, the torque due to spins are negligible, leading to a total torque primarily
acting on the binary given by just the gravitational and in some scenarios accretion torque.

Early simulations, such as those by Bate et al. (2002) showed that accretion flows in
circumbinary systems are sensitive to g,. Generally, the secondary tends to grow faster in mass
than the primary, a trend confirmed in circular binaries with preferential accretion onto the
secondary. Accretion variability was also observed to depend on the binary mass ratio. (Farris
et al., 2014; Duffell et al., 2020; Muiioz et al., 2020)

1.3.3 BBH Embedded inside Discs

The hydrodynamics of binary systems within AGN discs are distinctly different from those in
isolated cases. In these cases, accretion dynamics are influenced by the large scale flows within
the AGN disc and the gravitational potential of the central SMBH shapes the behaviour of the
binary. Some key results from these simulations indicate that binaries embedded in AGN discs
can experience rapid orbital decay rates. Prograde, equal-mass binaries tend to contract due
to dynamical friction from the trailing spiral patterns and retrograde binaries experience faster
orbital decay. The orbital evolution also appears to vary with the equation of state (EOS) of the
surrounding gas, where binaries in an isothermal EOS experience expansion, while those with
a stiffer EOS generally experience contraction. Eccentric binaries in these setups often show
eccentricity damping, leading to more circular orbits over time (Li and Lai, 2022; Dittmann
and Ryan, 2021). The 2D shearing box approximation limits LL22 results to be valid for only
cases where Hill radius is of comparable scale to the height of the disc. Dempsey et al. (2022)
demonstrated that 3-D simulations yield more negative gravitational torques compared to 2-D,
highlighting the importance of vertical structure and 3D flow dynamics in accurately capturing

binary—disc interactions.

1.4 Beyond MHD: Numerical Relativity

A comprehensive theoretical treatment of these compact gravitational wave sources requires
developing a sufficiently general solution to Einstein’s field equations that applies to a wide range

of matter configurations. This solution must capture the key physical mechanisms involved in



both the generation and propagation of gravitational waves from the source to a distant detector,
while also accounting for the back-reaction of the emitted radiation on the dynamics of the
source itself. Once established, such a framework can then be tailored to specific astrophysical
systems, such as compact binaries in quasi-circular inspirals that lose orbital energy through
gravitational wave emission prior to merger.

However, for general source configurations, solving Einstein’s equations exactly is often
difficult. Hence, one must rely on approximation schemes to make progress. The objective of
these approximation methods is to extract physically reliable predictions from general relativity
that can be tested against observational data. Nevertheless, these techniques sometimes lack a
rigorous mathematical foundation directly rooted in the full theory, and their connection to first-
principles formulations may not always be transparent (Futamase and Schutz, 1983; Rendall,
1992).

Among these approximation methods, the post-Newtonian (PN) framework stands out as
the most successful and widely applied. First developed in the early 20th century by Droste
(1917) and later expanded by Lorentz and Droste (1937), the PN formalism has played a central
role in some of the major achievements of general relativity. It provides a systematic expansion
of the equations of motion and gravitational radiation in powers of v/c, making it particularly
suited for modelling systems where gravity is strong but not fully relativistic. Three particularly

notable applications of the post-Newtonian approximation include:

1. The motion of point masses at 1°” post-Newtonian (1PN) level, which is routinely em-
ployed in high-precision modelling of planetary motion within the Solar System (Einstein
et al., 1938).

2. The derivation of the radiation-reaction force at 2.5PN order, which accounts for the
energy and angular momentum loss due to gravitational radiation. This effect has been
experimentally confirmed through pulsar timing measurements in binary systems such as
the Hulse—Taylor pulsar (Taylor et al., 1979; Taylor and Weisberg, 1982; Taylor, 1993)
and the double pulsar (Kramer and Wex, 2009).

3. The modelling of gravitational wave templates for inspiralling compact binaries, which
requires accurate modelling of both orbital dynamics and waveform structure to high PN
orders, essential for gravitational wave detection and source characterization (Cutler et al.,
1993; Cutler and Flanagan, 1994).

1.4.1 Combined Approximation Techniques

The merging of two compact objects necessitates a continuous loss of their orbital binding
energy through the emission of gravitational radiation. This leads to a reduction in their orbital

separation and an increase in their orbital frequency. Consequently, the gravitational-wave

9



signal frequency doubles the orbital frequency for the primary harmonics, producing a "chirp"
over time until the eventual collision and merging of the objects. Most inspiralling compact
binaries maintain nearly circular orbits, aside from the slow inspiral, because gravitational
radiation reaction forces rapidly circularize the orbit. This phenomenon results from angular
momentum emitted via gravitational waves, causing a steady decline in orbital eccentricity.
The primary challenge is associating the gravitational wave signal h;; detected in the wave
zone with the source’s stress-energy tensor 7%2. Solving Einstein’s equations using various
approximation schemes, each suited for specific physical scenarios, is essential. Significant
methods include the PN expansion using powers of 1/c, the post-Minkowskian (PM) expansion
using powers of G, multipole expansions (based on the source’s radius), far-zone expansions
in 1/R, and expansions based on small mass ratios in binaries. The PN method is effective for
sources with relatively weak internal gravity and slow movement, but it is only applicable in the
near-zone, which restricts its use under asymptotic boundary conditions. When applying the PN
approximation to the inspiralling phase of a BBH, strong internal gravity must be acknowledged.

Typically, the PN approximation presumes weak gravitational fields throughout, including
within the material source. By invoking the strong equivalence principle, it is maintained that
the external gravitational field directing the binary system’s orbital motion is unaffected by the
internal structure of its components, up to tidal interactions. Consequently, it is predicted that
outcomes derived under the weak gravity assumption are also valid for neutron star binaries. In
contrast, the PM method applies throughout spacetime for weakly gravitating systems and can
be re-expanded into a PN series, making it more fundamental. It also underlies the multipole
and far-zone expansions. In this context, the source is considered “post-Newtonian” if it is both

weakly stressed and slowly moving. A small dimensionless parameter €, estimated by

1/2
ezmax{ }<<1, (1.1)

where U is the Newtonian potential, quantifies the validity of this assumption. This parameter
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basically shows a slow motion € ~ v/c where v is velocity. When 1/¢ < 1 small remainders
would be O(1/c") . For self-gravitating sources, |U/c?|'/> = O(1/c). Post-Newtonian cor-
rections are denoted O(1/c"), and terms of order n beyond Newtonian gravity are denoted as
ZPN.

Atleading order (1/c — 0), gravitational radiation arises from the time-varying quadrupole
moment. Higher-order PN corrections incorporate additional multipole moments. The quadrupole
approximation itself reflects radiation-reaction effects at 2.5PN order.

Multipole expansions are a critical component of these models, though their application in
General Relativity (GR) is complex due to GR’s inherent nonlinearity and tensorial character-
istics. In linear GR, the mass and current multipole moments are defined at future null infinity,

grounded in the foundational works of Papapetrou (1962); Peters (1964); Sachs and Bergmann
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(1958); Thorne (1980). Modern approaches utilize symmetric trace-free (STF) mass and current
moments Damour and Iyer (1991). In the context of fully non-linear theory, radiative multipole
moments manifest in the 1/R expansion of the metric at null infinity. Bondi et al. (1962);
Sachs (1962); Penrose (1963) established the geometric framework for such spacetimes, but
these radiative moments are distinct from source moments, which are better expressed through
integrals of the source’s energy-momentum distribution.

To address nonlinearities, the PM expansion is employed both within and beyond the source
regions (Thorne and Kovacs, 1975; Crowley and Thorne, 1977). Blanchet and Damour (1986);
Blanchet (1987) developed an alternative multipolar expansion in complete GR, which intro-
duced "source" multipole moments. These are calculated using a PM expansion of the vacuum
field equations outside the source. This process results in the multipolar-post-Minkowskian
(MPM) formalism, applicable throughout the weak-field region and particularly effective for
determining radiative moments as nonlinear functions of the source moments. This method,
while comprehensive, provides explicit source multipole formulas mainly for PN sources. The
technique of matched asymptotic expansions (Burke and Thorne, 1970; Poujade and Blanchet,
2002) is used to align the PN near-zone expansion with the MPM exterior solution. This MPM-
PN framework establishes a solid analytical methodology for generating gravitational waves,
encompassing all pertinent PN corrections and nonlinear multipole interactions, including tails
and memory effects (Blanchet and Damour, 1988, 1992). Recent advancements employing
scattering amplitudes and effective field theory (EFT) have progressed the PM framework to
higher orders (Bern et al., 2021; Dlapa et al., 2022; Mougiakakos et al., 2021). Significantly,
EFT-based waveforms align with those derived from the MPM-PN formalism up to 2.5PN order
(Bini et al., 2023).

