
Thermodynamics of

Einstein-Maxwell-Dilaton Black Hole in

(2+1) Dimensions

M.Sc. Thesis

by

Swati Malhotra

Discipline of Physics

Indian Institute of Technology Indore

June 2019



ii



Thermodynamics of

Einstein-Maxwell-Dilaton Black Hole in

(2+1) Dimensions

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

MASTER OF SCIENCE

by

Swati Malhotra

Discipline of Physics

Indian Institute of Technology Indore

June 2019

iii



iv



INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the the-

sis entitled “Thermodynamics of Einstein-Maxwell-Dilaton Black

Hole in (2+1) Dimensions” in the partial fulfilment of the requirements

for the award of the degree of MASTER OF SCIENCE and submitted in

the DISCIPLINE OF PHYSICS, Indian Institute of Technology

Indore, is an authentic record of my own work carried out during the

time period from JULY 2018 to JUNE 2019 under the supervision of Dr.

Manavendra Mahato, Associate Professor, Indian Institute of Technology

Indore. The matter presented in this thesis has not been submitted by me

for the award of any other degree of this or any other institute.

Swati Malhotra

This is to certify that the above statement made by the candidate is

correct to the best of my knowledge.

M.Sc. Thesis Supervisor

(Dr. Manavendra Mahato)

Swati Malhotra has successfully given her M.Sc. Oral Examination

held on ...............................

(MSc Thesis Supervisor) (Convener, DPGC)

Date: Date:

(PSPC Member 1.) (PSPC Member 2.)

Date: Date:

v



vi



Dedicated
to

My Family

vii



viii



Acknowledgements

First and foremost, I gratefully acknowledge the continual guidance and

support of my adviser, Dr. Manavendra N Mahato. His dedication to

research and pursuit of physics has been an invaluable source of inspiration

and encouragement to me.

I would also like to thank my PSPC committee members, Dr. Ankhi Roy

and Dr. Swadesh Kumar Sahoo for serving as my committee members even

at hardship. I am immensely thankfull to Dr. Raghunath Sahoo for his

help in doing my project work. You supported me greatly and were always

willing to help me.

A special thanks to my family. Words cannot express how grateful I am to

my parents and brother. Your prayer for me was what sustained me thus

far.

“There are some people in life that make you laugh a little louder, smile a

little bigger and live just a little bit better”....FRIENDS. My jolly friends

Ashish Bisht, Pavish Subhramani, Debashih Sahoo and all my batch mates.

Thanks everone for helping me in my journey of IIT Indore.

I certainly acknowledge the facilities and resources provided to us by the

Indian Institute of Technology Indore.

ix



x



Abstract

Curvature in space time fabric arises by taking stress energy tensor as

some source field. Motivation for using matter fields are their abundance

in nature and Schwarszchild black hole is one of the most symmetric static

massive solution of Einstein field equation. Many other solutions of Ein-

stein field equation are also found by modifying Einstein’s action with some

gauge fields and other theories. Effective theory can be arise if one takes

higher energy theory such as string theory. Einstein’s action is naturally

modified with some scalar-tensor superstring terms at sufficiently high en-

ergy scale. On taking low energy limit Einstein’s action is recovered with

a dilaton scalar field which is coupled to gravity.

In this thesis, we work on Einstein-Maxwell-Scalar theory in (2+1) di-

mensions that contains a scalar field coupled minimally to gravity and a

potential that depends solely on scalar field. We obtained an exact solution

containing a black hole with a regular horizon. Further, we also work on

the thermodynamic properties of black hole and try to prove the First law

of Thermodynamics for our solutions.

• The first chapter give elementary details of Einstein’s equation and

its solution. The brief description of Black hole with three character-

istic properties: mass, charge and angular momentum is given in this

chapter.

• In the second chapter, the motivation for the project work, modifica-

tion of Einstein’s action with Maxwell-Scalar terms and the equation

of motions are given.

• In the third chapter we work on the anastz in (2+1) dimensions

and discussed various techniques used to obtained the exact solu-

tion of Einstein-Maxwell-Scalar gravity. The komar integral are used

to prove first law of Black hole thermodynamics.
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Chapter 1

Introduction

Objects moved when they are pushed but what does freely falling object

experience? the unsatisfactory answer gravitational force gave Einstein the

inspiration to developed a theory of ages, renowned as General Theory of

Relativity. Einstein’s tensorial theory of Gravitation is the achievement of

modern physics which explains universe keeping time and space on equal

footing. The intricate mathematics of general relativity deals with the

geometry of space-time and Einstein’s equation finally coined that matter

and curvature work together. One of the beautiful solution of Einstein’s

equation makes this theory more significant. Black Hole, a region which is

so curved because of its massiveness that nothing not even light can escape

from it. Before stepping into the essence of this thesis, we briefly define

the terms used in it.

1.1 Einstein’s Equation

The visualization of space being like a globe where you parallel transport

a vector on a curve end up crossing each other gives intuitive idea of space

being curved and what the force is. According to Einstein, space and time

are inextricably linked with each other and can get distorted by massive

objects. Einstein Field Equation describes the fundamental relationship of

1



space-time being curved by mass and energy.

Rµν −
1
2Rgµν + Λgµν = 8πg

c4 Tµν (1.1)

It is a symmetric 4 × 4 tensor equation in which each tensor has 10 in-

dependent components giving 10 non linear coupled differential equation

which reduces to 6 using Bianchi Identities. The EFE can also be written

in compact form as

Gµν + Λgµν = 8πg
c4 Tµν (1.2)

where

Gµν = Rµν −
1
2Rgµν (1.3)

is the symmetric second-rank Einstein tensor which describes the curvature

of space. The term with Λ tells about the energy density of space and the

term on the right of EFE is stress-energy-tensor that tells us about mass,

energy, momentum, pressure etc.

1.1.1 Metric and Christoffel symbol

Metric is a symmetric, second rank, covariant tensor that computes the

distance between two points on a differential manifold. It represent geo-

metrical structure of any spacetime in a bilinear form that takes two tangent

vectors X at any given point on manifold to produce a real number. The

metric tensor is given as:

G : X ×X → R

Christoffel symbol measures the misalignment of coordinate system

and geodesics motion of a vector. It shows the deviation of covariant vector

on parallel transporting it on a curved spacetime. It is given in terms of

coordintes as: [9]

Γkij = gkl

2 (gil,j + gjl,i − gij,l)

2



Since Christoffel symbol depends upon the coordinate system so it

can be removed with the proper choice of a frame in the coordinate system.

The metric connection of Riemannian Geometry in terms of coordinates of

a manifold is represented by the Christoffel symbols.

1.1.2 Riemann Curvature Tensor

Riemann curvature tensor is used to measure the curvature of spacetime on

Riemannian manifold. It assigns a tensor to each point on a Reimannian

manifold and measures the curvature by parallel transporting the vector

from one direction to other on manifold or vice versa. The magnitude of

curvature can be determined by:[9][10]

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ

1.1.3 Ricci Tensor and Ricci Scalar

On contracting Reimannian curvature tensor we get Ricci tensor given as:

Rρ
µρν = Rµν

Ricci tensor measures the degree of convergence and divergence of

geodesic from the volume at a given point on a Reimannian manifold.

On further contracting the Ricci tensor we get Ricci scalar. It measures

the amount of deviation of volume of any object from the volume taken in

Euclidean space. [9]

• If Ricci scalar is positive, volume will increase and we can have de-

Sitter space.

• If its value is negative, volume will decrease and we get anti-de Sitter

space.

• If its value is zero, volume remain same and we get flat spacetime.
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and Ricci scalar is given as:

R = gµνRµν .

Ricci scalar are invariant under coordinate transformations as they are

scalar, thus are more useful in analysing a metric. They directly provide

coordinate-invariant information about a given metric.

1.1.4 Stress Energy Tensor

Stress energy tensor is a symmetric, rank-2 tensor and a source of grav-

itational field in space time fabric. It is an attribute of matter fields,

electromagnetic field and other non-gravitation force fields.

From mathmatical point of view, a scalar can be associated to an element

of n-dimensional volume with the help of current density. If normal four

vector n gives the orientation of surface in space time then element of three

volume is n∆V. Mass density transforms as a 00-component of rank 2

tensor. To associate a four vector ∆pα to n∆V, we need two indices Tαβ,

such that [9][10]

∆pα = Tαβnβ∆V

The second rank tensor Tαβ is called stress energy tensor.

In order to have a physical interpretation, lets consider an inertial frame

in flat space time and three dimensional volume ∆V, along time like slice.

If nα = (1,0,0,0) is the normal along three dimensional volume which

is at rest then components of stress energy tensor are:

T 00 is energy density

T 0i is the energy flux in the i-th-direction;

T i0 is the momentum density in the i-th-direction;

T ij is i-th component of force per unit area along a surface with

normal in j-th direction.

So, Einstein’s equation tells mass warps the space and warped space acts

4



like a moving mass. The left hand side of Einstein equation tells how the

curvature is changing while travelling along a vector and term containing

gµν tells how measurements are affected. Right hand side of the EFE tells

what physical quantities govern these changes.

1.2 Killing vector and Conserved Charges:

We are used to the fact that symmetries lead to conserved quantities

(Noether’s theorem). For example, in classical mechanics, the angular mo-

mentum of a particle moving in a rotationally symmetric gravitational field

is conserved. In the present context, the concept of ‘symmetries of a grav-

itational field’ is replaced by ‘symmetries of the metric’, and we therefore

expect conserved charges associated with the presence of Killing vectors.

Two important class of this phenomena is

Killing Vectors, Geodesics and Conserved Charges Let Killing vec-

tor field be Kµ, and geodesic be xµ(τ), then the quantity

QK = Kµẋµ(τ)

is constant along geodesic. Indeed,

d

dτ
QK = d

dτ
(Kµẋµ(τ)) = ∂Kµ

∂xν
dxν

dτ

dxµ

dτ
+Kµ

d2xµ

dτ 2

=
(
Kα;ν +KαΓαµν

dxν

dτ

dxµ

dτ

)
+Kµ

d2xµ

dτ 2

= Kµ

(
Γαµν

dxν

dτ

dxα

dτ
+ d2xµ

dτ 2

)
= 0,

deduced from Nother’s theorem, Qk is a conserved quantity.

Conserved Currents from the Energy-Momentum Tensor: Let Kµ

be a Killing vector field, and T µν the covariantly conserved symmetric

energy-momentum tensor satisfying, ∇µT
µν = 0. Then the current

Jµk = T µνKν

5



is covariantly conserved. Indeed,

∇µJ
µ
k = (∇µT

µν)Kν + T µν∇µKν

= 0 + 1
2T

µν(∇νKµ +∇µKν) = 0

here also we have conserved current. Thus, taking symmetries of space

time metric, charges related to corresponding Killing vectors as:

• charge generated by timelike Killing vector is mass of black hole.

• charge generated by electromagnetic vector forces are electric and

magnetic charges of black hole.

• charge generated by azimuthal-symmetry Killing vector is angular

momentum of black hole.

1.2.1 Komar Currents

In the above section, we discussed the symmetries and corresponding con-

served currents related to it. The conserved current when written as hy-

persurface integral of components of divergence of some tensor associated

to conserved charge. These are then defined as Komar current associated

to the symmetry of the metric. The currents associated with Killing vec-

tors turn out to play a privileged role. Komar currents can be used to find

characteristic properties of a system as:

Komar Mass: Komar current for a timelike Killing vector is the total

mass of an isolated (asymptotically) static system, given as:

MKomar = 1
4π

∫
∂σ
dd−2√γηµσν4µKν (1.4)

where ∂σ is the boundary of σ at spatial infinity. γij is the induced metric

on ∂σ and σν is the outward pointing unit normal to ∂σ.

Komar Charge: Conserved current associated to the electromagnetic ten-

sor Fµν gives the total Komar charge contained in a system. The com-

ponents like Ftr are related to electric current and Fθφ are for magnetic
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current. We can associate a Komar charge to spacelike surface σ by:

QKomar = −
∫
∂σ
dd−2x

√
γηµσνF

µν (1.5)

We have used Komar integrals in later sections.

1.3 Solution of Einstein’s Field Equation

All physically possible solutions of Einstein’s equation provide a descrip-

tion of gravitation and space time geometry. The solutions of Einstein’s

equation depend upon type of source fields like matter field, scalar field,

electromagnetic fields etc. We can plug the type of field into EFE and

can get prediction for the phenomena of interest. Unfortunately, the Ein-

stein’s equations are highly coupled non-linear partial differential equa-

tions. Moreover, in (3+1) dimensions there are 20 unknowns that need

to be calculated from 14 equations which is bit tricky to solve. One can

work on simple solutions by increasing the number of symmetries and de-

grees of freedom. There are many solutions of Einstein’s equation in which

Schwarszchild metric is one of the most spherically symmetric solution to

explain space time geometry. Further, different solutions were found by

coupling Einstein’s action with Maxwell terms such as charged Reissner

Nordstrom black hole. On reducing some symmetries, we can find different

solution with different properties like Kerr Newmann Black Hole which is

a massive charged rotating black hole.

