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ABSTRACT

The present thesis, in six chapters, proposes existence and uniqueness theorems for

classical and fractional order differential equations with initial conditions and/or boundary

conditions, via monotone iterative methods. The proposed iterative schemes are easy

to apply and computationally inexpensive. Based on the iterative schemes, numerical

methods are developed to solve the problems numerically. To show the efficiency of the

proposed schemes, they are compared with existing methods in the literature, wherever

necessary.

Chapter 1 presents a short literature survey of monotone iterative methods as well

as fractional differential equations. This chapter also provides basic definitions, properties

and formulas which are useful in later chapters.

In Chapter 2, an existence and uniqueness theorem for solving a nonlinear fractional

order initial value problem of Caputo type of order q ∈ (0, 1] is proposed using the method

of modified quasilinearization. The main theorem has been illustrated numerically using

appropriate examples which show that the proposed quasilinearization method is robust

and easy to apply.

Chapter 3 proposed an existence and uniqueness theorem for fractional order Volterra

population model via an efficient monotone iterative scheme. By coupling spectral method

with the proposed iterative scheme, the fractional order integro differential equation is

solved numerically. The numerical experiments support the fact that the proposed itera-

tive scheme is efficient than the existing iterative scheme in the literature.

In Chapter 4 a proof, via monotone quasilinearization method, for the existence and

uniqueness of the solution for a two-point nonlinear boundary value problem of fractional



order 1 < q < 2 is proposed. Using the lower and upper solution, two sequences are con-

structed that converge uniformly, monotonically and quadratically to the unique solution

of the problem. An interesting numerical study is also provided to support the proposed

theory.

Chapter 5 provides an existence and uniqueness solution of a class of parabolic

partial integro-differential equations via a monotone iterative scheme. A bivariate spec-

tral collocation method is also proposed to solve these problems numerically. Finally,

the robustness and efficiency of the numerical scheme is illustrated using partial integro

differential equation that arises in population dynamics.

Chapter 6 provides a short note on monotone iterative methods available for handling

a coupled system of partial differential equation that arises in catalytic converter. Chapter

primarily focuses on providing a theoretical justification for the better performance of

some monotone methods over other existing monotone methods in the literature.

KEYWORDS: Caputo fractional derivative, Catalytic converter, Finite difference

method, Fixed point theorem, Fractional order Riccati equation, Mono-

tone iterative method, Modified Quasilinearization, Ordered Banach

space, Parabolic integro differential equation, Quasilinearization, Spec-

tral collocation method, Volterra population model.
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NOTATION

List of symbols

R the set of real numbers

R+ the set of positive real numbers

R− the set of negative real numbers

R+
0 the set of non negative real numbers

Dn differential operator of order n

cDn Caputo fractional differential operator of order n

Jn Riemann-Liouville fractional integral operator of order n

Ak[a, b] set of functions with an absolutely continuous (k − 1)th derivative

Lp[a, b] {f : [a, b]→ R; f is measurable on [a, b] and
∫ b
a
|f(x)|pdx <∞}

Ck[a, b] {f : [a, b]→ R; f has continuous kth derivative}

Ck1,k2 [a, b] {f : [a, b]× [c, d]→ R; f has continuous kth1 and kth2 derivative in

1st and 2nd variable respectively}

Cp[t0, T ] {f ∈ C(t0, T ]; (t− t0)pf ∈ C[t0, T ]}

En(z) Mittag-Leffler function

En1,n2(z) two parameter Mittag-Leffler function



CHAPTER 1

INTRODUCTION

1.1. A Brief Literature Review

Various real life problems arising from business, engineering, science and technology

naturally lead to differential equations. Most of the time the differential equations arise

from real life models are nonlinear in behavior and its closed form solutions are rarely

available. Studying the qualitative and quantitative properties of solutions of nonlinear

differential equations is not for only theoretical interest, but also has practical relevance.

Though there are many well established classical approaches to study the qualitative

and quantitative behavior of nonlinear differential equations, studying these properties

through an iterative procedure are very relevant due to the importance in developing

numerical methods via these iterative schemes. Developing an efficient iterative proce-

dure, studying its convergence analysis and developing numerical schemes based on this

iterative procedure to solve the nonlinear differential equations is still an active area of

research. Recently, various experiments [36] support the fact that fractional order model

predicts some of the physical phenomena more accurately than the corresponding classical

model. Unfortunately, the methods to obtain the closed form solution are very limited for

fractional order differential equations. Hence studying the qualitative and quantitative

behavior of fractional differential equations and developing numerical methods to solve

the fractional differential equations have more physical relevance. In this section, a short

literature review is presented for monotone iterative methods and fractional differential

equations. The historical development of monotone iterative methods presented in this

section is based on the books [37, 88, 114, 131], whereas most of the historical informa-

tions on fractional calculus and fractional differential equations are based on the references

[43, 94, 116].



1.1.1. Monotone Iterative Methods

The monotone iterative methods are one of the classical techniques available in the

literature to prove existence and uniqueness of solutions of nonlinear differential equa-

tions. As the name suggests, in this approach, the solution of a nonlinear differential

equation is approximated by a monotone sequence of functions. Usually these functions

are constructed as a solution of sequence of linear differential equations. This approach

not only provides proof for an existence-uniqueness theorem and an iterative procedure

to approximate the solution, but also supplement with lower and upper bounds for the

solution.

The earlier use of the concept of monotone iteration can be traced back to 1893, which

is developed by E. Picard [37] for proving the existence of solution for the following two-

point boundary value problem.

(1.1) y′′ + f(t, y) = 0, y(a) = 0, y(b) = 0.

By assuming f(t, ·) as an increasing function and along with few additional assumptions,

Picard was able to show that the successive iterative scheme produces a monotonic in-

creasing sequence {un} which converges to the nontrivial solution of Eqn.(1.1). Later

independently in 1915, O. Perron used the idea of comparing the solutions of differential

inequalities during the study of the following first order Cauchy problem,

(1.2) y′ + f(t, y) = 0, y(a) = y0.

This idea was further extended by M. Muller for systems in 1926.

It is worth mentioning that the monotone property of f(t, y) in Eqn.(1.1) was relaxed

by B. N. Babkin in 1954 by assuming f(t, y) +Ky is an increasing function in y for some

K > 0. With suitable assumption on the initial guess u0 and v0, he showed that the

sequences {un} and {vn} defined recursively by

−u′′n +Kun = f(t, un−1) +Kun−1, un(a) = 0, un(b) = 0,

−v′′n +Kvn = f(t, vn−1) +Kvn−1, vn(a) = 0, vn(b) = 0,
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converge to the unique solution of Eqn.(1.1) monotonically.

A study by G. Scorza Dragoni in 1931 on the two point boundary value problem, a

generalization of Eqn.(1.1), was the first work that has considered the role of lower and

upper solutions explicitly. More specifically, he obtained conditions for the existence of

solution to the following boundary value problem.

(1.3) y′′ = f(t, y, y′); y(a) = A, y(b) = B.

By assuming the existence of two functions u, v ∈ C2[a, b] such that u ≤ v and satisfying

u′′(t) + f(t, u, x) ≥ 0 if t ∈ [a, b], x ≤ u′(t), u(a) ≤ A, u(b) ≤ B;

v′′(t) + f(t, v, x) ≤ 0 if t ∈ [a, b], x ≥ v′(t), v(a) ≥ A, v(b) ≥ B,

he has shown that Eqn.(1.3) has a solution y such that u ≤ y ≤ v. This significance of

u and v led to the study of the existence as well as the construction of lower and upper

solutions by K. Ako, R. E. Gaines [53] and others.

By merging the idea of lower and upper solutions and successive approximation, K.

Schmitt [125] proved the existence of a solution to the following boundary value problem

y′′ = f(t, y, y′)

a1y(a)− a2y
′(a) = A0, a1 + a2 > 0(1.4)

b1y(b) + b2y
′(b) = B0, b1 + b2 > 0

where ai, bi ≥ 0 for i = 1, 2 and a1 + b1 > 0. In his study, Schmidt showed that by

considering lower solution as an initial guess, successive iteration produces an increasing

sequence {un} which converges to the solution of Eqn.(1.4). Similarly, by considering

upper solution as an initial guess successive iteration produces a decreasing sequence

{vn} which converges to the solution of Eqn.(1.4). Moreover, un and vn satisfy

u1 ≤ u2 ≤ · · · ≤ un ≤ vn ≤ · · · ≤ v2 ≤ v1.

It is observed that the sequences constructed by the successive approximation and its

variations produce only linear order of convergence. To accelerate the iterative scheme, R.

3



E. Kalaba [71] constructed the sequence of linear problems using the idea of quasilineariza-

tion studied by R. E. Bellman [21] for handling dynamic programming problems. In [71],

Kalaba demonstrated the quasilinerization iterative procedure by successfully applying to

initial value problems, two point boundary value problems and partial differential equa-

tions. Under suitable assumption he is able to show that the quasilinearization iterative

scheme converges monotonically and quadratically to the solution of the corresponding

differential equation. For example, for the two point boundary value problem

(1.5) y′′ = f(t, y), y(0) = 0, y(b) = 0,

he proposed the following iterative scheme

y′′n+1 = f(t, yn) + fy(t, yn)(yn+1 − yn), yn+1(0) = 0, yn+1(b) = 0.

With suitable assumption on f , he has proved the monotone behavior of {yn} and its

quadratic convergence.

In 1964, a different process to linearize the following two-point nonlinear problem was

proposed by G. V. Gendzhoyan.

(1.6) y′′ + f(t, y, y′) = 0, y(a) = 0, y(b) = 0.

Using the lower solution u0 and upper solution v0 ≥ u0 as the initial guesses the monotone

behavior and the convergence of the following iterative schemes to the solution of Eqn.(1.6)

was discussed by Gendzhoyan with suitable error bound.

−u′′n + l(t)u′n + k(t)un = f(t, un−1, u
′
n−1) + l(t)u′n−1 + k(t)un−1,

un(a) = 0, un(b) = 0,

−v′′n + l(t)v′n + k(t)vn = f(t, vn−1, v
′
n−1) + l(t)v′n−1 + k(t)vn−1,

vn(a) = 0, vn(b) = 0.

Later the monotone quasilinearization method was extended to problems arising in

dynamic systems on time scale [88], integro differential equations [8], functional differen-

tial equations [68], impulsive differential equations [51], stochastic differential equations

[88], differential algebraic equations [137] and differential equations in abstract spaces

4



[83] by many authors. One of the quasilinearization method for proving the existence

and uniqueness solution of the following integro differential equation is given below:

(1.7) y′(t) = f(t, y) +

∫ t

t0

K(t, s, y(s))ds, y(t0) = y0,

with t ∈ I = [t0, t0 + T ], t0 ≥ 0, T > 0.

Theorem 1.1.1. [88] Assume that

(i) f ∈ C2[I×R,R], K ∈ C2[I×I×R,R] and K(t, s, y) is monotonically nondecreasing

in y for each fixed (t, s) ∈ I × I,

(ii) u0, v0 ∈ C1[I,R] such that u0 ≤ v0 and

u′0 ≤ f(t, u0) +

∫ t

t0

K(t, s, u0(s))ds,

v′0 ≥ f(t, v0) +

∫ t

t0

K(t, s, v0(s))ds

where u0(t0) ≤ y0 ≤ v0(t0),

(iii) fyy(t, y) ≥ 0 for each t ∈ I and Kyy(t, s, y) ≥ 0 for each (t, s) ∈ I × I.

Then there exist monotone sequences {un} and {vn} which converge uniformly and quadrat-

ically to the unique solution of Eqn.(1.7).

By relaxing the convexity condition, in 1994 V. Lakshmikantham and S. Malek [86]

have proposed a quadratically convergent quasilinearization scheme for first order ini-

tial value problem and the sequence is also monotonic in nature. Later, F. A. McRae

[93] extended the technique discussed in [86] to stochastic initial value problems. More

specifically, he considered the following stochastic initial value problem.

(1.8a) y′(t, ω) = f(t, y, ω) a.e. on I,

(1.8b) y(0, ω) = y0(ω)

where f : I × R× Ω→ R, Ω is a probability measure space (Ω,Y , P ) and y0 : Ω→ R is

a given measurable function. The statement of the main result of F. A. McRae is given

in the following.

5



Theorem 1.1.2. [93] Assume that

(i) f(t, y, ·) is measurable in probability for all (t, y), f(·, y, ·) is product measurable for

every y and f(t, ·, ω) is continuous for all (t, ω),

(ii) |f(t, y, ω)| ≤ K(t, ω) on I × R× Ω where K : I × Ω→ R+ is measurable in t and∫
I
K(t, ω)dt <∞ on Ω,

(iii) u0, v0 are lower and upper sample solutions of Eqn.(1.8) such that u0 ≤ v0 on I×Ω,

(iv) fy(t, y, ω), fyy(t, y, ω) exist, are continuous in y, product measurable in (t, ω) and

satisfy fyy(t, y, ω)+2M(t, ω) ≥ 0 where M(t, ω) ≥ 0 is product measurable in (t, ω)

and
∫
I
M(t, ω)dt <∞ on Ω.

Then there exists a monotone nondecreasing sequence {un} which converges uniformly

and monotonically for P-almost all ω ∈ Ω to the sample solution y(t, ω) of Eqn.(1.8) such

that u0(t, ω) ≤ u1(t, ω) ≤ · · ·un(t, ω) ≤ y(t, ω) ≤ v0(t, ω).

Later, V. Lakshmikantham and N. Shahzad [87] generalized the quasilinearization

method for an initial value problem when the function involved in the initial value prob-

lem admits a decomposition as sum of convex and concave function. One of the generalized

quasilinearization method for the following initial value problem due to V. Lakshmikan-

tham and N. Shahzad is given below.

(1.9) y′(t) = F (t, y), y(0) = y0, t ∈ I = [0, T ]

where F ∈ C[I × R,R] admits a decomposition F = f + g.

Theorem 1.1.3. [87] Assume that

(i) u0, v0 ∈ C1[I,R] such that u′0 ≤ F (t, u0), v′0 ≥ F (t, v0) and u0 ≤ v0 on I,

(ii) F ∈ C[Ω,R], fy, gy, fyy, gyy exist and are continuous satisfying fyy + ψyy ≤ 0 and

gyy + φyy ≥ 0 on Ω where φ, ψ ∈ C[Ω,R], φy, ψy, φyy, ψyy exist, are continuous and

ψyy ≤ 0, φyy ≥ 0 on Ω where Ω = {(t, y) : u0 ≤ y ≤ v0, t ∈ I}.

Then there exist monotone sequences {un} and {vn} which converge uniformly to the

unique solution of Eqn.(1.9) and the convergence is quadratic.

6



For more details on generalized quasilinearization method one can refer the work of

V. Lakshmikantham and A. S. Vatsala [88]. The work of A. Cabada et.al. [24] proposed

a technique to accelerate the order of convergence of monotone iterative technique for the

first order boundary value problem

(1.10) y′(t) = f(t, y), ay(0)− by(t0) = c, t ∈ I = [0, T ], T > 0,

where f ∈ C[I × R,R], t0 ∈ (0, T ] and a, b ≥ 0 with a+ b > 0.

Theorem 1.1.4. [24] Assume that there exist

(i) u0, v0 ∈ C1(I) such that u0 ≤ v0 and satisfy

u′0(t) ≤ f(t, u0), au0(0)− bu0(t0) ≤ c, t ∈ I,

v′0(t) ≥ f(t, v0), av0(0)− bv0(t0) ≥ c, t ∈ I,

(ii) k ≥ 1 such that ∂kf
∂yk

is continuous in Ω = {(t, y) ∈ I×R; u0 ≤ y ≤ v0} and for each

ξ ∈ [u0, v0], a− bσ(t0) > δ > 0, where σ(t) =
∫ t

0
∂f
∂u

(s, ξ(s))ds and σ(T ) < δ < 0.

Then there exist two monotone sequences {un} and {vn} which converge uniformly to the

extremal solutions ψ and φ of Eqn.(1.10) in [u0, v0]. The convergence is of order k.

When considering the work done on qualitative and quantitative study on nonlinear

partial differential equations, it is worth mentioning that vast literature is available using

monotone iterative methods. The study of the monotone iterative methods for partial

differential equation was initiated around 1950s by M. Nagumo [114]. He also extended

the idea of lower and upper solutions to quasi subsolution and quasi supersolution to

handle nonlinear partial differential equation of the form

∆u+ f(t, u,∇u) = 0 in Ω; u = 0 on ∂Ω.

Nagumo’s result is based on the assumption that f is a Hölder continuous function

satisfying |f(t, u, v)| ≤ B‖v‖2 + C and

(1.11) 16MB < 1; M = max{‖u0‖∞, ‖v0‖∞},
7



where u0, v0 are lower and upper solutions. Later in 1969, F. Tomi improved Nagumo’s

result by relaxing the condition (1.11). Monotone iterative methods for partial differen-

tial equations received more attentions around 1960s after the work of K. Ako [13], R.

Courant and D. Hilbert [38], S. I. Hudjaev [66], H. B. Keller and D. S. Cohen [73] on

nonlinear elliptic differential equations. It is worth mentioning that the work of H. Amann

[14] and D. H. Sattinger [124] have more systematic way of constructing the monotone

sequences using lower and upper solutions for the nonlinear partial differential equations.

The idea of Sattinger [124] for nonlinear parabolic partial differential equations was ex-

tended by Pao [112] for parabolic partial differential equations with nonlinear boundary

conditions. Similar to the study of quasilinearization method for nonlinear ordinary dif-

ferential equations, quasilinearization method as well as its generalization for nonlinear

partial differential equations was also studied in detail by many authors including A.

Buică, S. Carl, S. Koksal, K. Heikkilä, V. Lakshmikantham, D. O′Regan, C. V. Pao and

A. S. Vatsala.

For instance, one of the existence and uniqueness theorems for the solution of nonlinear

parabolic partial integro differential equation via generalized quasilinearization method

due to A. S. Vatsala and L. Wang [140] is presented below. To provide the result consider

the following integro differential equation.

Lu = f(t, x, u(t, x)) +

∫ t

0

g(t, x, s, u(s, x))ds, t ∈ I = [0, T ], x ∈ Ω

u(0, x) = u0(x), x ∈ Ω(1.12)

u(t, x)|x∈∂Ω = h(t, x)

where Ω is a bounded open domain in Rn, L = ∂
∂t
− A is a partial differential operator

with

A =
N∑

i,j=1

ai,j(t, x)
∂2

∂xi∂xj
+

N∑
i=1

bi(t, x)
∂

∂xi
+ c(t, x),

ai,j, bi, c ∈ Cα,α/2(Q̄T ), σ0|ξ|2 ≤
N∑

i,j=1

ai,jξiξj ≤ σ1|ξ|2, σ0, σ1 > 0 for (t, x) ∈ Q̄T , ξ ∈ Rn,

u0 ∈ C2+α(Ω̄), h ∈ C2+α,1+α/2((0, T )× ∂Ω) and u0(x) = h(0, x), ht = Au0 + f(0, x, u0) for

t = 0 and x ∈ ∂Ω.
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Theorem 1.1.5. [140] Assume that

(i) g(t, x, s, u) is monotonically nondecreasing in u for each fixed (t, x, s) ∈ I ×Ω× I,

fuu ≥ 0,

(ii) v0(t, x) and w0(t, x) satisfy

Lv0 ≤ f(t, x, v0(t, x)) +

∫ t

0

g(t, x, s, v0(s, x))ds,

Lw0 ≥ f(t, x, w0(t, x)) +

∫ t

0

g(t, x, s, w0(s, x))ds,

and

v0(0, x) ≤ w0(0, x),

v0(t, x)|x∈∂Ω ≤ w0(t, x)|x∈∂Ω,

(iii) fu, gu ∈ Cα,α/2[I × Ω], and fuu, guu exist and are continuous such that fuu ≥ 0.

There exist functions φ(t, x, s, u) and G(t, x, s, u) = g(t, x, s, u) + φ(t, x, s, u) such

that Guu ≥ 0, φuu ≥ 0,

(iv) Gu(t, x, s, u1)− φu(t, x, s, u2) ≥ 0 for v0 ≤ u1 ≤ u2 ≤ w0.

Then there exist monotone sequences {vn} and {wn} that converge monotonically and

quadratically to the unique solution of Eqn.(1.12).

One can formulate the solution of a differential and an integro differential equation

equivalent to a corresponding fixed point problem of a nonlinear operator in abstract

space. Consequently, one can obtain monotone iterative results for differential equations

and integro differential equations via fixed point theorems in partially ordered abstract

space. Extensive literature (for eg. [48, 58, 59, 152]) is available for fixed point theorems

and its applications. It is interesting to observe that solutions of fixed point problems

via successive iterative scheme can have only first order convergence. To accelerate the

iterative procedure, iterative schemes via quasilinearization for solving fixed point prob-

lems in abstract space are also available in the literature. Usually these iterative schemes

have second order convergence. Solutions of fixed point problems via quasilinearization

scheme in abstract space and its applications to differential equations are studied by A.
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Buică and R. Precup [23], M. A. El-Gebeily et.al. [54], V. Lakshmikantham et. al. [83]

and V. A. Vijesh and K. H. Kumar [143], to mention a few.

1.1.2. Fractional Differential Equations

The derivative of non integer order is a consequence of the discussion between Leib-

nitz and l′Hospital during 1960s. Since that time, the concept of derivative of arbitrary

order attracted the attention of many famous mathematicians including Euler, Fourier,

Lacroix, Laplace, Laurent, Liouville, Riemann and Weyl. The definition of fractional de-

rivative in terms of an integral was expressed by Laplace and Fourier in 1812 and 1822,

respectively. It is worth mentioning that the book entitled “Traité du Calcul Différentiel

et du Calcul Intégral” by S. F. Lacroix had a discussion on fractional calculus and showed

that d1/2v
dv1/2

= 2
√
v√
π

. In contrast to the classical derivative, many definitions are proposed

for the fractional derivative of a function in the literature. Among them, the most fre-

quently considered definitions include Caputo-derivative, Grunwall-Letnikov derivative

and Riemann-Liouville derivative.

Problems involving fractional derivatives occur naturally in real life. For example, the

solution of the well known integral equation of Abel that arises from the tautochronous

problem can be expressed as Riemann-Liouville derivative of order 1/2 of a known func-

tion. Around mid of 19th century, scientists and engineers suggested that replacing the

classical derivative by the fractional derivative may improve the classical mathematical

models to predict the physical phenomena more accurately [116]. For example, S. Blair

proposed a model based on fractional derivative to obtain the relation between stress and

strain for viscoelastic material having the property of solids and fluids. Bagley-Torvik

concluded that fractional calculus models of viscoelastic materials are consistent with the

physical principles governing the behavior of such materials. Around the same time, A.

N. Gerasimov [116] generalized the basic law of deformation and studied the movement

of viscous fluid between two moving surfaces. He successfully solved a partial differential

equation involving fractional derivative that arose from his study.
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It is observed in the literature that the data obtained from various scientific experi-

ments show better accuracy with the solutions of mathematical models involving fractional

order models than their classical counterpart (for eg. [36, 70]). This relevance has at-

tracted many researchers to obtain solutions for many important mathematical equations

involving fractional derivatives. However, in contrast to the classical derivatives, frac-

tional derivatives of elementary functions need not be an elementary function. Hence,

solving the equations involving fractional derivatives is more complicated than the equa-

tions involving classical derivatives. Thus the study of existence and uniqueness for the

equations involving fractional derivatives plays an important role. In this direction, the

understanding of the convergence of iterative methods to the solution of fractional differ-

ential equations is very crucial. Further, in numerical analysis, iterative methods play an

important role in obtaining approximate solutions, especially for nonlinear problems.

In a few situations, the solutions of linear fractional differential equations can be

obtained through methods such as Laplace transform and then expressed in terms of

special functions like Fox H function, Mittag-Leffler function etc. Unlike linear fractional

problems, applying transform techniques or expressing the solution in terms of special

functions may not be possible for nonlinear fractional differential equations. Then iterative

methods become relevant as an alternative approach to solve nonlinear fractional models.

In this direction, the first existence and uniqueness result for a nonlinear fractional order

initial value problem involving Riemann-Liouville derivative was obtained by D. Delbosco

and L. Rodino [40] by suitably using classical Schauder’s fixed point theorem and Banach

contraction principle. One of the main theorem of their study is given below.

Theorem 1.1.6. [40] Let 0 ≤ σ < q < 1 and tσf(t, y) be a continuous function on

[0, 1]× R. Assume that

|f(t, u)− f(t, v)| ≤ L

tσ
|u− v|

for some positive constant L independent of u, v ∈ R, t ∈ (0, 1]. Then the equation

Dqu = f(x, u)

has a unique solution.
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Later, various methods developed for classical differential equations were suitably

modified and applied to prove existence and uniqueness theorems for fractional order ini-

tial value problems, fractional order boundary value problems and fractional order integro

differential equations. For instance, the monotone iterative methods established for clas-

sical problems were studied for fractional order differential equations by Lakshmikantham

and his group. One of the existence-uniqueness theorem via monotone iterative method

for the nonlinear fractional order initial value problem Dq(y(t)−y(0)) = f(t, y), y(0) = y0

involving Riemann-Liouville derivative is given below.

