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ABSTRACT

The Epoch of Reionization (EoR) refers to the era when the first luminous sources started to emit
the UV radiation and ionized the neutral hydrogen (HI) present in the intergalactic medium (IGM). This
era corresponds to one of the major phase transition of the Universe. Studying the redshifted 21-cm
signal coming from the neutral hydrogen in the IGM can provide the solid answers to essential questions
about EoR such as exact duration of these epochs, formation and properties of the ionizing sources, the
morphology of ionized regions and its evolution.

Several ongoing radio experiments are working on the detection of the redshifted 21-cm signal,
including LOFAR, HERA, MWA, and uGMRT, and the next generation radio interferometers, such as
the SKA, will focus on the era of Cosmic Dawn and Epoch of Reionization (CD-EoR). We need to build
forward models of the redshifted 21-cm signal that can interpret the observations made by these radio
experiments. The simulations that are generally used for forward modeling are computationally expensive
when it comes to rerunning them for a large CD-EoR parameter space. This creates a need to develop an
emulator that is computationally cheap and can be employed for exploration of the EoR parameter space.
While most existing approaches focus on emulating summary statistics of the 21-cm signal, such methods
lose information compared to emulating the 21-cm signal itself.

Emulation of the EoR 21-cm field suffers from the fundamental problem of modeling features or
fields which have a large dynamic range (e.g. 4-5 orders of magnitude variation). The previous efforts of
emulation of the 21-cm signal faced limitations because they didn’t take all length scales into account due
to the bias of the model. This led to the underprediction of large and small-scale features depending on
the model architecture. Furthermore, these models use fixed astrophysical parameters; hence, they cannot
be used for any kind of inference exercise. Taking the drawbacks of these previous model architectures
into account, we developed an emulator using Vision Transformers (ViTs) that takes in the entire 3D dark
matter density and halo field as inputs, along with the three EoR parameters to predict the hydrogen neutral
fraction field. The multi-head self-attention mechanism of the transformer makes it easier to capture the
long-range dependencies, making it a perfect candidate for this task. The trained and validated model can

quickly and accurately produce the neutral fraction fields for a given set of EoR parameters.
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CHAPTER 1

INTRODUCTION

1.1 Epoch of Reionization

Years after the Big Bang
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Figure 1.1: A timeline showing the evolution of the Universe. (Figure Credits: NAOJ)

Understanding the cosmic history using precise observations is the main aim of the modern
cosmology. In the quest to understand modern cosmology, we expect there can be different
periods of interest. One of them is the cosmic dark ages (30 < z < 200), which refers to
the period when there were no luminous sources. The only signal observable from this era
corresponds to the 21-cm line transition of the neutral hydrogen atom. After the first luminous
sources were formed they emitted UV radiations that ionized the intergalactic medium (IGM)
causing a significant change in the 21-cm signal. This period is known as the Epoch of
Reionization (EoR). This epoch marks a major change in the history of the Universe, since the
universe went from neutral to ionized [1].

The first stars that formed were made up of pristine gases such as hydrogen and helium.
They emitted highly energetic photons into the IGM. The photons having energy equal to the
ionization energy of hydrogen and helium got absorbed in the IGM. The photons with higher
energies got redshifted to lower energies as the Universe expanded, and ionized the hydrogen
which was further away [2]. The first stars produced elements with high metallicity in their core

through stellar nucleosynthesis and after they ended with supernova, these heavy elements got



scattered in the IGM [3]. The medium with higher metallicity supported more efficient cooling
through atomic and molecular transitions. This led to an increased star formation rate hence
rapid reionization [4, 5]. The radiation emitted by these stars increased the temperature of the
IGM, which prevented the hydrogen from recombining, but this thermal feedback prevented
small-scale structure formation because more gas was needed for efficient cooling [2, 5]. Over
the billion years, the ionized regions kept on growing till the Universe was completely ionized.
The only places where you could find the neutral hydrogen post-EoR were the high-density
regions such as galaxies, Interstellar Medium (ISM), Damped Lyman-a Absorbers (DLAs) [2,
6]. The observations suggest that the process of reionization started before z ~ 7.5-8 and ended
before z ~ 6 [7, 8, 9].

1.2 Various Probes of EoR

The EoR marks the major phase transition of the Universe and provides crucial information
about the first stars and galaxies in the universe. The observational evidences that help to study

the EoR is listed in this section.

1.2.1 CMB Anisotropies

When the matter decoupled from the radiation, the radiation was scattered in all directions,
which we see today as Cosmic Microwave Background Radiation (CMBR). These photons
didn’t have enough energy to interact with the atoms, but they got scattered from the electrons
produced during reionization process. The measured quantity from the CMBR observations is
the optical depth due to Thompson scattering off free electrons. Since the number density of
electrons (n,) increased due to reionization, the optical depth increased [10]. This scattering
effects the angular power spectrum of the CMBR (C;) where the spherical harmonic index /
indicates roughly the angular size probed, 8 ~ 1//. For no reionization case, n, = 0, therefore
7 = 0 and if reionization is introduced the value of 7 is non-zero. The temperature power
spectrum shows that there is damping at low angular scales and also the polarization power
spectrum shows damping at high angular scales. One cannot constrain 7 from the temperature
power spectrum since it is degenerated with amplitude of the dark matter power spectrum o3g.
However, the polarization power spectrum only depends on 7, since the reionization produces
a polarization signal at large angular scales, which cannot be compensated by varying any
other values. The current constraints provided by this on reionization history imply that the

reionization started before redshift z ~ 7.5 — 8 [7].



1.2.2 Lyman-a Emitters (LAEs)

The Lyman-a transition in hydrogen refers to the electron transition from the ground state to
the first excited state, which requires a photon with wavelength 1216 A. The Lyman-a emitting
galaxies offer an independent probe of reionization, as they get scattered by the neutral hydrogen
[11, 12]. If the IGM contains a significant amount of neutral hydrogen fraction, the Lyman-a
line flux emitted by the source situated in it, gets strongly attenuated [13]. However, during the
reionization process, the presence of ionized regions around the galaxies enables Ly photons to
escape. Thus, directly correlating the LAE visibility to the state of the local IGM. Observations
from JADES (JWST Advanced Deep Extragalactic Survey [14]) show declining fraction of Lya-
emitting galaxies at z>5.5, with constraints on neutral fraction of hydrogen as xp; = O.64fgé31
at z = 7 [15].

1.2.3 Lyman- a Forest

Distant - | .
galaxy .

-Background -
f‘ quasar ' a

To Earth, ; : e L

Intervening &
R

' Hydrogen emission
. / from quasar

Hydrogen |

absorption

4000 5000 6000
Observed Wavelength [Angstroems]

Figure 1.2: Quasar spectra with Lyman-a Forest. (Figure Credits: Bill Keel’s Website®)

Quasars ,also known as quasi-stellar objects, are point-like bright sources emitting high-energy
photons and hence visible from very high redshifts. All quasars show the prominent emission
line as shown by a peak in Figure 1.2. which occurs at the rest frame of the Lyman-« frequency.
All the absorption lines left to the prominent peak correspond to the Lyman-« transition of the
neutral hydrogen. If you see the top panel of the Figure 1.2, we have radiations coming from the
background quasar towards us that pass through the intervening gas containing hydrogen, this
gas absorbs the photons which has energy equal to the energy required for Lyman-« transition,

the high energy photons get redshifted as universe expands and their energy decreases to the

*https://www.futura-sciences.com/sciences/definitions/physique-foret-lyman-alpha-9973/
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required energy and it excites the hydrogen atom which are further towards us giving the forest
like features in the spectra [9].

The strength of the absorption spectra depends upon the amount of hydrogen present in the
intervening medium, therefore in the absence of neutral hydrogen, the spectra would be flat
without any absorption. While considering all the above reasons the quasar spectra carry a
great amount of information about the density structure of the Universe in a given direction.
Given million quasars along all the lines of sight, in principle, we should be able to map the

distribution of neutral hydrogen in the Universe.

1.2.4 21-cm Line

Hydrogen is the most abundant element in the Universe making up to nearly 75% of the gas
mass. It simple structure exhibits many wonderful phenomena, one of which is the 21-cm
line transition [16]. The 21-cm line of neutral hydrogen arises from the hyperfine splitting of
the ground state due to the magnetic moment interaction of the proton and electron The lower
energy state is called the singlet state, denoted using subscript 0 and the higher energy state is
called the triplet state, denoted using subscript 1. If n; (where i=0,1) represents the number
density of hydrogen atoms in these two hyperfine states, we can write their ratio as

ny 1 T.

n_o = %exp(—T—S)
where g1/go = 3 denoting the ratio of the statistical degeneracy factors of the two levels,
T, = hc/kAdri1—cm = 0.0682K and Ty is the spin temperature which is used for quantifying the
relative population of the two splitted energy states [1]. The energy difference between these two
splitted ground states i.e. the singlet and triplet state corresponds to the frequency 1420.4 MHz
corresponding to the wavelength of 21.11 cm. The above given were the rest frame frequency

and wavelength, the observed frequency can be given as,

1420.4
Yobserved = m z

and the observed wavelength can be given as,
Aobserved = 2111(1 + Z) cm

By observing the 21-cm line during the first billion years after Big Bang which now falls in the
frequency range 30-200 MHz, we can get information about the first stars, galaxies, and quasars
from the ionizing bubbles around them, also information the properties of the intergalactic

medium.



1.3 21-cm Signal

1.3.1 21-cm Brightness Temperature

The intensity of the 21-cm line as seen from Earth is measured by the 21-cm brightness
temperature. The reason is, that we are dealing with very low frequencies hence we are in the
Rayleigh-Jeans regime. This enables us to quantify the specific intensity /, in terms of brightness
temperature 7} using the Rayleign-Jeans approximation. We have CMBR coming through the
neutral hydrogen, having optical depth 7 << 1 implying that the medium optically thin. Let
T, be the temperature associated with it, then using the radiative transfer equations, treating
CMBR as background and spin temperature 75 associated with neutral hydrogen as source, and
using Rayleigh-Jeans approximation, one can write the excess brightness temperature relative
to CMBR which redshifted to the observer, we have,

(Ts - Ty)T

6Ty (A, 2) = T4z

(1.1)

Taking the effects of underlying hydrogen density distribution and redshift space distortion into
account for calculation of the optical depth, the above expression reduces to Equation 1.2 given
in [1].

Quh2\ [ 0.15\"? (1+2\"? (T, -T,
STy (A, 2) = 27 gt (146
b(A,2) =27 x (14 ”)(0.023)(th2) 10 T,
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where, xy; denotes the neutral hydrogen fraction, and 6; denotes baryonic overdensity both these
parameters vary with redshift and line of sight. Then we have €2} and €2, giving the proportion
of baryons and matter density of the Universe. The & denotes the Hubble parameter. The term
at the end denotes the effect of peculiar velocities along the line of sight and cosmological
expansion causing the redshift space distortion.

However, our simulation deals with recent redshifts ranging from 6 to 13, where the 7, <<
Ts, enabling us to neglect the effects of CMBR temperature and we don’t take redshift space

distortion (RSD) into account to keep things a bit simple, hence the expression reduces to 1.3,

) Quh*\ [ 015\ (1+2\'?
§Tb(n,z):27xH1(1+5b)(0823)(Q hz) ( n ) mK (1.3)
. m

1.3.2 Modeling the 21-cm Signal

In this work, we are modeling the 21-cm signal using a semi-numerical simulation called
ReionYuga ' [17, 18, 19]. It is based on the excursion set formalism [20] and involves post-

processing the N-body outputs [21, 19] to get the neutral fraction field. The simulation takes

Thttps://github.com/rajeshmondal 18/Reion Yuga
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the dark matter density and halo field along with three EoR parameters, namely minimum halo
mass (M, nin), number of ionizing photons produced per baryon (N;,,) and mean free path of
the ionizing photons (R,, r,), calculates the hydrogen and photon density field from it then uses

excursion set formalism to check whether a grid cell is ionized or not.