1.3.1 Symmetrical (static) Solutions

Schwarzschild Black Hole:

It is most symmetrical vacuum solution of Einstein’s equation with the as-

sumption that electric charge, angular momentum, and cosmological con-

stant are all zero and have only one characteristic of mass. Schwarzschild

metric is given by:[12][10][11]
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ds2 = −
(

1− 2GM
c2r

)
c2dt2 + 1(

1− 2GM
c2r

)dr2 + r2(dθ2 + sin2θdφ2)

Properties of Schwarzschild Black Hole:

• The metric coefficients are independent of time, which corresponds

to a Killing vector field leaving local geometry of spacetime along the

integral of that vector field unchanged.

• The metric is diagonal, making spacetime to be hypersurface orthog-

onal.

• The last two terms are just standard metric of 2-sphere, which makes

spacetime to be spherically symmetrical. The 2-sphere is labelled by

the coordinates t and r, which makes the tangent vector of 2-sphere to

be orthogonal to ∂
∂t

and ∂
∂r

vector fields. Thus metric is independent

of θ and φ coordinates. For 2-sphere, it has three Killing vectors

which preserves the angular momentum.

• The M appearing in the metric is the property of space time geometry,

i.e. it is the mass of source of curvature discussed above. Variable r

in the last part of metric is related to the area of 2-sphere and it is

not related to the radius of black hole.

r =
√
A

4π

• The metric blows at r = 0 and r = 2GM
c2 , which can be considered as

singular points. But to find true singularity one can use scalar quan-

tities that are independent of the choice of coordinates. Kretschmann

scalar is one such important quantity and in Schwarszchild metric it

is given as:

RabcdR
abcd = 48G2M2

r6

which shows r = 0 is the true singularity of Schwarszchild black hole.

8



Reissner Nordstrom Black Hole

RN black hole is the static, sypherically symmetric, charged, non-rotating

solution of Einstein’s equation with a source constituted by Maxwell’s field,

given as:

Tµν = 1
4π

(
gρσFµρFνσ −

1
4gµνFρσF

ρσ
)

Equation of motion will be

Rµν −
1
2gµνR = 8πTµν

∇µF
µν = 0

The metric of the given system is given by:

ds2 = −f(r)c2dt2 + 1
f(r)dr

2 + r2
(
dθ2 + sin2θdφ2

)
where

f(r) = 1− 2M
r

+ Q2

r2

and the radial component of electric field will be:

Er = Frt = Q

r2

RN solution depends on the relation of charge and mass. From the

roots of f(r) given as:[10][12]

r± = M ±
√
M2 −Q2

• if |Q| < M , then the value of f(r) is positive, with two horizon values

r+ and r− interpreted as outer and inner horizons respectively. The

exterior horizon look quantitaively similar to Schwarzschild metric.

• if | Q | > M , everything is well-behaved for positive r as f(r) is also

positive and at r=0 we get naked singularity.

9



• at Q = 0 limit, we get the Schwarzschild spacetime with radius rs =

2M .

1.3.2 Symmetrical (Nonstatic) Solution

Kerr Newmann Black Hole

It is generalized spinning case of Schwarschild Black Hole. Kerr New-

mann metric represents the special case of rotating, charged massive black

hole with most asymptotically spherically symmetric solution of Einstein-

Maxwell equation. There are two coordinate system use to describe the

geometry of rotating black hole: Boyer-Lindquist coordinates and Kerr-

Schild coordinates. Kerr Newmann metric in Boyer-Lindquist coordinate

system is given as:[12][11]

c2dτ 2 = −
(
dr2

4
+ dθ2

)
ρ2+(cdt−asin2θdφ)24

ρ2−((r2+a2)dφ−acdt)2 sin
2θ

ρ2

where

a = J

Mc

ρ2 = r2 + a2cos2θ

4 = r2 − rsr + a2 + r2
Q

rs = 2GM
c2

r2
Q = Q2G

4πε0c4

Thus, black hole solutions of Einstein’ equation for different source

field give characteristics properties of black hole as massive, charged and

rotating to give no-hair theorem. According to no-hair theorem, black hole

solution of Einstein-Maxwell equation can be characterized by only three

properties i.e. mass, spin and rotation. Therefore, on furthur modifying

Einstein’ action with some scalar-tensor terms we can observe different

10



properties of black hole. In low energy limit, Einstein’ action is modified

with some dilatonic scalar field which is coupled to gravity. In the next

chapter we discuss about Einstein-Maxwell-Scalar Theory.
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Chapter 2

Einstein-Maxwell-Scalar

Theory

2.1 Introduction

The attempt to combine the fundamental forces and elementary particles is

an open area of research since long. Einstein’s equation gave much informa-

tion about geometry of space time but effective gravity action can emerge

by modifying Einstein’s action with some other source field in a coupled

way. EMD theory generated by coupling scalar field with electromagnetic

field minimally or nonminimally in which the sign of kinetic energy term of

scalar or Maxwell is opposite to protect the violation of no-hair theorem.

The asymptotically flat static black hole solutions for Einstein-Maxwell-

dilaton system enriched the physics of the solution of EFE compared to

Reissner-Nordström solution, which is the charged black hole solution of

the Einstein-Maxwell theory.

2.2 General form of Einstein-Maxwell-

Dilaton Action:

Einstein-Maxwell-Dilaton gravity in (d+1) dimensions in which scalar field

coupled minimally to gauge field (the Maxwell field) or gravity. The action

12



contains some kinetic terms of fields and few other coupling terms. The

general form of Einstein-Maxwell-Dilaton action for d dimensions is given

as:[14]

S =
∫ √
−gddx(R− 2∂µ(φ)∂ν(φ)−W (φ)FµνF µν − V (φ)), (2.1)

which is for some dilaton φ. W (φ) is usually an exponential function of the

dilaton field and V (φ) is self-interacting potential. The form of the field

strength is given as,

Fµν = ∂µAν − ∂νAµ. (2.2)

The equation of motion obtained after perturbing the action are as follows

for metric:

On perturbing it with respect to gµν , and using time reversal technique we

get,

Rµν = 2∂µ(φ)∂ν(φ)− 1
2gµνW (φ)FρσF ρσ + 2W (φ)F µρF ρ

ν + 1
2gµνV (φ) = 0.

(2.3)

for dilaton:

On perturbing it with respect to (φ), we get,

∇µ(∂µφ)− 1
4
W (φ)
φ

FµνF
µν − 1

4
∂V

∂φ
= 0. (2.4)

for gauge field:

On perturbing it with respect to Aµ, we obtain,

∇µ(WφF µν) = 0. (2.5)

2.3 (2+1) dimensional space time

Gravity in (2 + 1) dimensional spacetime has been a fascinating area of the-

oretical investigations during the last few decades. There are two reasons

for it. First, the technical difficulties present in a wide range of prob-

lems in (3 + 1) dimensional gravitation become significantly simpler in

13



lower dimensions. Moreover the study of gravity in (2 + 1) dimensions is

also expected to shed some light on the understanding of more realistic or

complicated cases of four and higher dimensional gravities. Second, (2+1)-

dimensional gravity with a matter source has attracted considerable inter-

est including standard Maxwell term, the inclusion of extra scalar field(s),

higher rank tensor fields, higher curvature terms which are intensively stud-

ied.

2.3.1 BTZ Black Hole

The first study of three dimensional black hole, as a result of Einstein the-

ory of relativity was done by Bana-dos, Teitelboim and Zanelli, and the

solution is commonly known as BTZ black hole. After the discovery of first

BTZ black hole, there is a flood of different types of black holes in (2+1)

dimensions. The BTZ black holes are different from Schwarzschild and

Kerr black hole as they are asyptotically anti-de Sitter rather than asymp-

totically flat and has no curvature singularity at the origin. It comes out to

be asymptotically anti-de Sitter because with zero cosmological constant,

Ricci tensor and simultaneously Riemann tensor vanish and there would

be no black hole in (2+1) dimensions.[1]

Nonetheless, it is a black hole with properties much similar to (3+1) di-

mensional black hole as:

• it has characteristic properties of ADM mass, charge and angular

momentum and admits no-hair theorm.

• thermodynamical properties are much similar to (3+1) dimensional

black hole.

• it has event horizon, inner and outer horizon like Kerr black hole

• it appears as a final state of collapsing matter

BTZ Black hole in Schwarzschild coordinates The BTZ black hole

in Schwarzschild coordinates is given by the metric

ds2 = −N2dt2 +N−2dr2 + r2(Nφdt+ dφ)2 (2.6)
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where

N =
(
−M + r2

l2
+ J2

4r2

) 1
2

,

Nφ = −J2r2 , (|J |≤Ml).

• Coordinate singularity of the metric is at points

r2
± = Ml2

2

1±
(

1−
(
J

Ml

)2) 1
2
 .

• Value of mass and angular momentum measured at the boundary is

M = r2
+ + r2

−
l2

, J = 2r+r−
l

.

2.4 AdS space time

Scalar coupled theory in different space time has gained much interest

since they often arise as effective theories in low energy limits of theories

suitable at higher energies. Dilaton field coupled with different fields like

gauge fields can change the structure of space time geometry and we get

the solution of dilaton coupled action with gravity or gauge field in some

de Sitter or anti de Sitter space time. Gao and Zhang obtained the first

asymptotically non flat charged dilaton black hole solution in de-Sitter and

anti de Sitter space time using Schwarzschild coordinate system. For super

symmetric theory in various dimensions, solutions were obtained with anti

de Sitter space time. Thus the accompanying vacuum state and black hole

solution in such a space time is an important area to explore.

Mathematically, AdSn is an n dimensional solution of Einstein-Hilbert ac-

tion with negative cosmological constant, signature (p, q) isometrically em-

bedded in the space Rp,q+1 with coordinates x1, ...xp, t1, ..., tq+1 and metric

ds2 =
p∑
i=1

dx2
i −

q+1∑
j=1

dt2j
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and three-dimensional anti-de sitter space obtained from coordinated

(X1, X2, T1, T2) and metric is

ds2 = dX2
1 + dX2

2 − dT 2
1 − dT 2

2

The hypersurface may be defined, through the algebraic constraint,

−X2
1 −X2

2 +
n+1∑
i=3

X2
i = (n− 1)(n− 2)

2Λ

involving n+ 1 coordinates Xn+1
1 in n+ 1-dimensional flat space with sig-

nature (n− 1, 2). In order to show the hypersurface satisfies the Einstien

equations with a negative cosmological constant, we need to solve the con-

straints for X in terms of n coordinates.

Denoting the n coordinates on the submanifold σ, the induced metric on

the submanifold can be expressed as,

γab = ηµν
∂Xµ

∂σa
∂Xν

∂σb

which is related by a projection operator to the first fundamental form,

hµν . From this metric, one can now directly compute the curvature tensors

and arrive at the Einstein equations.

2.5 Black Hole Thermodynamics

The dicussion of classical Black hole thermodynamics appears to be same

as ordinary laws of thermodynamics applied to a system containing a black

hole. The analogy of thermodynamic behavior where the horizon area play-

ing the role of entropy is striking. This gave the boost to the theory with

more terms coined for black hole thermodynamics as

surface gravity: For a Killing vector field ξ, however for all Killing hori-

zon, we only have the freedom to rescale ξ by a constant, and if we have a

preferred normalisation for ξ, then κξ is uniquely determined and is known

as the surface gravity of the Killing horizon or of the corresponding black

16



hole. An equivalent definition of κ is the the magnitude of the accelera-

tion, with respect to Killing time, of a stationary zero angular momentum

particle just outside the horizon.

Temperature: Temperature of the black hole is connected to the whole

concept of Hawking radiation. The idea that black hole generate virtual

particles at the edge of event horizon and these particles recombine and

disappear in a puff of annihilation near event horizon. Thus temperature

of the black hole relate to the surface gravity at horizon.

By its striking behaviour, there must be some relationship between prop-

erties of black hole and classical thermodynamic laws, which are then for-

mulated as

• surface gravity remains constant on event horizon for a stationary

black hole

• total mass of the black hole is related to charge, angular momentum,

entropy of the black hole as

∂M = κ

8πdA+ ΦdQ+ ΩdJ

where, κ is the surface gravity at horizon

• total area of the black hole is increased in every process

• κ = 0 is not possible in any process

For studying black hole thermodynamics and other black hole related event

always consider;[10]

M > Q > 0

Two reason related to this choice are;

• In order to follow the Cosmic Censorship principle given by Penrose

which states that all singularities need to be hidden from an observer

at infinity by the event horizon of black hole.
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• Not much is known about the naked singularity.