Theorem 1.1.7. [89] Assume that f ∈ C([0, T ]× R,R) and

(i) u0, v0 : [0, T ]→ R be locally Hölder continuous and satisfy

Dq(u0(t)− u0(0)) ≤ f(t, u0)

Dq(v0(t)− v0(0)) ≥ f(t, v0)

such that u0(t) ≤ v0(t), 0 ≤ t ≤ T,

(ii) f(t, x)− f(t, y) ≥ −M(x− y) wherever u0 ≤ y ≤ x ≤ v0 and 0 ≤M ≤ 1
T qΓ(1−q) .

Then there exist monotone sequences {un} and {vn} such that un → u∗, vn → v∗ as

n → ∞ uniformly and monotonically on [0, T ] and (u∗, v∗) are extremal solutions of the

above initial value problem on [0, T ].

The following theorem due to G. Wang et. al. [144] is an extension of monotone

iteration method to system of nonlinear fractional order initial value problem involving

Riemann-Liouville fractional order derivative.

Dqx(t) = f(t, x, y), t ∈ (0, T ],

(1.13) Dqy(t) = g(t, y, x), t ∈ (0, T ],

t1−qx(t)|t=0 = x0, t1−qy(t)|t=0 = y0,

where 0 < t <∞, f, g ∈ C([0, T ]× R× R,R), x0, y0 ∈ R satisfying x0 ≤ y0 and Dq is

the Riemann-Liouville derivative of order 0 < q ≤ 1.
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Theorem 1.1.8. [144] Assume that

(i) There exist u0, v0 ∈ C1−q[0, T ] and u0 ≤ v0 such that

Dqu0 ≤ f(t, u0, v0), t ∈ (0, T ],

Dqv0 ≥ g(t, v0, u0), t ∈ (0, T ],

t1−qu0|t=0 ≤ x0, t1−qv0|t=0 ≥ y0,

(ii) There exist constants M ∈ R and N ≥ 0 such that

f(t, x, y)− f(t, x̄, ȳ) ≥ −M(x− x̄)−N(y − ȳ)

g(t, x, y)− g(t, x̄, ȳ) ≥ −M(x− x̄)−N(y − ȳ)

where u0 ≤ x̄ ≤ x ≤ v0, u0 ≤ y ≤ ȳ ≤ v0 and

g(t, y, x)− f(t, x, y) ≥M(x− y) +N(y − x)

with u0 ≤ x ≤ y ≤ v0.

Then, there is (u∗, v∗) ∈ [u0, v0]× [u0, v0] an extremal solution of the nonlinear Eqn.(1.13).

Moreover, there exist monotone iterative sequences {un}, {vn} ⊂ [u0, v0] such that un →

u∗, vn → v∗ as n→∞ uniformly at t ∈ (0, T ] and u0 ≤ u1 ≤ · · · ≤ un ≤ u∗ ≤ v∗ ≤ vn ≤

· · · ≤ v1 ≤ v0.

Similar to the development of quasilinerization monotone iterative methods for clas-

sical differential equations, there are many efforts in developing quasilinearization mono-

tone iterative schemes for various types of fractional order differential equations. One

such result for nonlinear fractional order initial value problem of the form cDqy(t) =

f(t, y) + g(t, y), y(t0) = y0 involving Caputo fractional derivative due to J. V. Devi et. al.

[42] is given as follows:
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Theorem 1.1.9. Assume that

(i) f, g ∈ C([t0, T ]× R,R), u0, v0 ∈ Cq([t0, T ],R) and

cDqu0 ≤ f(t, u0) + g(t, u0), u0(t0) ≤ y0

cDqv0 ≥ f(t, v0) + g(t, v0), v0(t0) ≥ y0

u0(t) ≤ v0(t) on I = [t0, T ] and u0(t0) ≤ y0 ≤ v0(t0),

(ii) fy(t, y), gy(t, y) exist, are respectively decreasing and increasing in x for each t,

f(t, y) ≥ f(t, x) + fy(t, x)(y − x), y ≥ x,

g(t, y) ≥ g(t, x) + gy(t, y)(y − x), y ≥ x

and

|fy(t, y)− fy(t, x)| ≤ L1|y − x|,

|gy(t, y)− gy(t, x)| ≤ L2|y − x|.

Then there exist monotone sequences {un}, {vn} such that un → u∗, vn → v∗ uniformly

and monotonically to the unique solution u∗ = v∗ = y of the initial value problem on I

and the convergence is quadratic.

Recently various classical techniques are suitably enhanced to study various types of

fractional order differential equations. Further theoretical developments like existence-

uniqueness results for fractional order versions of initial value problems, boundary value

problems, integro differential equations, stochastic differential equations, Darboux prob-

lems, q−derivative problems, control problems, fuzzy differential equations, functional

differential equations and fractional order differential equations in the abstract setting

are available in the literature: S. Abbas [2, 3], R. P. Agarwal [9, 10, 150], D. Bahugana

[18, 72, 81], M. Benchohra [1, 22], S. N. Bora [28, 29], A. Cabada [25, 26], J. V. Devi

[42], K. Diethelm [43, 45], V. Gejji [17, 35, 55], R. K. George [141, 142], T. Jankowski

[69], I. Koca [80], V. Lakshmikantham [84, 85, 90], J. J. Nieto [102, 103], M. Al-Refai

[119], J. J. Trujillo [20, 104], A. S. Vatsala [89, 117], G. Wang [144, 145].
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Similarly, there are various numerical methods that are suitably modified to solve

fractional order differential equations. Methods like Adomian decomposition, differen-

tial transform, finite difference method, finite element method, homotopy perturbation

method, Pade approximation method, predictor corrector method, radial basis function

method, spectral method, wavelet method are available in the literature. Few refer-

ences are mentioned here. Om P. Agarwal [5, 6, 7], G. Chandhini [30], Li Changpin

[32, 33, 34], K. Diethelm [43, 44], E. H. Doha [46, 47], V. S. Erturk [52], N. J.

Ford [49, 50], V. Gejji [56, 57], D. Hengfei [61], M. H. Heydari [62, 63], A. A. Kil-

bas [76, 77, 78], S. Momani [95, 96, 97], M. Stynes [129], Li Zhu [155, 156].

Throughout the proposed thesis various types of monotone iterative methods are

studied to prove existence and uniqueness theorem for classical and fractional differential

equations and integro differential equations. Based on the proposed monotone iterative

methods, numerical techniques have been developed to solve the equations numerically.

The proposed iterative scheme for fractional order differential equation is computationally

less expensive than certain monotone iterative method available in the recent literature.

Based on the proposed monotone iterative method for fractional order integro differential

equation, an efficient numerical technique has been developed using spectral method to

solve the fractional order Volterra population model. The proposed iterative algorithm is

not only efficient in predicting the solution, but also less sensitive to various parameters

in the mathematical model, compared to the other iterative methods available in the lit-

erature. An alternative approach for obtaining the monotone iteration for fractional order

integro differential equation has also been discussed in this thesis. The ideas discussed in

this thesis have been extended for handling a class of nonlinear parabolic integro differen-

tial equation with initial and boundary conditions. An interesting theoretical justification

is also provided to select an efficient iterative method from the existing literature to solve

the catalytic converter model.
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1.2. Basic Results

In this section, a few basic definitions as well as properties of fractional integral and

derivatives that are used in the upcoming chapters are presented. For more details,

one can refer [43, 94, 77, 116]. Euler’s gamma function plays an important role in

fractional calculus. Based on the definition of gamma function one can define Riemann-

Liouville fractional integral, Riemann-Liouville fractional derivative and Caputo fractional

derivative as follows.

Definition 1.2.1. The Euler’s gamma function is denoted by Γ and defined as

Γ(x) =

∫ ∞
0

tx−1e−tdt.

Definition 1.2.2. Let q ∈ R+. For f ∈ L1[a, b], the Riemann-Liouville fractional integral

of order q is defined by

Jqf(x) =
1

Γq

∫ x

a

(x− t)q−1f(t)dt

and denoted by Jqf(x). For q = 0, we set J0 = I, the identity operator.

Definition 1.2.3. Let q ∈ R+ and m = dqe. Define an operator Dq as

Dqf(x) = DmJm−qf(x) =
1

Γ(m− q)
dm

dxm

∫ x

a

(x− t)m−q−1f(t)dt.

Dqf is known as Riemann-Liouville fractional derivative of the function f of order q. For

q = 0, we set D0 = I, the identity operator.

Definition 1.2.4. Let q ≥ 0 and m = dqe. Define an operator cDq as

cDqf(x) = Jm−qDmf(x).

cDqf is known as Caputo fractional derivative of the function f of order q.

The following theorems provide the relation between Riemann-Liouville fractional

integral and derivative and similarly between Riemann-Liouville fractional integral and

Caputo fractional derivative.
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Theorem 1.2.1. [43, p. 30] Let q ≥ 0. Then, for every f ∈ L1[a, b], Dq Jqf = f almost

everywhere.

Theorem 1.2.2. [43, p. 39] Let q ≥ 0 and m = bqc + 1. Assume that f is such that

Jm−qf ∈ Am[a, b]. Then

JqDqf(x) = f(x)−
m−1∑
k=0

(x− a)q−k−1

Γ(q − k)
lim
z→a+

Dm−k−1Jm−qf(z).

Specifically, for 0 < q < 1 we have

JqDqf(x) = f(x)− (x− a)q−1

Γ(q)
lim
z→a+

J1−qf(z).

Theorem 1.2.3. [43, p. 53] If f is continuous and q ≥ 0, then cDqJqf = f .

Theorem 1.2.4. [43, p. 54] Assume that q ≥ 0,m = dqe and f ∈ Am[a, b]. Then

Jq cDqf(x) = f(x)−
m−1∑
k=0

Dkf(a)

k!
(x− a)k.

Remark 1.2.1. From Theorem 1.2.1 and Theorem 1.2.3, one can easily assure that

Riemann-Liouville fractional integral is right inverse of both Riemann-Liouville fractional

derivative as well as Caputo fractional derivative. From Theorem 1.2.2 and Theorem

1.2.4, it is easy to conclude that Caputo fractional derivative generalizes the property of

classical derivative, whereas Riemann-Liouville fractional derivative fails.

1.2.1. Adams Type Predictor-Corrector Method

Consider the initial value problem

(1.14) cDqy(t) = f(t, y), y(0) = y0, t ∈ [0, T ].

The algorithm for predictor-corrector method for the initial value problem is given below.

For more details one can refer [43] and the references therein. Let ypk+1 denotes the

predicted value of y at tk+1, yk+1 denotes the corrected value of y at tk+1 and h denotes
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the step size.

ypk+1 =
m−1∑
j=0

tjk+1

j!
yj0 +

1

Γq

k∑
j=0

bj,k+1f(tj, yj)

yk+1 =
m−1∑
j=0

tjk+1

j!
yj0 +

1

Γq

(
k∑
j=0

aj,k+1f(tj, yj) + ak+1,k+1f(tk+1, y
p
k+1)

)

where bj,k+1 = hq

q
((k + 1− j)q − (k − j)q), tj = jh, j = 0, 1, · · · , k + 1 and

aj,k+1 =


hq

q(q+1)
(kq+1 − (k − q)(k + 1)q) if j = 0,

hq

q(q+1)
((k − j + 2)q+1 − 2(k − j + 1)q+1 + (k − j)q+1) if 1 ≤ j ≤ k,

hq

q(q+1)
if j = k + 1.

1.2.2. Finite Difference Approximation of Derivatives

The following formulas are used to approximate the derivatives of a function y(x, t)

where h and k denote the step size in x and t direction respectively.

• Forward difference approximation of yx(x, t)

yx(x, t) ≈
y(x+ h, t)− y(x, t)

h

• Forward difference approximation of yt(x, t)

yt(x, t) ≈
y(x, t+ k)− y(x, t)

k

• Backward difference approximation of yx(x, t)

yx(x, t) ≈
y(x, t)− y(x− h, t)

h

• Backward difference approximation of yt(x, t)

yt(x, t) ≈
y(x, t)− y(x, t− k)

k
18



1.3. Outline of the Thesis

Chapter 2 provides an interesting existence and uniqueness theorem for the frac-

tional order differential equation via monotone modified quasilinearization method. In

particular, the following nonlinear initial value problem

(1.15) cDqx(t) = f(t, x(t)) + g(t, x(t)) + h(t, x(t)), x(t0) = x0

where f, g, h ∈ C([t0, T ] × R,R) and cDq is the Caputo fractional derivative of order

q, 0 < q ≤ 1 is considered. The nonlinear problem is linearized through modified quasi-

linearization method. Using the lower and upper solutions, two sequences are constructed

that converge uniformly and monotonically to the unique solution of the initial value prob-

lem (1.15). One of the main theorems of this chapter is given below.

Theorem 1.3.1. Let α ∈ C([t0, t0 + T ],R), β ∈ C([τ0, τ0 + T ],R), f, g ∈ C0,1([t0, τ0 +

T ]× R,R) and h ∈ C([t0, τ0 + T ]× R,R) where τ0 ≥ 0. Suppose

(i) cDqα(t) ≤ f(t, α(t)) + g(t, α(t)) + h(t, α(t)), t0 ≤ t ≤ t0 + T

cDqβ(t) ≥ f(t, β(t)) + g(t, β(t)) + h(t, β(t)), τ0 ≤ t ≤ τ0 + T

with α(t0) ≤ x(s0) ≤ β(τ0) and t0 ≤ s0 ≤ τ0 where α(t) ≤ β(t+η1), t0 ≤ t ≤ t0 +T

and η1 = τ0 − t0.

(ii) ∃ two functions φ, ψ ∈ C0,1([t0, τ0 + T ] × R,R) such that φx and φx + fx are

nondecreasing and ψx and ψx + gx are nonincreasing in x for each t.

(iii) For each x, f(t, x), g(t, x) and h(t, x) are nondecreasing in t.

(iv) For some constant K > 0 and each t, |h(t, x1)−h(t, x2)| ≤ K|x1−x2|, ∀x1, x2 ∈ R.

Then there exist monotone sequences {α̃n} and {β̃n} which converge uniformly and mono-

tonically to the unique solution of (1.15) with x(s0) = x0 on [s0, s0+T ] and the convergence

is linear.

Chapter 3 deals with a fractional order integro differential equation of the form

(1.16) cDqx(t) = f(t, x, x̃), x(0) = x0
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where x̃(t) =
∫ t

0
x(s)ds, f ∈ C([0, T ]×R×R,R) and cDq is the Caputo fractional derivative

of order q ∈ (0, 1]. An existence and uniqueness result for the initial value problem (1.16)

is obtained through a monotone iterative scheme. As an application of the main theorem,

existence and uniqueness result is proved for the fractional order Volterra population

model

(1.17) cDqx(t) = ax(t)− bx2(t)− cx(t)

∫ t

0

x(s)ds; x(0) = x0

where a > 0 is the birth rate coefficient, b > 0 is the intraspecies competition, c > 0 is

the toxicity coefficient, x0 is the initial population and x(t) is the population at time t.

One of the main theorems of this chapter is given below.

Definem1 = min
t∈[0,T ]

{α0, β0}, m2 = min
t∈[0,T ]

{α̃0, β̃0}, M1 = max
t∈[0,T ]

{α0, β0}, M2 = max
t∈[0,T ]

{α̃0, β̃0}

and f2 and f3 denote the first order partial derivative of f with respect to the second and

third variables respectively. Denote the interval [0,∞) by R+
0 .

Theorem 1.3.2. Let α0, β0 ∈ C1([0, T ],R) be a coupled lower and upper solutions of

(1.16) with f, f2 ∈ C([0, T ] × [m1,M1] × [m2,M2],R) and −f3 ∈ C([0, T ] × [m1,M1] ×

[m2,M2],R+
0 ). Then there exist monotone sequences {αn} and {βn} that converge uni-

formly and monotonically to the unique solution of (1.16) in [α0, β0].

In Chapter 4, an existence and uniqueness theorem for the following fractional order

two-point nonlinear boundary value problem

(1.18a) −cDqx(t) = f(t, x(t)); t ∈ (0, 1)

(1.18b) x(0)− α0x
′(0) = γ0 and x(1) + α1x

′(1) = γ1,

where f ∈ C([0, 1]× R,R), α0 ≥ 1
q−1

, α1 ≥ 0 and cDq is the Caputo fractional derivative

of order 1 < q < 2 is discussed via a monotone quasilinearization method. The quadratic

convergence of the quasilinearization scheme is also proved. One of the main theorems of

this chapter is given below.

Define m1 = min
t∈[0,1]

{v0, u0} and m2 = max
t∈[0,1]

{v0, u0} and fx denotes first order partial

derivative of f with respect to the second variable and R− denotes the interval (−∞, 0).
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Theorem 1.3.3. Let v0, u0 ∈ C2[0, 1] represent, respectively the lower and upper solutions

of (1.18), f ∈ C([0, 1]× [m1,m2],R), fx ∈ C([0, 1]× [m1,m2],R−). Further assume that

(i) |fx(x, y1)− fx(x, y2)| ≤M2|y1 − y2|, M2 > 0,

(ii) for each t, fx(t, x) is nondecreasing in x.

Then there exist two sequences that converge uniformly and monotonically to the unique

solution of the problem (1.18) in [v0, u0] and the order of convergence is quadratic.

In Chapter 5, an existence and uniqueness theorems for a partial integro differential

equation

(1.19)
∂u

∂t
=
∂2u

∂x2
+ f(u, ũ) in Q, u|∂pQ = φ,

is provided using a monotone iterative technique, where Q = (0, 1) × (0, T ). Further

∂pQ = ∂Q\((0, 1)×{T}) denotes the parabolic boundary of Q and ũ =
∫ t

0
κ(t−s)u(x, s)ds.

Also f : R×R→ R is assumed to be a continuous function and φ is the restriction of Φ on

∂pQ where Φ ∈ C2,1(Q). The proof is based on a fixed point theorem in partially ordered

Banach space. This chapter also extends the bivariate spectral collocation method for

partial differential equation to solve the above partial integro differential equation. It also

provides an alternative proof for the results in Chapter 3.

Define m = min
(x,t)∈Q

{v0, w0}, M = max
(x,t)∈Q

{v0, w0}, m̃ = min
(x,t)∈Q

{ṽ0, w̃0} and M̃ =

max
(x,t)∈Q

{ṽ0, w̃0}. Denote the partial derivative of f with respect to the second and third

variable by f1 and f2 respectively. Consider the following assumptions:

(i) Let v0 and w0 in C2,1(Q) be an ordered coupled lower and upper solution of (1.19).

(ii) For some δ > 0, f, f1, f2 : C[m − δ,M + δ] × [m̃ − δ, M̃ + δ] → R are continuous

functions and for all s1 ∈ [m,M ], s2 ∈ [m̃, M̃ ]

f1(s1, s2) + λ ≥ 0 and f2(s1, s2) ≤ 0.

Under these hypothesis, the main theorem can be stated as,
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Theorem 1.3.4. The parabolic partial integro differential equation (1.19) has a unique

solution in [v0, w0]. Moreover, there exist two sequences that converge to the unique solu-

tion monotonically.

In Chapter 6 an interesting short note on monotone iterative method for the following

coupled system of partial differential equations is provided.

(1.20)



∂u
∂t

+ a∂u
∂x

+ cu = cv, t > 0, 0 < x ≤ l

∂v
∂t

+ bv = bu+ λ exp(v), t > 0, 0 < x ≤ l

u(0, t) = η(t), t ≥ 0

u(x, 0) = u0(x), v(x, 0) = v0(x), 0 ≤ x ≤ l.

The above equation arises in catalytic converter model. Recently, Linia et.al. [132] pro-

posed an alternative monotone iterative procedure to Pao et. al. [115]. Though the

numerical simulations assure that the iterative scheme in [132] produces faster conver-

gence than the method in [115], no theoretical justification is provided in [132]. In this

chapter a theoretical justification is provided that ensures that the iterative scheme in

[132] always requires less number of iterations than that in [115]. One of the main

theorems of this chapter is given below.

Theorem 1.3.5. Let (u∗, v∗) be a solution of (1.20). If (u(0), v(0)) and (u(0), v(0)) are

ordered upper and lower solutions for the Eqn.(1.20), then for all n ∈ N,

(u(n), v(n)) ≤ (α(n), β(n)) ≤ (u∗, v∗) ≤ (α(n), β
(n)

) ≤ (u(n), v(n)).
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CHAPTER 2

A MODIFIED QUASILINEARIZATION METHOD FOR

FRACTIONAL ORDER INITIAL VALUE PROBLEM

2.1. Introduction

This chapter discusses the existence and uniqueness of a solution for the following

problem.

(2.1) cDqx(t) = F (t, x(t)), x(t0) = x0

where F ∈ C([t0, T ] × R,R) and cDq is the Caputo fractional derivative of order q, 0 <

q ≤ 1.

The applications of fractional calculus in various branches of modern science and

technology brought considerable attention to the study of fractional differential equations.

Recently, quasilinearization method [41, 42, 148, 149], has been successfully applied by

researchers to prove the existence of solutions for various types of fractional differential

equations. The advantage of this method is not only in proving the existence of solution,

but also in providing an iterative scheme to obtain an approximate solution. However this

method [41, 42, 148, 149] rests on the hypothesis that F has a monotone derivative.

In several cases neither F is differentiable nor has a monotone derivative. Recently,

Devi et al. [42] proposed a quasilinearization method where a non-monotone function F

has been decomposed into two monotone functions and obtained quadratic convergence.

A more generalized form of quasilinearization has been considered in [41], where the

monotone property has been further relaxed and still quadratic convergence has been

obtained. In [149] the authors extended the quasilinearization method to functions that

are neither differentiable nor have a monotone derivative. Besides, the construction of



monotone sequences in the work presented in [41, 42, 148, 149] requires to evaluate the

partial derivative of F at each iteration. It is interesting to note that in [41, 42] the

partial derivative should be evaluated at least for two points at each iteration to ensure

the quadratic convergence. Even, the theorems proved in [41, 42] fail to guarantee the

existence of the solution as well as the convergence of the quasilinearization when F

is not differentiable. However, in the proposed modified quasilinearization method, the

monotone sequences are constructed by evaluating the partial derivative of F only once

at specified points. Moreover the proof for the convergence of the monotone sequence

with systematic error analysis uses only mild conditions on F unlike in [42, 148, 149].

Consequently, the present method is more robust with less computational complexity

compared to existing quasilinearization approaches.

The organization of the chapter is as follows. In Section 2, we provide the basic

materials relevant to the main theorem. In Section 3, we prove the linear convergence

of the modified quasilinearization method with systematic error analysis. The modified

approach is illustrated in Section 4 by applying to various examples including fractional

order Riccati equation. Our numerical results are also compared with other numerical

results obtained using Haar wavelet method [91, 121], and the modified homotopy per-

turbation method [105]. We conclude the discussion in Section 5, by stating the merits

of the proposed modified quasilinearization method.

2.2. Preliminaries

In this section, we provide some basic definitions and results relevant to the main

theorem. First we define the lower and upper solution of the problem (2.1).

Definition 2.2.1. A function v ∈ C([t0, T ],R) is called a lower solution of (2.1) if for

all t ∈ [t0, T ]

cDqv(t) ≤ F (t, v(t)), v(t0) ≤ x(t0).

If the inequalities are reversed then the corresponding solution is called an upper solution.
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Next we introduce the one parameter and two parameter Mittag-Leffler functions

which play a crucial role in the solution of the following non-homogeneous linear fractional

differential equation,

(2.2) cDqx(t) = λx(t) + f(t), x(t0) = x0

where λ is a real number and f ∈ C([t0, T ]×R,R). Using the Laplace Transform technique,

the solution for nonhomogeneous initial value problem (2.2) is obtained as follows

(2.3) x(t) = x0Eq(λ(t− t0)q) +

∫ t

t0

(t− s)q−1Eq,q(λ(t− s)q)f(s)ds, t ∈ [t0, T ]

where Eq(t) =
∞∑
k=0

tk

Γ(qk + 1)
and Eq,q(t) =

∞∑
k=0

tk

Γ(qk + q)
are the Mittag-Leffler functions

of one parameter and two parameter respectively. If f(t) = 0 then the solution of the

corresponding homogeneous initial value problem is given by

(2.4) x(t) = x0Eq(λ(t− t0)q), t ∈ [t0, T ].

In the following we state Gronwall-type inequality for fractional differential equation with-

out proof. The proof can be found in [43].

Remark 2.2.1. Let cDqu(t) ≤ Lu(t), u(t0) = u0 where u(t) ∈ C([t0, T ],R+) and L is a

positive constant. Then we have the estimate

u(t) ≤ u0Eq(L(t− t0)q) on [t0, T ].