1.4 Aim of the Thesis

The on goning radio experiments, such as LOFAR, HERA, MWA, uGMRT and upcoming
experiments such as SKA will particularly focus on the detection of the cosmological 21-cm
signal from the era of the CD-EoR. We need forward models of this signal to interpret the
observations made by these telescopes. The reionization simulations that are generally used
for this task are computationally expensive when it comes to exploring the large, complex EoR
parameter space while doing Bayesian inference.

A go-to approach is to emulate the Fourier statistic (power spectrum, bispectrum, etc.) [22,
23, 24] derived from the fields obtained via simulations and compare it with the Fourier statistic
of the observed field. Since the 21-cm signal is highly non-Gaussian, the power spectrum alone
cannot provide all the information, you will need an N-point correlation function to capture
this non-Gaussianity. Hence, instead of relying on the Fourier statistics and compressing the
information, we can directly use the fields produced by the simulation itself for comparing
them with observed fields and hence preserving all the information; this is known as field-
level inference. Since these simulations are computationally expensive, we need to develop an
emulator which will be trained on a few thousand input and output pairs corresponding to a
given set of reinoization parameters and later can be used as a forward model for field-level
inference.

There are two prominent models available in the literature that take gas density and source
field as inputs and give neutral fraction fields or their proxies, such as time of reionization as
output. These approaches align with our approach of using dark matter and halo density fields
as inputs to predict the neutral fraction fields. These models are CRADLE [25] and PINION
[26]. The main drawbacks of these models are, they have fixed the astrophysical parameters and
varied the input fields by changing the redshift (PINION) or by changing the initial random seed
(CRADLE). However, for doing the field-level inference, we need variation in the astrophysical
parameters. Moreover, these models didn’t take all scales into account due to their biases. This
led to the underprediction of large (PINION) and small-scale (CRADLE) features depending
upon the model architecture.

To address these problems, we are developing an emulator using Vision Transformers, which
will give us neutral fraction fields quickly and accurately. The model is designed to take the
same two 3D inputs of dark density and halo field, and 3 EoR parameters, same as the simulation

discussed in the previous section, and it predicts the neutral fraction field corresponding to those

6



parameters but at a much faster rate, making it suitable for exploration of parameter space. As
discussed earlier, we are using Equation 1.3 for 21-cm signal, hence we only need the baryonic
overdensity and neutral hydrogen fraction at a given redshift, because the rest of the quantities
are constants. With the assumption that the baryonic overdensity follows the underlying dark
matter density, here we can use the dark matter density itself. The only other variable, i.e.,
the neutral fraction field, will be predicted by the emulator, enabling us to calculate the 21-cm
brightness temperature using Equation 1.3.

This emulator will help us bypass the simulations while doing the field-level inference [27]
and will enable us to explore the reionization parameter space more efficiently. Furthermore,
this emulator has potential applications in forward modeling for upcoming radio interferometers,
such as the Square Kilometer Array (SKA) [28]. Since SKA is going to produce tomographic

maps, we can use this emulator for field-level inference.



CHAPTER 2
SIMULATING 21-cMm MAPs oF EoR

The training dataset for our emulator was generated through a multi-step simulation process. We
first ran an N-body simulation [21] to model the underlying dark matter distribution. We then
applied a Friends-of-Friends (FoF) halo-finding algorithm [19] to identify collapsed structures
called halos. Finally, we used the semi-numerical simulation, ReionYuga* [19, 17, 18] which
follows the excursion set formalism [20]. The code simulation produces xy; maps using
different combinations of the three EoR parameters, which serve as the primary data for training
the emulator. A detailed discussion of each of these simulations and the three EoR parameters

is given in the following sections:

2.1 N-Body Dark Matter Simulation

We use Particle-Mesh (PM) N-body simulation to generate the dark matter density fields at a
given redshift. PM methods approximate gravitational interactions more efficiently by repre-
senting gravitational forces on a fixed grid or mesh. In this method, the grids are populated with
dark matter particles, and the gravitational potential is solved for this density grid in Fourier
space. The mass resolution is based on the number of particles and simulation volume. The
power spectrum obtained from the transfer function given in [29] is normalized with og and
used for generating the initial density perturbations. Then the memory is allocated to save the
particle positions and velocities along with p(r) and Ak representing initial density and Fourier
transform of initial density fluctuations respectively. The Ak is generated on the grid, and initial
positions and velocities are determined using the Zeldovich approximation. The velocities and
positions were then updated using the leapfrog integration method causing the density to evolve.
In the end, we get the snapshot of the distribution of dark matter particles and their velocities at
the given redshift as shown in the Figure 2.1 (a).

We ran the simulation for 30723 grids at redshift z = 7 with grid resolution of 0.07 cMpc
giving us a simulation volume of (215.04 cMpc)3. We filled the set of grids with 1536° dark

matter particles giving us particle-mass resolution of ~ 108 M. The cosmological parameters

*https://github.com/rajeshmondal 18/Reion Yuga
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used for this simulation are as €, = 0.3183, Qx = 0.6817, Q; = 0.049021423, h = 0.6704,
oy = 0.8347, and ny = 0.9619 consistent with Plank+WP [30]. Here onwards we are dropping
the cMpc notation for Mpc.

_(a) DM Field b) Halo Field

In(1+6)

Tn(1+5halo)
y [Mpc]

~

100 100 100

x [Mpc] x [Mpc] x [Mpc]

Figure 2.1: Plots of different fields obtained from the simulations: dark matter density, halo field, and neutral
hydrogen fraction xy;. The grid resolution is reduced from 30723 to 3843, making the grid separation 0.56 Mpc,
while generating the maps from the simulation outputs.

2.2 Halo Identification using Friends-of-Friends (FoF)

A dark matter halo is a region of gravitationally bound dark matter assumed to host galaxies and
galaxy clusters. The Friends-of-Friends algorithm is used to identify the collapsed halos using
the output of the N-body simulation. This is done by using a parameter called linking length
(D). For our simulation the value of linking length is 0.2 times the mean inter-particle separation
in the simulation. Any two particles having separation less than / are linked together to form a
group. Continuing this, a single particle is directly linked to all its neighboring particles within
the distance /, and indirectly linked to other particles which are linked to its neighbors, hence it
is called the friends-of-friends algorithm. If a particle doesn’t have any other particles within
the radius / it is considered as part of its own group. All such small groups that lie below the
threshold for forming the halo are discarded. In our simulation, the threshold is 10 particles in
a group for considering it as a halo. Hence the resulting halo-mass resolution is ~ 10° M. The
position of the center-of-mass of these halos and their velocities are saved as a halo catalog.
The Figure 2.1 (b) shows the halo field for redshift 7.

2.3 Semi-numerical Simulation of 21-cm Signal: ReionYuga

We use a semi-numerical simulation called ReionYuga for generating the neutral hydrogen
maps. It is based on the excursion set formalism [20]. Since we are using the dark matter only
N-body simulation, the density of baryons is not modeled hence the key assumption that goes

into this semi-numerical simulation is that the baryonic overdensity perfectly follows the dark



matter overdensity. Additionally, we assume that the ionizing radiation sources are localized

within the halos.

2.3.1 Reionization Parameter in Simulation

The following three EoR parameters are varied in the simulation leading to the different reinoiza-

tion histories which will be the training data for our emulator.

2.3.1.1 Minimum Halo Mass (M}, ,,in)

The minimum halo mass is the mass a halo should have for the gas to cool sufficiently and
support star formation. Halos with their masses below this value do not support star formation
and hence do not contribute the ionizing radiations. Setting this value lower results in more
halos contributing to the reionzation process leading to faster reionization. It is varied within
the range 10 x 108 Mg, to 800 x 108 Mg, and used in the units of 10% while feeding it to the

network.

2.3.1.2 Ionizing Photon Emitting Efficiency (N;,,)

The number of ionizing photons (N,) emitted by a source is proportional to the mass of the

halo (M},) hosting that source. Therefore,

Qp M,
Ny(Mh 2 Mh,min) = Nion—— (2.1)

Q,m,
where N;,, is a dimensionless constant representing the ionizing photon emitting efficiency. It
combines several key factors influencing reionization: the number of ionizing photons produced
per baryon in stars, the fraction of UV photons that escape into the IGM, and the star formation

efficiency. The larger value of this parameter gives larger ionized regions. It is varied within the
range 10 to 200.

2.3.1.3 Maximal Distance Traveled by the Ionizing Photons (R, 1)

The mean free path of ionizing photons is the maximum distance traveled by the photons before
they get absorbed by the dense pockets of hydrogen gas. It limits the size of the ionizing bubble.
However, a larger mean free path doesn’t ensure larger ionized regions if the N;,, value is
smaller. This parameter is varied within the range 1.12 Mpc to 40.32 Mpc. In the simulation, it
is used as the maximum smoothing radius for the hydrogen density field, which is derived from
the dark matter density field, and for the ionizing photon density field, which is obtained from
the halo distribution using Equation 2.1.
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We obtained 7,203 data points by varying combinations of these three parameters, 80% of

which were used for training and 20% were used for validation.

2.3.2 Excursion Set Formalism

We implement the excursion set formalism by smoothing both the hydrogen density field and
the ionizing photon density field using a spherical top-hat window function with radius R. The
minimum value of R, denoted Ry,i,, corresponds to the grid resolution, while the maximum
value, Rpax, 1S set by the mean free path of ionizing photons, which is varied in the simulation
(i.e., Rmax = Rufp). For each grid cell, we begin with the smallest smoothing scale Ryj,. At
each step, we compute the average number density of ionizing photons, (n,), and compare it
to the average hydrogen number density, (ng), within a sphere of radius R centered on the
grid cell. If the condition (n,) > (ng) is satisfied, the cell is marked as ionized. If not, the
radius is incremented by a small step AR, and the check is repeated. This process continues
until the maximum radius Ry, is reached. Suppose the ionization criterion is still not met at
any smoothing scale. In that case, the cell is considered partially ionized, and its ionization
fraction is set as xun = n, /ng. Repeating this procedure for all cells in the grid yields the final
ionization map, which can be converted into a neutral hydrogen fraction field, as illustrated in
Figure 2.1(c).

The ReionYuga code takes around 5-8 minutes for a single realization with 384> resolution,
hence rerunning it for a large number of times for different combinations of EoR parameters
while doing the Bayesian inference would be a computationally expensive process. Hence, we

aim to develop a neural network based emulator for quick generation of these fields.
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CHAPTER 3

EmMuLATION EFFORTS OF 21-cM MAPS WITH

NEURAL NETWORKS

There are two prominent model architectures in the literature that make use of gas density and
source field as inputs, which aligns with our approach of using dark matter density and halo
field as inputs. These two models are given as PINION (Physics Informed Neural networks for
relONization) by D.Korber et. al (2023) [26] and as CRADLE (Cosmic Reionization and Deep
LEarning) by J. Chardin et. al. (2019) [25]. Both of these approaches use convolutional layers

at their core for emulation.