We can divide the metric in three regions;

Region1 : r+ < r <∞

Region2 : r− < r < r+

Region3 : 0 < r < r−

For a particle crossing the event horizon from region 1 to region 2,

an observer far away from the geometry of black hole would think him to

be redshifted. However the falling observer takes finite time to reach the

horizon.

Inside region 2, particles move in the direction of decreasing r. On

reaching the region 3, r switches back to spacelike coordinate and hence

we are saved from being hit by the singularity. One can continue moving

in the direction of singularity or can move in the direction of increasing r.

Again on reaching region 2, r swaps its nature but with reversed direction.

AdS Black Hole Thermodynamics

AdS black hole Thermodynamics is much extended as it considers cosmo-

logical constant as one of the thermodynamical parameter. Thus, the first

law of thermodynamics is modified by V dP term, where P = − Λ
8π and

in this context mass is considered as enthalpy of the system rather then

internal energy.[2]
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Chapter 3

Einstein-Maxwell-Dilaton

Theory in (2+1) dimensions

3.1 Introduction

We aim to study black hole solution of an Einstein-Maxwell gravity with

minimally coupled scalar field in (2 + 1) dimensions. Black hole solution

comprising gravity coupled to a scalar field is known as hairy black hole.

The general form of Einstein Maxwell dilaton action in (2 + 1) dimensions

is given as,

S =
∫ √
−gd3x(R− 2∂µ(φ)∂ν(φ)−W (φ)FµνF µν − V (φ)) (3.1)

which contains some dilaton φ. W (φ) is usually an exponential function

of the dilaton field and V (φ) is self-interacting potential. The form of the

field strength is given as,

Fµν = ∂µAν − ∂νAµ. (3.2)

Here, we start with an action in which scalar couples to gravity in a minimal

way and it also couples to itself via a self interacting potential V (φ).

S =
∫ √
−gd3x(R− gµν∇µ(φ)∇ν(φ)− 2V (φ)− 1

4FµνF
µν) (3.3)
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where,

Fµν = ∂µAν − ∂νAµ. (3.4)

The equations of motion obtained after perturbing the action are as follows:

for metric:

On perturbing it with respect to gµν , and using trace reversal technique we

get,

Rµν − ∂µφ∂νφ− 2gµνV −
1
2FµρF

ρ
ν + 1

4gµνFρσF
ρσ = 0. (3.5)

for dilaton:

On perturbing it with respect to (φ) we get,

1√
−g

∂µ(
√
−g∂µφ)− ∂V

∂φ
= 0. (3.6)

for gauge field:

On perturbing it with respect to Aµ we get,

∂ν(
√
−gF µν) = 0. (3.7)

We work on the ansatz of the following form,

ds2 = −f(r)dt2 + dr2

f(r) + y2(r)dz2, (3.8)

where coordinate ranges from −∞ 6 t 6 ∞, r > 0 and −π 6 z 6 π, Let

us consider that Aµ and φ are functions of radial coordinates only. Using

Eq. 3.7 and above assumption, Maxwell’s field can be given by chossing

another ansatz,

Aµ = F (r)dt, (3.9)

such that,

Ftr = − Q

y(r) , (3.10)

where Q is a constant.

Using above ansatz we can write below the equation of motion by substi-
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tuting the value of Rµν ,

ff ′y′ + fyf ′′ + 4fyV = 0, (3.11)

− f ′y′

2fy −
f ′′

2f −
y′′

y
− (φ′)2 − 2V

f
= 0, (3.12)

− yf ′y′ − yfy′′ − 2y2V −Q2 = 0, (3.13)

y′fφ′

y
+ f ′φ′ + fφ′′ − dV

dφ
= 0. (3.14)

On multiplying Eq. 3.12 by (2yf 2) and then add to Eq. 3.11, we get a

relation between y(r) and φ, given as

y′′

y
= −(φ′)2. (3.15)

In Eq. 3.12 on putting the value of φ from Eq. 3.15, we can get the equation

for potential V (φ) as:

V = −f
′y′

4y −
f ′′

4 . (3.16)

In Eq 3.13 on putting the value of potential, we get second order non-

homogenous differential equation as:

− f ′y′

2fy −
y′′

y
+ f ′′

2f = Q2

fy2 . (3.17)

Eq. 3.15, 3.16 and 3.17 can be used to determine the expression for scalar

field, potential, f(r) and y(r).

We can solve differential Eq. 3.15 by assuming a form of y(r), which we

choose to be,

y(r) = g(φ(r)) (3.18)

Solving for φ then gives,

φ = c2 −
log(rα + c1)

α
(3.19)
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where α is some constant from calculation. By rescaling r, we can take

c1 = 0 and then φ becomes

φ = φ0 −
1
α
ln(r). (3.20)

Here, φ0 = c2 − 1
α
ln(α). On doing further suitable calculations, we get the

expression for y(φ) of the form

y(φ) = e
1
2 (−α−

√
−4+α2)φc3 + e

1
2 (−α+

√
−4+α2φ)c4. (3.21)

Thus we obtained exact expression for scalar field and y(r). To obtain the

form of f(r), we use equation Eq. 3.17 which is bit tedious to solve by

ordinary differential equation solving method so we use numerical methods

to solve the differential equation. We solved f(r) in steps i.e. for small

value of r.

3.2 Asymptotic Solution for small r

To ease our problem, we use series solution method for small r and assume

the solution of f(r) as

f(r) =
6∑

n=0
anr

n. (3.22)

Expanding Eq. 3.19 for small r up to fifth order for Eq. 3.17, we get,

φ(r) =
(
c2 −

log(c1)
α

)
− r

c1
+ αr2

2c2
1
− α2r3

3c3
1

+ α3r4

4c4
1
− α4r5

5c5
1

+O(r)6. (3.23)

Using DSolve technique in mathematica and truncating the result upto

sixth order, we get the series solution of differential Eq. 3.17. The expres-

sion for f(r) for small value of r is given in Appendix [ 4.1]

To get a value of event horizon, we solved the problem numerically using

NDSolve technique in mathematica for small value of r. NDSolve tech-

nique is based on Runge Kutta Method, that gives an iterative solution

when initial condition is known at one end but has to be evaluated at the

other boundary.
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Since the range of r is from 0 to infinity, we make our range finite by repa-

rameterized r to u= 1
1+r such that, u lies in finite range between 0 and 1.

We confined our calculation to small r and upper range of u was set to be

1. From the graph we got the numerical value of event horizon at 0.880812

for f(r) to be zero in new range of r, as shown in Fig.[ 3.1]

Figure 3.1: Graph between f(r) vs r for a0 = a1 = Q = c2 = c1 = c3 =
c4 = 1 and α = 3

Here, the coordinates of t and r change their sign on the other end of the

boundary signifing a black hole region. Root of f(r) for which curvature in-

variants viz., Ricci scalar, RabR
ab and Kretschmann scalar RabcdR

abcd, give

finite result is interpreted as horizon. The equation of curvature invariants

are given respectively

R = −2f ′y′ + yf ′′ + 2fy′′
y

, (3.24)

RµνR
µν = (3f ′2y′2 + y2f ′′2 + 2fyf ′′y′′ + 4f 2y′′2 + 2f ′y′(yf ′′ + 3fy′′))

2y2 ,(3.25)

RµνρσR
µνρσ = 2f ′2y′2 + y2f ′′2 + 4ff ′y′y′′ + 4f 2y′′2

y2 . (3.26)

To check whether the horizon is coordinate, naked or a real singularity, we

find numerically the values of curvature invariants at event horizon and

putting the numerical value of f(r) and y(r) in above equations, they are

calculated to be -143.974, 14193.1 and 36043.9 respectively. For our case
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they are finite values which means we have coordinate singularity.

The value of potential V (φ(r)) is found by substituting the value of f(r),

φ(r) and y(r) in Eq. 3.16 to get the expression given in Appendix[ 4.1].

The graph between V (r) and r is shown in Fig.[ 3.2]

Figure 3.2: Graph between V (r) and r for a0 = a1 = Q = c2 = c1 =
c3 = c4 = 1 and α = 3

Since the value of potential increases at other boundary where u = 1 and

also the space time metric swap their signs, so we can signify the black hole

region near r → 0 for r to be in its whole infinite range.

Kinetic energy of scalar field: The kinetic term of the scalar field at

boundary is given as

K.E. = ∂µφ∂
νφ, (3.27)

K.E. = gµν∂µφ∂νφ. (3.28)

For, µ = ν = r,

K.E. = grr∂rφ∂rφ. (3.29)

K.E.(r →∞) = f(r)
( 1
rα + c2

)2
= 0 (3.30)

K.E.(r → 0) = f(r)
( 1
rα + c2

)2
= a0

c2
2

(3.31)

Thus, kinetic term of scalar field become zero at r →∞ and have a contact

value at r → 0 i.e. near black hole region.

Komar charge: The electric current associated to the electromagnetic
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field tensor Fµν is conserved, so we can associate an electric charge to

spacelike surface σ by,

QKomar = −
∫
∂σ
dd−2x

√
γηµσνF

µν , (3.32)

where ∂σ is the boundary of σ at spatial infinity. γij is the induced metric

on ∂σ and σν is the outward pointing unit normal to ∂σ. For our case:

ηµ = (f(r)−1
2 , 0, 0),

σν = (0, f(r) 1
2 , 0),

√
γ = y(r),

which gives us the value of Komar charge as,

QKomar = 2πQ

Komar mass: Using the above analogy we can define Komar Mass since

we have timelike Killing vector which can give rise to energy/mass :

MKomar = 1
4π

∫
∂σ
dd−2√γηµσν4µKν (3.33)

MKomar = a1

4 e
− (α+

√
−4+α2)φ̃

2
(
c3 + e

√
−4+α2φ̃c4

)
(3.34)

for r → 0 and φ̃ = c2α−log c1
α

. Thus mass can be interpreted in terms of a1

and parameters of y(r) and scalar field at boundary.

From expression of φ at r → 0, we get

φ = c2α− log c1

α
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3.3 Special case: Q = 0

Now we consider a case for Q = 0, and solve second order homogenous

differential equation given as,

− f ′y′

2fy −
y′′

y
+ f ′′

2f = 0. (3.35)

We adopt the same method as Q 6= 0 to solve this differential equation for

small value of r. The expression for f(r) given in Appendix[ 4.2].

To get the value of event horizon, we used NDSolve technique in mathemat-

ica based on Runge Kutta Method in this case also. On reparameterizing

r to u = 1
1+r finite our range such that u lies between 0 and 1.

We confined our calculation to small r and upper range of u was set to be

1. From the graph we got the numerical value of event horizon at 0.479657

for f(r) to be zero in new range of r, as shown in Fig.[ 3.3]

Figure 3.3: Graph between f(r) vs r for a0 = a1 = Q = c2 = c1 = c3 =
c4 = 1 and α = 3

Here also the sign of coordinates t and r change on the other end of the

boundary. Same as previous case, we find numerically the values of curva-

ture invariant at horizon and they are calculated to be -760.218, 353483.

and 836002. respectively. Their finite values shows coordinate singularity

in this case also.

Potential V (φ) is given by substituting the value of f(r), φ(r) and y(r) in
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Eq. 3.16 to get the expression given in Appendix[ 4.2] The graph between

V (r) and r is shown in Fig.[ 3.4], the value of potential increases at bound-

ary where space time swap their signs.

Figure 3.4: Graph between V (r) and r for a0 = a1 = Q = c2 = c1 =
c3 = c4 = 1 and α = 3

Kinetic energy of scalar field and Komar mass have the same values in this

case also.

We have expression for φ and y(φ(r)). We will consider α = 5
2 for the

special case. Implementing the value of α. our expression for y(φ) will be,

y(φ) = c1e
−φ

2 + c2e
−2φ, (3.36)

and φ will be modified accordingly

φ = φ0 −
2
5 ln(r). (3.37)

Substituting the value of φ from Eq. 3.37 into Eq. 3.36, we get the expres-

sion as,

y(φ) = c1r
1
5 e−

φ0
2 + c2r

4
5 e−2φ0 . (3.38)
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Further we get from Eq. 3.17 the following equation for Q=0 case as,

− f ′y′

2fy −
y′′

y
+ f ′′

2f = 0. (3.39)

On solving Eq. 3.12, we get the expression for potential for Q = 0 case,

which is given as,

V = −f
′y′

4y −
f ′′

4 . (3.40)

3.3.1 Solution for y(r) = r
1
5

To solve differential Eq. 3.39, we consider c1=1,c2=0 and φ0=0 in Eq. 3.36

to get y(r) = r
1
5 . On putting the values of φ and y in Eq. 3.39, we obtain

the final differential equation as,

5rf ′′ + 8f
5r − f

′ = 0. (3.41)

The solution for the above differential Eq. 3.41 is,

f(r) = r
2
5 c1 + r

4
5 c2. (3.42)

Let c1 = −r
2
5
0 and c2 = 1 we get,

f(r) = r
2
5 [−r

2
5
0 + r

2
5 ]. (3.43)

Our motive here is to get the event horizon for which we substitute f(r)=0

in Eq. 3.43. We obtained event horizon at r = r0 and curvature singularity

at r = r0 and r = 0 for which spacial coordinate blow up.

