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ABSTRACT

The non-stationary signals are the one which consist of time-varying parame-

ters. These signals are generated through complex process in nature and they can

be found in many areas such as speech signal processing and synthesis, mechanical

engineering, biomedical engineering, etc. These signals contain hidden and mean-

ingful information regarding the characteristic of source from which it has generated.

However, extraction of these information is not simple through visual inspection.

To extract hidden information from non-stationary signals, the advanced sig-

nal processing techniques are required. The analysis can be done through time-

frequency (T-F) representation or through decomposition technique. In this thesis,

we have proposed a decomposition technique which is based on filter-bank (FB) de-

veloped from tunable-Q wavelet transform (TQWT). It is termed as TQWT based

FB (TQWT-FB). The TQWT-FB consists of constant and narrow bandwidth (BW )

sub-bands to decompose the signal. Hence, constant resolution in frequency-domain

is achieved. The TQWT is chosen as it provides the flexibility to tune Q-factor

of wavelet, due to which, different mother wavelets are generated for the analysing

different oscillatory behaviour in the non-stationary signal. Also, wavelets as ba-

sis functions are used to represent the signal which are localized in time-domain

and frequency-domain. The application of proposed TQWT-FB is then shown in

following areas:

The proposed TQWT-FB is used to reduce the cross-term from Wigner-Ville

distribution (WVD). The proposed TQWT-FB decomposes the multi-component

non-stationary signal into several sub-band signals. The obtained sub-band signal

is further segmented in time-domain by time-domain segmentation (TDS) section

if more than one components are present in a sub-band signal at different time

intervals. Then, the WVD of each segmented component is computed and added to

obtain a WVD with reduced cross-terms. The proposed method is tested on different

multi-component non-stationary signals under different noisy environments. The

efficacy of proposed method is compared with other methods in terms of normalized



Renyi entropy. The lowest value of Renyi entropy obtained for proposed method

as compared to other methods suggests that the proposed method provides better

localization of signal in the WVD.

Another application of TQWT-FB is shown to estimate the instantaneous funda-

mental frequency (IFF) of speech signals. The proposed method uses a TQWT-FB

which has common or nearly uniform BW for all sub-bands. The TQWT-FB is used

to decompose the speech signal. The fundamental frequency component (FFC) of

speech signal may be present in many sub-bands at different time intervals. The

time interval at where FFC is present, in a sub-band, is identified using TDS section.

In the similar way, the harmonic of FFC can also be present in different sub-bands

at different time-durations. The proposed method extracts FFC from different sub-

bands and constructs a FFC for entire speech signal. Then, Hilbert transform is

applied on constructed FFC to obtain IFF of speech signal. In order to show the ef-

ficacy of proposed method, its performance has been compared with performance of

other existing methods in terms of gross error (GE) in percentage in different noisy

conditions. Through simulations, it is observed that the performance of proposed

method is better than other compared methods.

The developed TQWT-FB is used for developing computer aided system for the

diagnosis of disease from physiological signals. This is useful as visual inspection

of physiological signals by experts in order to detect disease is time-consuming and

error prone. The developed TQWT-FB is applied in the screening of sleep apnea.

The sleep apnea is a disease in which there is the absence of airflow during respiration

for at least 10 s. This disease can lead to many types of cardiovascular diseases.

An automated system is developed to detect the sleep apnea with few channels.

The single-lead electrocardiogram (ECG) signal is used to detect apneic and non-

apneic events. The segments of ECG signal are decomposed by TQWT-FB. Then

centered correntropies (CCEs) are computed from the various sub-band signals.

The obtained features are ranked and then fed to the various classifiers to select

the optimum performing classifier. In this work, we have obtained the highest

ii



classification accuracy(ACC), specificity (SPE), and sensitivity (SEN) of 92.78%,

93.91%, and 90.95% respectively using random forest (RF) classifier.

The proposed TQWT-FB is applied for the diagnosis of epilepsy. The epilepsy is

a neurological disorder and the seizure events frequently appear in epileptic patients.

This disorder can be analysed through electroencephalogram (EEG) signals. A novel

approach for automated identification of seizure EEG signals has been proposed.

The TQWT-FB decomposes the EEG signal into number of sub-band signals. The

features are computed by applying cross-information potential (CIP) on sub-band

signals and then ranked. The features are then fed to RF classifier. In this work,

we have obtained classification ACC of 99%. Among the epileptic patients, a large

number of patients suffer from focal epilepsy. The detection of focal EEG signal

helps surgeon to identify part of brain effect from focal epilepsy and the identified

regions of brain are useful for surgery for the patients who are suffering from focal

epilepsy. The proposed method is also applied in classification of focal and non-focal

EEG signals. After decomposing EEG signals by proposed TQWT-FB, mixture

correntropy (MCE) based features are obtained from sub-band signals. The least

squares support vector machine (LS-SVM) classifier along with radial basis function

(RBF) kernel is used for the classification of these extracted features. The feature

ranking methods are also used to reduce the features space. The achieved maximum

classification accuracy in this proposed methodology is 90.01%.

The application of proposed TQWT-FB is shown in the area of rehabilitation

also. To perform basic hand movements, a hand amputee person needs an ex-

oskeleton prosthetic hand (EPH). The EPH can be controlled through EEG or elec-

tromyogram (EMG) signals. The EMG signals are preferred as they are acquired

from surface of forearm and termed as surface EMG (sEMG). It is very challenging

to design the control section for EPH. It should be able to classify different hand

movements accurately based on the acquired sEMG signals. Also the sEMG signals

must be acquired from minimum number of electrodes to make EPH cost-effective.

A novel technique to classify the basic hand movements is proposed. The TQWT-

iii



FB is used for decomposition of cross-covariance of sEMG (csEMG) signals. Then,

Kraskov entropy (KRE) features are extracted and ranked. The proposed method is

tested on the data obtained from five subjects and achieved the average classification

ACC of 98.55% using k-nearest neighbour (k-NN) classifier.

iv
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Chapter 1

Introduction

The non-stationary signals consist of time-varying statistical parameters. The pa-

rameters are time-varying because they are generated through time-varying system.

They can be observed in many fields such as radar, communication, mechanical en-

gineering, etc. Some commonly known non-stationary signals such as speech signals

and physiological signals can be found in our day to day life. The speech signal

produces when human speaks and it consists of several components such as funda-

mental frequency component (FFC), harmonics of FFC, etc (Oshaughnessy, 2000).

Similarly physiological signals are obtained from the human body and they differ in

frequency content, oscillatory behaviour, etc (Reilly and Lee, 2010).

Hence, there can be several hidden and meaningful information present in the

non-stationary signals. The hidden information can be the number of components

present in the signal, instantaneous frequency (IF) of components, energy of com-

ponents, etc.

Though the extraction of hidden information from non-stationary signals is a

difficult task, the processing of signal can be faster and easy through its sparse repre-

sentation where few coefficients provides the hidden information (Mallat, 2009). To

extract information from non-stationary signals, there are many methods proposed

in literature. Some methods are time-frequency (T-F) based where the amplitude or

energy of the signal is represented in two dimensional T-F plane. However, the res-
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olution and distortion appear on T-F plane depends on the applied method. Other

methods are based on decomposition of non-stationary signals. The decomposition

methods decompose non-stationary signals into less complex signals from where it

is easy to analyse them and extract meaningful information.

1.1 Non-stationary signals analysis techniques

The analysis of non-stationary signal can be achieved from T-F based methods

when model of signal is not available (Sejdi et al, 2009). The major aim of T-F

representation of non-stationary signal is to provide energy concentration of the

signal in frequency-domain with respect to each instant of time (Cohen, 1995).

Ideally, T-F representation of non-stationary signal must provide information of

frequency components at any instant of time (Grochenig, 2001; Stankovic, 1994).

The efficacy of the method to generate T-F representation, depends on the T-F

resolution.

Depending upon the approach for the analysis of non-stationary signals, the T-

F representation can be classified in two classes (Sejdi et al, 2009). In the first

class, there is a finite energy basis function which is localized in time-domain and

frequency-domain. The representation of signal in T-F domain is obtained by mod-

ulating, scaling, and translating these basis functions. In this class, a signal s(t) is

mathematically expressed in T-F representation as follows (Sejdi et al, 2009):

TFs(t, ω) =

∫ ∞
−∞

s(τ)ξ∗t,ω(τ)dτ (1.1)

Here, ξt,ω is the basis function and ∗ indicates the complex conjugate.

The short time Fourier transform (STFT) (Grochenig, 2001), wavelet transform

(WT) (Daubechies, 1992; Mallat, 1999) and matching pursuit (Mallat, 1999; Mallat

and Zhang, 1993), etc are some T-F representations of this class.

The STFT method computes Fourier transform (FT) of the windowed version
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of signal (Grochenig, 2001). The entire signal is segmented by a fixed length

window and hence the resolution of STFT depends on the length of the win-

dow. When the magnitude of the STFT is squared, then it generates a spectro-

gram (Boashash, 2003). The resolution in STFT and spectrogram is limited by the

length of the window. To overcome limitation in STFT and spectrogram, the WT

is proposed in which resolution in time-domain and frequency-domain can be varied

and hence multi-resolution analysis can be achieved (Rioul and Vetterli, 1991). A

non-stationary signal may have low and high frequency components. Thus good

frequency-domain resolution can be achieved at low frequencies and good time-

domain resolution can achieve at high frequencies through multi-resolution anal-

ysis (Rioul and Vetterli, 1991). Here, the basis functions known as wavelets are

used to represent the signal. The wavelets are well localized in time-domain and

frequency-domain and has zero mean. In discrete WT, the wavelets are scaled by

factor of two to represent the signal. Whereas in continuous WT, the wavelets can

be scaled by any real scale factor.

Most of the WT do not provide much flexibility to tune the quality (Q)-factor

of wavelet except continuous WT (Selesnick, 2011c). The tunable-Q WT (TQWT)

is proposed in (Selesnick, 2011c), where Q-factor can be tuned to generate different

mother wavelets according to oscillatory nature of the signal. Apparently, the oscil-

latory nature can be quantified by Q-factor (Selesnick, 2011a). Similar to TQWT,

the flexible analytic WT is proposed in (Bayram, 2013). Here, the Q-factor, the

dilation factor, and the factor of redundancy can be easily tuned for analysis of

signal.

Other than STFT and WT, the matching pursuit algorithm is another method of

class one for signal representation in T-F plane. It represents the signal in the form of

linear expansion of waveforms. These waveforms are chosen from the library such as

Gabor functions in a way that they match best with the signals T-F structure (Mallat

and Zhang, 1993).

The second class of T-F representation is the Cohens class of T-F distribution as
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proposed in (Cohen, 1966). This class of T-F representation is quadratic in nature

as it involves computation of instantaneous autocorrelation (AC) of the signal s(t)

to represent T-F distribution. The mathematical representation of such kind of T-F

representation is given as follows (Sejdi et al, 2009):

TFDs(t, ω) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

s(v +
1

2
τ)s∗(v − 1

2
τ)ψ(θ, τ)e−jθt−jτω+jθvdvdτdθ

(1.2)

Here, ψ(θ, τ) is the kernel function in two dimension. The change in kernel func-

tion generates different types of T-F distributions in Cohens class. The Wigner-Ville

distribution (WVD) (Boashash, 2003), Born-Jordan (Cohen, 1995), Choi-Williams

distribution (Choi and Williams, 1989), etc. are some T-F distributions in Cohens

class. The WVD has best resolution in T-F representation of signal.

The analysis of non-stationary signal is also accomplished with several decompo-

sition techniques in literature. The empirical mode decomposition (EMD) decom-

poses the signal in to number of intrinsic mode functions (IMFs) through sifting

process (Huang et al, 1998). It is an iterative process and there is no mathemat-

ical model of EMD. Also there is the problem of mode mixing in EMD in which

intermittency is present in some region of signal (Huang et al, 1999; Oweis and Ab-

dulhay, 2011). To overcome this problem, the authors in (Wu and Huang, 2009),

proposed ensemble EMD. In this method, a white noise of fixed variance is added to

the signal, and then IMFs are extracted as the average of some trailed ensembles.

Another extension of EMD is the multivariate EMD as proposed in (Rehman and

Mandic, 2010). It is developed for the multivariate signals. Then a decomposition

technique termed as variational mode decomposition is proposed in (Dragomiretskiy

and Zosso, 2014). It decomposes a real signal into finite set of components. The gen-

erated components satisfy the definition of new IMFs as explained in (Daubechies

et al, 2011). This method is iterative in nature and generated components are

localized around their centre frequency (fc).
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The other popular decomposition technique to analyse non-stationary signal is

Hilbert-Huang transform (HHT) (Huang et al, 1998). In this method, first the

IMFs are obtained by applying EMD on the signal. Then, the Hilbert spectrum

of obtained IMFs is obtained. The Hilbert spectrum is obtained by converting the

IMF into an analytic signal, and then computing its instantaneous amplitude and

instantaneous phase.

The method proposed in (Jain and Pachori, 2015) decomposes multi-component

non-stationary signals into amplitude modulated (AM) and frequency modulated

(FM) mono-components. The methodology involve the eigenvalue decomposition

(EVD) of square Hankel matrix in iterative way. The extracted AM-FM compo-

nents are narrow band in nature. Based on this decomposition technique, a T-F

representation is developed in (Sharma and Pachori, 2018b) and termed as improved

EVD of Hankel matrix and Hilbert transform (IEVDHM-HT). This method proves

to better than EVD of Hankel matrix and Hilbert transform (EVDHM-HT) (Sharma

and Pachori, 2017b) in terms of T-F resolution.

Recently, the decomposition of non-stationary signals through FT based method

is suggested in (Singh et al, 2017). Here, authors proposed a novel Fourier decom-

position method which decomposes the signal into Fourier intrinsic band functions

which are band limited. The analysis of non-stationary signals through decomposi-

tion is also accomplished by filtering in literature. The Gabors filtering as suggested

in (Mertins, 1999), is used to estimate amplitude envelope and IF of AM-FM signal.

However, the filtering technique induces modulation in phase and amplitude. To

overcome this problem, the Fourier-Bessel coefficients are applied for signal extrac-

tion in (Pachori and Sircar, 2010). This methodology requires the identification of

Fourier-Bessel coefficients manually.
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1.2 Classification of physiological signals

The analysis of non-stationary signals can give many meaningful information also

known as features regarding signal characteristics. The characteristics of the non-

stationary signal depend on the source from which it is originated. Therefore, the

extracted features can be useful in classifying the non-stationary signals.

The physiological signals are also non-stationary signals. These signals are ob-

tained from human body (Broek and Spitters, 2013). Due to the electrochemical

variations in the neurons, muscle, and gland cells, these signals are transmitted

from their source to the skin of body (Broek and Spitters, 2013). The common

physiological signals in electrical signal form are electroencephalogram (EEG), elec-

trocardiogram (ECG), and electromyography (EMG). The EEG signals are obtained

from the human brain and it carries the electrical activity of the brain. Similarly,

the ECG signals contains the electrical activity of heart and EMG signals carry the

electrical activity of muscles.

The disease in the human results in the change in the characteristics of these

physiological signals. The visual inspection of these signals in order to detect dis-

ease for diagnosis is time consuming job and also not reliable. On the other hand,

advanced signal processing techniques can be used to develop a computer-aided au-

tomated system for diagnosis of disease. The advanced signal processing technique

can obtain features from physiological signals either by T-F analysis or through

decomposition technique. The T-F representation can provide features like energy

concentration, amplitude levels in T-F bands, wavelets, etc (Sejdi et al, 2009). The

decomposition technique decompose complex physiological signals in to less complex

signals from where feature extraction is simple. From decomposed signals, features

like energy of decomposed signals, oscillatory nature of decomposed signals, etc, can

be used for classification.

While developing a computer-aided system, the extraction of features for classifi-

cation is not enough. Some extracted features may be not significant and they even
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might degrade the classifiers performance. Therefore, it is necessary to rank the

features according to their significance level. This step also reduces the complexity

of the system as classifier can classify signals more accurately with less number of

significant features.

The last stage of computer-aided system is the classification stage. It is an

important stage as decision regarding the class of the signal is made here. The

diagnosis is then made according to the decision made by classifiers. In literature,

the classifiers are support vector machine (SVM), least squared SVM (LS-SVM),

tree based classifiers, neural network, etc, are used (Acharya et al, 2011c; Pachori

and Patidar, 2014; Sharma and Pachori, 2015; Sharma et al, 2017b).

1.3 Overview of Tunable-Q wavelet transform

Since the work in this thesis involve filter-banks (FBs) developed from TQWT, the

overview of TQWT is presented in this section.

The TQWT decomposes a signal into the number of sub-band signals. It has

three governing parameters termed as TQWT parameters. They are level of decom-

position (D), Q-factor, and redundancy factor (R) (Selesnick, 2011c). The role of

these parameters while applying TQWT on a signal is as follows:

1. Level of decomposition (D): To implement TQWT, there is D number of two-

channel FBs (TCFBs) required (Selesnick, 2011c). When TQWT is applied on

a signal, each TCFB except one produces one sub-band. One TCFB produces

two sub-bands. Therefore, the signal is decomposed into D + 1 sub-bands.

2. Q-factor: Depending upon the nature of signal, the Q-factor in TQWT can be

modified. For high and low oscillatory signals, it is recommended to set the value

of Q-factor high and low respectively (Selesnick, 2011c). By changing the Q-

factor, the amount of oscillations in wavelet changes which results in the creation

of different mother wavelets. The Q− factor = fc(i)
BW (i)

, where fc(i) is the fc and
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BW (i) is the bandwidth (BW ) of ith sub-band. Here 1 ≤ i ≤ D+1. Therefore,

change in value of Q-factor affects the value of fc(i) and BW (i) (Selesnick,

2011c).

3. Redundancy factor (R): The parameter R governs the localization of wavelet

in the time-domain (Selesnick, 2011c). In the frequency domain, it controls the

overlapping among the sub-bands (Patidar et al, 2015b). It is mathematically

defined as R = Y
1−X (Selesnick, 2011c). Here X and Y are the scale factors of

TCFB’s low pass filter (LPF) and TCFB’s high pass filter (HPF), respectively.

They are explained in next few paragraphs.

The effect of parameter Q-factor at two values 1 and 3 on wavelet (first sub-

band) and frequency responses of the sub-bands for D = 10 corresponding to R = 9

is shown in Fig. 1.1. The sub-band D i.e. sub-band 10 and sub-band 1 are mentioned

in Fig. 1.1(c) and (d).

As mentioned earlier, the TQWT is implemented using TCFBs. The Fig. 1.2

shows a TCFB or analysis FB. The TCFB in Fig. 1.2 has a low pass channel (LC)

and high pass channel (HC). The LC consists of a LPF followed by a scale factor (X).

Similarly, HC contains a high pass filter HPF whose output is given as input to a

scale factor (Y). The frequency response of LPF and HPF depends on the frequency

response of Daubechies filter with two vanishing moments (Selesnick, 2011c).

The input signal is given to both LC and HC simultaneously. Thus a TCFB has

one input and two outputs (Selesnick, 2011c).

TQWT is implemented by connecting the D number of TCFBs in an iterative

way as shown in Fig. 1.3. The connection is such that the output from LC of first

TCFB is given as input to second TCFB. Similarly, output from second TCFB’s

LC is given as input to third TCFB and so on (Selesnick, 2011c). When TQWT

is applied on a signal, the signal is given as input to first TCFB. The HC of each

TCFB produces a sub-band. Therefore, D sub-bands will be obtained by HC of all

TCFB. Also the output from LC of Dth TCFB is considered as a sub-band. The sub-

band signals from sub-bands can be obtained by applying inverse TQWT (Selesnick,

8
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Figure 1.1: The effect of Q-factor for TQWT based decomposition at redundancy
rate R=9 and levels of decomposition D=10: (a) Wavelet corresponding to Q=1, (b)
Wavelet corresponding to Q=3, (c) Frequency response of sub-bands corresponding
to wavelet for Q=1, and (d) Frequency response of sub-bands corresponding to
wavelet for Q=3.

Figure 1.2: Block diagram of a TCFB.
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2011b,c). In frequency response of TQWT, there will be D+1 number of sub-bands.

Figure 1.3: Block diagram to show the implementation of TQWT using TCFB.

The highest fc sub-band as shown in Fig. 1.1 (c) and (d) is sub-band 1 and it

is obtained from HC of first TCFB in iterative connection of TCFBs as shown in

Fig. 1.3. Similarly the lowest fc sub-band is sub-band D + 1 obtained from LC of

Dth TCFB. It should be noted that the sub-bands shown in Fig. 1.1(c) and (d) are

sub-bands obtained from HC only. Therefore frequency response is zero till 0.15

normalized frequency in Fig. 1.1(d) because there exist sub-band D + 1 obtained

from LC. The sub-band D shown in Fig. 1.1 (c) and (d) is obtained by HC of Dth

TCFB.

The scale factors X and Y in TCFB control the fc(i) and BW (i) of ith sub-band

and the value of X and Y depends on the governing parameters Q-factor and R.

Their relations are given below (Selesnick, 2011c):

fc(i) = Xi

(
2− Y

4X

)
Fs (1.3)

BW (i) =
YXi−1π

2
(1.4)

X = 1− Y

R
(1.5)

Y =
2

Q+ 1
(1.6)
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Here, Fs is the sampling rate. The value of X and Y are related as, 0 < X < 1,

0 < Y ≤ 1, and X + Y > 1 (Selesnick, 2011c). This condition is imposed so that the

impulse response of LPF and HPF shall remain localized in time-domain (Selesnick,

2011c). Therefore, before applying TQWT on input signal, the choice of governing

parameters should be such that it satisfies the conditions on scale parameters.

The TQWT provide perfect reconstruction of the signal. For perfect reconstruc-

tion, the following condition must be true (Selesnick, 2011c):

|T0(ω)|2 + |T1(ω)|2 = 1, 0 ≤ ω ≤ π (1.7)

Here, T0(ω) and T1(ω) are transfer function of LPF and HPF in TCFB, respec-

tively. They are mathematically expressed as follows (Selesnick, 2011c):

T0(ω) =


1, |ω| ≤ (1− Y)π

Θ
(
ω+(Y−1)π
X+Y−1

)
, (1− Y)π < |ω| < Xπ

0, Xπ ≤ |ω| ≤ π

(1.8)

T1(ω) =


0, |ω| ≤ (1− Y)π

Θ
(

Xπ−ω
X+Y−1

)
, (1− Y)π < |ω| < Xπ

1, Xπ ≤ |ω| ≤ π

(1.9)

Here, Θ(ω) is the Daubechies filter frequency response with two vanishing mo-

ments, which is expressed as follows (Selesnick, 2011c):

Θ(ω) =
[1 + cos(ω)] [2− cos(ω)]

1
2

2
, | ω |≤ π (1.10)

From (1.8), (1.9), and (1.10), it can be noted that the transfer functions of FBs

to implement TQWT are defined directly in frequency-domain and they are not

rational (Selesnick, 2011c). In case of rational transfer function, the condition for

perfect reconstruction as specified in (1.7) must be true (Selesnick, 2011c).
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The scale factors X and Y can be non-rational. In discrete time case, they

are implemented based on the length of the signal before scaling and length of the

signal after scaling (Selesnick, 2011c). According to (Selesnick, 2011c), N0 ≈ XN

and N1 ≈ YN , where N is the signal length before scaling, N0 is the signal length

after scaling when scaled by X, and N1 is the signal length after scaling when scaled

by Y. It may be possible that XN and YN are not integers, hence they are rounded

off to nearest even integer as follows (Selesnick, 2011c):

N0 = 2round(
X

2
N) (1.11)

N1 = 2round(
Y

2
N) (1.12)

Then the scale parameters for LPF and HPF in TCFB are N0/N and N1/N

respectively (Selesnick, 2011c).

The TQWT has been used in the analysis and classification of many non-

stationary signals. It has been used in the detection of epilepsy (Bhattacharyya

et al, 2017b; Sharma and Pachori, 2017a), focal EEG signals (Bhattacharyya et al,

2017a; Sharma et al, 2017a), coronary artery disease (Patidar et al, 2015a), heart

sounds (Patidar and Pachori, 2014), and neuromuscular disease (Joshi et al, 2017).

1.4 Motivation

The analysis of non-stationary signals require advanced signal processing techniques

as they are complicated signals. The T-F representation of non-stationary signals

presents the spectral and temporal information simultaneously. Several T-F rep-

resentation methods are proposed in literature. However, the resolution in T-F

representation depends on the applied method. The WVD shows the infinite res-

olution in T-F representation due to absence of averaging over any finite time du-

ration (Boashash, 2003). However, since it is a quadratic distribution, it shows the
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cross-terms when the WVD is computed for a multi-component and non-linear FM

signals (Boashash, 2003). The cross-terms mislead as auto-terms in the WVD of the

signal. The cross-terms can be reduced if the non-stationary signal is decomposed

and the WVD of decomposed components are added. This brings motivation to

develop a method to reduce cross-terms in the WVD.

The speech signals are also non-stationary signals. The accurate estimation of in-

stantaneous fundamental frequency (IFF) of speech signal is required in many appli-

cations such as speech compression (Taori et al, 1995), speaker recognition (Shriberg

et al, 2005), text to speech synthesis (Moulines and Charpentier, 1990), etc. The

speech signals are multi-component non-stationary signals. They consist of FFC

and may be its harmonics in the low frequency region (LFR) of voiced speech sig-

nals (Jain and Pachori, 2013). Therefore, it arises a motivation to estimate IFF by

separating the FFC from its harmonics in LFR. If speech signal is decomposed in

LFR to extract components belonging to FFC, then IFF can be estimated at each

sample instant.

In medical science, the physiological signals are important for diagnosis of many

diseases. The change in the characteristics of physiological signals depends on the

disease of the patient. The visual inspection of these signals by experts to identify

disease is laborious and error prone. Therefore, there is need to develop the auto-

mated systems for detection and classification of disease through these signals. As

these signals are non-stationary, it is difficult to extract hidden inform from them

directly. On the other hand, if these signals are decomposed into simpler compo-

nents, then features can be extracted from decomposed components for detection

and classification.

In case of screening of sleep apnea, the ECG signals vary in oscillatory behaviour

at some time-intervals for healthy subject and sleep apnea patient (Hassan, 2016). It

motivates us to develop a decomposition technique which decomposes ECG signal

into different oscillatory signals and then extract features for screening. Another

common disease from which many people in world are affected is epilepsy. Epilepsy
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is a neurological disorder. The EEG signals can be used to detect this disease.

The EEG signals obtained during seizure and seizure-free events, and from normal

subjects, differ in characteristics (Andrzejak et al, 2001). However, it is hard to

classify them visually. Therefore, it gives motivation to prepare an algorithm in

which EEG signals can be decomposed into narrow BW sub-bands, and from the

energy level of sub-bands, these signals can be classified. Also among the epileptic

patients, more than 60% are affected by focal epilepsy (Gloor and Fariello, 1988; Pati

and Alexopoulos, 2010). The area of brain, from where the recorded EEG signal

shows first change in ictal EEG signal is termed as focal EEG signal (Andrzejak et al,

2012). Otherwise, remaining brain portions which are not involved in seizure onset

provides non-focal EEG signals (Andrzejak et al, 2012). Therefore, a methodology

can also be designed in order to classify focal and non-focal EEG signals in order to

identify focal epileptic zones.

Other than diagnosis, the advanced signal processing technique can also be ap-

plied for rehabilitation. For a hand amputee person, the EMG signals can be ac-

quired from the forearm and can be used to classify different hand movements.

However, there are many hand movements and it is a challenging task to identify

the changes in surface EMG (sEMG) signals. As there are many hand movements,

the sEMG signals can be decomposed into many very narrow BW sub-bands. In this

way, many features can be extracted from sub-bands to classify the hand movements.

All the above mentioned problems and their motivations require a decomposition

technique. Therefore a FB is developed using TQWT for the decomposition of non-

stationary signals. The TQWT is chosen because it gives freedom to vary Q-factor

of the wavelet according to the oscillatory nature of signal. The low and high values

of Q-factor is suitable to analyse low and high oscillatory signals (Selesnick, 2011c).

However, the oscillatory nature of non-stationary signals are different and varies over

time. Hence, if only TQWT is used for analysis, then there is need of identifying

optimum value of Q-factor which would be suitable to analyse many non-stationary

signals. A TQWT based FB (TQWT-FB) consists of many sub-bands whose BW
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are narrow and nearly same. These sub-bands are generated by different values

of Q-factor. Hence, the entire frequency range of the signal is decomposed into

constant BW sub-bands and the obtained sub-band signals from sub-bands differ

in oscillatory behaviour.

1.5 Objectives

The objectives of this dissertation are as follows:

Objective 1: To develop a methodology for reducing the cross-terms in the WVD

from TQWT-FB.

Objective 2: To develop a methodology for estimating IFF of speech signals based

on TQWT-FB.

Objective 3: To develop an automated system for screening of sleep apnea from

ECG signals using TQWT-FB.

Objective 4: To develop an automated system for classification of epileptic seizure

EEG signals by applying TQWT-FB.

Objective 5: To develop a system for automated identification of focal EEG signals

based on TQWT-FB.

Objective 6: To develop an automated system for classification of hand movements

from sEMG signals by employing TQWT-FB.

1.6 Contributions

The contributions of this thesis are summarized as follows:

• The WVD of non-stationary signal has the best resolution in time-domain and

frequency-domain (Boashash, 2003). However, cross-terms exist in the WVD
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if signal is multi-component or non-linearly modulated. A new methodology is

proposed to reduce the cross-terms in the WVD using TQWT-FB. The non-

stationary signal is decomposed into several narrow and nearly constant BW

sub-band signals by TQWT-FB. Then components existing in same sub-band

signal but at different time interval are separated by time-domain segmentation

(TDS) section. Finally the WVD of segmented components are computed and

added to obtain the cross-terms free WVD. The efficacy of proposed method is

shown by computing normalized Renyi entropy measure (Sang and Williams,

1995).

