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Abstract

Delay  sheds  light  upon plenty  of  different  characteristics  of  a  nonlinear  system
which are either nonexisting or unrevealed without it. Here we unmask one of those
nonexisting  characteristics  of  First-order  Kuramoto  Oscillators  ‘Solitary  states’.
Where  the  natural  occurrence  is  not  yet  discovered  in  the  First-order  Kuramoto
model, we propose a technique which can induce the Solitary states in it by applying
the Delay in a multiplex network. This technique is equally useful to induce the
Chimera states and is also extended to allow the switching between Solitary and
Chimera states.

Keywords : Solitary States,  Chimera States,  Switching between Solitary state
and Chimera, Delay, Delay in Multiplex network
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Chapter 1

1. 1 Introduction

In the year 2002, a new subfield was added in the vast field of nonlinear dynamics
when  Dr.  Yoshiki  Kuramoto  realized  the  symmetry  breaking  in  a  system  of
identically coupled oscillators  [1]. An identical system, which seemed to be in any
one the only two possible  states,  i.e.,  Synchronized or desynchronized states,  he
discovered a new mixed state between them. Later, Strogatz and Abrams called these
states ‘Chimera State’ [2]. Initially, Chimera was found in a system of ‘First order
Kuramoto Oscillators’ (1-KO), but by now it has been observed in various models
like FitzHugh-Nagumo oscillators, Rossler’s, and coupled maps. 

The  study  of  Chimera  attracts  the  researcher  not  only  because  it  is   another
spatiotemporal pattern to understand, but also its unexpected and probably unnoticed
appearances in the places which are yet to discover. A recent study in Neuroscience
doubts chimera states to be the probable cause of Epilepsy in patients. Even this
single example clarifies why it is essential to build a strong theoretical background
which can provide us more control over these states.

With time, people found many other chimeric patterns and named them as Virtual
Chimera [4], Travelling Chimera [5], Breathing Chimera [6] and many more [7, 8, 9]. For
this thesis, I would like to draw the attention to ‘Solitary state’ in oscillators too,
which  is  another  Chimera-like  pattern,  observed  in  ‘Second-order  Kuramoto
Oscillator’ (2-KO) [10]. 

Further in the introduction, we provide a brief discussion to Chimera state and give
the necessary introduction of Solitary states.

Theory and Introduction
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1. 1. 1 Coherent and Incoherent States

A general  system  of  N  coupled  components  can  show  a  variety  of  dynamical
behaviors of the individuals. Each can have its own natural frequency and can be
anywhere in the entire 0-2π space at any time.

If for some suitable parameter, every component is found at the same place with
exactly the same frequency, the system is called to be in ‘Coherent state’. Whereas,
if every node is moving with the different frequency and have completely random
phase value at any time, the system is said to be in ‘Incoherent state’.

Phases

Fig 1.1(a) : Phases and frequencies of a coherent system

Fig 1.1(b) : Phases and frequencies of an incoherent system

Figure – 1.1 :  Example of Coherent and Incoherent system

Frequency
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1. 1. 2 Chimera State

When a system of the identical oscillator is simulated, the dynamics do not seem
much complicated, and depending on the system parameters; we expect it always to
get  synchronized or stay desynchronized eventually.  But Kuramoto found  [1] that
those  identical  systems  are  not  every  time  simple  and  for  some  specific  initial
condition, they can be in a mixed state, called  ‘Chimera State’. Figure 1.2 is the
example of this coexisting behaviour.

I would like to emphasis on those special initial conditions and will later discuss
how important they actually are, and if they provide the necessary and sufficient
conditions observe Chimera.

1. 1. 3 Solitary state

The  word  Solitary  is  taken  from Latin  ‘Solitarius’ which  stands  for  ‘alone’  or
‘isolated’.  The  overall  behavior  of  the  whole  system,  in  this  case,  is  similar  to
Chimera, but here only a few oscillators from different locations possess different
frequencies and phases. One solitary unit in the system is called 1-Solitary, two units
2-Solitary  and ‘k’ units  k-Solitary  [11].  The population and the  position of  the
isolated nodes depend on the system parameters and, especially, found for a
specific combination of parameter values in the phase space. The detailed study
of such parameters and its causes is beyond the scope of this thesis and would be
unnecessary for the objective of the project. but it should be noted that these states
are observed only in the 2-KO and NOT YET observed in 1-KO. Figure 1.3 shows
the example of Solitary states.

Figure 1.2 : Phases and frequencies of individual oscillators when 
the system is in Chimera state.
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1. 2 Theory of Chimera

We  will  be  discussing  the  initial  conditions  and  the  necessary  parameters  for
Chimera in this section. 

It is not very straight-forward to guess or obtain those initial conditions. According
to Kuramoto, it  is required to provide the system with a push start by picking a
random number for each phase from a range   which increases with distance as we

Phases Frequency

Fig 1.3 (a) : Phase and Frequency of 1-Solitary state

Fig 1.3 (b) : Phase and Frequency of 5-Solitary state

Figure – 1.3 : Example of solitary state
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go away from the first oscillator in a ring which is done by taking an exponential
kernel 

˙θi
initial

=a∗r (i)∗exp [−b (i−λ)
2
]

Here, θi
initial is the initial phases of all the nodes, r(i) is the random number of i th node,

‘a’ and ‘b’ are the appropriate constants, and ‘¸’ is the mean of the distribution.
Figure 1.4 shows how the system initially looks like.

Evolving the system with any other initial condition without using a similar kernel
leads the system to the synchronized state for enough coupling strength.

First order Kuramoto (1-KO) is given by:

  θ̇i=ω+μ∑
j=1

N

sin(θ j−θi−α)

Here ‘θ’ is the phase, ‘ω’ is the natural frequency, ‘μ’ is the coupling strength and
‘α’ is the lag parameter. 