3.1 PINION

The PINION model architecture uses the traditional convolutional neural network [31], which is
made up of convolutional layers for extracting feature maps, followed by fully connected layers
that takes the flattened features from the last convolution layers, as shown in the Figure 3.2.
Here they have used gas density (Figure 3.1a) and source fields (Figure 3.1b) corresponding to
different redshifts and mapped them to the ionization fraction (Figure 3.1d) fields obtained from
C2-Ray simulation [32]. The input fields exhibit minimal variation with redshift (Figure 3.1a,
3.1b). In contrast, the fields representing the evolution of the photoionization rate (Figure 3.1c)
and the ionized fraction (Figure 3.1d) show significant changes as redshift changes. To take this
change into account, the source field is smoothed with the radius equal to the mean free path of

ionizing photons calculated by using an analytical formula [8] given by equation (3.1)

c

Ayni(2) = e

-2.55
! ”) 3.1)

d—=
><0(4

Then this smoothed source field is fed along with the gas density and source field to the model
as shown in the Figure 3.2. Instead of using the full gas density and source field data cubes as
input, the approach involves extracting smaller subcubes of size 7°. Each subcube corresponds

to a physical volume of (16.67 Mpc)>. The feature maps from these subcubes are flattened, and
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the redshift is provided as an additional input. The model then predicts the ionization fraction at
the center of each corresponding subcube. Moreover, this process is repeated to reconstruct the
entire 3D ionization fraction cube. The pros of this architecture are its flexibility and scalability;
no matter how big your simulation box is you can predict the corresponding ionization fraction
field using this model. It uses physics informed approach in which the output of the model is
compared to the true data to calculate the data loss £ ;,;, and the physics constraint to obtain
the ODE loss Lopg during the training process to adjust the model weights. The model
is trained under three different scenarios to evaluate whether incorporating physics-informed
inputs improves its performance. Additionally, these scenarios help assess the model’s ability
to make accurate predictions when trained on a limited amount of data. Based on this, the
three scenarios are following: (i) NP (No Physics): only data loss is considered for training
the model, (ii) PFD (Physics and Full Data): the training uses L;o1ai = Ldara + Lope With 46
redshift snapshots, and (iii) LD (Low Data): this also uses total loss but only uses 5 redshift
snapshots for training.

By virtue of its model architecture, it is able to predict the small scale variations over all
redshifts for all scenarios with great accuracy, as shown in the Figure 3.3. However, since
the entire field is not fed to the architecture at the same time, it doesn’t learn any large-scale
dependencies and hence underpredicts the large-scale variations, particularly at lower redshifts
as shown in the Figure 3.3 . Moreover, the approximations done to obtain equation (3.1) comes
from the poorly constrained observation of quasar spectra for 2 < z < 4.5 [8] hence using
this formula for smoothing fields obtained from redshift 6 < z < 12 may introduce unwanted
features in the output. This model uses fixed astrophysical parameters, hence it cannot be used

for field-level inference.

3.2 CRADLE

The CRADLE follows autoencoder-style convolutional neural network architecture for mapping
different realizations of gas density and source fields to the field that gives the time of reionization
(treion) (Figure 3.4). These 3D input and output fields are obtained using EMMA [33]. The
architecture consists of 2 major parts: the encoder and the decoder. In the encoder arm the input
fields are progressively downsampled while extracting the feature maps using convolutional
and max pooling layers and then these features are combined and upsampled using transpose
convolution in the decoder arm (Figure 3.5).

To reduce the computational cost, instead of using the entire 3D fields as inputs and predicting
the corresponding output, they sliced these fields into 2D maps. They fed them independently
to the model to predict the corresponding 2D output slices of the field. Then these slices
are rejoined to form the 3D output field showing the time of reionization. However, in this

approach, the influence of sources across different slices wouldn’t be considered, and hence
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(¢) Evolution of the photoionization rate: light orange are regions which receive less ionizing photons and dark orange are the ionizing
sources.

Figure 3.1: The plots compare the evolution of different fields with redshift. (Figure Credits: D. Korber et al.

(d) Evolution of the ionized fraction: red are ionized regions and dark blue are neutral regions.

[26])
Inputs
Gas density PINION
Source field
o %, b,
&d‘//‘) ‘A
4 >

Smoothed
source field

Neural Network

—
Add time

Output

> )

Training step :

ODE
constraint
Data loss ODE loss
Z data Z ODE

Figure 3.2: Architecture of the PINION Model. (Figure Credits: D. Korber et al. [26])
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Figure 3.3: Dimensionless power spectrum of xHI. The solid lines correspond to C2-Ray and the other lines
correspond to different methods used for emulation. (Figure Credits: D. Korber et al. [26])

to tackle this, they smoothed the source field and gas density with a Gaussian kernel of size
o = 30, corresponding to the length scale of 3.75 cMpc/h and fed these smoothed field to the
model instead of the original ones. Because of the smoothing, the small-scale features are lost
in the input and hence underpredicted in the output, as shown in the power spectrum (Figure
3.6). The underprediction arises due to the smoothing of inputs, which prevents the model from
accurately identifying the locations where reionization begins. Moreover, this model also uses

fixed astrophysical parameters, making it unsuitable for the field-level inference.
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Figure 3.4: Examples of fields used for training the neural network. (Figure Credits: J. Chardin et al. [25])
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Figure 3.6: Power spectrum of the #,;,,, fields. (Figure Credits: J. Chardin et al. [25])

To address the drawbacks of the above-mentioned approaches, we need an alternative model
architecture that takes the entire 3D cubes of the dark matter density and halo field as inputs
and gives the 21-cm brightness temperature field as output. Consequently, this model should
also consider both the large and small-scale dependencies.Unlike the previously mentioned
approaches that map different input realizations to their corresponding outputs, our method uses
the same input fields across multiple outputs. As a result, the outputs are primarily conditioned
on the three EoR parameters. Therefore, the model architecture must include encoding layers
capable of capturing the sensitivity to variations in these parameters. Since this model will
have variation in astrophysical parameters, it is a perfect candidate for field-level inference of

the reionization model parameters, given the observed 21-cm brightness temperature field.
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CHAPTER 4

EmMuLATION OF EOR 21-cM MAPS USING

CosmoVT1T, CosmoUrT AND CosMoUNET

In the earlier chapter, we discussed the previous efforts of emulating 21-cm maps and their
drawbacks. The aim of this thesis is to propose an improved emulation formalism for 21-cm

maps.

4.1 Fundamentals of Vision Transformers

In this work, we will mainly use Vision Transformers (ViTs). The self-attention mechanism of
the ViTs help it to capture long-range dependencies very accurately, which is one of the primary
requirements of our emulator. There are several ways to build such a model using building
blocks of deep learning algorithms. In this section, we discuss those fundamentals while using

a toy field as an example.

4.1.1 Patchifying

The transformers were originally designed for natural language processing (NLP) tasks [34],
where the words are vectorized and used for further processing, where the similarities and
dependence between each word are calculated as an attention score. When this newly introduced
architecture was adapted for computer vision tasks, the pixel values of an image were to be used
as vectors for calculating their dependence on each other, but for n x n image, we get n” vectors
which would be difficult to process if image size is larger, hence instead of taking individual
pixels for calculation we break down the image into smaller patches and flatten them into 1D
arrays (Figure 4.1) and treat these arrays as vectors for further calculations. [35]. In our case,

we have a 3D input field, which is broken down into small 3D subcubes and flattened.
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Figure 4.1: Patchifying.

4.1.2 Tokenization

The 1D arrays we get after patchifying the input field are projected into n-dimensional vector
space, using the linear projection using feed-forward layers as shown in Figure 4.2. Here n
corresponds to the size of each 1D array. We will see why this process is required when we will

discuss the calculation of the attention score.

Input layer Hidden layer Output layer

Figure 4.2: Feed-forward layers used for tokenization. (Figure Credits: [36])

4.1.3 Positional Embedding

The transformers are permutation equivariant [37], meaning they don’t take the order of tokens
explicitly into account while doing the calculations, hence even if you switched the order, the
output, i.e., the attention score, remains the same. However, for NLP tasks, the order tokens
represent the order of words and hence encapsulate the meaning of the sentence, therefore, it is
necessary to take the position of words into account while calculating the attention score. When
it comes to computer vision tasks, positional embedding is needed to consider the position of
the pixel in a particular patch and the position of the patch in the field. So, this information of
the position is added using positional embedding. The positional embedding can be constant,
hence given directly while feeding it to the transformer block, or it could be learnable, hence
learned during the training process. An example of constant positional embedding is sinusoidal

positional embedding [34].

PE(pos, 2i) = sin( pos 2i)
10000%
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PE(pos,2i+1) =cos (Lsh)
10000

where,

- pos: The position in the sequence (from O to [ — 1).

- [: The sequence length i.e. number of tokens

- d: The total embedding dimension i.e. total number of elements in an array.

- i: The dimension index (from O to d — 1).
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Figure 4.3: Sinusoidal Positional Embedding.

4.1.4 Attention Score

Attention score tells the network how much attention should be given to the input token based on
its dependence on the other tokens. This dependence is calculated using a dot product between
different tokens which are projected in the n-dimensional vector space. If the vectors align with
each other, their normalized dot product would be closer to 1. If they are opposite in this vector
space their normalized dot product will be closer to -1, and if they are perpendicular to each
other, showing that they are not related the dot product is 0. Figure 4.4 shows a simplified
example of how the tokens would look if their embedding dimension were 3.

To calculate the attention score, 3 linear projections of each token are done, called key (K),
value (V), and query (Q). In NLP tasks, query represents a vector for which we are seeking
information from other vectors, keys are vectors representing potential matches, and value
represents information about each key. In simple language, we want to check given a query
vector, which key vector is similar to it i.e., aligns with it in the higher dimensional vector space.
This alignment is quantified using the dot product between these two vectors, as mentioned
earlier. We normalized the dot product using the square root of the embedding dimension (dy),
then we apply the softmax function [38], and multiply it with the value vector which is obtained
from the same token as the query vector used for calculation, and this gives the attention score
between two vectors for the vector represent using value. Equation 4.1 gives the expression for

the attention score.
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Figure 4.4: A simplified example of attention score Figure 4.5: Visualization of the dot product of
calculation using 3D vectors. queries and keys.

4.1.5 Convolution Layers

A convolution layer is used for downsampling the input fields. In the convolution process,
we have a 3D input field n’, if a filter of size f> traverses over it while doing the convolution
operation where the field is averaged out while treating the values of given by filters as weights.
The stride decides how much the filter will move further. The padding refers to adding extra
cells around the field, this is done to overcome the problem of values in the center being used
more times while performing the convolution operation. We can assign as many number of
filters as we want, and each filter produces a unique feature map. The formula given in Equation
4.2 gives the size of the output given the input size, filter size, padding, and stride. The values

of the filter are learned from the data itself during the training.

Input Size — Filter Size + 2 x Padding N

1 4.2
Stride (4.2)

Output Size =

Vanishing gradients occur when gradients shrink exponentially as they are backpropagated
through many layers, especially in very deep networks. This leads to extremely small updates

for earlier layers, causing the training to stagnate.
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4.1.6 Transpose Convolution Layers

As the name suggests, transpose convolution layers perform the reverse operation of convolution
layers. Instead of summarizing a field of input values into a single output value (downsampling),
they redistribute a single input value over a larger field to achieve upsampling. For this reason,
they are often referred to as deconvolution. These layers take the feature maps produced by
convolution layers and upsample them to create new, larger feature maps. The process involves
"spreading out" the input values spatially and filling in the gaps, which can be controlled by
parameters like kernel size, stride, and padding, which are similar to those of the convolutional
layers. Additionally, we have output padding used for making the dimension of the output
as desired. The Equation 4.3 gives the size of the output given the parameter values of the

transpose convolution.