1.5 Comparison to Binary Neutron Star mergers

While the focus of this thesis is on binary black hole dynamics, it is instructive to compare
BBH systems with binary neutron star (BNS) mergers, as both represent critical sources for
gravitational wave astronomy but exhibit fundamentally different physics and observational
signatures. Unlike BBHs, which are characterized primarily by their mass and spin parameters,
BNS systems incorporate complex nuclear physics, matter effects and potentially rich EM
signatures. BNS mergers uniquely differ from BBH mergers in their post-merger evolution
and observable outputs. A key distinction lies in the fate of the merger remnant. When two
neutron stars merge, the outcome depends critically on their total mass relative to the maximum
mass of a non-rotating neutron star. Recent numerical simulations have established a quasi-
universal relation where prompt collapse to a black hole occurs when the binary mass exceeds
approximately 1.41 times the maximum mass of static neutron stars (Ecker et al., 2025). Below

this threshold, the merger typically results in a short-lived hypermassive neutron star before
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eventually collapsing to a black hole.

The presence of matter in BNS systems introduces significant tidal effects absent in BBH
mergers. During the late inspiral phase, each neutron star experiences tidal deformation due to
the gravitational field of its companion, affecting the orbital dynamics and leaving distinctive
imprints in the gravitational waveform. These tidal signatures potentially provide valuable
constraints on the neutron star’s EOS, offering insights into nuclear physics at densities currently
unreachable by laboratory experiments.

The most striking difference between BNS and BBH mergers is the presence of EM counter-
parts. While BBHs in isolation are not expected to produce significant EM emissions (except in
special environments like AGN discs as studied in this thesis), BNS mergers reliably generate a
lot of EM signals. These include short gamma-ray bursts (sSGRBs) and thermal emissions pow-
ered by the radioactive decay of newly synthesized heavy elements in the neutron-rich ejecta.
The above mentioned landmark multi-messenger detection of GW170817 in 2017 provided
definitive confirmation of these theoretical predictions.(Gottlieb et al., 2023)

The composition of neutron stars further complicates the merger dynamics. Recent theoreti-
cal work suggests that exotic particles like hyperons may be present in neutron star cores, poten-
tially altering the thermal properties of the merger remnant. Numerical simulations indicate that
hyperonic equations of state induce higher heat capacity and lower thermal pressure compared
to purely nucleonic models, resulting in characteristic shifts in the post-merger gravitational
wave frequency spectrum. The rich phenomenology of BNS mergers offers complementary
insights to BBH studies. In contrast to BBH mergers, both BNS and black hole-neutron star
(BH-NS) systems serve as potential laboratories for studying the equation of state of supranu-
clear matter and the physics of relativistic jets. The emission mechanisms in these systems
depend sensitively on mass ratios, component spins and orbital parameters, providing multiple

constraints on fundamental physics.(Duez, 2025)

1.6 Applications to astrophysical problems

Circumbinary accretion impacts numerous astrophysical systems, influencing the evolution of
binary stars, massive black hole binaries (MBHBSs), planetary systems around binaries, and the

dynamics of post-main sequence binaries.

1.6.1 The Final Parsec Problem

In hierarchical galaxy formation, mergers between massive black holes (MBHs) are expected
due to the formation of MBHBs following galaxy collisions. Observational evidence of dual
AGNs with kiloparsec scale separations supports the existence of MBHBs as merger remnants

(Goulding et al., 2019). However, evolving MBHBs from kiloparsec separations down to the
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gravitational wave driven regime (less than 0.01) poses the “final parsec problem.” Circumbi-
nary accretion could provide a gas dynamical solution to this problem by driving the inward
migration of MBHBs through interaction with a surrounding CBD. This process resembles
the inward migration of massive planets in protoplanetary discs, and could be instrumental in
bringing MBHBs into the detection range of low-frequency gravitational wave observatories
such as LISA.

1.6.2 Planets Near Binary Stars

Planets orbiting binary stars like those discovered by the Kepler mission provide unique insights
into CBD dynamics. Many of these circumbinary planets are found close to the stability limit
of their host binary commonly interpreted as migration from further out in the disc. The
dynamics within the CBD are crucial in shaping the final positions of these planets and the
strong gravitational forces within these environments create a unique evolution pathway for

planets in binary systems (Lai and Mufioz, 2023).

1.7 Objectives

The primary objective of this thesis is to investigate the hydrodynamical evolution of BBHs
embedded within an AGN disc, using the PLUTO code (Mignone et al., 2007). By simulating
BBHs with varying mass ratios and modelling their inspiral phase, we aim to understand
how these parameters influence the orbital dynamics, accretion behaviour and potential EM
signatures of the system. In particular, this study focuses on quantifying the impact of the
circumbinary gas and the formation of individual minidiscs around the black holes on the

binary’s evolution. We seek to address the following key questions:

* How does the mass ratio of the binary affect the torque exerted by the surrounding gas?

* How does the mass and evolution of the individual minidiscs change during the inspiral,
and what role do they play in regulating the accretion rate and angular momentum

exchange?

* Under what physical conditions might these mergers produce detectable EM counterparts,

and how can such signals be used to probe the structure and state of the AGN disc?
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CHAPTER 2
METHODOLOGY

We utilize the PLUTO code to simulate the evolution of binaries with a shearing box approxi-
mation. It utilizes a conservative numerical framework based on finite volume and finite dif-
ference methods to solve hydrodynamic equations, employing high-resolution shock-capturing
Godunov-type algorithms. A key advantage of PLUTO is its flexibility, allowing us to customise
simulation setups to match specific astrophysical systems. For time integration, it offers a range
of schemes, including Runge-Kutta (RK) methods, MUSCL-Hancock for hyperbolic partial
differential equations, and advanced techniques such as Super-Time-Stepping or RK-Legendre
for efficiently handling parabolic terms. To achieve high accuracy and minimize numerical
oscillations, PLUTO provides a variety of reconstruction schemes, such as slope-limited To-
tal Variation Diminishing (TVD), Weighted Essentially Non-Oscillatory (WENO), Piecewise
Parabolic Method (PPM) and MP5. Additionally, it supports multiple Riemann solvers, includ-
ing Roe, HLLD, HLLC, and Two-Shock solvers for resolving sharp discontinuities, along with
simpler options like HLL and Lax-Friedrichs for general applications.

We also use the CBWWaves code (Csizmadia et al., 2012) to model the binary’s inspiral tra-
jectory. It also helps in constructing the GW templates in a fast and accurate way. This code
applies the PN framework by using the analytical setups developed till date (Kidder, 1995). The
gravitational radiation field, calculated simulataneously by evaluating the analytical waveforms.
Time integration is done by RK4 method. The input parameters such as masses, spins and

initial eccentricity are given by hand.

Section 2.1, 2.2, 2.3 and 2.4 describe the framework, setup and parameters used in our model
to simulate the flows surrounding the binary. Section 2.5 provides an overview of the Boundary
Conditions (BC) chosen for the study. In section 2.6 , we outline the method employed to

calculate the torque and accretion rate.
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2.1 Working of CBWaves

Employing the PN formalism as outlined in Section 1.4.1, we solve the equations of motion in
the center-of-mass frame. Within this framework, radiation-reaction effects associated with the
emission of gravitational waves to infinity, are incorporated through damping terms that first

appear at the 2.5PN order, corresponding to corrections of order €/

. The formalism adopts a
two-zone decomposition of spacetime: a near zone and a wave zone. The gravitational field is
modeled as a perturbation of flat spacetime, and the Einstein equations are solved separately in
each zone.

In the near zone, where the energy-momentum tensor is non-zero and retardation effects can
be neglected due to the slow-motion approximation, the PN expansion is applied. Conversely,
in the wave zone—governed by the vacuum Einstein equations—the PM expansion is utilized.
These regions overlap in an intermediate domain, and a matching procedure ensures consistency
between the two solutions. This approach enables the gravitational radiation field observed at
large distances to be expressed in terms of integrals over the source’s multipole moments,
effectively encoding its internal structure.

For compact binary systems, these source integrals are typically evaluated under the assump-
tion that the components can be treated as point masses. While this simplification facilitates
analytical progress, it introduces certain subtleties at the 3PN order, which are discussed in
greater detail by Csizmadia et al. (2012). In our implementation, the orbital dynamics of the
binary are computed up to 3.5PN accuracy, while the gravitational waveform is modelled up to
the 2PN level.