Note that if u0 = 0, then u(t) = 0 identically on [t0, T ].

This section is concluded by stating the following comparison theorem, an important

tool in proving the main theorem.

Theorem 2.2.1. (Theorem 3.1 in [148]) Let v(t), w(t) ∈ C([t0, T ],R). Suppose F ∈

C([t0, T ]× R,R) and

(i) cDqv(t) ≤ F (t, v(t)),

(ii) cDqw(t) ≥ F (t, w(t)),

(iii) F (t, x)− F (t, y) ≤ L(x− y), x ≥ y and L > 0.
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Then v(t0) ≤ w(t0) implies

(2.5) v(t) ≤ w(t), t0 ≤ t ≤ T.

Corollary 2.2.1. The function F (t, u) = σ(t)u(t) where σ(t) ≤ L is admissible in Theo-

rem 2.2.1 to yield u(t) ≤ 0, on t0 ≤ t ≤ T .

Note that the dual of the Corollary 2.2.1 is also valid.

2.3. Convergence Analysis

This section gives the proof for the main theorem which is derived by constructing

the monotone sequences using the modified quasilinearization idea. Then the linear con-

vergence of the sequence with systematic error analysis has also been stated with the

proof. We will use the notation [α, β] to denote the sector {x : α(t) ≤ x(t) ≤ β(t),∀t}.

Throughout this section we assume that F has a decomposition of the form F (t, x) =

f(t, x) + g(t, x) + h(t, x) where f, g and h ∈ C([t0, τ0 + T ]× R,R), t0 ≥ 0 and T > 0.

Theorem 2.3.1. Let α ∈ C([t0, t0 + T ],R), β ∈ C([τ0, τ0 + T ],R), f, g ∈ C0,1([t0, τ0 +

T ]× R,R) and h ∈ C([t0, τ0 + T ]× R,R) where τ0 ≥ 0. Suppose

(i) cDqα(t) ≤ f(t, α(t)) + g(t, α(t)) + h(t, α(t)), t0 ≤ t ≤ t0 + T,

cDqβ(t) ≥ f(t, β(t)) + g(t, β(t)) + h(t, β(t)), τ0 ≤ t ≤ τ0 + T

with α(t0) ≤ x(s0) ≤ β(τ0) and t0 ≤ s0 ≤ τ0 where α(t) ≤ β(t+η1), t0 ≤ t ≤ t0 +T

and η1 = τ0 − t0,

(ii) ∃ two functions φ, ψ ∈ C0,1([t0, τ0 + T ] × R,R) such that φx and φx + fx are

nondecreasing and ψx and ψx + gx are nonincreasing in x for each t,

(iii) for each x, f(t, x), g(t, x) and h(t, x) are nondecreasing in t,

(iv) for some constant K > 0 and each t, |h(t, x1)−h(t, x2)| ≤ K|x1−x2|, ∀x1, x2 ∈ R.

Then there exist monotone sequences {α̃n} and {β̃n} which converge uniformly and mono-

tonically to the unique solution of (2.1) with x(s0) = x0 on [s0, s0 +T ] and the convergence

is linear.
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Proof: Set β̃0(t) = β(t + η1) and α̃0(t) = α(t), t0 ≤ t ≤ t0 + T where η1 = τ0 − t0.

Then we have β̃0(t0) = β(t0 + η1) = β(τ0) ≥ α(t0) = α̃0(t0). Note that

cDqβ̃0(t) = cDqβ(t+ η1)

≥ f(t+ η1, β(t+ η1)) + g(t+ η1, β(t+ η1)) + h(t+ η1, β(t+ η1))

= f(t+ η1, β̃0(t)) + g(t+ η1, β̃0(t)) + h(t+ η1, β̃0(t))

cDqβ̃0(t) ≥ f(t, β̃0(t)) + g(t, β̃0(t)) + h(t, β̃0(t)).

Thus β̃0(t) is an upper solution. In a similar manner we can show that α̃0(t) is a lower

solution. Set η2 = s0 − t0. The monotonic sequences of solution can be constructed by

solving the following modified quasilinear fractional differential equations.

(2.6) cDqα̃n+1 = P1(t, α̃n+1, α̃n, α̃0, β̃0), α̃n+1(t0) = x0

where

P1(t, α̃n+1, α̃n, α̃0, β̃0) = f(t+ η2, α̃n) + g(t+ η2, α̃n) + h(t+ η2, α̃n) + [Px(t+ η2, α̃0)

−φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)−K](α̃n+1 − α̃n)

where P (t, x) = f(t, x) + φ(t, x) and G(t, x) = g(t, x) + ψ(t, x).

(2.7) cDqβ̃n+1(t) = G1(t, β̃n+1, β̃n, α̃0, β̃0), β̃n+1(t0) = x0

where

G1(t, β̃n+1, β̃n, α̃0, β̃0) = f(t+ η2, β̃n) + g(t+ η2, β̃n) + h(t+ η2, β̃n) + [Px(t+ η2, α̃0)

−φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)−K](β̃n+1 − β̃n).

Note that, for the problems (2.6) and (2.7) unique solution exists since the right hand

side of these equations satisfy Lipschitz condition.

Next using induction we prove that, for all n ∈ N,

(2.8) α̃0 ≤ α̃1 ≤ · · · ≤ α̃n ≤ β̃n ≤ · · · ≤ β̃1 ≤ β̃0 on [t0, t0 + T ].

For n = 1, we have to show

(2.9) α̃0 ≤ α̃1 ≤ β̃1 ≤ β̃0 on [t0, t0 + T ].
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Let p(t) = α̃1 − α̃0. Note that p(t0) ≥ 0 and

cDqp(t) = cDqα̃1 − cDqα̃0

≥ f(t+ η2, α̃0) + g(t+ η2, α̃0) + h(t+ η2, α̃0) + [Px(t+ η2, α̃0)

−φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)−K]

(α̃1 − α̃0)− f(t, α̃0)− g(t, α̃0)− h(t, α̃0)

cDqp(t) ≥ [Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)

−ψx(t+ η2, α̃0)−K]p(t).

By Corollary 2.2.1, p(t) ≥ 0. Thus α̃0 ≤ α̃1 on [t0, t0 + T ]. Similarly, it is straightforward

to show that β̃0 ≥ β̃1 on [t0, t0 + T ]. Let p(t) = β̃1 − α̃1.

cDqp(t) = cDqβ̃1 − cDqα̃1

= [Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)

−K](β̃1 − β̃0 − α̃1 + α̃0) + [f(t+ η2, β̃0)− f(t+ η2, α̃0)]

+[g(t+ η2, β̃0)− g(t+ η2, α̃0)] + [h(t+ η2, β̃0)− h(t+ η2, α̃0)]

≥ [Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)

−K](β̃1 − β̃0 − α̃1 + α̃0) + φ(t+ η2, α̃0)− φ(t+ η2, β̃0)

+Px(t+ η2, α̃0)(β̃0 − α̃0) + ψ(t+ η2, α̃0)− ψ(t+ η2, β̃0)

+Gx(t+ η2, β̃0)(β̃0 − α̃0)−K(β̃0 − α̃0)

≥ [Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)

−K](β̃1 − β̃0 − α̃1 + α̃0) + φx(t+ η2, β̃0)(α̃0 − β̃0)

+Px(t+ η2, α̃0)(β̃0 − α̃0) + ψx(t+ η2, α̃0)(α̃0 − β̃0)

+Gx(t+ η2, β̃0)(β̃0 − α̃0)−K(β̃0 − α̃0)

cDqp(t) ≥ [Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)−K]p(t).

Then using the condition p(t0) = 0 and Corollary 2.2.1, we obtain p(t) ≥ 0. Hence β̃1 ≥ α̃1

on [t0, t0 + T ]. Consequently, (2.9) is proved. Assume (2.8) is true for k;
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(2.10) i.e., α̃0 ≤ α̃1 ≤ · · · ≤ α̃k ≤ β̃k ≤ · · · ≤ β̃1 ≤ β̃0 on [t0, t0 + T ].

Then it is enough to show that

(2.11) α̃k ≤ α̃k+1 ≤ β̃k+1 ≤ β̃k on [t0, t0 + T ].

Let p(t) = α̃k+1 − α̃k. Note that p(t0) = 0 and

cDqp(t) = cDqα̃k+1 − cDqα̃k

= [Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)

−K](α̃k+1 − 2α̃k + α̃k−1) + [f(t+ η2, α̃k)− f(t+ η2, α̃k−1)]

+[g(t+ η2, α̃k)− g(t+ η2, α̃k−1)] + [h(t+ η2, α̃k)− h(t+ η2, α̃k−1)]

≥ [Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)

−K](α̃k+1 − 2α̃k + α̃k−1) + φ(t+ η2, α̃k−1)− φ(t+ η2, α̃k)

+Px(t+ η2, α̃k−1)(α̃k − α̃k−1) + ψ(t+ η2, α̃k−1)− ψ(t+ η2, α̃k)

+Gx(t+ η2, α̃k)(α̃k − α̃k−1)−K(α̃k − α̃k−1)

≥ [Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)

−K](α̃k+1 − α̃k) + [Px(t+ η2, α̃k−1)− Px(t+ η2, α̃0)](α̃k − α̃k−1)

+[Gx(t+ η2, α̃k)−Gx(t+ η2, β̃0)](α̃k − α̃k−1) + φx(t+ η2, β̃0)

(α̃k − α̃k−1) + ψx(t+ η2, α̃0)(α̃k − α̃k−1)− φx(t+ η2, β̃0)

(α̃k − α̃k−1)− ψx(t+ η2, α̃0)(α̃k − α̃k−1)

cDqp(t) ≥ [Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)

−K]p(t).

Again by Corollary 2.2.1, p(t) ≥ 0 ⇒ α̃k+1 ≥ α̃k on [t0, t0 + T ]. In a similar way we can

prove that β̃k ≥ β̃k+1 on [t0, t0 + T ]. Let p(t) = β̃k+1 − α̃k+1.
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cDqp(t) = cDqβ̃k+1 − cDqα̃k+1

= [Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)

−K](β̃k+1 − β̃k − α̃k+1 + α̃k) + [f(t+ η2, β̃k)− f(t+ η2, α̃k)]

+[g(t+ η2, β̃k)− g(t+ η2, α̃k)] + [h(t+ η2, β̃k)− h(t+ η2, α̃k)]

≥ [Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)

−K](β̃k+1 − β̃k − α̃k+1 + α̃k) + φ(t+ η2, α̃k)− φ(t+ η2, β̃k)

+Px(t+ η2, α̃k)(β̃k − α̃k) + ψ(t+ η2, α̃k)− ψ(t+ η2, β̃k)

+Gx(t+ η2, β̃k)(β̃k − α̃k)−K(β̃k − α̃k)

≥ [Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)

−K](β̃k+1 − α̃k+1) + [Px(t+ η2, α̃k)− Px(t+ η2, α̃0)](β̃k − α̃k)

+[Gx(t+ η2, β̃k)−Gx(t+ η2, β̃0)](β̃k − α̃k) + φx(t+ η2, β̃0)

(β̃k − α̃k) + ψx(t+ η2, α̃0)(β̃k − α̃k)− φx(t+ η2, β̃0)(β̃k − α̃k)

−ψx(t+ η2, α̃0)(β̃k − α̃k)

cDqp(t) ≥ [Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)

−K]p(t).

Then using the condition p(t0) = 0 and Corollary 2.2.1, we obtain p(t) ≥ 0. Hence

β̃k+1 ≥ α̃k+1 on [t0, t0 + T ]. Consequently, (2.11) is proved.

It is clear that the sequences {α̃n} and {β̃n} are uniformly bounded and monotone on

[t0, t0 + T ]. We can also show that the sequences {α̃n(t)} and {β̃n(t)} are equicontinuous

on [t0, t0 +T ]. Hence by Ascoli-Arzela’s Theorem and using the property of monotonicity,

{α̃n} and {β̃n} converge uniformly to ρ1 and ρ2, respectively. Using the equivalent integral

representation of (2.6) and (2.7) one can easily prove that ρ1 and ρ2 are solutions of the

initial value problem

(2.12) cDqx̃(t) = F (t+ η2, x̃(t)), x̃(t0) = x0.

30



From the hypotheses it is clear that f, g and h are Lipschitz and fx(t, x) and gx(t, x) are

bounded on the sector [α̃0, β̃0]. Hence it can be concluded that ρ1 = ρ2 = x̃. Thus (2.12)

has a unique solution. Using the change of variable s = t+ η2, (2.12) is equivalent to

(2.13) cDqx(s) = F (s, x(s)), x(s0) = x0.

To prove the linear convergence of the modified quasilinearization, define

k1 = sup
α∈[α̃0,β̃0]
t∈[t0,t0+T ]

|fx(t+ η2, α)|, k′1 = supt∈[t0,t0+T ](φ(t+ η2, β̃0)− φ(t+ η2, α̃0)),

k2 = sup
α∈[α̃0,β̃0]
t∈[t0,t0+T ]

|gx(t+ η2, α)|, k′2 = supt∈[t0,t0+T ](ψ(t+ η2, α̃0)− ψ(t+ η2, β̃0)),

pn = x̃ − α̃n, rn = β̃n − x̃, |pn|0 = sup
t∈[t0,t0+T ]

|pn(t)|, |rn|0 = sup
t∈[t0,t0+T ]

|rn(t)| for all n ∈ N.

Then

cDqpn+1(t) = cDqx̃(t)− cDqα̃n+1(t)

= [Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)

−K](α̃n − α̃n+1) + [f(t+ η2, x̃)− f(t+ η2, α̃n)]

+[g(t+ η2, x̃)− g(t+ η2, α̃n)] + [h(t+ η2, x̃)− h(t+ η2, α̃n)]

= [Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)

−K](pn+1 − pn) +

∫ 1

0

fx(t+ η2, θx̃+ (1− θ)α̃n)(x̃− α̃n)dθ

+

∫ 1

0

gx(t+ η2, θx̃+ (1− θ)α̃n)(x̃− α̃n)dθ +K(x̃− α̃n)

= [Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)− ψx(t+ η2, α̃0)

−K]pn+1 +

[ ∫ 1

0

fx(t+ η2, θx̃+ (1− θ)α̃n)dθ

+

∫ 1

0

gx(t+ η2, θx̃+ (1− θ)α̃n)dθ − Px(t+ η2, α̃0)

+φx(t+ η2, β̃0)−Gx(t+ η2, β̃0) + ψx(t+ η2, α̃0) + 2K

]
pn(t)

cDqpn+1(t) ≤ Mpn(t) +M ′pn+1(t)
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where

M ′ = sup
t∈[t0,t0+T ]

∣∣∣Px(t+ η2, α̃0)− φx(t+ η2, β̃0) +Gx(t+ η2, β̃0)

−ψx(t+ η2, α̃0)−K|

M = (2(k1 + k2) + k′1 + k′2 + 2K)

(2.14) cDqpn+1(t) ≤M |pn|0 +M ′pn+1(t).

From the inequality (2.14), we get

pn+1(t) ≤ M |pn|0
∫ t

t0

(t− s)q−1Eq,q(M
′(t− s)q)ds

≤ M |pn|0(t− t0)q

q
Eq,q(M

′(t− t0)q)

≤ M |pn|0T q

q
Eq,q(M

′T q)

pn+1(t) ≤ |pn|0N

where N =
MT q

q
Eq,q(M

′T q). Hence we have,

(2.15) |pn+1|0 ≤ N |pn|0.

A similar calculation shows that

(2.16) |rn+1|0 ≤ N |rn|0.

Hence the Theorem.

Remark 2.3.1. If t0 = τ0 in Theorem 2.3.1, then the hypothesis (iii) can be omitted.

Remark 2.3.2. An interesting observation from the proof of Theorem 2.3.1 is that the

condition (ii) can be replaced as follows. Suppose f, g ∈ C0,2([t0, τ0 + T ] × R,R) and ∃

two functions φ, ψ ∈ C0,2([t0, τ0 +T ]×R,R) such that φxx(t, x) ≥ 0, φxx(t, x) +fxx(t, x) ≥

0, ψxx(t, x) ≤ 0 and ψxx(t, x) + gxx(t, x) ≤ 0.

Corollary 2.3.1. Let α, β ∈ C([t0, t0 + T ],R) and f ∈ C0,1([t0, t0 + T ]× R,R). Suppose
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(i) cDqα(t) ≤ f(t, α(t)), t0 ≤ t ≤ t0 + T,

cDqβ(t) ≥ f(t, β(t)), t0 ≤ t ≤ t0 + T

with α(t0) ≤ x0 ≤ β(t0) where α(t) ≤ β(t), t0 ≤ t ≤ t0 + T ,

(ii) ∃ a function φ ∈ C0,1([t0, t0 +T ]×R,R) such that φx and φx+fx are nondecreasing

in x for each t.

Then there exist monotone sequences {αn} and {βn} which converge uniformly and mono-

tonically to the unique solution of cDqx(t) = f(t, x(t)) with x(t0) = x0 on [t0, t0 + T ] and

the convergence is linear.

Proof: For the choice g ≡ ψ ≡ 0, h ≡ 0, α̃0 = α0 = α and β̃0 = β0 = β all the

hypotheses of Theorem 2.3.1 are satisfied. Hence the initial value problem

(2.17) cDqx(t) = f(t, x(t)), x(t0) = x0

has a unique solution in [α, β]. Moreover the sequences {αn} and {βn} defined by the

solutions of the following linear fractional differential equation converge uniformly and

monotonically to the unique solution of the initial value problem 2.17.

cDqαn+1(t) = f(t, αn) + [Px(t, α0)− φx(t, β0)](αn+1 − αn), αn+1(t0) = x0,

cDqβn+1(t) = f(t, βn) + [Px(t, α0)− φx(t, β0)](βn+1 − βn), βn+1(t0) = x0

where P (t, x) = f(t, x) + φ(t, x).

Corollary 2.3.2. Let α, β ∈ C([t0, t0 + T ],R) and g ∈ C0,1([t0, t0 + T ]× R,R). Suppose

(i) cDqα(t) ≤ g(t, α(t)), t0 ≤ t ≤ t0 + T,

cDqβ(t) ≥ g(t, β(t)), t0 ≤ t ≤ t0 + T

with α(t0) ≤ x0 ≤ β(t0) where α(t) ≤ β(t), t0 ≤ t ≤ t0 + T ,

(ii) ∃ a function ψ ∈ C0,1([t0, t0 +T ]×R,R) such that ψx and ψx+gx are nonincreasing

in x for each t.

Then there exist monotone sequences {αn} and {βn} which converge uniformly and mono-

tonically to the unique solution of cDqx(t) = g(t, x(t)) with x(t0) = x0 on [t0, t0 + T ] and

the convergence is linear.
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Proof: For the choice f ≡ φ ≡ 0, h ≡ 0, α̃0 = α0 = α and β̃0 = β0 = β all the

hypotheses of Theorem 2.3.1 are satisfied. Hence the initial value problem

(2.18) cDqx(t) = g(t, x(t)), x(t0) = x0

has a unique solution in [α, β]. Moreover the sequences {αn} and {βn} defined by the

solutions of the following linear fractional differential equation converge uniformly and

monotonically to the unique solution of the initial value problem 2.18.

cDqαn+1(t) = g(t, αn) + [Gx(t, β0)− ψx(t, α0)](αn+1 − αn), αn+1(t0) = x0,

cDqβn+1(t) = g(t, βn) + [Gx(t, β0)− ψx(t, α0)](βn+1 − βn), βn+1(t0) = x0

where G(t, x) = g(t, x) + ψ(t, x).

Corollary 2.3.3. Let α, β ∈ C([t0, t0 + T ],R) and h ∈ C([t0, t0 + T ]× R,R). Suppose

(i) cDqα(t) ≤ h(t, α(t)), t0 ≤ t ≤ t0 + T,

cDqβ(t) ≥ h(t, β(t)), t0 ≤ t ≤ t0 + T

with α(t0) ≤ x0 ≤ β(t0) where α(t) ≤ β(t), t0 ≤ t ≤ t0 + T ,

(ii) for some constant K > 0 and each t, |h(t, x1)−h(t, x2)| ≤ K|x1−x2|, ∀x1, x2 ∈ R.

Then there exist monotone sequences {αn} and {βn} which converge uniformly and mono-

tonically to the unique solution of cDqx(t) = h(t, x(t)) with x(t0) = x0 on [t0, t0 + T ] and

the convergence is linear.

Proof: For the choice f ≡ g ≡ φ ≡ ψ ≡ 0, α̃0 = α0 = α and β̃0 = β0 = β all the

hypotheses of Theorem 2.3.1 are satisfied. Hence the initial value problem

(2.19) cDqx(t) = h(t, x(t)), x(t0) = x0

has a unique solution in [α, β]. Moreover the sequences {αn} and {βn} defined by the

solutions of the following linear fractional differential equation converge uniformly and

monotonically to the unique solution of the initial value problem 2.19.

cDqαn+1(t) = h(t, αn)−K(αn+1 − αn), αn+1(t0) = x0,

cDqβn+1(t) = h(t, βn)−K(βn+1 − βn), βn+1(t0) = x0.
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Corollary 2.3.4. Let α, β ∈ C([t0, t0 +T ],R) and f, g ∈ C0,1([t0, t0 +T ]×R,R). Suppose

(i) cDqα(t) ≤ f(t, α(t)) + g(t, α(t)), t0 ≤ t ≤ t0 + T,

cDqβ(t) ≥ f(t, β(t)) + g(t, β(t)), τ0 ≤ t ≤ τ0 + T

with α(t0) ≤ x0 ≤ β(t0) where α(t) ≤ β(t), t0 ≤ t ≤ t0 + T ,

(ii) ∃ two functions φ, ψ ∈ C0,1([t0, t0 + T ] × R,R) such that φx and φx + fx are

nondecreasing and ψx and ψx + gx are nonincreasing in x for each t.

Then there exist monotone sequences {α̃n} and {β̃n} which converge uniformly and mono-

tonically to the unique solution of cDqx(t) = f(t, x(t)) + g(t, x(t)) with x(t0) = x0 on

[t0, t0 + T ] and the convergence is linear.

Proof: For the choice h ≡ 0, α̃0 = α0 = α and β̃0 = β0 = β all the hypotheses of the

Theorem 2.3.1 are satisfied. Hence the initial value problem

(2.20) cDqx(t) = f(t, x(t)) + g(t, x(t)), x(t0) = x0

has a unique solution in [α, β]. Moreover the sequences {αn} and {βn} defined by the

solutions of the following linear fractional differential equation converge uniformly and

monotonically to the unique solution of the initial value problem (2.20).

cDqαn+1(t) = f(t, αn) + g(t, αn) + [Px(t, α0)− φx(t, β0) +Gx(t, β0)

−ψx(t, α0)](αn+1 − αn), αn+1(t0) = x0,

cDqβn+1(t) = f(t, βn) + g(t, βn) + [Px(t, α0)− φx(t, β0) +Gx(t, β0)

−ψx(t, α0)](βn+1 − βn), βn+1(t0) = x0.

Remark 2.3.3. The other possible corollaries of combination f , h and g, h are similar

to Corollary 2.3.4 and hence not discussed here.

We will conclude this section by stating a generalized version of quasilinearization

which will unify the existing method presented in [41, 42, 148]. This Theorem will be

stated in the setting of the function space

Cp[t0, T ] = {u ∈ C((t0, T ],R) : (t− t0)pu ∈ C([t0, T ],R)}, p = 1− q.
35



Theorem 2.3.2. Let α ∈ Cp([t0, t0+T ]), β ∈ Cp([τ0, τ0+T ]), f, g ∈ C0,1([t0, τ0+T ]×R,R)

where τ0 ≥ 0. Suppose

(i) cDqα(t) ≤ f(t, α(t)) + g(t, α(t)), t0 ≤ t ≤ t0 + T,

cDqβ(t) ≥ f(t, β(t)) + g(t, β(t)), τ0 ≤ t ≤ τ0 + T

with α(t0) ≤ x(s0) ≤ β(τ0) and t0 ≤ s0 ≤ τ0 where α(t) ≤ β(t+η1), t0 ≤ t ≤ t0 +T

and η1 = τ0 − t0,

(ii) ∃ two functions φ, ψ ∈ C0,1([t0, τ0 + T ] × R,R) such that φx and φx + fx are

nondecreasing and ψx and ψx + gx are nonincreasing in x for each t,

(iii) for each x, f(t, x) and g(t, x) are nondecreasing in t,

(iv) for some positive constants L1, L2, L3, L4

|f(t, x)− f(t, y)| ≤ L1|x− y|, |g(t, x)− g(t, y)| ≤ L2|x− y|,

|φ(t, x)− φ(t, y)| ≤ L3|x− y|, |ψ(t, x)− ψ(t, y)| ≤ L4|x− y|.

Then there exist monotone sequences {α̃n} and {β̃n} which converge uniformly and mono-

tonically to the unique solution of (2.1) with x(s0) = x0 on [s0, s0 +T ] and the convergence

is quadratic.