Output Size = | (Input Size — 1) - Stride — 2 - Input Padding + Filter Size + Output Padding |
(4.3)

4.1.7 Residual Connections

First introduced in [39], residual connections are shortcuts used in neural network architecture
where the input skip one or more layers and is directly added to the output. When we have models
consisting of multiple layers, also known as deep networks, the gradients decay exponentially
as they are backpropagated through these many layers. This leads to extremely small updates in
the weights during the training process, hence it is slowed; this is called the gradient vanishing
problem. The residual connections provide a direct path for the gradient while skipping layers,

which leads to significant updates in the weights.

4.1.8 Performance Metrics

There are two key metrics used for quantifying the performance of the models one is mean
square error (MSE), other is coefficient of determination (R?).

4.1.8.1 Mean Square Error (MSE)

It is the mean of the squared difference between true output y; and predicted output y; (See

Equation 4.4).

1< .
MSE = — " (vi = $1) (4.4)
n i=1

If we have an image of size m X m, then the i ranges from 1 to n = m X m. We use this MSE
for loss calculation which propagates through the neural network for optimizing the weights.

Its differentiability makes it an ideal candidate for gradient calculations, but it is sensitive to
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outliers and scale-dependent, requiring the outputs that vary over long ranges to be normalized

during the training process.

4.1.8.2 Coefficient of Determination (R”> Score)

It quantifies how well the model captures the variability in the data. R? closer to 1 indicates the
model explains the variability very well. If it’s closer to zero, then the model predicts no better
than just predicting the mean of true outputs. If it is negative, then model performance is worse.
If we divide and multiply the negative part of the Equation 4.5 by n, the numerator represents
the mean of the squared residuals, aka mean square error, and the denominator represents the

variance of the true output.

(i = 90)?

R?=1- ZE=l -
i (vi = 3)?

4.5)

where,
* y;: True output values
* 9;: Predicted output values

* y: Mean of the true values

4.1.9 Optimizers

The size of the training data we are using is larger than the memory of the GPU; hence, feeding
the entire data at the same time is not possible. Therefore, we feed the data to the network in
batches and calculate and propagate gradients for each batch, this is called mini-batch gradient
descent. The problem with this approach is the gradient is calculated considering a small
portion of the entire data hence the local behavior of the gradient is not incorporated in such
a scenario, this leads to spurious oscillations in the loss function as we move from one batch
to another, indicating that the weights are converged to the global minima following a zig-zag
path in optimization surface, hence it takes a large number of epochs for the model to reach
the global minima to mitigate this we use optimizers [40]. Here we are using Adam optimizer,
which has combined properties of Momentum (Stochastic Gradient Descent with Momentum)

and RMSprop (Root Mean Squared Propagation) optimizer [41, 42].

4.1.9.1 Gradient-Descent

Given a loss function L(w, b), where w are the weights and b are the biases, with 1 being the
learning rate, the rules for updating the weights and biases through simple gradient descent are
given as follows,

W «— w —nVyL(w,b) (4.6)
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b «— b -nVyL(w,b) 4.7)

4.1.9.2 Momentum

Using the momentum optimizer, instead of adjusting the weights based on the gradient of the
loss function like we do for the simple gradient descent, we take the moving average of the

gradients (Equations 4.8, 4.10) and use that for updating the weights (Equations 4.9, 4.11).

View,w = ﬁvprev,w + (1 - ﬁ)va(w, b) (4.8)
W — W — 77Vnew,w (49)
Similarly for biases,
View,b = ﬁVprev,b + (1 —ﬁ)VbL(W, b) (4.10)
b b - Vnews @.11)

The hyper-parameter S controls the decay rate of the moving average.

4.1.9.3 RMSprop

Using the RMSprop optimizer, we scale the gradients by a running average of their squared
values. This running average is calculated element-wise for each parameter (Equation 4.12,
4.14) and helps normalize the magnitude of the gradients (Equation 4.13, 4.15) , mitigating the

effects of exploding or vanishing gradients.

Sneww = BSprevaw + (1 = B) (VyL(W, b)) (4.12)
W w— \/#VWL(W, b) (4.13)
Similarly for biases,
Snew.b = BSprevio + (1= B) (VoL (W, b))? (4.14)
beb- \/ﬁm(w, b) (4.15)

The hyperparameter S controls the decay rate of the moving average, and € is a small

constant added to avoid division by zero.
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4194 Adam

As said earlier the Adam has combined properties of both Momentum and RMSprop [41]. The

expressions for this optimizer for the updation of weights and biases are given as follows

W W — ——Snezw T evnew,w (416)
n
b«b- Voew.b 4.17)

VSnew.p + €
We have explored multiple model architectures using the combination of the above components,
out of which the three prominent model architectures are discussed in the next section. We
analyzed model performance through MSE, R? score, and visual comparison of fields, and

made changes in the next model based on it.

4.2 CosmoViT

We adapted this model architecture from [43]. It was originally designed for image segmentation
tasks. Since the neutral fraction fields we are trying to emulate have values consisting of Os and
Is, except for the boundaries of the ionizing bubbles, this model architecture seemed suitable for
the emulation task. While the original implementation used TensorFlow and a single 2D image
as input, we re-implemented the architecture in PyTorch and extended it to accommodate two
3D inputs, while integrating three EoR parameters along the way. We are calling it CosmoViT,

short for Cosmological Vision Transformers.

4.2.1 Model Architecture of CosmoViT

The model architecture for the CosmoViT can be described using the flowchart given in 4.6. We
start by breaking down the 3D cube into subcubes called patches, then flattening them into 1D
arrays while doing a linear projection called tokenization. Since transformers are permutation
equivariant we have to feed the information about the positions of the pixels using positional
embedding. We integrate the 3 EoR parameters into these tokens. Then these tokens are
processed within the transformer block where the attention score between different tokens is
calculated and added to the original tokens. We reshape these tokens back into the 3 patches and
upsample them while treating them as feature maps produced by the transformer encoder block.
For upsampling, we use transpose convolution and residual connections alternately to map them

to output fields. See table 4.1 for the summary of the CosmoViT (base model) architecture.
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4.2.2 Reduction in the Resolution of Fields

The high dimensionality of the original data presented a significant computational challenge.
It required a memory of over 125GB for initializing the model itself. To manage mem-
ory constraints and computational costs, we reduced the resolution from 384> to 48% making
the grid separation 4.48 cMpc from 0.56 cMpc. We use BlockReduce® method offered by
scikit-image’. The BlockReduce method has block_size as an argument which decides
how many blocks are to be considered along each axis for reduction, in this case, the block size
was 8 along each axis, meaning 512 points were combined to a single point in the new field.
Another argument is func for the reduction function, in our case we used np .mean, which takes

the average of all the elements in the given block.

TransConv e
—_——

ReLU )
© Residual ke
i . |
1 Layer Norm

‘ Residual

Patchfying l _ —

1 !
| |
]

Flattenin l |
£ Positional Embedding [
+ Layer Norm
| | | I| | | EoR Parameters v
—

Figure 4.6: Model Architecture of CosmoViT. (Figure Inspiration: Y. Giindii¢ et al. [43])

Transformer Encoder

4.2.3 Results of CosmoViT

This model was trained for 100 epochs with 48 batch size which took about 13 GPU hours
on NVIDIA RTX-A4000-16GB GPU. Figure 4.8 shows the variation in MSE and R? score
along with the number of epochs for the CosmoViT model. It is evident from the plot that
though the loss converges for training and validation data it is still high and the value of R? is
significantly low even after a large number of epochs. Additionally, the comparison between
true and predicted fields (Figure 4.7) shows that the fields predicted by the CosmoViT model all

look the same, which implies that the model converged to a generic field to give the relatively

*https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.block_reduce
Thttps://scikit-image.org/

25


https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.block_reduce
https://scikit-image.org/

Component No. of Feature Maps Filter Size Activation Function
Patch Generation - Patch Size: 8 -

Positional Embedding Num Patches: 216 Flattened Dim: 512 | -

Patch Encoder 1 512 - Linear

Patch Encoder 2 512 - Linear
Parameter Encoder 512 - -
Transformer Block 1 4 Attention Heads, FF Dim: 256 - RelLU
Transformer Block 2 4 Attention Heads, FF Dim: 256 - RelLU
Transformer Block 3 4 Attention Heads, FF Dim: 256 - RelLU
Transformer Block 4 4 Attention Heads, FF Dim: 256 - RelLU
ConvTranspose Layer 1 256 3x3 Leaky ReLLU
Residual Block 1 256 3x3 ReLLU
ConvTranspose Layer 2 128 3x3 Leaky ReLU
Residual Block 2 128 3x3 ReLU
ConvTranspose Layer 3 64 3x3 Leaky ReLLU
Residual Block 3 64 3x3 ReLU
ConvTranspose Layer 4 32 9x9 Leaky ReLU
Residual Block 4 32 3x3 RelLU
ConvTranspose Layer 5 16 9x9 Leaky ReLU
Residual Block 5 16 3x3 ReLLU

Final Conv Layer 1 3x3 ReLU

Table 4.1: Summary of the CosmoViT (base model) architecture.

smaller MSE loss rather than giving an output that is parameter-specific.

The reason behind such model performance could be that the model was designed for image
translation tasks, i.e., it would take detailed input images and map them to binarised images, and
since the input fields were varying along with the output fields, the model was conditioned over
the input fields themselves. However, in our case, the input fields were kept fixed, and the three
EoR parameters were integrated in the tokens to introduce the variation, but the model, being

only sensitive to input fields, predicted the same output field for all combinations of parameters.

4.3 CosmoUiT

The main flaw of the previous model was that it was producing the same outputs for all
combinations of EoR parameters, leading to a significantly high MSE. This problem persisted
even after doing the hyperparameter tuning, hence we needed a new model architecture that
would produce parameter-specific outputs. In the previous model, we were treating the patches
as feature maps and upsampling them using transpose convolution with residual connections,
but the feature maps are produced after tracing the entire field with a filter, and they are clearly

not just segments of the field, hence, this was considered in the new model architecture. This
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Predictions made by CosmoViT for different combinations of EoR parameters

Parameters: My, min = 550, Nijon =86.32, R, = 24.18; Metrics: MSE=0.0796 ,R?=0.3782
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Figure 4.7: Title: EoR Parameters and Metric Scores . First column: Emulation Output. Second column:
Simulation Output. Third column: Difference.
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Figure 4.8: The plot shows variations of MSE and R? for CosmoViT for training and validation data over epochs

model architecture makes use of the combined architecture of Vision Transformers and UNet,
hence, it is called CosmoUiT, short for Cosmological UNet integrated Transformer. This model
is expected to show the combined ability of the Vision Transformers to capture the long-range
variations and the ability of CNN to capture the small-scale variations, making it perfect for
this task.

4.3.1 Model Architecture of CosmoUiT

The model architecture is described in the flowchart given in Figure 4.9. We start by breaking
the 3D cube into small subcubes, we flatten them into 1D array and do a linear projection to
form tokens the three EoR parameters are then concatenated to these tokens, then they are fed
to the transformer encoder block where the attention score between each token is calculated and
added to the original tokens. The output we get from the transformer is converted back into the
patches and these patches are joined back to form the field. Now this reconstructed field has
information about the variations happening at the other parts of the field and also information
about the three EoR parameters. We repeated the same procedure for the dark matter density and
halo field. These reconstructed fields are then fed to the UNet architecture described in Figure
4.12. The UNet architecture is made up of three parts encoder arm, the decoder arm, and joining
them, we have skip connections. The encoder arm progressively downsamples the inputs using
convolution and pooling layers, producing feature maps. The lowest stage is called bottleneck,
because one cannot extract feature maps below this level. At this level, we concatenate the three
EoR parameters to the feature maps. Now, the decoder performs upsampling using transpose
convolution and combines these features with corresponding features from the encoder using
skip connections, where this combination again goes through the convolution layer to reduce
the number of feature maps. The skip connection helps the network for precise localization
of output features, hence the spatial information is preserved while the input is mapped to the

output. See the model summary given in the table 4.2 for a more detailed description of each
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Figure 4.9: Model Architecture of CosmoUIT.