• The IFF of speech signal varies with time and proposed methodology esti-

mates IFF at each instant of time. The speech signals are decomposed into

narrow BW sub-band signals by TQWT-FB in LFR. Then TDS section sep-

arates components lying at different time duration. Then scaled FFC (SFFC)

extraction unit choses those segmented component which is obtained by low-

est fc sub-band at each sample instant. Then SFFC unit performs weighted

addition of chosen components in order to reduce the effect of harmonic com-

ponent. This generates FFC with scaled amplitude. In the final stage, the

Hilbert transform is used to compute the IFF of speech signal. The gross

error (GE) is computed in order to show efficacy of proposed method.

• An automated system is proposed for the screening of sleep apnea using ECG

signals. The proposed methodology deals with two-class classification prob-

lem. The methodology identifies the apneic and non-apneic events in each

minute of ECG signal. The ECG segment of one minute duration is decom-

posed by TQWT-FB. Then centered correntropies (CCEs) (Rao et al, 2011)

are computed as features from adjacent sub-band signals. The statistical anal-

ysis of features is performed using Kruskal-Wallis test (McKight and Najab,

2010). Then features are ranked using student’s t-test (Acharya et al, 2015a,b;

Box, 1987). After feature ranking, they are fed into classifier. Three classi-

fiers namely multilayer perceptron (MLP) (Lippmann, 1987; Madyastha and
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Aazhang, 1994), bagging (Breiman, 1996), and random forest (RF) (Breiman,

2001) are tested. The classifiers are implemented using Waikato environment

for knowledge analysis (WEKA) toolbox. Through simulation, it is observed

that the RF classifier classifies apneic and non-apneic ECG segments with

more accuracy (ACC) than ACC obtained by other classifiers.

• The EEG signals are used for detection of epilepsy. At the time of epilepsy,

frequent seizure events occur in epileptic patient. A methodology is designed

for the classification of seizure, seizure-free, and normal EEG signals. Hence

it deals with three-class classification problem. A TQWT-FB decomposes the

EEG signals into sub-band signals. Then, some sub-bands signals are selected

from total sub-band signals generated by TQWT-FB for feature computation.

The features are obtained by computing cross information potential (CIP) (Xu

et al, 2008) from every possible pair from the selected sub-band signals. After

computing features, they are ranked using RELIEFF algorithm (Kononenko

et al, 1997; Robnik-Sikonja and Kononenko, 2003). The ranking of features

shows their significance. In the first step, best rank feature is fed to classifier.

Then in next step, best two significant features are fed to classifier and so on.

In this way, with fewer features, the classifier shows best ACC and complexity

of system reduces.

• A methodology is proposed for the detection of focal and non-focal EEG signals

as many patients suffers from focal epilepsy (Gloor and Fariello, 1988; Pati

and Alexopoulos, 2010). The EEG signals of focal and non-focal classes are

decomposed by proposed TQWT-FB. Then from sub-band signals, mixture

correntropy (MCE) features are extracted. These extracted features are ranked

and classified by LS-SVM classifier which classifies focal and non-focal EEG

signals with good ACC.

• A hand amputee person can perform desired hand movement task through an

exoskeleton prosthetic hand (EPH). The controller in the EPH must classify
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hand movements accurately according to the sEMG signals obtained from the

forearm. The proposed methodology classifies six basic hand movements. The

cross-covariance of sEMG signals obtained from two electrodes are computed

and termed as cross-covariance of sEMG (csEMG) signal. Then TQWT-FB

decomposes the csEMG signal into narrow BW sub-band signals. In the next

stage, the Kraskov entropy (KRE) (Kraskov et al, 2004; Veselkov et al, 2010)

as feature is computed from each sub-band signal. The obtained features are

then ranked. Three ranking methods namely local learning-based clustering

feature selection (LLCFS) (Zeng and Cheung, 2011), multi-cluster feature se-

lection (MCFS) (Cai et al, 2010), and RELIEFF algorithm (Kononenko et al,

1997; Robnik-Sikonja and Kononenko, 2003) are tested. After ranking of fea-

tures, the classifier classifies six hand movements. In this stage, three classi-

fiers are tested. They are C4.5 classifier (Ruggieri, 2002), sequential minimal

optimization (SMO) classifier (Platt, 1998), and k-nearest neighbour (k-NN)

classifier (Aha et al, 1991). Through simulation, it is observed that the RE-

LIEFF ranking method and k-NN classifier in proposed model classify hand

movements with high ACC. The proposed method can also be implemented as

web based application in internet of things (IOT) technology. For each hand

movement, the sEMG signals can be collected in cloud and train the proposed

model. In this way, proposed model can be improved and EPH can perform

hand movement more accurately.

1.7 Organization of the thesis

The rest of the thesis is organized as follows:

• In the chapter 2, The proposed FB termed as TQWT-FB is explained.

• The cross-terms exist in WVD due to it’s quadratic nature. Therefore, a

methodology based on TQWT-FB is proposed in chapter 3 to reduce the
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cross-terms in WVD. The efficacy of proposed method in terms of normalized

Rényi entropy is shown and compared with other methods in this chapter.

• A methodology based on TQWT-FB for the estimation of IFF of speech signals

is presented in chapter 4. The proposed TQWT-FB decomposes the speech

signals and then FFC is extracted for estimation of IFF. The performance of

proposed method is evaluated in terms of GE in percentage and compared

with other methods.

• In chapter 5, a methodology is proposed for screening of sleep-apnea from

segments of ECG signals. The chapter includes segmentation of ECG signal,

then its decomposition by designed TQWT-FB, then computation and rank-

ing of CCE features, and finally classification of apneic and non-apneic ECG

segments to screen the sleep apnea. The comparison of proposed method in

terms of ACC with other existing methods, is also shown in this chapter.

• The chapter 6 addresses classification of seizure, seizure-free, and normal EEG

signals. The EEG signals from each class is decomposed by a designed TQWT-

FB. Then CIP features are computed from decomposed sub-band signals.

Then the RF classifier is used to classify EEG signals. The performance of pro-

posed method and its comparison with other existing methods are presented

in this chapter.

• The classification of focal and non-focal EEG signals using TQWT-FB is shown

in the chapter 7. This chapter presents the decomposition of EEG signals

by TQWT-FB, features extraction using MCE, and application of LS-SVM

classifier for classification. The obtained results are compared and shown in

this chapter.

• This chapter 8 shows the application of designed TQWT-FB in rehabilita-

tion. This chapter presents a methodology for design of controller in EPH

which would perform desired hand movements of a hand amputee person by
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extracting sEMG signals. The classification of sEMG signals by TQWT-FB,

computation of KRE features and its ranking, and finally classification of hand

movements are presented in this chapter.

• The entire work of this thesis along with research work for future is concluded

in chapter 9.
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Chapter 2

Tunable-Q wavelet transform

based filter-bank

2.1 Introduction

To analyse non-stationary signals which vary in oscillatory behaviour by TQWT,

there is need of optimal value of Q-factor. This is because, we can use only one value

of Q-factor in TQWT and the mother wavelet generated by chosen Q-factor may not

be suitable to analyse all signals which vary in their oscillatory behaviour. On the

other hand, the sub-bands in TQWT-FB are generated corresponding to different

value of Q-factors. Therefore, many other wavelets are available to analyse signals

with varying oscillations. Therefore, TQWT-FB is more suitable in such cases. The

detail description and design of TQWT-FB is presented in Section 2.2 and finally

this chapter is summarized in Section 2.3.

2.2 Design of TQWT-FB

The TQWT-FB consists of nearly constant BW sub-bands who differ in their fc.

Therefore, TQWT-FB decomposes the input signal into number of constant BW
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Figure 2.1: TQWT array for design of TQWT-FB based on method I.

sub-band signals. The motivation for the choice of TQWT to implement FB arises

due to its ability to analyse oscillatory signals as its Q-factor can be tuned to desired

value (Selesnick, 2011c). In this work, the TQWT-FB is designed in two ways. They

are describe as follows:

1. Method I: From Fig. 1.1 (c) and (d), it can be observed that the low fc sub-

bands in the frequency response of TQWT are narrow in BW and also the

increase in Q-factor value increases the fc of narrow BW sub-bands. Hence,

unlike frequency response of TQWT, we can achieve frequency response which

consists of narrow and nearly constant BW sub-bands over the span of entire

frequency range of the signal with varyingQ-factor. The steps to design TQWT-

FB in this method are as follows:

(a) Construct an array of TQWT blocks as shown in Fig. 2.1 and assign a

constant value of R and D to each TQWT block. Here M is the number

of TQWT blocks in array.

(b) Assign different values of Q-factor to TQWT blocks. Lets say Q(j) is the

Q-factor assigned to jth TQWT block. Here, 1 ≤ j ≤ M.

(c) Assign low value of Q-factor for first TQWT block, i.e. j = 1. Then from

frequency response of TQWT obtained by Q(1), R, and D, choose few

narrow BW sub-bands randomly and assign their band number to first

TQWT block. The band number varies from 1 to D + 1. For example,
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sub-band D has band number D.

(d) Repeat step (c) with higher value of Q-factor and j, until j = M.

When TQWT parameters are assigned to each TQWT block, the design of

TQWT-FB is complete. Since the value of Q-factor is different in each TQWT

block, the value of scale factors X and Y are different in every TQWT block

as they depend on TQWT parameters (Selesnick, 2011c). The process of de-

composing input signal into sub-band signals by TQWT-FB is explained as

follows:

(a) The input signal is given simultaneously to each TQWT block.

(b) Each TQWT block applies TQWT with assigned value of Q-factor, R,

and D.

(c) The sub-band number of chosen sub-band is already stored in TQWT

block. Lets say the store sub-band numbers are D, D − 1, and D − 2

in jth TQWT block. Then this TQWT block, after applying TQWT,

sets the wavelet coefficients of all sub-bands to zero except the wavelet

coefficients of sub-band with band number D.

(d) Apply inverse TQWT to obtain a sub-band signal.

(e) Repeat steps (c) and (d) with next chosen sub-band number. In this

example, the next sub-band number will be D − 1, and then D − 2.

In this method, each TQWT block may produce one or more than one sub-band

signals. If it produces more than one sub-band signals, then their BW are not

same but nearly same since they are generated by a particular value of Q-factor.

Therefore, the BW of sub-bands in designed TQWT-FB are nearly same. An

example of designed TQWT-FB from this method is shown in Fig. 2.2.

2. Method II: In this method, the fc and BW of each sub-band in TQWT-FB is

already chosen and accordingly the value of TQWT parameters are assigned

to TQWT blocks. The BW of sub-bands in TQWT-FB are very close to each
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Figure 2.2: TQWT-FB designed from method I

other in this method. The procedure to design TQWT-FB in this method is as

follows:

(a) Decide the constant BW for each sub-band in TQWT-FB.

(b) The sub-bands in TQWT-FB must be uniformly distributed over entire

frequency range of signal. Accordingly, decide the fc for each sub-band

in TQWT-FB.

(c) From (1.3), (1.4), (1.5), and (1.6), express fc and BW in terms ofQ-factor

and R.

(d) In this design, we focus on the BW of Dth sub-band only, which is shown

in Fig. 1.1(c) and (d). Hence, in (1.3) and (1.4), put i = D.

(e) In (1.3) and (1.4), we have three variables Q-factor, R, and D to obtain

desire fc and BW for each sub-band.

(f) There can be more than one combination of TQWT parameters to obtain

desired fc and BW . However, the chosen value of TQWT parameters

must be such that the conditions on scale factors X and Y as mentioned

in previous section do not get violated.

From above mentioned steps, we assign TQWT parameters to each TQWT
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Figure 2.3: TQWT array for design of TQWT-FB based on method II.

block as shown in Fig. 2.3. Here also, the value of X and Y in every TQWT

block is different due to different assigned value of TQWT parameters. After

assigning TQWT parameters, the working of TQWT-FB is as follows:

(a) The input signal is given to each TQWT block simultaneously.

(b) Each TQWT block applies TQWT on input signal according to assigned

value of Q-factor, R, and D. Then each TQWT block made the wavelet

coefficients of all sub-bands except Dth sub-band, equal to zero.

(c) Then each TQWT block applies inverse TQWT to obtain a sub-band

signal.

In this method, each TQWT block produces one sub-band signal only. There-

fore, the number of sub-bands in TQWT-FB is equal to the number of TQWT

blocks in this method. A sample TQWT-FB designed from this method is

shown in Fig. 2.4.

The proposed TQWT-FB is capable of decomposing a signal into several constant

BW sub-band signals. The sub-bands in TQWT-FB are generated corresponding

to different Q-factor values. Hence, there are several mother wavelets are available

for the analysis of the non-stationary signal which may contain several oscillatory

components. Also unlike basis functions of FT, these mother wavelets are well

localized in time and space for analysing the signal.
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Figure 2.4: TQWT-FB designed from method II

The BW of sub-bands in TQWT-FB can be decide depending upon the appli-

cation and signal properties. For example, if TQWT-FB is applied to decompose a

multi-component signal into its mono-components, then the BW should be narrow

enough so that no two components of signal lie in same sub-band. Also if TQWT-FB

is applied to decompose naturally generated non-stationary signal like physiologi-

cal signals, it is better to choose narrow BW of sub-bands. This is because these

signal have many oscillatory components, and by choosing narrow BW sub-bands

to design TQWT-FB, more number of Q-factors are available to analyse different

oscillatory components.

A FB satisfies perfect reconstruction criteria if overlapping among sub-bands is

such that the magnitude of FB is one over entire frequency range. The proposed

TQWT-FB usually don’t satisfy this criteria. The magnitude of TQWT-FB rises

from 0 at frequencies close to 0. Also overlapping among sub-bands may increase

the magnitude over one. However, the purpose of TQWT-FB in this thesis is to only

decompose the non-stationary signals. Therefore reconstruction of signal perfectly

is not required.
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2.3 Summary

The methodologies are proposed for the design of TQWT-FB from TQWT. Unlike

TQWT, there is no need to find optimum value of Q-factor in TQWT-FB for analysis

of a signal. The TQWT-FB is suitable to analyse many non-stationary signals

which differ in oscillatory behaviour. The sub-bands in TQWT-FB are produced

by different value of Q-factors which indicates that different mother wavelets are

present to analyse different oscillatory signals.
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Chapter 3

Reduction of cross-terms in WVD

using TQWT-FB

3.1 Introduction

The T-F representation based methods are suitable to analyse non-stationary sig-

nals as they provide temporal and spectral information of signal simultaneously.

Among several T-F representations proposed in the literature, the WVD of sig-

nal produce best resolution. In ideal case, the WVD has very high resolution in

time-domain and frequency-domain due to absence of averaging over any finite time

duration (Boashash, 2003).

It should be noted that in nature the WVD is quadratic and generates cross-terms

for the multi-component non-stationary signals. The cross-terms in the WVD con-

sist of outer-interference-terms and inner-interference-terms (Boashash, 2003). The

outer-interference-terms result if there are more than one mono-component, and

inner-interference-terms result due to nonlinear FM components (Boashash, 2003).

The presence of cross-terms is a serious limitation of the WVD based method for

T-F representation of non-stationary signals and sometimes these cross-terms can

have significant magnitude in T-F plane which may mislead analysis interpreta-

tion (Kadambe and Boudreaux-Bartels, 1992a).
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In the literature, many methods have been proposed for the reduction of cross-

terms. By using appropriate kernel functions, distributions with reduced interference

terms were suggested which can suppress cross-terms and also preserve the math-

ematical properties of the WVD (Boashash, 2003). One such distribution using

exponential kernel is known as the Choi-Williams distribution or exponential distri-

bution (Choi and Williams, 1989). This distribution contains many mathematical

properties of the WVD. It has been shown that, kernels can be designed for reduc-

ing the interference from the WVD (Baraniuk and Jones, 1993). However, the fixed

kernel based methods work only for a particular class of signals and does not provide

cross-terms free T-F representation for non-stationary signals in general (Hlawatsch

et al, 1995). Significant distortions can take place in kernel based methods for cross-

terms reduction in WVD (Sattar and Salomonsson, 1999). Signal dependent kernel

for reduction of cross-terms in WVD is proposed in (Baraniuk and Jones, 1993). A

comparison of signal dependent T-F representation with fixed kernel T-F representa-

tions like as WVD, Choi-Williams distribution, etc has been studied (Thomas et al,

2012a,b). In (Pikula and Benes, 2014), a method is presented where the multiple

pseudo WVDs are used to reduce interference in the WVD. Similarly, an auto term

window method is presented in (Liu, 2013) to reduce the cross-terms in the WVD by

appropriate selection of parameters like window function and threshold (TH) value.

The auto term window presented in (Liu et al, 2013) is used to suppress cross-terms

in the WVD where it enhances the energy of auto-terms also.

New T-F distribution based on the polynomial WVD and L class of the WVD

has been developed specially for polynomial phase signals (Wang and Jiang, 2010).

An IF estimation algorithm in noisy environment has been suggested based on the

local singular value decomposition and the WVD (Xianglong and Jinghuai, 2009).

It has been studied only for mono-component nonlinear FM signals. In (Lerga and

Sucic, 2009), a method has been proposed where IF of mono-component nonlinear

FM signal is estimated using pseudo WVD along with adaptive window. A method

based on shift invariant wavelet packet decomposition is developed for cross-terms
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reduction in WVD (Cohen et al, 1999). IF estimation has been studied for non-

linear FM signals in the presence of noise using polynomial WVD in (Barkat, 2001).

Statistical modeling and denoising methods were proposed to remove noise compo-

nent and to estimate IF in the WVD and smoothed pseudo WVD (Amirmazlaghani

and Amindavar, 2013). Use of two-dimensional signal processing techniques to re-

duce interference in WVD has been proposed in which fractional FT are used to

isolate components, which are identified using image processing technique (Khan

et al, 2011). Use of morphological operators to remove cross-terms in the WVD has

been proposed in (Gomez et al, 2011). In this method, the T-F image generated

by thresholding spectrogram is used as the marker for performing λ -reconstruction.

Only those components in the WVD of signal are retained which are also present in

spectrogram. IF estimation for multi-component signals based on image processing

techniques in T-F domain is proposed in (Rankine et al, 2007). Cross-terms reduc-

tion in the discrete WVD by applying non-linear filtering is suggested in (Arce and

Hasan, 2000).

It has been shown that if the signal has a single component without non-linear

FM then the WVD will not have cross-terms (Boashash, 2003). Interference terms

can be removed if the signal under analysis is decomposed into mono-component

signals without non-linear FM. The uses of FB and signal decomposition have been

suggested before applying the WVD (Narasimhan et al, 2008; Sattar and Salomons-

son, 1999). A band-pass FB is used to separate the signal in frequency-domain and

the WVD is computed for each sub-band signal in (Sattar and Salomonsson, 1999).

Cross-terms can also result, if signal has components separable in time-domain. To

avoid such type of cross-terms, the pseudo WVD has been used in (Gaunaurd and

Strifors, 1996). The band-pass filters also have inherently poor time-domain resolu-

tion. The Fourier-Bessel series expansion is used to separate the signal into compo-

nents before computing the WVD (Pachori and Sircar, 2007). This method proved

effective for signals when components are separable in frequency-domain. When

mono-component signals are well separated in T-F domain then time-order represen-
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tation based on the short-time Fourier-Bessel series expansion has been proposed to

separate the mono-component signals before computing the WVD in order to reduce

cross-terms (Pachori and Sircar, 2008b). Similarly in (Pachori and Sircar, 2006),

the Fourier-Bessel transform has been used to separate the mono-component signals

from the multi-component non-stationary signals before computing the WVD. The

methods proposed in (Pachori and Sircar, 2006, 2007, 2008b) require the identifica-

tion of range of Fourier-Bessel coefficients corresponding to each mono-component

signals in order to separate the mono-component signals. In this work, we propose

a method to reduce cross-terms by segmenting signal both in frequency-domain and

time-domain. In the proposed method, the TQWT-FB provides a frame work for

sub-band filtering of signals. The TQWT-FB is used to decompose the signal in

frequency-domain. Then an energy distribution based algorithm is used to separate

components of signal in time-domain in order to avoid windowing and achieve high

concentrated energy distributions in obtained WVD based T-F representation by

proposed method. The proposed method for cross-terms reduction in the WVD

shows better performance even in the presence of noise.

The remaining part of this work is organised as follows: A brief overview of the

WVD is presented in Section 3.2. The proposed method for cross-term reduction is

presented in Section 3.3. The Rényi entropy which has been used for performance

evaluation of the proposed method is discussed in Section 3.4. Simulation results and

discussion are presented in Section 3.5 and 3.6, respectively. Finally, the summary

of this work is presented in Section 3.7.

3.2 Overview of the WVD

The WVD can be considered FT of the instantaneous AC function. Its mathemati-

cal expression in time-domain is as follows (Boashash, 2003; Claasen and Mecklen-
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brauker, 1980; Kadambe and Boudreaux-Bartels, 1992a):

WVDs(t, ω) =

∫ +∞

−∞
s
(
t+

τ

2

)
s∗
(
t− τ

2

)
e−jωτ dτ (3.1)

where s∗(t) represents the complex conjugate of signal s(t).

It can be seen from (3.1) that, the WVD is quadratic in nature since there

is multiplication of a signal with its conjugate version with some delay. There-

fore, it deteriorates from the presence of cross-terms, if the signal under analysis

is either multi-component signal or non-linear FM mono-component signal. The

WVD has cross-terms for every set of two of mono-component signals (Kadambe

and Boudreaux-Bartels, 1992a). For example, if a signal s(t) consists of Z mono-

component signals s1(t), s2(t), ..., sZ(t) such as: s(t) =
Z∑
i=1

si(t), then the WVD for

signal s(t) can be given as follows (Kadambe and Boudreaux-Bartels, 1992a):

WVDs(t, ω) =
Z∑
i=1

WVDsi(t, ω)︸ ︷︷ ︸
Part 1

+ 2
Z−1∑
k=1

Z∑
l=k+1

Re[WVDsksl(t, ω)]︸ ︷︷ ︸
Part 2

(3.2)

where Re represents the real part. In (3.2), Part 1 represents the WVDs of

the mono-component signals, and Part 2 represents the WVDs due to cross compo-

nent signals (Kadambe and Boudreaux-Bartels, 1992a). In this case, the number of

cross-components will be
(
Z
2

)
(Kadambe and Boudreaux-Bartels, 1992a). So there

will be
(
Z
2

)
additional components other than mono-components in the WVD based

representation of the signal. Due to these cross-terms, the WVD may mislead these

cross-terms as auto-terms. Theoretically, the WVD provides the best energy con-

centration, and has many desirable mathematical properties (Boashash, 2003). In

spite of its obvious advantages, the presence of cross-terms limits its use for the anal-

ysis of multi-component non-stationary signals. There are two types of cross-terms

in the distribution (Boashash, 2003). The outer-interference-terms lie in between

the WVDs of two mono-component signals, whereas inner-interference-terms occur

due to the different points which present in the same WVD of a mono-component
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signal. If the signal is segmented in such a way that the components do not produce

cross-terms in the WVD, then it is possible to get a T-F representation of the orig-

inal signal by summing up the T-F distribution of the components. In this work,

we propose the partitioning signal using TQWT-FB and energy based algorithm to

obtain the WVD with reduced cross-terms. The method is discussed in detail in

Section 3.3.

3.3 Proposed methodology for cross-terms reduc-

tion in WVD

It should be noted that there will be no cross-terms in the WVD if the signal under

analysis consists of a single linear FM mono-component signal. If a multi-component

signal is decomposed into number of such signals, then it will be possible to have

a cross-terms free T-F representation by summing up the WVD of the individual

components. The problem lies in decomposition of a multi-component, non-linear

FM signals into such linear FM mono-component signals. In this work, we proposes

the use of TQWT-FB in frequency-domain followed by an energy based algorithm in

time-domain for decomposing a multi-component signal into such mono-component

signals which are well separated in T-F-domain. The TQWT-FB provides a method

of sub-band decomposition using wavelets tuned to that band thereby achieving

better frequency localization. Energy based segmentation in time-domain avoids use

of constant windowing resulting in time-domain decomposition of the signal into its

actual components. This energy based time-domain decomposition also results in

better energy concentration in T-F plane as shown in the simulation results section.

The three stages of proposed method are shown in Fig. 3.1, which are frequency-

domain decomposition of the signal based on TQWT-FB, TDS of the signal, and

the WVD computation of signal. In the sub-section 3.3.1, signal decomposition in

frequency-domain based on TQWT-FB is explained. The sub-section 3.3.2 explains
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Figure 3.1: Block diagram of the proposed method for cross-term reduction in WVD

the TDS algorithm and the cross-terms free WVD computation is explained in sub-

section 3.3.3.

3.3.1 Signal decomposition by TQWT-FB

The TQWT-FB is used to decompose a multi-component non-stationary signal in

frequency-domain. The TQWT-FB has been designed using method I presented in

Section 2.2. The frequency response of designed TQWT-FB is shown in Fig. 3.2.

The M = 16 is used in designed TQWT-FB. The R = 9 and D = 30 is assigned

to each TQWT block. The value of Q-factor assigned to each block with its TQWT

block number (TBN), and sub-bands chosen for TQWT-FB design are mentioned

in Table 3.1. The assigned TQWT parameters i.e. Q-factor, R, and D decides the

BW of chosen sub-bands. Hence the basis for the choice of TQWT parameters is

such that any sub-band should not cover more than one component at any instant

of time. Otherwise the proposed method will not be able to discriminate multi-
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Figure 3.2: Frequency response of TQWT-FB

Table 3.1: Chosen Q-factor values and sub-bands in the design of TQWT-FB
TBN Q-factor Chosen sub-bands TBN Q-factor Chosen sub-bands

1 1 29, 27, 25, 23, 21, and 19 9 6 15, 14, 13, 12, 11, and 9
2 1.5 25 and 23 10 6.5 11, 9, 8, 7, and 6
3 2 28, 27, 26, and 25 11 8 7, 6, 5, 4, 3, and 2
4 2.5 28, 27, 26, and 25 12 9 2
5 3 28, 27, 26, 25, 24, 23, 22, and 21 13 10 2
6 3.5 24, 23, 22, 21, 20, 19, and 18 14 12 2
7 4 20, 19, 18, 17, 16, and 15 15 13 2
8 4.5 16, 15, 14, 13, 12, and 11 16 22 1

components and then cross-terms will exist. Also, all the chosen sub-bands from

TQWT blocks should cover normalized frequency range 0 to 0.5.

The number of sub-bands in designed TQWT-FB are 65. Therefore, the signal

is decomposed into 65 sub-band signals and then each sub-band signal is given as

input to TDS section as shown in Fig. 3.1.

3.3.2 TDS section

Signal components present in the same sub-band signal but in different time in-

tervals result cross-terms in the WVD based T-F representation. Therefore, after

signal decomposition by TQWT-FB, segmentation of the signal in time-domain is

performed by TDS section in order to obtain the mono-component signals which are

disjoint in time-domain. Automatic detection of the mono-component signals which

are disjoint in time-domain may be a difficult task in the presence of higher noise

(low signal to noise ratio (SNR)). In this work, we have used energy based method
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to identify the presence of time-domain separated components in a sub-band signal.

The presence of component is determined by following steps implemented in TDS

section:

Step 1: In order to find the presence of components in ith sub-band signal SBSi[n],

its cumulative energy Ci[n] is computed as follows:

Ci[n] =
n−1∑
k=0

SBS2
i [k] (3.3)

where n is the sample instant.

Step 2: In TDS algorithm, it is required that the Ci[n] should be increasing func-

tion during the components interval. If there is zero crossing during a

components interval, then there will be no increment in the value of Ci[n]

at sample instant where zero crossing occurs. Therefore, the Ci[n] is fur-

ther smoothed by moving average filter in order to reduce this effect.

Step 3: The expression of filtered version of Ci[n] denoted by FCi[n] is given as

follows (Jain and Pachori, 2013):

FCi[n] =
1

2LL+ 1

LL∑
p=−LL

Ci[n+ p] (3.4)

Here, LL is the length of the filter.

Step 4: After computing FCi[n], its approximated derivative dFCi[n] is computed

as follows:

dFCi[n] = FCi[n]− FCi[n− 1] (3.5)

Step 5: Then, dFCi[n] is normalized in the range [0, 1] by dividing it from maxi-

mum value of dFCi[n].
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Figure 3.3: Different stages of TDS section: (a) A sub-band signal from ith sub-band
(b) Computed FCi[n] (c) the normalized dFCi[n] and TH value (shown in red) (d)
variable Fi[n] (e) first segmented component, and (f) second segmented component

Step 6: Then the normalized dFCi[n] (ndFCi[n]) has been compared with the

chosen TH. The normalization is by dividing dFCi[n] by its maximum

value. Then a variable Fi[n] for detection of duration of component is

defined as follows:

Fi[n] =


1, ndFCi[n] > TH

0, ndFCi[n] ≤ TH

(3.6)

The value of Fi[n] = 1 at a sample indicates the presence of component

in the sub-band signal. The absence of component is determined by value

Fi[n] = 0 at a sample.

As an example, various stages of TDS section are shown in Fig. 3.3. The

Fig. 3.3(a) shows a sub-band signal. It is obtained from a speech signal (identity

number 30203) of CMU-Arctic database (Kominek and Black, 2004a,b). Let say it
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is generated from ith sub-band. The location of time-domain separated components

can be identified by observing the value of function FCi[n]. The value of FCi[n]

would be increasing for the interval where component exists and constant for the

interval where components are absent as shown in Fig. 3.3(b). As the value of

Fi[n] depends on the derivative of function FCi[n]. Hence, its value will be equal

to 1 for the samples for which FCi[n] is increasing. This indicates the presence of

component as shown in Fig. 3.3(d). The constant value of FCi[n] will result 0 value

of Fi[n] which indicates absence of component. The sequences of 1’s and 0’s have

been used for identifying the beginning and ending locations of the components in

the same sub-band signal in order to separate them in time-domain. The Fig. 3.3(e)

and (f) show segmented first and second component respectively. Since, there are

two components separated in time-domain in sub-band signal as shown in Fig. 3.3,

there are two outputs generated by TDS section.