Proof. It is easy to show that the sequences {α̃n} and {β̃n} defined by the solutions of

the following linear fractional differential equations converge uniformly, quadratically and

monotonically to the unique solution of the initial value problem 2.20.

cDqα̃n+1(t) = f(t+ η2, α̃n) + g(t+ η2, α̃n) + [Px(t+ η2, α̃n)− φx(t+ η2, β̃n)

+Gx(t+ η2, β̃n)− ψx(t+ η2, α̃n)](α̃n+1 − α̃n), α̃n+1(t0) = x0,

cDqβ̃n+1(t) = f(t+ η2, β̃n) + g(t+ η2, β̃n) + [Px(t+ η2, α̃n)− φx(t+ η2, β̃n)

+Gx(t+ η2, β̃n)− ψx(t+ η2, α̃n)](β̃n+1 − β̃n), β̃n+1(t0) = x0

where P (t, x) = f(t, x) + φ(t, x) and G(t, x) = g(t, x) + ψ(t, x).
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2.4. Numerical Examples

In this section, the modified quasilinearization method is illustrated by successfully

applying to different examples including fractional order Riccati equation. For each ex-

ample we verified the existence and uniqueness of the solution and convergence of the

proposed method using Theorem 2.3.1. To solve the examples numerically, at each iter-

ation, the corresponding linear initial value problem has been solved using Adams type

predictor-corrector method [43]. This section also provides examples where the proposed

modified quasilinearization performs even better than the generalized quasilinearization

method as given in Theorem 2.3.2 and the theorems in [41].

Example 2.4.1. Consider the fractional order Riccati equation of order q, 0 < q ≤ 1.

(2.21) cDqx(t) = 2x(t)− x2(t) + 1, x(0) = 0, 0 ≤ t ≤ 1.

Numerical solution of (2.21), has been discussed using Haar wavelet method [91,

121] and modified homotopy perturbation method [105] for various choices of q. First a

comparison study for the case q = 1 with the results in [91, 105, 121] is provided (Table

2.1). It can be seen that for the choice of t0 = τ0 = 0, T = 1, L = 2, g(t, x) = 2x−x2 + 1,

f ≡ h ≡ φ ≡ ψ = 0, α(t) ≡ 0 and β(t) ≡ 3 all the hypotheses of Theorem 2.3.1 are

satisfied. Hence the initial value problem (2.21) has a unique solution in [α, β]. Moreover,

the modified quasilinearization defined by (2.6) and (2.7) converges uniformly to the

solution.

It is interesting to note that gx is not a nondecreasing function, which is a crucial

condition in [148]. Hence the quasilinearization technique discussed in [148] cannot

ensure the convergence of the iterative procedure as well as the existence and uniqueness

of solution of (2.21) but the modified quasilinearization technique ensures both (Figure

2.1).
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t Exact Present Ref.[91] Ref.[105] Ref.[121]

0.1 0.1103 0.1103 0.1103 0.1103 0.1103

0.3 0.3951 0.3951 0.3951 0.3951 0.3951

0.5 0.7560 0.7560 0.7560 0.7576 0.7560

0.7 1.1529 1.1529 1.1530 1.1635 1.1529

0.9 1.5269 1.5269 1.5269 1.5550 1.5269

1.0 1.6895 1.6895 1.6895 1.7238 1.6895

Table 2.1. Comparison of present method with the methods discussed in

[91, 105, 121] for Example 2.4.1.
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exact sol q=1

Figure 2.1. Solution of Example 2.4.1 for various values of q.

Example 2.4.2. Consider the fractional differential equation of order q, 0 < q ≤ 1

(2.22) cDqx(t) = 1− x2 + |x|, x(0) = 0, 0 ≤ t ≤ 1.

For the choice of t0 = τ0 = 0, T = 1, K = 1, h(t, x) = |x|, f ≡ φ ≡ ψ = 0, g = 1− x2,

α(t) ≡ 0 and β(t) = 3 all the hypotheses of Theorem 2.3.1 are satisfied (Table 2.2). Hence

the initial value problem (2.22) has a unique solution in [α, β]. Moreover the modified

quasilinearization defined by (2.6) and (2.7) converges uniformly to the solution. It is easy
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to see that h is not a differentiable function but monotonicity of hx is a crucial condition

in [41, 42, 148]. Hence, even for this example the quasilinearization technique discussed

in [41, 42, 148] cannot ensure the convergence of the iterative procedure as well as the

existence and uniqueness of the solution of the (2.22) but the modified quasilinearization

technique ensures both (Figure 2.2). It is also interesting to note that though the result

in [149] ensures both linear convergence and uniqueness of the solution, computational

complexity is much more than the proposed modified quasilinearization method.

t q = 1 q = 0.9 q = 0.8

0.1 0.1048 0.1398 0.1864

0.3 0.3381 0.4067 0.4854

0.5 0.5868 0.6639 0.7407

0.7 0.8271 0.8907 0.9439

0.9 1.0384 1.0747 1.0971

1 1.1291 1.1500 1.1576

Table 2.2. Numerical solution of Example 2.4.2 for various values of q.
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Figure 2.2. Solution of Example 2.4.2 for various values of q.
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2.5. Conclusion

In this chapter, a modification to the quasilinearization method discussed in [41,

42, 148, 149] has been proposed. The error analysis for the proposed modification is

done under mild conditions. To illustrate the proposed method, numerical examples are

provided including fractional order Riccati equation. Since the modified quasilinearization

method avoids the evaluation of the derivative at each iteration, computational cost has

been greatly reduced. More classes of fractional order initial value problems could be

solved using modified quasilinearization as the conditions on F (t, x) has been relaxed.

Thus the results obtained using the modified approach along with Adams method are

better than those in some of the recent literature [41, 42, 148, 149] and are in good

agreement with the exact solutions as discussed in Section 4.
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CHAPTER 3

FRACTIONAL ORDER VOLTERRA POPULATION MODEL

3.1. Introduction

Research in recent years has shown that fractional calculus helps in modeling various

physical phenomena more accurately than its classical counterparts. Hence, developing

methods for solving fractional models has become one of the most emerging research fields.

One such model of interest is the fractional order population model

(3.1) cDqx(t) = ax(t)− bx2(t)− cx(t)

∫ t

0

x(s)ds, x(0) = x0

where cDq is the Caputo fractional derivative of order q ∈ (0, 1], a > 0 is the birth rate

coefficient, b > 0 is the intra species competition, c > 0 is the toxicity coefficient, x0 is

the initial population and x(t) is the population at time t. For the choice q = 1, (3.1)

represents the classical population growth model discussed in [136].

Various semi analytical methods and classical numerical techniques are suitably mod-

ified in the literature to solve (3.1). For example, methods based on Bessel collocation

[151], differential transform [52], Euler wavelet [146], fractional polynomial [79, 109],

homotopy analysis [60], Legendre wavelet [63], Pade approximation [97], pseudo spectral

method [92] are applied to (3.1). All these methods assume that (3.1) has a unique solu-

tion. In theoretical aspects, very few results are available in the literature [69, 117, 145]

for fractional order integro differential equation. All the results are based on various

types of successive iterative schemes. The results discussed in [69] are not applicable for

(3.1) with larger time domain due to the stringent assumption on the time domain for

0 < q ≤ 1

2
.



After transforming the integro differential equation into an integral equation, the

convergence of the successive iterative scheme is discussed in [145]. Any numerical method

based on this iterative scheme has an additional job of inverting the transformation. One

of the simplest successive iterative schemes for (3.1) is available in [117]. The main

drawback of this iteration is that it is very sensitive to various parameters, including

the order of the fractional derivative, and may fail to converge. It is also interesting

to note that though various numerical methods [79, 97, 109, 146, 151] assumed the

convergence of quasilinearization, theoretical results for the quadratic convergence is not

available in the literature for fractional order integro differential equations. Hence the

major contributions of this chapter are the following.

1. An efficient iterative scheme is proposed for (3.1) which is independent of any

transformation as well as having no restrictions on the length of the time interval.

2. The proposed iterative scheme is easy to apply and when it is combined with

spectral method it shows greater flexibility with respect to the parameters in (3.1).

3. A set of sufficient conditions is provided to select the initial guess which ensures

the quadratic convergence of the quasilinearization scheme.

The organization of the chapter is as follows. The preliminary results relevant to

the main theorem are given in Section 2. Section 3 provides existence and uniqueness

theorems for (3.1) by a monotone iterative method and a local convergence theorem for

quasilinearization method, which also ensures the quadratic convergence of the quasi-

linearization scheme. In Section 4, the proposed result is demonstrated successfully by

combining the proposed iterative scheme and spectral method for Volterra population

model.

3.2. Preliminaries

In this section, some basic definitions and preliminary theorems relevant to the main

theorem are presented. First, lower and upper solutions of the following problem are
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provided.

(3.2) cDqx(t) = f(t, x, x̃), x(0) = x0

where x̃(t) =

∫ t

0

x(s)ds, f ∈ C([0, T ]× R× R,R).

Definition 3.2.1. A function α0 ∈ C1([0, T ],R) is called a lower solution of (3.2) if for

all t ∈ [0, T ],

cDqα0(t) ≤ f(t, α0, α̃0), α0(0) ≤ x0.

If the inequalities are reversed, then the corresponding solution is called an upper solution

of (3.2).

Definition 3.2.2. Functions α0, β0 ∈ C1([0, T ],R) are called coupled lower and upper

solutions of (3.2) if for all t ∈ [0, T ],

cDqα0(t) ≤ f(t, α0, β̃0),

cDqβ0(t) ≥ f(t, β0, α̃0)

and α0(0) ≤ x0 ≤ β0(0).

Throughout this chapter f2 and f3 denote the first order partial derivative of f with

respect to the second and third variables respectively. The interval [0,∞) is denoted by

R+
0 .

Lemma 3.2.1. (Corollary 2.11 of [117]) Let x ∈ C1([a, b],R) be such that

cDqx(t) ≤ Lx(t) +M

∫ t

a

x(s)ds

x(a) ≤ 0

for L > 0, M ≥ 0. Then x(t) ≤ 0 for a ≤ t ≤ b. Similarly, if x ∈ C1([a, b],R) is such that

cDqx(t) ≥ −Lx(t)−M
∫ t

a

x(s)ds

x(a) ≥ 0

for L > 0, M ≥ 0. Then x(t) ≥ 0 for a ≤ t ≤ b. Moreover, if cDqx(t) ≤ 0 on [a, b] with

x(a) ≤ 0, then x(t) ≤ 0.
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Lemma 3.2.2. The fractional order integro-differential equation

(3.3) cDqx(t) = λ1(t)x(t) + λ2(t)x̃(t) + f(t), x(0) = x0

has a unique solution, where λ1, λ2 and f are continuous on [0, T ].

Proof. The integro-differential equation (3.3) is equivalent to

x(t) = x0 +
1

Γq

∫ t

0

(t− s)q−1λ1(s)x(s)ds+
1

Γq

∫ t

0

(t− s)q−1λ2(s)x̃(s)ds

+
1

Γq

∫ t

0

(t− s)q−1f(s)ds.

Let M1 = sup
s∈[0,T ]

|λ1(s)|, M2 = sup
s∈[0,T ]

|λ2(s)| and ‖x‖ = max
t∈[0,T ]

|x(t)|. Define a function

F : C[0, T ]→ C[0, T ] by

Fx(t) = x0 +
1

Γq

∫ t

0

(t− s)q−1λ1(s)x(s)ds+
1

Γq

∫ t

0

(t− s)q−1λ2(s)x̃(s)ds

+
1

Γq

∫ t

0

(t− s)q−1f(s)ds.

Now

|Fx(t)−Fy(t)| ≤ 1

Γq

∣∣∣∣∫ t

0

(t− s)q−1λ1(s)(x(s)− y(s))ds

∣∣∣∣
+

1

Γq

∣∣∣∣∫ t

0

(t− s)q−1λ2(s)(x̃(s)− ỹ(s))ds

∣∣∣∣
≤ tq

Γ(q + 1)

(
M1 +

M2T

q + 1

)
‖x− y‖

|Fx(t)−Fy(t)| ≤ Ltq

Γ(q + 1)
‖x− y‖ whereL = M1 +

M2T

q + 1
.

Assume that |F kx(t)−F ky(t)| ≤ (Ltq)k

Γ(kq + 1)
‖x− y‖ for k = 1, 2, · · · , n− 1. Then,
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|F nx(t)−F ny(t)| ≤ 1

Γq

∣∣∣∣∫ t

0

(t− s)q−1λ1(s)(F n−1x(s)−F n−1y(s))ds

∣∣∣∣
+

1

Γq

∣∣∣∣∫ t

0

(t− s)q−1λ2(s)

(∫ t

0

(F n−1x(z)−F n−1y(z))dz

)
ds

∣∣∣∣
≤ M1L

n−1‖x− y‖
ΓqΓ((n− 1)q + 1)

∫ t

0

(t− s)q−1s(n−1)qds

+
M2L

n−1‖x− y‖
ΓqΓ((n− 1)q + 1)

∫ t

0

(t− s)q−1 s(n−1)q+1

(n− 1)q + 1
ds

≤ Ln−1tnq

Γ(nq + 1)

(
M1 +

M2T

nq + 1

)
‖x− y‖

‖F nx−F ny‖ ≤ (LT q)n

Γ(nq + 1)
‖x− y‖.

Choose n sufficiently large such that
(LT q)n

Γ(nq + 1)
= ρ < 1. Consequently, F n is a contrac-

tion map. Then by contraction principle, F has a unique fixed point. Equivalently, the

integral equation has a unique solution and hence (3.3) has a unique solution.

3.3. Iterative Schemes

This section provides two interesting existence and uniqueness theorems for (3.2) by

monotone iteration methods. Sufficient conditions are provided for the convergence of the

proposed monotone iterations. This section also proves a local convergence theorem for

quasilinearization method for (3.2) which ensures the quadratic convergence of quasilin-

earization scheme. Throughout this section, [α0, β0] denotes the sector {x : α0(t) ≤ x(t) ≤

β0(t),∀ t ∈ [0, T ]}. Define m1 = min
t∈[0,T ]

{α0, β0}, m2 = min
t∈[0,T ]

{α̃0, β̃0}, M1 = max
t∈[0,T ]

{α0, β0}

and M2 = max
t∈[0,T ]

{α̃0, β̃0}.

Theorem 3.3.1. Let α0, β0 ∈ C1([0, T ],R) be the lower and upper solutions of (3.2) re-

spectively with f, f2 ∈ C([0, T ] × [m1,M1] × [m2,M2],R) and f3 ∈ C([0, T ] × [m1,M1] ×

[m2,M2],R+
0 ). Then there exist monotone sequences {αn} and {βn} that converge uni-

formly and monotonically to the unique solution of (3.2) in [α0, β0].
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Proof. Consider the following successive iterative schemes

cDqαn+1(t) + λαn+1(t) = f(t, αn, α̃n) + λαn, αn+1(0) = x0,(3.4)

cDqβn+1(t) + λβn+1(t) = f(t, βn, β̃n) + λβn, βn+1(0) = x0(3.5)

where λ > 0 such that λ+ f2 ≥ 0 on [0, T ]× [m1,M1]× [m2,M2]. From Lemma 3.2.2, it is

clear that the iterative schemes (3.4) and (3.5) are well defined. That is, at each step the

linear differential equation has a unique solution. Using induction on n, it can be proved

that for all n ∈ N,

(3.6) α0 ≤ α1 ≤ · · · ≤ αn ≤ βn ≤ · · · ≤ β1 ≤ β0 on [0, T ].

Let p(t) = α1 − α0. Note that p(0) ≥ 0 and

cDqp(t) + λp(t) = cDqα1 − cDqα0 + λ(α1 − α0)

≥ f(t, α0, α̃0)− f(t, α0, α̃0)

cDqp(t) + λp(t) ≥ 0.

By Lemma 3.2.1, p(t) ≥ 0. Thus α1 ≥ α0 on [0, T ]. Similarly β0 ≥ β1 on [0, T ]. Let

p(t) = β1 − α1. Note that p(0) = 0 and

cDqp(t) + λp(t) = cDqβ1 − cDqα1 + λ(β1 − α1)

= f(t, β0, β̃0) + λβ0 − f(t, α0, α̃0)− λα0

= [f2(t, δ1, δ2) + λ](β0 − α0) + f3(t, δ1, δ2)(β̃0 − α̃0)

cDqp(t) + λp(t) ≥ 0

where α0 ≤ δ1 ≤ β0 and α̃0 ≤ δ2 ≤ β̃0. By Lemma 3.2.1, p(t) ≥ 0. Thus β1 ≥ α1 on [0, T ].

Consequently, α0 ≤ α1 ≤ β1 ≤ β0 on [0, T ]. Assume that (3.6) is true for n = k. That is,

(3.7) α0 ≤ α1 ≤ · · · ≤ αk−1 ≤ αk ≤ βk ≤ βk−1 ≤ · · · ≤ β1 ≤ β0 on [0, T ].

To complete the induction argument, it is enough to prove that

(3.8) αk ≤ αk+1 ≤ βk+1 ≤ βk on [0, T ].
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Let p(t) = αk+1 − αk. Note that p(0) = 0 and

cDqp(t) + λp(t) = cDqαk+1 − cDqαk + λ(αk+1 − αk)

= f(t, αk, α̃k) + λαk − f(t, αk−1, α̃k−1)− λαk−1

= [f2(t, δ1, δ2) + λ](αk − αk−1) + f3(t, δ1, δ2)(α̃k − α̃k−1)

cDqp(t) + λp(t) ≥ 0

where αk−1 ≤ δ1 ≤ αk and α̃k−1 ≤ δ2 ≤ α̃k. By Lemma 3.2.1, p(t) ≥ 0. Thus αk+1 ≥ αk

on [0, T ]. In a similar manner it can be proved that βk ≥ βk+1 on [0, T ]. Let p(t) =

βk+1 − αk+1. Note that p(0) = 0 and

cDqp(t) + λp(t) = cDqβk+1 − cDqαk+1 + λ(βk+1 − αk+1)

= f(t, βk, β̃k) + λβk − f(t, αk, α̃k)− λαk

= [f2(t, δ1, δ2) + λ](βk − αk) + f3(t, δ1, δ2)(β̃k − α̃k)

cDqp(t) ≥ 0

where αk ≤ δ1 ≤ βk and α̃k ≤ δ2 ≤ β̃k. By Lemma 3.2.1, p(t) ≥ 0. Thus βk+1 ≥ αk+1 on

[0, T ]. Consequently (3.8) is proved. Hence the sequences {αn} and {βn} are monotone

and uniformly bounded on [0, T ]. Using the similar argument as in [117], one can show

that {αn} and {βn} are equicontinuous on [0, T ]. Hence there exist ρ1, ρ2 ∈ C1([0, T ])

such that {αn} and {βn} converge uniformly and monotonically to ρ1 and ρ2 respectively.

Clearly ρ1 ≤ ρ2. For uniqueness it is enough to show that ρ2 ≤ ρ1. Define p(t) = ρ2 − ρ1

on [0, T ]. Then p(0) = 0 and it is easy to show that cDqp(t) ≤ C1p(t) + C2p̃(t) for some

positive constants C1 and C2. Consequently p(t) ≤ 0 by Lemma 3.2.1. Hence (3.2) has a

unique solution in [α0, β0].

Remark 3.3.1. Since the condition f3 ≥ 0 is not true for (3.1), Theorem 3.3.1 is not

applicable for (3.1). To handle (3.1), the following monotone iterative method is proposed

which is based on coupled lower and upper solutions.

Theorem 3.3.2. Let α0, β0 ∈ C1([0, T ],R) be a coupled lower and upper solutions of

(3.2) with f, f2 ∈ C([0, T ] × [m1,M1] × [m2,M2],R) and −f3 ∈ C([0, T ] × [m1,M1] ×
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[m2,M2],R+
0 ). Then there exist monotone sequences {αn} and {βn} that converge uni-

formly and monotonically to the unique solution of (3.2) in [α0, β0].

Proof. Consider the following successive iterative schemes

cDqαn+1(t) + λαn+1(t) = f(t, αn, β̃n) + λαn, αn+1(0) = x0,(3.9)

cDqβn+1(t) + λβn+1(t) = f(t, βn, α̃n) + λβn, βn+1(0) = x0(3.10)

where λ > 0 such that λ + f2 ≥ 0 on [0, T ] × [m1,M1] × [m2,M2]. From Lemma 3.2.2,

it is clear that the iterative schemes (3.9) and (3.10) are well defined. That is, at each

step, the linear integro differential equation has a unique solution. For all n ∈ N, one can

obtain

(3.11) α0 ≤ α1 ≤ · · · ≤ αn ≤ βn ≤ · · · ≤ β1 ≤ β0 on [0, T ]

by using induction on n. Let p(t) = α1 − α0. Note that p(0) ≥ 0 and

cDqp(t) + λp(t) = cDqα1 − cDqα0 + λ(α1 − α0)

≥ f(t, α0, β̃0)− f(t, α0, β̃0)

cDqp(t) + λp(t) ≥ 0.

By Lemma 3.2.1, p(t) ≥ 0. Thus α1 ≥ α0 on [0, T ]. Similarly, β0 ≥ β1 on [0, T ]. Let

p(t) = β1 − α1. Note that p(0) = 0 and

cDqp(t) + λp(t) = cDqβ1 − cDqα1 + λ(β1 − α1)

= f(t, β0, α̃0) + λβ0 − f(t, α0, β̃0)− λα0

= [f2(t, δ1, δ2) + λ](β0 − α0) + f3(t, δ1, δ2)(α̃0 − β̃0)

cDqp(t) + λp(t) ≥ 0

where α0 ≤ δ1 ≤ β0 and α̃0 ≤ δ2 ≤ β̃0. By Lemma 3.2.1, p(t) ≥ 0. Thus β1 ≥ α1 on

[0, T ]. Consequently, α0 ≤ α1 ≤ β1 ≤ β0 and [0, T ]. Assume that (3.11) is true for n = k.

That is,

(3.12) α0 ≤ α1 ≤ · · · ≤ αk−1 ≤ αk ≤ βk ≤ βk−1 ≤ · · · ≤ β1 ≤ β0 on [0, T ].
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To complete the induction argument it is enough to prove that

(3.13) αk ≤ αk+1 ≤ βk+1 ≤ βk on [0, T ].

Let p(t) = αk+1 − αk. Note that p(0) = 0 and

cDqp(t) + λp(t) = cDqαk+1 − cDqαk + λ(αk+1 − αk)

= f(t, αk, β̃k) + λαk − f(t, αk−1, β̃k−1)− λαk−1

= [f2(t, δ1, δ2) + λ](αk − αk−1) + f3(t, δ1, δ2)(β̃k − β̃k−1)

cDqp(t) + λp(t) ≥ 0

where αk−1 ≤ δ1 ≤ αk and β̃k ≤ δ2 ≤ β̃k−1. By Lemma 3.2.1, p(t) ≥ 0. Thus αk+1 ≥ αk

on [0, T ]. In a similar manner it can be proved that βk ≥ βk+1 on [0, T ]. Let p(t) =

βk+1 − αk+1. Note that p(0) = 0 and

cDqp(t) + λp(t) = cDqβk+1 − cDqαk+1 + λp(t)

= f(t, βk, α̃k) + λβk − f(t, αk, β̃k)− λαk

= [f2(t, δ1, δ2) + λ](βk − αk) + f3(t, δ1, δ2)(α̃k − β̃k)

cDqp(t) + λp(t) ≥ 0

where αk ≤ δ1 ≤ βk and α̃k ≤ δ2 ≤ β̃k. By Lemma 3.2.1, p(t) ≥ 0. Thus βk+1 ≥ αk+1 on

[0, T ]. Consequently (3.13) is proved. Hence the sequences {αn} and {βn} are monotone

and uniformly bounded on [0, T ]. Using the similar argument as in [117], one can show

that {αn} and {βn} are equicontinuous on [0, T ]. Hence there exist ρ1, ρ2 ∈ C1([0, T ])

such that {αn} and {βn} converge uniformly and monotonically to ρ1 and ρ2 respectively.

Clearly, ρ1 ≤ ρ2. To show that ρ2 ≤ ρ1, define p(t) = ρ2 − ρ1 on [0, T ]. It is easy to

show that cDqp(t) ≤ C1p(t)+C2p̃(t) for some positive constants C1 and C2. Also we have

p(0) = 0. These conditions imply that p(t) ≤ 0, due to Lemma 3.2.1. Hence ρ1 = ρ2 = x

is the unique solution of (3.2) in [α0, β0].

Remark 3.3.2. Note that α0 ≡ 0 and β0 ≡ 1 is a coupled lower and upper solution for

(3.1) when b ≥ a > 0. Similarly, α0 ≡ 0 and β0 ≡
a

b
is a coupled lower and upper
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solution for (3.1) when a > b > 0. Consequently (3.1) satisfies all the hypotheses of The-

orem 3.3.2. Hence the fractional order population model has a unique solution in [α0, β0].