Flattening

4.3.2 Results of CosmoUiT

We trained this model for 100 epochs for 10 batch size which took about 23 GPU hours on
an NVIDIA RTX-A4000-16GB GPU. Figure 4.11 shows the behavior of the MSE loss and R?
score over the epochs. The validation loss rapidly falls and stays almost constant with slight
fluctuations over the next few epochs; on the other hand, the training loss falls steadily. Figure
4.10 shows the comparison between the true and predicted fields, and it is visible that the outputs
are parameter-specific, unlike those of CosmoViT’s outputs, though the boundaries are a bit

fuzzy.

4.4 CosmoUNet

The UNet architecture has been previously used for the image translation task [25], and it
is good at capturing the large-scale dependencies through the hierarchical feature extraction
process in the encoder arm, while the small-scale dependencies are reintroduced in the decoder
arm through skip connections to form the final output. Therefore, the major criticism of the
CosmoUiT model is whether the transformer layer provides any additional information at all,

or is just the UNet that does all the necessary work.
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Component No. of Feature Maps | Filter Size | Activation Function
Patch Embedding 128 8x8x8 -
Projection Layer 128 - -
Position Embedding 128 - -
Parameter Embedding 128 - -
Fully Connected Layer 128 - -
Transformer Encoder Layers 128 - ReLLU

- Self-Attention 8 Heads - -

- Feedforward 256 Units - RelLU

- Layer Normalization 128 - -
UNet3D Encoder
DoubleConv Layer (encl) 32 Filters 3x3x3 ReLU
DoubleConv Layer (enc2) 64 Filters 3x3x3 RelLU
DoubleConv Layer (enc3) 128 Filters 3x3x3 RelLU
DoubleConv Layer (enc4) 256 Filters 3x3x3 RelLU
MaxPool3D (Pooling Layer) - 2x2x2 -
Bottleneck
DoubleConv (with Parameters) 512 Filters 3x3x3 ReLLU
UNet3D Decoder
ConvTranspose3D (upconv4) 256 Filters 2x2x2 -
DoubleConv (dec4) 256 Filters 3x3x3 RelLU
ConvTranspose3D (upconv3) 128 Filters 2x2x2 -
DoubleConv (dec3) 128 Filters 3x3x3 RelLU
ConvTranspose3D (upconv2) 64 Filters 2x2x2 -
DoubleConv (dec2) 64 Filters 3x3x3 RelLU
ConvTranspose3D (upconvl) 32 Filters 2x2x2 -
DoubleConv (decl) 32 Filters 3x3x3 ReLU
Final Conv Layer 1 Filter 3x3x3 -

Table 4.2: Summary of the CosmoUiT (base model) architecture.

4.4.1 Model Architecture of CosmoUNet

To find significant evidence for the above claim, we removed the transformer encoder block from

the base model architecture of CosmoUiT and used only the UNet part, calling it CosmoUNet

to stay consistent with the naming scheme of models. Now, the dark matter density and halo

field are directly fed to the architecture through the encoder arm, and the output is obtained

through the decoder arm. The architecture remains same as shown in Figure 4.12 with model

summary given in the table 4.3.

The self-attention mechanism of the transformer makes the CosmoUiT to learn the dependence

of different patches on each other and also on the three EoR parameters, hence it is able to

produce parameter-specific outputs with such good accuracy.
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Predictions made by CosmoUiT for different combinations of EoR parameters
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Figure 4.10: Title: EoR Parameters and Metric Scores . First column: Emulation Output. Second column:
Simulation Output. Third column: Difference.
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Figure 4.11: The plot shows variations of MSE and R? for CosmoUiT for training and validation data over epochs.
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Figure 4.12: Model Architecture of CosmoUNet.

4.4.2 Results of CosmoUNet

We trained the CosmoUNet for 100 epochs with 10 batch-size which took about 23 GPU hours
(on NVIDIA RTX-A4000-16GB GPU), which is the same duration as that of the CosmoUiT
model. From the Figure 4.14 is evident that though the training loss improves over the epoch
the validation loss is almost constant for all the epochs with oscillations after it is crossed by
the training loss, implying that the model can perform well on the seen data but struggles to
make predictions for the unseen data. This is a classic example of overfitting where the model
memorizes the data rather than learning the pattern. It can be observed in its predictions show
in Figure 4.13. Since the input fields are fixed and the variation in the output comes from mainly
the three EoR parameters, the model becomes biased towards the fixed inputs and struggles

to produce parameter-specific outputs; however, adding transformer encoder layer in front of
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Component No. of Feature Maps | Filter Size | Activation Function
Encoder

DoubleConv Layer (encl) 32 Filters 3x3x3 RelLU
DoubleConv Layer (enc2) 64 Filters 3x3x3 ReLU
DoubleConv Layer (enc3) 128 Filters 3x3x3 ReLU
DoubleConv Layer (enc4) 256 Filters 3x3x3 RelLU
MaxPool3D (Pooling Layer) - 2x2x2 -
Bottleneck

DoubleConv (with Parameters) 512 Filters 3x3x3 RelLU
Decoder

ConvTranspose3D (upconv4) 256 Filters 2x2x2 -
DoubleConv (dec4) 256 Filters 3x3x3 ReLU
ConvTranspose3D (upconv3) 128 Filters 2x2x2 -
DoubleConv (dec3) 128 Filters 3x3x3 RelLU
ConvTranspose3D (upconv2) 64 Filters 2x2x2 -
DoubleConv (dec2) 64 Filters 3x3x3 RelLU
ConvTranspose3D (upconvl) 32 Filters 2x2x2 -
DoubleConv (decl) 32 Filters 3x3x3 ReLLU
Final Conv Layer 1 Filter 3x3x3 -

Table 4.3: Summary of the CosmoUNet (base model) architecture.

it helps us to encode the information about three parameters beforehand, hence enabling it to

produce parameter specific outputs.

4.5 Tuned CosmoUiT

Since the CosmoUiT was the best-performing base model architecture, we chose it for further

analysis and improvements.

4.5.1 Model Architecture of Tuned CosmoUiT

We did hyperparameter tuning for the previous model, where we increased the number of nodes
in the fully connected layers by four times for all linear projections, which include tokenization
of patches, parameter embedding, and feed-forward layers of the transformer encoder block.
For the UNet part, after mapping the first image to 16 feature maps, we increased the number
of feature maps twice at each step while decreasing the feature map size by half. We reversed
the process for the decoder arm, i.e., we halved the number of feature maps while increasing
their size by twice. Additionally, instead of using double convolution for combining the features
from the encoder arm with the corresponding features of the decoder arm, we used single

convolution. All these changes improved the model’s performance while making it lighter than
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Predictions made by CosmoUNet for different combinations of EoR parameters
Parameters: My, min =550, Njon = 86.32, R = 24.18; Metrics: MSE=0.0061 ,R>=0.9523

Emulation . 1.0 Simulation 1.0 . Difference 1.0
ikl A I XY 5
By T .
; e L 510 0.8 : 0.5
06 THL
= 0.0
0.4
0.2 SRS B
0.0 -1.0

Parameters: My, min = 259, Nion = 114.74, Rysp = 17.26; Metrics: MSE=0.0677 ,R?=0.5852
Emulatlon Simulation 1.0 g Diffe.rer}::e 1.0

~-re .
=

J' 0.5
i " 0.6 0.6 ==
» 0.0
0.4 0.4
o -
0.2 0.2 =i —0:5
=
0.0 0.0™ -1.0
Parameters: My, min = 342, Nijon = 200.00, Rmfp = 24.18; Metrics: MSE=0.1051 ,R?=-0.4042
Emulation 1.0 Simulation 1.0 D1fference 1.0
0.8 1-1; 05
0.6
0.0
0.4
-0.5

0.2%

"i
0.0 ﬂ' -1.0

Parameters: My, min =93, Nion = 143.16, Rnfp = 35.71; Metrics: MSE=0.0675 ,R?=-6240780288.0000
Emulation Simulation D1fference 1.0

1.0 :
08 ‘ '% 'H" w B0.5
0.6 0.6y

0.0
0.4
02 -0.5
0.0 0.0 -1.0

Figure 4.13: Title: EoR Parameters and Metric Scores . First column: Emulation Output. Second column:
Simulation Output. Third column: Difference.
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Figure 4.14: The plot shows variations of MSE and R? for CosmoUNet for training and validation data over
epochs.

the base CosmoUiT model. This also enabled us for using a much larger batch size hence
speeding up the training process. The model summary of the tuned model is given in the table
4.4.

4.5.2 Results of Tuned CosmoUiT

Since this model was lighter, we could increase the batch size for training. We trained it using
a while loop with stopping criteria that the training should stop if the validation loss does not
improve after 10 additional epochs from the last improvement. The model was trained for 722
epochs with a batch size of 96 for 17.8 GPU hours (on NVIDIA RTX-A4000-16GB GPU),
which was significantly lesser than the previous models, given the training epochs of 7 times
higher. The comparison between true and predicted output shown in Figure 4.15 shows that the
boundaries are a bit sharper than those of the base CosmoUiT. Further analysis has shown that
this model still struggles at the boundaries of the parameter space (Section: 4.6.2) and gives

poor results for unseen random seeds (Section: 4.7), hence there is still scope for improvement.

4.6 Performance Comparison

4.6.1 Distribution of MSE and R? Score

After the training is complete, we make predictions on the entire parameter space and compare
them with the true output to calculate the MSE and R? score. This is done for the three base
models and one tuned model, and the distribution of MSEs and R? score is shown as boxplots
in the Figures 4.18 - 4.20. Figure 4.17 compares the boxplot with the histogram. The yellow
line represents the second quartile, also known as the median, with the left edge of the box

representing the first quartile and the right edge representing the third quartile. The difference
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Component No. of Feature Maps | Filter Size | Activation Function
Patch Embedding 512 8x8x8 -
Projection Layer 512 - -
Position Embedding 512 - -
Parameter Embedding 512 - -
Fully Connected Layer 512 5120 -
Transformer Encoder Layers 512 - ReLLU

- Self-Attention 8 Heads - -

- Feedforward 1024 Units - RelLU

- Layer Normalization 512 - -
UNet3D Encoder
DoubleConv Layer (encl) 16 Filters 3x3x3 ReLU
DoubleConv Layer (enc2) 32 Filters 3x3x3 RelLU
DoubleConv Layer (enc3) 64 Filters 3x3x3 RelLU
DoubleConv Layer (enc4) 128 Filters 3x3x3 RelLU
MaxPool3D (Pooling Layer) - 2x2x2 -
Bottleneck
DoubleConv (with Parameters) 128 Filters 3x3x3 ReLLU
UNet3D Decoder
ConvTranspose3D (upconv4) 64 Filters 2x2x2 -
SingleConv (dec4) 64 Filters 3x3x3 ReLU
ConvTranspose3D (upconv3) 32 Filters 2x2x2 -
SingleConv (dec3) 32 Filters 3x3x3 RelLU
ConvTranspose3D (upconv2) 16 Filters 2x2x2 -
SingleConv (dec2) 16 Filters 3x3x3 ReLU
ConvTranspose3D (upconvl) 16 Filters 2x2x2 -
SingleConv (decl) 1 Filters 3x3x3 ReLU

Table 4.4: Summary of the CosmoUiT (tuned model) architecture.

between the third and first quartile is called the interquartile range (IQR), and these whiskers
are 1.5 X IQR. All those points that are outside these whiskers are called outliers. The goal
here is to have an MSE distribution that is constrained towards the lower values without the
significant number of outliers. Same goes for the R? score, except here the distribution should
be constrained towards the higher values around 1.