Based on the energy of the component of a signal and value of TH, the proposed

TDS method can detect the component. The TDS method can detect transient

signals of significant energy.

3.3.3 The WVD computation

In the last step of the proposed method, the WVD has been computed for each

time-domain segmented component. The output of TDS section may have multi-

ple time-domain segmented components corresponding to the same sub-band signal.

Therefore, the WVD is computed for each analytic time-domain segmented compo-

nents obtained using the Hilbert transform. The analytic signal representation of

these time-domain segmented components has only positive frequencies and helps

in overcoming the aliasing problem in WVD (Boashash, 2003). The summation of

all WVDs corresponding to segmented components in all sub-bands provides cross-

terms free WVD of the multi-component non-stationary signals. It should be noted

that the proposed method of T-F representation is based on the decomposition
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in frequency-domain and segmentation in time-domain. The proposed structure is

helpful in obtaining good resolution of different components in T-F domain by per-

forming weighted addition of WVDs of different segmented components from TDS

section.

3.4 Performance evaluation

To evaluate the performance of proposed T-F distribution, the performance evalu-

ation parameter must examine the concentration or time-bandwidth product, mo-

ments on T-F plane, etc. The Rényi entropy as computed in (Flandrin et al, 1994;

Williams et al, 1991) measures the complexity and information content of the sig-

nal in T-F plane which includes time-bandwidth product and moments on T-F

plane (Flandrin et al, 1994). Due to these reasons, we choose normalized Rényi

entropy measure proposed in (Sang and Williams, 1995) to quantitatively judge the

performance of suggested T-F representation based on WVD.

The normalized Rényi entropy measure is computed using Rényi entropy (Flan-

drin et al, 1994; Williams et al, 1991). The mathematical expression of Rényi entropy

is given as follows (Sang and Williams, 1995):

Rγ =
1

1− γ
log2

[
L∑

l=−L

K∑
k=−K

[Cs(l, k)]γ
]

(3.7)

where Cs(l, k) in (3.7) is a Cohen’s class T-F distribution (Sang and Williams,

1995) which spans from −L to L in time-domain and −K to K in frequency-domain.

Here, the γ is the order of information and chosen as 3 (Flandrin and Borgnat,

2010) for performance evaluation. In order to compare different T-F distributions,

the normalization of Rényi entropy is important (Stankovic, 2001). The normalized

Rényi entropy measure for T-F distribution can be given as follows (Stankovic,

2001):

41



Rγnorm =
1

1− γ
log2


L∑

l=−L

K∑
k=−K

[Cs(l, k)]γ

L∑
l=−L

K∑
k=−K

[Cs(l, k)]

 , γ ≥ 2 (3.8)

In (3.8), the normalization of Cs(l, k)γ with respect to its energy Cs(l, k) is

shown in order to make it energy unbiased (Stankovic, 2001). After normalization,

its logarithm to the base 2 is computed and then it is multiplied by weight 1
1−γ .

The low value of normalized Rényi entropy measure depicts the better T-F

distribution (Sang and Williams, 1995). The normalized Rényi entropy measure

has been computed for Fourier-Bessel series expansion based method (Pachori and

Sircar, 2007) or time-order based method (Pachori and Sircar, 2008b), FB based

method (Sattar and Salomonsson, 1999), and the proposed method. In the pro-

posed method, the values of normalized Rényi entropy measure are low as compared

to the value of normalized Rényi entropy measure computed for other compared

methods which has been shown in simulation result section.

3.5 Simulation results

The proposed method for cross-terms reduction in WVD has been studied for four

test multi-component non-stationary signals and the same is compared with the

WVD based T-F representation obtained using Fourier-Bessel series expansion based

method (Pachori and Sircar, 2007) or time-order based method (Pachori and Sircar,

2008b), and FB based method (Sattar and Salomonsson, 1999). The brief description

of these signals namely s1[n], s2[n], s3[n], and s4[n] is as follows:

Signal 1: s1[n]: The signal s1[n] is a two-component linear FM non-stationary sig-

nal whose components are well separated in T-F domain and frequency-

domain. The mathematical expression for the signal s1[n] can be given
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as follows (Choi and Williams, 1989; Pachori and Sircar, 2007):

s1[n] =
1

100
cos

[( πn

2000
+ 1
) 3n

5

]
+

1

100
cos

[(
3πn

100
+ 188

)
n

100

]
(3.9)

Signal 2: s2[n]: The signal s2[n] is a two-component non-stationary signal. The

components of signal s2[n] are well-separated in T-F domain and

frequency-domain. One component is linear FM whereas other com-

ponent is non-linear FM chirp. The mathematical expression for the

signal s2[n] can be given in discrete time-domain as follows (Stankovic,

2001):

s2[n] =
1

50
cos

[(
3πn

500
+ 471

)
n

500
+ 30 cos

( πn
256

)]
+

1

100
cos
[( πn

1000
+ 22

) n

10

] (3.10)

Signal 3: s3[n]: The signal s3[n] is a multi-component bat echo signal whose com-

ponents are well-separated in T-F domain only. This is a natural signal

emitted by a large brown bat (Eptesicus fuscus) and signal is publicly

available at (Baraniuk, 2009). The duration of the signal is 2.5 ms with

sampling period 7µsec.

Signal 4: s4[n]: The signal s4[n] is a multi-component non-stationary signal which

has well-separated components in frequency and T-F domain. Signal

s4[n] can be mathematically expressed as follows (Choi and Williams,

1989):

s4[n] =
w[n]

10

(
cos

[
90πn

256

]
+ cos

[
115πn

256

])
(3.11)
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Figure 3.4: Plot of the signals used in simulation study: (a) Multi-component signal
with two linear FM chirp (s1[n]), (b) Multi-component signal with a linear FM chirp
and a non-linear FM chirp (s2[n]), (c) Bat echo signal (s3[n]), (d) Multi-component
signal with two time-limited and band-limited pulses (s4[n]).

where, w[n] is given by:

w[n] =


0, n < 108

1−
[
(n−178)2

5000

]
, 108 ≤ n ≤ 248

0, n > 248

The time-domain plots of the four signals s1[n], s2[n], s3[n], and s4[n] used in

simulation are shown in Fig. 3.4 (a)-3.4 (d), respectively. The T-F representation

based on WVD of these signals are shown in Fig. 3.5:
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Figure 3.5: The T-F representation based on WVD of the signals used in simulation
study: (a) Multi-component signal with two linear FM chirp (s1[n]), (b) Multi-
component signal with a linear FM chirp and a non-linear FM chirp (s2[n]), (c) Bat
echo signal (s3[n]), (d) Multi-component signal with two time-limited and band-
limited pulses (s4[n]).
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The proposed method’s performance is compared with the Fourier-Bessel series

expansion based method (Pachori and Sircar, 2007) for signals s1[n], s2[n], and

s4[n] as these signals are well disjoint in frequency-domain. For signal s3[n], the

proposed method is compared with time-order based method (Pachori and Sircar,

2008b). The Fourier-Bessel series expansion based method is not suitable signals

like s3[n] whose components are overlapped in frequency-domain. The performance

of the suggested method is also compared with the FB based method (Sattar and

Salomonsson, 1999) for all four test signals. The signal decomposition obtained

by discrete cosine transform-harmonic wavelet transform (DCTHWT), has many

advantages over the sub-band decomposition by perfect reconstruction filter-bank

(PRFB) proposed in (Sattar and Salomonsson, 1999) like less computational com-

plexity, frequency resolution improvement, and good signal detection (Narasimhan

et al, 2008). Due to these reasons, we have implemented sub-band decomposition

using DCTHWT in the filter-bank based method for all four signals namely s1[n],

s2[n], s3[n], and s4[n].

The WVD based T-F representation obtained by applying proposed method and

other compared methods on representative signals s1[n], s2[n], s3[n], and s4[n] under

different noise environments are shown in Figs. 3.6-3.9.

The noise used for simulation study is additive white Gaussian noise (AWGN).

The WVD of representative signals by proposed method as shown in Figs. 3.6-3.9

are obtained at optimum value TH in TDS section. The optimum value of TH

is determined empirically for each signal. The effect of TH on WVD obtained by

proposed method in clean case is shown in Fig. 3.10 to Fig. 3.13.

The performance evaluation of proposed method for WVD based T-F repre-

sentation has been measured in terms of normalized Rényi entropy measure. The

normalized Rényi entropy measures for WVD based T-F representation obtained

from proposed method, Fourier-Bessel series expansion based method (Pachori and

Sircar, 2007) or time-order based method (Pachori and Sircar, 2008b), and FB based

method (Sattar and Salomonsson, 1999) are computed and shown in Table 3.2.
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Figure 3.6: T-F representation based on the WVD of s1[n] at different SNRs: Pro-
posed method; (a) Clean, (b) SNR = 20 dB, (c) SNR = 10 dB, (d) SNR = 0 dB,
Fourier-Bessel series expansion based method; (e) Clean, (f) SNR = 20 dB, (g) SNR
= 10 dB, (h) SNR = 0 dB, FB based method; (i) Clean, (j) SNR = 20 dB, (k) SNR
= 10 dB, (l) SNR = 0 dB.
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Figure 3.7: T-F representation based on the WVD of s2[n] at different SNRs: Pro-
posed method; (a) Clean, (b) SNR = 20 dB, (c) SNR = 10 dB, (d) SNR = 0 dB,
Fourier-Bessel series expansion based method; (e) Clean, (f) SNR = 20 dB, (g) SNR
= 10 dB, (h) SNR = 0 dB, FB based method; (i) Clean, (j) SNR = 20 dB, (k) SNR
= 10 dB, (l) SNR = 0 dB.
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Figure 3.8: T-F representation based on the WVD of s3[n] at different SNRs: Pro-
posed method; (a) Clean, (b) SNR = 20 dB, (c) SNR = 10 dB, (d) SNR = 0 dB,
Time-order based method; (e) Clean, (f) SNR = 20 dB, (g) SNR = 10 dB, (h) SNR
= 0 dB, FB based method; (i) Clean, (j) SNR = 20 dB, (k) SNR = 10 dB, (l) SNR
= 0 dB.
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Figure 3.9: T-F representation based on the WVD of s4[n] at different SNRs: Pro-
posed method; (a) Clean, (b) SNR = 20 dB, (c) SNR = 10 dB, (d) SNR = 0 dB,
Fourier-Bessel series expansion based method; (e) Clean, (f) SNR = 20 dB, (g) SNR
= 10 dB, (h) SNR = 0 dB, FB based method; (i) Clean, (j) SNR = 20 dB, (k) SNR
= 10 dB, (l) SNR = 0 dB.
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Figure 3.10: WVD based T-F representation of clean signal (s1[n]) using proposed
method with different values of TH: (a) TH = 0.001, (b) TH = 0.01, (c) TH = 0.05,
(d) TH = 0.07, (e) TH = 0.1, (f) TH = 0.2, (g) TH = 0.35, (h) TH = 0.4, (i)
TH = 0.5.

Table 3.2: Normalized Rényi entropy measure for different methods for cross-terms
reduction in the WVD based T-F representation

Signal SNR
Fourier-Bessel series FB

Proposed methodexpansion based method (Pachori and Sircar, 2007) based method (Sattar and Salomonsson, 1999)
/Time-order based method (Pachori and Sircar, 2008b)

s1[n]

0 dB 2.4920 2.7328 1.8900
10 dB 2.2246 2.1815 1.6043
20 dB 1.9694 1.8898 1.3688
clean 1.9248 1.8049 1.3513

s2[n]

0 dB 3.300 2.2689 1.9288
10 dB 3.0900 1.9141 1.7759
20 dB 3.0282 1.8348 1.6895
clean 2.9962 1.8216 1.6891

s3[n]

0 dB 1.9333 1.9604 1.6790
10 dB 1.9223 1.9552 1.3343
20 dB 1.7463 1.9293 1.3039
clean 1.7290 1.9242 1.2922

s4[n]

0 dB 1.8700 2.1091 1.3800
10 dB 1.0714 1.2431 1.0652
20 dB 0.9342 0.9602 0.8921
clean 0.9341 0.8749 0.8638
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Figure 3.11: WVD based T-F representation of clean signal (s2[n]) using proposed
method with different values of TH: (a) TH = 0.001, (b) TH = 0.01, (c) TH = 0.05,
(d) TH = 0.07, (e) TH = 0.1, (f) TH = 0.2, (g) TH = 0.35, (h) TH = 0.4, (i)
TH = 0.5.
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Figure 3.12: WVD based T-F representation of clean signal (s3[n]) using proposed
method with different values of TH: (a) TH = 0.001, (b) TH = 0.01, (c) TH = 0.05,
(d) TH = 0.07, (e) TH = 0.1, (f) TH = 0.2, (g) TH = 0.35, (h) TH = 0.4, (i)
TH = 0.5.
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Figure 3.13: WVD based T-F representation of clean signal (s4[n]) using proposed
method with different values of TH: (a) TH = 0.001, (b) TH = 0.01, (c) TH = 0.05,
(d) TH = 0.07, (e) TH = 0.1, (f) TH = 0.2, (g) TH = 0.35, (h) TH = 0.4, (i)
TH = 0.5.
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The methods mentioned in Table 3.2 are run on the same machine(Intel Pen-

tium CPU B940 @ 2.00 GHz). When these methods are run for signal s1[n] under

clean case, then the computation time by proposed method, Fourier-Bessel series

expansion based method (Pachori and Sircar, 2007), and FB based method (Sattar

and Salomonsson, 1999) 8.19 seconds, 1.5 seconds, and 1.8 seconds, respectively.

Similarly for clean signal s2[n], the computational time is 6.95 seconds, 1.79 sec-

onds, and 1.52 seconds for proposed method, Fourier-Bessel series expansion based

method (Pachori and Sircar, 2007), and FB based method (Sattar and Salomons-

son, 1999), respectively. For signal s3[n] in clean case, the computational time by

proposed method, time-order based method (Pachori and Sircar, 2008b), and FB

based method (Sattar and Salomonsson, 1999) is 9.26 seconds, 1.72 seconds, and

1.66 seconds, respectively. For last signal s4[n] in clean case, the time consume by

proposed method, Fourier-Bessel series expansion based method (Pachori and Sir-

car, 2007), and FB based method (Sattar and Salomonsson, 1999) is 6.02 seconds,

1.27 seconds, and 1.08 seconds, respectively.

3.6 Discussion

A methodology is proposed in this work for the reduction of cross-terms in WVD

which arises due to presence of multi-components and non-linear FM components

present in the signal. The proposed method applies TQWT-FB for signal decom-

position and then TDS section segments the components in time-domain. Then in

last stage, the WVD of segmented components are computed and added to achieve

a WVD based T-F representation with reduced cross-terms

In Fig. 3.6, T-F representations obtained by applying the suggested method,

Fourier-Bessel series expansion based method, and FB based method on signal s1[n]

are depicted for clean signal, and signal corrupted by AWGN with different noise

levels such as 0 dB, 10 dB, and 20 dB SNRs. In Fig. 3.6, first column shows the

WVD based T-F representation for the proposed method. Similarly, second and
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third column of Fig. 3.6 shows the WVD based T-F representation obtained from

Fourier-Bessel series expansion based method and FB based method, respectively.

It can be noticed that in case of clean signal, signal corrupted with AWGN at 20

dB and 10 dB SNRs all studied methods are able to identify two linear FM chirps

signals in WVD based T-F representation. However, in case of signal corrupted with

0 dB SNR, the proposed method is better able to distinguish two linear FM chirps

as compare to Fourier-Bessel series expansion based method and FB based method

in T-F plane. In Fig. 3.7, the T-F representations of signal s2[n] obtained from

the proposed method, Fourier-Bessel series expansion based method, and FB based

method have been shown. It can be observed from the T-F representations that

the effect of inner interference terms in non-linear FM chirp is clearly visible in T-F

representations obtained from Fourier-Bessel series expansion based method and FB

based method. However, this effect is significantly reduced using proposed method.

It can be observed that in case of clean signal, signal corrupted with AWGN at 10 dB

and 20 dB SNRs, all methods are able to identify two separate linear FM and non-

linear FM chirp in T-F plane. In case of signal corrupted with 0 dB SNR, the two

chirps are better visible in T-F representation obtained using proposed methodology.

The T-F representations of signal s3[n] obtained from proposed method, time-order

representation based method and FB based method are shown in Figs. 3.8 (a)-3.8

(l). The T-F representation of proposed method and time-order method are able to

classify different components of signal s3[n] even at signal corrupted at 0 dB and 10

dB SNR. In FB based method, the components are less well separated. The T-F

representations based on proposed method, Fourier-Bessel series expansion based

method and FB based method for last representative signal s4[n] are shown in Figs.

3.9 (a)-3.9 (l). It can be observed that at 10 dB SNR, the proposed method and FB

based method is able to classify the two frequency-domain separated components

of signal s4[n] whereas at 0 dB SNR, only proposed method can classify the two

components of signal s4[n].

The suitable value of TH for each representative signals s1[n], s2[n], s3[n], and
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s4[n] has been selected empirically. The effect of TH value on WVD based T-

F representation by proposed method has been shown in Figs. 3.10-3.13. The TH

values chosen for analysing its effect on WVD based T-F representation by proposed

method are as follows: TH = 0.001, TH = 0.01, TH = 0.05, TH = 0.07, TH = 0.1,

TH = 0.2, TH = 0.35, TH = 0.4, and TH = 0.5. In Fig. 3.10, the effect of different

TH values on WVD based T-F representation of clean signal s1[n] is shown. As signal

s1[n] consists of two well separated linear FM chirps, they are clearly visible in T-F

representation at all TH values. However, when TH value is chosen as 0.2 or above,

these linear FM chirps started missing T-F information in T-F representation based

on WVD by proposed method. Similarly for clean signal s2[n], the non-linear FM

chirp and linear FM are well separated at all TH values but the inner interference

term in non-linear FM vanishes at TH 0.35 and above. This is shown in Fig. 3.11. It

can be observed from Fig. 3.11 (i), that for TH = 0.5, non-linear FM chirp started

losing information in WVD based T-F representation from proposed method. For

clean signal s3[n] (bat signal), at high TH values, components started disperse in

T-F representation. This effect can be seen in Fig. 3.12. Similarly in Fig. 3.13, it

can be observed that the components of signal s4[n] are dispersing in T-F plane as

TH increases. The value of TH as 0.001 and 0 has been found to be giving stable

results for clean signals s1[n] and s4[n] respectively whereas for clean signal s2[n],

TH equals to 0.35 is found suitable. For clean signal s3[n], TH equals to 0.05 is

found suitable.

For signals affected by noise, the same TH value used for clean signal may not

reduce the effect of noise in WVD based T-F representation. Therefore, TH values

are varied in order to achieve cross-terms free T-F representation from proposed

method. The suitable TH for signal s1[n] corrupted with 0 dB SNR is found to be

0.05, whereas when signal s1[n] is corrupted with 10 dB SNR and 20 dB SNR, the

TH values 0.001 is found suitable. For signal s2[n], TH value 0.35 is found optimum

under all noise cases studied. This may be because 0.35 value of TH is high enough

to remove both outer-interference terms and inner-interference-terms. Similarly for
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signal s3[n], the signal corrupted with 20 dB SNR and 10 dB SNR, TH equals to

0.05 is found optimum, whereas when signal is corrupted with 0 dB SNR, TH value

as 0.2 is found optimum. For signal s4[n], when signal corrupted with 0 dB SNR,

TH value equal to 0.5 is found suitable whereas when signal is corrupted with 10

dB SNR and 20 dB SNR, TH value 0.001 is found suitable. The performance of the

suggested method has been assessed at these specified TH values for different noise

environments.

The computation of normalized Rényi entropy measure is done for test signals

as clean, signals corrupted by AWGN at 0 dB, 10 dB, and 20 dB SNRs. In the

simulation, the normalized Rényi entropy measure is computed 100 times at each

SNR value. As the characteristic of noise changes for each iteration, the average of

all results will give the robust value of normalized Rényi entropy measure. It can be

observed from Table 3.2 that the normalized Rényi entropy measures of proposed

method for T-F distribution are low as compared to other compared methods. The

computational time by proposed method is higher than other compared methods.

However, the aim of this work is to reduce cross-terms from WVD irrespective of

computational time.

3.7 Summary

This work presents a novel technique for reduction of cross-terms from WVD using

TQWT-FB. The cross-terms are reduced by decomposing the multi-component non-

stationary signal into constant and narrow BW sub-band signal by TQWT-FB.

These components in a sub-band signal are further segmented by TDS section.

Finally the computed WVD of segmented components are added to achieve the

WVD with reduced cross-terms. The proposed method is tested on four test signals

when these signals are effected by AWGN at 0dB SNR, 10 dB SNR, 20 dB SNR, and

infinite SNR. The Rényi entropies obtained by proposed method in all noisy cases

is less than the Rényi entropies obtained by Fourier-Bessel series expansion based
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method, time-order based method, and FB based method. This shows that the

WVD based T-F representation obtained by proposed method has better resolution

in T-F domain as compared to resolution obtained by other methods.
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Chapter 4

Estimation of IFF of speech

signals using TQWT-FB

4.1 Introduction

The IFF of the speech signal is the result of vibration of vocal folds in the human

neck. The rate of vocal folds vibration is defined as IFF of speech signal (Oshaugh-

nessy, 2000). Hence, IFF of the speech signal is generated only in voiced regions

of speech signal where vocal chords vibrate and generate a quasi-periodic type of

signal (Deller et al, 2011; Upadhyay and Pachori, 2015b). The IFF, which is a func-

tion of time, can depend on gender, age, health, emotion, accent, and language of

a speaker (Jain and Pachori, 2014; Kadambe and Boudreaux-Bartels, 1992b). The

accurate estimation of fundamental frequency is required for many applications like

as speech compression (Taori et al, 1995), speaker recognition (Shriberg et al, 2005),

text to speech synthesis (Moulines and Charpentier, 1990), etc.

The developed techniques in literature can be classified into three main cate-

gories (Jain and Pachori, 2014). These categories include block based methods, in-

stantaneous methods, and event based methods (Hess, 1983; Veprek and Scordilis,

2002). The block based methods segment the voiced speech signal before estimat-

ing the fundamental frequency. The duration of each segment is short so that
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the speech signal can be assumed stationary within block duration and the fun-

damental frequency is estimated corresponding to each block. Therefore, these

methods do not compute fundamental frequency at each sample instant. Some

examples of block based methods are average magnitude difference function based

method (Ross et al, 1974), AC function based method (Rabiner, 1977), and cepstrum

based method (Noll, 1964).

Unlike block based methods, the instantaneous methods compute fundamen-

tal frequency at each sample instant of voiced regions of speech signals (Jain and

Pachori, 2014). Some well-known techniques in the instantaneous methods cat-

egory are the HHT based method (Huang and Pan, 2006), ensemble EMD based

method (Schlotthauer et al, 2009), and empirical WT based method (Li et al, 2014).

However, the performance of these methods degrades when the speech signal is cor-

rupted by noise (Jain and Pachori, 2014). The third category for fundamental fre-

quency estimation is based on the characteristic event of glottal cycles (Ghosh et al,

2007; Jain and Pachori, 2014; Seshadri and Yegnanarayana, 2011; Yegnanarayana

and Murty, 2009). The glottal closure instants are the instants where the excitation

in vocal tract system is maximum. In (Rathore and Pachori, 2013), the glottal clo-

sure instants are determined in LFR which is defined from 50 Hz to 500 Hz (Jain

and Pachori, 2013). The fundamental frequency is determined by the inverse of time

duration between two successive glottal closure instants.

The proposed method decomposes the speech signal in LFR using a TQWT-FB.

Then signals are reconstructed from each sub-band in time-domain and called as

sub-band signal. The FFC and its harmonics may be present in different sub-band

signals at different time intervals. These intervals in sub-band signal are identified

using TDS section. The TDS section segments the sub-band signal in time-domain.

Each segmented sub-band signal belongs to either FFC or its harmonic. We termed

a segmented sub-band signal as a component. There can be many components

obtained from many TDS sections used in the proposed method. Among all these

components, the proposed method chose few of them to generate FFC. Then, IFF
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is computed by applying Hilbert transform on FFC.

The chapter is organized as follows: The proposed method for estimation of IFF

is presented in Section 4.2. Then the performance evaluation parameter is discussed

in Section 4.3. The Section 4.4 and 4.5 presents the simulation results and discussion

respectively. Finally, Section 4.6 summarizes this work.

4.2 Proposed methodology for IFF estimation of

speech signals

The proposed method has several stages which are shown in block diagram in Fig.

4.1. Stage 1 is TQWT-FB which is used to decompose input speech signal in LFR

and stage 2 is the set of TDS sections to segment sub-band signals. Then stage 3

is scaled (SFFC) extraction unit which is used for extracting FFC. Finally, stage

4 performs the IFF computation based on the Hilbert transform. These stages are

explained in sub-sections below.

4.2.1 Speech signal decomposition by TQWT-FB

A TQWT-FB is designed to decompose the input speech signal, which contains

nearly constant BW sub-bands. As the FFC lies in LFR, the designed TQWT-FB

has the non-zero response in LFR as shown in Fig. 4.2.

The TQWT-FB is designed using method II as discussed in Section 2.2. The

parameter M = 25 is chosen for the design of TQWT-FB. This indicates that there

are 25 sub-bands in the frequency response of TQWT-FB and the BW of each sub-

band is nearly 50 Hz as shown in Fig. 4.2. The BW of each sub-band in TQWT-FB

is kept low so that the chances of FFC and its harmonic components lying in the

same sub-band are less. However, choosing very narrow BW sub-bands for the

design of TQWT-FB will affect the time-domain localization of sub-band signals.
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Figure 4.2: TQWT-FB designed for determination of IFF from speech signals
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Table 4.1: Chosen values of Q-factor and D in the design of TQWT-FB

TBN Q-factor D TBN Q-factor D

1 1.73 40 14 5.93 76
2 2.017 43 15 6.24 78
3 2.313 46 16 6.47 79
4 2.62 49 17 6.7 80
5 2.935 52 18 6.94 81
6 3.323 56 19 7.18 82
7 3.45 56 20 7.42 83
8 3.79 59 21 7.77 85
9 4.14 62 22 8.12 87
10 4.5 65 23 8.47 89
11 4.865 68 24 8.83 91
12 5.24 71 25 9.19 93
13 5.62 74

The parameter R = 9 is assigned to each TQWT block in designing of TQWT-FB.

The assigned values of Q-factor and D to each TQWT block are mentioned in Table

4.1.

4.2.2 TDS section

The TDS section segments the components lying at different time interval in a sub-

band signal using algorithm mentioned in sub-section 3.3.2. The value of TH in

TDS section is chosen low because there may be some low energy FFC present

in the speech signal. The chosen values of TH under different circumstances are

mentioned in simulation and results section.

4.2.3 SFFC extraction unit

The components from outputs of TDS sections are given input to SFFC extraction

unit. Each component can be represented by a band number bn and component

number cn. Let the sub-band signal shown in Fig. 3.3(a) is the output of lth TQWT

block, where 1 ≤ l ≤ 25, then bn of components shown in Fig. 3.3(e) and (f)
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is equal to l. Since the component in Fig. 3.3(e) exist before component in Fig.

3.3(f) in time-domain, therefore cn = 1 for component in Fig. 3.3(e) and cn = 2

for component in Fig. 3.3(f). There is possibility that two components having

different bn value, exist in same time duration. Since the frequency of FFC is lower

than that of its harmonic component, the SFFC extraction unit will select that

component which has lower bn value. It may be possible that this section could

not find any component at particular sample instant. Then that sample instant is

assumed to be part of a non-voiced region and no component is selected in that

region. However, it is not necessary that selected components belong to FFC only.

It may be possible that the time-duration of harmonic component is slightly more

than time-duration of FFC by few samples. For these few samples, this unit will

select harmonic component. When a harmonic component is selected, then by sim-

ple addition of components will not produce FFC. Therefore, this section performs

weighted addition of selected components which gives more weight to components

which belong to FFC. The weight assigned to a component is the number of times

that component is selected by SFFC extraction unit.

Suppose a component Cp1, exists from sample instants n1 to n2, and another

component Cp2 exists from sample instants n0 to n2, where n0 < n1. Let bn1 is the

band number of Cp1 and bn2 is the band number of Cp2, and bn1 < bn2. Then from

sample instant n0 to n1 − 1, this unit will select Cp2, n1 − n0 times. Similarly Cp1

will be selected n2 − n1 + 1 times from sample instant n1 to n2 because bn1 < bn2.

Hence weight of Cp1 will be n2 − n1 + 1 and weight of Cp2 will be n1 − n0. Usually

the difference n1 − n0 is very low in speech signal, hence if Cp2 is harmonic of Cp1,

then weight of Cp2 will be very less.

The components are added after assigning weights to them to obtain FFC with

scaled amplitude which we termed as SFFC. The SFFC may have samples of small

amplitude in non-voiced regions as well. These low amplitude samples exist because

value of TH is chosen low in TDS section in order to retain FFC with low energy.

Therefore, to eliminate such samples, the envelope of normalized SFFC is computed.
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The normalization is done by dividing SFFC by the maximum value of SFFC. The

envelope is compared with a TH termed as FTH to eliminate those samples which oc-

cur in non-voiced regions. The value of FTH is determined empirically as mentioned

in simulation results section.

4.2.4 Computation of IFF using the Hilbert transform

From SFFC, an analytic signal can be obtained whose real and imaginary part would

be SFFC and Hilbert transform of SFFC respectively. The IFF is computed using the

derivative of the phase angle of analytic signal and smoothing operation (Upadhyay

and Pachori, 2015a; Upadhyay et al, 2017).

4.3 Performance evaluation

In order to determine the efficacy of the proposed method, a performance evaluation

parameter known as percentage GE is used. The percentage GE is the percentage of

voiced frames of 10 milliseconds duration, whose estimated IFF differs from reference

IFF by more than 20 percent (Yegnanarayana and Murty, 2009). A better method

is one which has lower percentage GE.