Though Theorem 3.3.2 ensures the existence, uniqueness as well as an iterative scheme to

approximate the unique solution of (3.1), the order of convergence of the iterative schemes

is linear.

One of the ways to accelerate the iterative procedure for (3.1) is to replace the succes-

sive scheme by quasilinearization scheme. The convergence analysis of quasilinearization

highly depends on the initial guess.

In this context, the following local convergence theorem for quasilinearization scheme

is proved. The theorem provides a sufficient condition on the initial guess that ensures

the quadratic convergence of the quasilinearization scheme. The other advantage of the

following theorem is that at each step one has to solve exactly one linear equation in

contrast to the iterative scheme in Theorem 3.3.2.

The following notations and assumptions are used in the following Theorem 3.3.3.

Let C[0, T ] be the collection of all continuous functions on [0, T ] endowed with the norm

‖x‖ρ = sup
t∈[0,T ]

|x(t)|
Eq(ρtq)

, ρ > 0 [30]. Let x∗ be a solution of (3.2). Let Bρ(x
∗, r) denotes the

closed ball with center x∗ and radius r > 0 i.e., Bρ(x
∗, r) = {x ∈ C[a, b] : ‖x− x∗‖ρ ≤ r}.

Let f, f2, f3 ∈ C([0, T ] × R × R,R) be the set of all continuous functions defined on

[0, T ] × R × R to R. Let C1 and C2 be constants such that supA |f2(t, x1, x2)| ≤ C1

and supA |f3(t, x1, x2)| ≤ C2, where A = {(t, x1, x2) : t ∈ [0, T ], x1 ∈ Bρ(x
∗, r), x2 ∈

Bρ(x̃
∗, rTEq(ρT

q))}.

Theorem 3.3.3. If there exists ρ > 0 such that 0 ≤ 2C1ρ+ 2C2T
1−q

ρ2 − C1ρ− C2T 1−q < 1 and α0 ∈

Bρ(x
∗, r), then ∀n ∈ N the quasilinearization scheme

(3.14)

cDqαn+1(t) = f(t, αn, α̃n)+f2(t, αn, α̃n)(αn+1−αn)+f3(t, αn, α̃n)(α̃n+1−α̃n), αn+1(0) = x0

is well defined, αn ∈ Bρ(x
∗, r) and it converges to the unique solution x∗ of (3.2) in

Bρ(x
∗, r). Moreover, if f2 and f3 are Lipschitz in their respective domain, then the quasi-

linearization scheme converges quadratically to the unique solution of (3.2).
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Proof. From Lemma 3.2.2, it is clear that the iterative scheme (3.14) is well defined for

all n ∈ N. Define pn+1 = αn+1 − x∗.

cDqpn+1(t) = f(t, αn, α̃n)− f(t, x∗, x̃∗) + f2(t, αn, α̃n)(αn+1 − αn)

+f3(t, αn, α̃n)(α̃n+1 − α̃n)

pn+1(t) =
1

Γq

∫ t

0

(t− s)q−1

∫ 1

0

f2(s, θαn + (1− θ)x∗, θα̃n + (1− θ)x̃∗)pn(s)dθds

+
1

Γq

∫ t

0

(t− s)q−1

∫ 1

0

f3(s, θαn + (1− θ)x∗, θα̃n + (1− θ)x̃∗)p̃n(s)dθds

+
1

Γq

∫ t

0

(t− s)q−1f2(s, αn, α̃n)(pn+1(s)− pn(s))ds

+
1

Γq

∫ t

0

(t− s)q−1f3(s, αn, α̃n)(p̃n+1(s)− p̃n(s))ds

|pn+1(t)| ≤ C1

Γq

∫ t

0

(t− s)q−1 |pn(s)|
Eq(ρsq)

Eq(ρs
q)ds

+
C2

Γq

∫ t

0

(t− s)q−1

∫ s

0

|pn(τ)|
Eq(ρτ q)

Eq(ρτ
q)(s− τ)q−1(s− τ)1−qdτds

+
C1

Γq

∫ t

0

(t− s)q−1 |pn+1(s)− pn(s)|
Eq(ρsq)

Eq(ρs
q)ds

+
C2

Γq

∫ t

0

(t− s)q−1

∫ s

0

|pn+1(τ)− pn(τ)|
Eq(ρτ q)

Eq(ρτ
q)(s− τ)q−1(s− τ)1−qdτds

|pn+1(t)| ≤ C1‖pn‖ρEq(ρtq)
ρ

+
C2‖pn‖ρΓqT 1−qEq(ρt

q)

ρ2

+
C1(‖pn+1‖ρ + ‖pn‖ρ)Eq(ρtq)

ρ
+
C2(‖pn+1‖ρ + ‖pn‖ρ)ΓqT 1−qEq(ρt

q)

ρ2

‖pn+1‖ρ ≤
2C1‖pn‖ρ

ρ
+

2C2‖pn‖ρΓqT 1−q

ρ2
+
C1‖pn+1‖ρ

ρ
+
C2‖pn+1‖ρΓqT 1−q

ρ2

‖pn+1‖ρ ≤
(

2C1ρ+ 2C2ΓqT 1−q

ρ2 − C1ρ− C2ΓqT 1−q

)
‖pn‖ρ ≤

(
2C1ρ+ 2C2ΓqT 1−q

ρ2 − C1ρ− C2ΓqT 1−q

)n+1

‖p0‖ρ.

Thus αn+1 ∈ Bρ(x
∗, r). Consequently, αn converges to x∗. Now it is required to show

that x∗ is the unique solution of (3.2) in Bρ(x
∗, r). Let x1 and x2 be two solutions of (3.2)

in Bρ(x
∗, r) and p(t) = x1 − x2. Then by (3.2) and using mean value theorem,
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p(t) =
1

Γq

∫ t

0

(t− s)q−1(f(s, x1, x̃1)− f(s, x2, x̃2))ds

=
1

Γq

∫ t

0

(t− s)q−1

∫ 1

0

f2(s, θx1 + (1− θ)x2, θx̃1 + (1− θ)x̃2)p(s)dθds

+
1

Γq

∫ t

0

(t− s)q−1

∫ 1

0

f3(s, θx1 + (1− θ)x2, θx̃1 + (1− θ)x̃2)p̃(s)dθds

|p(t)| ≤ C1

Γq

∫ t

0

(t− s)q−1 |p(s)|
Eq(ρsq)

Eq(ρs
q)ds

+
C2

Γq

∫ t

0

(t− s)q−1

∫ s

0

|p(τ)|
Eq(ρτ q)

Eq(ρτ
q)(s− τ)q−1(s− τ)1−qdτds

≤ C1‖p‖ρEq(ρtq)
ρ

+
C2‖p‖ρT 1−q

ρ

∫ t

0

(t− s)q−1Eq(ρs
q)ds

≤ C1‖p‖ρEq(ρtq)
ρ

+
C2‖p‖ρΓqT 1−qEq(ρt

q)

ρ2

‖p‖ρ ≤
C1ρ+ C2ΓqT 1−q

ρ2
‖p‖ρ.

Thus ‖p‖ρ ≤ 0, which implies p(t) = 0. Consequently x1 = x2 = x∗ is the unique solution

of (3.2). Now we have

cDqpn+1(t) = f(t, αn, α̃n)− f(t, x∗, x̃∗) + f2(t, αn, α̃n)(αn+1 − αn)

+f3(t, αn, α̃n)(α̃n+1 − α̃n)

=

∫ 1

0

f2(t, θαn + (1− θ)x∗, θα̃n + (1− θ)x̃∗)pn(t)dθ

+

∫ 1

0

f3(t, θαn + (1− θ)x∗, θα̃n + (1− θ)x̃∗)p̃n(t)dθ

+f2(t, αn, α̃n)(pn+1 − pn) + f3(t, αn, α̃n)(p̃n+1 − p̃n)

cDqpn+1(t) = f2(t, αn, α̃n)pn+1 + f3(t, αn, α̃n)p̃n+1

+

∫ 1

0

(f2(t, θαn + (1− θ)x∗, θα̃n + (1− θ)x̃∗)− f2(t, αn, α̃n))pn(t)dθ

+

∫ 1

0

(f3(t, θαn + (1− θ)x∗, θα̃n + (1− θ)x̃∗)− f3(t, αn, α̃n))p̃n(t)dθ
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pn+1(t) =
1

Γq

∫ t

0

(t− s)q−1f2(s, αn, α̃n)pn+1(s)ds+
1

Γq

∫ t

0

(t− s)q−1f3(s, αn, α̃n)p̃n+1(s)ds

+
1

Γq

∫ t

0

(t− s)q−1

∫ 1

0

(f2(s, θαn + (1− θ)x∗, θα̃n + (1− θ)x̃∗)− f2(s, αn, α̃n))pndθds

+
1

Γq

∫ t

0

(t− s)q−1

∫ 1

0

(f3(s, θαn + (1− θ)x∗, θα̃n + (1− θ)x̃∗)− f3(s, αn, α̃n))p̃ndθds

|pn+1(t)| ≤ 1

Γq

∫ t

0

(t− s)q−1|f2||pn+1|ds+
1

Γq

∫ t

0

(t− s)q−1|f3||p̃n+1|ds

+
L1

Γq

∫ t

0

(t− s)q−1

∫ 1

0

(1− θ)(|pn|+ |p̃n|)|pn|dθds

+
L2

Γq

∫ t

0

(t− s)q−1

∫ 1

0

(1− θ)(|pn|+ |p̃n|)|p̃n|dθds, for some L1, L2 > 0

≤ 1

Γq

∫ t

0

(t− s)q−1|f2|
|pn+1|
Eq(ρsq)

Eq(ρs
q)ds

+
1

Γq

∫ t

0

(t− s)q−1|f3|
∫ s

0

|pn+1|
Eq(ρτ q)

Eq(ρτ
q)(s− τ)q−1(s− τ)1−qdτds

+
L1

2Γq

∫ t

0

(t− s)q−1(|pn|+ |p̃n|)|pn|ds+
L2

2Γq

∫ t

0

(t− s)q−1(|pn|+ |p̃n|)|p̃n|ds

≤ C1‖pn+1‖ρEq(ρtq)
ρ

+
C2T

1−q‖pn+1‖ρ
ρ

∫ t

0

(t− s)q−1Eq(ρs
q)ds

+
L1

2Γq

∫ t

0

(t− s)q−1 |pn|2

(Eq(ρsq))2
(Eq(ρs

q))2ds

+
(L1 + L2)

2Γq

∫ t

0

(t− s)q−1|pn|
∫ s

0

|pn|
Eq(ρτ q)

Eq(ρτ
q)(s− τ)q−1(s− τ)1−qdτds

+
L2

2Γq

∫ t

0

(t− s)q−1

(∫ s

0

|pn|
Eq(ρτ q)

Eq(ρτ
q)(s− τ)q−1(s− τ)1−qdτ

)2

ds

|pn+1(t)| ≤ C1Eq(ρt
q)‖pn+1‖ρ
ρ

+
C2ΓqT 1−qEq(ρt

q)‖pn+1‖ρ
ρ2

+
(L1 + L2)T 1−q‖pn‖ρ

2ρ

∫ t

0

(t− s)q−1 |pn|
Eq(ρsq)

(Eq(ρs
q))2ds

+
L1Eq(ρT

q)Eq(ρt
q)‖pn‖2

ρ

2ρ
+
L2T

2−2qΓq‖pn‖2
ρ

2ρ2

∫ t

0

(t− s)q−1(Eq(ρs
q))2ds
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|pn+1(t)| ≤ C1Eq(ρt
q)‖pn+1‖ρ
ρ

+
C2ΓqT 1−qEq(ρt

q)‖pn+1‖ρ
ρ2

+
(L1 + L2)T 1−qΓqEq(ρT

q)Eq(ρt
q)‖pn‖2

ρ

2ρ2

+
L1Eq(ρT

q)Eq(ρt
q)‖pn‖2

ρ

2ρ
+
L2T

2−2q(Γq)2Eq(ρT
q)Eq(ρt

q)‖pn‖2
ρ

2ρ3

‖pn+1‖ρ ≤
(
C1ρ+ C2ΓqT 1−q

ρ2

)
‖pn+1‖ρ

+

(
L1ρ

2 + (L1 + L2)ΓqT 1−qρ+ L2(Γq)2T 2−2q

2ρ3

)
Eq(ρT

q)‖pn‖2
ρ.

Hence, ‖pn+1‖ρ ≤ N‖pn‖2
ρ, for some N.

Remark 3.3.3. It can be observed that the set A depends on the radius r. Consequently,

the constants C1 and C2 depend on r. Further, the condition on ρ given in the statement

of Theorem 3.3.3 suggests that the choice of ρ is also influenced by r. An illustration of

Theorem 3.3.3 is shown through following example.

Consider the problem:

(3.15) cD0.5x(t) =
1

70
(x(t)− x2(t)− x(t)

∫ t

0

x(s)ds) + g(t), t ∈ [0, 0.5], x(0) = 0

where g(t) =
2t1.5

Γ(2.5)
− t2

70
+
t4

70
+

t5

210
. It is easy to verify that the exact solution is t2.

For the choice of ρ = 0.9, r = 1, C1 = 0.2017, C2 = 0.0521, L1 = 1
35

and L2 = 1
70

all

the hypotheses of the Theorem 3.3.3 are satisfied. Hence if the initial guess is chosen

in Bρ(t
2, 1) then the quasilinearization scheme converges quadratically and uniformly in

Bρ(t
2, 1).

3.4. Numerical Illustration

To make the presentation self contained, the implementation of spectral method is

outlined in this section. For more details on spectral method, one can refer [27, 99]. The

numerical implementation is demonstrated for the Volterra population model by coupling
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the iterative scheme (3.9) and (3.10) with spectral method. To validate the proposed

theory, the following normalization of (3.1) is considered.

(3.16) kcDqx(t) = x(t)− x2(t)− x(t)

∫ t

0

x(s)ds, x(0) = x0

where t ∈ [0, T ]. Since the present scheme uses Chebyshev-Gauss-Lobatto points, the

time domain t ∈ [0, T ] is transformed to the computational domain [−1, 1] by the linear

transformation t =
T (τ + 1)

2
. Hence (3.16) becomes,

(3.17)
2k

T
cDqx(τ) = x(τ)− x2(τ)− T

2
x(τ)

∫ τ

−1

x(s)ds, x(−1) = x0.

To proceed further, assume that α0 and β0 are the coupled lower and upper solutions of

(3.16). Applying the proposed iterative scheme (3.9) and (3.10) for (3.17) leads to

(3.18)
2k

T
cDqαn+1(τ) + λαn+1(τ) = λαn(τ) + αn(τ)− α2

n(τ)− T

2
αn(τ)

∫ τ

−1

βn(s)ds

and

(3.19)
2k

T
cDqβn+1(τ) + λβn+1(τ) = λβn(τ) + βn(τ)− β2

n(τ)− T

2
βn(τ)

∫ τ

−1

αn(s)ds

with the initial conditions αn+1(−1) = x0 = βn+1(−1). Assume that the solution of (3.18)

can be approximated by a Lagrange interpolation polynomial of the form

(3.20) αn(τ) =
N∑
j=0

αn(τj)Lj(τ), for any τ ∈ [−1, 1]

where τj = cos

(
πj

N

)
; j = 0, 1, · · · , N are Chebyshev-Gauss-Lobatto grid points and the

functions Lj(τ) are the characteristic Lagrange polynomials given by

Lj(τ) =
N∏

k=0,k 6=j

τ − τk
τj − τk

.

It can be seen that each Lagrange polynomial satisfies cardinality property

Lj(τk) = δjk =

0, j 6= k

1, j = k
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for j, k = 1, 2, · · · , N. The values of the time derivative at the Chebyshev-Gauss-Lobatto

points τj are computed as

cDq αn(τ)|τ=τj
=

N∑
k=0

αn(τk)
cDqLk(τj) =

N∑
k=0

dj,kαn(τk)

where [dj,k] = [cDqLk(τj)] is the Chebyshev Caputo differentiation matrix of order q and

size (N + 1)× (N + 1). The values of the time integral at the Chebyshev-Gauss-Lobatto

points τj are computed as∫ τ

−1

αn(s)ds

∣∣∣∣
τ=τj

=
N∑
k=0

αn(τk)

∫ τj

−1

Lk(τ)dτ =
N∑
k=0

fj,kαn(τk)

where [fj,k] =

[∫ τj

−1

Lk(τ)dτ

]
is the Chebyshev integration matrix of size (N+1)×(N+1).

Using the initial condition, (3.18) can be written as

(3.21)
2k

T

N∑
k=0

dj,kαn+1(τk) + λαn+1(τj) = Rj; j = 0, 1, · · · , N − 1

where Rj = λαn(τj) + αn(τj) − α2
n(τj) −

T

2
αn(τj)

N∑
k=0

fj,kβn(τk) −
2k

T
dj,Nx0. Now (3.21)

can be written in the matrix form as follows:
a0,0 a0,1 · · · a0,N−1

a1,0 a1,1 · · · a1,N−1

...
...

. . .
...

aN−1,0 aN−1,1 · · · aN−1,N−1




αn+1(τ0)

αn+1(τ1)
...

αn+1(τN−1)

 =


R0

R1

...

RN−1

(3.22)

where ai,i =
2k

T
di,i+λ and ai,j =

2k

T
di,j; i 6= j. A similar procedure applied to (3.19) leads

to 
a0,0 a0,1 · · · a0,N−1

a1,0 a1,1 · · · a1,N−1

...
...

. . .
...

aN−1,0 aN−1,1 · · · aN−1,N−1




βn+1(τ0)

βn+1(τ1)
...

βn+1(τN−1)

 =


R′0

R′1
...

R′N−1

(3.23)

where R′j = λβn(τj) + βn(τj) − β2
n(τj) −

T

2
βn(τj)

N∑
k=0

fj,kαn(τk) −
2k

T
dj,Nx0. Using α0, β0

one can obtain the rest of α′ns, β
′
ns.
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Figure 3.1 and Figure 3.2 represent the numerical solution of (3.16) for various choices

of k and q. Table 3.1 presents the comparison of the spectral method based on the

proposed iterative scheme and the iterative scheme in [117]. From Table 3.1 it can be

easily observed that the spectral method based on the iterative scheme in [117] is very

sensitive to various parameters such as length of the time domain [0, T ] and order of

the derivative. On the other hand, the proposed iterative scheme easily handles all the

situation in which the iterative scheme in [117] fails. Hence the proposed iterative scheme

is more efficient than the iterative scheme studied in [117]. In the Table 3.1 “-” denotes

no convergence. All the numerical simulations are performed using Matlab R2010b.
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Figure 3.1. Approximate

solution x(t) for various k

when q = 0.5, x0 = 0.1 and

λ = 6.
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Figure 3.2. Approximate

solution x(t) for various q

when k = 1, x0 = 0.1 and

λ = 6.

3.5. Conclusion

In this chapter, an existence and uniqueness result is obtained for a fractional order

Volterra population model. The proposed analysis supplements the monotone property as

well as the convergence of the iterative scheme for (3.2). The quadratic convergence of the

quasilinearization scheme to the unique solution of the problem is also discussed. Finally,

to show the efficiency of the proposed successive iterative scheme, a spectral method is
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T k q Method[117] Proposed

0.75 12 13

1 0.5 13 15

0.25 15 17

0.75 13 15

.4 0.75 0.5 15 18

0.25 18 21

0.75 16 18

0.5 0.5 20 22

0.25 27 27

T k q Method[117] Proposed

0.75 19 22

1 0.5 24 29

0.25 37 38

0.75 25 26

1 0.75 0.5 - 35

0.25 - 47

0.75 - 32

0.5 0.5 - 44

0.25 - 62

T k q Method[117] Proposed

0.75 - 39

1 0.5 - 56

0.25 - 81

0.75 - 46

2 0.75 0.5 - 66

0.25 - 98

0.75 - 61

0.5 0.5 - 79

0.25 - 118

T k q Method[117] Proposed

0.75 - 117

1 0.5 - 156

0.25 - 240

0.75 - 144

5 0.75 0.5 - 182

0.25 - 266

0.75 - 200

0.5 0.5 - 245

0.25 - 315

Table 3.1. Comparison table for no. of iterations where x0 = 0.1,

λ = 1 + T and N = 8.

coupled with the proposed iterative scheme and compared favorably with the iterative

scheme in [117].
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CHAPTER 4

FRACTIONAL ORDER TWO-POINT BOUNDARY VALUE

PROBLEM

4.1. Introduction

Developments in last few decades, shows that fractional differential equations provide

better and accurate models for various applications in fluid mechanics, visco-elasticity,

physics, biology and economics. Several existence and uniqueness results are available in

the literature that uses classical fixed point theorems and monotone iterative techniques

for different types of fractional order differential equations. Apart from this, both theo-

retical as well as numerical results have also been obtained for two point boundary value

problems of fractional order 1 < q < 2 with various boundary conditions. For example,

one can refer [11, 19, 22, 65, 119] for Dirichlet boundary conditions, [4] for Neumann

boundary conditions and [12, 128, 130, 153, 154] for mixed boundary conditions. It

is worth mentioning that attempts are also made to handle fractional order boundary

value problems of higher order cases [134]. In [118], Al-Refai established an existence

and uniqueness result for the following two point boundary value problem in the more

general setting:

(4.1a) cDqu(t) + g(t)u′ + h(t)u = −λk(t, u), t ∈ (0, 1), 1 < q < 2

(4.1b) u(0)− αu′(0) = 0, u(1) + βu′(1) = 0, α, β ≥ 0

where k ∈ C1([0, 1]×R), g, h ∈ C[0, 1] and cDq is the Caputo fractional derivative of

order q.



It is interesting to note that most of the techniques available in the recent literature

[118, 138] are based on successive approximation. More specifically, by combining suc-

cessive iteration with monotone method, existence and uniqueness results are obtained in

[118, 138]. Consequently, the order of convergence thus obtained is linear. Hence, the

main aim of this work is to prove an existence and uniqueness result for the following

class of problem using an accelerated iterative procedure:

(4.2a) −cDqx(t) = f(t, x(t)), t ∈ (0, 1)

(4.2b) x(0)− α0x
′(0) = γ0 and x(1) + α1x

′(1) = γ1

where f ∈ C([0, 1]× R,R), α0 ≥ 1
q−1

, α1 ≥ 0 and cDq is the Caputo fractional derivative

of order 1 < q < 2.

Present work focuses mainly on proving existence, uniqueness and quadratic conver-

gence through monotone quasilinearization approach. This accelerated convergence is

validated by combining proposed iteration with a finite difference discretization method

[129]. Further the results are compared with the numerical scheme that combines succes-

sive iteration and above finite difference method. The results thus show that the proposed

iteration outperforms successive approximation based scheme.

The organization of the chapter is as follows. Section 2 provides the definition of lower

and upper solutions and few important results required for the main theorem. In Section

3, the existence and uniqueness of (4.2) is proved using quasilinearization iterative scheme.

Section 4 provides numerical examples to show the efficiency of the proposed results.

4.2. Preliminaries

In this section, some basic definitions and results relevant to the main theorem are

presented. First, lower and upper solutions of (4.2) are provided.

Definition 4.2.1. A function v(t) ∈ C2[0, 1] is called a lower solution of (4.2) if

(4.3a) −cDqv(t) ≤ f(t, v(t)), t ∈ (0, 1)
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(4.3b) v(0)− α0v
′(0) ≤ γ0 and v(1) + α1v

′(1) ≤ γ1.

It is called an upper solution of (4.2) if the inequalities are reversed.

Lemma 4.2.1. [[118], Lemma 3.3] Let x(t) ∈ C2[0, 1] and b(t), c(t) ∈ C[0, 1] with

c(t) > 0 for all t ∈ (0, 1). Assume that x(t) satisfies the inequalities

(4.4a) −cDqx(t) + bx′(t) + cx(t) ≥ 0, t ∈ (0, 1)

(4.4b) x(0)− α0x
′(0) ≥ 0 and x(1) + α1x

′(1) ≥ 0

where α0 ≥
1

q − 1
and α1 ≥ 0. Then x(t) ≥ 0 for all t ∈ [0, 1].

Lemma 4.2.2. A function x(t) ∈ C2[0, 1] is a solution of (4.2) if and only if it is a

solution of the integral equation

(4.5)
x(t) = γ0 +

α0 + t

1 + α0 + α1

(
γ1 − γ0 +

1

Γq

∫ 1

0

(1− s)q−1f(s, x)ds

+
α1(q − 1)

Γq

∫ 1

0

(1− s)q−2f(s, x)ds

)
− 1

Γq

∫ t

0

(t− s)q−1f(s, x)ds.

Proof. The proof is same as the proof in [118].

4.3. Convergence Analysis

This section presents an existence and uniqueness result for the solution of (4.2)

by constructing two monotone sequences using quasilinearization scheme. Henceforth

following notations are considered throughout: [v0, u0] denotes the sector {x : v0 ≤ x ≤

u0}, f2 denotes first order partial derivative of f with respect to the second variable and

R− denotes the interval (−∞, 0). Also, define m1 = min
t∈[0,1]

{v0, u0}, m2 = max
t∈[0,1]

{v0, u0} and

‖x‖ = sup
t∈[0,1]

|x(t)|.