The distribution of MSEs for different models (Figure 4.18) shows that, for CosmoViT
model the error is spread over a larger range followed by the CosmoUNet. It is also evident that
tuning the model makes the error more constrained towards the lower values. The distribution
of R? score for different as shown in the Figure 4.19, shows the spread over larger ranges for
all the models, but this doesn’t imply that all the models make predictions that are far off of
the true outputs but if you see the formula for R? score given in the Equation 4.5, if the field is

nearly ionized or neutral then the mean value of the field becomes closer to the true values of the
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Predictions made by CosmoTunedUiT for different combinations of EoR parameters

Parameters: Mp, min =550, Nijon =86.32, Rmfp = 24.18; Metrics: MSE=0.0069 ,R?=0.9464

Emulation 1.0 Simulation 1.0 Difference 1.0
il A L I XY T
- ¥ ' 0.5
0.6 iz p
i o 0.0
0.4
02 - -0.5
0.0 " -1.0
Parameters: My, min = 259, Nion = 114.74, Rnsp = 17.26; Metrics: MSE=0.0101 ,R?=0.9381
Emulation Simulation Difference
1.0 1.0 . 1.0
0.8 085" o™ o
‘ » =% PRos
0.6 0.6, A Bimo:
| 9 = = o 0.0
0.4 0.4 - .
0.2 0.2 % - A -0.5
0.0 0.0 = -1.0
Parameters: My, min = 342, Njon = 200.00, Rmfp = 24.18; Metrics: MSE=0.0071 ,R?=0.9053
Emulation Simulation Difference
1.0 1.0 4 . 1.0
0.8 '-'{_ﬂ. 08 &2 *I_ ' 0.5
0.6 0.6, .=
! = oo
0.4 0.4 -t
o
0.2 0.2 -t : -0:5
0.0 0.0 - 4 -1.0
Parameters: My, min = 93, Nion = 143.16, Rmf, = 35.71; Metrics: MSE=0.0000 ,R?=-39486.6094
Emulation Simulation Difference
1.0 1.0 1.0
0.8 0.8
0.5
0.6 0.6
0.0
0.4 0.4
0.2 0.2 -0-5
0.0 0.0 -1.0

Figure 4.15: Title: EoR Parameters and Metric Scores . First column: Emulation Output. Second column:
Simulation Output. Third column: Difference.
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Figure 4.16: The plot shows variations of MSE and R? for tuned CosmoUIT for training and validation data over
epochs.

field hence giving us very small value, closer to zero in the denominator and if the prediction
is slightly off of the true value the value in the denominator is non-zero hence the negative part
of the R? score shoots up giving us such high values. If we replace all the negative values of
R? with zero the boxplot looks like Figure 4.20, implying that the tuned CosmoUiT model has

better over all R? score.
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Figure 4.17: Comparison between histogram and Figure 4.18: Comparison between MSEs of different
boxplot. model architectures.

4.6.2 Variation in MSE and R? Score with Reionization Parameters

Figure 4.21 - 4.22 discuss the variation of xy;, MSE and R? score with EoR parameters after
making predictions on the entire parameter space. From the Figure 4.21, it is evident that
the fields with minimum My, ;;,, maximum N;,, and maximum R, , show minimum xz; and
vice-versa. In Figure 4.24 we can see that there are two edges that corresponding to higher
MSE . The vertical edge corresponds to N;,, = 200 which is the upper limit of that parameter
range and My, i, = 10 X 108 Mg, which is a lower limit of that parameter range. The horizontal

edge corresponds to My, i, = 10 X 108 Mg and R,, fp = 1.12Mpc which is a lower limit of
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Figure 4.19: Comparison between R?s of different Figure 4.20: Comparison between RZs (non-
model architectures. negative) of different model architectures.

that parameter range. Figure 4.25 and 4.26 show variation of R? along with the three EoR
parameters, in here the negative values of R? are replaced with zero for making it easier to
visualize them along with the other significant (non-negative) values. In Figure 4.25 , the right
corner that corresponds to zero value of R? but the same corner in MSE’s variation in Figure
4.23 corresponds to very small MSE, the same disparity can also be seen in the two planes of
the Figure 4.26, first one corresponds to My, i, = 10 X 108 My, and the second one corresponds
toR,,rp = 1.12 Mpc , however, the comparison of these regions with the neutral fraction cube in
Figure 4.21 and 4.22 shows that, all these regions belong to the either very low neutral fraction
(the corner 4.25 and left plane 4.26) or to the very high neutral fraction (the lower plane 4.26),

because at this point the negative part of R? score shoots up as discussed earlier.

Variation of xHI with My, . &nd Nig, and Ry, Variation of xHI with My, . and Nig, and Ry

xHI xHI

Figure 4.21: Variation of xy; with EoR parameters Figure 4.22: Variation of xy; with EoR parameters
(front view). (back view).
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Figure 4.23: Variation of MSE with EoR parameters Figure 4.24: Variation of MSE with EoR parameters
(front view). (back view).

Variation of R*2 with My, i, and Nig, and Ry Variation of R"2 with My, i, and Nig, and Ry

R"2 R"2

0.8

Ay

Figure 4.25: Variation of R? score with EoR param- Figure 4.26: Variation of R? score with EoR param-
eters (front view). eters (back view).

4.7 Model Generalization Test: CosmoUiT48

A good generalization is a crucial quality in the case of the emulation tasks. This corresponds
to the ability of the of the model to make predictions on the unseen data. To test our model’s
performance for the same, we tried making predictions on the inputs generated using an entirely
different random seed than the one it was trained for. Since it has not seen different input
fields it should have been biased towards the particular realization used. However, using data
augmentation techniques such as rotation, one can train the model to capture the effect of

variation in the fields to some extent while providing just one realization of each of the inputs.
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4.7.1 Prediction for Unseen Random Seed

We made predictions using CosmoUiT48 (CosmoUiT for 48° grid resolution). The Figures
4.27 - 4.30 show emulation and simulation outputs with the difference between the two. The
MSE for these predictions is very high, and the R? score is negative, implying very poor model
performance. From the difference of the fields, it is visible that the morphological features are

not captured properly.

4.7.2 Analysis of Generalization Ability

The key reason behind inaccurate predictions by CosmoUiT48 was the difference between the
distributions of input fields obtained from seen and unseen random seeds after downsampling. To
quantify the similarity between the two distribution,s we used L, distance (Euclidean distance).
The L, distance measures the root-mean-square difference between two probability density
functions (PDFs). Mathematically,

12

Dia(p.q) = ( / (p(x) — g(x)dx (4.18)
Where,

* p(x) and g(x) are the two PDFs.

* dx small element for integration over X.

However, in our case, the distribution is discrete, therefore, it can be written as,

D>~

1/2
>pi - ai)? Ax) (4.19)

Where,

* pi, g; = values of the PDFs at bin is.
¢ Ax = bin width.

The smaller value of the L, distance implies similar distributions. We normalize the histograms
and do bin-wise comparison to calculate the L, distances between the distribution of fields
generated via seen and unseen random seeds.

The Figures 4.31 - 4.34 the histograms with both axes in log scale for dark matter and halo
distribution for different resolutions. The title contains the value of L, distance for each pair. As
we downsample the field from 3843 to 483 the L, distance between the two fields increases. The
distributions of input fields, especially the halo field differ vastly for low resolution compared
to the high resolution scenario, hence, the CosmoUiT48 model struggles to make accurate

predictions for unseen random seeds.
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Predictions made by CosmoUiT48 for unseen data

Parameters: My, min = 166, Njon = 40.84, Rmep = 7.58; Metrics: MSE=0.1374 ,R?=-0.4659
Emulation 1.0 Simulation 1.0 Difference
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Figure 4.27: Comparison between xyy fields for parameter set 1.
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Figure 4.28: Comparison between xy; fields for parameter set 2.
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Figure 4.29: Comparison between xyy fields for parameter set 3.
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Figure 4.30: Comparison between xyy fields for parameter set 4.
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Distributions of Dark Matter (384), L, Distance=0.0002
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Figure 4.31: Comparison between distribution of dark matter for seen and unseen random seed (384> resolution).
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Figure 4.32: Comparison between distribution of halo for seen and unseen random seed (384> resolution).
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Figure 4.33: Comparison between distribution of dark matter for seen and unseen random seed (48> resolution).

4.8 CosmoUiT96

The previously tuned model faced problems at the lower limits of the parameter space and could
not make accurate predictions there. It also struggled with generalization for unseen random

seeds. The reason behind this is the low resolution of the fields. The lower boundary of the
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Distributions of Halos (48), L, Distance=0.0290
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Figure 4.34: Comparison between distribution of halo for seen and unseen random seed (48° resolution).

mean free path is 1.12 Mpc; however, our grid size was 4.48 Mpc, Therefore, the effect of this
parameter is not significantly visible for these fields for lower values, causing problems when
training and predicting. The same problem is faced in the case of the lower boundary of the
minimum halo mass parameters. When reducing the fields from 384> to 483, the range of halo
masses was scaled down, as a large number of grid points were zero for this field. As a result,
the smallest values of minimum halo mass got reduced further. Given these issues due to low
resolution, in this work we increased the resolution from 48> to 96°, resulting in a grid size of
2.24 Mpc. One could argue that the grid size remains larger than the minimum possible mean
free path; however, because we now average over fewer pixels (216) compared to the previous

method (512), the effect of lower boundaries becomes more apparent in the resulting fields.

4.8.1 Methods for Reduction in Resolution

The initial data generated via multi-step simulation processes had a grid resolution of 3843, We
used the BlockReduce method offered by scikit_image for reducing the resolution to 483 in
our earlier work. In this work, we will use Gaussian Smoothing and Resampling to reduce the

data from 3847 to 96> and compare it with the Block Reduce method.

4.8.1.1 Block Reduce

As discussed in Section 4.2.2, the main arguments of the BlockReduce method are the input
field that is to be reduced and the number of blocks to be combined over an operation such as
sum, average, median, minimum, maximum, etc. Earlier, we combined 8 blocks along each
axis via averaging, resulting in a single block from 512 blocks. In this work, we are combining
4 blocks along each axis via averaging, which results in a single block for every 216 blocks
(Figures: 4.36, 4.37, 4.38).
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4.8.1.2 Gaussian Smoothing and Resampling

This method was first given in [44] and used for downsampling high-resolution simulation
outputs while preserving the finer structures. This method involves smoothing the field with a
Gaussian kernel of o = 0.5 and choosing every second pixel from the resulting field as shown
in the Figure 4.35. It reduces the resolution by a factor of two along each axis. We repeated

this process twice to reduce the resolution by a factor of 43 (Figures: 4.36, 4.37, 4.38).
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Figure 4.35: Schematic Representation of Gaussian Smoothing (GS) and Resampling Method. (Figure Credits:
C. Jacobus et al. [44])

4.8.1.3 Comparison

The Figure 4.39 shows the comparison of power spectrums for higher resolution (384°) and
reduced resolution (96°) using block reduce and Gaussian smoothing + resampling. It can be
seen that the GS Resampling method works slightly better at higher k modes (smaller length
scales) for halo and dark matter fields. This method is a combination of two methods: (1)
subsampling and (2) local mean. Both of this methods have their own limitations, and combining
them to form Gaussian smoothing + resampling helps us to overcome these limitations to some
extent. To reduce the field by factor of n along each axis the subsampling method takes every

n'" pixel (starting anywhere from 0 to n-1) out of every n’ pixels and the local mean method
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does smoothing of the field and takes mean of every n’ pixels [45]. The main problem with
subsampling is aliasing. This method keeps every n'” value and discards the rest, but those
skipped values can contain important details or patterns. When these are lost, their influence
doesn’t just disappear, it gets misrepresented at the wrong spatial scales, a phenomenon known as
aliasing. As a result, while the overall range of values (like highs and lows) might be preserved,
the underlying structure of the data becomes distorted. This is especially problematic in
cosmology, where small-scale patterns carry crucial information. The local mean method works
by replacing each group of values, such as every n® values, with their average. This smooths
out sharp or noisy details, which helps to reduce aliasing when downsampling. However, this
smoothing blurs out rare or extreme features, like peaks and edges, causing the field to appear
overly averaged. As a result, while the resized field looks cleaner, its range of values becomes
compressed, and the probability distribution shifts toward the mean. This leads to a biased
representation where uncommonly high or low values are underrepresented, making the PDF
less accurate. The Gaussian smoothing + resampling method works better because it strikes
a balance between preserving spatial structure and avoiding aliasing. Instead of aggressively
averaging or blindly skipping values, it applies gentle Gaussian filtering before each resampling
step. This filtering suppresses high-frequency components that would otherwise cause aliasing,
while still maintaining the essential structure and variability in the data. By performing this
process progressively, typically in multiple steps rather than a single downscale, it gradually
reduces resolution without distorting important patterns. As a result, both the power spectrum
and the probability distribution are better preserved, making this method more faithful to
the original data. With these considerations in mind, we adopt the Gaussian smoothing and

resampling method for all subsequent data used in this work.
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Figure 4.36: Comparison between reduction methods for dark matter field.