4.4 Simulation results

The proposed method for estimation of IFF from speech signal has been studied on

CMU-Arctic database (Kominek and Black, 2004a,b). The CMU-Arctic database

has 1150 sentences which are phonetically balanced sentences. The duration of

these sentences are about 3 seconds and their Fs is 32 kHz (Jain and Pachori, 2013).

These sentences are spoken by five-male and two-female speakers and simultaneous

electroglottograph (EGG) recorded signals are also available for two-male and one-
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female speakers. In the simulation study, the speech signal has been downsampled

by a factor of 4 before the study of the proposed method. The proposed method

has been analysed on two-male and two-female speech signals. The identity number

of these speech signals are ”10004”, ”10290”, ”30114”, and ”30203”. These chosen

speech signals for simulation are available together with their EGG signals in CMU-

Arctic database. Similar to speech signals, the EGG signals are also downsampled

by a factor of 4. The reference IFF is generated manually by finding locations of

glottal closure instant from difference EGG signal in voiced regions. The differ-

ence EGG signal is obtained by applying difference operation on EGG signal after

downsampling. The reference IFF is obtained by computing inverse of the time

duration between successive glottal closure instants and then moving average based

smoothing operation is performed with the window length of 200 samples.

The performance of the proposed method is compared with three other meth-

ods. They are multi-band summary correlogram (MBSC) method (Tan and Al-

wan, 2013), AC based method (Boersma, 1993), and cross-correlation (CC) based

method (Goldberg and Riek, 2000). The MBSC method is implemented using MAT-

LAB toolbox available at http://www.seas.ucla.edu/spapl/shareware.html.

Whereas AC and CC based methods are implemented using Praat software available

from (Boersma and Weenink, 2013).

The proposed method and compared methods are examined under three cases.

Case 1 is when the speech signal is not corrupted by any noise. Case 2 and case 3

are when the speech signal is corrupted by AWGN at 5 dB SNR and 0 dB SNR,

respectively. In the proposed method, if the value of TH is kept high, then low energy

FFC may not be detected by TDS section. Therefore TH is kept low. However, in

noisy conditions, the TH is slightly increased. The TH = 0.01, TH = 0.03, and

TH = 0.05 is chosen in case 1, case 2, and case 3 respectively. Since TH is low,

there may be some samples present in non-voiced region. Therefore the value of

FTH is determined empirically to eliminate such samples. For each speech signal

under test, the detection ACC (DA) in percentage is determined for different value
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Figure 4.3: Obtained mean DA (%) for different value of FTH in different cases

of FTH under different cases. The DA is the number of samples detected correctly

out of total number of samples (Upadhyay and Pachori, 2015b). For each case and

for each value of FTH, the mean of DAs obtained for each test signal, is computed.

The mean value of DA(%) for different values of FTH in different cases are shown in

Fig. 4.3. The FTH = 0.03 in case 1 and FTH = 0.05 in case 2 and 3 is chosen since

at these values, the mean DA(%) is highest.

The Fig. 4.4(a) shows the waveform of a speech signal in case 2 and Fig. 4.4(b)

shows the obtained SFFC from proposed method. The obtained IFF from proposed

method along with the reference IFF has been shown in Fig. 4.4(c). Similarly,

the obtained IFF from MBSC method, AC based method, and CC based method

are shown in Fig. 4.4(d), (e), and (f) respectively. From Fig. 4.4(c), (d), (e),

and (f), it can be observed that the estimated IFF from the proposed method is

more close to reference IFF as compared to IFF obtained from most of the other

compared methods. In a similar way, Fig. 4.5 and Fig. 4.6 show obtained IFF

from proposed and other compared methods for case 2 and case 3 respectively. The

computed percentage GEs for proposed method and other compared methods in

different cases are shown in Table 4.2.

The percentage GEs shown in Table 4.2, is the mean of the GEs(%) obtained by

four test signals by a particular method. The variance of percentage GEs in case1

by proposed method, MBSC method (Tan and Alwan, 2013), Praat’s AC based
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Figure 4.4: (a) Speech signal in case 1 (b) obtained SFFC from proposed method,
obtained IFF (red) by (c) Proposed method, (d) MBSC method, (e) AC based
method, and (f) CC based method. Reference IFF (blue and dashed) is shown in
(c) to (f).

Figure 4.5: (a) Speech signal in case 2 (b) obtained SFFC from proposed method,
obtained IFF (red) by (c) Proposed method, (d) MBSC method, (e) AC based
method, and (f) CC based method. Reference IFF (blue and dashed) is shown in
(c) to (f).

Table 4.2: Percentage GEs for different methods for estimation of IFF of speech
signals

Case Proposed method MBSC Praat’s AC Praat’s CC
method (Tan and Alwan, 2013) based method (Boersma, 1993) based method (Goldberg and Riek, 2000)

Case 1 1.35 2.17 4.12 13.87
Case 2 7.34 7.82 14.17 24.92
Case 3 12.42 16.45 29.43 45.10
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Figure 4.6: (a) Speech signal in case 3 (b) obtained SFFC from proposed method,
obtained IFF (red) by (c) Proposed method, (d) MBSC based method, (e) AC based
method, and (f) CC based method. Reference IFF (blue and dashed) is shown in
(c) to (f).

method (Boersma, 1993), and Praat’s CC based method (Goldberg and Riek, 2000)

is 1.57, 6.99, 23.82, and 17.92, respectively. Similarly, the variance of percentage GEs

in case2 is 60.83, 50.8, 165.23, and 115.83 for proposed method, MBSC method (Tan

and Alwan, 2013), Praat’s AC based method (Boersma, 1993), and Praat’s CC based

method (Goldberg and Riek, 2000), respectively. At the last, for case 3, the variance

of percentage GEs by proposed method, MBSC method (Tan and Alwan, 2013),

Praat’s AC based method (Boersma, 1993), and Praat’s CC based method (Goldberg

and Riek, 2000) is 85.69, 153.1, 168.36, and 13.43, respectively.

4.5 Discussion

The proposed method is designed for the estimation of the IFF of speech signals.

The TQWT-FB in proposed model decomposes the speech signal in LFR and then

TDS section segments the sub-band signals in time-domain. The components ob-

tained from TDS section are then fed to SFFC extraction unit where FFC with

scaled amplitude is obtained. The amplitude is scaled due to weighted addition of

components in SFFC extraction unit. The Hilbert transform in the last stage of
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proposed method is used to compute the IFF of speech signal.

The efficacy of proposed method is compared with MBSC method (Tan and

Alwan, 2013), AC based method (Boersma, 1993), and CC based method (Goldberg

and Riek, 2000). The MBSC method catches many harmonics in the sub-bands by

apply four finite impulse response filters. Then the envelope of the signal is used to

estimate IFF in all sub-bands. In AC based method, When a signal is windowed, it

is difficult to determine the peak which corresponds to the fundamental period in

AC function. Hence, a mechanism is implemented in Praats AC based method in

which error due to windowing a signal is minimized. The ratio of AC of windowed

voiced speech signal to the AC of window function is computed in order to reduce

the artifacts generated by windowing. In this method, due to limitation of Fs, a

sinc interpolation is used close to local maxima which correspond to fundamental

frequency of speech signal. The CC based method eliminates the rolling off effect

which occurs at higher lag values in AC. Here the CC function operates on two

different windows of data (Goldberg and Riek, 2000).

The visual representation of estimated IFF by proposed method and compared

method in different noisy conditions can be found in Fig. 4.4, Fig. 4.5, and Fig.

4.6. The Fig. 4.4 shows the estimated IFF by different methods in case 1. The

Fig. 4.4(a) shows the speech signal and Fig. 4.4(b) shows the extracted SFFC with

normalized amplitude. The components in voiced regions are clearly visible in Fig.

4.4(b). It can be observed from Fig. 4.4(c) and Fig. 4.4(d) that IFFs estimated by

proposed method and MBSC method are very close to reference IFF. On the other

hand, the AC and CC based methods are not able to track IFF within voiced region.

Similarly in Fig. 4.5(a), the speech signal corrupted with noise in case 2, can be

seen. The extracted SFFC can be seen in Fig. 4.5(b) where components in voiced

region are visible. From Fig. 4.5(c), (d), (e), and (f), it can conclude that the

IFFs estimated by proposed method and MBSC method are near to reference IFF

whereas IFFs obtained by AC and CC methods are not able to estimate IFF in some

part of voiced region.
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The speech signal for case 3 in which the signal is corrupted by AWGN at 0 dB

SNR can be seen in Fig. 4.6(a). It can be observed that the strength of the noise

increased in this case and it is difficult to find voiced and non-voiced regions from

Fig. 4.6(a). The SFFC obtained by proposed method is shown in Fig. 4.6(b). Here,

it can be observed that one component in voiced region of SFFC is significantly

attenuated by TDS section because of its low energy. It can be observed from Fig.

4.6(c) that the IFF estimated by proposed method is close to reference IFF for most

of the voiced region. However, the MBSC method is not able to compute IFF for

one voiced region. The estimated IFF by AC and CC based methods is zero for

some part or entire voiced region.

The estimated IFF by proposed method and MBSC method is close to the ref-

erence IFF in all cases. On the other hand AC and CC based methods are not able

to track IFF accurately. The GE (%) obtained by proposed method is lowest than

compared methods in all cases which can be noted from Table 4.2. The variance of

computed GE (%) from four speech signals is high in many cases, since only four

signals are used to test the proposed method and compared methods.

4.6 Summary

The method proposed in this chapter estimates the IFF of the speech signals by

applying TQWT-FB. The speech signal is decomposed by TQWT-FB in LFR and

then components from sub-band signal are segmented by TDS section. Then the

SFFC is extracted from segmented components and finally Hilbert transform is

applied on SFFC to obtain the IFF. The proposed methodology is tested on two

male and two female speech signals obtained from CMU-Arctic database under clean

and different noisy conditions. The noise cases are when speech signal is corrupted

by AWGN at 0 dB SNR and 5 dB SNR. The performance of proposed method is

evaluated in terms of GE(%) and compared with MBSC method, AC based method,

and CC based method. In clean and all noise conditions, the computed GE(%) for
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proposed method is lower than other methods. This indicates that the estimated

IFF by proposed method is closer to reference IFF as compared to other methods.
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Chapter 5

Screening of sleep apnea from

ECG signals using TQWT-FB

5.1 Introduction

The sleep apnea and hypopnea are the common respiratory disorders which occur

during the sleep (Xie and Minn, 2012). There is a complete absence of airflow during

apnea and partial blockage of airflow for the minimum of 10 seconds during hypop-

nea (American Academy of Sleep Medicine Task Force, 1999). These events can

occur several times during the sleep. The sleep apnea can be categorized into three

classes namely obstructive, central, and mixed (Mendez et al, 2009). In obstructive

sleep apnea, the breathing of subject stops due to blockage of the upper airways due

to which air does not enter into the lungs (Varon et al, 2015). During central sleep

apnea, the muscles of the subject, which control the breathing, do not receive signals

from brain properly (Javaheri and Dempsey, 2013). The mixed sleep apnea is the

combination of obstructive sleep apnea and central sleep apnea. The symptoms of

sleep apnea are the sleepiness during daytime, irritation, depression, tiredness, lack

of concentration, and low learning capacity (White, 2006). These symptoms may

create social problems and traffic accidents. A person having undiagnosed obstruc-

tive sleep apnea may get cardiovascular diseases such as congestive heart failure,
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stroke, hypertension, etc (Young et al, 1997).

Currently, polysomnography is used to diagnose sleep apnea (Nguyen et al, 2014).

In this technique, the patient has to sleep in a special laboratory for one or two

nights. There are many electrodes and sensors attached to patient’s body which

may degrade the subject’s quality of sleep (Arqub, 2017; Arqub and Abo-Hammour,

2014; Li et al, 2016; Peker, 2016). During the sleep time, physicians monitor car-

diorespiratory signals (Nguyen et al, 2014). Physicians need to identify the events

of apnea by observing the signals visually. The physicians may need to screen the

voluminous data which may lead to human errors and thus, not reliable. Moreover,

polysomnography technique is expensive since many channels are required to de-

tect the sleep apnea. Hence, it is required to develop novel methods using a single

channel which will reduce the cost of the device (Hassan and Haque, 2017) and use

advanced signal processing techniques for reliable detection of sleep apnea (Penzel

et al, 2002). There are number of methods proposed in the literature using single

channeled signal instead of polysomnography method. A review of various methods

used to diagnose obstructive sleep apnea is presented in (Faust et al, 2016).

The screening of sleep apnea from ECG signal using EMD is shown in (Hassan,

2015b) and (Hassan, 2015a). The EMD in (Hassan, 2015b) and (Hassan, 2015a) is

used to decompose the segments of ECG signals to detect apneic events. The authors

used EMD to decompose the segmented ECG signals and then extracted statistical

features like mean, skewness, variance, and kurtosis. In (Hassan, 2015b), extreme

learning machine is used for classification of apneic and non-apneic segments of

ECG signal. In (Hassan, 2015a), performance of nine different classifiers are studied

in classification problem of apneic and non-apneic events. The authors in (Acharya

et al, 2011a) used non-linear parameters like approximate entropy, fractal dimension,

correlation dimension, largest Lyapunov exponent, and Hurst exponent as features

to detect sleep apnea from ECG signals. They used artificial neural network classifier

to categorize ECG signal in either apnoea, hypopnoea, or normal group.

The work proposed in (Chen et al, 2015a) used an automatic ECG signal segmen-
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tation scheme, in which segments of unequal length are obtained for classification.

A local median filter is employed to minimize the unexpected RR intervals and SVM

is used to screen apneic segments of ECG signal. In (Mendez et al, 2009), authors

used the ECG characteristics like QRS complex area and RR interval to screen the

obstructive sleep apnea. The power spectral densities of RR interval and area of

QRS complex are evaluated by bivariate time-varying autoregressive model for each

beat. Then, neural networks and k-NN were used to classify apneic and non-apneic

segments of ECG signal.

In (Khandoker et al, 2009), the features are obtained by wavelet decomposition

of heart rate variability and ECG-derived respiration signals. The classification is

performed using SVM to detect apnea. The use of heart rate variability and ECG-

derived respiration signals for the detection of sleep apnea is also proposed in (Tri-

pathy, 2018). In (Nguyen et al, 2014), the recurrence quantification analysis statics

of heart rate variability data are used to measure the heart rate complexity. The

recurrence quantification analysis statics are used as features as they can identify

non-linear dynamics of the complex cardiorespiratory system during sleep apnea.

In (Kesper et al, 2012), authors have developed modules to evaluate sleep-disorder

breathing from ECG signals. These mutually dependent modules are cyclical vari-

ations of the heart rate analysis, QRS detection, ECG-derived respiration curves

calculations, and sleep pattern estimation.

In (Hassan and Haque, 2016), authors proposed low power automatic identifi-

cation of sleep apnea using spectral and statistical features. They used single-lead

ECG signals to detect sleep apnea. The author in (Hassan, 2016) used TQWT

to decompose segments of ECG signal. The features obtained by normal inverse

Gaussian parameters are estimated from each sub-band. Similarly, in (Hassan and

Haque, 2017), the authors have classified apneic and non-apneic segments of ECG

signal using TQWT method. They have extracted statistical features.

In (Xie and Minn, 2012), the authors proposed the detection of sleep apnea from

ECG and saturation of peripheral oxygen (SpO2) signals. They have performed
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the study using only ECG signals, only SpO2 signals, and combining both signals.

They have extracted ECG and SpO2 features and run the simulation on ten different

classifiers. The discriminative hidden Markov model (HMM) is used to detect apnea

in (Song et al, 2016). The authors of (Kumar and Kanhangad, 2018) propose novel

phase descriptors for obstructive sleep apnea detection using ECG signals. They

have considered phase descriptor obtained from phase responses of Gabor filter as

feature vector.

In literature, authors have used signals other than ECG for the screening of sleep

apnea. For example in (Azarbarzin and Moussavi, 2013), many features like zero

crossing rate, peak frequency, etc, are extracted from signals of snoring sound and

detected apneic events using linear discrimination analysis. The EMD has been used

to decompose pulse oximetry signals to classify obstructive sleep apnea (Schlotthauer

et al, 2014).

In this work, we are screening the apneic event for each minute of ECG signal.

We have proposed a methodology to classify apneic and non-apneic segments of

ECG signal. These segments are of one minute duration. These ECG segments are

non-stationary in nature. Also the apneic segment of ECG signal is more oscillatory

than the non-apneic segment of ECG signal at some time interval (Hassan, 2016).

Therefore, it motivates us to develop a technique which decomposes ECG segment

into the number of sub-band signals having different oscillatory nature and then try

to classify apneic and non-apneic segments of ECG signal by capturing similarity

between decomposed sub-band signals. Therefore, we have employed TQWT-FB

rather than TQWT, to decompose the segments of ECG signal into sub-band signals.

Since several mother wavelets are available to analyse various oscillatory signals.

After decomposition of a segment of ECG signal from TQWT-FB, the sub-band

signals are used to compute features from which apneic and non-apneic segments

can be classified with good ACC. The features are computed by applying CCE

on sub-band signals. The correntropy measures the similarity between sub-band

signals (Reddy and Rao, 2017). The novelty of proposed method can be listed as
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follows:

1. This is the first work to apply TQWT-FB for screening of sleep apnea.

2. To the best of our knowledge, the CCE is used to compute features in TQWT-

FB frame work for the first time in apneic and non-apneic ECG segments clas-

sification problem.

The rest of the chapter is constructed as follows. A brief description of the

database is given Section 5.2. Then Section 5.3 describes the proposed methodology

followed by performance evaluation parameters in Section 5.4. Then the simulation

results are shown in Section 5.5 and discussed in Section 5.6. Finally, this chapter

is summarized in Section 5.7.

5.2 Database

In this work, the apnea-ECG database (Penzel et al, 2000) has been used. It is a

public database available at Physionet (Goldberger et al, 2000). The database was

used in Computers in Cardiology challenge in the year 2000 (Penzel et al, 2002).

The database consists of 70 recordings, of which 35 of them are training data and

rest of them are testing data. The ECG signals recorded from 35 subjects of training

data are categorized into three groups namely group A, B, and C. The subjects of

group A, also known as the group of apnea have minimum 100 minutes of apneic

events (Penzel et al, 2000). Group B or borderline apnea group has 10 to 96 minutes

of apneic events and control group or group C has less than 5 minutes of apneic

events (Penzel et al, 2000). The age of subjects varies from 27 to 63 years and the

average age of subjects belonging to group A, B, and C is 50 years, 46 years, and 33

years respectively. The recording duration of each signal is between 7 to 10 hours.

The Fs is 100 Hz and signal resolution is 12 bits.

There were two types of study conducted in Computers in Cardiology challenge

2000. The first one is to discriminate patients with apnea and without apnea based
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on the training and testing data given in the database. The second study is to

detect the apneic event for each minute of ECG recording. The database provides

the annotations to indicate the presence of apneic or non-apneic event for each

minute of ECG signal. These annotations are given for 35 ECG signals of training

data (Penzel et al, 2002). In this work, we did the study of classification of the

apneic and non-apneic events for each minute of ECG signals from 35 ECG signals.

There are 6514 ECG segments of apneic class and 10531 ECG segments of non-

apneic class. In literature, lot of work has been done in classification of apneic and

non-apneic segments of ECG signals of this database (Hassan, 2015a; Hassan and

Haque, 2017; Nguyen et al, 2014). The apneic and non-apneic segments of ECG

signal are shown in Fig. 5.1 and explained in following sub-sections.
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Figure 5.1: The segment of (a) non-apneic ECG signal and (b) apneic ECG signal.
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5.3 Proposed method

The method proposed in this work performs the classification of apneic and non-

apneic segments of ECG signal. The proposed method divides the ECG signal into

segmented signals of one-minute duration in the first stage. Then, TQWT-FB is

used to decompose the segment of ECG signal in the second stage. The decomposed

signals are band-limited signals and called as sub-band signals. Then in next stage,

features are computed from sub-band signals and ranked. Then in the final stage,

a classifier is used for the classification. These stages are shown in Fig. 5.2 and

explained in following sub-sections.
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Figure 5.2: Block diagram of proposed method for automated detection of apneic
segments of ECG signal.

82



5.3.1 Preprocessing unit

In this section, ECG signals are segmented. From the database, we have the anno-

tation for each minute of ECG signal. In this work, we are classifying the apneic

and non-apneic segments of ECG signals of one-minute duration. Therefore, ECG

signals from the database are segmented into one-minute duration.

5.3.2 TQWT-FB design

The TQWT-FB used to address classification problem in this work, is designed using

Method II as described in Section 2.2. Depending upon the designing of TQWT-

FB, the ECG segment can be decomposed into any number of sub-bands. If M

is low, then ECG segments will be decomposed into few sub-bands of large BW .

On the other hand, if M is large, the TQWT-FB will decompose ECG segments

into more number of sub-bands of low BW . This also increases the computational

complexity of the system. In this work, we tested the effect of BW of sub-bands on

the performance of our method on two types of TQWT-FBs. The two FBs namely

FB 1 and FB 2 are shown in Fig. 5.3. The BW of sub-bands in FB 1 is wider

than the FB 2. The BW = 0.05 (normalized frequency) for FB 1 and BW = 0.03

(normalized frequency) for FB 2 is chosen. The M = 27 and M = 45 are chosen for

FB 1 and FB 2 respectively. The Fig. 5.3 also shows that the sub-band 1 has lowest

fc and fc of subsequent sub-bands are gradually increasing. The sub-band M has

highest fc.

The assigned values for Q-factor, R, and D in different TQWT blocks for both

FBs are mentioned in Table 5.1 and Table 5.2.
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Figure 5.3: Designed TQWT-FBs: (a) FB 1 and (b) FB 2.

Table 5.1: The chosen value of TQWT parameters for FB 1.

TBN Q-factor R D TBN Q-factor R D

1 1 9 13 15 5.5 9 13
2 1.29 9 14 16 5.7 9 12
3 1.62 9 15 17 5.95 9 11
4 1.87 9 15 18 6.2 9 10
5 2.14 9 15 19 6.5 9 9
6 2.43 9 15 20 6.8 9 8
7 2.74 9 15 21 7.17 9 7
8 3.25 9 16 22 7.55 9 6
9 3.6 9 16 23 7.97 9 5
10 3.76 9 15 24 8.46 9 4
11 4.15 9 15 25 8.95 9 3
12 4.33 9 14 26 9.34 9 2
13 4.8 9 14 27 9 9 1
14 5.3 9 14
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Table 5.2: The chosen value of TQWT parameters for FB 2.

TBN Q-factor R D TBN Q-factor R D TBN Q-factor R D

1 1 3.35 7 16 6 3.1 10 31 11 3.12 7
2 1.33 3.06 7 17 6.33 3.12 10 32 11.33 3.31 7
3 1.66 3.25 8 18 6.66 3.15 10 33 11.66 3.53 7
4 2 3.06 8 19 7 3.19 10 34 12 3.17 6
5 2.33 3.29 9 20 7.33 3.23 10 35 12.33 3.43 6
6 2.66 3.16 9 21 7.66 3.29 10 36 12.66 3.02 5
7 3 3.06 9 22 8 3.35 10 37 13 3.34 5
8 3.33 3.32 10 23 8.33 3.06 9 38 13.33 3.77 5
9 3.66 3.24 10 24 8.66 3.14 9 39 13.66 3.26 4
10 4 3.19 10 25 9 3.23 9 40 14 3.86 4
11 4.33 3.15 10 26 9.33 3.33 9 41 14.33 3.19 3
12 4.66 3.12 10 27 9.66 3.03 8 42 14.66 4.19 3
13 5 3.1 10 28 10 3.15 8 43 15 3.12 2
14 5.33 3.09 10 29 10.33 3.29 8 44 15.33 6.12 2
15 5.66 3.09 10 30 10.66 3.45 8 45 17 6 1

5.3.3 Computation of features and ranking

As apneic and non-apneic ECG segments differ in their oscillatory nature in some

interval of time (Hassan, 2016), and since these ECG segments are decomposed

into different oscillatory sub-band signals by TQWT-FB, these oscillatory sub-

band signals corresponding to apneic and non-apneic ECG segments must differ

in some sense. The correntropy examine the similarity among various sub-band sig-

nals (Reddy and Rao, 2017). Therefore, the features are computed using CCE. The

CCE is the difference of correntropy and mean correntropy (Patidar et al, 2017) and

the correntropy computes the correlation in non-linear domain (Santamaria et al,

2006). The CCE for two random variables U and V is defined as (Rao et al, 2011):

CCE(U, V ) = EU,V [K(U − V )]− EUEV [K(U − V )]

=

∫ ∫
K(u− v){dFU,V (u, v)− dFU(u)dFV (v)}

(5.1)

The E is expectation operator, FU,V (u, v) is joint probability density function of

U and V , FU(u) is marginal probability distribution function of U , and FV (v) is

marginal probability distribution function of V . The K(.) is a shift invariant kernel
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function (Rao et al, 2011).

To compute CCE, two sub-band signals are required. However, there is question

on the choice of sub-band signals for computation of CCE. The Fig. 5.5 and Fig.

5.7 show the box plots, when CCE is computed from sub-band signals belonging to

non-adjacent sub-bands of FB 1 and FB 2 respectively. Similarly, box plots in Fig.

5.4 and Fig. 5.6 are shown, when adjacent sub-bands of FB1 and FB2 respectively,

are involved in computation of CCE. It can be observed from Fig. 5.4 and Fig. 5.6,

that the features computed from sub-band signal belonging to adjacent sub-bands

show some variation in mean and interquartile range in the box plot of apneic and

non-apneic classes. Whereas this phenomenon can be observed only in Fig. 5.5(c)

and Fig. 5.7(d).

Figure 5.4: The box plot of CCE computed for FB 1 from sub-band signals from
(a) sub-band 1 and sub-band 2, (b) sub-band 2 and sub-band 3, (c) sub-band 3 and
sub-band 4, (d) sub-band 4 and sub-band 5, (e) sub-band 5 and sub-band 6, (f)
sub-band 6 and sub-band 7.

Due to this reason, the CCE is computed from sub-band signals obtained from

adjacent sub-bands only. In total M − 1 features are computed. The CCE is com-

puted by using ITL toolbox available at http://www.sohanseth.com/Home/codes.

The features obtained are ranked in order to obtain most effective features. This

86

http://www.sohanseth.com/Home/codes


Figure 5.5: The box plot of CCE computed for FB 1 from sub-band signals from
(a) sub-band 1 and sub-band 7, (b) sub-band 2 and sub-band 6, (c) sub-band 3 and
sub-band 5.

Figure 5.6: The box plot of CCE computed for FB 2 from sub-band signals from
(a) sub-band 1 and sub-band 2, (b) sub-band 2 and sub-band 3, (c) sub-band 3 and
sub-band 4, (d) sub-band 4 and sub-band 5, (e) sub-band 5 and sub-band 6, (f)
sub-band 6 and sub-band 7 , (g) sub-band 7 and sub-band 8 , (h) sub-band 8 and
sub-band 9.
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Figure 5.7: The box plot of CCE computed for FB 2 from sub-band signals from
(a) sub-band 1 and sub-band 9, (b) sub-band 2 and sub-band 8, (c) sub-band 3 and
sub-band 7, (d) sub-band 4 and sub-band 6.

process is basically used to select higher ranked features and the features with lower

rank can be omitted. Therefore, a highest classification ACC can be obtained with

the less number of features using feature ranking test. The ranking is performed

using Students t-test algorithm (Acharya et al, 2015a,b; Box, 1987). The features

are ranked according to t-values obtained by t-test. A feature having higher t-value

will have a better rank.

The application of CCE in the analysis of physiological signal can be found

in (Patidar et al, 2017). The CCE is used to classify normal and alcoholic EEG

signals. Similarly, in (Reddy and Rao, 2017), the CCE is used for the classification

of epileptic EEG signals.

5.3.4 Classification

In this work, we have tested three types of classifiers belonging to different family

of classifiers. The extracted features are given as input to these classifiers and
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then variation in performance parameters is observed. These classifiers are briefly

described below:

1. Multilayer perceptron (MLP): This classifier is neural network based (Lipp-

mann, 1987; Madyastha and Aazhang, 1994). It is a feed-forward network

which consists of HL number of hidden layers between input and output layer.

Here 1 ≤ HL. A node on a layer is attached to each node of another layer

with some weight. These weights are optimized using back-propagation algo-

rithm (Lippmann, 1987) which uses gradient search technique to decrease the

cost function.

2. Bagging classifier: It is a ensemble kind of classifier. The bootstrap aggregating

or bagging classifier was introduced in (Breiman, 1996). If there are I instances,

then the algorithm obtains the training data of size I from original instances.

The size of training data is same as the original instances but they are not the

same. There may be few instances in original instances which may not present

in training data and there may be few instances from the original instances

which are repeated in the training data. Then a weak classifier is generated

by the learning system. These steps are repeated for T trails. In each trial, a

weak classifier is generated and then finally a strong classifier is obtained by

aggregating the weak classifiers. In (Afkhami et al, 2016), bagging classifier has

been used in the classification of cardiac arrhythmias from ECG signals. It is

also used in (Hajinoroozi et al, 2015), for the classification of cognitive states

of the driver.

3. Random forest (RF) classifier: It is one of the tree based classifier. It depends on

classification results from many classification trees (Breiman, 2001). The trees

are produced by random tree technique (Fraiwan et al, 2012). Then each tree is

assigned with a random vector before the classification. These assigned random

vectors are independent of each other but they have the same distribution. Thus

the classification performed by a tree depends on the training data and assigned
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random vector. At the time of performing classification, the class is decided by

a margin function. The margin function depends on tree classifier (Breiman,

2001). A high value of margin function shows classification with good ACC.

The RF classifier is used in (Fraiwan et al, 2012) for the classification of sleep

stages from EEG signals and in (Acharya et al, 2011b), to detect glaucoma.

The WEKA software (Hall et al, 2009) is used to perform classification in this

work. All the classifiers mentioned in the sub-section are available in WEKA.