Theorem 4.3.1. Let v0, u0 ∈ C2([0, 1],R) represent, respectively, the lower and upper

solutions of (4.2), f ∈ C([0, 1] × [m1,m2],R), f2 ∈ C([0, 1] × [m1,m2],R−). Further

assume that

(i) |f2(x, y1)− f2(x, y2)| ≤M2|y1 − y2|, M2 > 0,
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(ii) for each t, f2(t, x) is nondecreasing in x.

Then the iterative schemes

(4.6a) −cDqvn+1(t) = f(t, vn(t)) + f2(t, vn(t))(vn+1(t)− vn(t)), t ∈ (0, 1)

(4.6b) vn+1(0)− α0vn+1
′(0) = γ0 and vn+1(1) + α1vn+1

′(1) = γ1

and

(4.7a) −cDqun+1(t) = f(t, un(t)) + f2(t, vn(t))(un+1(t)− un(t)), t ∈ (0, 1)

(4.7b) un+1(0)− α0un+1
′(0) = γ0 and un+1(1) + α1un+1

′(1) = γ1

converge uniformly and monotonically to the unique solution of (4.2) in [v0, u0] and the

order of convergence is quadratic.

Proof. It is clear that the iterative schemes (4.6) and (4.7) are well defined and have a

unique solution at each step ([118]). Using induction on n, it can be proved that for all

n ∈ N and t ∈ [0, 1],

(4.8) v0 ≤ v1 ≤ · · · ≤ vn ≤ un ≤ · · · ≤ u1 ≤ u0 on [0, 1].

Let p(t) = v1 − v0. Then p(0)− α0p
′(0) ≥ 0, p(1) + α1p

′(1) ≥ 0 and

−cDqp(t) = −cDqv1 + cDqv0

≥ f(t, v0) + f2(t, v0)(v1 − v0)− f(t, v0)

−cDqp(t)− f2(t, v0)p(t) ≥ 0.

By Lemma 4.2.1, p(t) ≥ 0. Thus v0 ≤ v1. Similarly, one can show that u1 ≤ u0. Let

p(t) = u1 − v1. Then p(0)− α0p
′(0) = 0, p(1) + α1p

′(1) = 0 and

−cDqp(t) = −cDqu1 + cDqv1

≥ f(t, u0) + f2(t, v0)(u1 − u0)− f(t, v0)

−f2(t, v0)(v1 − v0)

−cDqp(t)− f2(t, v0)p(t) ≥ f2(t, v0)(u0 − v0)− f2(t, v0)(u0 − v0)

−cDqp(t)− f2(t, v0)p(t) ≥ 0.
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By Lemma 4.2.1, p(t) ≥ 0. Thus v1 ≤ u1. Consequently,

(4.9) v0 ≤ v1 ≤ u1 ≤ u0 on [0, 1].

Assume that (4.8) is true for n = k. That is,

(4.10) v0 ≤ v1 ≤ · · · ≤ vk−1 ≤ vk ≤ uk ≤ uk−1 ≤ · · · ≤ u1 ≤ u0 on [0, 1].

To complete the induction argument it is enough to prove that

(4.11) vk ≤ vk+1 ≤ uk+1 ≤ uk on [0, 1].

Let p(t) = vk+1 − vk. Then p(0)− α0p
′(0) = 0, p(1) + α1p

′(1) = 0 and

−cDqp(t) = −cDqvk+1 + cDqvk

≥ f(t, vk) + f2(t, vk)(vk+1 − vk)− f(t, vk−1)

−f2(t, vk−1)(vk − vk−1)

−cDqp(t)− f2(t, vk)p(t) ≥ f2(t, vk−1)(vk − vk−1)− f2(t, vk−1)(vk − vk−1)

−cDqp(t)− f2(t, vk)p(t) ≥ 0.

By Lemma 4.2.1, p(t) ≥ 0. Thus vk ≤ vk+1. Similarly, one can show that uk+1 ≤ vk. Let

p(t) = uk+1 − vk+1. Then p(0)− α0p
′(0) = 0, p(1) + α1p

′(1) = 0 and

−cDqp(t) = −cDquk+1 + cDqvk+1

≥ f(t, vk) + f2(t, vk)(uk+1 − vk)− f(t, vk)

−f2(t, vk)(vk+1 − vk)

−cDqp(t)− f2(t, vk)p(t) ≥ f2(t, vk)(uk − vk)− f2(t, vk)(uk − vk)

−cDqp(t)− f2(t, vk)p(t) ≥ 0.

By Lemma 4.2.1, p(t) ≥ 0. Thus vk+1 ≤ uk+1. Consequently, (4.11) is proved. To com-

plete the proof, it is enough to show that {vn+1} and {un+1} are equicontinuous. Define

H(t, vn+1) = f(t, vn(t)) + f2(t, vn(t))(vn+1(t) − vn(t)), ‖f2‖ ≤ M1, M = sup
ν∈[v0,u0]
t∈[0,1]

|f(t, ν) +
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2u0M1| and A =
|γ1 − γ0|

1 + α0 + α1

+
M(1 + qα1)

Γ(q + 1)(1 + α0 + α1)
+

2M

Γ(q + 1)
. For any t1 < t2,

|vn+1(t1)− vn+1(t2)| ≤ |γ1 − γ0||t1 − t2|
1 + α0 + α1

+
1

Γq

∣∣∣∣ ∫ 1

0

(1− s)q−1H(s, vn+1)ds

+α1(q − 1)

∫ 1

0

(1− s)q−2H(s, vn+1)ds

∣∣∣∣ |t1 − t2|1 + α0 + α1

+
1

Γq

∣∣∣∣ ∫ t1

0

(t1 − s)q−1H(s, vn+1)ds−
∫ t2

0

(t2 − s)q−1H(s, vn+1)ds

∣∣∣∣
≤ |γ1 − γ0||t1 − t2|

1 + α0 + α1

+
M

Γq

(
1

q
+ α1

)
|t1 − t2|

1 + α0 + α1

+
M

Γ(q + 1)

(
2(t2 − t1)q + tq1 − t

q
2

)
≤

(
|γ1 − γ0|+

M(1 + qα1)

Γ(q + 1)

)
|t1 − t2|

1 + α0 + α1

+
2M(t2 − t1)q

Γ(q + 1)

≤ A|t1 − t2|.

Thus {vn} is equicontinuous. Similarly, {un} can also proved to be equicontinuous. Thus

it is clear that the sequences {vn} and {un} are uniformly bounded and equicontinuous on

[0, 1]. Hence by Ascoli-Arzela’s Theorem, there exist subsequences that converge uniformly

on [0, 1]. In view of (4.8), it follows that the sequences {vn} and {un} converge uniformly

and monotonically to ρ1 and ρ2 respectively. It is clear that ρ1 ≤ ρ2 on [0, 1]. Define p(t) =

ρ1− ρ2 on [0, 1]. Clearly p(0)−α0p
′(0) = 0 and p(1) +α1p

′(1) = 0. It is easy to show that

−cDqp(t)− f2(t, u0)p(t) ≥ 0. Consequently, p(t) ≥ 0. Hence, (4.2) has a unique solution.

To prove the quadratic convergence of the quasilinearization scheme, define pn+1 = x−vn+1

and rn+1 = un+1 − x. Then pn+1(0)− α0pn+1
′(0) = 0, pn+1(1) + α1pn+1

′(1) = 0 and

−cDqpn+1(t) = −cDqx(t) + cDqvn+1(t)

= f(t, x)− f(t, vn)− f2(t, vn)(vn+1 − vn)

= f2(t, δ)pn − f2(t, vn)(pn − pn+1)

−cDqpn+1(t) = f2(t, vn)pn+1 + (f2(t, δ)− f2(t, vn))pn(4.12)

where vn ≤ δ ≤ x. By Lemma 4.2.2,
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pn+1(t) =
α0 + t

1 + α0 + α1

(
1

Γq

∫ 1

0

(1− s)q−1(f2(s, vn)pn+1 + (f2(s, δ)− f2(s, vn))pn)ds

+
α1(q − 1)

Γq

∫ 1

0

(1− s)q−2(f2(s, vn)pn+1 + (f2(s, δ)− f2(s, vn))pn)ds

)
− 1

Γq

∫ t

0

(t− s)q−1(f2(s, vn)pn+1 + (f2(s, δ)− f2(s, vn))pn)ds

pn+1(t) ≤ (α0 + t)M2

1 + α0 + α1

(
1

Γq

∫ 1

0

(1− s)q−1p2
nds+

α1(q − 1)

Γq

∫ 1

0

(1− s)q−2p2
nds

)
− 1

Γq

∫ t

0

(t− s)q−1f2(s, vn)pn+1ds, [ f2 ≤ 0 and pn+1 ≥ 0]

‖pn+1‖ ≤
M2‖pn‖2

Γ(q + 1)
+
α1M2‖pn‖2

Γq
+
M1‖pn+1‖
Γ(q + 1)

‖pn+1‖ ≤
M2(1 + qα1)

Γ(q + 1)−M1

‖pn‖2 = N‖pn‖2

where N =
M2(1 + qα1)

Γ(q + 1)−M1

. Similarly, ‖rn+1‖ ≤ N1‖rn‖2 for some N1.

4.4. Numerical Illustration

In this section, the relevance of the proposed iterative scheme is illustrated using

numerical examples. To solve the problem numerically using the proposed iterative scheme

or successive iterative scheme, at each step, one has to solve a linear two point boundary

value problem of fractional order 1 < q < 2. For all examples, these linear problems

are solved using a finite difference method [129]. For all the numerical simulations, the

stopping criterion is ‖vn+1− vn‖ ≤ 10−8. Throughout this section, N denotes the number

of grid points.

Example 4.4.1. Consider the boundary value problem for 1 < q < 2

(4.13a) −cDqx(t) = 10x2(t)− x(t) + f(t), t ∈ (0, 1)

(4.13b) x(0)− 12x′(0) = 0 and x(1) + 2x′(1) = 0,

where f(t) = −10t24 + 100t14 − t12 − 100t4 + 5t2 − 10t2−q

Γ(3−q) + Γ(13)t12−q

Γ(13−q) .

65



For the choice of v0 = −4, u0 = 0, q ∈ [1.1, 2) all the hypotheses of the Theorem 4.3.1

are satisfied. Hence the boundary value problem 4.13 has a unique solution in [−4, 0].

Figure 4.1 gives the numerical solution of Example 4.4.1 for various values of q, whereas

Figure 4.2 displays the monotone property of the sequences {vn} and {un}. Table 4.1

presents the comparison of number of iterations based on the iterative scheme discussed

in [118] and the proposed iterative scheme. The iteration in [118] depends on a constant

c > 0, which is chosen as c = 82.

Example 4.4.2. Consider the boundary value problem for 1 < q < 2

(4.14a) −cDqx(t) = 10e−x(t) − x(t), t ∈ (0, 1)

(4.14b) x(0)− 10x′(0) = 1 and x(1) + 3x′(1) = 4.

For the choice of v0 = 1, u0 = 4, q ∈ [1.1, 2) all the hypotheses of the Theorem

4.3.1 are satisfied. Hence the boundary value problem 4.14 has a unique solution in [1, 4].

Similar to Example 4.4.1, Figure 4.3 shows the numerical solution of Example 4.4.2 for

various values of q, whereas Figure 4.4 displays the monotone property of the sequences

{vn} and {un}. Table 4.2 presents the comparison of number of iterations based on the

iterative scheme discussed in [118] and the proposed iterative scheme. The constant ‘c’

required for the iteration is chosen as c = 5.

4.5. Conclusion

In this chapter, a two point boundary value problem of fractional order 1 < q < 2 is

considered. Using quasilinearization technique, two well defined sequences are constructed

that converge uniformly, monotonically and quadratically to the unique solution of the

problem. Based on the proposed accelerated iterative procedure a finite difference based

numerical method is also proposed to solve nonlinear two point boundary value problem.
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q Method in [118] Proposed

1.1 76 9

1.2 74 8

1.3 71 8

1.4 66 8

1.5 62 8

1.6 58 8

1.7 54 8

1.8 51 8

1.9 48 8

Table 4.1. Comparison

of number of iterations

for Example 4.4.1 where

N = 1000.

q Method in [118] Proposed

1.1 28 7

1.2 28 7

1.3 28 7

1.4 28 7

1.5 28 7

1.6 28 7

1.7 28 7

1.8 28 7

1.9 28 7

Table 4.2. Comparison

of number of iterations

for Example 4.4.2 where

N = 1000.

Figure 4.1. Approxi-

mate solution of Example

4.4.1 for various values of

q.

Figure 4.2. A plot of vn

and un, n = 0, 1, 2, 3, 4 for

Example 4.4.1 when q =

1.5.
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Figure 4.3. Approxi-

mate solution of Example

4.4.2 for various values of

q.

Figure 4.4. A plot of vn

and un, n = 0, 1, 2, 3, 4 for

Example 4.4.2 when q =

1.5.
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CHAPTER 5

NONLINEAR INTEGRO PARTIAL DIFFERENTIAL

EQUATION

5.1. Introduction

In literature, differential equations arising in various mathematical models have been

improved by adding certain non-local integral terms either in the governing equation or

in the boundary condition for more accurate results (for example [82, 100, 101, 106,

113, 114, 127, 136]). The following Volterra partial integro-differential equation with

positive memory may be considered as a modification of the well known Fisher equation

arising in the population model.

(5.1)
∂u

∂t
=
∂2u

∂x2
+ au− bu2 − cu

∫ t

0

κ(t− s)u(x, s)ds+ g(x, t) in Q, u|∂pQ = φ,

where a, b and c are non negative constants, Q = (0, 1)× (0, T ) and ∂pQ = ∂Q\((0, 1)×

{T}) denotes the parabolic boundary of Q. Here φ is the restriction of some smooth

function Φ ∈ C2,1(Q) on ∂pQ and κ is a positive continuous function on R. For the choice

of b = 0, g(x, t) ≡ 0 and κ ≡ 1, (5.1) arises in the analysis of space-time dependent nuclear

reactor dynamics if the effect of a linear temperature feedback is taken into consideration

[106, 113, 114, 122, 123, 135]. For the choice of a = b = c = 1 and κ(t) = t
T 2 exp(− t

T
),

(5.1) represents the mathematical population model for the evolution of a community

of species that is allowed to diffuse spatially [64]. (5.1) can also be considered as a

generalization of the following ordinary integro-differential equation,

(5.2) x′(t) = ax(t)− bx2(t)− cx(t)

∫ t

0

x(s)ds, x(0) = x0 ≥ 0



arising in the population model in a closed system. There are ample number of numerical

methods, including different type of spectral methods, available in the literature for the

ordinary integro-differential equation (5.2) (see [39, 74, 107, 108, 110, 111] and the

reference therein). It is worth mentioning that similar to the classical model (5.2), gen-

erous numerical techniques [63, 92, 97, 109, 120] are available to handle corresponding

fractional order model

(5.3) cDqx(t) = ax(t)− bx2(t)− cx(t)

∫ t

0

x(s)ds, x(0) = x0 ≥ 0.

However, the numerical methods for solving the partial integro-differential equation (5.1)

are very limited.

The present work proposes an efficient numerical method for a class of partial integro-

differential equation (5.1) by combining bivariate spectral method with a monotone iter-

ative scheme. Past few decades have seen tremendous development of various numerical

schemes which could replace traditional methods such as finite difference and finite el-

ement schemes. One such class of schemes, which has seen extensive development and

applications, is spectral methods. The convergence rate of spectral methods depends

only on the smoothness of the solution and hence produces highly accurate solutions

with a small number of grid points. One popular choice of basis functions for spectral

collocation methods is Lagrange polynomials, which does not require periodic boundary

conditions. Another advantage of using Chebyshev spectral collocation method is that

these polynomials are well defined throughout the domain due to which method yield

good accuracy even on non-collocation points. Also, to avoid the error intrinsic in higher

order polynomial approximation on equidistant nodes, Chebyshev-Gauss-Lobotto points

are in general, considered [27, 139].

Hence in the proposed work, the authors have extended the bivariate Chebyshev spec-

tral collocation method by Motsa et al [98, 99] to the initial boundary value problems

governed by the partial integro-differential equation (5.1). Both time and space opera-

tors have been approximated using Chebyshev spectral collocation method with Lagrange
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interpolation polynomial, which differentiate present scheme from other Chebyshev spec-

tral collocation methods [67, 75]. The authors not only extend the method numerically,

but also prove the existence and uniqueness of the solution of (5.3) as well as the following

partial integro differential equation

(5.4)
∂u

∂t
=
∂2u

∂x2
+ f(u, ũ) in Q, u|∂pQ = φ,

where Q = (0, 1)× (0, T ), Ω = (0, 1) and ∂pQ = ∂Q\((0, 1)× {T}) denotes the parabolic

boundary of Q and ũ denotes
∫ t

0
κ(t− s)u(x, s)ds. Here f : R×R→ R is continuous and

φ is the restriction of Φ on ∂pQ where Φ ∈ C2,1(Q).

Although the results on the existence and uniqueness as well as the convergence of the

monotone iterative scheme for the problems (5.3) and (5.4) are available in the literature

[113, 114, 120], present study proposes a novel proof completely different from the

existing ones. The proposed proof is based on the concepts on operator theory in partially

ordered Banach space as done by Lakshmikantham et al in [83]. This idea is extended to

prove the existence and uniqueness of (5.3) and (5.4) as well as the convergence analysis

of the associated monotone iterative scheme. It is worth mentioning that the results in

[83] failed to handle the (5.3) and (5.4) as the associated operator fails to satisfy certain

positivity condition.

The organization of the chapter is as follows. Section 2 presents the basic definition,

notations and results required to prove the main result. This section also demonstrates the

operator theory methods by proving the existence and uniqueness result for the fractional

order integro differential equation (5.3). Our main results, the existence and uniqueness

of the solution of the partial integro differential equation (5.4), the convergence of the

iterative scheme as well as its monotone property, are proved in Section 3. The derivation

of the bivariate Chebyshev spectral collocation using proposed monotone iteration is de-

tailed in Section 4. In Section 5, the developed scheme is illustrated by solving the partial

integro differential equation arising from population dynamics. Few concluding remarks

are given in Section 6.
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5.2. Preliminaries

This section supplies some basic definitions, notations and results relevant to the

main theorem. Throughout this chapter, we assume that E = (E,≤, ‖ · ‖) is an ordered

Banach space with order cone E+, T : E×E → E is a continuous compact operator. Let

F : E → E be a nonlinear operator defined by F (u) = T (u, L(u)), where L : E → E is a

positive continuous linear operator. For i = 1, 2, T iu denotes the partial Frechet derivative

of T with respect to the ith variable. First we present a basic result which will ensure

the existence of solution to the operator equation u = F (u) via monotone iteration. To

understand further one requires the following definition.

Definition 5.2.1. A pair of function (v0, w0) ∈ E × E is said to be an ordered coupled

lower and upper solution of the operator equation u = F (u) if v0 ≤ w0 and

v0 ≤ T (v0, L(w0)),

w0 ≥ T (w0, L(v0)).

Throughout the chapter, [v0, w0] denotes the sector {u ∈ E : v0 ≤ u ≤ w0}. The

following lemma is an important tool to prove the existence and uniqueness of (5.3) and

(5.4).

Lemma 5.2.1. Let E be an ordered Banach space with a normal order cone E+. Assume

that T : E × E → E satisfies the following hypotheses.

(i) (v0, w0) ∈ E × E be an ordered coupled lower and upper solution for the operator

equation u = T (u, L(u)),

(ii) The Frechet derivative T ′u = (T 1, T 2)u exists for every u ∈ [v0, w0]× [L(v0), L(w0)],

(iii) T 1
(u,·) : E → E is a positive operator for every u ∈ [v0, w0],

(iv) T 2
(·,u) : E → E is a negative operator for every u ∈ [L(v0), L(w0)].

Then for n ∈ N, relations

vn+1 = T (vn, L(wn))(5.5)

wn+1 = T (wn, L(vn))(5.6)
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define a non decreasing sequence {vn} and a non increasing sequence {wn} which converges

to the solutions of the operator equation v = T (v, L(w)) and w = T (w,L(v)) respectively.

Proof. From the construction (5.5), v1 = T (v0, L(w0)). Using hypothesis (i), it is easy to

verify that v0 ≤ v1. Similarly, w1 ≤ w0. Define Θn = θ(wn, L(vn)) + (1 − θ)(vn, L(wn)),

0 ≤ θ ≤ 1 and pn+1 = wn − vn, qn = vn+1 − vn and rn = wn − wn+1 for n = 0, 1, 2, · · · .

Then

p1 = T (w0, L(v0))− T (v0, L(w0))

=

∫ 1

0

T ′Θ0
((w0, L(v0))− (v0, L(w0)))dθ

=

∫ 1

0

T 1
θw0+(1−θ)v0(w0 − v0)dθ +

∫ 1

0

T 2
θL(v0)+(1−θ)L(w0)(L(v0)− L(w0))dθ

p1 ≥ 0.

Similarly, one can show that for all n ∈ N, pn, qn and rn are non negative. Using the

compactness property as well as property of the normal cone one can easily conclude that

{vn} and {wn} are convergent sequences. Let v and w are the limits of the sequences

{vn} and {wn} respectively. Thus v and w satisfy the operator equation v = T (v, L(w))

and w = T (w,L(v)).

Remark 5.2.1. In addition to (i)− (iv), if one assumes that T (u, L(u)) is a contraction

map then one can easily conclude that v = w. Consequently, the operator equation u =

T (u, L(u)) has a unique solution in [v0, w0]. Thus the operator equation u = F (u) has a

unique solution in [v0, w0].

5.3. Existence and Uniqueness

In this section, as an application of Lemma 5.2.1 an existence and uniqueness result for

a fractional order integro differential equation via monotone iterative scheme is obtained.

Consider the following initial value problem

(5.7) cDqx(t) = f(x(t), x̃(t)), x(0) = x0
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where x̃(t) =
∫ t

0
x(s)ds, cDq is the Caputo fractional derivative of order q, 0 < q ≤ 1 and

f : R × R → R is a continuous function. Denote partial derivative of f with respect to

the first and second variable by f1 and f2 respectively.

Remark 5.3.1. For a real number λ and g ∈ C([t0, T ] × R,R), it is easy to verify that

the fractional order differential equation

(5.8) cDqx(t) = λx(t) + g(t), x(t0) = x0

is equivalent to the integral equation

(5.9) x(t) = x0Eq(λ(t− t0)q) +

∫ t

t0

(t− s)q−1Eq,q(λ(t− s)q)g(s)ds, t ∈ [t0, T ]

where Eq(t) =
∞∑
k=0

tk

Γ(qk + 1)
and Eq,q(t) =

∞∑
k=0

tk

Γ(qk + q)
are the Mittag-Leffler functions

of one parameter and two parameters, respectively.

Definem = min
t∈[0,T ]

{v0, w0}, M = max
t∈[0,T ]

{v0, w0}, m̃ = min
t∈[0,T ]

{ṽ0, w̃0} and M̃ = max
t∈[0,T ]

{ṽ0, w̃0}.

Throughout this subsection the following assumptions are considered.

(i) Let v0, w0 ∈ C[0, T ] satisfy v0 ≤ w0 and

cDqv0 ≤ f(v0, w̃0), v0(0) ≤ x0,

cDqw0 ≥ f(w0, ṽ0), w0(0) ≥ x0.

(ii) For some δ > 0, f, f1, f2 : C[m− δ,M + δ]× [m̃− δ, M̃ + δ]→ R is continuous and

for all s1 ∈ [m,M ], s2 ∈ [m̃, M̃ ]

f1(s1, s2) + λ ≥ 0 and f2(s1, s2) ≤ 0

Theorem 5.3.1. Let the hypotheses (i) and (ii) be satisfied then the initial value problem

(5.7) has a unique solution in [v0, w0]. Moreover, there exist monotone sequences {vn}

and {wn} which converge uniformly and monotonically to the unique solution of (5.7).

Proof. The initial value problem (5.7) can be rewritten as

(5.10) cDqx(t) + λx(t) = f(x(t), x̃(t)) + λx(t); x(0) = x0.
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The above initial value problem (5.10) is equivalent to the integral equation

(5.11) x(t) = x0Eq(−λtq) +

∫ t

0

(t− s)q−1Eq,q(−λ(t− s)q)(f(x(s), x̃(s)) + λx(s))ds.

Define operators F : C[0, T ]→ C[0, T ] by

(5.12) Fx(t) = x0Eq(−λtq) +

∫ t

0

(t− s)q−1Eq,q(−λ(t− s)q)(f(x(s), x̃(s)) + λx(s))ds.