2.1.1 Einstein Field Equations and Harmonic Gauge

The Einstein field equations are derived by performing a variation of the total action with respect

to the spacetime metric gqp:

c3

S = e / d*x V=g R+ Sy [P, gapl, (2.1)

where the first term represented the Einstein-Hilbert action describing the gravitational field, R
is the Ricci scalar, which measures the curvature and S,, accounts for the matter contribution,
with W representing the matter fields. Varying this action yields a system of ten second-order
partial differential equations, here the spacetime indices are greek u,v = 0, 1,2, 3, spatial

indices are Latini, j = 1,2, 3:

8rG
G[g,dg,0%¢] = — T71¥.gl. (2.2)
where G* = R®F — 1Rg“F is the Einstein tensor and 7% = \/%_g(fgs—:; denotes the matter
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stress-energy tensor. The Bianchi identity enforces conservation of energy-momentum:

V.G*=0 = V,I%=0. (2.3)

To facilitate calculations, one employs harmonic coordinates, which satisfy the condition:

H® = §,h"" =0, 2.4

where the metric perturbation is defined as:

hF = \[=gg® —n°F. (2.5)

Here, g denotes the determinant of the spacetime metric, defined as g = det(g,p), and
7P refers to an auxiliary Minkowski metric, given by n%¥ = diag(—1, 1, 1,1). Adopting this
coordinate system facilitates a perturbative treatment of gravity by expressing the physical
metric as a deviation from flat spacetime. This approach is particularly useful for analyzing
gravitational waves, as it enables the field equations to be reformulated in terms of small
perturbations propagating on a fixed Minkowskian background.

In harmonic coordinates, the field equations reduce to:

167G

Or* - dH = ——1, (2.6)
c
with the flat-space d’Alembertian operator [J = n"d,,0, and
OH = 0"HP + 9P H* — n*P o, HF. 2.7)
The effective stress-energy pseudo-tensor is:
o4
79 = |g|T"F + —— AP, (2.8)

167G

with A%? containing the non-linear gravitational self-interaction terms. The conservation law
(2.3) follows from:
9yt =0 = V,17%"=0. (2.9)

Assuming harmonic gauge, the source term becomes:
AP = Agﬁ ., + (gauge terms), (2.10)

where Agfr ., includes all non-linear terms up to fourth order in the perturbation hoB.
In GR, the Einstein field equations are highly non-linear and exhibit general covariance,

meaning the form of the equations remains invariant under arbitrary smooth coordinate trans-
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formations. This invariance introduces a gauge freedom in choosing the coordinate system or,
equivalently, the metric perturbation 4%# used in perturbative expansions. To extract physically
meaningful solutions, and to ensure the field equations form a "well-posed" hyperbolic system
suitable for evolution, one must fix this gauge freedom by imposing additional conditions. The

harmonic (or de Donder) gauge condition,

dph*f =0, (2.11)
where h®F = po8 — %n“ﬁ h is the trace-reversed metric perturbation, simplifies the Einstein
equations into a wave-like form:

Oh% = —167T* + AP

harm*

This gauge choice effectively reduces the system to ten coupled wave equations for the compo-
nents of 4%#, allowing for the use of standard Green’s function techniques, energy estimates,
and iterative perturbative approaches. Furthermore, the harmonic gauge maintains manifest
Lorentz invariance and is well suited for PN expansions.

We will seek approximate solutions with the following assumptions:
1. The matter stress energy tensor 7% has compact spatial support.

2. The matter fields are smooth: T%# € C*(R?). We consider a smooth hydrodynamic fluid

system that is characterized by Euler-type equations with strong relativistic corrections.
3. A PN source, characterized by a small parameter € < 1.

4. The system was stationary in the distant past:

IhP(x,t)=0 fort <-T. (2.12)

This final condition enforces asymptotic flatness by eliminating incoming radiation from

past null infinity, aligning the solution with realistic astrophysical systems.

2.1.2 Solving the equations

The primary input parameters for the system include the initial relative separation between the
two compact objects, defined as r = X; — Xp = r fi, the individual masses m;, the specific spin
magnitudes s;, and the initial orbital eccentricity e. Rather than working with the conventional
spin angular momentum vectors S; and S,, the formulation adopts dimensionless specific spin

vectors s;, which are related to the physical spin via S; = ml.zs,-. Each specific spin vector is

represented ass; = (i, Siy, Siz), with a magnitude determined by s; = /s2 + sl.zy + 7. Forblack
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holes, s; is generally restricted to the range 0 < s; < 1, while typical neutron star configurations
impose a more conservative upper limit, with 0 < s; < 0.7.
Using the above field equations, the gravitational radiation field 4;; observed far from the

source can be expressed as (Kidder, 1995):

2Gu

"=

(Qij +P0'5Qij +PQ,'j +PQ;S;0 +P1'5Qij +P1'5Q;.S;.O +P2Qij +P2Q;§S) S (213)

mpma

where D is the distance to source, and u = PR

is the binary’s reduced mass. The term Q;;
corresponds to the leading-order Newtonian quadrupole moment, while the P" terms represent
PN corrections of order n. Spin contributions appear as spin-orbit (ijO) and spin-spin (ijs)
terms. Explicit expressions for the terms in Eq.(2.13) and summarized in Appendix A.1.

A full characterization of the gravitational radiation emitted by a binary system requires an
accurate description of its orbital motion. The presence of spin and the emission of gravitational
waves lead to both precession of the orbital plane and a gradual inspiral of the binary. Within
the adiabatic PN framework, it is assumed that these changes occur over timescales much longer
than the orbital period, at least until the system approaches merger.

The binary’s acceleration, which governs the evolution of its orbit, can be derived from
the conservation of energy-momentum in a perturbed spacetime. When expressed in harmonic

gauge, this yields the following form:

BT
a=ay+apy+ago +apy +ags+app +apNso +a3pN + ARR1PN + ARRSO + ARRSS, (2.14)

where each component represents: Newtonian (N), post-Newtonian (PN), spin-orbit (SO), sec-
ond PN (2PN), spin-spin (SS), and radiation-reaction (RR) contributions. Explicit expressions

for these terms are provided in Appendix B.1.

2.1.3 Motion in the Center of Mass Frame

To simplify the analysis, we shift the coordinate system such that the origin coincides with
the center of mass (CoM) of the binary. This is achieved by enforcing the condition that the
binary’s mass dipole moment vanishes, I; = 0. Under this transformation, the positions of the
individual components, y; and y;, can be expressed in terms of the relative separation vector
X = y; — y2 and the relative velocity v = v| — v, = dx/dt. We denote the magnitude of the
orbital separation as r = |x|, and introduce the unit vector n = x/r. Then radial component of
the relative velocity is7 =n - v.

The relevant mass parameters include:

* The binary’s total mass m = m;| + mo,
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* The reduced mass yu = =72,

* The mass difference ratio A = 2472

* The symmetric mass ratio
mimj

= T (2.15)

_H
V= —
m

This symmetric mass ratio, v, varies between [0, 0.25] taking its maximum for equal-mass
systems and becomes negligible in the limit when one body is much smaller than the other.
Thus v is numerically small and can be seen as a small expansion parameter. We also define the
dimensionless mass fractions X; = m/m and X, = my/m, suchthat A = X; — X, and v = X1 X».
Within the CoM frame, the general expressions for the individual positions of the two bodies

are given by:

v = [X2+VM>]X+VAQV, (2.16a)

v = [—X1+VA¢>]X+VAQV, (2.16b)

Here, corrections beyond the Newtonian level within the PN framework scale with v and
A. Naturally, for the equal mass case, the positions satisfy y; = —y»>. The dimensionless
coefficients £ and Q, which characterize the radiation-reaction terms, take the following form
when expanded up to the 3.5PN order: [Note: Any PN coeflicient not explicitly listed is assumed

to be zero, all equations are in powers of 1/ ¢ where n is the order of PN] (Blanchet, 2014).

2
% Gm
_y_um 2.17
P1pN R (2.17a)
3vd 3yvt Gm P2 372y 19v2 3yy2 G*m? (7 v
= - -—— ———], @17
Poen =g 2+r(8+4+8+2)r2(42)( )
5v0 11vv® Gm (#* 5y 21742 5722
_2vV 6v2 10 (__ _
Pan=Tg =tV g T T T e 16
2172vv? 1172v2v? 530* 4 15v2v?
- + -Tvv' - )
16 2 16 2
G*m* ( 7/* 73/%v 5, , 101v? 33yy? 5 5
+ e (—3 + g +47°v° + T +3vv)
G3m3 ( 14351 v v* 22 r
- t———+=1In|—|], 2.17
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and

TGmr

BN = (2.18a)
Q5PN = 4G’5" V2 B 8(;2rm2’ o1t
sy = Gm7 (Slfzz ) 1922% - 158vz * 21:V2) ¥ GZTZf (—255 - ziv) . (@2180)
Q3 spn = Gmv? (g - 2?—1/) + Gzrmz (%ﬂ + %Vz + %r.zv N %vzv)
3.3
Gr;n (_% B % ) (2.18d)

Velocities are determined by differentiating the positions derived above. Then, we begin by
evaluating the relative acceleration a = a; — ap, and then implement the substitutions defined
in Eq.(2.16). The instantaneous acceleration takes the general form: [the coefficients A and B

are expressed in Appendix B.1]
g = ——5- | (1 +A) n+ B, (2.19)

After determining optimal initial parameters CBWaves starts calculating these required
quantities stated above. The outvars string defines the list of output variables written during
the simulation. These include the simulation time ¢, the number of completed orbits and the
components of the relative position vector (ry, ry, ;) along with the positions of the individual
compact objects (x1, y1, z1) and (x3, y2, z2). These outputs provide comprehensive diagnostics
of the binary’s orbital evolution. We determine a best-fit curve for separation r = \[r + r} + r2
and pass that function f(¢) into the PLUTO code to update the system’s orbital separation and the
positions of individual black holes at each time step. This information is required to calculate

the gravitational potential of the binary.