The graph between f(r) and r is shown in Fig[ 3.5] which shows r → 0 be

the region of black hole in this case as sign of f(r) is negative near this

boundary.

For the curvature singularities Ricci scalar, Ricci tensor squared and
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Figure 3.5: Graph between f(r) and r for y(r) = r
1
5

Kretschmann scalar can be written as,

R = 2(5a 8
5 r

4
5 + 21a 4

5 r
8
5 − 11a 2

5 r2 + 2r 12
5 − 17(ar) 6

5 )
25(−a 2

5 r + r
7
5 )2(r 4

5 − (ar) 2
5 )

, (3.44)

RµνR
µν = 4(11a 4

5 + 4(r 4
5 − 3(ar) 2

5 ))
625r 16

5
, (3.45)

RµνρσR
µνρσ = 4(a 2

5 − r 2
5 )4(19a 4

5 + 12r 4
5 − 28(ar) 2

5 )
625r 12

5 (a 4
5 + r

4
5 − 2(ar) 2

5 )(r 4
5 − (ar) 2

5 )2
, (3.46)

respectively. The value of Ricci scalar, norm of Ricci tensor and

Kretschmann scalar was found to be finite for finite values of the radial

component r.

On substituting Eq. 3.42 into Eq. 3.40 we obtain the value of potential as,

V = − r
2
5
0

25r 8
5
, (3.47)

which at r → ∞ is zero shows asymptotically flat space time in (2+1)

dimensions. The graph between V (r) vs r is shown in Fig.[ 3.6]
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Figure 3.6: Graph between V (r) and r for y(r) = r
1
5

Scalar field at boundary: At r → 0, the value of scalar field comes

out to be constant i.e. φ0 and kinetic term of the scalar field is given as,

K.E. = ∂µφ∂
νφ, (3.48)

K.E. = gµν∂µφ∂νφ, (3.49)

For, µ = ν = r,

K.E. = grr∂rφ∂rφ, (3.50)

K.E. = r
2
5 (−r

2
5
0 + r

2
5 )
( 4

25r2

)
, (3.51)

which shows that scalar field decays at large value of r.

Komar Mass

Using the above analogy we can define Komar Mass since we have timelike

Killing vector allows us to define associated conserved charges as energy/-

mass as follows,[12][11]

MKomar = 1
4π

∫
∂σ
dd−2√γηµσν4µKν (3.52)

In this case,

ηµ = (f(r)
−1
2 , 0, 0),

σν = (0, f(r) 1
2 , 0),
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√
γ = y(r),

Kν = (−1, 0, 0).

It gives Komar mass as,

MKomar = 1
5 −

r0
2
5

10r 2
5
. (3.53)

First law of thermodynamics

Before we proceed further, let us examine the generalized first law of ther-

modynamics for this particular solution. The metric is then given as

f(r) = 10r 4
5

(
M − 1

10

)
(3.54)

The parameter M in eq 3.54 represents the Komar mass of the black hole.

The event horizon is located at r = r0 for which f(r0) = 0, gives the value

of mass as,

M = 1
10 (3.55)

The surface gravity, temperature and entropy at event horizon (derivation

is given in Appendix E [4.5]) is given as

κ = 1
2
∂f

∂r
T = 1

4πf
′(r0) = 0 S = π

2 × y(r0)

Taking variation of following quantites, we get

∂M = 0 ∂S = π

10r
−4
5

0 T∂S = 0

such that

∂M = T∂S

which satisfies first law of thermodynamics for asymptotically flat un-

charged black hole solution in (2+1) dimensions.
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3.3.2 Solution for y(r) = r
4
5

Since we are working on different conditions to obtain the exact solution

of Einstein-Maxwell-Dilaton coupled theory, and already investigate one

solution for which we prove first law of thermodynamics.

For a different solution we consider second case, for which we assume c1=0,

c2=1 and φ0=0 in Eq. 3.36 to get y(r) = r
4
5 . On solving differential Eq. 3.39

for new values of φ and y(r), we obtain the final differential equation as,

5rf ′′ + 8f
5r − 4f ′ = 0. (3.56)

The solution for the above differential Eq. 3.56 is,

f(r) = r
1
5 c3 + r

8
5 c4. (3.57)

Let c3 = −r
7
5
0 and c4 = 1 we get,

f(r) = r
1
5 [−r

7
5
0 + r

7
5 ]. (3.58)

The event horizon is obtained at r = r0. Since, metric has a singularity at

r = 0, which is a curvature singularity. It also seems to have a singularity

at event horizon same as in Schwarszchild case but in both the cases, only

spacial coordinate blow up.

In this case, value of Ricci scalar, norm of Ricci tensor and Kretschmann

scalar are found to be,

R = −4(r
7
5
0 + 20r 7

5 )
20r 9

5
, (3.59)

RµνR
µν = 16

625

98
r

4
5

+ (r
7
5
0 + 6r 7

5 )2(r 8
5 − (r7

0r)
1
5 )2

r4(r
7
5
0 − r

7
5 )2

 , (3.60)

RµνρσR
µνρσ = 16(−r

7
5
0 + r

7
5 )3(3r

14
5

0 + 136r 14
5 + 8(r0r)

7
5 )

625r 16
5 (r 8

5 − (r7
0r)

1
5 )(−2r

7
5
0 r

8
5 + r3 + (r1

04r) 1
5 )
. (3.61)

Curvature invariants come out to be finite for finite value of r and at r = r0

in this case also which saved us from violating the Cosmic Censorship
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principle.

The graph between f(r) and r is shown in Fig.[ 3.7]

Figure 3.7: Graph between f(r) and r for y(r) = r
4
5

The value of potential is obtained on substituting Eq. 3.58 in Eq. 3.16 as,

V = −14
25r 2

5
, (3.62)

which also shows asymptotically flat space time for r → ∞. The graph

between V (r) and r is shown in Fig.[ 3.8]

Figure 3.8: Graph between V (r) and r for y(r) = r
4
5

Scalar field at boundary: At r → 0, the value of scalar field comes to
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be constant i.e. φ0 and kinetic term of the scalar field is given as,

K.E. = ∂µφ∂
νφ, (3.63)

K.E. = gµν∂µφ∂νφ. (3.64)

For, µ = ν = r,

K.E. = grr∂rφ∂rφ. (3.65)

K.E. = r
1
5 (−r

7
5
0 + r

7
5 )
(−2

5r

)2
, (3.66)

which shows that scalar field decays at much larger values of r as compared

to previous case.

Komar mass

For this solution, we can find Komar mass like above taking Killing vector

to be Kν = (2, 0, 0) and the value is calculated to be

MKomar = −4r 7
5

5 +
r0

7
5

10 . (3.67)

First law of thermodynamics

In this case, metric is given as

f(r) = 10r 1
5

(
−M − 7

10r
7
5

)
(3.68)

and thermodynamic quanties can be expressed in terms of r0 as,

M = − 7
10r0

7
5 T = f ′(r0)

4π = −49r0
3
5

20π S = π

2 r0
4
5

variation of following quantities with respect to r0 is

∂M = −49
50 r0

2
5∂r0 ∂S = 4π

10 r0
−1
5 ∂r0 T∂S = −49

50 r0
2
5∂r0
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which proves first law of thermodynamics for this case also by renormalizing

Killing vector.

3.4 Results and Discussion

In this thesis, we have obtained and analysed a solution for Einstein-

Maxwell-Dilaton gravity in (2+1) dimensions. The solution is a static

charged black hole with a regular horizon. Komar integrals are used to get

total mass and charge of black hole. For a generalised case in which we con-

sidered charge to be zero and took specific solution of y(r), we futher anal-

ysed the thermodynamic property of (2+1)-dimensional black hole which

comes out to be much similar as (3+1)-dimensional black hole. From the

above calculations, following results are obtained as follows:

• For both the cases, we obtained event horizon at r = 0 and r = r0,

thus curvature singulaity is obtained at the origin which is similar to

charged black hole in literature. Kretschmann Scalar, Ricci Scalar

and RµνR
ab were calculated and their finite result saved us from vio-

lating the Cosmic Censorship principle.

• In both the case for r → ∞ we obtained asymptotically flat space

time from the expression of potential. In general, (2+1) dimensional

black hole are found in de-Sitter or anti-de Sitter space time.

• Mass of the black hole is calculated using Komar integrals and other

thermodynamical quantities are calculated which shows similar re-

sults as in Schwarszchild case.

• First law of black hole thermodynamics is further proved in both the

cases.

3.5 Conclusion and Outlook

We started with coupled action and found a solution for scalar field and an

exact expression of y(r). We obtained and analysed solution for Einstein-
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Maxwell-Dilaton gravity which is charged black hole in anti de-Sitter space

time with a regular horizon. We have also found the exact solution of

Einstein- Maxwell-Dilaton gravity which is a massive uncharged black hole

for some specific values of α, c1 and c2, considering charge to be zero. The

value of potential found to be zero at r →∞ in both the cases which shows

asymptotically flat space time for general case. We have demonstrated the

first law of thermodynamics for both the cases.

Expressions obtained in the theory

Solution of scalar field and y(r) are given as,

Scalar Field(φ) = c2 −
log(rα + c1)

α
,

y(φ) = e
1
2 (−α−

√
−4+α2)φc3 + e

1
2 (−α+

√
−4+α2φ)c4.

ForQ 6= 0, expression of f(r) and potential V (r) are given in Appendix[ 4.1]

ForQ = 0, expression of f(r) and potential V (r) are given in Appendix[ 4.2]

For y(r) = r
1
5 and φ = φ0 − 2

5 ln(r). Expression of f(r) and potential V (r)

are given as,

f(r) = r
2
5 [−r

2
5
0 + r

2
5 ],

V = − r
2
5
0

25r 8
5
.

For y(r) = r
4
5 and φ = φ0 − 2

5 ln(r). Expression of f(r) and potential V (r)

are given as,

f(r) = r
1
5 [−r

7
5
0 + r

7
5 ],

V = −14
25r 2

5
.

It was shown that curvature singularity comes at r = 0 and at event horizon

r0 where in both the cases spacial coordinate blow up. Further, scalar field

decays at large value of r but in second case it deacys for much larger value

of r. In future, we can work on more generalised cases of φ and y(r) and

considered non zero component of charge. We can also work on thermody-

namic properties and can also try to prove first law of thermodynamics for
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more general cases.

We can extend our work for higher dimensions and can study the dynamics

of de Sitter space or anti de Sitter space time and study its vacuum prop-

erties and properties of wave propagating in it. We can also analyse the

stability of Einstein Maxwell black hole using the heat capacity and can

find whether it undergoes any phase transition.
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Chapter 4