It is easy to verify that the operator is well defined and the solution of the initial value

problem (5.7) is nothing, but the solution of the operator equation Fx = x. For each

(x, y) ∈ C[0, T ]× C[0, T ] define T : C[0, T ]× C[0, T ]→ C[0, T ] by

(5.13) T (x(t), y(t)) = x0Eq(−λtq)+

∫ t

0

(t−s)q−1Eq,q(−λ(t−s)q)(f(x(s), y(s))+λx(s))ds.

Thus the operator equation F (x) = x can be reformulated as T (u, L(u)) = u. For

u,w ∈ [v0, w0], define operators T i(u,L(w)) : C[0, T ]→ C[0, T ], i = 1, 2 by

T 1
(u,L(w))h(t) =

∫ t

0

(t− s)q−1Eq,q(−λ(t− s)q)(f1(u, L(w)) + λ)h(s)ds(5.14)

T 2
(u,L(w))h(t) =

∫ t

0

(t− s)q−1Eq,q(−λ(t− s)q)f2(u, L(w))L(h(s))ds.(5.15)

It is easy to verify that T 1
(u,L(w)) and T 2

(u,L(w)) are the partial Frechet derivative of T (u, L(w))

with respect to the first and second variable respectively. Combining with this choice of

λ, it can be concluded that for any u,w in [v0, w0] the operators T 1
(u,L(w)) and T 2

(u,L(w)) are

positive and negative operators respectively. Define a norm on C[0, T ]×C[0, T ] by ‖h‖ρ =

‖(h1, h2)‖ρ = max
{

supt∈[0,T ]

∣∣∣ h1(t)
Eq(ρtq)

∣∣∣ , supt∈[0,T ]

∣∣∣ h2(t)
Eq(ρtq)

∣∣∣}. DefineN = max{sup(s1,s2)∈Γ |f1(s1, s2)+

λ|, sup(s1,s2)∈Γ |f2(s1, s2)|} and Γ = [m− δ,M + δ]× [m̃− δ, M̃ + δ]. For any u,w ∈ [v0, w0]
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and h ∈ C[0, T ]× C[0, T ] with ‖h‖ρ = 1.∣∣T ′(u,L(w))h(t)
∣∣ ≤ ∣∣∣∣∫ t

0

(t− s)q−1Eq,q(−λ(t− s)q)(f1(u, ũ) + λ)h1(s)ds

∣∣∣∣
+

∣∣∣∣∫ t

0

(t− s)q−1Eq,q(−λ(t− s)q)f2(u, ũ)h̃2(s)ds

∣∣∣∣
≤ NΓ(q)

Γ(q)

∫ t

0

(t− s)q−1|h1(s)|ds+
NΓ(q)

Γ(q)

∫ t

0

(t− s)q−1|h̃2(s)|ds

≤ NΓ(q)

Γ(q)

∫ t

0

(t− s)q−1Eq(ρs
q)

∣∣∣∣ h1(s)

Eq(ρsq)

∣∣∣∣ ds
+
NΓ(q)

Γ(q)

∫ t

0

(t− s)q−1

∫ s

0

|h2(τ)|
Eq(ρτ q)

Eq(ρτ
q)dτds

≤
(
NΓ(q)

ρ
+
N(Γ(q))2T 1−q

ρ2

)
‖h‖ρEq(ρtq)∣∣∣∣∣T

′
u,L(w))h(t)

Eq(ρtq)

∣∣∣∣∣ ≤ NΓ(q)

ρ
+
N(Γ(q))2T 1−q

ρ2
.

Thus ‖T ′(u,L(w))‖ ≤
NΓ(q)
ρ

+ N(Γ(q))2T 1−q

ρ2
= θ < 1 for large ρ. Thus T (u, L(u)) satisfies the

Lipschitz condition with Lipschitz constant θ. Thus all the hypotheses of Lemma 5.2.1

are satisfied. Consequently, the operator equation T (u, L(u)) = u has a unique solution in

[v0, w0]. Hence the initial value problem (5.7) has a unique solution in [v0, w0]. Moreover

the iterative schemes (5.5) and (5.6) converge monotonically and uniformly to the unique

solution of the initial value problem (5.7).

Remark 5.3.2. For the initial value problem (5.7), the above mentioned abstract iterative

scheme (5.5) and (5.6) is equivalent to the iterative scheme

cDqvn+1 + λvn+1 = λvn + f(vn, w̃n), vn+1(0) = x0,

cDqwn+1 + λwn+1 = λwn + f(wn, ṽn), wn+1(0) = x0.

Corollary 5.3.1. The fractional order population model (5.3) has a unique solution in

[0, 1] if b ≥ a > 0. If a > b > 0 then the fractional order population model (5.3) has a

unique solution in [0, a
b
].

Proof. For the choice of f(x, x̃) = ax − bx2 − cxx̃, if b ≥ a > 0, then (v0, w0) = (0, 1) is

a coupled lower and upper solution and all the hypothesis of Theorem 5.3.1 are satisfied.
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Hence the (5.3) has a unique solution in the sector [0,1]. Similarly, if a > b > 0, then

(v0, w0) = (0, a
b
) is coupled lower and upper solution and all the hypothesis of Theorem

5.3.1 are satisfied. Hence the (5.3) has a unique solution in the sector [0, a
b
].

We extend the technique to prove the existence and uniqueness result via monotone

iteration for the following partial integro differential equation.

(5.16)
∂u

∂t
=
∂2u

∂x2
+ f(u, ũ) in Q, u|∂pQ = φ

where Q = (0, 1)× (0, T ), Ω = (0, 1) and ∂pQ = ∂Q\((0, 1)× {T}) denotes the parabolic

boundary of Q and ũ denotes
∫ t

0
κ(t − s)u(x, s)ds. Here f : R × R → R is continuous

and φ is the restriction of Φ on ∂pQ where Φ ∈ C2,1(Q). For u ∈ C([0, 1]× [0, T ]) define

L(u) = ũ. The following definition suitably modify the coupled lower and upper solution

for the problem (5.16).

Definition 5.3.1. A pair of functions v, w ∈ C2,1(Q) is called an ordered coupled lower

and upper solutions of (5.4) if v ≤ w and

∂v

∂t
− ∂2v

∂x2
≤ f(v, w̃) in Q, v|∂pQ ≤ φ,

∂w

∂t
− ∂2w

∂x2
≥ f(w, ṽ) in Q, w|∂pQ ≥ φ.

Define m = min
(x,t)∈Q

{v0, w0}, M = max
(x,t)∈Q

{v0, w0}, m̃ = min
(x,t)∈Q

{ṽ0, w̃0} and M̃ =

max
(x,t)∈Q

{ṽ0, w̃0}. Throughout this section we assumed the following:

(i) Let v0 and w0 in C2,1(Q) be an ordered coupled lower and upper solution of (5.16).

(ii) For some δ > 0, f, f1, f2 : C[m − δ,M + δ] × [m̃ − δ, M̃ + δ] → R are continuous

and for all s1 ∈ [m,M ], s2 ∈ [m̃, M̃ ]

f1(s1, s2) + λ ≥ 0 and f2(s1, s2) ≤ 0.
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Theorem 5.3.2. The parabolic partial integro differential equation (5.16) has a unique

solution in [v0, w0]. Moreover the sequences {vn} and {wn} generated by

∂vn+1

∂t
− ∂2vn+1

∂x2
+ λvn+1 = λvn + f(vn, w̃n), vn+1|∂pQ = φ(5.17)

∂wn+1

∂t
− ∂2wn+1

∂x2
+ λwn+1 = λwn + f(wn, ṽn), wn+1|∂pQ = φ(5.18)

are well-defined and converge to the unique solution monotonically.

Proof: It is enough to prove this theorem for (5.16) with homogeneous initial condition

(5.19)
∂u

∂t
= 4u+ f(u, ũ) in Q, u|∂pQ = 0.

One can convert this problem as a fixed point problem in Banach space C(Q). The Eqn.

(5.19) can be written as

(5.20)
∂u

∂t
−4u+ λu = f(u, ũ) + λu in Q, u|∂pQ = 0.

Define an operator F : [v0, w0] ⊂ C(Q) → C(Q) by F (u) = v where v is the solution of

the linear partial differential equation

(5.21)
∂v

∂t
−4v + λv = f(v, ṽ) + λv in Q, v|∂pQ = 0.

From Theorem 9.2.5 of [147], the operator F is well defined. Clearly the solution of

Fx = x is the solution of (5.19). Using this fact on compact embedding i.e. for p > 3
2
,

W 2,1
p (Q) ↪→↪→ C(Q) one can easily conclude that F is a compact operator. Define an

operator T : [v0, w0]× [L(v0), L(w0)] ⊂ C(Q)× C(Q)→ C(Q) for each u,w ∈ [v0, w0] by

T (u,w) = v where v is the solution of the partial differential equation

(5.22)
∂v

∂t
−4v + λv = f(u,w) + λu in Q, v|∂pQ = 0.

Thus the operator equation F (x) = x can be reformulated as T (u, L(u)) = u. For each

(u,w) ∈ [v0, w0] and h ∈ C[0, T ] define operators T i(u,L(w)) : C(Q) → C(Q), i = 1, 2 by

T 1
(u,L(w))h(t) = z1(h) and T 2

(u,L(w))h(t) = z2(h) that are solutions of

∂z1

∂t
−4z1 + λz1 = (f1(u, w̃) + λ)h in Q, z|∂pQ = 0(5.23)

∂z2

∂t
−4z2 + λz2 = f2(u, w̃)h̃ in Q, z|∂pQ = 0(5.24)
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respectively. Note that ‖z1(h)‖C(Q) ≤ c‖z1(h)‖W 2,1
p (Q) ≤ c̃‖h‖C(Q). Thus z1 is a con-

tinuous linear transformation from C(Q) into itself. Similarly, z2 is a continuous linear

transformation from C(Q) into itself. Define for h ∈ C(Q), g = g(h) = T (u+ h, L(w))−

T (u, L(w))− z1(h). Then g is a solution of the following partial differential equation

(5.25)
∂g

∂t
−4g + λg = f(u+ h, w̃)− f(u, w̃)− f1(u, w̃)h in Q, g|∂pQ = 0.

Thus

‖g(h)‖C(Q) ≤ c‖g(h)‖W 2,1
p (Q) ≤ c̃‖f(u+ h, w̃)− f(u, w̃)− f1(u, w̃)h‖C(Q).

Using the assumption (ii), one can write f(u+h, w̃) = f(u, w̃)+f1(u, w̃)h+r(h)h where r

satisfies lim‖h‖C(Q)→0 ‖r(h)‖C(Q) = 0. Thus lim‖h‖C(Q)→0
‖g(h)‖C(Q)

‖h‖C(Q)
= 0. Hence the operator

z1 is Partial Frechet derivative of T (u, L(w)) with respect to the first variable at (u, L(w)).

Similarly, one can show that z2 is Partial Frechet derivative of T (u, L(w)) with respect to

the second variable at (u, L(w)). It is easy to verify that T 1
(u,L(w)) and T 2

(u,L(w)) are positive

and negative operators respectively for u,w ∈ [v0, w0]. Let Qt = Ω × (0, t), t ∈ [0, T ].

Thus z1(h) = T 1
(u,L(w))h(t) is a solution for the following differential equation in Qt ⊂ Q.

(5.26)
∂z1(h)

∂t
−4z1(h) + λz1(h) = (f1(u, w̃) + λ)h in Qt, z|∂pQt = 0.

Thus z1(h) satisfies ‖z1(h)‖W 2,1
p (Qt)

≤ c‖(f1(u, w̃) + λ)h‖Lp(Qt). For rest of the discussion

assume that c > 0 is a generic constant. Using (ii), |f1(u, ũ) + λ| ≤ c and |f2(u, ũ)| ≤ c

for all (x, t) ∈ Q and u ∈ [v0, w0].

‖z1‖pC(Qt)
≤ c‖z1‖pW 2,1

p (Qt)
≤ c

∫ t

0

∫
Ω

|h(x, τ)|pdxdτ

≤ c

∫ t

0

∫
Ω

|h(x, τ)|pe−αpτeαpτdxdτ

‖z1‖pC(Qt)
≤ c|Ω| ‖h‖α,Qt

(
1

αp

)
eαpt.

Consequently, ‖z1‖α,Q ≤ ‖h‖α,Q 1
αp

. Thus ‖T 1
(u,L(w))‖ ≤

1
αp

for u,w ∈ [v0, w0]. Similarly,

z2(h) = T 2
(u,L(w))h(t) is a solution for the following differential equation in Qt ⊂ Q.

(5.27)
∂z2(h)

∂t
−4z2(h) + λz2(h) = f2(u, w̃)h̃ in Qt, z|∂pQt = 0.
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Thus z2(h) satisfies ‖z2(h)‖W 2,1
p (Qt)

≤ c‖f2(u, w̃)h̃‖Lp(Qt). Let c > 0 be a generic constant.

‖z2‖pC(Qt)
≤ c‖z1‖pW 2,1

p (Qt)
≤ c

∫ t

0

∫
Ω

|h̃(x, τ)|pdxdτ

≤ c

∫ t

0

∫
Ω

{∫ τ

0

|h(x, s)|ds
}p

dxdτ

‖z2‖pC(Qt)
≤ c|Ω| ‖h‖α,Qt

(
1

α1+pp

)
eαpt.

Consequently, ‖z2‖α,Q ≤ ‖h‖α,Q 1
α1+pp

. Thus ‖T 1
(u,L(w))‖ ≤

1
α1+pp

for u,w ∈ [v0, w0]. Choose

α large enough so that max{ 1
αp
, 1
α1+pp

} < 1
4
. Hence T (u, L(w)) is a contraction map. Thus,

T satisfies all the hypotheses of Lemma 5.2.1. Hence the operator equation T (u, L(u)) = u

has a unique solution in [v0, w0]. Consequently, the operator equation F (u) = u has a

unique solution in [v0, w0]. Moreover the following iterative procedure

vn+1 = T (vn, w̃n)(5.28)

wn+1 = T (wn, ṽn)(5.29)

converges to the unique solution of F (u) = u. Equivalently, (5.19) has a unique solution

in [v0, w0] and the iterative scheme (5.17) and (5.18) converge monotonically to the unique

solution of the parabolic integro differential equation (5.19).

Corollary 5.3.2. The partial integro differential equation (5.1) arising from the popula-

tion dynamics has a unique solution in [0, 1] if b ≥ a > 0. If a > b > 0 then the partial

integro differential equationl (5.3) has a unique solution in [0, a
b
].

Proof. For the choice of f(x, x̃) = ax − bx2 − cxx̃, if b ≥ a > 0, then (v0, w0) = (0, 1) is

a coupled lower and upper solution and all the hypothesis of Theorem 5.3.2 are satisfied.

Hence the Equation (5.1) has a unique solution in the sector [0,1]. Similarly, if a > b > 0,

then (v0, w0) = (0, a
b
) is a coupled lower and upper solution and all the hypothesis of

Theorem 5.3.2 are satisfied. Hence the Equation (5.1) has a unique solution in the sector

[0, a
b
].
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Remark 5.3.3. Recently the authors in [15, 16, 67, 126] studied the population model

represented by the following partial integro differential equation

(5.30)
∂u

∂τ
=
∂2u

∂η2
+ au− bu2 − cu

∫ 1

0

κ(η − y)u(y, τ)dy + g(η, τ) in Q, u|∂pQ = φ.

This equation is similar to (5.4) but it is Fredholdm type partial integro differential equa-

tion and the integration is over the spatial domain. Existence and uniqueness result for

(5.30) is discussed in [114][P.84]. It is worth mentioning that similar existence theorem

can be proved using the operator theory technique in partially ordered Banach space. By

setting h(u, u) = au − bu2 − cuu + g(η, τ), u =
∫ 1

0
κ(η − y)u(y, τ)dy one can prove the

following theorem.

Theorem 5.3.3. If v0, w0 ∈ C2,1(Q) are ordered coupled lower and upper solution for the

Fredholm partial integro differential equation (5.30), then (5.30) has a unique solution in

[α0, β0]. Moreover the iterative scheme

∂vn+1

∂τ
− ∂2vn+1

∂η2
+ λvn+1 = λvn + h(vn, wn), vn+1|∂pQ = φ

∂wn+1

∂τ
− ∂2wn+1

∂η2
+ λwn+1 = λwn + h(wn, vn), wn+1|∂pQ = φ

converges monotonically to the unique solution in [v0, w0].

Proof: The proof is, again, based on Lemma 5.2.1 and similar to that of Theorem 5.3.2.

Remark 5.3.4. Though the Theorem 5.3.2 is discussed for the one dimensional Volterra

partial integro differential equation, it can be easily extended for n dimensional problem

provided the spatial domain Ω ⊂ Rn has a smooth boundary ∂Ω ⊂ C2. To ensure the

compact embedding, choose p such that p > n+2
2

.

5.4. Bivariate Interpolated Spectral Method

The formulation of the bivariate interpolated spectral iterative method (BISIM) to

find the solution of nonlinear Volterra type partial integro-differential equations is detailed
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in this section. More specifically, consider

(5.31)
∂u

∂τ
=
∂2u

∂η2
+ f

(
u,

∫ τ

0

u(η, s)ds

)
+ g(η, τ)

where τ ∈ [0, T ], η ∈ [a1, b1]. Here, τ and η represent, respectively, the time and space

variables in the given physical domain [a1, b1] × [0, T ]. Since the present scheme uses

Chebyshev-Gauss-Lobatto points for both time and space discretization, the physical

domain [a1, b1]× [0, T ] has been transformed to the computational domain [−1, 1]× [−1, 1]

by the linear transformations τ =
T (t+ 1)

2
and η =

(b1 − a1)x

2
+
b1 + a1

2
. Here a1 = 0

and b1 = 1. Using these relations (5.31) becomes,

(5.32)
2

T

∂u

∂t
= 4

∂2u

∂x2
+ f(u, ũ) + g

(
x+ 1

2
,
T (t+ 1)

2

)
where ũ = T

2

∫ t
−1
u(x, s)ds. To proceed further, assume that the solution of (5.32) can be

approximated by a bivariate Lagrange interpolation polynomial of the form

(5.33) u(x, t) =
Nx∑
i=0

Nt∑
j=0

u(xi, tj)Li(x)Lj(t), for any (x, t) ∈ [−1, 1]× [−1, 1]

where xi = cos

(
πi

Nx

)
and tj = cos

(
πj

Nt

)
;

 i = 0, 1, . . . , Nx

j = 0, 1, . . . , Nt

are Chebyshev-Gauss-Lobatto grid points and the functions Li(x) are the characteristic

Lagrange cardinal polynomials given by

Li(x) =
Nx∏

k=0,k 6=i

x− xk
xi − xk

.

It can be seen that each Lagrange polynomial satisfies cardinality property. i.e.,

Li(xk) = δik, i, k = 1, 2, . . . , Nx.

Similarly for Lj(t). The values of the time derivative at the Chebyshev-Gauss-Lobatto

points (xi, tj) are computed as

∂u

∂t

∣∣∣∣
x=xi,t=tj

=
Nx∑
p=0

Nt∑
k=0

u(xp, tk)Lp(xi)
dLk(tj)

dt

=
Nt∑
k=0

djku(xi, tk)(5.34)
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where djk =
dLk(tj)

dt
is the standard first derivative Chebyshev differentiation matrix of

size (Nt+1)× (Nt+1) [139]. The values of the space derivative at the Chebyshev-Gauss-

Lobatto points (xi, tj) are computed as

∂u

∂x

∣∣∣∣
x=xi,t=tj

=
Nx∑
p=0

Nt∑
k=0

u(xp, tk)
dLp(xi)

dx
Lk(tj)

=
Nx∑
p=0

Dipu(xp, tj)

where Dip =
dLp(xi)

dx
is the standard first derivative Chebyshev differentiation matrix of

size (Nx + 1)× (Nx + 1). Similarly for nth order derivative we have

∂nu

∂xn

∣∣∣∣
x=xi,t=tj

=
Nx∑
p=0

Dn
ipu(xp, tj).

The values of the time integral at the Chebyshev-Gauss-Lobatto points (xi, tj) are com-

puted as ∫ t

−1

u(x, s)ds

∣∣∣∣
x=xi,t=tj

=
Nx∑
p=0

Nt∑
k=0

u(xp, tk)Lp(xi)

∫ tj

−1

Lk(t)dt

=
Nt∑
k=0

u(xi, tk)rjk

=
Nt∑
k=0

rjku(xi, tk)(5.35)

where rjk =

∫ tj

−1

Lk(t)dt is the Chebyshev integration matrix of size (Nt + 1)× (Nt + 1).

The iterative scheme for the equation (5.32) is

(5.36)
2

T

∂vn+1

∂t
− 4

∂2vn+1

∂x2
+ λvn+1 = R

and

(5.37)
2

T

∂wn+1

∂t
− 4

∂2wn+1

∂x2
+ λwn+1 = R̃

where R = λvn + f(vn, w̃n) + g
(
x+1

2
, T (t+1)

2

)
and R̃ = λwn + f(wn, ṽn) + g

(
x+1

2
, T (t+1)

2

)
.

After approximating the above linearized equation (5.36) for each (xi, tj) ∈ (−1, 1) ×
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(−1, 1], using (5.34) - (5.35), and on applying initial and boundary conditions the resulting

system can be written in matrix form as,

(5.38) 4D2V̄ n+1
j − λIV̄ n+1

j − 2

T

Nt−1∑
k=0

dj,kV̄
n+1
k = R

′

j; j = 0, · · · , Nt − 1

where D is a square matrix of size Nx − 1 obtained by just removing first and last

rows and columns of the differentiation matrix D ( D is the standard nth derivative

Chebyshev differentiation matrix of size (Nx + 1) × (Nx + 1)), V̄j is a column vector of

size Nx − 1 obtained by removing the first and last elements of the column vector Vj =

[v(x0, tj), v(x1, tj), . . . , v(xNx , tj)]
T and I is an identity matrix of size (Nx− 1)× (Nx− 1).

Combining all the matrix equations in (5.38) for each tj, j = 0, 1, . . . , Nt − 1, we obtain

the following system.
A0,0 A0,1 · · · A0,Nt−1

A1,0 A1,1 · · · A1,Nt−1

...
...

. . .
...

ANt−1,0 ANt−1,1 · · · ANt−1,Nt−1




V̄ n+1

0

V̄ n+1
1

...

V̄ n+1
Nt−1

 =


R
′

0

R
′

1

...

R
′

Nt−1

(5.39)

where R
′

j = −Rj + 2
T
dj,NtV̄Nt − 4

[
D̄2(:, 0)v(x0, tj) + D̄2(:, Nx)v(xNx , tj)

]
, Aj,k = − 2

T
dj,kI,

Aj,j = 4D2− λI − 2
T
dj,jI, D̄ is a matrix of size (Nx− 1)× (Nx + 1) obtained by removing

the first and last rows of the differentiation matrix D and the vector Rj corresponds to

the discretized form of R in (5.36). Similarly, one can obtain the matrix system for (5.37).

Using v0 and w0 one can obtain the rest of v′ns and w′ns.

5.5. Numerical Experiment

This section illustrates the proposed BISIM for the initial boundary value problems

(IBVP) governed by a class of partial integro-differential equations using various examples.

The existence and uniqueness of the solution and convergence of the proposed scheme

has been verified using the proposed Theorem. At each iteration, the corresponding

linear IBVP has been solved numerically using the proposed bivariate Chebyshev spectral

method.
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Example 5.5.1. Consider the following differential equation

(5.40)
∂u

∂t
=
∂2u

∂x2
+ u− u2 − u

∫ t

0

u(x, s)ds

with initial and boundary conditions: u(x, 0) = 1
1+ex

, u(0, t) = 1
1+et

and u(1, t) = 1
1+e1+t .

Clearly v0 = 0 and w0 = 1 are coupled lower and upper solution of (5.40) respectively.

For the choice λ = 1 + T all the assumptions of Theorem 5.3.2 are satisfied. Figure 5.1

shows the monotone behavior of lower and upper sequences for a fixed x = 0.5 in the

interval t ∈ [0, 20] and Figure 5.2 provides the solution of (5.40) for x = 0.3, 0.5, 0.7 in

the interval t ∈ [0, 20].

Figure 5.1. Monotone behavior of vn and wn for Example 5.5.1.

Figure 5.2. Approximate solution of Example 5.5.1.
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Example 5.5.2. Consider the following differential equation

(5.41)
∂u

∂t
=
∂2u

∂x2
+ u− u2 − u

∫ t

0

u(x, s)ds+ sinx+ sin2 x(t2 + t3/2)

with initial and boundary conditions: u(x, 0) = 0, u(0, t) = 0 and u(1, t) = t sin 1.

The exact solution of the problem is u(x, t) = t sinx. It is easy to verify that v0 = 0

and w0 = 9 are coupled lower and upper solution of (5.41) respectively when T = 5. For

the choice of λ = 62 all the conditions of Theorem 5.3.2 satisfied. Table 5.1 provides the

absolute error at various non-collocation points for the grid size 6× 6.

x ↓ t→ 1 2 3 4 5

0.25 2.6894e−10 3.1904e−09 2.4194e−09 3.3821e−09 3.7453e−09

0.5 1.1037e−09 1.4585e−09 8.7211e−10 5.8498e−10 1.1050e−09

0.75 7.0496e−10 4.1389e−09 4.5190e−09 7.0616e−09 9.3318e−09

Table 5.1. Absolute error at various non collocation points of Example 5.5.2.