2.2 PLUTO code: Hydrodynamical equations

We construct our hydrodynamical model using the PLUTO code. The system consists of a
BBH with component masses m| and m;, embedded in a localized region of an accretion disc
surrounding a SMBH of mass M. To simplify the disc geometry, we adopt the local shearing
box approximation (Fig 2.1), following the approach of Goldreich and Lynden-Bell (1965).
This approximation replaces the global cylindrical structure of the disc with a local Cartesian
coordinate system defined by unit vectors X and y. The center of mass (CoM) of the binary is
placed at the origin, (x, y) = (0, 0), corresponding to a fiducial radius R from the SMBH. At this
location, the disc exhibits a Keplerian orbital velocity Vg = \/GT/R and angular frequency
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Qg = Vi /R. The simulation is performed in a rotating frame that moves with this Keplerian
frequency. The setup closely follows the prescription outlined in Li and Lai (2022).

To model the dynamics of an inviscid, compressible fluid in two dimensions, we solve the
standard equations of hydrodynamics in a rotating frame. The flow is governed by a y-law

equation of state, and the system is evolved using the following set of conservation laws:

P
9L 1V (pu) =0, (2.20)
o1
a(a’;“) +V - (puu+PI) = p (2u X Qi + 23 x — qub) : 2.21)
OE ,
S+ V- [(E+Pyul=pu- (quhQKx - V¢b) , (2.22)

where u is the velocity, p is gas density, P is pressure, E is total energy density and I is the
identity matrix. Qg is aligned with Z, gg, = —dInQg/d In R is the shear parameter (equal to
3/2 for a Keplerian disc), and ¢, is the gravitational potential of the binary. This potential is
defined by

Gm1 _ sz
Joi=r2+ & Jr2-ro?+&

here 1 and r, denote the positions of each binary component, ry is the position of k™ cell

dp(re) = — (2.23)

inside the computational domain, and &, is the gravitational softening length set as 0.01a,. We
use an ideal equation of state y = 5/3 and ignore self gravity of gas.

The binary’s total mass my, = m + m; orbits the SMBH with separation a;, and eccentricity
ep. The mass ratio between the components is g, = my/m; < 1. The angular momentum L,

mean orbital frequency €2, and energy E; are given by:

Gmb meb
Q, = /—3 Ly = upQpainl1 -2, E,= —“2 , (2.24)
a ap

where v, = w/Ga—IZ“’ and pp = ™™ s the reduced mass. We consider both prograde (where

= —mb

Qb - Z = 1) and retrograde (Qb - Z = —1) orientations and keep the binaries co-planar with the

disc.

2.3 Model Parameters

The following dimensionless parameters describe the simulation environment as in LL22:
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Figure 2.1: An illustration of the shearing box model, binary embedded in an AGN disc at distance R from a
SMBH at the center, a;, is the binary separation.

1. Mass ratio of the binary to central SMBH :

mp
=—. 2.25
M = 37 (2.25)
2. Disc aspect ratio £ at disc radius R:
H c
h=—2=_"2 2.26
R Vg (2.26)

where H, is the gas scale height and ¢ is the sound speed.
3. The ratio of the binary Hill radius Ry ~ R(mp/M)'/3 to ay:

a= R R me)ie 2.27)
a, ap \M
The Hill radius (or Roche radius) (Ry) is a measure of the region around an object where its
gravitational influence dominates over that of a larger body it is orbiting. Outside this radius, the
tidal forces from the larger central body exceed the gravitational binding forces of the smaller
body. Here we use a slightly different way for defining the Hill radius, Ry = R(my/M)'/3. Ry
helps define the spatial scale where circumbinary structures (like minidiscs) form and evolve.
From the binary’s point of view, the flow dynamics are governed by the following charac-

teristic velocity ratios.

D2 B, (2.28)
Vp
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Vs Qk 32

= = /l_
Vp qdsh -Qb dsh

where V; represents the Keplerian shear magnitude over a distance of a;,. We set ggn, = 3/2

(2.29)

for the simulations. The time-independent background wind profile in the shearing box can be
written as (Li and Lai, 2022):

Vi = —qsnQkxy (2.30)

2.4 Simulation Parameters

We fix qy; = 107%, 2 = 0.01 and A = 2.5 for different simulation runs. The root domain is set
to a large size to ensure that the outer boundaries are sufficiently distant, allowing the binary to
only influence the wind profile in the immediate vicinity. Such a large domain helps maintain
the shearing box approximation very well.

For qy = 107%, 1 = 0.01, and A = 2.5, we can compute the velocity ratios:

=2 = 0.01x (1077 x (2.5)712 = 0,633, (2.3D)
b
V, 3
— = 2% (2.5)73% = 0.380, (2.32)
Vp 2

To make our simulations stable we use van Leer integrator (van Leer, 1979) along with the
Harten, Lax and van Leer (HLL) Riemann solver (Harten et al., 1983). We use Runge-Kutta
2nd order time stepping method (RK?2) with linear spatial reconstruction. We use a nested grid
to resolve the flow in the vicinity of the binary. The code units are set to the natural units of the
binary system. i.e. ap, v, and QI;I. The detailed results are listed in Table 3.1 and the physical

scale units are given in Table 3.2.

2.5 Boundary Conditions

The boundary conditions used in the simulations affect the overall flow structure and are
necessary to ensure the robustness of the shearing box model. The x-boundary is kept open for

outflow and the y-boundaries are defined in the following way:

refill, if0<x<0 outflow, ifx >0
Ymax = 5 Ymin = .
outflow, ifx >0 refill, ifx <0
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Refilling is implemented by assigning ghost cells the properties of the ambient medium to
ensure a smooth continuation of the background flow. In regions exhibiting outflow, ghost cells
are assigned the values from the domain edge. Along the x-direction, no refilling is applied due
to viscous timescales being significantly longer to the total simulation duration. In contrast, the
y-direction employs asymmetric boundary conditions: downstream boundaries are treated with
outflow conditions, while upstream boundaries are replenished with ambient gas. With these

boundary conditions, wave damping along y boundaries is not needed.

2.6 Post-processing calculations

2.6.1 Torque and Accretion rate

We compute the rate of change of angular momentum from the binary to (or from) AGN disc
and the accretion rate. We concentrate more on the gravitational torque as we find pressure
torque to be negligible. We use a post-processing strategy that is comparable to that described
in Mufioz et al. (2019). Our model treats each binary component as a circular sink with a sink
radius ry. Within this sink radius, we set the velocity to zero and assign small values to both
pressure and density. At the end of each time step, we update the pressure, density, and velocity
for the disc. The following equations are used to calculate the accretion rate and the force due

to pressure and accretion.

M; = %(pu) -dA, (2.33)
1 .
Sacei = Mlj{ dM;(u —v;sB) (2.34)
1
fpres,i = My{ (-P)-dA (2.35)

where dA is the area element about accretor done at an evaluation radius r, = rg + €, where
€ > /20y and 6 is the cell size at finest resolution ~ 0.01. is The gravitational force on each

accretor is computed as:

Gmy(ri — 1)
foras == ) o (2:36)
k 14

where m, = péz is the mass of gas in cell k, and ¢ is the cell size at ry.

The equation of motion for the binary components are then given by:

7; =r; X (f] — fz), (237)

24



) GM,
Ep=-= |b +vy - (] — ), (2.38)
b

where M), is the time-averaged accretion rate. We compute each component of torque using
Eq (2.37).

2.6.2 Minidisc Mass density

We place our binary system in the mid-plane of the AGN disc, and given the 2-D nature of our
simulation we neglect the vertical gas profile of the AGN disc. To track the evolution of the gas
bound to each black hole, we define the “minidisc” region as an annular shell surrounding each
BH with radius r € [1.1r,4.0r;]. Within this region, we compute the minidisc mass density

per unit height via:

Mo 4rs
ml;;dlSC,l :/ pdA, (2.39)
1.1rg

where dA is the area element. This accounts for gas gravitationally bound but not yet accreted.

2.6.3 Mass sloshing

To quantify tranfer or “sloshing” of mass between the minidiscs, we compute the net mass flux
density across the mid-plane perpendicular to the binary axis. At each snapshot, the mid-plane

is defined using the BH positions:

1. The midpoint (xmid, Ymid) between the BHs is determined.
2. A unit normal to the line connecting the BHs is computed.
3. The velocity component normal to this midplane, #, = u - 1, is calculated.