Appendix

4.1 Appendix A

The expression of f(r) and potential V (r) for the most general case where

Q 6= 0 is given in this appendix. Since we have calculated the expression of

f(r) in mathematica we need to change our constants with some different

variables to run the code in mathematica file. The expression given below

for f(r) and V (r) holds such changes given as,

c = c2, b = c1 and p = c3, q = c4
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Expression for f(r)
f[r] =

a[0]+a[1]*r+ -
1

4b2 b
-4+α2

α p+ⅇc -4+α2 q
2

4b
2 -4+α2

α p2 a[0]+8b
-4+α2

α ⅇ
c -4+α2 pqa[0]+

4ⅇ2c -4+α2 q2 a[0]+bⅇ2c -4+α2 q2 -α+ -4+α2 a[1]-

b1+
2 -4+α2

α p2 α+ -4+α2 a[1]-2b
α+ -4+α2

α ⅇ
c -4+α2

2ⅇcα Q2+pqαa[1] *r2+

1

6b7/2 b
-4+α2

α p+ⅇc -4+α2 q
5

-2b
1

2
+
3 -4+α2

α ⅇ
2c -4+α2 p3 q2 -15α+ -4+α2 a[0]-

3b
1

2
+
4 -4+α2

α ⅇ
c -4+α2 p4 q -5α+ -4+α2 a[0]-

b
1

2
+
5 -4+α2

α p5 -3α+ -4+α2 a[0]+ b ⅇ
5c -4+α2 q5 3α+ -4+α2 a[0]+

3b
1

2
+

-4+α2

α ⅇ
4c -4+α2 pq4 5α+ -4+α2 a[0]+2b

1

2
+
2 -4+α2

α ⅇ
3c -4+α2 p2 q3

15α+ -4+α2 a[0]-3b
3

2
+
5 -4+α2

α p5 a[1]-3b3/2 ⅇ5c -4+α2 q5 a[1]+

b
3

2
+
2 -4+α2

α ⅇ
3c -4+α2 pq2 ⅇ

cα Q2 -3α+ -4+α2 -30pqa[1] +

b
3

2
+

-4+α2

α ⅇ
4c -4+α2 q3 ⅇ

cα Q2 -α+ -4+α2 -15pqa[1] -

b
3

2
+
4 -4+α2

α ⅇ
c -4+α2 p3 ⅇ

cα Q2 α+ -4+α2 +15pqa[1] -

b
3

2
+
3 -4+α2

α ⅇ
2c -4+α2 p2 q ⅇ

cα Q2 3α+ -4+α2 +30pqa[1] *r3+

1

48b4 b
-4+α2

α p+ⅇc -4+α2 q
4

-4b
2 -4+α2

α ⅇ
2c -4+α2 p2 q2 -26+29α2a[0]+



6b
4 -4+α2

α p4 2-3α2+α -4+α2 a[0]-6ⅇ4c -4+α2 q4 -2+3α2+α -4+α2 a[0]+

4b
3 -4+α2

α ⅇ
c -4+α2 p3 q 16-19α2+3α -4+α2 a[0]-

4b
-4+α2

α ⅇ
3c -4+α2 pq3 -16+19α2+3α -4+α2 a[0]-

5b1+
4 -4+α2

α p4 -3α+ -4+α2 a[1]+5bⅇ4c -4+α2 q4 3α+ -4+α2 a[1]+

2b1+
2 -4+α2

α ⅇ
2c -4+α2 pq4ⅇcα Q2+45pqαa[1]+

2b1+
3 -4+α2

α ⅇ
c -4+α2 p2 ⅇ

cα Q2 -10+3α2+3α -4+α2 -

5pq -6α+ -4+α2 a[1] +2b
α+ -4+α2

α ⅇ
3c -4+α2 q2

-ⅇ
cα Q2 10-3α2+3α -4+α2 +5pq 6α+ -4+α2 a[1] *r4+

1

120b17/2 b
-4+α2

α p+ⅇc -4+α2 q
7

-b
7

2
+
7 -4+α2

α p7 39α-36α3-5 -4+α2 +12α2 -4+α2

a[0]+b7/2 ⅇ7c -4+α2 q7 -39α+36α3-5 -4+α2 +12α2 -4+α2 a[0]-

b
7

2
+
4 -4+α2

α ⅇ
3c -4+α2 p4 q3 1925α-1400α3-9 -4+α2 +56α2 -4+α2 a[0]+

b
7

2
+
3 -4+α2

α ⅇ
4c -4+α2 p3 q4 -1925α+1400α3-9 -4+α2 +56α2 -4+α2 a[0]-

b
7

2
+
6 -4+α2

α ⅇ
c -4+α2 p6 q 329α-266α3-17 -4+α2 +58α2 -4+α2 a[0]+

b
7

2
+

-4+α2

α ⅇ
6c -4+α2 pq6 -329α+266α3-17 -4+α2 +58α2 -4+α2 a[0]-

b
7

2
+
5 -4+α2

α ⅇ
2c -4+α2 p5 q2 1099α-826α3-21 -4+α2 +102α2 -4+α2 a[0]+

b
7

2
+
2 -4+α2

α ⅇ
5c -4+α2 p2 q5 -1099α+826α3-21 -4+α2 +102α2 -4+α2 a[0]+

b
9

2
+
7 -4+α2

α p7 11-29α2+13α -4+α2 a[1]-

b9/2 ⅇ7c -4+α2 q7 -11+29α2+13α -4+α2 a[1]+

b
9

2
+
2 -4+α2

α ⅇ
5c -4+α2 pq4 3ⅇcα Q2 47α-8α3+11 -4+α2 +8α2 -4+α2 +
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pq 271-619α2-117α -4+α2 a[1] -

b
9

2
+
5 -4+α2

α ⅇ
2c -4+α2 p4 q 3ⅇcα Q2 -47α+8α3+11 -4+α2 +8α2 -4+α2 +

pq -271+619α2-117α -4+α2 a[1] +

b
9

2
+
4 -4+α2

α ⅇ
3c -4+α2 p3 q2 -2ⅇcα Q2 -69α+6α3+19 -4+α2 +6α2 -4+α2 +

5pq 93-207α2+13α -4+α2 a[1] +
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9
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+
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α ⅇ
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9
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+
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1
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3bⅇ6c -4+α2 q6 -69α+96α3-7 -4+α2 +48α2 -4+α2 a[1]+
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Expression for V(r)