5.4 Performance measures

The performance measures parameters namely ACC, specificity (SPE), and sensitiv-

ity (SEN) are used to evaluate the classifiers. The ACC is the percentage of apneic

ECG segments and non-apneic ECG segments identified correctly from the total

ECG segments. The SPE is the percentage of non-apneic ECG segments identified

as non-apneic ECG segments and SEN is the percentage of apneic ECG segments

classified as apneic ECG segments. These parameters can be expressed in terms of

four variables namely true positive (TP), true negative (TN), false positive (FP),

and false negative (FN). Here, TP, TN, FP, and FN are total number of accurately

identified true positive samples, true negative samples, false positive samples and

false negative samples, respectively. The expressions for the performance parameters

are shown as follows (Azar and El-Said, 2014):

ACC =
TP + TN

TP + TN + FP + FN
× 100(%) (5.2)

SEN =
TP

TP + FN
× 100(%) (5.3)

SPE =
TN

TN + FP
× 100(%) (5.4)
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5.5 Simulation results

In the experiment, first, we considered only the best ranked feature for classification.

Then in next step, we considered top two ranked features for classification. Then

top three ranked features are selected and so on. The variation in ACCs with respect

to the selected number of ranked features (NORF), for different classifiers with FB

1 and FB 2 are shown in Fig. 5.8 and Fig. 5.9 respectively. The performance is

evaluated using ten-fold cross-validation strategy (Kohavi, 1995). In this strategy,

the entire sample is randomly divided into 10 mutually exclusive sub-samples. One

sub-sample is considered as test data and remaining 9 sub-samples are used for

training the classifier. This process is repeated for 10 times and each sub-sample

is used as test data exactly once. The performance parameters obtained by the

classifier in each process are averaged to obtain the final result.

Figure 5.8: Obtained ACC (%) by different classifiers when FB 1 is considered in
proposed method

It can be observed from Fig. 5.8 and Fig. 5.9, that the maximum ACC obtained

by RF classifier is more than the other classifiers. The maximum ACC achieved by

RF classifier is shown in both figures Fig. 5.8 and Fig. 5.9. The ACC obtained by

bagging classifier is very close to the ACC obtained by RF classifier for most of the
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Figure 5.9: Obtained ACC (%) by different classifiers when FB 2 is considered in
proposed method

times and the performance of MLP is poor in both cases. Also, the ACC obtained

by each classifier increases when the BW of sub-band reduces. Since the BW of

sub-bands for FB 2 is lower than the FB 1, the ACC shown in Fig. 5.9 is higher

than the ACC shown in Fig. 5.8. The highest ACC of 92.74% is obtained with RF

classifier for FB 2 experiment when 42 ranked features are selected for classification.

In this simulation, the kernel size used to compute CCE is equal to one for

selection of best FB and classifier. The size of kernel provides the resolution where

correntropy measures similarities in high dimensional kernel feature space (Huijse

et al, 2012). To study the effect of kernel size, we performed simulation study for

different kernel sizes. From Fig. 5.8 and Fig. 5.9, it can be concluded that use

of FB 2 and RF classifier gives the best result. Therefore, we chose FB 2 and

RF classifier in proposed method and varied the kernel size to compute CCE. The

different kernel sizes chosen are 0.5, 1, 2, and 10. The maximum ACC achieved

by proposed method for kernel size 0.5, 1, 2, and 10 is 92.78%, 92.74%, 92.64%,

and 92.57% respectively. It can be observed that the variation in obtained ACC

by change in kernel size is small. However, the maximum obtained ACC is equal

to 92.78%. It is achieved when kernel size is equal to 0.5 to compute features and
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NORF = 28 for classification. The obtained SPE is 93.91% and SEN is 90.95%. The

statistical analysis of features for this case is presented in Table 5.3. It shows the

mean and standard deviation (SD) of each feature for each class. The Table 5.3 also

specifies probability (p)-value obtained from Kruskal-Wallis statistical test (McKight

and Najab, 2010) corresponding to each feature. In the Table 5.3, (a,b) represents

the feature computed from sub-band signals of sub-band a and sub-band b.

The performance of the proposed method is compared with other existing meth-

ods in terms of ACC(%), SPE(%), and SEN(%) is shown in Table 5.4. Also, the

length of ECG segment used by different methods is mentioned in Table 5.4. Based

on the length of ECG segment, and annotation of apneic and non-apneic events given

in database, the number of ECG segments in each class used by different methods

can be determined.

5.6 Discussion

In this work, TQWT-FB is used to decompose segment of ECG signal. The TQWT-

FB has M number of sub-bands and the BW of each sub-band is nearly same. Each

sub-band produces a sub-band signal. The features are computed by applying CCE

on sub-band signals generated from adjacent sub-bands of TQWT-FB. The features

are then ranked using Student’s t-test. Then several experiments are performed in

which the different NORF are fed to the different classifiers. The best result was

given by RF classifier. Also, the effect of change in kernel size to compute features

is also observed. These changes affect the ACC, SEN, and SPE obtained by the

classifier.

In this work, two types of TQWT-FBs namely FB 1 and FB 2 are examined.

The BW of sub-bands of FB 1 is higher than BW of sub-bands of FB 2 as shown

in Fig. 5.3. From this figure, it can be observed that more than one sub-band of FB

2, are required to cover the frequency range spanned by one sub-band of FB 1 and

the proposed method takes into account the similarity between these sub-bands of
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Table 5.3: Statistical analysis of features obtained by computing CCE with kernel
size equal to 0.5.

(a,b) Feature Mean ± SD Mean ± SD p-value
rank of apneic of non-apneic

class class

(1,2) 6 6.2× 10−3 ± 5.9× 10−3 5.6× 10−3 ± 7.7× 10−3 5.06× 10−15

(2,3) 4 7.9× 10−3 ± 8.8× 10−3 6.6× 10−3 ± 9.3× 10−3 3.55× 10−19

(3,4) 5 9.9× 10−3 ± 10.2× 10−3 7.4× 10−3 ± 9.9× 10−3 1.38× 10−39

(4,5) 7 14.5× 10−3 ± 13.4× 10−3 10.3× 10−3 ± 12.1× 10−3 3.68× 10−96

(5,6) 9 15.2× 10−3 ± 14.1× 10−3 11.0× 10−3 ± 13.0× 10−3 7.83× 10−94

(6,7) 10 15.3× 10−3 ± 14.2× 10−3 10.9× 10−3 ± 13.2× 10−3 8.88× 10−109

(7,8) 8 14.2× 10−3 ± 13.3× 10−3 10.2× 10−3 ± 12.2× 10−3 9.63× 10−92

(8,9) 11 13.6× 10−3 ± 12.9× 10−3 9.8× 10−3 ± 11.9× 10−3 4.81× 10−84

(9,10) 12 14.0× 10−3 ± 13.2× 10−3 10.1× 10−3 ± 12.4× 10−3 7.90× 10−103

(10,11) 14 14.2× 10−3 ± 13.4× 10−3 10.4× 10−3 ± 12.5× 10−3 5.48× 10−100

(11,12) 13 13.9× 10−3 ± 13.2× 10−3 10.3× 10−3 ± 12.3× 10−3 2.93× 10−89

(12,13) 15 13.0× 10−3 ± 12.2× 10−3 9.7× 10−3 ± 11.5× 10−3 6.04× 10−86

(13,14) 21 11.9× 10−3 ± 11.2× 10−3 8.8× 10−3 ± 10.6× 10−3 5.20× 10−90

(14,15) 20 10.7× 10−3 ± 10.1× 10−3 7.9× 10−3 ± 9.6× 10−3 2.03× 10−96

(15,16) 16 9.4× 10−3 ± 9.0× 10−3 6.9× 10−3 ± 8.6× 10−3 1.08× 10−104

(16,17) 19 8.0× 10−3 ± 7.7× 10−3 5.9× 10−3 ± 7.5× 10−3 1.06× 10−109

(17,18) 22 6.7× 10−3 ± 6.5× 10−3 5.0× 10−3 ± 6.4× 10−3 5.42× 10−121

(18,19) 18 5.6× 10−3 ± 5.3× 10−3 4.2× 10−3 ± 5.3× 10−3 6.11× 10−140

(19,20) 17 4.5× 10−3 ± 4.3× 10−3 3.4× 10−3 ± 4.4× 10−3 4.24× 10−159

(20,21) 3 3.6× 10−3 ± 3.3× 10−3 2.7× 10−3 ± 3.6× 10−3 2.31× 10−182

(21,22) 23 2.8× 10−3 ± 2.5× 10−3 2.1× 10−3 ± 3.0× 10−3 2.34× 10−195

(22,23) 24 2.4× 10−3 ± 2.1× 10−3 1.8× 10−3 ± 2.6× 10−3 9.88× 10−203

(23,24) 25 2.0× 10−3 ± 1.7× 10−3 1.5× 10−3 ± 2.5× 10−3 5.28× 10−210

(24,25) 26 1.50× 10−3 ± 1.2× 10−3 1.1× 10−3 ± 2.2× 10−3 2.16× 10−218

(25,26) 27 1.20× 10−3 ± 0.89× 10−3 0.87× 10−3 ± 2.0× 10−3 1.24× 10−242

(26,27) 2 0.99× 10−3 ± 0.76× 10−3 0.75× 10−3 ± 2.0× 10−3 2.46× 10−278

(27,28) 28 0.84× 10−3 ± 0.65× 10−3 0.64× 10−3 ± 1.9× 10−3 1.24× 10−299

(28,29) 1 0.63× 10−3 ± 0.51× 10−3 0.50× 10−3 ± 2.0× 10−3 9.86× 10−283

(29,30) 44 0.47× 10−3 ± 0.40× 10−3 0.41× 10−3 ± 2.0× 10−3 1.94× 10−232

(30,31) 42 0.42× 10−3 ± 0.38× 10−3 0.38× 10−3 ± 2.0× 10−3 6.87× 10−185

(31,32) 43 0.38× 10−3 ± 0.36× 10−3 0.36× 10−3 ± 2.0× 10−3 1.06× 10−157

(32,33) 41 0.29× 10−3 ± 0.28× 10−3 0.30× 10−3 ± 1.9× 10−3 1.17× 10−139

(33,34) 40 0.26× 10−3 ± 0.25× 10−3 0.29× 10−3 ± 2.1× 10−3 7.04× 10−116

(34,35) 39 0.23× 10−3 ± 0.23× 10−3 0.29× 10−3 ± 2.4× 10−3 6.26× 10−88

(35,36) 38 0.22× 10−3 ± 0.23× 10−3 0.29× 10−3 ± 2.5× 10−3 1.00× 10−61

(36,37) 37 0.20× 10−3 ± 0.22× 10−3 0.29× 10−3 ± 2.8× 10−3 2.49× 10−43

(37,38) 36 0.15× 10−3 ± 0.17× 10−3 0.24× 10−3 ± 2.5× 10−3 2.59× 10−33

(38,39) 29 0.13× 10−3 ± 0.15× 10−3 0.23× 10−3 ± 2.6× 10−3 2.25× 10−27

(39,40) 35 0.12× 10−3 ± 0.14× 10−3 0.23× 10−3 ± 2.9× 10−3 1.96× 10−23

(40,41) 34 0.11× 10−3 ± 0.13× 10−3 0.22× 10−3 ± 2.8× 10−3 1.00× 10−14

(41,42) 30 0.09× 10−3 ± 0.12× 10−3 0.23× 10−3 ± 3.2× 10−3 2.44× 10−8

(42,43) 33 0.14× 10−3 ± 0.08× 10−3 0.21× 10−3 ± 2.8× 10−3 1.45× 10−4

(43,44) 31 0.06× 10−3 ± 0.10× 10−3 0.20× 10−3 ± 3.2× 10−3 1.89× 10−1

(44,45) 32 0.03× 10−3 ± 0.04× 10−3 0.13× 10−3 ± 2.3× 10−3 2.40× 10−1
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Table 5.4: Comparison of proposed method with other existing techniques using the
same database.

Authors Length of ACC(%) SPE(%) SEN (%)
ECG segment

(Nguyen et al, 2014) Sliding window 85.26 83.47 86.37
of 500 RR
intervals with
window step
of 1 minute

(Hassan, 2015a) - 83.77 82.79 85.2
(Hassan and Haque, 2016) 1 minute 85.97 86.93 84.14
(Varon et al, 2015) 1 minute 84.74 84.69 84.71
(Chen et al, 2015b) 1 minute 82.07 80.24 83.23
(Hassan, 2016) 1 minute 87.33 90.72 81.99
(Song et al, 2016) 1 minute 86.2 88.4 82.6
(Hassan and Haque, 2017) 1 minute 88.88 91.49 87.58
(Tripathy, 2018) 1 minute 76.37 74.64 78.02
(Janbakhshi and Shamsollahi, 2018) 1 minute 90.9 91.8 89.6
Proposed work 1 minute 92.78 93.91 90.95

FB 2 for classification problem. In the proposed method, the features are obtained

by computing CCE between sub-band signals and CCE depends on the correntropy

which computes the similarity of two sub-band signals (Reddy and Rao, 2017). The

results from Fig. 5.8 and Fig. 5.9 clearly indicate the rise in the values of ACC when

BW of sub-bands is reduced. Therefore, the benefit of the proposed method is that it

can classify apneic and non-apneic ECG segments more accurately by decomposing

ECG segment into narrow sub-bands, and then computing CCE to find similarity

among them. When BW is reduced, the TQWT-FB has more number of sub-bands

to cover the entire range of frequencies of the signal. The segmented ECG signal is

decomposed into more number of sub-band signals and therefore the limitation of

proposed method is that the complexity of the system increases as BW is reduced.

Also we observed that there is not much change in obtained performance measure

parameters if features are computed with different kernel size. The maximum ACC

is achieved when kernel size is 0.5.

The maximum ACC is achieved when RF classifier is used in proposed model.

Also the RF classifier is suitable for handling big data in less time and yields high

performance (Genuera et al, 2017). As there are 6514 segments of ECG signal be-
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longing to apneic class and 10531 segments of ECG signals of non-apneic class. Hence

the data used in this work is big and RF classifier is suitable in this application.

The Table 5.3 presents the statistical analysis in terms of mean, SD, and p-value

of CCE computed from sub-band signals. The Table 5.3 show that most of the

features computed by CCE, have p− value < 0.05 indicating statistical significance.

The proposed method outperformed other existing methods in terms of perfor-

mance measure parameters, which is shown in Table 5.4. In (Nguyen et al, 2014),

recurrence quantification analysis statics are used as features and then SVM and

neural network are employed for the classification. They achieved ACC of 85.26%.

The author in (Hassan, 2015a) tested neural network, k-NN, adaptive boosting, RF,

bagging, naive bayes, discriminant analysis, restricted boltzmann machine, and ex-

treme learning machine for classification. The best ACC is achieved by extreme

learning machine classifier. They obtained ACC of 83.77%. In (Hassan and Haque,

2016), the authors used bagging classifier and obtained ACC = 85.97% by using sta-

tistical and spectral features. The authors in (Varon et al, 2015) used four features

to detect the sleep apnea from ECG signals. The four features are serial correla-

tion coefficients, SD of RR interval, principal components of QRS complexes and

orthogonal subspace projections between heart rate and respiration. The authors

used LS-SVM for classification. They achieved ACC in this method is 84.74%. The

apnea detection algorithm proposed in (Chen et al, 2015b) extracted the features

from segmented RR intervals. Then kernel density classifier is used to detect apneic

event using these features where they achieved ACC of 82.07%. In (Hassan, 2016),

the authors used adaptive boosting for classification to obtain ACC = 87.33%. The

authors in (Song et al, 2016) considered the momentary dependence within the

segmented ECG signals. The discriminative HMM is used to capture the momen-

tary dependence. They obtained ACC = 86.2%. In (Tripathy, 2018), The author

extracted features from intrinsic band functions of heart rate variability and ECG-

derived respiration signals. The extracted features are (energy and fuzzy entropy)

are fed to the kernel extreme learning machine classifier for classification. In (Hassan
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and Haque, 2017), segmented ECG signal is decomposed by TQWT and then sta-

tistical features like variance, skewness, and kurtosis are computed from sub-band

signals and finally used random under sampling boosting classifier. In (Janbakhshi

and Shamsollahi, 2018), the ECG-derived respiration based features are used in the

screening of sleep apnea using ECG signals. The classification has been performed

using artificial neural network. The authors achieved ACC = 90.9% in this work.

In proposed method, the similarity among uniform BW sub-band signals is con-

sidered by computing CCE as features. Then by using RF classifier, we obtained

ACC = 92.78%.

5.7 Summary

In this chapter, a novel system for the classification of apneic and non-apneic seg-

ments of ECG signal is proposed. The segmented (one-minute duration) ECG signals

are decomposed by TQWT-FB. In this work, we tested our system with two types

of FBs (FB 1 and FB 2) with different BW of their sub-bands. The decomposed

signals are then used to compute the features. The CCE features are obtained from

sub-band signals generated from adjacent sub-bands. We have achieved an ACC of

92.78% for FB 2 with RF classifier. Our proposed method performed better than

the existing methods.
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Chapter 6

Classification of epileptic EEG

signals using TQWT-FB

6.1 Introduction

In this chapter, we have presented our introduction in three sub-sections: (i) back-

ground, (ii) literature review, and (iii) overview of proposed method. In the back-

ground, detailed information on epilepsy disease is explained. Various automated

detection systems developed for the detection of epilepsy using EEG signal is de-

scribed in literature review sub-section. Then overview of proposed method is pre-

sented in third sub-section.

6.1.1 Background

Almost sixty million people throughout the world are affected with epilepsy disorder

and most of them belong to the developing countries (Witte et al, 2003). The

epilepsy is the neurological disorder occurs inside human brain. During epilepsy,

seizure events occur frequently. To analyse the neurological activity of brain, the

EEG signals are commonly used. The EEG signals are the electrical activity of

brain and it was first observed by Caton in 1875 (Caton, 1875). Later, in 1929, Hans
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Berger experimentally showed the presence of EEG signals by placing galvanometer

connected electrodes on the head (Berger, 1929). Since then, EEG signals are used in

many research areas including the diagnosis of epilepsy (Peker et al, 2016). However,

it is difficult and time-consuming the for neurologists to detect the epileptic seizure

visually. Therefore, many automated techniques using advanced signal processing

algorithms have been proposed to detect epileptic seizures (Bajaj and Pachori, 2012;

Bhattacharyya et al, 2017b; Sharma and Pachori, 2015). These techniques classify

and detect epileptic seizure based on the extracted features from the EEG signals.

6.1.2 Literature review

In literature, there are many studies presented for the diagnosis of epilepsy through

EEG signals. These studies perform detection and classification of EEG signals.

Generally, the classification problems which are dealt in literature are classification

of seizure and seizure-free EEG signals, classification of seizure and non-seizure

EEG signals, classification of seizure and normal EEG signals, and classification of

seizure, seizure-free, and normal EEG signals. The seizure EEG signals are recorded

during seizure activities and seizure-free EEG signals are recorded when seizure

activities are absent from the patient suffering from epilepsy (Andrzejak et al, 2001).

The normal EEG signals are recorded from healthy subjects and non-seizure EEG

signals include both normal and seizure-free EEG signals (Andrzejak et al, 2001).

These classifications can be performed by extracting features from EEG signals.

The features can be extracted in frequency-domain, time-domain, T-F domain, or

by non-linear signal analysis methods.

Due to non-stationary nature of EEG signals (Boashash et al, 2003), the features

in T-F domain can be extracted. In (Sharma and Pachori, 2018b), the authors pro-

posed IEVDHM-HT based T-F representation to analyse the non-stationary signals.

The proposed T-F representation in (Sharma and Pachori, 2018b), has been used

to classify seizure-free and seizure EEG signals. If the signals length is large, then
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size of Hankel matrix used in T-F representation would be more. This increases

the complexity of the system. In (Samiee et al, 2015), the features used to clas-

sify seizure and non-seizure EEG signals are extracted from rational discrete STFT

and then MLP classifier is used as classifier. The T-F based methods along with

artificial neural network were used to classify epileptic seizure from EEG signals

(Tzallas et al, 2009, 2007). Different T-F distributions are considered in (Samiee

et al, 2015; Tzallas et al, 2009, 2007). The choice of T-F distribution may affect the

performance analysis of non-stationary signal like EEG. Since, these distributions

differ in terms of their T-F localization and complexity. Therefore T-F distribution

with good localization and less complexity should be chosen to analyze the EEG

signals in T-F domain. There are different kinds of T-F distributions are considered

in (Samiee et al, 2015; Tzallas et al, 2009, 2007). Different T-F distributions differ

in terms of localization and complexity. The features based on time and frequency

domain are used to detect epileptic seizure EEG signals as shown in (Polat and

Gunes, 2007; Srinivasan et al, 2005). However, in these methods, the non-stationary

nature of EEG signals is not considered.

In non-linear signal analysis methods, classification of seizure EEG signals have

been performed using nonlinear parameters as features. The correlation dimension

(Lehnertz and Elger, 1995), fractal dimension (Accardo et al, 1997; Patidar et al,

2015a), Lyapunov exponent (Guler et al, 2005; Ubeyli, 2010), Higher order spectra

(Acharya et al, 2011d), continuous WT (Acharya et al, 2013b), recurrence quantifi-

cation analysis (Acharya et al, 2011c), Hurst exponent (Acharya et al, 2009), ap-

proximate entropy (Liang et al, 2010), sample entropy and phase entropy (Acharya

et al, 2012) are the various nonlinear features used for the seizure detection with

EEG signals. However, there is need to find the suitable non-linear parameter which

can provide significant information for accurate classification, since they are applied

directly on the EEG signals.

Since the nature of EEG signal is non-stationary (Boashash et al, 2003), there are

many studies presented in which features are extracted after the decomposed EEG
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signals. The EMD has been used to decompose EEG signals (Sharma and Pachori,

2015) into set of IMFs. Then features based on phase space representation of IMFs

are obtained for classification of seizure-free and seizure EEG signals. Similarly

in (Pachori and Patidar, 2014), 95% confidence area of ellipse has been computed

from second order difference plot of IMFs and used as feature to classify seizure and

seizure-free EEG signals. Similarly in (Pachori et al, 2015), classification of normal

and seizure EEG signals is shown. The Fourier-Bessel series expansion has been

used to compute the mean frequency of IMFs (Pachori, 2008). The mean frequency

is used as feature to classify seizure-free and seizure EEG signals. Also in (Oweis

and Abdulhay, 2011), the weighted mean frequency of IMFs are introduced to find

epileptic seizure EEG signals. From the plots of analytic IMFs, area used to classify

seizure and normal EEG signals (Pachori and Bajaj, 2011). In (Bajaj and Pachori,

2012), the non-seizure and seizure EEG signals are classified by feature set obtained

by FM and AM bandwidths of IMFs. These methods make use of EMD for signal

decomposition. However, the EMD suffers from mode-mixing problem which is the

presence of intermittency at some part of the signal (Huang et al, 1999; Oweis and

Abdulhay, 2011). Due to this mode-mixing, it is hard to predict whether different

time-scale oscillations occur in a single mode or oscillation of constant time scale

given to different modes (Oweis and Abdulhay, 2011).

Apart from EMD, the wavelet transform has been used for signal decomposition

in various methods. In (Subasi and Gursoy, 2010), the EEG signal is decomposed

into number of sub-bands by applying discrete WT and then statistical features are

computed from sub-bands. Then, SVM after data dimension reduction, has been

applied for classification of normal and seizure EEG signals. Similar classification

problem is addressed in (Lee et al, 2014), where features have been computed from

Euclidean distance, which are computed from wavelet coefficients. In (Orhan et al,

2011), the discrete WT is used to decompose EEG signal into sub-bands. Then

clustering of wavelet coefficients using k-means algorithm is accomplished for each

sub-bandss. Using distribution of wavelet coefficients, the probability distributions
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were computed and fed as input to MLP neural network. The discrete WT is un-

able to differentiate input signal changes and the phase information of signal is

absent (Peker et al, 2016). To overcome these limitations, the authors in (Peker

et al, 2016), extracted features from EEG signals using dual tree complex wavelet

transform (DTCWT). Then, complex valued neural networks is used for diagnosis

of epilepsy. Also in (Chen, 2014), DTCWT and Fourier features have been used

to detect seizure by using nearest neighbor classifier. Other wavelet transform and

multi-wavelet transform based techniques for classification and detection of epilep-

tic seizure can be found in (Adeli et al, 2003, 2007; Ghosh-Dastidar et al, 2007;

Guo et al, 2010; Khan and Gotman, 2003; Ocak, 2009; Subasi, 2007). In (Patidar

and Panigrahi, 2017), the EEG signals are decomposed into sub-bands by applying

TQWT and features were obtained by applying Kraskov entropy. The authors used

LS-SVM classifier to classify seizure and seizure-free EEG signals. The application

of TQWT to decompose EEG signals can also be found in (Hassan et al, 2016),

where authors classify normal, seizure-free, and seizure EEG signals by using bag-

ging classifier. Similarly in (Sharma and Pachori, 2017a), authors applied TQWT to

decompose EEG signals and computed fractal dimension as feature to address vari-

ous kinds of classification problems. In (Bhattacharyya et al, 2017b), EEG signals

are decomposed by TQWT and then k-NN based entropies were estimated in order

to classify epileptic EEG signals. These methods which used TQWT to decompose

the EEG signals need to find optimum value of Q-factor before decomposition. This

is because a Q-factor defines a mother wavelet which is not suitable to analyse sig-

nals of different oscillatory nature (Selesnick, 2011c). In (Bhati et al, 2017b) and

(Bhati et al, 2017a), optimal wavelet filter-banks are designed to classify seizure-free

and seizure EEG signals.
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6.1.3 Overview of proposed method

In this work, we address the classification of seizure, seizure-free, and normal EEG

signals. The EEG signals are non-stationary in nature and hence it would be better

if they are decomposed into less complex signals. The seizure, seizure-free, and

normal EEG signals has different characteristics (Andrzejak et al, 2001). Therefore,

it gives us motivation to classify EEG signals by decomposing them into set of sub-

band signals. Then by selecting optimum number of sub-band signals and capturing

similarity among these sub-bands would result in good ACC. Therefore, we employed

a TQWT-FB to decompose EEG signals. The TQWT-FB contains nearly constant

BW sub-bands which are obtained from different Q-factor values. These different

Q-factor values generate various mother wavelets, which are suitable to analyse

different EEG signals which vary in oscillatory nature since they are non-stationary

(Boashash et al, 2003). If different EEG signals of different oscillatory nature are

decomposed by TQWT, then only single value of Q-factor can be used. Then,

there is need to determine optimum value of Q-factor for decomposing different

EEG signals. Since, only one value of Q-factor can be used by TQWT and single Q-

factor value is not suitable to analyse both low and high oscillatory signals (Selesnick,

2011c).

After decomposition of EEG signals by TQWT-FB, the cross information po-

tential (CIP) is applied on sub-band signals to compute features. The CIP captures

the similarity between two random variables (Xu et al, 2008). The application of

TQWT-FB and CIP for the detection of epilepsy are the novelties of this work.

The rest of the chapter is organized as follows: A brief overview of dataset

used in this study is presented in Section 6.2. Section 6.3 describes the proposed

methodology which includes description of design of TQWT-FB, method to compute

features, and classifier used in this work. The simulation results are presented in

Section 6.5. The Section 6.6 presents the discussion and finally Section 6.7 concludes

the chapter.
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6.2 Database

The dataset used in this study is obtained from University of Bonn, Germany (An-

drzejak et al, 2001). It is publicly available online database which contains EEG

signals recorded from healthy and epileptic subjects. The duration and Fs of each

signal is 23.6 seconds and 173.67 Hz, respectively. The signals are categorized into

five classes, namely Z, O, N, F, and S. Each class contains 100 EEG signals. The

EEG signals of classes Z and O are the recorded from five healthy subjects using

surface recording and standard 10-20 electrode placement system. The EEG sig-

nals from classes Z and O belong to normal EEG signals with eye open and closed

respectively.

The class N and class F EEG signals are seizure-free signals since these signals

are recorded in seizure-free interval. Class F EEG signals are recorded from epilep-

togenic zone and class N EEG signals are recorded from hippocampal portion of

brain which is opposite to the hemisphere. Signals in class S carry seizure activities.

In the study, class N and class F EEG signals are termed as seizure-free class and

class S EEG signals are termed as seizure class. The EEG signal from each class is

shown in Fig. 6.1

6.3 Proposed method

The proposed method for classification of normal, seizure-free, and seizure EEG

signals consists of three stages. The block diagram of proposed method is shown in

Fig. 6.2. First stage in block diagram is decomposition of EEG signals by TQWT-

FB. The second stage is feature computation from decomposed signals and final

stage is classification of EEG signals using a classifier. These stages are described

below.
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Figure 6.1: The EEG signal from (a) F class, (b) N class, (c) S class, (d) O class,
and (e) Z class .
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Figure 6.2: Block diagram for the detection of epileptic EEG signals.
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6.3.1 TQWT-FB design

The TQWT-FB is implemented using method II as described in Section 2.2. The

designed TQWT-FB which is used in this work is shown in Fig. 6.3.

0 0.1 0.2 0.3 0.4 0.5
Normalized frequency

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 g

a
in

Sub-band 2Sub-band 1 Sub-band Ns Sub-band 40

Figure 6.3: TQWT-FB used in proposed method for the classification of seizure,
seizure-free, and normal EEG signals.

There are total 40 sub-bands and the BW of each sub-band in frequency response

of TQWT-FB is nearly 0.025 (normalized frequency). The chosen values of Q-factor

and D in each TQWT block are mentioned in the Table 6.1. The R = 9 is assigned

to each TQWT block.