4. The sloshing flux is obtained by summing pu .

Mathematically, the sloshing mass flux density (per unit Area dA per unit time) is:

Oy = ), p(u-h), (2.40)

midplane
where the normal is restricted to across a length (~ 0.5a,) . Sloshing is manifested due
to asymmetries iIn Mminidisc,1 and Mpinidisc2 and can be associated with changes in torque
balance and periodic oscillations in accretion rates. The sink positions (x;, y;, z;) are tracked
dynamically. This post-processing analysis framework allows us to quantify how angular
momentum is redistributed in the binary-disc system, how mass is transferred and accreted, and
how minidiscs evolve over time. Observing episodes of sloshing provides key insight into the

short-term variability in the electromagnetic signatures of BBH systems.
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CHAPTER 3
REsuLTS

The main outcomes of our simulations are listed in Table 3.1. We present a detailed analysis of
flow structure, torque, accretion, minidisc mass density and sloshing in sections 3.1, 3.2, 3.3,
3.4 and 3.5 respectively. We also present a case of retrograde orientation in section 3.6 and

dependence of sink choice in section 3.7.

3.1 Flow Structure

The morphology of the gas flow surrounding BBHs is a crucial indicator of angular momentum
transport and accretion processes. Figure 3.1 illustrates typical 2-D co-rotating streamlines in
a shear flow. The flow is governed by a combination of large-scale shocks, rotational shear
and dynamically evolving minidiscs. One of the most prominent features is the presence of
grand spiral arms, large shock fronts that originate from the binary and extend towards the +y
boundaries along the direction set by the background shear flow.

Physically, these spirals are half bow shocks generated by the binary’s supersonic motion
relative to the surrounding gas in the co-rotating frame. In the middle panel of Figure 3.3,
we also plot the contour lines of the sonic Mach number, defined as M = v/cg where v is
the local flow velocity to highlight the transitions between different flow regimes. We have
plotted the contours for M = 1 with white lines, which separate supersonic and subsonic flows,
highlighting the locations of shock transitions. The accreting gas undergoes a shock transition
before being captured into CSDs around individual black holes. This transition is critical for
regulating the mass accretion process, as the shocks dissipate kinetic energy and allow the gas
to settle into bound orbits around the black holes These high Mach number flows result in
sharp shock fronts and enhanced compression near the compression near the black holes. In
lower mass ratio binaries this lead to more variable accretion patterns and a suppression of the
secondary’s minidisc extent.

Alongside the spirals the flow exhibits a horseshoe flow or co-orbital flow. These horseshoe
flows are bound by the inner and outer shear flows (also called disc flows), similar to those seen

in circumstellar or circumplanetary discs (Fung et al., 2015; Ormel, 2013). However, in BBH
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systems, these flows are more variable and asymmetric especially in cases of non unity mass
ratios. Horseshoe flow emerges where the gas parcels have nearly the same angular velocity
as the binary. The gravitational potential near the binary induces streamlines that undergo a
reversal near the L4 & L5 Lagrange points (see Lagrange points).

Closer to each black hole, compact CSDs form. Each CSD has its own smaller shocks
which drive inflow and redistribute the angular momentum within it. These evolve continuously,
responding to both gas infall and binary orbital motion. As the BHs are non-spinning, they are
tidally locked. The part of CSD facing towards the other BH experiences tidal forces and is
observed to be bulged. The outer edges of the CSDs are enveloped by localized bow shocks
which act as launch points for outgoing streams. These streams are periodically flung outward
and merge with the grand spiral once every orbit, creating a slingshot-like mechanism that
recycles disc material and transports angular momentum. As the Hill spheres of these BHs
are filled, the excess gas becomes partially unbound and forms a sloshing pulse, carrying a
significant portion of the angular momentum and energy of the outer CSD of one BH across

the L1 Lagrange point to the other BH, also consistent with Avara et al. (2024).

Flow streams Roche lobe

(a) (b)

Figure 3.1: (a): Velocity streamlines for a equal mass fixed binary overlaid on the gas density distribution. The
arrows denote gas velocity vectors in the orbital plane. The spiral arms act as conduits for angular momentum
transport and the flow morphology exhibits balanced stream accretion onto both black holes. The circular streaming
near each component indicates the presence of rotationally supported minidiscs. (b): Roche lobe contour lines for
equal mass binary.

Velocity streams are visible entering the binary CBD opposite spiral shaped outflow lanes
in Fig 3.1. These streams exhibit gradual deflection and acceleration as they approach each BH,
forming curved trajectories that wrap into the CSDs. The flow structure indicates a quasi-steady
balance between angular momentum removal via shocks and replenishment through large scale
inflow at the boundaries. This behaviour confirms earlier results from LL22.

In unequal mass binaries, the flow becomes increasingly asymmetric. The more massive
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primary having a deeper potential, allows itself to host a stable longer lived CSD. This disc
maintains a quasi-Keplerian structure and experiences minor perturbations from surrounding
shocks. The secondary forms a more tenuous and irregular CSD. These asymmetries arise
due to the imbalance in the gravitational potential of the two components. We also observe
that fixed and inspiral binary configurations exhibit qualitatively distinct flow topologies. In
fixed orbit simulations, where the binary separation remains fixed, the flow gradually reaches
a quasi state. In contrast, in inspiralling binaries, as the separation decreases, the spiral shocks
become increasingly compressed and nonlinear, leading to concentrated inflow and transient
enhancements in accretion. The inspiral process leads to non-steady-state behavior: CSDs
undergo cycles of mass loading and unloading, the spiral arms become more tightly wound, and
gravitational torques become more intense.

These findings demonstrate how inspiral accelerates the interaction between the disc and
binary, enhancing the angular momentum exchange and triggering burst accretion episodes,

which we discuss in section 3.3.

3.2 Gravitational Torque

The gravitational torque, 7gray, €xerted by the surrounding gas on a binary system embedded in
an accretion flow plays a pivotal role in dictating its orbital evolution. The gravitational torque
acting on the binary arises from local overdensities, spiral shocks, and non-axisymmetric flows
generated by the interaction of the binary with the surrounding gas. Unlike cavity-forming
systems, the torque is mediated primarily through dynamical friction, shock-driven density
wakes, and stream-fed minidisc interactions. We analyze the time-evolved torque profiles for
binaries of varying mass ratios, under both fixed-separation and inspiralling configurations.
Each profile is decomposed into a full time-series and a selected zoom-in window to show both
long-term trends and short-term variability (see Fig 3.3). The torque is normalized in units of
pviai. The corresponding values of average torque magnitudes are listed in Table 3.1. We
consider the dominant torque term is only gravitational (Mufoz et al., 2019, 2020), computed
as given in chapter 2.

Across all mass ratios, the torque shows strong periodic variability tied to the binary orbital
phase. For equal-mass binaries, the torque is relatively symmetric and weakly negative on
average, with low amplitude fluctuations. As the mass ratio decreases, the torque becomes
increasingly asymmetric and chaotic. These patterns agree with LL22.

inspiralling binaries show enhanced torque variability compared to fixed binaries, but not
always a more negative net torque. In some cases, orbital decay causes a redistribution of gas
flows that reduces the long-term torque efficiency. Nonetheless, the average torque remains
negative in all runs, indicating sustained angular momentum loss and orbital hardening over

time.
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Separation of the binary

Separation ap

1 —— qg=0.2
0.5 - q=1.0
— g=0.5
049 —meee Initial separation/ Fixed orbit
0 100 200 300 400 500 600 700 800

t[Qp1]

Figure 3.2: Plot shows the orbital separation decay with time for different mass ratios. For fixed binaries, the
separation is kept as a; = 1 (black dashed line).

The location of strongest torque deposition typically occurs near the binary separation, where
spiral shocks intersect with the ambient disc. Overall, our simulations confirm that embedded
binaries experience significant torque-driven evolution, with mass ratio and inspiral dynamics
playing a central role in modulating both the amplitude and sign of angular momentum transfer.

Fig 3.2 illustrates the orbital separation evolution of binary black holes with different mass
ratios over time. Initially set at a fixed value, the separations for inspiralling binaries begin
to decrease due to gravitational torques. Notably, binaries with smaller mass ratios (e.g.,
q = 0.2) exhibit faster orbital decay, consistent with enhanced accretion asymmetries and
stronger torques. In contrast, the ¢ = 1.0 system maintains a comparatively larger separation
over the same period, highlighting the role of mass ratio in regulating inspiral efficiency.
This differential evolution underscores the sensitivity of binary hardening to the hydrodynamic

response of the AGN disc.
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Figure 3.3: (a)-(b):Density distribution for ¢ = 1 binary with fixed and inspiral orbits at different times,respectively.
(¢)-(d): White dashed Mach number M > 1 contour lines to show supersonic flow and shock transitions for fixed
and inspiral binaries. (e): Time series for net Torque imparted onto the binary with a zoomed in region to show
variability.
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Figure 3.4: (a)-(b):Density distribution for ¢ = 0.5 binary with fixed and inspiral orbits at different
times,respectively. (c)-(d): White dashed Mach number M > 1 contour lines to show supersonic flow and
shock transitions for fixed and inspiral binaries. (e): Time series for net Torque imparted onto the binary with a

zoomed in region to show variability.
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Figure 3.5: (a)-(b):Density distribution for ¢ = 0.2 binary with fixed and inspiral orbits at different
times,respectively. (c)-(d): White dashed Mach number M > 1 contour lines to show supersonic flow and
shock transitions for fixed and inspiral binaries. (e): Time series for net Torque imparted onto the binary with a
zoomed in region to show variability.
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3.3 Accretion Variability

Accretion onto individual black holes in a binary system is a dynamic process governed by the
interplay between gravitational torques and the binary’s orbital motion. In our simulations, the
accretion rate onto each component is tracked using an evaluation radius r, = 1.2 X rg around
each black hole. The time series (see Fig. 3.6) behaviour exhibits prominent variability across
all configurations, modulated on the binary’s orbital time period and influenced by both mass
ratio and orbital evolution mode (fixed or inspiral).