4.8.2 Model Architecture of CosmoUiT96

We have made few changes in this architecture to take the increase in resolution into account.
The higher resolution requires increased model depth to extract lower-level features, which also
increase the computational cost. We try to counter it by reducing the model complexity (i.e.,

removing unnecessary convolution operations) and by using aggressive variation ( i.e. rapidly
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Figure 4.37: Comparison between reduction methods for halo field.
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Figure 4.39: Comparison between power spectrums for different methods of reduction.

changing the sizes and numbers of feature maps) while extracting and reconstructing feature
maps. In line with these adjustments, the increased input resolution also results in a longer
sequence length, growing from 216 to 1728. The encoder layer consist of multiple layers in
the following order: (1) 3D Convolution, (2) Dropout (10%), (3) Batch Normalization, (4)
LeakyReLU, (5) Max Pooling. The decoder layer consists of a transpose convolution and skip
connections. The skip connections, as mentioned earlier, are used for combining the feature
maps from the encoder layer at the same level. They consist of the following layers: (1) 3D
convolution, (2) Dropout (10%), (3) Batch Normalization, (4) LeakyReLU.
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Component No. of Feature Maps Filter Size Activation Function
Patch Embedding 512 8x8x8 -
Projection Layer 512 - -
Position Embedding 512 - -
Parameter Embedding 512 - ReLU
Fully Connected Layer 512 5120 (Mapped) -
Transformer Encoder Layers 512 - ReLLU

- Self-Attention 8 Heads - -

- Feedforward 512 Units - ReLLU

- Layer Normalization 512 - -
UNet3D Encoder
Encoder Layer 1 32 Filters 3x3x3 LeakyReLU
Encoder Layer 2 64 Filters 3x3x3 LeakyReLU
Encoder Layer 3 128 Filters 3x3x3 LeakyReLLU
Encoder Layer 4 256 Filters 3x3x3 LeakyReLLU
Encoder Layer 5 512 Filters 3x3x3 LeakyReLLU
Bottleneck + Parameters 51243
UNet3D Skip+Decoder
Skip+Decoder Layer 5 256 Filters 2x2x2 LeakyReLU
Skip+Decoder Layer 4 128 Filters 2x2x2 LeakyReLU
Skip+Decoder Layer 3 64 Filters 2x2x2 LeakyReLLU
Skip+Decoder Layer 2 32 Filters 2x2x2 LeakyReLLU
Decoder Layer 1 1 Filters 2x2x2 LeakyReLLU

Table 4.5: Summary of the CosmoUiT96 architecture.

4.8.3 Results of CosmoUiT96

We trained this model for 50 epochs, which took around 100 GPU hours on NVIDIA A100-
SXM4-40GB GPU. The MSE is 0.012 and the R? Score is 0.94. The Figures 4.40 - 4.43 show
the comparison between the simulation and the emulation along with the difference between
them two. If you observe carefully the primary source of errors is the boundary between the
ionized and neutral region. Since there is an abrupt change in the values, the model is not able
to capture it predicts gradual change instead, this is called fuzzy boundary problem. It is more
prominent in regions with neutral fraction below 0.5. To mitigate this, we need estimate the
uncertainties in model’s prediction. If we had multiple realizations which are slightly different
from each other due to stochastic processes for a given combination of reionization parameters
we could quantify the uncertainty as a standard deviation in model’s outputs. This is discussed
in more details in Section 4.9.

The Figures 4.48 and 4.49 show the variation of MSE with the EoR parameters. It seems
that the errors at the edge corresponding to the fixed lower bound of Ry, and My min, and

varying values of Njo, have increased. The other edge corresponding to lower bound of My, min
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Predictions made by CosmoUiT96 for combinations of EoR parameters

Parameters: My, min =550, Njon = 86.32, Rmsp = 24.18; Metrics: MSE=0.0159 ,R?=0.9018
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Figure 4.40: Comparison between x g fields for parameter set 1.
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Figure 4.41: Comparison between x g fields for parameter set 2.
Parameters: My, min = 342, Nion = 200.00, Rmfp = 24.18; Metrics: MSE=0.0174 ,R?=0.7994

Emulation 1.0 Simulation 1.0 leference
]
0.8 08 Tz R
i
- ¥
0.6 0.6
- r g 1
0.4 04 & .,Hr...a-"'
7 ¥
0.2 0.2 2 "..':
3
0.0 0.0 '

Figure 4.42: Comparison between xg; fields for parameter set 3.

Parameters: My min = 93, Nijon = 143.16, Rmfp = 35.71; Metrics: MSE=0.0000 ,R?=-0.0000
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Figure 4.43: Comparison between x g fields for parameter set 4.
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21-cm brightness temperature fields (in mK) calculated using x; for different
combinations of EoR parameters using Equation 1.3

Parameters: My, min = 550, Nijon = 86.32, Rmfp = 24.18; Metrics: MSE=14.4082 ,R?=0.8854
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Figure 4.44: Comparison between 21-cm fields for parameter set 1.

Parameters: My, min = 259, Nion = 114.74, Rmip = 17.26; Metrics: MSE=11.6212 ,R?=0.8666
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Figure 4.45: Comparison between 21-cm fields for parameter set 2.

Parameters: My, min = 342, Nijon = 200.00, Riysp = 24.18; Metrics: MSE=7.6786 ,R?=0.7850
Emulation Simulation leference

60 60 L a7+ ¥ 40
- s 20
40 40 ¥ [
-20
20 20 i gy
. -40

o

-20

-40

o

Figure 4.46: Comparison between 21-cm fields for parameter set 3.

Parameters: My, min = 93, Nion = 143.16, Rmsp = 35.71; Metrics: MSE=0.0000 ,R?=-0.0000
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Figure 4.47: Comparison between 21-cm fields for parameter set 4.
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and Njo, with varying Ryp, shows decrease in the errors. The key thing to notice here is that
the R? Score of the plane corresponding to the lower value Rty shows significant improvement

with no values less than or equal to zero.

Variation of MSE with My, . and Nig, and Ry Variation of MSE with My, i, and Nigy and Ry
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Figure 4.48: Variation of MSE with EoR parameters Figure 4.49: Variation of MSE with EoR parameters
(front view). (back view).
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Figure 4.50: Variation of R? Score with EoR pa- Figure 4.51: Variation of R?> Score with EoR pa-
rameters (front view). rameters (back view).

4.9 Uncertainty Estimation

The deep learning based emulators are statistical approximations hence, there are errors asso-
ciated with the predictions. If these errors are not taken into account while doing the Bayesian
inference they may lead to biased estimates of the parameters. To address this, we employ
different methods to generate an ensemble of model predictions that are slightly different from

each other. We then take their pixel-wise mean as prediction output 4.20, pixel-wise standard
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deviation as uncertainty 4.22, and pixel-wise comparison between ground truth and each model

prediction gives us the root mean square error (RMSE) 4.21. The formulas for the same are

given as follows:

N
- 1
Mean Prediction = N ; Yipred (4.20)
where

* N is the number of data points (here pixels),

* Yiprea 18 the predicted value.

N
1
RMSE = N ;(yi,lrue - yi,prea’)2 (4.21)

where
* N is the number of data points (here pixels),
* Vitrue 18 the true value,

* Yiprea 18 the predicted value.

N
Uncertainty = % ;(y,-,pred — Jipred)? (4.22)

where

* N is the number of data points (here pixels),

* Yiprea 18 the mean predicted value,

* Yiprea 18 the predicted value.

If the mean of the predictions is closer to the ground truth i.e. ¥; pred * Yirue — RMSE =
Uncertainty. Implying that the uncertainty in model’s prediction is captured accurately.
4.9.1 Monte-Carlo Dropout

The Monte-Carlo (MC) Dropout method was proposed an alternative uncertainty estimation
using Bayesian models in [46, 47]. The Bayesian models are computationally expensive, on
the other hand MC dropout method can be implemented by simply adding dropout layers in

the neural network without additional computational cost. The dropout layers are used during
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training usingmodel . train() forregularizationi.e. to mitigate the problem of overfitting. The
dropout rate decides the fraction of nodes that will be randomly switched off during training. We
turn off the dropout layers by using model.eval () while evaluating the model over validation
or test set. However, if we keep the dropout layers on by removing the model . eval () and take
ensemble of prediction for same combination of parameters, each prediction will be slightly
different, due to different nodes being turned off. This is supposed to capture the stochasticity
in model operations and give us uncertainty in its prediction. We took ensemble of 100 such
predictions and took their pixel-wise mean and standard deviation for mean prediction and
uncertainty. We compared the predictions with ground truth to get the RMSE as discussed
earlier. The uncertainty is enhanced by factor of 5 to make it visible in the plot. The scatter plot
in Figure 4.55, shows the correlation between RMSE and uncertainty. The dotted line shows the
ideal scenario where the RMSE and uncertainty is equal, however, the more realistic scenario
would be for them to have a high correlation. The value of the Pearson’s correlation coefficient
for this method is 0.68, which is not significant. Additionally, RMSE is always greater than
the uncertainty, implying that the RMSE never falls below the uncertainty limits of the models,

which is an undesirable outcome.

True XH/ Predlcted XH| Uncertainty (x5)

0.0 0.6
Values

Figure 4.52: Results obtained using Monte-Carlo Dropout Method.

4.9.2 Gaussian Noise Injection

This technique was discussed in [44, 45] to get the uncertainty of ML-based model for Lyman-«
flux field and more recently discussed in [48]. In this method, the noise is added to the feature
maps whose variance is learned through data. This introduces controlled stochasticity that
allows for the generation of the variations. Injecting noise at multiple scales enables the model
to better capture spatial variability, overcoming the limitations of single-point noise injection.
This noise injection makes it possible to get an ensemble of outputs from which the uncertainty
in prediction can be estimated as discussed earlier. We took ensemble of 100 predictions to get
the RMSE and uncertainty. The uncertainty is enhanced by a factor of 50 to make it visible on

the plot since very low than RMSE, as it can be seen from the scatter plot in Figure 4.56. The low
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uncertainty arises because the learned variance is very small, resulting in minimal differences
between the original point estimates and those sampled from the narrow distribution. The

Pearson’s correlation coefficient for this is 0.61.