5.6. Conclusion

In this chapter, a bivariate spectral collocation method has been proposed for solving

partial integro-differential equation of type (5.4). The nonlinear partial integro-differential

equation has been linearized by monotone iterative scheme and then discretized using

BISIM, where both spatial and time derivatives as well as integrals have been approx-

imated using spectral Chebyshev collocation method. An independent existence and

uniqueness of the solution as well as the convergence of monotone iterative scheme for

fractional order Volterra population model and a partial integro differential equation arise

commonly in population dynamics have also been proved. Though the existence and

uniqueness as well as the convergence of the proposed iterative scheme are discussed only

for one dimensional problems, it is easy to extend these results to corresponding higher

dimensional problems, whereas numerical implementation can be a challenging task.
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CHAPTER 6

CATALYTIC CONVERTER MODEL

6.1. Introduction

The following coupled partial differential equation arises from the mathematical mod-

eling of catalytic converter model

(6.1)



∂u
∂t

+ a∂u
∂x

+ cu = cv, t > 0, 0 < x ≤ l

∂v
∂t

+ bv = bu+ λ exp(v), t > 0, 0 < x ≤ l

u(0, t) = η(t), t > 0

u(x, 0) = u0(x), v(x, 0) = v0(x), 0 < x ≤ l

where a, b, c, l are positive constants, u0(x), v0(x) and η(t) are non negative continuous

functions with u0(0) = η(0). Existence and uniqueness theorem as well as finite differ-

ence method based on monotone iteration are studied in [31, 115, 132, 133] for Eqn.

(6.1). Chang et.al. [31] first studied an existence and uniqueness result as well as the

blowup property for Eqn. (6.1) based on successive monotone iteration. Later in [115],

Pao et.al. developed a finite difference method based on the iterative scheme in [31] to

solve the Eqn. (6.1) numerically and studied the blowup property. Recently, Linia et.

al [132, 133] proposed two alternative monotone iterative methods to prove the exis-

tence and uniqueness result for Eqn. (6.1) as well finite difference method to solve the

Eqn. (6.1) numerically. More specifically, the iterative schemes in [132, 133] are based

on quasilinearization and modified quasilinearization respectively. Though the iterative

schems in [31, 115, 132, 133] have same linear order of convergence but the numerical

experiments in [115, 132, 133] show that both iterative schemes in [132, 133] converge

always faster than the iterative scheme in [115]. It is worth mentioning that there is no

theoretical justification provided in [132, 133] for the faster convergence of the iterative



schemes in [132, 133] over the iterative schemes in [31, 115]. Also in [132, 133], there

is no discussion on the prediction of blowup property by the iterative schemes.

This short note provides a theoretical justification to show that the iterative schemes

in [132, 133] converge faster than the iterative scheme in [31, 115] under the assumptions

in [31, 115]. This short note also guarantees the prediction of blowup property of the

iterative scheme studied in [132, 133].

This chapter is organized as follows. To make the presentation self contained, Section

2 provides the iterative schemes of [31, 115, 132, 133], basic definitions, results and

notations that are used in the succeeding sections. In Section 3, the relation between the

iterative schemes discussed in [132] and [31, 115] and the relation between the iterative

schemes discussed in [133] and [31, 115] are obtained.

6.2. Preliminaries

Denote Q = (0, l] × (0, T ] and C1(Q) be the set of all continuously differentiable

real valued functions on Q, where T is an arbitrary positive constant. Throughout this

discussion L and H denote the differential operators Lu = ∂u
∂t

+a∂u
∂x

+cu and Hv = ∂v
∂t

+bv.

The lower and upper solutions for Eqn. (6.1) is provided below.

Definition 6.2.1. [31] A function (u, v) ∈ C1(Q)×C1(Q) is called an upper solution of

(6.1) if it satisfies

(6.2)



∂u
∂t

+ a∂u
∂x

+ cu ≥ cv, (t, x) ∈ Q
∂v
∂t

+ bv ≥ bu+ λ exp(v), (t, x) ∈ Q

u(0, t) ≥ η, 0 ≤ t ≤ T

u(x, 0) ≥ u0(x), v(x, 0) ≥ v0(x), 0 ≤ x ≤ l.

Similarly, (u, v) ∈ C1(Q) × C1(Q) is called a lower solution if it satisfies (6.2) with the

reversed inequalities.
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For a given pair of ordered lower and upper solutions, the sector S is defined as

S = {(u, v) ∈ C1(Q)×C1(Q) : (û, v̂) ≤ (u, v) ≤ (ũ, ṽ)}. The following Lemmas are useful

tools to obtain the main results.

Lemma 6.2.1. [31] If w ∈ C1(Q) satisfies the inequalities
∂w
∂t

+ a∂w
∂x

+ bw ≥ 0, 0 < t ≤ T, 0 < x ≤ l

w(0, t) ≥ 0, 0 ≤ t ≤ T

w(x, 0) ≥ 0, 0 ≤ x ≤ l

where a ≥ 0 and b > 0 are constants, then w ≥ 0 on Q.

Lemma 6.2.2. [132] Let v ∈ C(Q) be continuously differentiable with respect to t such

that
∂v

∂t
− f(x, t)v ≥ 0,

where f(x, t) is a continuous function defined on Q with v(x, 0) ≥ 0 for 0 < x ≤ l. Then

v(x, t) ≥ 0 on Q.

Lemma 6.2.3. Let a1, ai,j > 0 for all (i, j) ∈ Λ̄, b1, b2, c1 and c2 ≥ 0. If wi,j and zi,j

satisfy

a1wi,j − b1wi−1,j − c1wi,j−1 ≥ 0; (i, j) ∈ Λ(6.3)

ai,jzi,j − b2wi,j − c2zi,j−1 ≥ 0; (i, j) ∈ Λ(6.4)

(6.5) with w0,j ≥ 0, wi,0 ≥ 0, zi,0 ≥ 0

then wi,j ≥ 0 and zi,j ≥ 0 for all (i, j) ∈ Λ̄.

Note that in [31], for an initial guess (u(0), v(0)), the sequence {(u(n), v(n))} has been

constructed using the iterative process

(6.6)



Lu(n) = cv(n−1), (x, t) ∈ Q

Hv(n) = bu(n−1) + λ exp(v(n−1)), (x, t) ∈ Q

u(n)(0, t) = η(t), 0 ≤ t ≤ T

u(n)(x, 0) = u0(x), v(n)(x, 0) = v0(x), 0 ≤ x ≤ l.
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Throughout this chapter, denote the maximal sequence of Chang et.al. [31] by

{(u(n), v(n))} with (u(0), v(0)) = (u(0), v(0)) and the minimal sequence by {(u(n), v(n))}

with (u(0), v(0)) = (u(0), v(0)). The maximal sequence of Linia et.al. [132] is denoted

by {(α(n), β
(n)

)} and minimal sequence by {(α(n), β(n))}. The maximal sequence and min-

imal sequence of Linia et.al.[132] are generated by the following iterative scheme for the

initial guess (u(0), v(0)) = (α(0), β
(0)

) and (u(0), v(0)) = (α(0), β(0)) respectively.

(6.7)



Lu(n) = cv(n−1), (x, t) ∈ Q

Hv(n) = bu(n) + λ exp(v(n−1)) + λ exp(v(n−1))(v(n) − v(n−1)), (x, t) ∈ Q

u(n)(0, t) = η(t), 0 ≤ t ≤ T

u(n)(x, 0) = u0(x), v(n)(x, 0) = v0(x), 0 ≤ x ≤ l.

The maximal sequence of Linia et.al. [133] is denoted by {(ω(n), χ(n))} and minimal

sequence by {(ω(n), χ(n))}. The maximal sequence and minimal sequence of Linia et.al.

[133] are generated by the following iterative scheme for the initial guess (u(0), v(0)) =

(ω(0), χ(0)) and (u(0), v(0)) = (ω(0), χ(0)) respectively

(6.8)



Lu(n) = cv(n), (x, t) ∈ Q

Hv(n) = bu(n) + λ exp(v(n−1)) + λ exp(v0))(v(n) − v(n−1)), (x, t) ∈ Q

u(n)(0, t) = η(t), 0 ≤ t ≤ T

u(n)(x, 0) = u0(x), v(n)(x, 0) = v0(x), 0 ≤ x ≤ l.

To solve the Eqn. (6.1) numerically, all the works in [115, 132, 133] used the backward

finite difference method to discretize the problem. This dicretization leads to the following

nonlinear system

(6.9)


(1 + kc+ ka

h
)ui,j = ui,j−1 + ka

h
ui−1,j + kcvi,j,

(1 + kb)vi,j = vi,j−1 + kbui,j + kλ exp(vi,j),

u0,j = ηj, ui,0 = ψi, vi,0 = φi, i = 1, 2, · · · ,M, j = 1, 2, · · · , N

where ηj = η(tj), ψi = u0(xi) and φi = v0(xi). Based on the iteration in [31], Pao et. al.

[115] obtained the following iterative scheme to solve the nonlinear system (6.9).

(6.10)


(1 + kc+ ka

h
)u

(n)
i,j = u

(n)
i,j−1 + ka

h
u

(n)
i−1,j + kcv

(n−1)
i,j ,

(1 + kb)v
(n)
i,j = v

(n)
i,j−1 + kbu

(n)
i,j + kλ exp(v

(n−1)
i,j ),

u
(n)
0,j = ηj, u

(n)
i,0 = ψi, v

(n)
i,0 = φi, i = 1, 2, · · · ,M, j = 1, 2, · · · , N.
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Denote the maximal sequence of the discretized version of Pao et. al. [115] by {(u(n)
i,j , v

(n)
i,j )}

with (u
(0)
i,j , v

(0)
i,j ) = (u

(0)
i,j , v

(0)
i,j ). Denote the minimal sequence of the discretized version of

Pao et. al. [115] by {(u(n)
i,j , v

(n)
i,j )} with (u

(0)
i,j , v

(0)
i,j ) = (u

(0)
i,j , v

(0)
i,j ). The maximal sequence of

discretized version of Linia et. al. [132] is denoted by {(α(n)
i,j , β

(n)

i,j )} and minimal sequence

by {(α(n)
i,j , β

(n)

i,j
)}. The maximal sequence and minimal sequence of Linia et. al. [132] cor-

responding to the discretized problem are generated by the following iterative scheme for

the initial guess (u
(0)
i,j , v

(0)
i,j ) = (α

(0)
i,j , β

(0)

i,j ) and (u
(0)
i,j , v

(0)
i,j ) = (α

(0)
i,j , β

(0)

i,j
) respectively.

(6.11)
(1 + kc+ ka

h
)u

(n)
i,j = u

(n)
i,j−1 + ka

h
u

(n)
i−1,j + kcv

(n−1)
i,j ,

(1 + kb)v
(n)
i,j = v

(n)
i,j−1 + kbu

(n)
i,j + kλ exp(v

(n−1)
i,j ) + kλ exp(v

(n−1)
i,j )(v

(n)
i,j − v

(n−1)
i,j ),

u
(n)
0,j = ηj, u

(n)
i,0 = ψi, v

(n)
i,0 = φi, i = 1, 2, · · · ,M, j = 1, 2, · · · , N.

The maximal sequence of discretized version of Linia et.al.[133] is denoted by

{(ω(n)
i,j , χ

(n)
i,j )} and minimal sequence by {(ω(n)

i,j , χ
(n)
i,j

)}. The maximal sequence and mini-

mal sequence of Linia et. al. [133] corresponding to the discretized problem are gener-

ated by the following iterative scheme for the initial guess (u
(0)
i,j , v

(0)
i,j ) = (ω

(0)
i,j , χ

(0)
i,j ) and

(u
(0)
i,j , v

(0)
i,j ) = (ω

(0)
i,j , χ

(0)
i,j

) respectively.

(6.12)


(1 + kc+ ka

h
)u

(n)
i,j = u

(n)
i,j−1 + ka

h
u

(n)
i−1,j + kcv

(n)
i,j ,

(1 + kb)v
(n)
i,j = v

(n)
i,j−1 + kbu

(n)
i,j + kλ exp(v

(n−1)
i,j ) + kλ exp(v

(0)
i,j )(v

(n)
i,j − v

(n−1)
i,j ),

u
(n)
0,j = ηj, u

(n)
i,0 = ψi, v

(n)
i,0 = φi, i = 1, 2, · · · ,M, j = 1, 2, · · · , N.

6.3. Relation between the monotone iterations

This section provides theoretical justification for the faster convergence of the iterative

schemess (6.7) and (6.8) over the iterative scheme (6.6) for the problem (6.1). Similarly,

this section also proves that the iterative schemes (6.11) and (6.12) always converge faster

than the iterative scheme (6.10) for the nonlinear system (6.9). The following theorem

provides the relation between the iterative schemes (6.6) and (6.7).
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Theorem 6.3.1. Let (u∗, v∗) be a solution of (6.1). If (u0, v0) and (u0, v0) are ordered

upper and lower solution for Eqn. (6.1) then for all n ∈ N,

(6.13) (u(n), v(n)) ≤ (α(n), β(n)) ≤ (u∗, v∗) ≤ (α(n), β
(n)

) ≤ (u(n), v(n)).

Proof. It is enough to show that for n ∈ N,

(6.14) (u(n), v(n)) ≤ (α(n), β(n)) ≤ (α(n), β
(n)

) ≤ (u(n), v(n)).

Using mathematical induction the inequality (6.14) is proved. From the definitions of

(α(n), β(n)) and (u(n), v(n)) one can get

(6.15)



L(α(n) − u(n)) = c(β(n−1) − v(n−1)), (x, t) ∈ Q

H(β(n) − v(n)) = b(α(n) − u(n−1)) + λ(exp(β(n−1))− exp(v(n−1)))

+λ exp(β(n−1))(β(n) − β(n−1)), (x, t) ∈ Q

α(n)(0, t)− u(n)(0, t) = 0, 0 ≤ t ≤ T

α(n)(x, 0)− u(n)(x, 0) = 0, β(n)(x, 0)− v(n)(x, 0) = 0, 0 ≤ x ≤ l.

Note that both the minimal sequences (u(n), v(n)) and (α(n), β(n)) corresponding to the

iterative schemes (6.6) and (6.7) respectively have the same initial guess i.e. (u(0), v(0)) =

(α(0), β(0)). Thus for the choice n = 1 in (6.15), one can get

(6.16)



L(α(1) − u(1)) = c(β(0) − v(0)) = 0, (x, t) ∈ Q

H(β(1) − v(1)) = b(α(1) − u(0)) + λ(exp(β(0))− exp(v(0)))

+λ exp(β(0))(β(1) − β(0)) ≥ 0, (x, t) ∈ Q

α(1)(t, 0)− u(1)(t, t) = 0, 0 ≤ t ≤ T

α(1)(x, 0)− u(1)(x, 0) = 0, β(1)(x, 0)− v(1)(x, 0) = 0, 0 ≤ x ≤ l.

Using Lemma (6.2.1) and (6.2.2), one can have (α(1), β(1)) ≥ (u(1), v(1)). Similarly, one can

prove (α(1), β
(1)

) ≤ (u(1), v(1)). Thus the inequality (6.14) holds true for n = 1. Assume

that inequality (6.14) is true for n = 1, 2, · · · ,m. For the choice n = m+ 1 in Eqn. (6.15)

leads to

L(α(m+1) − u(m+1)) = c(β(m) − v(m)) ≥ 0, (x, t) ∈ Q

H(β(m+1) − v(m+1)) = b(α(m+1) − u(m)) + λ(exp(β(m))− exp(v(m)))

+λ exp(β(m))(β(m+1) − β(m)) ≥ 0, (x, t) ∈ Q
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Moreover, for all t ∈ [0, T ], α(m+1)(0, t)− u(m+1)(0, t) = 0 and for x ∈ [0, l], α(m+1)(x, 0)−

u(m+1)(x, 0) = 0 and β(m+1)(x, 0) − v(m+1)(x, 0) = 0. Once again using Lemma (6.2.1)

and (6.2.2), one get (α(m+1), β(m+1)) ≥ (u(m+1), v(m+1)). Similarly, one can show that

(α(m+1), β
(m+1)

) ≤ (u(m+1), v(m+1)). Hence (6.14) is true for n = m + 1. Consequently,

(6.14) holds true for all n ∈ N.

The following theorem provides the relation between the iterative schemes (6.10) and

(6.11) for the nonlinear system (6.9).

Theorem 6.3.2. Let (u∗i,j, v
∗
i,j) be a solution of (6.9). If (u

(0)
i,j , v

(0)
i,j and (u

(0)
i,j , v

(0)
i,j ) are

ordered upper and lower solution for Eqn. (6.9) then for all n ∈ N,

(6.17) (u
(n)
i,j , v

(n)
i,j ) ≤ (α

(n)
i,j , β

(n)

i,j
) ≤ (u∗i,j, v

∗
i,j) ≤ (α

(n)
i,j , β

(n)

i,j ) ≤ (u
(n)
i,j , v

(n)
i,j ).

Proof. It is enough to show that for n ∈ N,

(6.18) (u
(n)
i,j , v

(n)
i,j ) ≤ (α

(n)
i,j , β

(n)

i,j
) ≤ (α

(n)
i,j , β

(n)

i,j ) ≤ (u
(n)
i,j , v

(n)
i,j ).

Using mathematical induction the inequality (6.18) is proved. From the definitions of

(α
(n)
i,j , β

(n)

i,j
) and (u

(n)
i,j , v

(n)
i,j ) one can get,

(6.19)



(1 + kc+ ka
h

)(α
(n)
i,j − u

(n)
i,j ) = (α

(n)
i,j−1 − u

(n)
i,j−1) + kc(β(n−1)

i,j
− v(n−1)

i,j )

+ka
h

(α
(n)
i−1,j − u

(n)
i−1,j),

(1 + kb)(β(n)

i,j
− v(n)

i,j ) = kb(α
(n)
i,j − u

(n)
i,j ) + kλ(exp(β(n−1)

i,j
)− exp(v

(n−1)
i,j ))

+(β(n)

i,j−1
− v(n)

i,j−1) + kλ exp(β(n−1)

i,j
)(β(n)

i,j
− β(n−1)

i,j
),

α
(n)
0,j − u

(n)
0,j = 0, j = 1, 2, · · · , N

α
(n)
i,0 − u

(n)
i,0 = 0, β(n)

i,0
− v(n)

i,0 = 0, i = 1, 2, · · · ,M.

Note that both the minimal sequences (u
(n)
i,j , v

(n)
i,j ) and (α

(n)
i,j , β

(n)

i,j
) corresponding to the it-

erative schemes (6.10) and (6.11) respectively have the same initial guess i.e. (u
(0)
i,j , v

(0)
i,j ) =
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(α
(0)
i,j , β

(0)

i,j
). Thus for the choice n = 1 in (6.19), one get

(6.20)



(1 + kc+ ka
h

)(α
(1)
i,j − u

(1)
i,j ) = (α

(1)
i,j−1 − u

(1)
i,j−1) + kc(β(0)

i,j
− v(0)

i,j )

+ka
h

(α
(1)
i−1,j − u

(1)
i−1,j),

(1 + kb)(β(1)

i,j
− v(1)

i,j ) = kb(α
(1)
i,j − u

(1)
i,j ) + kλ(exp(β(0)

i,j
)− exp(v

(0)
i,j ))

+(β(1)

i,j−1
− v(1)

i,j−1) + kλ exp(β(0)

i,j
)(β(1)

i,j
− β(0)

i,j
),

α
(1)
0,j − u

(1)
0,j = 0, j = 1, 2, · · · , N

α
(1)
i,0 − u

(1)
i,0 = 0, β(1)

i,0
− v(1)

i,0 = 0, i = 1, 2, · · · ,M.

The first two equation of (6.20) can be written as

(1 + kc+ ka
h

)(α
(1)
i,j − u

(1)
i,j )− (α

(1)
i,j−1 − u

(1)
i,j−1)− ka

h
(α

(1)
i−1,j − u

(1)
i−1,j) = kc(β(0)

i,j
− v(0)

i,j ) = 0 and

(1 + kb)(β(1)

i,j
− v(1)

i,j ) − kb(α(1)
i,j − u

(1)
i,j ) − (β(1)

i,j−1
− v(1)

i,j−1) = kλ exp(β(0)

i,j
)(β(1)

i,j
− β(0)

i,j
) ≥ 0.

Using Lemma (6.2.3) together with the initial and boundary conditions of (6.20), one can

get (α
(1)
i,j , β

(1)

i,j
) ≥ (u

(1)
i,j , v

(1)
i,j ) for all i and j. Similarly, One can show that (α

(1)
i,j , β

(1)

i,j ) ≤

(u
(1)
i,j , v

(1)
i,j ). Thus the inequality (6.18) holds true for n = 1. Assume that inequality (6.18)

is true for n = 1, 2, · · · ,m. For the choice n = m+ 1 in Eqn. (6.19) leads to

(6.21)

(1 + kc+ ka
h

)(α
(m+1)
i,j − u(m+1)

i,j ) = (α
(m+1)
i,j−1 − u

(m+1)
i,j−1 ) + kc(β(m)

i,j
− v(m)

i,j )

+ka
h

(α
(m+1)
i−1,j − u

(m+1)
i−1,j ),

(1 + kb)(β(m+1)

i,j
− v(m+1)

i,j ) = kb(α
(m+1)
i,j − u(m+1)

i,j ) + kλ(exp(β(m)

i,j
)− exp(v

(m)
i,j ))

+(β(m+1)

i,j−1
− v(m+1)

i,j−1 ) + kλ exp(β(m)

i,j
)(β(m+1)

i,j
− β(m)

i,j
),

α
(m+1)
0,j − u(m+1)

0,j = 0, j = 1, 2, · · · , N

α
(m+1)
i,0 − u(m+1)

i,0 = 0, β(m+1)

i,0
− v(m+1)

i,0 = 0, i = 1, 2, · · · ,M.

The first two equations in (6.21) can be written as

(1 + kc+ ka
h

)(α
(m+1)
i,j − u(m+1)

i,j )− (α
(m+1)
i,j−1 − u

(m+1)
i,j−1 )− ka

h
(α

(m+1)
i−1,j − u

(m+1)
i−1,j ) ≥ 0

and (1 + kb)(β(m+1)

i,j
− v(m+1)

i,j )− kb(α(m+1)
i,j − u(m+1)

i,j )− (β(m+1)

i,j−1
− v(m+1)

i,j−1 ) ≥ 0.

Using Lemma (6.2.3) together with the initial and boundary conditions of (6.21), one can

get (α
(m+1)
i,j , β(m+1)

i,j
) ≥ (u

(m+1)
i,j , u

(m+1)
i,j ). Similarly, one can show that (α

(m+1)
i,j , β

(m+1)

i,j ) ≤

(u
(m+1)
i,j , u

(m+1)
i,j ). Hence (6.18) is true for n = m + 1. Consequently, (6.18) holds true for

all n ∈ N.
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The following Theorems provide the relation between the iterative schemes discussed in

[31, 115] and [133]. The proof is similar to the proof of Theorem 6.3.1 and Theorem

6.3.2 respectively. Hence the proof is omitted here.

Theorem 6.3.3. Let (u∗, v∗) be a solution of (6.1). If (u(0), v(0)) and (u(0), v(0)) are

ordered upper and lower solution for Eqn. (6.1) then for all n ∈ N,

(6.22) (u(n), v(n)) ≤ (ω(n), χ(n)) ≤ (u∗, v∗) ≤ (ω(n), χ(n)) ≤ (u(n), v(n)).

Theorem 6.3.4. Let (u∗i,j, v
∗
i,j) be a solution of (6.9). If (u

(0)
i,j , v

(0)
i,j ) and (u

(0)
i,j , v

(0)
i,j ) are

ordered upper and lower solution for Eqn. (6.9) then for all n ∈ N,

(6.23) (u
(n)
i,j , v

(n)
i,j ) ≤ (ω

(n)
i,j , χ

(n)

i,j
) ≤ (u∗i,j, v

∗
i,j) ≤ (ω

(n)
i,j , χ

(n)
i,j ) ≤ (u

(n)
i,j , v

(n)
i,j ).

Remark 6.3.1. Inequalities 6.13,6.17,6.22 and 6.23 not only ensure that the iterative

schemes in [132, 133] converges faster than the iterative scheme in [31, 115] but also

guarantee that all the blowup properties discussed for the iterative scheme in [31, 115]

also hold true for the iterative schemes in [132, 133].

6.4. Conclusion

In this chapter, theoretical justification is provided to show that the iterative schemes

in [132, 133] always requires less number of iterations than the iterative scheme in [31,

115]. Moreover, it also obtains the blowup results related to the iterative schemes in

[132, 133].
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