In a rotating frame comoving with the binary, the ambient gas experiences a non-inertial
force environment including the coriolis, centrifugal and binary gravitational potentials as given
in equation (2.21). This produces a low-density region around the binary, see Fig. 3.3. Material
enters this lower dense region through the shear streams, feeding the CSDs surrounding each
black hole. These streams are periodically modulated due to the binary’s motion, leading
to alternating accretion episodes onto each component. Across all mass ratios explored, we
observe preferential accretion for the secondary, a trend that becomes more pronounced as ¢
decreases. This phenomenon has been reported in prior studies (Farris et al., 2014; Mufioz
et al., 2019; Li et al., 2021; Duffell et al., 2020) and is attributed to the secondary’s greater
proximity to the shear flow. For unequal mass binaries, the centre of mass is displaced toward
the primary and the secondary orbits closer to the shear flow. It encounters denser inflow
regions and is more effective at intercepting material from the accretion streams. The resulting
accretion asymmetry not only affects minidisc structure but also may alter the long-term mass
ratio evolution. Accreted material initially enters rotationally supported minidiscs which act
as transient mass reservoirs, especially in high-g binaries. These discs exhibit internal shock
dissipation and spiral wave modes that regulate angular momentum loss and mediate inflow to
the event horizon scale. When mass piles up in one disc, pressure gradients and tidal forces can
drive material across the binary axis, a process we identify as sloshing (see 3.5). Such events
are often preceded or followed by sharp accretion bursts.

Figure 3.6 presents the time series of normalized accretion rates [pvj,ap] onto each black
hole for both fixed and inspiral runs across the three mass ratios. In fixed-separation binaries,
the accretion variability is quasi-periodic and closely tied to orbital phase. The streams settle
into a steady pattern where the accretion alternates between the two components on a timescale
of ~ QI;I /2 i.e when the binary is at a 7 phase (aligned on X-axis).

For the equal mass binary, accretion is nearly symmetric throughout the evolution. In both
fixed and inspiral cases, the accretion rates onto the two black holes remain balanced over time.
The inspiral phase leads to a significant increase in accreted mass. As the mass ratio decreases
to g = 0.5, asymmetries in accretion emerge. In the fixed binary, the secondary black hole
accretes nearly twice as much as the primary (niy/ni; ~ 1.76). However, during inspiral, this

asymmetry vanishes, both black holes accrete equally . This suggests that the dynamic orbital
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Table 3.1: Simulation details and results

rg  LyXLy (Tgrav) M Misc,1 Misc.2 Slosh rate

R . Remark
o T lap) (42 [pvial [ovias] [pal] [pa?] (M /ap] CImAs
Fixed binaries
1-Fixed 1.0 004 20x20 -4.47x107* 1.38x107 2.88x1073 2.88x103 1.93x107*  Fiducial run

05 0.04 15x15 -1.17x107! 320x1073 842x1073 7.46x1073 -239x107° —
02 0.04 15x15 -6.62x102 3.68x1073 598x1073 4.66x1073 -2.68x107™* —

Inspiral binaries

2-Inspiral 1.0 0.04 15x15 -1.94x103 890x 101 4.03x 103 4.03x103 1.12x107 —
05 004 15x15 -471x102 1.182x10° 6.05x 103 584x103 —1.47x107* —
02 004 15x15 -3.13x102 1.181x10° 8.12x 103 545x103 -2.05x 10~* —

Retrograde and sinks

1-Retrograde 1.0 0.04 15x15 -7.25x10"" 5.64x1073 — -5.31x 1073  Quickest decay
3-Sinks 1.0 002 12x12 -422x102 2.80x102 7.58x107% 7.62x1073 -1.60x 10713 —
1.0 008 12x12 -197x1075 149x10™* 1.60x1072 1.60x 1073 -1.10x 107" —

Run indicates the simulation identifier; q is the binary mass ratio; rs is the sink radius; Ly X Ly is the
computational domain size; 7gray is the net average gravitational torque; M is the mass accretion rate; mgjg,1 and
My;sc 2 are the masses of the individual minidiscs; Slosh rate represents the slosh mass flux rate per unit length;
and Remarks provide additional notes. All quantities are time-averaged over the quasi-steady phase (over the last
~ 30052;1). All lengths are expressed in units of binary separation (a) and corresponding units are given under

the quantities.

decay redistributes inflow trajectories and streamlines, allowing the primary better access to gas
and restoring accretion balance.

The asymmetry is most extreme for g = 0.2, where the fixed binary shows a strong preference
for secondary accretion (niy/ni; ~ 4.2). Even here, the inspiralling binary achieves symmetric

accretion, indicating that orbital evolution has a regulating effect.

3.4 Minidisc Mass Evolution

Each black hole in a binary embedded within a gaseous environment may develop its own bound,
rotationally supported gas structure, we have already defined as a minidisc or circumsingle disc.
These minidiscs serve as transient reservoirs that mediate gas inflow to the black hole event
horizon scale. In this section, we analyze the minidisc mass evolution using the integrated
surface density within a circular region of radius rgisc = 4 X ry around each black hole.

Gas streams entering the binary through Lagrange points L2 and L3 become gravitation-
ally captured by the individual black holes. If the incoming gas possesses sufficient angular
momentum, it circularizes and forms a quasi-Keplerian disc around the black hole. These
minidiscs are subject to intense shock heating at their outer boundaries, where high-velocity gas
streams from the circumbinary disc collide with the disc material. It has been previously noted
(Bowen et al., 2017, 2018, 2019; Combi et al., 2022) that the time fluid elements spend in a
minidisc is comparable to or shorter than a binary orbital period. Each disc processes incoming

material, redistributing angular momentum and feeding the black hole via inward drift. The
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Table 3.2: Physical units for the simulations

Parameter Mass ratio Value (code units) Normalization (Physical Units)

Separation length (ay) q=1 1 1.48 x 108 m
q=0.5 1 221 x 108 m
q=0.2 1 1.77 x 108 m

Time () 1 0.474 yrs

Orbital period (T = 27/Qy) 2r 2.977 yrs

Velocity (v, = Qpap) q=1 1 7.4 x 10% m/yr
q=0.5 1 1.105 x 108 m/yr
q=0.2 1 8.805 x 108 m/yr

Surface Density (po) 1 1.67 x 10710 g/cm?

Accretion rate (M) qg=1 1 3.85 x 1070 My/yr
q=0.5 1 8.62 x 1070 My/yr
q=02 1 5.45 x 107% Mo/yr

Minidisc Mass (mgisc) qg=1 1 1.83 x 107! M,
q=0.5 1 4.48 x 107! My
q=02 1 3.38 x 107! M,

Normalization of code units to physical quantities for different binary mass ratios. All values assume My =
1.989 x 103 g.

shock-dissipation and spiral wave modes within the discs result in episodic accretion bursts
(Farris et al., 2014; Shi and Krolik, 2015). The structure and variability of these minidiscs are
not static, they undergo cyclical states characterized by alternating phases of mass buildup and
rapid depletion, in part due to the episodic nature of the gas supply, as described by Avara et al.
(2024).

Across all mass ratios, our simulations reveal that minidisc mass is not simply a monotonic
function of accretion rate. Instead, it exhibits a cyclical pattern, modulated on timescales
comparable to the binary orbital period. For ¢ = 0.2 and ¢ = 0.5, the secondary minidisc
undergoes particularly large swings in mass, oscillating between what can be termed “disc-
dominated" and “stream-dominated" states. In the disc-dominated phase, the disc fills the
Roche lobe with quasi-Keplerian material, exhibiting a relatively stable radial velocity structure
and low net inflow. In this phase, newly arriving gas is efficiently circularized, and the minidisc
acts as a temporary buffer against the central BH accretion.

In contrast, during the stream-dominated phase, the minidisc is depleted and incoming
material bypasses orbit, plunging nearly radially inward with high velocities. This transition
corresponds to bursts of accretion spikes. These phases reflect variations in the specific angular
momentum of the supplied gas, much of it is delivered below the threshold needed for stable
disc formation at the tidal truncation radius, as also shown in Avara et al. (2024) and Combi
et al. (2022). As a result, only a fraction of the stream material forms a disc and the rest is

promptly accreted, especially during the low-mass, stream-dominated state.
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For the equal-mass binary (see Fig. 3.7), the evolution of the minidisc masses is nearly

identical across both black holes in both fixed and inspiral runs.