True xy; Pre.(ri_icted XHI Uncertainty (x50)

Values

Figure 4.53: Results obtained using Gaussian Noise Injection Method.

4.9.3 Data Augmentation

The data augmentation, in terms of computer vision tasks, refers to artificially increasing the
image data (2D or 3D) size by image manipulation techniques, such as zooming, shifting along
an axis, flipping axes, and rotation along an axis [49, 50]. This method was used in [51] to
estimate the uncertainty associated with the SegUNet model. The SegUNet model was used
for segmentation of the noisy 21-cm maps into neutral and ionized regions. Here, we followed
a similar approach where we utilized the 24 possible orientations of a cube. We transform the
cube into these 24 orientations, make predictions, and do an inverse transformation. Afterwards,
we calculate the prediction mean, uncertainty, and RMSE by comparing it with the ground truth
as before. The scatter plot in Figure 4.57 shows that the uncertainty is low compared to the
RMSE, hence enhanced by a factor of 2 to be visible in Figure 4.52. The Pearson’s correlation

coeflicient for this is 0.83, which is significantly higher than the previous methods used.

RMSE

True x

L

XHi Uncertainty (x2)
- .'F.' -

Predicted xp;

0.0 0.2 0.4 0.6
Values

Figure 4.54: Results obtained using Data Augmentation Method.
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Figure 4.55: Monte-Carlo Dropout
Method, PC:0.68.

Figure 4.56: Gaussian Noise Injec-
tions Method, PC:0.61.

Figure 4.57: Data Augmentation
Method, PC:0.83.

We are still exploring new methods of quantifying the uncertainty which will also helps us
overcome the fuzzy boundary problem. Once quantified, these uncertainties can be propagated

through the inference pipeline for more robust estimates of the reinoization parameters.

4.10 Model Generalization Test: CosmoUiT96

In Section 4.7, we saw that the model trained on low resolution struggles to make prediction
on data generated via different random seed. Hence, we calculated the L, distance between the
PDFs of the input fields. We observed that, when we downsampled the field from 3843 to 483,
the L, distance between resulting PDFs increased implying lesser similarity in the distribution
after downsampling. Hence, we increased the resolution of the data and trained new model to

learn the mapping between inputs and outputs.

4.10.1 Prediction for Unseen Random Seed

After training it on higher resolution, we repeated the same analysis for CosmoUiT96. The
Figures 4.58 - 4.61 show emulation and simulation outputs with the difference between the
two. This model gives better results than the CosmoUiT48. Though, the metrics do not seem
significant, the model is able to capture the morphological features accurately without explicitly
being trained for such variation. It suffices to say that we will get better results with lesser
computational cost if we use this pretrained model for fine tuning over varying input fields

generated via different random seeds [52].

4.10.2 Analysis of Generalization Ability

We compared the L distances between the high resolution 384% and downsampled field 96°.
The Figures 4.62 - 4.63 the histograms with their titles containing the value of L, distance.
Although the L, distance has increased but it is significantly lower than that for the fields with
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Predictions made by CosmoUiT96 for unseen data

Parameters: My, min = 166, Nion = 40.84, Rmfp = 7.58; Metrics: MSE=0.0577 ,R?=0.5411
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Figure 4.58: Comparison between xyy fields for parameter set 1.
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Figure 4.61: Comparison between xyy fields for parameter set 4.

56

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0



483 grid resolution. While CosmoUiT96 makes decent predictions one can go for even higher
resolution where the L, distance is even smaller, however, this could be a computationally
expensive process. Therefore, the ideal choice is to train the model with inputs generated via
different random seeds. This will also help us to take the cosmic variance into account while

doing the field-level inference.

Distributions of Dark Matter (96), L, Distance=0.0036
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Figure 4.62: Comparison between distribution of dark matter for seen and unseen random seed (96* resolution).
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Figure 4.63: Comparison between distribution of halo for seen and unseen random seed (96> resolution).
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CHAPTER 5

SuMMARY AND FUTURE PLANS

5.1 Summary

The primary objective of this thesis was to develop a deep learning-based emulator capable
of bypassing the simulations required to model the 21-cm signal from EoR. These simulations
are computationally expensive when it comes to re-running them while exploring the large
EoR model parameter space for Bayesian inference. To address this, we explored a range
of architectural strategies using the building blocks of deep learning algorithms. The core
components of these architectures are convolution, deconvolution and transformer encoder
layers. Our aim was to design a novel architecture that could learn the complex mapping
between the underlying dark matter/halo density fields with the three EoR parameters, and the
resulting 21-cm brightness temperature fields. While coming up with a suitable architecture,
we also had to do extensive experimentation with data representation, parameter conditioning,
and computational trade-offs. During the project, we iteratively assessed model performance to
strike a balance between accuracy, generalization, and computational efficiency. This iterative
process ultimately led to the development of an effective and scalable emulator.

In order to capture the large scale dependencies, the first model we built contained trans-
former encoder layers to encode this information into the field. Later this field was mapped to
the output field using residual connections and transpose convolution. In this architecture, we
treated the patches as feature maps and added the three reionization parameters while upsam-
pling the field. We called this model CosmoViT. The main drawback of the model was, that
its outputs were not parameter-specific and it gave a generic field for all combinations of EoR
parameters with significantly high MSE. The model, originally designed for image translation
tasks, relies on variation in the input fields to learn meaningful mappings. However, in this
case, the inputs remained fixed across different outputs, which limited the model’s ability to
effectively condition on the three additional parameters that influence the output field. We
also saw that the high resolution requires extensive computational resources, which led us to
decrease the field resolution during the initial stage of model development.

Given the inability of CosmoViT to produce the parameter-specific output we designed a
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new model architecture. This architecture combines the ability of transformer encoder layers
to capture large-scale dependencies with the ability of convolutional layers in modeling small-
scale structures. To implement this, we integrate two model architectures: Vision Transformers,
which encode the influence of the three reionization parameters within the input fields before
mapping them to the output, and a UNet, which performs hierarchical feature extraction and
reconstructs the output fields. This model gave us parameter-specific outputs. We called it
CosmoUiT (UNet integrated Vision Transformer). We tuned the base CosmoUiT model by
changing the number of input nodes of linear projection, depth of UNet architecture, and
number of convolutional layers, which improved the model performance and gave us better
MSE and R? score. It occupied less space on the GPU, which in turn provided space for a larger
batch size. The CosmoUNet model was developed to test whether the transformer encoder
layer contributes any additional information to the predictions. To ensure a fair comparison,
the model specifications were kept the same as those of the base CosmoUiT architecture. This
includes the number of layers in the linear projections, the size and number of feature maps,
and the activation functions. The only difference was the removal of the transformer encoder
layer. The fields were directly fed to the UNet for mapping them to the neutral fraction fields
output. The results show that without the transformer encoder layer, the only UNet model tends
to overfit and fails to provide parameter-specific outputs.

The CosmoUiT was a well-performing model, however, it struggled at the boundaries of the
parameter space and showed poor generalization for unseen random seeds due to low resolution.
Hence, we increased the resolution from 483 to 963. This came at the expense of increased
computational cost. We tried to reduce the complexity by removing unnecessary layers. This
model gave excellent predictions and the only sources of errors were the boundaries separating
the neutral and ionized regions. We tried taking these errors into account via uncertainty
estimation in model predictions. There are three methods we tried: (1) Monte-Carlo Dropout,
(2) Gaussian Noise Injection and (3) Data Augmentation, out of which the third one performed
better than the rest. We made predictions on inputs generated via entirely different random seeds
than what the model is trained for. The CosmoUiT48 model struggled while CosmoUiT96 made
decent predictions. The reason behind the former’s inability to make an accurate prediction
was the significant difference between the distribution of seen and unseen input fields after
downsampling. We expect to get better results after training the model for such variations.

This thesis presents a robust deep learning framework for emulating HI 21-cm brightness
temperature fields during the EoR. With its ability to rapidly produce parameter-specific outputs,

the model demonstrates strong potential for field-level inference for upcoming SKA surveys.
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5.2 Future Plans

The initial model successfully demonstrated the potential to emulate complex EoR fields, laying
the groundwork for future enhancements. The following improvements can be considered as

the future scope of this work:

5.2.1 Cosmic Variance

The current model takes the fixed dark matter and halo fields as inputs at a fixed redshift z = 7.
We have shown in Section 4.10, that the model makes decent predictions for unseen random
seeds without explicitly training for such variation. However, to take the cosmic variance into
account while doing the field-level inference, we have to use different realizations of dark
matter and halo field as input, and hence our next goal will be to train the model for such
variation. It is expected that using pretrained model for further training will drastically reduce

the computational expenses.

5.2.2 Uncertainty Estimation

The typical deep learning model gives point estimates of their predictions; however, since these
models are statistical approximations, they have error associated with them. To address this
we already tried three methods: (1) Monte Carlo Dropout (MC Dropout), (2) Gaussian Noise
Injections, and (3) Data Augmentation. Out of which the third one gave us a decent correlation
between RMSE and uncertainty. However, with that method, the RMSE consistently exceeds
the model’s uncertainty bounds, which is problematic as it indicates that the prediction error
is not contained within the expected uncertainty limits. To address this, we will incorporate
Bayesian layers into our model to enable uncertainty quantification. Unlike standard layers
that learn fixed weight values, Bayesian layers learn distributions over weights, allowing us to
generate predictions that include associated uncertainties. This uncertainty can be propagated

through the inference pipeline for more robust estimates of parameters.

5.2.3 Lightcone Effect

The current emulator only works well for a fixed redshift. One can extend this approach to
emulate the entire lightcone by training it using an autoregressive approach. In this approach,
the model receives the input fields along with a slice of the predicted output from the earlier
redshifts to inform predictions at subsequent redshifts. By iteratively feeding forward these
outputs, the emulator can progressively generate the full lightcone across the desired redshift
range. Using vision transformer for this task will help us preserve the correlation between each

slice. By incorporating redshift evolution into the autogregressive framework, we will ensure
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that the emulator generates lightcones that are consistent with both the local and large-scale

structures in the universe at various epochs.

5.2.4 Redshift Space Distortion

In reality, the observed 21-cm signal is affected by peculiar velocities of the hydrogen clouds,
which distort the signal in redshift space. This Redshift Space Distortion (RSD) introduces
anisotropies along the line of sight and must be accounted for to make realistic predictions.
To incorporate this effect, we plan to extend the emulator to predict the 21-cm brightness
temperature field in redshift space. This will involve modifying the training data to include
RSD-corrected brightness temperature maps, allowing the model to learn these anisotropic
patterns. Incorporating RSD is essential for making the emulator compatible with observational

data and enhancing its utility for field-level inference.

5.2.5 Observational Effects

Apart from the astrophysics of IGM and cosmology, the 21-cm signal is also affected by
foregrounds, system noise and telescopic effects. Since this effect is significant we have to
include it in our inference pipeline. However, instead of adding all the observational effects
in the training data itself and trying to reproduce them, we will only add the effects that are
irremovable or partially removable, such as foreground leakage into EoR window, thermal noise,
ionospheric effects, etc. The other effects, such as spectrally smooth foregrounds, beam effects,

calibration errors, etc. that can be modeled and directly subtracted from the observations.

5.2.6 Field-Level Inference

Once the emulator has been trained and validated, the next step will be to use it for field-level
inference to constrain the reionization model parameters. This involves comparing the emu-
lator’s predictions against mock observations, which are simulated lightcone that incorporate
all relevant observational effects. With the above mentioned capabilities, this emulator aims to

play a crucial role in efficient field-level inference for upcoming SKA surveys.
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