6.3.2 Feature computation

After decomposition of EEG signal by TQWT-FB, the CIP (Xu et al, 2008) is used

to obtain features. The information potential (IP) estimates the Renyi’s quadratic

entropy. If it is applied on a sub-band signal then it can be expressed as (Xu and

Erdogmuns, 2010):
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Table 6.1: Chosen values Q-factor and D in the design of TQWT-FB

TBN Q-factor D TBN Q-factor D

1 1 19 21 10.37 29
2 1.45 22 22 10.8 28
3 1.87 24 23 11.28 27
4 2.33 26 24 11.4 25
5 2.72 27 25 11.93 24
6 3.14 28 26 12.5 23
7 3.58 29 27 13.1 22
8 4.06 30 28 13.8 21
9 4.56 31 29 13.94 19
10 5.1 32 30 14.1 17
11 5.68 33 31 14.98 16
12 6.1 33 32 15.17 14
13 6.56 33 33 15.4 12
14 7.04 33 34 15.6 10
15 7.56 33 35 15.9 8
16 7.87 32 36 16.2 6
17 8.2 31 37 16.5 4
18 8.56 30 38 19.5 3
19 8.93 29 39 23.7 2
20 9.63 29 40 24.5 1

IP(SBSi) =
1

T 2
s

Ts∑
ia=1

Ts∑
ib=1

R(SBSia − SBSib) (6.1)

where, Ts is the total number of samples in sub-band signal SBSi and R(SBSia−

SBSib) is the kernel function. The ath and bth sample of sub-band signal SBSi is

represented by SBSia and SBSib, respectively. The CIP measures the similarity

between two probability density functions (Xu et al, 2008) and can be expressed as

follows:

CIP(SBSi, SBSj) =
1

T 2
s

Ts∑
ia=1

Ts∑
jb=1

R(SBSia − SBSjb) (6.2)

where SBSia is the ath sample of sub-band signal SBSi and SBSjb is the bth sample

of sub-band signal SBSj. In order to chose sub-band signals for feature computation,

we run a test in which box plots are obtain when CIP is computed from different

sub-band signals. As shown in Fig. 6.4, the box plots corresponding to different
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class, shows variation in mean and interquartile range when CIP is computed from

sub-band signals originated from adjacent and non-adjacent sub-bands. Therefore,

both adjacent and non-adjacent sub-bands of TQWT-FB are considered in feature

computation.

Figure 6.4: The box plot of CIP computed from sub-band signals from (a) sub-band
3 and sub-band 4, (b) sub-band 3 and sub-band 5, (c) sub-band 3 and sub-band 6,
and (c) sub-band 3 and sub-band 7.

The sub-band signals from sub-band 1 to sub-bandNs are chosen for computation

of features, where 2 ≤ Ns ≤ 40. The sub-band 1 as shown in Fig. 6.3 is the lowest

fc sub-band among the sub-bands present in TQWT-FB. Then fc of subsequent

sub-bands increases gradually. The CIP is computed between ith sub-band signal

SBSi and jth sub-band signal SBSj, where 1 ≤ i ≤ Ns, 1 ≤ j ≤ Ns, and i 6= j.

Therefore, there will be Ns(Ns−1)
2

number of CIPs are computed. In this work, the

CIP is computed using ITL toolbox which can be downloaded from http://www.

sohanseth.com/Home/codes. The incomplete Cholesky decomposition is used by

ITL toolbox to compute CIP. The kernel size is set equal to two in classification

problem. The analysis of physiological signal using CIP can be found in (Kumar

et al, 2017) in which diagnosis of coronary artery disease using ECG signals is shown.
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It is not necessary that all extracted features would be significant in classi-

fication. Therefore, after having Ns(Ns−1)
2

number of features from Ns sub-band

signals, they are ranked. The ranking of features is performed using RELIEFF

algorithm (Kononenko et al, 1997; Robnik-Sikonja and Kononenko, 2003). The RE-

LIEFF algorithm estimates quality features according to their ability to discriminate

instances which are close to each other (Kononenko et al, 1997; Robnik-Sikonja and

Kononenko, 2003). The algorithm randomly selects an instance. Then, it searches k-

NNs which belongs to same class and k-NNs which belongs to other class (Kononenko

et al, 1997; Robnik-Sikonja and Kononenko, 2003). The significance of feature is

determined by its quality estimation variable W which depends on the value of the

instance and searched k-NNs belonging to same class and different class (Kononenko

et al, 1997; Robnik-Sikonja and Kononenko, 2003). In the proposed method, number

of neighbour k in k-NN is set to one in RELIEFF algorithm.

After ranking the features, the highest ranked feature is used for classification.

Then, next best two features are considered during classification and so on. In this

way, the NORF given as input to the classifier is different in each step. Accordingly,

the obtained ACC varies with the change in NORF.

6.3.3 Classification

The classifier used for classification is RF. The brief overview of RF classifier has

been presented in Section 5.3.4. The classification is performed using ten fold cross-

validation approach (Kohavi, 1995).

6.4 Performance measure

The performance measures, as defined in Section 5.4 are used to evaluate the efficacy

of proposed method.

110



Table 6.2: Obtained ACC for different segment length

Segment length ACC (%) Ns NORF

4097 99 12 35
2000 98.8 31 400
1000 98.2 39 715
500 98 39 741

6.5 Simulation results

As shown in Fig. 6.3, there are 40 sub-bands in TQWT-FB. If sub-band signals

generated from all 40 sub-bands are considered in feature computation, then the

complexity of the system would be very high. Therefore, we run the series of sim-

ulation in which features are computed from sub-band signals originated from sub-

band 1 to sub-band Ns and in each simulation, the value of Ns is different. In first

simulation run, the Ns = 2 is chosen since sub-band signals from at least two sub-

bands are required to compute CIP. Then in subsequent simulations, the value of

Ns is incremented by one. The maximum value of Ns is the number of sub-bands in

TQWT-FB. Then the features are ranked after feature computation and fed to the

classifier. The best value of Ns or best set of Ns sub-band is one for which the clas-

sifier achieves maximum ACC. When Ns sub-bands are selected for classification,

then there will be Ns(Ns−1)
2

number of features available because CIP is computed

from every possible pair of sub-band signals obtained from Ns selected sub-bands.

When the value of Ns is varied, then number of sub-band signals used in feature

computation also changes. During the simulation, the proposed method is tested for

different length of EEG segments. The segment length, which is considered during

simulation are 500 samples, 1000 samples, 2000 samples and entire length (4097

samples) of EEG signal. The obtained ACC for different segment length of EEG

signal is shown in Table 6.2. The Table 6.2 shows the maximum obtained ACC when

sub-band signals from minimum Ns sub-bands are used in feature computation and

minimum NORF are used.
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Table 6.3: Sub-bands used to compute ranked features

Cm (a,b) Cm (a,b) Cm (a,b) Cm (a,b)

C1 (3,12) C10 (2,3) C19 (9,11) C28 (3,4)
C2 (3,11) C11 (1,6) C20 (4,12) C29 (4,11)
C3 (3,10) C12 (3,6) C21 (2,11) C30 (4,10)
C4 (3,9) C13 (5,9) C22 (1,8) C31 (2,10)
C5 (1,7) C14 (3,7) C23 (4,9) C32 (11,12)
C6 (1,11) C15 (2,12) C24 (1,5) C33 (8,9)
C7 (1,12) C16 (9,10) C25 (5,12) C34 (2,8)
C8 (3,8) C17 (9,12) C26 (2,9) C35 (5,6)
C9 (1,10) C18 (1,9) C27 (5,11)

From Table 6.2, it can be noted that maximum obtained ACC = 99% for segment

length of 4097 samples. This ACC is obtained when Ns = 12 and NORF = 35.

Since only twelve sub-bands are used in feature computation, there are 66 features

available. Out of them, best 35 features provided ACC = 99%. The sub-bands used

to compute these best features are shown in Table 6.3. In the Table 6.3, Cm is

the feature having rank m and (a,b) denotes sub-band a and sub-band b which are

used to compute feature Cm. The obtained SEN when obtained ACC = 99%, are

SEN1 = 98.5%, SEN2 = 98%, and SEN3 = 100%. Similarly, the value of specificities

SPE1 = 99.33%, SPE2 = 99.5%, and SPE3 = 99.67%.

It can be noted from Table 6.2 that, for other segment length also, the obtained

ACC is at least 98%. However the number of features used for classification increases

as the segment length decreases.

It can also be observed from Table 6.2 that the decrease in segment length

decreases the ACC and increases the complexity of the system. Table 6.4 shows

the comparison of the performance of ACC of proposed method with other existing

methods using the same database (Andrzejak et al, 2001).

From this table, it can be observed that the proposed method obtained the better

ACC as compared with other existing methods. The statistical analysis of computed

features in (Bhattacharyya et al, 2017b; Peker et al, 2016; Tiwari et al, 2017; Tzallas

et al, 2007), and proposed method are shown in Fig. 6.5 to Fig. 6.9. The figures

shows the mean and standard deviation (SD) of features for various methods. The
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Table 6.4: Summary of automated detection of seizure, seizure-free, and normal
EEG signals using the same database.

Authors Features Classifier Training and testing ACC (%)
data selection

(Tzallas et al, 2007) Smoothed pseudo artificial neural network 50 % training and 97.72
Wigner-Ville distribution 50 % testing
based features

(Acharya et al, 2011c) recurrence quantification analysis features SVM 3-fold cross-validation 95.6

(Acharya et al, 2012) Approximate entropy, sample entropy, and Phase Fuzzy 3-fold cross-validation 98.1
entropy

(Peker et al, 2016) Statistical features Complex valued 10-fold cross-validation 98.28
neural networks

(Tiwari et al, 2017) Histogram of local SVM 10-fold cross-validation 98.8
binary pattern

(Bhattacharyya et al, 2017b) TQWT-based multi-scale SVM 10-fold cross-validation 98.6
K-NN entropy

Proposed method CIP RF 10-fold cross-validation 99
from TQWT-FB

mid point of the bar is the mean of the feature and half of the length of the bar is

SD of feature when range of feature is shown in linear scale.
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Figure 6.5: Statistical analysis (mean and SD) of features computed in (Tzallas
et al, 2007).

6.6 Discussion

This work presents a novel technique based on TQWT-FB for the classification of

epileptic EEG signals. The EEG signals are decomposed into narrow BW sub-

band signals by TQWT-FB and features are computed by applying CIP on every
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Figure 6.6: Statistical analysis (mean and SD) of (a) real part of features and (b)
imaginary part of features computed in (Peker et al, 2016).
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Figure 6.7: Statistical analysis (mean and SD) of computed (a) W features, (b) X
features, (c) Y features, and (d) Z features, in (Tiwari et al, 2017).
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Figure 6.8: Statistical analysis (mean and SD) of features computed in (Bhat-
tacharyya et al, 2017b).
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Figure 6.9: Statistical analysis (mean and SD) of features computed in our proposed
method.
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pair of sub-band signals. The CIP captures the similarity between two sub-band

signals. To reduce the complexity of the proposed system, we have evaluated the

optimal number of sub-band signals for computation of features instead of using

all sub-band signals generated by TQWT-FB. These features are then ranked using

RELIEFF algorithm in order to obtain significant features. We found that Ns = 12,

NORF = 35 with RF classifier yielded the maximum ACC = 99%.

The performance of proposed method in terms of obtained ACC is better than

other existing methods as shown in Table 6.4. The features of EEG signals are

analyzed using smoothed pseudo Wigner-Ville distribution (Tzallas et al, 2007). The

smoothed pseudo WVD is partitioned into different T-F planes. For partitioning,

three time windows and thirteen frequency sub-bands are chosen (Tzallas et al,

2007). The time windows TW1, TW2, and TW3 are from 0 to 7.86 seconds, 7.86 to

15.73 seconds, and 15.73 to 23.6 seconds respectively (Tzallas et al, 2007). Similarly,

the frequency windows FW1, FW2, FW3, FW4, FW5, FW6, FW7, FW8, FW9,

FW10, FW11, FW12, and FW13 are from 0 to 2 Hz, 2 to 4 Hz, 4 to 6 Hz, 6 to 8 Hz,

8 to 10 Hz, 10 to 12 Hz, 12 to 16 Hz, 16 to 20 Hz, 20 to 24 Hz, 24 to 28 Hz, 28 to

32 Hz, 32 to 36 Hz, and 36 to 40 Hz respectively. The T-F plane TdFe is obtained

by applying time window TWd and FWe where 1 ≤ d ≤ 3 and 1 ≤ e ≤ 13. The

features f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20,

f21, f22, f23, f24, f25, f26, f27, f28, f29, f30, f31, f32, f33, f34, f35, f36, f37, f38, and

f39 are computed from T1F1, T2F1, T3F1, T1F2, T2F2, T3F2, T1F3, T2F3, T3F3,

T1F4, T2F4, T3F4, T1F5, T2F5, T3F5, T1F6, T2F6, T3F6, T1F7, T2F7, T3F7,

T1F8, T2F8, T3F8, T1F9, T2F9, T3F9, T1F10, T2F10, T3F10, T1F11, T2F11,

T3F11, T1F12, T2F12, T3F12, T1F13, T2F13, and T3F13 respectively. They are

shown in Fig. 6.5. The last feature f40 is the energy of EEG signal. Then energy

features f1 to f39 are computed from their respective T-F plane (Tzallas et al, 2007).

We implemented the proposed method in (Tzallas et al, 2007) by using T-F toolbox

available at (Auger et al, 1996). The statistical analysis of obtained features are

shown in Fig. 6.5. It can be observed that mean of seizure EEG signal is notably
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far from mean of seizure-free and normal EEG signals for few features. The p-value

of each feature is less than 0.05.

In (Acharya et al, 2011c), recurrence quantification analysis method is employed.

The features such as recurrence rate (feature 1), determinism (feature 2), mean

diagonal line length (feature 3), longest diagonal line (feature 4), entropy (feature

5), laminarity (feature 6), trapping time (feature 7), longest vertical line (feature

8), and recurrence times (T1 and T2) are used to classify the EEG signals. The

mean ± SD of feature 1, 2, 3, 4, 5, 6, 7, 8, T1, and T2 for normal EEG signals are

0.0575808±0.004212 , 0.26333±0.04178, 2.3101±0.112, 7.685±1.5, 0.70126±0.156,

0.35446 ± 0.05464, 2.402 ± 0.126, 7.195 ± 1.62, 16.383 ± 1.21, and 20.762 ± 1.32

respectively (Acharya et al, 2011c). Similarly for seizure-free class, the mean± SD

of feature 1, 2, 3, 4, 5, 6, 7, 8, T1, and T2 are 0.0617364 ± 0.01391, 0.48499 ±

0.127, 2.6712± 0.668, 17.425± 26.6, 1.0463± 0.317, 0.61359± 0.124, 2.9401± 0.964,

12.47± 8.97, 15.159± 2.15, and 26.371± 4.57, respectively (Acharya et al, 2011c).

For seizure EEG signals, the statistical analysis of feature 1, 2, 3, 4, 5, 6, 7, 8, T1,

and T2 are 0.0671869 ± 0.008863, 0.47018 ± 0.109, 3.0637 ± 0.417, 30.33 ± 16.1,

1.373±0.238, 0.57155±0.134, 3.2156±0.535, 15.97±7, 14.294±1.78, and 24.509±

4.31 respectively (Acharya et al, 2011c). The p − values < 0.0001 for all features

(Acharya et al, 2011c). The method proposed in (Acharya et al, 2012) used phase

entropies (S1 and S2), approximate entropy, and sample entropy for classification.

The mean±SD of approximate entropy, sample entropy, S1, and S2 for normal EEG

signals are 2.2735 ± 0.0332, 1.313 ± 0.12, 0.57012 ± 0.0712, and 0.76827 ± 0.03125

respectively (Acharya et al, 2012). In the same way, the mean± SD of approximate

entropy, sample entropy, S1, and S2 for seizure-free EEG signals are 1.865± 0.331,

0.99332 ± 0.189, 0.47208 ± 0.06149, and 0.68072 ± 0.0379, respectively (Acharya

et al, 2012). For seizure EEG signals, the mean ± SD of approximate entropy,

sample entropy, S1, and S2 are 1.9325±0.215, 0.92628±0.139, 0.48325±0.155, and

0.73184± 0.04555 respectively (Acharya et al, 2012). For all features in each class,

the p-value is less than 0.0001 (Acharya et al, 2012).
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The authors (Peker et al, 2016) used DTCWT to decompose input EEG signals.

The decomposition by DTCWT generates complex wavelet coefficients. The com-

puted features are minimum value (MINV), maximum value (MAXV), SD, arith-

metic mean (ARM), and median (MD). The Fig. 6.6(a) and Fig. 6.6(b) shows

the statistical analysis of real and imaginary parts of the features respectively. We

have implemented the method proposed in (Peker et al, 2016) using matlab codes

available at http://eeweb.poly.edu/iselesni/WaveletSoftware/ to implement

DTCWT. The obtained p-values are less than 0.0001 for most of the features.

The statistical analysis of features computed using the method proposed in (Ti-

wari et al, 2017) is shown in Fig. 6.7. In this method, the EEG signals are filtered

by set of Gaussian filters having different SDs. Then the filtered EEG signals are

subtracted to obtain pyramid of difference of Gaussian filtered signals (Tiwari et al,

2017). From difference of Gaussian signals, the local binary pattern at key points

are obtained according to the method proposed in (Tiwari et al, 2017). Finally, the

histograms of local binary pattern are taken as features and classified. In (Tiwari

et al, 2017), the set of key points K2 and K3 are computed from second and third

signals of difference of Gaussian pyramid respectively. In Fig. 6.7(a) features W1

to W59 are computed from second signal of difference of Gaussian pyramid at K2.

Similarly, features X1 to X59 as shown in Fig. 6.7(b), are computed from the orig-

inal EEG signal at K2. In Fig. 6.7(c) and (d), features Y1 to Y59 are computed

from third signal of difference of Gaussian pyramid at K3 and features Z1 to Z59

are computed from original EEG signal at K3. There are few features whose mean

and SD are zero for all classes. Therefore, in Fig. 6.7, the mean and SD of such

features are not present as the range of features are shown in logarithmic scale. In

this method, though the obtained ACC is high, the number of features used for

classification is high. Most of the features of this method have p-values less than

0.0001.

The authors (Bhattacharyya et al, 2017b) have proposed a multi-scale entropy

based on Q-factor computed by decomposing EEG signal into sub-bands by TQWT.
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Then, from sub-bands, entropies based on K-NN, were estimated to classify epilep-

tic EEG signals. The feature R- g is the K-NN entropy of reconstructed signal R

(Bhattacharyya et al, 2017b). The reconstructed signal R is the summation of g sub-

band signals obtained from sub-bands of TQWT (Bhattacharyya et al, 2017b). The

statistical analysis of its features is shown in Fig. 6.8. Most of the features of seizure

EEG signals are differentiable (distinct mean and SD values) from seizure-free and

normal classes (p − value < 0.0001). The Fig. 6.9 shows the statistical analysis

of features computed from proposed method. The proposed method obtained best

ACC from 35 ranked features only when Ns = 12. The Fig. 6.9 shows the statisti-

cal analysis of these 35 ranked features. The mean and SD values of seizure EEG

features is clearly separable from mean and SD of seizure-free and normal features.

The mean and SD of few seizure-free and normal features are also clearly differen-

tiable. The p-values of all 35 features are less than 0.0001 which shows the statistical

significance of features. This also implies that, the confidence interval is more than

95%.

6.7 Summary

The proposed work addresses the classification of seizure, seizure-free, and normal

EEG signals which vary in their energy level. The proposed technique explores this

property in classifying EEG signals. The novelty of proposed method is the use of

TQWT-FB and CIP. The TQWT-FB decomposes EEG signals into various sub-

band signals which have different energy levels. Then CIP captures the similarity

from optimum number of sub-band signals and classifies in to seizure, seizure-free,

and normal EEG signals. The obtained CIP values are different for various EEG

signals. It has been observed that the mean of features for seizure, seizure-free,

and normal EEG signals are differentiable in most of the cases. Thus, the obtained

CIP values from proposed method influence the classification performance. The

proposed method computed the features from Ns selected sub-bands. The highest
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ACC of 99% is achieved by our proposed method. Also the computed features are

statistically significant as p-value of all features is less than 0.0001.
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Chapter 7

Focal EEG signal detection based

on TQWT-FB

7.1 Introduction

Epilepsy is a type of neurological disorder, which is characterized by unpredictable

dysfunction of brain and can be identified by epileptic seizures. An epileptic seizure

is a sudden occurrence of synchronous neurons activity in the brain (Fisher et al,

2005; Pachori, 2008).

According to world health organization, around 50 million people are affected

with epilepsy globally (World Health Organization, 2018). In the world population,

nearly 20% epileptic patients have generalized epilepsy that influences the whole

brain, whereas, more than 60% epileptic patients have focal epilepsy, where the parts

of brain are affected and these parts are mainly responsible for localized epileptic

discharge (Gloor and Fariello, 1988; Pati and Alexopoulos, 2010). Focal epilepsy has

inadequate control of seizures with drug and it is significant to remove these focal

epileptic zones with the help of surgery (Kwan and Brodie, 2000; Kwan et al, 2010).

A most common tool for the investigation of epilepsy is visual analysis of EEG

signals recorded from the brain (Acharya et al, 2013a). The EEG signal records the

electrical activity of the brain (Pachori and Sircar, 2008a; Penfield and Erickson,
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1941). These EEG signals can be recorded from the scalp as well as intracranially

(within the skull) from the brain. The localization of focal epileptic zones of the

brain is possible by intracranial EEG recording because scalp EEG may fail to

show ictal transitions in seizures originating from a small and deeply situated focal

epileptic areas (Pati and Alexopoulos, 2010).

However, the visual analysis of EEG signals for identifying focal epileptic zones is

a very time consuming and tedious task for the neurologists. Therefore, a computer

based automated system is required to overcome the difficulties for the identification

of focal EEG signals.

In the literature, the various signal processing based automated systems were

proposed to identify focal epilepsy EEG signals (Acharya et al, 2019; Bhattacharyya

et al, 2018, 2017a; Dalal et al, 2019; Das and Bhuiyan, 2016; Sharma and Pachori,

2018a; Sharma et al, 2014, 2015a,b; Singh and Pachori, 2017).

The method based on EMD with average variance and entropy features extracted

from intrinsic mode functions IMFs together with LS-SVM classifier with radial ba-

sis function (RBF) kernel is used in (Sharma et al, 2014). The achieved classification

ACC for this method is 85%. In another work, the EMD and LS-SVM have been

also utilized with various entropies features and this work achieved a classification

ACC of 87% for the classification of focal EEG signals (Sharma et al, 2015b). An

automated classification system based on discrete WT, entropies features, and dif-

ferent classifiers has been proposed in (Sharma et al, 2015a). The classification

ACC achieved for this method was 84% along with integrated index for focal and

non-focal EEG signals. The EMD and discrete WT have been jointly used in a

work for the classification of focal and non-focal EEG signals with an achieved

classification ACC of 89.4% (Das and Bhuiyan, 2016). The rhythms based work

using empirical WT with area using central tendency measure obtained from the

reconstructed phase space plot has been also explored to classify focal class of EEG

signals (Bhattacharyya et al, 2018). The obtained classification ACC was 90% for

the classification of focal and non-focal EEG signals. The TQWT with multivari-
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ate sub-band fuzzy entropy has been explored in (Bhattacharyya et al, 2017a), for

the classification of focal EEG signals. The achieved maximum classification ACC

in this work was 84.67%. The bivariate EMD based methodology has been also

explored for the identification of focal EEG signals (Sharma and Pachori, 2018a).

The obtained maximum classification ACC in this method is 84.01%. The rhythms

of EEG signal based on Fourier method have been utilized for the classification of

focal EEG signals (Singh and Pachori, 2017). The classification ACC achieved in

this method is 89.70%. The entropy based features along with EMD have been also

explored for the identification of focal epileptic zones. The classification ACC ob-

tained in this method was 83.18%. In a recent review study, the classification based

on 23 features has been proposed with an achieved classification ACC of 87.93%

(Acharya et al, 2019).

In this present work, we have designed a novel methodology based on TQWT-FBs

and mixture correntropy (MCE) to classify focal EEG signals. In this methodology,

the first step is to decompose focal and non-focal EEG signals with TQWT-FBs

into sub-band signals. These sub-band signals are considered for feature extraction.

The MCE based features are computed from the sub-band signals. These extracted

features are used in LS-SVM classifier with RBF kernel and 10-fold cross-validation

technique. The classification task is first performed for 50 focal and 50 non-focal

EEG signals for selecting the appropriate values of MCE parameters corresponding

to maximum classification ACC. Later, the selected values of MCE parameters are

used to classifying 3750 focal and 3750 non-focal EEG signals. The classification

performance is also evaluated with different feature ranking methods in order to

reduce the feature space. The proposed methodology can assist the clinicians during

diagnosis and surgery of focal epileptic brain areas.

The remaining parts of the chapter are explained as follows: Section 7.2 contains

description about the dataset. Section 7.3 explains brief description of methodology

which includes the TQWT method with the description of TQWT-FBs, feature

extraction, feature ranking, and LS-SVM classifier. Results and discussions parts
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are included in Section 7.4. Finally, Section 7.5 summarizes this chapter.

7.2 Database

The EEG signals are collected from Bern-Barcelona EEG database (Andrzejak et al,

2001) which is publicly available. The intracranial EEG signals are recorded from

five patients suffering with focal epilepsy. The database consists 7500 pairs of EEG

signals which has 3750 focal pairs and 3750 non-focal pairs. The Fs of these EEG

signals is 512 Hz with total time duration of 20 sec corresponding to 10,240 samples.

The plot of ”x” and ”y” pairs of focal and non-focal EEG signals are depicted in

Figs. 7.1 and 7.2, respectively (Andrzejak et al, 2012).

7.3 Proposed method

The block diagram of proposed method for classification of focal and non-focal EEG

signals is shown in Fig. 7.3. It consist of three stages namely TQWT-FB, fea-

tures computation and their ranking, and finally classifications. These stages are

explained in following sub-sections.

7.3.1 TQWT-FB design

In this stage, the FB 1 and FB 2 as designed in sub-section 5.3.2 are used to

decompose EEG signals. The EEG signals from channel ”x” and ”y” are fed to

TQWT-FB separately and decomposed sub-band signals corresponding to channel

”x” EEG signal and channel ”y” EEG signal are used in feature computation.
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Figure 7.1: Plot of ”x” and ”y” pair of focal EEG signals

Figure 7.2: Plot of ”x” and ”y” pair of non-focal EEG signals
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Figure 7.3: Block diagram for the detection of focal EEG signals.

7.3.2 Feature extraction

Feature extraction is an important step which is used to extract discriminative

information from the signals and a MCE feature is used for the same purpose.

A MCE is defined as a mixture of two Gaussian kernel functions which are used

to measure nonlinear similarity between two random variables (Chen et al, 2018).

Let, U and V be the two random variables then the MCE can be mathematically

expressed as (Chen et al, 2018):

MC(U, V ) = E[βκσ1(U, V ) + (1− β)κσ2(U, V )] (7.1)

where MC denotes the MCE, κσ(U, V ) = e−
(U−V )2

2σ2 is a Gaussian kernel, and β is

the mixture coefficient with condition, 0 ≤ β ≤ 1. The σ1 and σ2 represent kernel

bandwidths of the Gaussian kernel functions κσ1(U, V ) and κσ2(U, V ), respectively.

E denotes expectation operator.

In this work, a MCE feature is used to extract information from the sub-band

signals obtained with bivariate ”x” and ”y” pairs of focal and non-focal EEG signals.

The range of parameters σ1 and σ2 is selected between 0.1 and 2 with a step size of
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0.1.

7.3.3 Feature ranking

Feature ranking is a test which is used to discard the less relevant features from the

available features space. This test is basically used to select higher ranked features

and the features with lower rank can be omitted in this test. Therefore, a highest

classification ACC can be obtained with the less number of features using feature

ranking test.

In this present work, Bhattacharyya space algorithm, entropy, receiver operating

characteristic (Kerekes, 2008; Theodoridis and Koutroumbas, 2009), Students t-test

(DeWayne et al, 2010), and Wilcoxon (Kruskal, 1957) feature ranking methods are

used for ranking the features (Gupta et al, 2017; Liu and Motoda, 1998; Sharma et al,

2015a). The feature ranking methods are successfully found importance in (Sharma

et al, 2015a, 2017a) for the classification of non-focal and focal EEG signals.

7.3.4 Classification

The SVM is a machine learning approach which is efficiently used to identify the

patterns (Suykens and Vandewalle, 1999). In this method, the data is mapped into

a higher dimensional input space and construct a optimal hyperplane (Suykens and

Vandewalle, 1999). The discrimination function for this classifier can be written as

follows(Suykens and Vandewalle, 1999):

v(x) = sign[wTu(x) + b] (7.2)

where w, b and u(x) represent the d-dimensional weight vector, bias and mapping

function, respectively.

To optimize the hyperplane in SVM algorithm, the distance from any one of the
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classes to the hyperplane is maximized. This is an optimization issue and can be

designed as the quadratic programming problem subject to inequality constraints

(Suykens and Vandewalle, 1999). In case of LS-SVM only equality constraints are

involved for the classification of two classes with a least square formulation. The

formulation of the two-class classification problem in LS-SVM is given as follows

(Suykens and Vandewalle, 1999):

Minimize J(w, b, ξ) =
1

2
wTw +

γ

2

N∑
j=1

ξ2j (7.3)

zj[w
Tu(xj) + b] = 1− ξj j = 1, 2, 3, 4, ........., N. (7.4)

where ξ = (ξ1, ξ2, ξ3, ξ4, ........, ξN)T .

The risk can be minimize by using (7.3) in Lagrangian equation which is defined

as (Suykens and Vandewalle, 1999):

L(w, b, ξ;α) = J(w, b, ξ)−
N∑
j=1

αj{zj[wTu(xj) + b]− 1 + ξj} (7.5)

where, αj are Lagrange multipliers.

On solving (7.5), LS-SVM classifier can be denoted as (Suykens and Vandewalle,

1999):

v(x) = sign

[
N∑
j=1

αjzjF (x, xj) + b

]
(7.6)

where αj are positive real constants, zj is the jth output pattern, xj is the jth input

pattern, and F (x, xj) is a kernel function. In the present method, RBF kernel is

utilized with classifier. The RBF kernel is defined as (Khandoker et al, 2007):

F (x, xj) = e
−‖x−xj‖

2

2ρ2 (7.7)

The kernel parameter ρ is selected from the range between 0.5 and 2.5 with a step

size of 0.1.