V[r] =
1

4
-

1

b7/2 b
-4+α2

α p+ⅇc -4+α2 q
5
r -2b

1

2
+
3 -4+α2

α ⅇ
2c -4+α2 p3 q2 -15α+ -4+α2 a[0]-

3b
1

2
+
4 -4+α2

α ⅇ
c -4+α2 p4 q -5α+ -4+α2 a[0]-

b
1

2
+
5 -4+α2

α p5 -3α+ -4+α2 a[0]+ b ⅇ
5c -4+α2 q5 3α+ -4+α2 a[0]+

3b
1

2
+

-4+α2

α ⅇ
4c -4+α2 pq4 5α+ -4+α2 a[0]+2b

1

2
+
2 -4+α2

α ⅇ
3c -4+α2 p2 q3

15α+ -4+α2 a[0]-3b
3

2
+
5 -4+α2

α p5 a[1]-3b3/2 ⅇ5c -4+α2 q5 a[1]+

b
3

2
+
2 -4+α2

α ⅇ
3c -4+α2 pq2 ⅇ

cα Q2 -3α+ -4+α2 -30pqa[1] +

b
3

2
+

-4+α2

α ⅇ
4c -4+α2 q3 ⅇ

cα Q2 -α+ -4+α2 -15pqa[1] -

b
3

2
+
4 -4+α2

α ⅇ
c -4+α2 p3 ⅇ

cα Q2 α+ -4+α2 +15pqa[1] -

4     



b
3

2
+
3 -4+α2

α ⅇ
2c -4+α2 p2 q ⅇ

cα Q2 3α+ -4+α2 +30pqa[1] +

1

2b2 b
-4+α2

α p+ⅇc -4+α2 q
2

4b
2 -4+α2

α p2 a[0]+8b
-4+α2

α ⅇ
c -4+α2 pqa[0]+

4ⅇ2c -4+α2 q2 a[0]+bⅇ2c -4+α2 q2 -α+ -4+α2 a[1]-

b1+
2 -4+α2

α p2 α+ -4+α2 a[1]-2b
α+ -4+α2

α ⅇ
c -4+α2

2ⅇcα Q2+pqαa[1] -

1

4b4 b
-4+α2

α p+ⅇc -4+α2 q
4
r2 -4b

2 -4+α2

α ⅇ
2c -4+α2 p2 q2 -26+29α2a[0]+

6b
4 -4+α2

α p4 2-3α2+α -4+α2 a[0]-6ⅇ4c -4+α2 q4 -2+3α2+α -4+α2

a[0]+4b
3 -4+α2

α ⅇ
c -4+α2 p3 q 16-19α2+3α -4+α2 a[0]-

4b
-4+α2

α ⅇ
3c -4+α2 pq3 -16+19α2+3α -4+α2 a[0]-

5b1+
4 -4+α2

α p4 -3α+ -4+α2 a[1]+5bⅇ4c -4+α2 q4 3α+ -4+α2 a[1]+

2b1+
2 -4+α2

α ⅇ
2c -4+α2 pq4ⅇcα Q2+45pqαa[1]+2b1+

3 -4+α2

α ⅇ
c -4+α2 p2

ⅇ
cα Q2 -10+3α2+3α -4+α2 -5pq -6α+ -4+α2 a[1] +2b

α+ -4+α2

α

ⅇ
3c -4+α2 q2 -ⅇ

cα Q2 10-3α2+3α -4+α2 +5pq 6α+ -4+α2 a[1] -

1

6b17/2 b
-4+α2

α p+ⅇc -4+α2 q
7
r3

-b
7

2
+
7 -4+α2

α p7 39α-36α3-5 -4+α2 +12α2 -4+α2 a[0]+

b7/2 ⅇ7c -4+α2 q7 -39α+36α3-5 -4+α2 +12α2 -4+α2 a[0]-

b
7

2
+
4 -4+α2

α ⅇ
3c -4+α2 p4 q3 1925α-1400α3-9 -4+α2 +56α2 -4+α2 a[0]+

b
7

2
+
3 -4+α2

α ⅇ
4c -4+α2 p3 q4 -1925α+1400α3-9 -4+α2 +56α2 -4+α2 a[0]-

b
7

2
+
6 -4+α2

α ⅇ
c -4+α2 p6 q 329α-266α3-17 -4+α2 +58α2 -4+α2 a[0]+

b
7

2
+

-4+α2

α ⅇ
6c -4+α2 pq6 -329α+266α3-17 -4+α2 +58α2 -4+α2 a[0]-

    5



b
7

2
+
5 -4+α2

α ⅇ
2c -4+α2 p5 q2 1099α-826α3-21 -4+α2 +102α2 -4+α2 a[0]+

b
7

2
+
2 -4+α2

α ⅇ
5c -4+α2 p2 q5 -1099α+826α3-21 -4+α2 +102α2 -4+α2 a[0]+

b
9

2
+
7 -4+α2

α p7 11-29α2+13α -4+α2 a[1]-

b9/2 ⅇ7c -4+α2 q7 -11+29α2+13α -4+α2 a[1]+

b
9

2
+
2 -4+α2

α ⅇ
5c -4+α2 pq4 3ⅇcα Q2 47α-8α3+11 -4+α2 +8α2 -4+α2 +

pq 271-619α2-117α -4+α2 a[1] -

b
9

2
+
5 -4+α2

α ⅇ
2c -4+α2 p4 q 3ⅇcα Q2 -47α+8α3+11 -4+α2 +8α2 -4+α2 +

pq -271+619α2-117α -4+α2 a[1] +

b
9

2
+
4 -4+α2

α ⅇ
3c -4+α2 p3 q2 -2ⅇcα Q2 -69α+6α3+19 -4+α2 +6α2 -4+α2 +

5pq 93-207α2+13α -4+α2 a[1] +

b
9

2
+
6 -4+α2

α ⅇ
c -4+α2 p5 -ⅇ

cα Q2 -57α+12α3-5 -4+α2 +12α2 -4+α2 +

5pq 17-41α2+13α -4+α2 a[1] +

b
9

2
+

-4+α2

α ⅇ
6c -4+α2 q5 ⅇ

cα Q2 57α-12α3-5 -4+α2 +12α2 -4+α2 -

5pq -17+41α2+13α -4+α2 a[1] +

b
9

2
+
3 -4+α2

α ⅇ
4c -4+α2 p2 q3 2ⅇcα Q2 69α-6α3+19 -4+α2 +6α2 -4+α2 -

5pq -93+207α2+13α -4+α2 a[1] +
1

48b6 b
-4+α2

α p+ⅇc -4+α2 q
6

r4 16b
3 -4+α2

α ⅇ
3c -4+α2 p3 q3 73-913α2+519α4a[0]-8b

5 -4+α2

α ⅇ
c -4+α2

p5 q -55+481α2-294α4-27α -4+α2 +54α3 -4+α2 a[0]+

8b
-4+α2

α ⅇ
5c -4+α2 pq5 55-481α2+294α4-27α -4+α2 +54α3 -4+α2 a[0]-

2b
6 -4+α2

α p6 -22+253α2-180α4-51α -4+α2 +60α3 -4+α2 a[0]+

2ⅇ6c -4+α2 q6 22-253α2+180α4-51α -4+α2 +60α3 -4+α2 a[0]-

6     



2b
4 -4+α2

α ⅇ
2c -4+α2 p4 q2 -490+5323α2-3072α4-63α -4+α2 +

252α3 -4+α2 a[0]+2b
2 -4+α2

α ⅇ
4c -4+α2 p2 q4

490-5323α2+3072α4-63α -4+α2 +252α3 -4+α2 a[0]+

3b1+
6 -4+α2

α p6 69α-96α3-7 -4+α2 +48α2 -4+α2 a[1]-

3bⅇ6c -4+α2 q6 -69α+96α3-7 -4+α2 +48α2 -4+α2 a[1]+

4b1+
3 -4+α2

α ⅇ
3c -4+α2 p2 q2 ⅇcα Q2 -598+415α2+9pqα143-167α2a[1]+

b1+
2 -4+α2

α ⅇ
4c -4+α2 pq3 4ⅇcα Q2 160+137α2+189α -4+α2 +

3pq 1259α-1496α3+19 -4+α2 -236α2 -4+α2 a[1] -

b1+
4 -4+α2

α ⅇ
2c -4+α2 p3 q 4ⅇcα Q2 -160-137α2+189α -4+α2 +

3pq -1259α+1496α3+19 -4+α2 -236α2 -4+α2 a[1] +6b
α+ -4+α2

α

ⅇ
5c -4+α2 q4 ⅇ

cα Q2 -14+113α2-20α4-17α -4+α2 +20α3 -4+α2 +

5pq 47α-59α3+2 -4+α2 -19α2 -4+α2 a[1] -6b1+
5 -4+α2

α

ⅇ
c -4+α2 p4 ⅇ

cα Q2 14-113α2+20α4-17α -4+α2 +20α3 -4+α2 +

5pq -47α+59α3+2 -4+α2 -19α2 -4+α2 a[1] -

-

ⅇ

1

2
-α- -4+α2 c-

Logb+rα

α p-α- -4+α2 

2b+rα
-

ⅇ

1

2
-α+ -4+α2 c-

Logb+rα

α q-α+ -4+α2 

2b+rα

a[1]+
1

2b7/2 b
-4+α2

α p+ⅇc -4+α2 q
5
r2

-2b
1

2
+
3 -4+α2

α ⅇ
2c -4+α2 p3 q2 -15α+ -4+α2 a[0]-

    7



3b
1

2
+
4 -4+α2

α ⅇ
c -4+α2 p4 q -5α+ -4+α2 a[0]-

b
1

2
+
5 -4+α2

α p5 -3α+ -4+α2 a[0]+ b ⅇ
5c -4+α2 q5 3α+ -4+α2 a[0]+

3b
1

2
+

-4+α2

α ⅇ
4c -4+α2 pq4 5α+ -4+α2 a[0]+2b

1

2
+
2 -4+α2

α ⅇ
3c -4+α2 p2 q3

15α+ -4+α2 a[0]-3b
3

2
+
5 -4+α2

α p5 a[1]-3b3/2 ⅇ5c -4+α2 q5 a[1]+

b
3

2
+
2 -4+α2

α ⅇ
3c -4+α2 pq2 ⅇ

cα Q2 -3α+ -4+α2 -30pqa[1] +

b
3

2
+

-4+α2

α ⅇ
4c -4+α2 q3 ⅇ

cα Q2 -α+ -4+α2 -15pqa[1] -

b
3

2
+
4 -4+α2

α ⅇ
c -4+α2 p3 ⅇ

cα Q2 α+ -4+α2 +15pqa[1] -

b
3

2
+
3 -4+α2

α ⅇ
2c -4+α2 p2 q ⅇ

cα Q2 3α+ -4+α2 +30pqa[1] -

1

2b2 b
-4+α2

α p+ⅇc -4+α2 q
2
r 4b

2 -4+α2

α p2 a[0]+8b
-4+α2

α ⅇ
c -4+α2 pqa[0]+

4ⅇ2c -4+α2 q2 a[0]+bⅇ2c -4+α2 q2 -α+ -4+α2 a[1]-

b1+
2 -4+α2

α p2 α+ -4+α2 a[1]-2b
α+ -4+α2

α ⅇ
c -4+α2

2ⅇcα Q2+pqαa[1] +

1

12b4 b
-4+α2

α p+ⅇc -4+α2 q
4
r3 -4b

2 -4+α2

α ⅇ
2c -4+α2 p2 q2 -26+29α2a[0]+

6b
4 -4+α2

α p4 2-3α2+α -4+α2 a[0]-

6ⅇ4c -4+α2 q4 -2+3α2+α -4+α2 a[0]+

4b
3 -4+α2

α ⅇ
c -4+α2 p3 q 16-19α2+3α -4+α2 a[0]-

4b
-4+α2

α ⅇ
3c -4+α2 pq3 -16+19α2+3α -4+α2 a[0]-5b1+

4 -4+α2

α

p4 -3α+ -4+α2 a[1]+5bⅇ4c -4+α2 q4 3α+ -4+α2 a[1]+

2b1+
2 -4+α2

α ⅇ
2c -4+α2 pq4ⅇcα Q2+45pqαa[1]+2b1+

3 -4+α2

α ⅇ
c -4+α2

p2 ⅇ
cα Q2 -10+3α2+3α -4+α2 -5pq -6α+ -4+α2 a[1] +

2b
α+ -4+α2

α ⅇ
3c -4+α2 q2 -ⅇ

cα Q2 10-3α2+3α -4+α2 +

8     



5pq 6α+ -4+α2 a[1] +
1

24b17/2 b
-4+α2

α p+ⅇc -4+α2 q
7
r4

-b
7

2
+
7 -4+α2

α p7 39α-36α3-5 -4+α2 +12α2 -4+α2 a[0]+b7/2 ⅇ7c -4+α2

q7 -39α+36α3-5 -4+α2 +12α2 -4+α2 a[0]-b
7

2
+
4 -4+α2

α ⅇ
3c -4+α2

p4 q3 1925α-1400α3-9 -4+α2 +56α2 -4+α2 a[0]+b
7

2
+
3 -4+α2

α

ⅇ
4c -4+α2 p3 q4 -1925α+1400α3-9 -4+α2 +56α2 -4+α2 a[0]-

b
7

2
+
6 -4+α2

α ⅇ
c -4+α2 p6 q 329α-266α3-17 -4+α2 +58α2 -4+α2 a[0]+

b
7

2
+

-4+α2

α ⅇ
6c -4+α2 pq6 -329α+266α3-17 -4+α2 +58α2 -4+α2

a[0]-b
7

2
+
5 -4+α2

α ⅇ
2c -4+α2 p5 q2

1099α-826α3-21 -4+α2 +102α2 -4+α2 a[0]+

b
7

2
+
2 -4+α2

α ⅇ
5c -4+α2 p2 q5 -1099α+826α3-21 -4+α2 +102α2 -4+α2

a[0]+b
9

2
+
7 -4+α2

α p7 11-29α2+13α -4+α2 a[1]-

b9/2 ⅇ7c -4+α2 q7 -11+29α2+13α -4+α2 a[1]+

b
9

2
+
2 -4+α2

α ⅇ
5c -4+α2 pq4 3ⅇcα Q2 47α-8α3+11 -4+α2 +8α2 -4+α2 +

pq 271-619α2-117α -4+α2 a[1] -

b
9

2
+
5 -4+α2

α ⅇ
2c -4+α2 p4 q 3ⅇcα Q2 -47α+8α3+11 -4+α2 +8α2 -4+α2 +

pq -271+619α2-117α -4+α2 a[1] +b
9

2
+
4 -4+α2

α ⅇ
3c -4+α2

p3 q2 -2ⅇcα Q2 -69α+6α3+19 -4+α2 +6α2 -4+α2 +

5pq 93-207α2+13α -4+α2 a[1] +

b
9

2
+
6 -4+α2

α ⅇ
c -4+α2 p5 -ⅇ

cα Q2 -57α+12α3-5 -4+α2 +12α2 -4+α2 +

5pq 17-41α2+13α -4+α2 a[1] +

b
9

2
+

-4+α2

α ⅇ
6c -4+α2 q5 ⅇ

cα Q2 57α-12α3-5 -4+α2 +12α2 -4+α2 -
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5pq -17+41α2+13α -4+α2 a[1] +

b
9

2
+
3 -4+α2

α ⅇ
4c -4+α2 p2 q3 2ⅇcα Q2 69α-6α3+19 -4+α2 +6α2 -4+α2 -

5pq -93+207α2+13α -4+α2 a[1] -

1

240b6 b
-4+α2

α p+ⅇc -4+α2 q
6
r5 16b

3 -4+α2

α ⅇ
3c -4+α2 p3 q3

73-913α2+519α4a[0]-8b
5 -4+α2

α ⅇ
c -4+α2 p5 q

-55+481α2-294α4-27α -4+α2 +54α3 -4+α2 a[0]+8b
-4+α2

α

ⅇ
5c -4+α2 pq5 55-481α2+294α4-27α -4+α2 +54α3 -4+α2 a[0]-

2b
6 -4+α2

α p6 -22+253α2-180α4-51α -4+α2 +60α3 -4+α2 a[0]+

2ⅇ6c -4+α2 q6 22-253α2+180α4-51α -4+α2 +60α3 -4+α2 a[0]-

2b
4 -4+α2

α ⅇ
2c -4+α2 p4 q2 -490+5323α2-3072α4-63α -4+α2 +

252α3 -4+α2 a[0]+2b
2 -4+α2

α ⅇ
4c -4+α2 p2 q4

490-5323α2+3072α4-63α -4+α2 +252α3 -4+α2 a[0]+

3b1+
6 -4+α2

α p6 69α-96α3-7 -4+α2 +48α2 -4+α2 a[1]-3b

ⅇ
6c -4+α2 q6 -69α+96α3-7 -4+α2 +48α2 -4+α2 a[1]+4b1+

3 -4+α2

α

ⅇ
3c -4+α2 p2 q2 ⅇcα Q2 -598+415α2+9pqα143-167α2a[1]+

b1+
2 -4+α2

α ⅇ
4c -4+α2 pq3 4ⅇcα Q2 160+137α2+189α -4+α2 +

3pq 1259α-1496α3+19 -4+α2 -236α2 -4+α2 a[1] -

b1+
4 -4+α2

α ⅇ
2c -4+α2 p3 q 4ⅇcα Q2 -160-137α2+189α -4+α2 +

3pq -1259α+1496α3+19 -4+α2 -236α2 -4+α2 a[1] +

6b
α+ -4+α2

α ⅇ
5c -4+α2 q4 ⅇ

cα Q2 -14+113α2-20α4-

17α -4+α2 +20α3 -4+α2 +

10     



5pq 47α-59α3+2 -4+α2 -19α2 -4+α2 a[1] -6b1+
5 -4+α2

α

ⅇ
c -4+α2 p4 ⅇ

cα Q2 14-113α2+20α4-17α -4+α2 +20α3 -4+α2 +

5pq -47α+59α3+2 -4+α2 -19α2 -4+α2 a[1] 