This is expected due to

the inherent symmetry of the system, both black holes orbit with the same velocity and have
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Figure 3.6: (a)-(c): Time series of accretion rates for both fixed and inspiral orbits with corresponding mass ratios.
The blue line shows accretion rate for the primary and the orange line shows the accretion rate for the secondary.
The green line shows the total accretion rate of the binary.
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gravitational potential and interact with the background gas in a mirror-symmetric way. The
inspiralling system leads to slightly higher minidisc masses due to increased inflow rates, but
the symmetry in mass buildup remains intact. For ¢ = 0.2, the primary minidisc, though
less favoured in direct inflow, often builds up a more massive and persistent disc due to lower
accretion rates and greater angular momentum retention. Conversely, the secondary’s minidisc
fluctuates more violently, frequently being stripped or consumed. At g = 0.5, the amplitude is
reduced. The depletion of the secondary’s minidisc can be attributed, in part, to ram pressure
stripping.

Inspiral dynamics further affects this process. Inspiral also enhances radial velocity gradients
in the disc, increasing shock dissipation near both BHs and promoting more uniform disc
growth. We observe that inspiral leads to more uniform mass supply and suppresses long-term
asymmetries, although short-term disc-stream cycling persists. This is consistent with the idea
that inspiral drives stronger spiral shocks and stationary features within the minidiscs, rapidly
redistributing angular momentum and leading to frequent structural reconfigurations (Ennoggi
et al., 2025).

Minidisc evolution in AGN-embedded binaries is highly dynamic, featuring alternating
states driven by angular momentum fluctuations, asymmetric inflow, and orbital motion. These
cycles strongly influence the timing and efficiency of accretion and are a crucial component of

the binary’s secular evolution and observable variability.
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Figure 3.7: (a)-(c): Time series for Minidisc mass density for different mass ratios. The blue line shows minidisc
mass density for the primary and the orange line shows the minidisc mass density for the secondary.
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Figure 3.8: Comparison of slosh mass rate for different mass ratios and orbital prescriptions. The blue line,orange
and green lines show the slosh ate for g = 1.0, 0.5, 0.2 respectively.

3.5 Sloshing

As mentioned before, mass sloshing refers to the lateral transfer of gas between the two minidiscs,
typically along the binary axis perpendicular to the orbital velocity. Physically, mass sloshing
acts as a dynamical equalizer, attempting to balance the distribution of gas between the two
black holes. Importantly, sloshing contributes to the modulation of both minidisc mass and
accretion rate and thus may be linked to short-timescale variability in electromagnetic emission.
In observational terms, sloshing may manifest as oscillatory signatures in light curves or spectral
line asymmetries (Noble et al., 2012; Ryan and MacFadyen, 2017; Bowen et al., 2017).

Figure 3.8 presents the time-averaged mass flux associated with sloshing between the two
minidiscs, measured across a plane perpendicular to the binary axis. In the fixed binaries, net
sloshing is negligible for the equal-mass case (¢ = 1.0), something we expect with the symmetric
flow structure. As the mass ratio decreases, the net sloshing flux becomes significantly more
negative i.e towards to secondary. At g = 0.5, the slosh rate settles to ~ —2.4 x 107 [M /ay],
while for g = 0.2, it reaches ~ —2.7x 10~#[M /a;]. In the inspiralling binaries, sloshing persists
but with notable differences. For g = 1.0, the flux becomes slightly positive. At g = 0.5 and
q = 0.2, the slosh rate remain negative. This reinforce our finding that while inspiral suppresses
some of the long-term asymmetry, episodic mass transfer across the midplane continues to play
a role in modulating the minidisc mass balance.

Notably, the sloshing flux in all runs is quasi-periodic, with sharper, more frequent pulses in
lower g systems. This temporal structure is consistent with episodic overflow from one minidisc
to another and correlates with known cycles of accretion variability. The amplitude of these
pulses scales with mass ratio asymmetry, and their persistence during inspiral confirms that

sloshing is an active feature throughout the binary’s evolution.
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3.6 Retrograde Equal-Mass Binaries

We now turn to the case of retrograde binaries, in which the orbital angular momentum vector
of the binary is anti-aligned with that of the surrounding AGN disc (Qp - 2 = —1). This con-
figuration leads to fundamentally different accretion dynamics and torque behaviour compared
to the prograde case, despite the global disc structure beyond the Hill radius remaining largely
unaffected. As shown in Fig. 3.9, which presents density plotd at early and late times, the
internal region within the Hill spheres undergoes drastic evolution. At early times (¢ = 20),
transient circumsingle discs can be seen around each black hole, but these quickly dissolve as
the simulation proceeds. By ¢ = 400, the minidisc structures are completely disrupted, and the
gas morphology becomes highly turbulent and incoherent. The absence of stable circumsingle
discs results from frequent encounters with bow shocks launched by the companion BH and
intensified ram pressure stripping caused by the high relative velocity between the binary and
the disc.

This chaotic flow configuration leads to a highly irregular accretion pattern. Figure 3.9(d)
shows the accretion rate time series for the retrograde binary. Unlike the quasi-periodic accretion
observed in prograde cases, retrograde accretion is dominated by aperiodic bursts with no
apparent correlation to orbital phase. The lack of disc-mediated mass storage leads to near-
direct inflow from the background disc onto the black holes. This behavior is consistent with
the finding that the relative velocity between the gas and the binary is significantly higher in
the retrograde setup, enhancing accretion shocks and preventing the formation of rotationally
supported structures. The increased inflow speed, combined with a lack of angular momentum
buffering, results in higher time-averaged accretion rates than in prograde binaries, in agreement
with results reported by LL22.

The gravitational torque acting is highly irregular, with large, stochastic oscillations and
no dominant frequency or phase correlation. However, the torque converges to a strongly
negative value, (Tgray) = —0.725 [viab], nearly twice the magnitude of the corresponding
prograde binary. This stronger net torque arises from the enhanced gravitational drag exerted
by the turbulent inflow and the lack of stable circumsingle discs to mediate angular momentum
transfer. Consequently, the orbital hardening rate in the retrograde system is significantly higher,
leading to faster inward migration and potentially earlier merger.

Another notable feature of the retrograde evolution is the transient formation of underdense
regions near orbital phases 7/2 and 37/2, corresponding to times when the binary is aligned
along the y-axis. These phase-dependent cavities, visible in Fig. 3.9(b), are not present in the
prograde case and appear to result from repeated shock clearing and orbital phase-dependent
shear. Their presence suggests a temporary evacuation of gas around the BHs, which could
lower the optical depth in these regions and facilitate the breakout of radiation or jets during

late inspiral and merger.
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Figure 3.9: (a)-(b): Density plots for retrograde motion system. (c)-(d): Torque and Accretion time series
respectively. The blue line shows accretion rate for the primary and the orange line shows the accretion rate for
the secondary.

Overall, the retrograde configuration leads to stronger torque, faster accretion, suppression
of minidisc formation and more chaotic dynamics within the Hill sphere. These features make
retrograde binaries qualitatively distinct from their prograde counterparts, and their enhanced

angular momentum loss rates may make them more efficient merger candidates.
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Figure 3.10: (a): Density with White dashed Mach number M > 1 contour lines to show supersonic flow and
shock transitions and (b)-(c): Torque time series for sink radii ry = 0.02a; and 0.08a, respectively.

3.7 Dependence on sink radius

We verify that our orbital evolution results are robust across a range of numerical setups.
Varying the evaluation radius, root domain size and finest resolution results in negligible
changes (< 2-3%) in the accretion rate. The choice of sink radius significantly influences the
structure of the minidiscs and the resulting gravitational torques on the binary (see Fig 3.10.
As the sink radius increases, the small-scale features within the minidiscs are progressively
suppressed. This leads to a diminished ability of the gas to exert coherent torques on the binary.
Simulations with larger sinks exhibit highly fluctuating but weak net torques, indicative of the
loss of persistent non-axisymmetric structures. In contrast, smaller sinks preserve finer disc

morphology, enabling sustained torque asymmetries that are essential for angular momentum
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exchange between the binary and the surrounding disc. These results highlight the critical role
of resolving the inner disc structure in capturing the correct gravitational interaction between

the gas and the binary.
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CHAPTER 4
SUMMARY

This study investigates the orbital dynamics and accretion properties of BBHs within AGN discs,
environments. AGN discs, rich in gas and other baryonic material are unique environments for
studying BBH evolution as they provide conditions that could lead to detectable EM counterparts
to GW signals. Through high resolution simulations this study explores how the mass ratio and
orbital orientation influence the dynamics of BBHs within these AGN discs.