The LS-SVM is used in classification stage in this work. The LS-SVM classifier
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is applied to distinguish the seizure and non-seizure EEG signals in (Bajaj and

Pachori, 2012), to classify the epileptic seizure and seizure-free EEG signals (Sharma

and Pachori, 2015, 2018b), to classify the focal and non focal EEG signals in (Gupta

et al, 2018; Sharma et al, 2015b) and for the detection of normal and epileptic seizure

EEG signals in (Pachori et al, 2015; Siuly et al, 2009). In (Patidar and Pachori,

2014; Patidar et al, 2015b), LS-SVM is also used to classify the heart sound signals.

In this present method, the classification is validated with 10-fold cross-validation

technique (Kohavi, 1995) and in order to estimate the efficacy of the classifier, six

distinct parameters are involved, which are ACC, SPE, SEN, Positive predictive

value (PPV), Negative predictive value (NPV), and Matthews correlation coefficient

(MCC). The ACC, SPE, and SEN are explained in Section 5.4. The PPV, NPV,

and MCC are defined and expressed as follows:

1. Positive predictive value (PPV): It is calculated as the ratio of the accurately

identified true positive samples to the total number of identified positive sam-

ples using following mathematical expression (Azar and El-Said, 2014):

PPV =
TP

TP + FP
× 100(%) (7.8)

2. Negative predictive value (NPV): It is expressed as the ratio of the accurately

identified true negative samples to the total number of identified negative

samples as follows (Azar and El-Said, 2014):

NPV =
TN

TN + FN
× 100(%) (7.9)

3. Matthews correlation coefficient (MCC): It is an additional argument to esti-

mate the classification performance and can be expressed as follows (Azar and
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Table 7.1: Classification performance measure parameters based on the maximum
ACC obtained with 50 focal and 50 non-focal EEG signals on selected values from
the range of RBF kernel and MCE parameters.

TQWT-FB
ACC SEN SPE PPV NPV MCC

Kernel parameter MCE parameters

(%) (%) (%) (%) (%) ρ σ1 σ2 β

FB 1
83 72 94 93.18 77.16 0.68 2.3 0.1 0.3 0.8

83 76 90 88.53 78.88 0.67 1.3 0.8 2 0.6

FB 2

83 80 86 86.67 81.67 0.67 2.1 1 1.5 0.3

83 84 82 86.06 86.12 0.69 1.6 1.5 1.5 0.1

83 82 84 86.29 84.62 0.68 1.7 1.8 1.6 0.2

83 82 84 85.88 81.83 0.67 1.5 1.8 2 0.2

83 78 88 88.33 82.08 0.68 2 1.8 2 0.8

83 82 84 84.64 85.48 0.68 1.8 1.9 1.2 0.5

83 82 84 85.31 84 0.68 1.6 2 1.9 0.7

Table 7.2: Classification performance measure parameters based on the maximum
ACC obtained with 3750 focal and 3750 non-focal EEG signals on selected param-
eters of MCE.
TQWT-FB

ACC SEN SPE PPV NPV MCC
Kernel parameter MCE parameters

(%) (%) (%) (%) (%) ρ σ1 σ2 β

FB 1 87.80 86.27 89.33 89.01 86.70 0.76 0.7 0.1 0.3 0.8

FB 2 87.28 87.23 87.33 87.32 87.25 0.75 1 1.5 1.5 0.1

El-Said, 2014):

MCC =
TP× TN− FN× FP√

(TP + FN)(TP + FP)(TN + FN)(TN + FP)

(7.10)

7.4 Results and discussion

In order to detect focal epileptic zones from the EEG signals, a variety of computer-

aided methods have been developed. These developed methods involve several fea-

tures and various signal processing techniques. However, our proposed method has

used a single MCE based features with TQWT-FB which performs well as com-

pared to existing methodologies. The use of MCE provides a non-linear similarity
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Figure 7.4: Variation of ACC with respect to number of features for different feature
ranking methods obtained with FB 1.

Figure 7.5: Variation of ACC with respect to number of features for different feature
ranking methods obtained with FB 2.
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Table 7.3: Classification performance measure parameters based on the maximum
ACC obtained with feature ranking methods for 3750 focal and 3750 non-focal EEG
signals.
TQWT-FB Ranking

Rank order ACC SEN SPE PPV NPV MCC
Kernel parameter

method (%) (%) (%) (%) (%) ρ

FB 1 Receiver operating characteristic
(1,10,9,11,4,8,12,5,7,13,2,

90.01 88.35 91.68 91.40 88.74 0.80 0.5
16,14,6,3,15,17,18,19)

FB 2

(17,18,16,19,15,20,21,14,22,

88.27 88.08 88.45 88.41 88.16 0.77 0.8Student’s 23,13,8,24,9,12,11,10,25,27,

t-test 28,29,7,2,26,30,1,3,31,6,4,5)

measure between bivariate focal and non-focal EEG signals. The developed method

is first tested on 50 focal and 50 non-focal EEG signals for selecting the MCE pa-

rameters corresponding to maximum ACC then it is proceeded for 3750 focal and

3750 non-focal EEG signals. The Table 7.1 shows the maximum ACC obtained

for FB 1 and FB 2 on selected values of RBF kernel and MCE parameters with

50 focal and 50 non-focal EEG signals. In Table 7.1, one can observe that classi-

fication performance parameters (SEN, SPE, PPV, NPV, and MCC) are changed

corresponding to obtained maximum ACC of 83% for both the FBs. Therefore,

we have chosen MCE parameters corresponding to maximum values of MCC pa-

rameter for the classification of 3750 focal and 3750 non-focal EEG signals because

MCC is an additional parameter for the performance assessment of classification.

The maximum classification accuracies for the classification of 3750 focal and 3750

non-focal EEG signals with FB 1 and FB 2 on selected values of MCE parameters

corresponding to maximum MCC can be seen from Table 7.2. In order to optimize

the developed methodology, we have also used four different feature ranking meth-

ods which will reduce the feature subspace and computational complexity without

affecting the classification performance. Figs. 7.4 and 7.5 show the variation of ACC

with number of features for different feature ranking methods obtained with FB 1

and FB 2, respectively. The maximum ACC obtained after feature ranking methods

with rank order can also be seen in Table 7.3. From Table 7.3, it is clear that the

achieved maximum ACC for FB 1 and FB 2 are 90.01% and 88.27% for the classi-

fication of 3750 focal and 3750 non-focal EEG signals, respectively. The obtained

ACC is also compared with the existing methodologies and it can be observed from
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Table 7.4: Comparison of the classification performance parameters for the proposed
methodology with the existing methodologies.

Authors ACC SEN SPE PPV NPV MCC

(Zhu et al, 2013) 84% - - - - -

(Sharma et al, 2015a) 84% 84% 84% - - -

(Sharma et al, 2014) 85% - - - - -

(Sharma et al, 2015b) 87% 90% 84% 87.29% 90.50% 0.76

(Das and Bhuiyan, 2016) 89.4% 90.7% 88.1% - - -

(Bhattacharyya et al, 2018) 90% 88% 92% - - -

(Bhattacharyya et al, 2017a) 84.67% 83.86% 85.46% - - -

(Sharma and Pachori, 2018a) 84.01% 83.47% 84.56% 84.40% 83.68% 0.68

(Singh and Pachori, 2017) 89.70% - - - - -

(Gupta and Pachori, 2019) 83.18% 85.78% 80.45% - - -

(Acharya et al, 2019) 87.93% 89.97% 85.89% - - -

Proposed work 90.01% 88.35% 91.68% 91.40% 88.74% 0.80

Table 7.4 that the achieved ACC shown with bold entry is higher in comparison to

methodologies which have been selected for comparison.

Also the methodology of compared methods mentioned in Table 7.4 are presented

in Table 7.5. In this table, decomposition method, used features, number of features

used to produce best result, classifier used for classification by each method is men-

tioned. Also the number of EEG signals considered in each class and cross-validation

technique used in classifier is mentioned in Table 7.5.

7.5 Summary

Large population of the world is affected from epilepsy. Undetected epilepsy may

lead to long term complications, causing severe disorder problems. In the present

work, focal epilepsy is considered to identify EEG signals corresponding to the focal

epileptogenic zones. The TQWT-FBs are used to decompose the focal and non-focal

EEG signals in to sub-band signals. From these sub-band signals, MCE based fea-
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Table 7.5: Comparison of the methodology of compared methods and proposed
method for focal EEG signal detection.

Authors Method Number of Classification Number of Classification

features method EEG signals validation technique

used

(Zhu et al, 2013) Delay 1 SVM 50 focal -

permutation entropy and

50 non-focal

(Sharma et al, 2015a) Discrete WT, 3 LS-SVM 50 focal 10-fold

entropy measures and

50 non-focal

(Sharma et al, 2014) EMD, ASE, AVIF 5 LS-SVM 50 focal 10-fold

and

50 non-focal

(Sharma et al, 2015b) EMD, 13 LS-SVM 50 focal 10-fold

entropy measures and

50 non-focal

(Das and Bhuiyan, 2016) EMD-discrete WT, 7 KNN 3750 focal -

log-energy entropy and

3750 non-focal

(Bhattacharyya et al, 2018) Empirical WT, 4 LS-SVM 50 focal 10-fold

reconstructed phase space, and

central tendency measure 50 non-focal

(Bhattacharyya et al, 2017a) TQWT, - LS-SVM 3750 focal 10-fold

multivariate sub-band and

fuzzy entropy 3750 non-focal

(Sharma and Pachori, 2018a) Bivariate EMD, - LS-SVM 3750 focal 10-fold

bandwidth features and

3750 non-focal

(Singh and Pachori, 2017) Fourier-based rhythms, 20 LS-SVM 50 focal 10-fold

bandwidth features and

50 non-focal

(Gupta and Pachori, 2019) EMD, 9 LS-SVM 3750 focal 10-fold

Sharma Mittal and

entropy 3750 non-focal

(Acharya et al, 2019) 23 different features 23 LS-SVM 3750 focal 10-fold

and

3750 non-focal

Proposed work TQWT-FB 19 LS-SVM 3750 focal 10-fold

and MCE and

3750 non-focal
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tures are computed. Ranked features are used as an input to the LS-SVM classifier

for the diagnosis of focal epileptic zones from EEG signals. A 10-fold cross valida-

tion technique is involved to confirm the validation of the ACC. The highest ACC

of 90.01% is achieved using RBF kernel function.
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Chapter 8

Automated classification of hand

movements using TQWT-FB with

surface EMG signals

8.1 Introduction

A person with hand amputee can perform basic hand movement tasks with the help

of an EPH. However, controlling the EPH in order to perform hand movement pre-

cisely is still a research problem (Sapsanis et al, 2013b). The controlling action can

be performed using EEG signals or EMG signals. The EEG signals are generated

due to the electrical activity of brain (Caton, 1875) and EMG represents the electri-

cal activity of muscles (Sapsanis et al, 2013a). The use of EEG signals requires the

proper positioning of electrodes on the scalp, which is uncomfortable (Kiguchi and

Hayashi, 2012). On the other hand, using EMG signals require a glove containing

EMG electrodes (Kiguchi and Hayashi, 2012). The characteristics of EMG signals

vary with different muscles movement (Sapsanis et al, 2013a,b). The variations are

more when EMG signals are recorded from hand instead of forearm (Finneran and

O’Sullivan, 2013; Kurita et al, 2002). Hence, the EMG signals are usually recorded

from forearm muscles as these muscles are in the resting position when different
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hand movements are performed (Finneran and O’Sullivan, 2013; Kurita et al, 2002;

Liu and Zhou, 2013).

The accurate classification of EMG signals can design an effective controller

for EPH (Andrianesis and Tzes, 2008). This can be accomplished using advanced

biosignal processing, biosensors, and pattern recognition techniques (Carroll and

Alwarappan, 2012; Kaniusas, 2012). In literature, many methods are proposed for

hand movement identification using EMG signals with good classification ACC (Os-

koei and Hu, 2007). However, these methods are based on acquiring EMG signals

from many electrodes (Oskoei and Hu, 2007). In many cases, the number of elec-

trodes used are more than four (Oskoei and Hu, 2007). This would increase the cost

of EPH design and also will be uncomfortable to use (Sapsanis et al, 2013b). There-

fore, the designed EPH should be easy to use and the amputee person can perform

different hand movements by executing corresponding action with EPH (Sapsanis

et al, 2013b).

In literature, different studies are presented to classify different hand movements

using EMG signals. In (Ouyang et al, 2014), the classification of four hand move-

ments has been presented using the adaptive neuro-fuzzy interference system and

in (Ju and Liu, 2014), the fuzzy Gaussian mixture models is proposed which used

Willison amplitude and determinism to classify 10 hand movements. The classifica-

tion of not only hand movements, but also movements of wrist and fingers has been

performed in (Nazemi and Maleki, 2014). The authors performed classification of 52

classes using windowing method and MLP. In (Sapsanis et al, 2013a,b), the EMD

is used to decompose the EMG signals into IMFs. Then features such as integrated

EMG, zero-crossing, variance, slope sign changes, waveform length, Willison am-

plitude, kurtosis, skewness are extracted from them and original EMG signals are

classified to six hand movements (Sapsanis et al, 2013b). In (Sapsanis et al, 2013a),

apart from using features mentioned in (Sapsanis et al, 2013b), the authors also

used SD, median, and kurtosis of instantaneous frequencies of IMFs. The authors

in (Kakoty and Hazarika, 2011), used SVM and classified six hand movements. The
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authors in (Khezri and Jahed, 2008) used wavelet TH method to classify three hand

movements.

In (Akben, 2017), classification of six classes of hand movement is presented.

The authors used correlation between energy histogram of each channel of data as

feature, then cascaded structured classifier is used. The authors in (Ruangpaisarn

and Jaiy, 2015) used singular value decomposition to extract features form sEMG

signals. Then classifiers namely decision tree, k-NN, RBF, naive Bayes, and SMO

classifiers are used to classify six different hand movements. The authors obtained

best results using SMO classifier. The method proposed in (Iqbal et al, 2017) classi-

fied hand movements from sEMG signals. It is based on singular value decomposition

and principal component analysis. The singular value decomposition is applied on

the sEMG to obtain singular values and principal components. The statistical pa-

rameters of few principal components are used as features (Iqbal et al, 2017). Then,

authors used hierarchical k-NN classifier for classification.

This chapter presents a novel methodology to classify six basic hand movements.

The classification of the hand movement is done using sEMG signals obtained from

two electrodes only. In this way, proposed method can be used for designing of

comfortable and cost effective EPH. In the proposed method, the cross-covariance

of sEMG signals is computed and termed as csEMG signal. Then, the csEMG

signal is decomposed into the number of sub-band signals by a designed TQWT-

FB. This FB consists of constant and narrow BW sub-bands which are generated

from distinct value of Q-factor. Different Q-factor values in TQWT-FB are suitable

to analyse different oscillatory csEMG signals obtained from non-stationary sEMG

signals (Selesnick, 2011c). After decomposing csEMG signal, the features are com-

puted using KRE from available sub-band signals. Finally classification of hand

movements is performed using a k-NN classifier. The novelty of proposed method is

the application of TQWT-FB and KRE in TQWT frame work to classify the hand

movements.

In the remaining part of the chapter, the database used in this work in briefly
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described in Sections 8.2. Then proposed methodology, performance measure, sim-

ulation results, and discussion are presented in Section 8.3, 8.4, 8.5, and 8.6 respec-

tively. Finally the chapter is summarized in Section 8.7.

8.2 Database

The data used in this work is obtained from basic hand movements database (Sap-

sanis et al, 2013b). It can be downloaded from https://archive.ics.uci.edu/

ml/datasets/sEMG+for+Basic+Hand+movements#. The data in the form of sEMG

signal is collected from five subjects (three females and two males). The age of these

subjects is in between 20 and 22 years. Each subject has performed six hand move-

ments which are cylindrical (CY), hook (HO), lateral (LA), palmar (PA), spherical

(SP), and tip (TI). In CY, LA, SP, and TI hand movements, subject holds CY, flat,

SP, and small objects respectively. In PA hand movement, subject grasps an object

with palm and in HO hand movement, subject supports a heavy load. More details

regarding these hand movements can be found in (Sapsanis et al, 2013b). The sketch

patterns of these hand movements from (Sapsanis et al, 2013b) are shown in Fig.

8.1.

Figure 8.1: Basic hand movements. (a) cylindrical (CY), (b) hook (HO), (c) lateral
(LA), (d) palmar (PA), (e) spherical (SP), and (f) tip (TI)
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Each hand movement is repeated thirty times by each subject. Therefore, total

number of hand movement tasks performed by each subject is 180. The duration of

each hand movement task is six seconds. The force and speed to perform different

hand movement tasks are left on subject’s own choice.

For each hand movement task, the sEMG signals are recorded from two forearm

sEMG electrodes (Sapsanis et al, 2013b). Hence the obtained data is sEMG signals

from two channels. The Fs to collect the data is 500 Hz. The sample sEMG signals

are shown in Fig. 8.2.
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Figure 8.2: The sEMG signal corresponding to (a) CY acquired from electrode 1, (b)
CY acquired from electrode 2, (c) HO acquired from electrode 1, (d) HO acquired
from electrode 2, (e) LA acquired from electrode 1, (f) LA acquired from electrode 2,
(g) PA acquired from electrode 1, (h) PA acquired from electrode 2, (i) SP acquired
from electrode 1, (j) SP acquired from electrode 2, (k) TI acquired from electrode
1, and (l) TI acquired from electrode 2.
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8.3 Proposed method

The proposed method for the classification of basic hand movements using sEMG

signals consist of four stages. In the first stage, the csEMG signal is computed. Then

in next stage, the csEMG signal is decomposed by a designed TQWT-FB. Then in

third stage, the features are computed and ranked from decomposed csEMG signals.

Finally, in the last stage, the classification using computed features is performed.

The block diagram of proposed method is shown in Fig. 8.3.
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Figure 8.3: Block diagram of proposed method for basic hand movements classifi-
cation.

8.3.1 Cross-covariance of sEMG signals

For each hand movement, the sEMG signals are available from two channels. In

this stage, the csEMG signal is computed from sEMG signals. The cross-covariance

estimates the covariance of one process with respect to other. The covariance of two

sEMG signals represents their joint variability (Rice, 2007). After cross-covariance

operation, the produced signal csEMG is fed to next stage.
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8.3.2 Design of TQWT-FB

The Method II, as described in Section 2.2 is used to design TQWT-FB for classifi-

cation problem addressed in this chapter. The BW of each sub-band is very narrow

and equals to 0.01 (normalized frequency). The number of sub-bands in TQWT-FB

are 161, which implies that 161 TQWT blocks are used in the designing of TQWT-

FB. The R = 9 is allocated to each TQWT block. The assigned Q-factor and D

values are shown in Fig. 8.4 and Fig. 8.5 respectively.
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Figure 8.4: Assigned Q-factor values for different TQWT blocks.

The Fig. 8.6 shows the designed TQWT-FB.

8.3.3 Features computation and ranking

The features are collected by computing KRE from sub-band signals. The KRE

determines the differential statistical entropy of the sub-band signal with the help

of k-NNs sample. For a J-dimensional random variable U (u1, u2, u3, ....., un), it is

expressed mathematically as (Kraskov et al, 2004; Veselkov et al, 2010):
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Figure 8.6: The designed TQWT-FB used in our proposed method.
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KRE(u) = α(n)− α(k) + log(VJ) +
J

n

n∑
i=1

log(dki ) (8.1)

where α(.) is the digamma function and for a variable z, it is expressed

as (Kraskov et al, 2004):

α(z) =
1

Γ(z)

dΓ(z)

dz
(8.2)

Here Γ(.) is the gamma function. The VJ in (8.1) indicates the volume of ball of J-

dimension, which rely on sample space. It is defined for Euclidean form as (Veselkov

et al, 2010):

VJ =
π
J
2

Γ(1 + J
2
)

(8.3)

The dki in (8.1) represents the distance between ui and its kf nearest neighbour

samples. Here, ui is the ith random sample. The chosen value of kf in proposed

method is indicated in simulation results section. In (Kumar et al, 2016), the KRE

is used to detect coronary artery disease.

After computing the features, they are ranked based on the level of significance.

We have used three types of feature ranking methods. They are briefly described as

follows:

1. Local learning-based clustering feature selection (LLCFS): This method is pro-

posed in (Zeng and Cheung, 2011). In this method, a weight is assigned to

each feature and then they are included in regularization of local learning-based

clustering (LLC) to determine the relevance of each feature for clustering (Zeng

and Cheung, 2011). The weights are computed in several iterations of cluster-

ing process. The weights of insignificant features decreases to zero (Zeng and

Cheung, 2011).

2. Multi-cluster feature selection (MCFS): The MCFS method (Cai et al, 2010)

selects features in such a way that the multi-cluster arrangement of data does
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not alters. The method then solves optimization problem which involves L1-

regularization least square and sparse eigen problem (Cai et al, 2010). From

this, the method computes the MCFS score of each feature in order to rank

them.

3. RELIEFF: The third type of ranking method used for feature ranking is RE-

LIEFF algorithm (Kononenko et al, 1997; Robnik-Sikonja and Kononenko,

2003). In this algorithm, significance of a feature is identified as per its abil-

ity to differentiate nearby instances (Kononenko et al, 1997; Robnik-Sikonja

and Kononenko, 2003). The algorithm after selecting a random instance,

looks for its k-NNs which are from similar class and its k-NNs are from other

classes (Kononenko et al, 1997; Robnik-Sikonja and Kononenko, 2003). Then,

a quality variable is determined which is the function of selected instance, k-

NNs from same class and k-NNs from other class. This variable indicates the

significance of the feature. The variable k used in k-NN is termed as kr in this

work.

The ranking of features is implemented using feature selection library (Roffo

et al, 2015, 2017).

8.3.4 Classification

We have tested three classifiers of different category, in this work. They are briefly

explained below:

1. C4.5 classifier: It belongs to the category of tree based classifier. In classifier

C4.5, a decision tree is constructed using top-down method. The construction

of tree begins with training set (Ruggieri, 2002). The training set consists

of attributes and class value. An attribute is specified to each decision node

of tree to examine its capability to classify the training sample (Farid et al,

2014). In the beginning, the entire training set is associated with the root node,
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and for each case, the assigned weight value is equal to one. The decision

tree is then constructed by C4.5 algorithm which uses divide and conquer

method (Farid et al, 2014; Quinlan, 1986). The attribute whose information

gain is highest is chosen for test on a node. In the next step, child node is

generated for every possible outcome of class. These steps are rerun for every

attribute associated with each node in order to choose the finest attribute

for the node. The C4.5 classifier has been used in (Sharma et al, 2017b) for

classification of sleep stages using EEG signals.

2. SMO classifier: The SMO algorithm (Platt, 1998) is proposed to reduce the

computational complexity in SVM classifier. The SMO algorithm decomposes

the quadratic programming of SVM into sub-problems. Then SMO solves the

smallest optimization problem at each stage using two Lagrange multipliers.

The classifier SMO is used for the classification of vowel phonemes in (Boujel-

bene et al, 2008).

3. k-NN classifier: The classification model of k-NN classifier depends on nearest

neighbour algorithm (Aha et al, 1991). The classification of the test data is

performed by computing the distance from close training data. The variable k

in k-NN and the distance are the two variables which can affect the classifica-

tion performance. The variable k in k-NN classifier is termed as kc. The value

of kc and distance used in classifier are mentioned in the simulation results

section. The k-NN classifier is fast in computation and it does not presume

the statistics of training samples. The k-NN classifier has been used in (Gupta

et al, 2017) and (Das and Bhuiyan, 2016) for analysis of focal and non-focal

EEG signals.

In this work, we have used WEKA software (Hall et al, 2009) to implement C4.5

and SMO classifiers. The k-NN classifier is implemented using knnclassify function

from bioinformatics toolbox available in MATLAB.
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8.4 Performance measure

The proposed method is tested on the data of five subjects. Therefore, the average

of ACC obtained from each subject is considered as performance measure in this

chapter. The definition of ACC can be found in Section 5.4.

8.5 Simulation results

In the proposed method, three types of ranking methods and classifiers are used.

Hence, there are nine cases which are tested during the simulation. These cases are

as follows:

1. Case-A: LLCFS is used for feature ranking and C4.5 is used for classification.

2. Case-B: LLCFS is used for feature ranking and SMO is used for classification.

3. Case-C: LLCFS is used for feature ranking and k-NN is used for classification.

4. Case-D: MCFS is used for feature ranking and C4.5 is used for classification.

5. Case-E: MCFS is used for feature ranking and SMO is used for classification.

6. Case-F: MCFS is used for feature ranking and k-NN is used for classification.

7. Case-G: RELIEFF is used for feature ranking and C4.5 is used for classifica-

tion.

8. Case-H: RELIEFF is used for feature ranking and SMO is used for classifica-

tion.

9. Case-I: RELIEFF is used for feature ranking and k-NN is used for classifica-

tion.
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In the proposed model, the KREs are computed as features from sub-band sig-

nals. The features are computed for different cases. In each case, the value of kf

is different for feature computation. The value of kf is varied from 1 to 4. Then

for each case of feature computation, the features are ranked. During RELIEFF

ranking, different values of kr are chosen. The chosen values of kr are 1, 2, 3, and

4. Hence there are four cases of feature computation and four cases of RELIEFF

feature ranking used in proposed model. Therefore, in Case-G, Case-H, and Case-I,

there are sixteen cases of ranked features are available for classification.

In the classification stage, first the best rank feature is given to the classifier.

The NORF is increased from 1 by appending the next highly significant feature in

the descending order. For each NORF, the kc is varied from 1 to 10 when k-NN

classifier is used. For every NORF and kc value, the classification ACC is noted.

Among all ACCs, the maximum ACC is considered as the best classification result.

The distance used in k-NN classifier is Euclidean distance.

When SMO and C4.5 classifiers are used in classification, the NORF is again

varied from 1 to total number of features in the descending order by appending

the features one by one. In SMO classifier, the polynomial kernel is used as ker-

nel function. The classification is performed using leave one out cross-validation

approach (Kohavi, 1995). The performance of proposed method is measured in

terms of ACC. The obtained ACCs in (%) for different kf values and cases (Case-A,

Case-B, Case-C, Case-D, Case-E, and Case-F) are shown in Table 8.1. Similarly,

Table 8.2, Table 8.3, and Table 8.4 show the obtained ACCs(%) for different cases

(Case-G, Case-H, and Case-I) and various values of kf and kr. All these tables show

obtained ACCs(%) for five subjects (S1, S2, S3, S4, and S5).

From Table 8.1 to Table 8.4, in each case, if we have considered the maximum

ACC for each subject and computed their average ACC. The average ACC for

Case-A, Case-B, Case-C, Case-D, Case-E, Case-F, Case-G, Case-H, and Case-I are

89.88%, 97.21%, 97.1%, 92.44%, 97.21%, 97.55%, 91.66%, 97.22%, and 98.55% re-

spectively. It can be noted that Case-I is the best case among all. In this case,
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Table 8.1: ACC(%) obtained for Case-A to Case-F with change in kf .

Subject Case-A Case-B Case-C Case-D Case-E Case-F

ACC(%) ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)

S1 kf = 1 83.88 96.66 95.55 90 96.66 97.22
kf = 2 82.22 96.66 95.55 85.55 97.22 96.11
kf = 3 81.11 96.66 95.55 87.22 96.66 96.11
kf = 4 81.66 96.66 95.55 83.88 96.66 96.66

S2 kf = 1 91.11 95 94.44 87.77 94.44 93.88
kf = 2 87.22 95 93.88 86.66 94.44 94.44
kf = 3 90.55 95 93.88 91.66 94.44 95
kf = 4 89.44 95 94.44 89.44 94.44 95

S3 kf = 1 90 97.77 97.77 92.22 97.77 98.33
kf = 2 91.66 97.77 98.33 91.11 97.77 97.77
kf = 3 93.33 97.77 98.33 93.33 97.77 97.77
kf = 4 90 97.77 96.66 93.33 97.77 97.77

S4 kf = 1 88.88 97.77 98.33 95 97.22 98.33
kf = 2 87.22 97.77 98.33 93.88 97.77 98.33
kf = 3 86.11 97.77 98.88 90.55 97.77 98.88
kf = 4 87.22 97.77 98.33 90.55 97.77 98.33

S5 kf = 1 91.66 98.88 98.33 90.55 98.88 97.77
kf = 2 91.66 98.88 98.33 92.22 98.88 97.77
kf = 3 92.22 98.88 98.33 92.22 98.88 98.33
kf = 4 91.66 98.88 97.77 90.55 98.88 98.33

Table 8.2: ACC(%) obtained for Case-G with change in kr and kf .

Subject kr = 1 kr = 2 kr = 3 kr = 4

ACC(%) ACC(%) ACC(%) ACC(%)

S1 kf = 1 88.44 86.11 91.11 90
kf = 2 88.33 91.11 88.88 90
kf = 3 88.88 91.11 88.33 88.88
kf = 4 87.77 87.77 86.66 86.66

S2 kf = 1 82.77 85.55 85.55 86.11
kf = 2 81.66 83.88 82.77 83.33
kf = 3 89.44 88.88 89.44 89.44
kf = 4 87.77 88.88 88.88 89.44

S3 kf = 1 91.11 91.66 91.11 91.11
kf = 2 91.66 90.55 90.55 91.66
kf = 3 91.11 92.22 92.22 92.22
kf = 4 90.55 91.11 91.11 91.66

S4 kf = 1 91.66 91.11 88.33 91.11
kf = 2 90.55 89.44 88.33 91.11
kf = 3 88.33 90.55 88.33 90.55
kf = 4 89.44 91.66 90 91.11

S5 kf = 1 91.11 92.22 92.77 90.55
kf = 2 91.66 93.33 93.88 91.66
kf = 3 91.11 92.77 93.33 91.11
kf = 4 91.66 92.22 92.77 91.66
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Table 8.3: ACC(%) obtained for Case-H with change in kr and kf .