4 ⅇ

1

2
-α- -4+α2 c-

Logb+rα

α p+ⅇ
1

2
-α+ -4+α2 c-

Logb+rα

α q
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4.2 Appendix B

The expression of f(r) and potential V (r) for the most general case where

Q = 0 is given in this appendix. Since we have calculated the expression of

f(r) in mathematica we need to change our constants with some different

variables to run the code in mathematica file. The expression given below

for f(r) and V (r) holds such changes given as,

c = c2, b = c1 and p = c3, q = c4

50



Expression for f(r)
f[r] =

a[0]+a[1]*r+ - 4b
-4+α2

α pa[0]+4ⅇc -4+α2 qa[0]+bⅇc -4+α2 q -α+ -4+α2 a[1]-b
α+ -4+α2

α

p α+ -4+α2 a[1]  4b2 b
-4+α2

α p+ⅇc -4+α2 q *r2+

1

6b9/2 b
-4+α2

α p+ⅇc -4+α2 q
3

-b
3

2
+
2 -4+α2

α ⅇ
c -4+α2 p2 q -9α+ -4+α2 a[0]-

b
3

2
+
3 -4+α2

α p3 -3α+ -4+α2 a[0]+b3/2 ⅇ3c -4+α2 q3 3α+ -4+α2 a[0]+

b
3

2
+

-4+α2

α ⅇ
2c -4+α2 pq2 9α+ -4+α2 a[0]-3b

5

2
+
3 -4+α2

α p3 a[1]-9b
5

2
+
2 -4+α2

α

ⅇ
c -4+α2 p2 qa[1]-9b

5

2
+

-4+α2

α ⅇ
2c -4+α2 pq2 a[1]-3b5/2 ⅇ3c -4+α2 q3 a[1] *

r3+
1

48b4 b
-4+α2

α p+ⅇc -4+α2 q
2

-40b
-4+α2

α ⅇ
c -4+α2 pq-1+α2a[0]+

6b
2 -4+α2

α p2 2-3α2+α -4+α2 a[0]-6ⅇ2c -4+α2 q2 -2+3α2+α -4+α2 a[0]+

30b
α+ -4+α2

α ⅇ
c -4+α2 pqαa[1]-5b1+

2 -4+α2

α p2 -3α+ -4+α2 a[1]+

5bⅇ2c -4+α2 q2 3α+ -4+α2 a[1] *r4+
1

120b15/2 b
-4+α2

α p+ⅇc -4+α2 q
5

-2b
5

2
+
3 -4+α2

α ⅇ
2c -4+α2 p3 q2 279α-201α3- -4+α2 +11α2 -4+α2 a[0]+

2b
5

2
+
2 -4+α2

α ⅇ
3c -4+α2 p2 q3 -279α+201α3- -4+α2 +11α2 -4+α2 a[0]-

b
5

2
+
5 -4+α2

α p5 39α-36α3-5 -4+α2 +12α2 -4+α2 a[0]+

b5/2 ⅇ5c -4+α2 q5 -39α+36α3-5 -4+α2 +12α2 -4+α2 a[0]-



b
5

2
+
4 -4+α2

α ⅇ
c -4+α2 p4 q 251α-194α3-7 -4+α2 +34α2 -4+α2 a[0]+

b
5

2
+

-4+α2

α ⅇ
4c -4+α2 pq4 -251α+194α3-7 -4+α2 +34α2 -4+α2 a[0]+

2b
7

2
+
3 -4+α2

α ⅇ
2c -4+α2 p3 q2 67-148α2+13α -4+α2 a[1]+

3b
7

2
+
4 -4+α2

α ⅇ
c -4+α2 p4 q 21-49α2+13α -4+α2 a[1]+

b
7

2
+
5 -4+α2

α p5 11-29α2+13α -4+α2 a[1]-

b7/2 ⅇ5c -4+α2 q5 -11+29α2+13α -4+α2 a[1]-

3b
7

2
+

-4+α2

α ⅇ
4c -4+α2 pq4 -21+49α2+13α -4+α2 a[1]-

2b
7

2
+
2 -4+α2

α ⅇ
3c -4+α2 p2 q3 -67+148α2+13α -4+α2 a[1] *r5+

1

1440b6 b
-4+α2

α p+ⅇc -4+α2 q
4

-4b
2 -4+α2

α ⅇ
2c -4+α2 p2 q2 58-1117α2+630α4a[0]+

4b
3 -4+α2

α ⅇ
c -4+α2 p3 q -88+709α2-408α4-3α -4+α2 +48α3 -4+α2 a[0]-

4b
-4+α2

α ⅇ
3c -4+α2 pq3 88-709α2+408α4-3α -4+α2 +48α3 -4+α2 a[0]+

2b
4 -4+α2

α p4 -22+253α2-180α4-51α -4+α2 +60α3 -4+α2 a[0]-

2ⅇ4c -4+α2 q4 22-253α2+180α4-51α -4+α2 +60α3 -4+α2 a[0]+

6b1+
2 -4+α2

α ⅇ
2c -4+α2 p2 q2 α-263+302α2a[1]-

6b1+
3 -4+α2

α ⅇ
c -4+α2 p3 q 166α-199α3-3 -4+α2 +47α2 -4+α2 a[1]+

6b
α+ -4+α2

α ⅇ
3c -4+α2 pq3 -166α+199α3-3 -4+α2 +47α2 -4+α2 a[1]-

3b1+
4 -4+α2

α p4 69α-96α3-7 -4+α2 +48α2 -4+α2 a[1]+

2     for latex.nb



3bⅇ4c -4+α2 q4 -69α+96α3-7 -4+α2 +48α2 -4+α2 a[1] *r6

Expression for V(r)
V[r] =

1

4
-

1

b9/2 b
-4+α2

α p+ⅇc -4+α2 q
3
r -b

3

2
+
2 -4+α2

α ⅇ
c -4+α2 p2 q -9α+ -4+α2 a[0]-b

3

2
+
3 -4+α2

α

p3 -3α+ -4+α2 a[0]+b3/2 ⅇ3c -4+α2 q3 3α+ -4+α2 a[0]+

b
3

2
+

-4+α2

α ⅇ
2c -4+α2 pq2 9α+ -4+α2 a[0]-3b

5

2
+
3 -4+α2

α p3 a[1]-9b
5

2
+
2 -4+α2

α

ⅇ
c -4+α2 p2 qa[1]-9b

5

2
+

-4+α2

α ⅇ
2c -4+α2 pq2 a[1]-3b5/2 ⅇ3c -4+α2 q3 a[1] +

4b
-4+α2

α pa[0]+4ⅇc -4+α2 qa[0]+bⅇc -4+α2 q -α+ -4+α2 a[1]-

b
α+ -4+α2

α p α+ -4+α2 a[1]  2b2 b
-4+α2

α p+ⅇc -4+α2 q -

1

4b4 b
-4+α2

α p+ⅇc -4+α2 q
2
r2 -40b

-4+α2

α ⅇ
c -4+α2 pq-1+α2a[0]+6b

2 -4+α2

α

p2 2-3α2+α -4+α2 a[0]-6ⅇ2c -4+α2 q2 -2+3α2+α -4+α2 a[0]+

30b
α+ -4+α2

α ⅇ
c -4+α2 pqαa[1]-5b1+

2 -4+α2

α p2 -3α+ -4+α2 a[1]+

5bⅇ2c -4+α2 q2 3α+ -4+α2 a[1] -
1

6b15/2 b
-4+α2

α p+ⅇc -4+α2 q
5
r3

-2b
5

2
+
3 -4+α2

α ⅇ
2c -4+α2 p3 q2 279α-201α3- -4+α2 +11α2 -4+α2 a[0]+

2b
5

2
+
2 -4+α2

α ⅇ
3c -4+α2 p2 q3 -279α+201α3- -4+α2 +11α2 -4+α2 a[0]-

b
5

2
+
5 -4+α2

α p5 39α-36α3-5 -4+α2 +12α2 -4+α2 a[0]+

b5/2 ⅇ5c -4+α2 q5 -39α+36α3-5 -4+α2 +12α2 -4+α2 a[0]-

b
5

2
+
4 -4+α2

α ⅇ
c -4+α2 p4 q 251α-194α3-7 -4+α2 +34α2 -4+α2 a[0]+
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b
5

2
+

-4+α2

α ⅇ
4c -4+α2 pq4 -251α+194α3-7 -4+α2 +34α2 -4+α2 a[0]+

2b
7

2
+
3 -4+α2

α ⅇ
2c -4+α2 p3 q2 67-148α2+13α -4+α2 a[1]+

3b
7

2
+
4 -4+α2

α ⅇ
c -4+α2 p4 q 21-49α2+13α -4+α2 a[1]+

b
7

2
+
5 -4+α2

α p5 11-29α2+13α -4+α2 a[1]-

b7/2 ⅇ5c -4+α2 q5 -11+29α2+13α -4+α2 a[1]-

3b
7

2
+

-4+α2

α ⅇ
4c -4+α2 pq4 -21+49α2+13α -4+α2 a[1]-

2b
7

2
+
2 -4+α2

α ⅇ
3c -4+α2 p2 q3 -67+148α2+13α -4+α2 a[1] -

1

48b6 b
-4+α2

α p+ⅇc -4+α2 q
4
r4 -4b

2 -4+α2

α ⅇ
2c -4+α2 p2 q2 58-1117α2+630α4a[0]+

4b
3 -4+α2

α ⅇ
c -4+α2 p3 q -88+709α2-408α4-3α -4+α2 +48α3 -4+α2 a[0]-

4b
-4+α2

α ⅇ
3c -4+α2 pq3 88-709α2+408α4-3α -4+α2 +48α3 -4+α2 a[0]+

2b
4 -4+α2

α p4 -22+253α2-180α4-51α -4+α2 +60α3 -4+α2 a[0]-

2ⅇ4c -4+α2 q4 22-253α2+180α4-51α -4+α2 +60α3 -4+α2 a[0]+

6b1+
2 -4+α2

α ⅇ
2c -4+α2 p2 q2 α-263+302α2a[1]-

6b1+
3 -4+α2

α ⅇ
c -4+α2 p3 q 166α-199α3-3 -4+α2 +47α2 -4+α2 a[1]+

6b
α+ -4+α2

α ⅇ
3c -4+α2 pq3 -166α+199α3-3 -4+α2 +47α2 -4+α2 a[1]-

3b1+
4 -4+α2

α p4 69α-96α3-7 -4+α2 +48α2 -4+α2 a[1]+

3bⅇ4c -4+α2 q4 -69α+96α3-7 -4+α2 +48α2 -4+α2 a[1] -

-

ⅇ

1

2
-α- -4+α2 c-

Logb+rα

α p-α- -4+α2 

2b+rα
-

ⅇ

1

2
-α+ -4+α2 c-

Logb+rα

α q-α+ -4+α2 

2b+rα
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a[1]+
1

2b9/2 b
-4+α2

α p+ⅇc -4+α2 q
3
r2

-b
3

2
+
2 -4+α2

α ⅇ
c -4+α2 p2 q -9α+ -4+α2 a[0]-b

3

2
+
3 -4+α2

α p3 -3α+ -4+α2

a[0]+b3/2 ⅇ3c -4+α2 q3 3α+ -4+α2 a[0]+b
3

2
+

-4+α2

α ⅇ
2c -4+α2 p

q2 9α+ -4+α2 a[0]-3b
5

2
+
3 -4+α2

α p3 a[1]-9b
5

2
+
2 -4+α2

α ⅇ
c -4+α2 p2

qa[1]-9b
5

2
+

-4+α2

α ⅇ
2c -4+α2 pq2 a[1]-3b5/2 ⅇ3c -4+α2 q3 a[1] -

r 4b
-4+α2

α pa[0]+4ⅇc -4+α2 qa[0]+bⅇc -4+α2 q -α+ -4+α2 a[1]-

b
α+ -4+α2

α p α+ -4+α2 a[1] 

2b2 b
-4+α2

α p+ⅇc -4+α2 q +
1

12b4 b
-4+α2

α p+ⅇc -4+α2 q
2
r3

-40b
-4+α2

α ⅇ
c -4+α2 pq-1+α2a[0]+6b

2 -4+α2

α p2 2-3α2+α -4+α2 a[0]-

6ⅇ2c -4+α2 q2 -2+3α2+α -4+α2 a[0]+

30b
α+ -4+α2

α ⅇ
c -4+α2 pqαa[1]-5b1+

2 -4+α2

α p2 -3α+ -4+α2 a[1]+

5bⅇ2c -4+α2 q2 3α+ -4+α2 a[1] +
1

24b15/2 b
-4+α2

α p+ⅇc -4+α2 q
5
r4

-2b
5

2
+
3 -4+α2

α ⅇ
2c -4+α2 p3 q2 279α-201α3- -4+α2 +11α2 -4+α2 a[0]+

2b
5

2
+
2 -4+α2

α ⅇ
3c -4+α2 p2 q3 -279α+201α3- -4+α2 +11α2 -4+α2

a[0]-b
5

2
+
5 -4+α2

α p5 39α-36α3-5 -4+α2 +12α2 -4+α2 a[0]+

b5/2 ⅇ5c -4+α2 q5 -39α+36α3-5 -4+α2 +12α2 -4+α2 a[0]-

b
5

2
+
4 -4+α2

α ⅇ
c -4+α2 p4 q 251α-194α3-7 -4+α2 +34α2 -4+α2 a[0]+

b
5

2
+

-4+α2

α ⅇ
4c -4+α2 pq4 -251α+194α3-7 -4+α2 +34α2 -4+α2 a[0]+
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2b
7

2
+
3 -4+α2

α ⅇ
2c -4+α2 p3 q2 67-148α2+13α -4+α2 a[1]+

3b
7

2
+
4 -4+α2

α ⅇ
c -4+α2 p4 q 21-49α2+13α -4+α2 a[1]+

b
7

2
+
5 -4+α2

α p5 11-29α2+13α -4+α2 a[1]-

b7/2 ⅇ5c -4+α2 q5 -11+29α2+13α -4+α2 a[1]-3b
7

2
+

-4+α2

α ⅇ
4c -4+α2

pq4 -21+49α2+13α -4+α2 a[1]-2b
7

2
+
2 -4+α2

α ⅇ
3c -4+α2 p2 q3

-67+148α2+13α -4+α2 a[1] +
1

240b6 b
-4+α2

α p+ⅇc -4+α2 q
4
r5

-4b
2 -4+α2

α ⅇ
2c -4+α2 p2 q2 58-1117α2+630α4a[0]+4b

3 -4+α2

α ⅇ
c -4+α2

p3 q -88+709α2-408α4-3α -4+α2 +48α3 -4+α2 a[0]-4b
-4+α2

α

ⅇ
3c -4+α2 pq3 88-709α2+408α4-3α -4+α2 +48α3 -4+α2 a[0]+

2b
4 -4+α2

α p4 -22+253α2-180α4-51α -4+α2 +60α3 -4+α2 a[0]-

2ⅇ4c -4+α2 q4 22-253α2+180α4-51α -4+α2 +60α3 -4+α2 a[0]+

6b1+
2 -4+α2

α ⅇ
2c -4+α2 p2 q2 α-263+302α2a[1]-

6b1+
3 -4+α2

α ⅇ
c -4+α2 p3 q 166α-199α3-3 -4+α2 +47α2 -4+α2 a[1]+

6b
α+ -4+α2

α ⅇ
3c -4+α2 pq3 -166α+199α3-3 -4+α2 +47α2 -4+α2 a[1]-

3b1+
4 -4+α2

α p4 69α-96α3-7 -4+α2 +48α2 -4+α2 a[1]+

3bⅇ4c -4+α2 q4 -69α+96α3-7 -4+α2 +48α2 -4+α2 a[1] 

4 ⅇ

1

2
-α- -4+α2 c-

Logb+rα

α p+ⅇ
1

2
-α+ -4+α2 c-

Logb+rα

α q
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4.3 Appendix C

This is the mathematica file use to evaluate christoffel symbols, Ricci and

Riemann Tensor and Ricci Scalar, and further calculated curvature invari-

ants for the first case where the value of y(r) = r
1
5 .
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In[57]:= ClearAll"Global`*"

ClearAll::wrsym : Symbol  antisymmetricQ  is Protected. 