We conducted simulations of BBH systems embedded in accretion flows within AGN discs,
focusing on different configurations: prograde fixed orbit and inspiralling binaries, where the
binary orbit aligns with the disc rotation and retrograde binaries, where the orbit is oppositely
aligned. These simulations explored the impact of orbital alignment, mass ratio, on angular
momentum exchange, accretion rates, minidiscs evolution and torque evolution. Key flow
structures, accretion shocks, and angular momentum redistribution processes were analysed to
understand how these binaries evolve over time and drive orbital contraction. To simulate this
we employed the PLUTO code to model the evolution of binary black holes within a shearing
box approximation of an AGN disc. We also prescibe inspiralling orbits where the separation
between the BHs reduces as a function of time calculated from CBWaves using post-Newtonian
expansion techniques. This combined approach enables accurate representation of both the gas
dynamics surrounding the binary and the orbital evolution.

The simulations explore a parameter space spanning different mass ratios (¢ = 0.2, 0.5, 1.0).
A key feature of the methodology is the use of combination of refill and outflow boundary
conditions, hence we do not have to use wave damping. Some of the key findings are listed

below.

4.1 Main Findings:

* Flow Structure and Angular Momentum Transport:
BBHs embedded in AGN discs generate prominent spiral arms and shock fronts, which
serve as conduits for angular momentum transport. The flow morphology is highly

sensitive to the mass ratio and orbital configuration. In prograde binaries, well-defined
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minidiscs form around each black hole, and the system reaches a quasi-steady state with
periodic accretion variability. The black holes are non-spinning and hence are tidally
locked, the tidal forces create a bulge in the minidisc region facing the other black hole.
In retrograde binaries, minidiscs are quickly disrupted due to high ram pressure stripping

and the gas flow becomes turbulent and chaotic.

Gravitational Torque and Orbital Evolution:
The surrounding gas exerts a net negative torque on the BBH, driving orbital decay and
eventual merger. This torque is stronger and more variable in retrograde systems, leading

to faster orbital hardening compared to prograde cases.

Accretion Variability and Minidisc Evolution:

Accretion onto each black hole is highly dynamic, modulated by the binary’s orbital
motion and the structure of the inflowing gas. Across all mass ratios, the secondary
(less massive) black hole tends to accrete more efficiently, especially in unequal-mass
binaries. This preferential accretion is attributed to the secondary’s closer proximity
to the ambient shear flow, allowing it to intercept more inflowing material. Minidisc
masses fluctuate cyclically, alternating between “disc-dominated” (stable, rotationally
supported) and ‘“‘stream-dominated” (depleted, direct inflow) states. These cycles are
linked to variations in the angular momentum of the accreted gas and can trigger bursts

of accretion.

Mass Sloshing:

The simulations reveal significant mass sloshing in unequal-mass binaries. This process
acts as a dynamical equalizer, tending to redistribute mass and angular momentum be-
tween the components. The amplitude and frequency of sloshing events increase as the

mass ratio decreases.

Retrograde vs. Prograde Dynamics:

Retrograde binaries exhibit fundamentally different behaviour from prograde ones. The
lack of stable minidiscs, increased turbulence and higher relative velocities between the
binary and the disc lead to stronger, more chaotic torques and higher average accretion
rates. These systems are likely to merge more rapidly and their chaotic gas dynamics may

produce distinctive EM variability.

Sink dependence:
The results are robust across a range of numerical setups, though the choice of sink radius
affects the fine structure of the minidiscs and the detailed torque calculations. Smaller

sink radii preserve more of the minidisc’s structure.
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Conclusion

We demonstrate that the hydrodynamical environment of AGN discs plays a critical role in
shaping the evolution and observable properties of embedded BBHs. The presence of dense
gas and strong shocks in AGN discs ensures that BBHs experience sustained angular
momentum loss, driving them toward merger on realistic timescales. Accretion dynamics are
highly asymmetric with the secondary black hole typically dominating the accretion rate,
especially in unequal-mass systems. This may lead to mass ratio evolution over time. The
orientation of the binary orbit relative to the disc has a profound effect on the system’s
evolution, with retrograde binaries merging more rapidly due to enhanced torques and
accretion variability. The complex interplay between accretion, torque, and mass sloshing
produces rich variability that could manifest in EM counterparts to GW events, offering a

pathway for multi-messenger observations.

Future Directions:

This thesis lays the groundwork for more comprehensive models that integrate further physics,
such as magnetic fields (magnetohydrodynamics, MHD) and full 3-D simulations. Magnetic
fields are expected to significantly impact angular momentum transfer, variability in accretion,
and jet formation, which are essential for predicting EM counterparts. A detailed paper
presenting this results is currently in preparation (Joshi et al., 2025 in preparation). Key
findings reveal that BBH embedded in magnetized AGN discs can launch well-collimated,
magnetically driven outflows under certain local disc conditions. The development and
morphology of these outflows depend on the binary’s position in the disc and the surrounding
shear, which affects the accumulation of toroidal magnetic fields. In some regions, the ambient
conditions inhibit outflows and favours accretion-dominated dynamics, while elsewhere,
robust outflows can form, potentially creating pathways through the optically thick disc and
enabling the escape of EM radiation. Accretion onto BBHs occurs episodically, with burst
phases marked by plasmoid ejections. The system presents a wide range of flow structures,
including turbulent accretion and spiral shocks, highlighting the intricate interaction between
the BBH and its local environment. The findings are directly relevant for interpreting current
and future observations from GW detectors and time-domain EM surveys and for constraining

models of black hole growth and galaxy evolution.
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CHAPTER 5

APPENDIX

Appendix A

A.1 The radiation field

The gravitational waveform generated by a compact binary system is expressed by a sum of
contributions originating from different PN orders. The particular form of the contributions
listed in Eq. (2.13) can be found in Kidder (1995), but for conveniences they are also
summarized below. Accordingly, the quadrupole term and higher order relativistic corrections

read as
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where r = X3 — X3, v=dr/dt,i=r/r,m = m| + my, m = m| —my, n = u/m and the
derivative with respect to time is indicated by an overdot. The P?>Q%/ contribution to the
waveform is (Will and Wiseman, 1996):
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where S =S+ S, and A = m(Sy/my — Sy /my).

In black hole perturbation theory and in numerical simulations the radiation field is frequently
given in terms of spin weighted spherical harmonics. As the injection of numerical templates
also requires this type of expansion (Ajith et al., 2011) CBwaves does contain a module
evaluating some of the spin weighted spherical harmonics. The relations we have applied in

generating the components read as

MHy, = 7{ Y] (4 @) (rhy — irhy) dQ, (A.9)

Y50 = ,/ (1 + cos)? e*9, (A.10)

Yo = \/ESIDL(I +cost) e*?, (A.11)
-2 5 .2

Yoo = ‘/E sin”“ ¢. (A.12)

h™ and h{"™ are defined as

where, for example,

rhi™ (1) — irh™ (1) = MH (1) (A.13)

Note that these modes of rh, and rhy are used for injections (Ajith et al., 2011).
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Appendix B

B.1 Equations of motion

The various order of relative accelerations, as listed in Eq. (2.14), can be given as
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where o = (my/m1)S + (m1/m>)S,. Note also that the above form of agp tacitly presumes

the use of the covariant spin supplementary condition, Sﬁvu Ay = 0, where u‘j‘ is the

four-velocity of the center-of-mass world line of body A, with A = 1, 2. Finally, as discussed

above the term ag;e refers to the radiation reaction expression derived from a Burke-Thorne

type radiation reaction potential (Iyer and Will, 1995; Zeng and Will, 2007).

Higher order corrections to the acceleration are given as
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In general, the accelerations asp and agg are not confined to the orbital plane thereby they yield
a precession of this plane and, in turn, an amplitude and frequency modulation of the observed

signal. In addition, spin vectors themselves precess according to their evolution equations

G [4+3¢ )
Si:c2r3{ 5L - S;+3(h-S;)h
G?um |2 o R
5,2 [g (v-S;j) +307 (A-S;) n}xSi, (B.12)

where Ly = ur X v is the Newtonian angular momentum and {; = m;/m;, with i, j = 1,2,
i # j. In Eq. (B.12), in addition to the standard spin-orbit and spin-spin terms (Kidder, 1995),
the last expression stands for the 3.5PN spin-spin contribution (Wang and Will, 2007).

The terms in the equations of motion, Eq. (2.14), up to 2PN order can be deduced from a
generalized Lagrangian which depends only on the relative acceleration. From this Lagrangian
the energy E and total angular momentum J of the system can be computed which are known

to be conserved up to 2PN order (Kidder, 1995), i.e. in the absence of radiation reaction.
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The conserved total angular momentum is

where

J=L+8§, (B.13)

LZLN+LPN+LSO +L2PN+L3PN, (B.14)

Notice that at the applied level of PN approximation there is no spin-spin contribution to J.

The leading order radiative change of the conserved quantities E and J is governed by the
quadrupole formula (Iyer and Will, 1995). To lowest 2.5PN order the instantaneous loss of
energy E is given as (Kidder, 1995)
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while the radiative angular momentum loss is
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