Subject kr = 1 kr = 2 kr = 3 kr = 4

ACC(%) ACC(%) ACC(%) ACC(%)

S1 kf = 1 97.22 96.66 97.22 97.22
kf = 2 97.77 97.22 97.22 97.22
kf = 3 97.77 97.22 97.22 97.22
kf = 4 97.77 97.22 97.22 97.22

S2 kf = 1 94.44 95 95 95
kf = 2 94.44 95 95 95
kf = 3 95 95 95 95
kf = 4 95 95 94.44 94.44

S3 kf = 1 97.77 98.33 98.88 98.88
kf = 2 97.77 98.33 98.88 98.88
kf = 3 97.77 98.33 98.88 98.88
kf = 4 97.77 98.33 98.33 98.33

S4 kf = 1 98.33 97.77 97.77 97.77
kf = 2 98.33 97.77 97.77 97.77
kf = 3 97.77 97.77 97.77 97.77
kf = 4 97.77 97.77 97.77 97.77

S5 kf = 1 98.88 98.88 98.88 98.88
kf = 2 98.88 98.88 98.88 98.88
kf = 3 98.88 98.88 98.88 98.88
kf = 4 98.88 98.88 98.88 98.88

Table 8.4: ACC(%) obtained for Case-I with change in kr and kf .

Subject kr = 1 kr = 2 kr = 3 kr = 4

ACC(%) ACC(%) ACC(%) ACC(%)

S1 kf = 1 97.77 97.22 98.33 98.33
kf = 2 97.22 97.77 98.33 98.33
kf = 3 97.77 97.77 98.33 98.33
kf = 4 97.77 98.33 98.33 98.33

S2 kf = 1 95 97.22 97.77 97.77
kf = 2 95 96.66 97.22 97.77
kf = 3 95 96.66 97.22 97.77
kf = 4 95.55 96.66 97.22 97.77

S3 kf = 1 99.44 98.33 98.33 98.33
kf = 2 98.88 98.33 98.33 98.88
kf = 3 99.44 98.33 98.88 98.33
kf = 4 99.44 99.44 98.33 98.88

S4 kf = 1 98.33 98.33 98.88 98.33
kf = 2 98.33 98.83 98.33 98.88
kf = 3 98.33 98.33 98.33 98.88
kf = 4 98.33 98.33 98.33 98.88

S5 kf = 1 97.77 98.33 98.33 98.33
kf = 2 97.77 98.33 98.33 98.33
kf = 3 97.77 98.33 98.33 98.33
kf = 4 97.77 98.33 98.33 98.33
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Table 8.5: Results of highest ACC obtained for each subject for different values of
kc and NORF.

Subject ACC(%) kc NORF kf kr

S1 98.33 3 34 1 3
S2 97.77 1 24 1 3
S3 99.44 1 28 1 1
S4 98.88 1 121 1 3
S5 98.33 4 79 1 2

the maximum ACC achieved for S1, S2, S3, S4, and S5 is 98.33%, 97.78%, 99.44%,

98.89%, and 98.33% respectively. The Table 8.5 shows the values of kc and NORF

for which maximum ACC is achieved using minimum values of kf and kr for each

subject in Case-I.

The statistical analysis of computed ranked features corresponding to maximum

ACC presented in Table 8.5, are shown in Fig. 8.7 to Fig. 8.11. In these figures,

mean and SD of features are shown bar chart. The center of the bar indicates the

mean and 0.5 times the length of the bar is SD of the feature. The x axis in these

figures shows the ranked features (Fi) where i is the rank of feature F.
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Figure 8.7: Statistical analysis (mean and SD) of features for S1 data.

The p-value of features shown in Fig. 8.7 to Fig. 8.11 are mentioned in Table

8.6 to Table 8.10 respectively.
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Figure 8.8: Statistical analysis (mean and SD) of features for S2 data.
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Figure 8.9: Statistical analysis (mean and SD) of features for S3 data.
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Figure 8.10: Statistical analysis (mean and SD) of features: (a) F1 to F40, (b) F41
to F80, and (c) F81 to 121, for S4 data.
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Figure 8.11: Statistical analysis (mean and SD) of features: (a) F1 to F40 and (b)
F41 to F79, for S5 data.
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Table 8.6: The p-values of all features extracted from S1 data.
Feature p-value Feature p-value Feature p-value Feature p-value

F1 1.38× 10−28 F10 1.28× 10−28 F19 6.64× 10−33 F28 2.21× 10−30

F2 1.54× 10−28 F11 5.43× 10−29 F20 4.28× 10−33 F29 7.06× 10−33

F3 2.64× 10−28 F12 5.43× 10−29 F21 5.44× 10−33 F30 4.51× 10−31

F4 1.54× 10−27 F13 4.32× 10−31 F22 8.91× 10−31 F31 1.42× 10−26

F5 3.99× 10−32 F14 3.49× 10−31 F23 4.47× 10−33 F32 1.95× 10−29

F6 4.21× 10−31 F15 2.67× 10−29 F24 5.31× 10−32 F33 1.15× 10−29

F7 3.79× 10−27 F16 1.25× 10−32 F25 1.98× 10−32 F34 8.84× 10−30

F8 9.44× 10−31 F17 2.56× 10−30 F26 1.56× 10−27

F9 2.93× 10−27 F18 7.81× 10−31 F27 2.60× 10−29

Table 8.7: The p-values of all features extracted from S2 data.
Feature p-value Feature p-value Feature p-value Feature p-value

F1 4.98× 10−31 F7 9.51× 10−33 F13 2.25× 10−34 F19 2.66× 10−32

F2 8.01× 10−33 F8 1.06× 10−32 F14 2.10× 10−32 F20 8.59× 10−32

F3 2.41× 10−33 F9 7.44× 10−32 F15 1.37× 10−33 F21 3.42× 10−32

F4 2.77× 10−34 F10 8.31× 10−30 F16 1.09× 10−32 F22 6.83× 10−31

F5 8.43× 10−33 F11 6.33× 10−33 F17 4.80× 10−33 F23 9.70× 10−33

F6 3.52× 10−33 F12 1.02× 10−32 F18 7.25× 10−33 F24 3.39× 10−33

The confusion matrix obtained for highest ACC as mentioned in Table 8.5 for

each subject is shown in Table 8.11 to Table 8.15.

The performance of proposed method is compared with the other existing meth-

ods using the basic hand movements database (Sapsanis et al, 2013b), is shown in

Table 8.16. From Table 8.16, it can be noted that the obtained average ACC(%)

is better than the average ACC(%) reported by other existing methods. Also, the

obtained ACC(%) for each subject is better than most of the other existing methods.

Table 8.8: The p-values of all features extracted from S3 data.
Feature p-value Feature p-value Feature p-value Feature p-value

F1 9.84× 10−33 F8 6.96× 10−33 F15 8.19× 10−33 F22 2.20× 10−31

F2 5.14× 10−18 F9 2.88× 10−34 F16 6.80× 10−33 F23 1.04× 10−32

F3 1.75× 10−34 F10 5.86× 10−33 F17 2.54× 10−34 F24 2.83× 10−32

F4 3.75× 10−34 F11 1.80× 10−34 F18 3.10× 10−34 F25 1.14× 10−32

F5 1.86× 10−18 F12 8.40× 10−33 F19 7.35× 10−34 F26 5.46× 10−33

F6 3.59× 10−29 F13 9.49× 10−33 F20 1.42× 10−34 F27 4.82× 10−33

F7 2.03× 10−32 F14 1.23× 10−34 F21 4.47× 10−33 F28 5.73× 10−28
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Table 8.9: The p-values of all features extracted from S4 data.
Feature p-value Feature p-value Feature p-value Feature p-value

F1 2.71× 10−25 F32 1.86× 10−34 F63 3.82× 10−29 F94 2.33× 10−27

F2 3.34× 10−29 F33 3.97× 10−34 F64 3.61× 10−19 F95 5.22× 10−28

F3 1.07× 10−27 F34 3.05× 10−29 F65 5.70× 10−27 F96 1.39× 10−33

F4 4.92× 10−27 F35 2.07× 10−32 F66 2.90× 10−30 F97 2.84× 10−27

F5 7.00× 10−27 F36 1.58× 10−33 F67 2.52× 10−32 F98 1.54× 10−28

F6 9.94× 10−29 F37 3.39× 10−30 F68 3.24× 10−30 F99 6.39× 10−29

F7 1.08× 10−28 F38 3.95× 10−33 F69 4.38× 10−21 F100 2.10× 10−28

F8 3.60× 10−28 F39 1.05× 10−33 F70 7.68× 10−28 F101 9.23× 10−29

F9 8.65× 10−28 F40 8.84× 10−29 F71 2.70× 10−27 F102 3.07× 10−27

F10 2.31× 10−28 F41 2.92× 10−33 F72 4.50× 10−28 F103 5.17× 10−34

F11 2.30× 10−27 F42 6.38× 10−27 F73 1.00× 10−27 F104 1.16× 10−34

F12 3.33× 10−29 F43 3.22× 10−32 F74 4.98× 10−29 F105 3.33× 10−32

F13 6.31× 10−33 F44 1.24× 10−32 F75 1.57× 10−33 F106 7.84× 10−27

F14 4.50× 10−34 F45 5.61× 10−33 F76 1.74× 10−33 F107 2.38× 10−34

F15 1.53× 10−22 F46 5.63× 10−31 F77 3.81× 10−33 F108 2.34× 10−28

F16 1.19× 10−27 F47 2.10× 10−33 F78 1.08× 10−27 F109 3.17× 10−25

F17 3.07× 10−27 F48 4.11× 10−27 F79 2.57× 10−28 F110 2.29× 10−29

F18 9.81× 10−33 F49 5.99× 10−27 F80 2.92× 10−28 F111 1.49× 10−32

F19 1.05× 10−27 F50 2.34× 10−27 F81 1.96× 10−33 F112 1.47× 10−32

F20 3.18× 10−27 F51 5.73× 10−30 F82 1.13× 10−34 F113 6.69× 10−31

F21 6.00× 10−29 F52 2.38× 10−31 F83 7.34× 10−33 F114 1.71× 10−31

F22 5.15× 10−25 F53 2.02× 10−32 F84 1.28× 10−33 F115 1.53× 10−32

F23 5.15× 10−25 F54 1.47× 10−33 F85 1.67× 10−34 F116 6.59× 10−32

F24 3.99× 10−28 F55 1.38× 10−33 F86 1.24× 10−26 F117 2.02× 10−33

F25 3.39× 10−24 F56 5.10× 10−28 F87 4.24× 10−29 F118 1.28× 10−27

F26 2.75× 10−28 F57 6.18× 10−33 F88 1.66× 10−34 F119 1.35× 10−33

F27 5.82× 10−34 F58 9.93× 10−34 F89 2.07× 10−22 F120 1.54× 10−32

F28 5.82× 10−34 F59 9.96× 10−29 F90 8.56× 10−33 F121 2.27× 10−28

F29 4.83× 10−27 F60 1.58× 10−32 F91 7.89× 10−28

F30 1.95× 10−34 F61 2.13× 10−32 F92 4.71× 10−32

F31 1.11× 10−27 F62 1.06× 10−29 F93 1.15× 10−27

Table 8.10: The p-values of all features extracted from S5 data.
Feature p-value Feature p-value Feature p-value Feature p-value

F1 2.68× 10−30 F21 6.02× 10−30 F41 2.58× 10−30 F61 1.19× 10−28

F2 1.21× 10−30 F22 4.31× 10−30 F42 1.83× 10−21 F62 2.18× 10−29

F3 1.64× 10−23 F23 1.90× 10−30 F43 1.79× 10−30 F63 2.18× 10−29

F4 3.39× 10−25 F24 5.38× 10−30 F44 1.27× 10−29 F64 8.07× 10−30

F5 2.24× 10−28 F25 3.78× 10−24 F45 1.15× 10−29 F65 1.43× 10−29

F6 2.63× 10−28 F26 4.93× 10−22 F46 2.09× 10−28 F66 2.02× 10−25

F7 2.15× 10−29 F27 8.58× 10−28 F47 9.68× 10−24 F67 1.19× 10−29

F8 3.12× 10−23 F28 2.06× 10−23 F48 2.30× 10−29 F68 2.73× 10−32

F9 4.10× 10−29 F29 2.36× 10−22 F49 1.45× 10−29 F69 5.33× 10−29

F10 8.33× 10−31 F30 1.36× 10−20 F50 3.22× 10−26 F70 2.92× 10−29

F11 9.30× 10−21 F31 5.79× 10−29 F51 1.89× 10−25 F71 2.13× 10−29

F12 3.47× 10−30 F32 1.97× 10−25 F52 2.48× 10−28 F72 1.55× 10−27

F13 7.55× 10−21 F33 5.01× 10−28 F53 1.22× 10−21 F73 2.30× 10−28

F14 1.28× 10−24 F34 6.85× 10−29 F54 6.41× 10−30 F74 1.77× 10−24

F15 1.65× 10−20 F35 7.62× 10−29 F55 1.27× 10−31 F75 1.85× 10−29

F16 2.25× 10−24 F36 2.19× 10−30 F56 2.24× 10−28 F76 9.15× 10−27

F17 2.20× 10−23 F37 1.50× 10−30 F57 6.82× 10−28 F77 5.22× 10−29

F18 2.96× 10−22 F38 8.46× 10−30 F58 2.05× 10−30 F78 2.92× 10−30

F19 1.49× 10−30 F39 3.42× 10−28 F59 1.77× 10−23 F79 6.17× 10−23

F20 4.43× 10−28 F40 1.25× 10−24 F60 1.11× 10−29
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Table 8.11: Confusion matrix obtained for the proposed method using S1 data.
Predicted

CY HO LA PA SP TI

Actual

CY 29 1 0 0 0 0
HO 0 30 0 0 0 0
LA 0 0 29 1 0 0
PA 0 0 1 29 0 0
SP 0 0 0 0 30 0
TI 0 0 0 0 0 30

Table 8.12: Confusion matrix obtained for the proposed method using S2 data.
Predicted

CY HO LA PA SP TI

Actual

CY 30 0 0 0 0 0
HO 0 30 0 0 0 0
LA 0 0 29 0 0 1
PA 0 0 0 30 0 0
SP 0 0 0 0 30 0
TI 0 0 1 2 0 27

Table 8.13: Confusion matrix obtained for the proposed method using S3 data.
Predicted

CY HO LA PA SP TI

Actual

CY 30 0 0 0 0 0
HO 0 30 0 0 0 0
LA 0 0 29 1 0 0
PA 0 0 0 30 0 0
SP 0 0 0 0 30 0
TI 0 0 0 0 0 30

Table 8.14: Confusion matrix obtained for the proposed method using S4 data.
Predicted

CY HO LA PA SP TI

Actual

CY 30 0 0 0 0 0
HO 0 30 0 0 0 0
LA 0 0 30 0 0 0
PA 0 0 1 29 0 0
SP 0 0 0 0 30 0
TI 0 0 1 0 0 29
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Table 8.15: Confusion matrix obtained for the proposed method using S5 data.
Predicted

CY HO LA PA SP TI

Actual

CY 30 0 0 0 0 0
HO 0 30 0 0 0 0
LA 0 1 29 0 0 0
PA 0 0 0 30 0 0
SP 0 0 0 0 30 0
TI 0 0 0 2 0 28

Table 8.16: Comparison of proposed method based on ACC(%) with other existing
methods using the basic hand movements database (Sapsanis et al, 2013b).

(Sapsanis et al, 2013b) (Ruangpaisarn and Jaiy, 2015) (Akben, 2017) (Iqbal et al, 2017) Proposed
method

Subject ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)

S1 87.25 96.67 93.04 82.78 98.33
S2 88.05 98.89 86.66 87.67 97.78
S3 85.53 96.67 97 83.11 99.44
S4 90.42 98.89 99.23 90 98.89
S5 94.80 100 97.66 90 98.33

Average ACC(%) 89.21 98.22 94.72 86.71 98.55

8.6 Discussion

The proposed method shows the application of TQWT-FB for the classification of

basic hand movements using sEMG signals. The TQWT-FB decomposes csEMG

signals into number of constant BW sub-band signals and then KREs features are

computed from these sub-band signals. Then features are ranked and finally classifier

classifies the basic hand movements. Here, three types of feature ranking (LLCFS,

MCFS, and RELIEEFF) methods and three types of classifiers (C4.5, SMO, and

k-NN) are used. Through simulations, we conclude that the RELIEEFF algorithm

and k-NN classifier performs the best. The proposed method has been tested using

sEMG data acquired from five subjects. The ACC is used to evaluate the perfor-

mance of the proposed method. The ACC is computed for each subject individually

and then average ACC of 98.55% is achieved by our proposed method.

During the recording of sEMG signals from subjects, the applied force and speed

to perform hand movement tasks are left on the subject’s own will. Therefore, the

obtained optimum value of kf , kr, and kc to obtain maximum ACC, are different
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for each subject. Also there is difference in NORF, statistical parameters (mean

and SD) in each case. In the case of S1, the minimum value of kf and kr to achieve

maximum ACC is 1 and 3 respectively. From the Fig. 8.7, it can be observed that the

features of CY, HO, and SP hand movements are mostly separable from the features

of LA, PA, and TI hand movements. The Table 8.11 shows the confusion matrix

generated during the classification of hand movements for S1 data. The actual hand

movements are shown in the second left column and predicted hand movements by

the classifier are mentioned in the second row. It can be observed that all HO, SP,

and TI hand movements are predicted correctly by our proposed method. On the

other hand, one CY is misclassified as HO, one LA is misclassified as PA, and one

PA is misclassified as LA by the classifier. Hence, obtained ACC = 98.33% in this

case.

When the data from S2 is considered in the proposed method, the minimum

value of kf and kr required to get maximum ACC is 1 and 3 respectively. The Fig.

8.8 shows the statistical analysis of proposed method when S2 data is considered.

It can be observed from this figure that the features are not well separated in this

case. However, generally the features corresponding to SP hand movements have

highest values and features corresponding to LA hand movements have lowest value

as compared to other features. From Table 8.12, it can be noted that the TI hand

movement is classified with least ACC. Once it is classified as LA and twice it is

classified as PA. Also the LA has been misclassified as TI once. The number of

misclassification is more in this case as there is less separation between the features.

Hence, the obtained ACC = 97.77% for S2 data.

We have obtained the best performance for S3 data. The proposed method

achieved ACC = 99.44% with minimum value of kf and kr set to one. The statistical

analysis of computed ranked features is shown in Fig. 8.9. In few cases, features

corresponding to CY, HO, SP, and TI are clearly separable. Also from Table 8.13,

it can be observed that only LA is misclassified as PA once. Therefore, the obtained

ACC is more than 99% in this case. Using data of S4 subject, we have achieved
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ACC = 98.89% for minimum kf and kr equal to one and three respectively. The

features corresponding to HO, are clearly separable from other features for most of

the cases as shown in Fig. 8.10. The range of values of other features are mostly

overlapping. In this case, both PA and TI are misclassified as LA once. Hence, the

obtained ACC is close to 99%.

The statistical analysis of ranked features obtained for S5 data is shown in Fig.

8.11. These features are obtained using kf = 1 and ranked using kr = 2. Generally,

the features corresponding to SP hand movement are clearly separable from other

features. The LA is misclassified as HO once and TI is misclassified as PA twice

as shown in Table 8.15. The obtained ACC = 98.33% in this case. The Kruskal-

Wallis test (McKight and Najab, 2010) has been used to compute p-value of ranked

features as shown in Fig. 8.7 to Fig. 8.11. The Kruskal-Wallis test has also been

used in (Bhati et al, 2017b; Pachori, 2008; Sharma and Pachori, 2015) to quantify

the features. The p-values are less than 0.0001 for all features of all subjects which

shows the statistical significance of features. This can be observed in Table 8.6 to

Table 8.10.

It can be noted from Table 8.1 to Table 8.4 that the variation in the values of

kf and kr affects the ACC. It can be observed from Table 8.4, that the maximum

ACC can be achieved as the value of kf increases. Except for S3 data, high value of

kr also produces the best ACC. The performance of the proposed method in terms

of ACC is compared with other existing methods and is shown in Table 8.16. The

abbreviation used to represent subjects are different in methods compared in Table

8.16. In methods (Sapsanis et al, 2013b), (Iqbal et al, 2017), and proposed method,

the S1, S2, S3, S4, and S5 in Table 8.16, represent subjects female 1, female 2, female

3, male 1, and male 2 respectively, from database (Sapsanis et al, 2013b). In case

of method proposed by (Ruangpaisarn and Jaiy, 2015), the subjects of database

in (Sapsanis et al, 2013b) are represented by abbreviations S1, S2, S3, S4, and S5.

Whereas in case of methodology proposed by (Akben, 2017), the S1, S2, S3, S4, and

S5 in Table 8.16, represents Subject 1, Subject 2, Subject 3, Subject 4, and Subject
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5 respectively. The obtained ACC by proposed method is above 97.5% in each case

and in the case of (Ruangpaisarn and Jaiy, 2015), the minimum obtained ACC is

96.67% for S1 and S2. The method proposed in (Sapsanis et al, 2013b) and (Iqbal

et al, 2017) did not obtain the ACC more than 95% in any case. However, the

obtained average ACC by the proposed method is 98.55% which is better than the

other existing methods.

The proposed model can be implemented using IOT technique to improve the

quality of life of the hand amputee subjects. As shown in Fig. 8.12, the developed

trained model is kept in the cloud. The same trained model is also kept in the hard-

ware connected to EPH. When amputee subject wants to perform a hand movement

task, the sEMG signals from the pair of electrodes are sent to the hardware and web

server simultaneously. The trained model in the hardware will diagnose the class of

sEMG signals and accordingly EPH would perform hand movement task instantly.

The sEMG signals are also sent to the server in the cloud. The class of this incoming

test sEMG data will be determined by trained model in the cloud and then it will

be stored in the cloud. This stored sEMG data in the cloud can be used to train

the model and as a result the performance of the model is continuously improved.

The proposed model yields best result with k-NN classifier which suits the model

implemented in IOT technique. The k-NN classifier classifies the class of a sample

based on its k-NNs. Practically, In a long time span, a hand amputee person would

perform a particular hand movement with almost same force and speed. Therefore

the location of samples corresponding to a particular hand movement will be close

to each other in the space. Similarly, location of samples corresponding to the other

hand movement will be close to each other at some other location. Hence, when a

new hand movement is performed by the amputee person, then its corresponding

sample is most likely to be located near to the other samples of same hand move-

ment. This can be observed from Fig. 8.7 to Fig. 8.11, where the SD of features

is usually low. Thus it suggest that the feature of a particular hand movement is

concentrated about their mean. Then most likely, the k-NN classifier can easily
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identify the correct class of this new test sample. The k-NN classifier is simple and

easy to implement.

Figure 8.12: Illustration of web-based application of the proposed model using IOT.

8.7 Summary

A novel method to classify the basic hand movements using TQWT-FB with sEMG

signals is presented in this chapter. The TQWT-FB decomposes csEMG signals

into the set of sub-band signals and then KRE features are extracted. The pro-

posed method obtained the average ACC of 98.55% when tested using five subjects.

The proposed method used sEMG signals recorded from two electrodes. Hence the

proposed method is suitable to design low cost EPH and comfortable to use. The

obtained maximum ACC for each subject depends on kf , kr, kc, and NORF. For

large value of kf and kr, maximum ACC can be achieved. The computed p-value of

all features in each case is less than 0.0001.
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Chapter 9

Conclusion and future work

9.1 Conclusion

The analysis of non-stationary signals can be performed using TQWT-FB. The

TQWT-FB consist of narrow BW sub-bands which can be spanned over entire

frequency range of signal. The sub-bands of TQWT-FB are generated corresponding

to different value of Q-factors which results in generation of different mother wavelets

for the analysis of signal. Unlike TQWT, there is no requirement of tuning the Q-

factor according to oscillatory nature of signal. The TQWT-FB can analyse signals

with different oscillatory behaviours.

The TQWT-FB is applied for the reduction of cross-terms in the WVD. The

cross-terms appears in the WVD due to its quadratic nature. To reduce cross-

terms, the multi-component or non-linear FM non-stationary signal is decomposed

into sub-band signals by TQWT-FB. Then components existing at different time

interval in a sub-band signal are separated by TDS section. Then the WVD of the

segmented component are computed in order to obtain cross-terms free WVD. The

normalized Renyi entropy as performance measure proves the efficacy of proposed

method.

Since TQWT-FB is able to decompose signal into narrow and constant BW

sub-band signals, its usefulness is shown in the estimation of IFF of speech signals.
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The TQWT-FB decomposes speech signal into several sub-band signal due to which

FFC of speech signal also decomposes into sub-band signal. After components seg-

mentation by TDS section, the SFFC extraction unit generates FFC with scaled

amplitude. The Hilbert transform is applied on SFFC in order to obtain IFF of

speech signal. Low value of GE(%)in clean as well as noisy conditions shows that

the proposed method is good in estimating IFF.

The application of TQWT-FB is also shown in developing the computer-aided

automatic diagnosis system. Such system is helpful to doctors or experts who spend

lot of time in analysing the physiological signals to detect the disease. One such

application is shown in screening of sleep apnea. The two-class classification problem

is address in which apneic and non-apneic events in ECG signals are classified. In

the proposed method, the segment of ECG signal is decomposed by TQWT-FB.

Then the CCE features are computed from decomposed sub-band signal and ranked

using students t-test. Then in final stage RF classifier produces the most accurate

result.

Similarly TQWT-FB is applied in the classification of epileptic EEG signals for

diagnosis. The classification of seizure, seizure-free, and normal EEG signals (three-

class classification) is performed by decomposition EEG signals by TQWT-FB. The

sub-band signals produced are then used in the computation of CIP features. The

computed features are then ranked using RELIEFF algorithm and RF classifier

classifies the EEG signals. The ACC obtained by proposed method is higher than

other existing methods.

Another problem related to focal epilepsy is addressed in which classification of

focal and non-focal EEG signals (two-class classification) is performed. The sub-

band signals obtained by TQWT-FB after decomposing EEG signals are used in

computation of MCE features. Then, various ranking methods are applied and

ranked features are fed to LS-SVM classifier. The obtained ACC is this problem is

better than compared methods.

The TQWT-FB is applied in the designing of controller of EPH. The EPH is
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used by hand amputee person for performing basic hand movements. The proposed

method classifies six basic hand movements. First the csEMG signal is obtained by

computing cross-covariance of sEMG signals obtained from two electrodes. Then

the designed TQWT-FB decomposed csEMG signal into very narrow BW sub-

band signals. In the next stage, the KRE features are computed from these sub-

band signals. The KRE features are then ranked and classified by various method.

Through simulation, it is found that the RELIEFF method and k-NN classifier

produces the best result in classification when proposed method is tested on the

data of five subjects.

9.2 Future work

The proposed TQWT-FB has been applied for the analysis of non-stationary signals.

There are two methods proposed for the designing of TQWT-FB as mentioned

in Section 2.2. However, proper comparison of TQWT-FBs designed by different

methods can be done in future. This includes the effect of sub-band selection,

number of TQWT blocks used in constructing TQWT-FB, etc. Also the comparison

of proposed TQWT-FB with TQWT can be done in future.

In the cross-terms reduction in WVD using TQWT-FB, the chosen components

are either separated in frequency-domain or in T-F domain. In future, the proposed

methodology can be modified for the WVD based T-F representation of multicom-

ponent non-stationary signals, whose components are overlapped in T-F domain.

The modification is needed as the proposed method is not effective when more than

one component lies in a sub-band. Also proposed method is tested only when signals

are corrupted by AWGN at different SNRs. Therefore, in future, we intended to test

our proposed method in coloured noise and also in negative SNRs. Also, we intend

to do comparison of proposed method in terms of Rényi with ideal T-F represen-

tation and WVD of signal in future. The proposed TDS section is energy based

segmentation method. In future, it can be made noise robust by adding entropy
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information.

The TQWT-FB used for cross-terms reduction in WVD is developed by method

I as suggested in Section 2.2. The aim here is to reduce cross-terms from WVD

and therefore the BW of sub-bands must be such that more than one component of

multi-component non-stationary signal must not lie in same sub-band at a particular

time instant. Therefore, the BW of sub-bands in TQWT-FB designed using method

I is kept narrow. Here, the choice of sub-bands in designing TQWT-FB is random.

In future, the effect of different number of sub-bands on proposed method can be

tested along with the robustness of proposed method to such changes. In addition to

this, the future work also include the testing of proposed method when TQWT-FB

designed using method II as presented in Section 2.2 is applied.

The TQWT-FB is also applied for estimating the IFF of speech signals. The

proposed method is tested on speech signals of two male and female speakers avail-

able from CMU Arctic database. In future, the proposed method can be tested

on more speech signals and other databases. Also, the optimal value of TH and

FTH can be determine from various speech signals in order to implement proposed

method and test its efficacy. The analysis is performed under AWGN. Therefore,

some other noise such as babble can be used to evaluate the performance of proposed

method. In future, the sparse coefficients obtained from proposed TQWT-FB can

be compared with sparse coefficients when speech is decomposed by TQWT.

The developed TQWT-FB is also employed in classification of physiological sig-

nals for constructing computer-aided diagnosis system. The structure of proposed

methods for classification problems involve signal decomposition by TQWT-FB, fea-

ture computation and ranking, and classifier. The features in classification problems

are different since there is no direct relationship between choice of feature and clas-

sification problem is given in literature. Therefore, the deep learning techniques

can be applied in future for such classification problems. The deep learning is an

emerging technique which automatically learns the good features from the input

data. Also, the real world data do not have class labeled on it, hence deep learning
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is useful in such applications where features could learn in an unsupervised way.

In addition, the proposed method can be tested on huge database for validation.

The proposed method has been applied for the screening of sleep apnea from single

lead ECG signals. In future, the apnea-hypopnea index can also be taken into ac-

count for screening of apnea syndrome. Also, the proposed TQWT-FB can also be

applied for the diagnosis of other disease such as Alzheimer, insomnia, narcolepsy,

sleep walking, and hypersomnia etc.
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