ClearAll::wrsym : Symbol  antisymmetrize  is Protected. 

ClearAll::wrsym : Symbol  Christoffel is Protected. 

General::stop : Further output of ClearAll::wrsym will be suppressed during this calculation . 

In[58]:= $Assumptions = Andr ∈ Reals, a ∈ Reals, y ∈ Reals, t ∈ Reals, z ∈ Reals, r > 0, a > 0;

metricsign = -1;

In[60]:= coord = {t, r, z};
fr = r^(2/5)(r^(2/5)-a^(2/5)); yr = r^(1/5)
metric = DiagonalMatrix-fr, 1fr, yr^2;

Out[61]= r1/5

In[63]:= << diffgeo.m

In[64]:= displayChristoffel

Out[64]=

{z, r, z}
{z, z, r}

1
5r

{r, z, z} a2/5-r2/5
5r1/5

{t, t, r}
{t, r, t}

a2/5-2r2/5
5a2/5 r-5r7/5

{r, r, r} (a2/5-2r2/5)(r4/5-(ar)2/5)
5(a2/5-r2/5)2 r7/5

{r, t, t} 1
5 

a4
r 

1/5
+2r3/5-3a2r1/5



In[65]:= displayRiemann 

Out[65]=

{z, r, r, z} -3a2/5+2r2/5

25a2/5-r2/5r2

{z, t, z, t} a2/5-2r2/5

25r6/5

{r, z, z, r} 3a2/5-2r2/5

25r6/5

{z, r, z, r} -3a2/5+2r2/5

25r6/5

{t, z, z, t} -a2/5+2r2/5

25r6/5

{r, z, r, z}
23a2/5-2r2/5

50a2/5 r2-50r12/5

{r, t, r, t} -3a6/5 r2/5-7a2/5 r6/5+2r8/5+8(ar)4/5

25-a2/5+r2/53 r12/5

{z, t, t, z} -

a4

r

1/5

+2r3/5-3(a2 r)1/5

25r

{t, z, t, z}

a4

r

1/5

+2r3/5-3(a2 r)1/5

25r

{t, r, t, r} 11a6/5 r3/5-15a4/5 r+9a2/5 r7/5-2r9/5-3(a8 r)1/5

25a2/5-r2/52 r7/5

{r, t, t, r} -11a6/5 r3/5+15a4/5 r-9a2/5 r7/5+2r9/5+3(a8 r)1/5

25a2/5-r2/52 r7/5

{t, r, r, t}
3a6/5 r2/5+7a2/5 r6/5-2r8/5+4(ar)4/5

25-a2/5+r2/53 r12/5

In[66]:= displayRicciTensor

Out[66]=

{z, z} - 2a2/5

25r6/5

{r, r} 6a2/5-4r2/5

25a2/5 r2-25r12/5

{t, t}
23a6/5 r3/5-3a4/5 r+a2/5 r7/5-(a8 r)1/5

25(a2/5-r2/5)2 r7/5

In[67]:= RicciScalar

Out[67]=
25a8/5 r4/5+21a4/5 r8/5-11a2/5 r2+2r12/5-17(ar)6/5

25-a2/5 r+r7/52 r4/5-(ar)2/5

In[68]:= FullSimplify [%]

Out[68]=
25a8/5 r4/5+21a4/5 r8/5-11a2/5 r2+2r12/5-17(ar)6/5

25-a2/5 r+r7/52 r4/5-(ar)2/5
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In[69]:= norm lowerRiemann , {4}

Out[69]=
2

625

25a8/5-16a2/5 r6/5+4r8/5+25(ar)4/5-18aar21/5

r16/5 a4/5+r4/5-2(ar)2/5
+

1

a2/5-r2/56 r4
r4/5-(ar)2/5 3a2/5-2r2/52 a2/5-r2/54 r4/5-(ar)2/5+

r2/5 -11a6/5 r3/5+15a4/5 r-9a2/5 r7/5+2r9/5+3a8 r1/5
2

r4/5-(ar)2/5
+

a4/5+2r4/5-3(ar)2/5
2

r12/5 -r4/5+(ar)2/5
-

r4/5-(ar)2/53a6/5 r2/5+7a2/5 r6/5-2r8/5+4(ar)4/5
2

-a2/5 r+r7/54

-r4/5+(ar)2/5

In[70]:= FullSimplify [%]

Out[70]=
4a2/5-r2/54 19a4/5+12r4/5-28(ar)2/5

625r12/5 a4/5+r4/5-2(ar)2/5r4/5-(ar)2/52

In[71]:= norm RicciTensor

Out[71]=
4a4/5

625r16/5
+
6a2/5-4r2/52 r4/5-(ar)2/52

25a2/5 r2-25r12/52
+

4-3a6/5 r3/5+3a4/5 r-a2/5 r7/5+a8 r1/5
2

625a2/5-r2/54 r14/5 r4/5-(ar)2/52

In[72]:= FullSimplify [%]

Out[72]=
411a4/5+4r4/5-3(ar)2/5

625r16/5
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4.4 Appendix D

This is the mathematica file use to evaluate christoffel symbols, Ricci and

Riemann Tensor and Ricci Scalar, and further calculated curvature invari-

ants for the second case where the value of y(r) = r
4
5 .
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In[40]:= ClearAll"Global`*"

ClearAll::wrsym : Symbol  antisymmetricQ  is Protected. 

ClearAll::wrsym : Symbol  antisymmetrize  is Protected. 

ClearAll::wrsym : Symbol  Christoffel is Protected. 

General::stop : Further output of ClearAll::wrsym will be suppressed during this calculation . 

In[41]:= $Assumptions = Andr ∈ Reals, a ∈ Reals, y ∈ Reals, t ∈ Reals, z ∈ Reals, r > 0, a > 0;

metricsign = -1;

In[43]:= coord = {t, r, z};
fr = r^(1/5)(r^(7/5)-a^(7/5)); yr = r^(4/5)
metric = DiagonalMatrix-fr, 1fr, yr^2;

Out[44]= r4/5

In[46]:= << diffgeo.m

In[47]:= displayChristoffel

Out[47]=

{z, r, z}
{z, z, r}

4
5r

{t, t, r}
{t, r, t}

a7/5-8r7/5
10a7/5 r-10r12/5

{r, r, r} (a7/5-8r7/5)r8/5-(a7 r)1/5
10r6/5(a7/5-r7/5)2

{r, t, t} -9a7/5 r8/5+8r3+(a14 r)1/5

10r4/5

{r, z, z} 4
5 -r

11/5+a7r41/5



In[48]:= displayRiemann 

Out[48]=

{z, r, z, r} -
2a7/5+6r7/5

25r1/5

{r, z, z, r}
2a7/5+6r7/5

25r1/5

{t, r, t, r}
2-a7/5+r7/5a7/5+6r7/5

25r8/5

{z, t, z, t}
2a14/5+8r14/5-9(ar)7/5

25r1/5 a7/5-r7/5

{t, z, z, t}
2a14/5+8r14/5-9(ar)7/5

25r8/5-(a7 r)1/5

{z, r, r, z}
2-5a7/5 r8/5+6r3-(a14 r)1/5

25r11/5 a7/5-r7/52

{r, z, r, z}
25a7/5 r8/5-6r3+(a14 r)1/5

25r11/5 a7/5-r7/52

{z, t, t, z} -
2-9a7/5 r8/5+8r3+(a14 r)1/5

25r9/5

{t, z, t, z}
2-9a7/5 r8/5+8r3+(a14 r)1/5

25r9/5

{r, t, r, t} -
24a14/5 r8/5-11a7/5 r3+6r22/5+(a21 r)1/5

25r11/5 -a7/5+r7/53

{t, r, r, t}
24a14/5 r8/5-11a7/5 r3+6r22/5+(a21 r)1/5

25r11/5 -a7/5+r7/53

{r, t, t, r}
23a21/5 r9/5-15a14/5 r16/5+17a7/5 r23/5-6r6+(a28 r2)1/5

25r2 a7/5-r7/52

In[49]:= displayRicciTensor

Out[49]=

{z, z} -28r6/5
25

{t, t} 28(-a7/5+r7/5)
25r1/5

{r, r}
43a21/5 r9/5-15a14/5 r16/5+17a7/5 r23/5-6r6+(a28 r2)1/5

25r12/5 (a7/5-r7/5)4

In[50]:= RicciScalar

Out[50]= -
4a7/5+20r7/5

25r9/5

In[51]:= FullSimplify [%]

Out[51]= -
4a7/5+20r7/5

25r9/5
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In[52]:= norm lowerRiemann , {4}

Out[52]=
1

625r22/5
8

2r3/5 a14/5+36r14/5+12(ar)7/5r8/5-a7 r1/5

-a7/5+r7/5
+

r8/5-(a7 r)1/5
3
5a7/5 r8/5-6r3+(a14 r)1/5

2

a7/5-r7/54
+
r4/5 -a7/5+r7/5-9a7/5 r8/5+8r3+(a14 r)1/5

2

-2a7/5 r8/5+r3+(a14 r)1/5

r8/5-a7 r1/5
+

r2/5 -r3/5 a14/5+8r14/5-9(ar)7/5
2

-a7/5+r7/5
+

-r8/5+(a7 r)1/54a14/5 r8/5-11a7/5 r3+6r22/5+(a21 r)1/5
2

a7/5-r7/54


-r8/5+a7 r1/5

In[53]:= FullSimplify [%]

Out[53]=
16-a7/5+r7/53 3a14/5+136r14/5+8(ar)7/5

625r16/5 r8/5-a7 r1/5-2a7/5 r8/5+r3+a14 r1/5

In[54]:= norm RicciTensor

Out[54]=
16

625

98

r4/5
+

a7/5+6r7/52 r8/5-a7 r1/5
2

r4 a7/5-r7/52

In[55]:= FullSimplify [%]

Out[55]=
16

625

98

r4/5
+

a7/5+6r7/52 r8/5-a7 r1/5
2

r4 a7/5-r7/52
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4.5 Appendix E

Derivation of surface gravity and entropy is given here:

Surface gravity:

κ2 = −1
2 ((∇µχν)(∇µχν)) (4.1)

κ2 = −1
2 ((∇µχν)(∇µχν)) (4.2)

κ2 = −1
2
(
gttgrr(∇tχ

r)2 + grrgtt(∇rχ
t)2
)

(4.3)

for ρ = µ = t, ν = λ = r

the covariant derivative can be calculated as

∇tχ
r = ∂tχ

r + Γrttχt = Γrttχt

∇rχ
t = ∂rχ

t + Γtrtχt = Γtrtχt

partial derivative of χ become zero and metric components are calculated

as gttgrr = − 1
f(r)2 and grrgtt = −f(r)2, the surface gravity then becomes,

κ2 = 1
2

(
1

f(r)2 (Γrtt)2 + f(r)2(Γtrt)2
)

(4.4)

christoffel symbols can be calculated as

Γrtt = grr

2

(
∂gtr
∂xt

+ (∂gtr
∂xt
− (∂gtt

∂xr

)
= grr

2

(
−∂gtt
∂r

)

Γrrt = gtt

2

(
∂grt
∂xt

+ (∂gtt
∂xr
− (∂grt

∂xt

)
= gtt

2

(
−∂gtt
∂r

)

on putting the value of christoffel symbol in Eq. 4.4, we get

κ2 = 1
2

 1
f(r)2

(
grr

2

(
−∂gtt
∂r

))2

+ f(r)2
(
gtt

2

(
−∂gtt
∂r

))2
 (4.5)

on taking components of metric and inverse metric, we get

κ2 = 1
4

(
−∂f
∂r

)2

(4.6)
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κ = 1
2

(
∂f

∂r

)
(4.7)

Thus, the value of surface gravity in our case found same as Schwarszchild

metric.

Entropy

Since the metric in our case is

ds2 = −f(r)dt2 + dr2

f(r) + y2(r)dz2 (4.8)

S be the area element of 1-Sphere, calculated as

S =
∫ π

−π
y(r)dz = 2πy(r)

and according to Bekenstein-Hawking entropy law which states that en-

tropy is one-fourth of the event horizon area, then we can get

S = 1
4 × 2πy(r) (4.9)
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