Since these conditions are necessary but not sufficient for Chimera states, there is
one more parameter which has a vital role in its  appearance, the ‘phase lag α‘. This
is the only parameter which gives us at least a little control over chimera states. By
tuning it, we can increase or decrease the width of the incoherent region. But even
this parameter has its limitations and works only in its specific range. Being below
or above that range also leads the system to the synchronized state. 

Though figure 1.5 shows that range but this thesis presents the method for which the
study of the role of lag isn’t important and therefore, is not given here. The only
thing, which is of our concern, is to notice that only this range of lag is the second
necessary condition for Chimera.

Fig 1.4 : Initial phases of the system of 256 nodes.
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The fraction of drifting oscillator is just the inverse of the number of oscillators
which are drifting. Thus, it takes the value 1 when all are drifting and ‘0’ when no
one is. Similarly, (b) is the measure  of the order in the system, shows almost the
opposite thing than (a). It takes the minimum value for all drifting oscillators and ‘1’
for the completely synchronized system.

Fig 1.5 : (a) Shows the number of drifting oscillators and (b) 
the corresponding order parameter of the system.

(a) (b)
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Chapter 2
  

2.1 Theoretical modeling

We  are  using  a  ring  of  standard  first-order  Kuramoto  oscillators  connected  to
another identical ring with only one to one connection between the mirror nodes.
The schematic diagram can be imagined like figure 2.1.

The dynamics of each ring is given by :

θ̇=ω+μ1∑
j=1

N

sin(θ j
1
−θi

1
)+μinter sin (θi

2
−θi

1
)

θ̇=ω+μ2∑
j=1

N

sin(θ j
2
−θi

2
)+μinter sin (θi

1
−θi

2
)

Here, 

θi is the phase of each oscillator in the 1st or the 2nd layer accordingly, N is the
number of oscillators in each layer, ω is the (equal) frequency, μ1 and μ2 are the
coupling strengths between the oscillators in the first and second layer respectively,
and  μinter is  the  coupling  strength  of  the  inter-layer  connection.  We  choose  the
conditions for which the whole system synchronizes.

This article uses ’delay’ as a tool to get some of the synchronized oscillators to drift
with  a  different  frequency than the  rests.  A similar  study was done for  coupled
chaotic  maps  by  introducing  delay  in  some  of  the  nodes,  making  them behave
differently. Here, we choose to have the delay in the inter layer connection keeping
each  layer  as  close  to  the  previous  model  (eq.  2.1)  as  possible.  The  governing
equation changes slightly and is given by:

(2.1)

Methods and Techniques
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θ̇=ω+μ1∑
j=1

N

sin(θ j
1
−θi

1
)+μinter sin (θi

2
(t−τ i)−θi

1
(t))  

θ̇=ω+μ2∑
j=1

N

sin(θ j
2
−θi

2
)+μinter sin (θi

1
(t−τ i)−θi

2
(t))

Where τi is the appropriate time delay in each inter-layer connection. We expect that
as  soon as  we apply  delay  in  any of  the  links,  the  corresponding nodes  should
respond and behave differently, making it a Solitary node. 

Though the delay plays the most important role here, it’s not the only player in the
game. Actually, the inter and intra-layer coupling strength also have crucial parts in
the  overall  dynamics.  Where  the  delay  initializes  the  frequency  difference,  the
combination of inter and intra-layer coupling strength take part  in  amplifying it.
Thus, It needs comparatively more amount of inter-layer coupling strength to see the
visible and legitimate frequency difference.

Hopefully, this method will enable us to induce Solitary states in a synchronized
system of 1-KO where these states are not discovered yet. Similarly, we will be able
to induce Chimera optionally too. Also,  this method will allow us the switching
between the Solitary state and Chimera, which is going to be the main objective
of this thesis. 

The schematic diagram of the network after applying delay is shown in figure 2.1.
Different color, shown in 2.1(b) shows the different delay value in the interlayer
connection.

For k-Solitary state, we will randomly choose k connections in any of the networks
and will randomly distribute some delay values on those positions only. As a result,
the  nodes  corresponding  to  those  delayed  connections  will  pop  out  of  the
synchronized  chunk  and  drift  with  the  different  frequency  than  the  rests.  By

(2.2)

Figure 2.1 : Schematic diagram of the multiplex network 
when only 1 (2.1a) and 2 or more connections (2.1b) are 
delayed with different values

(b)(a)
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applying the same heterogeneous delay values in the adjacent connection instead of
in the random position will switch the k-solitary state with chimera state. 
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Chapter 3

3.1 Results

As discussed, to get a synchronized system, we take μ1  = μ2  = 0.5 and  μintra = 4.0 .
Figure 1.1(a) shows how the phases, as well as the frequencies, become equal for
these parameters without introducing delay.  Since these parameters show enough
frequency difference, we are going to use them for further investigation.

We start by taking a random delay value at the 50 th position. The phases and the
frequency difference is quite visible in figure (3.1).

Similarly, random positions and the delay values were chosen to obtain 2-Solitary, 5-
Solitary,  and 10-Solitary  states.  All  these states  are  shown in  Fig 3.2 with  their
corresponding delays.

Results and conclusion

(a)

(b)

Fig 3.1 : (a) Delay value only at 50th position. (b) shows how 
the synchronized system has evolved to 1-Solitary state.
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Changing the positions of the delayed nodes makes possible the switching between
the  Solitary  and Chimera  state.  In  the  next  figure  (3.3),  we’ve  shown how this
simple change can give us the chimera state without using any initial condition or
tuning  any  parameter.  In  fact,  this  state  is  obtained  by  taking  random  initial
conditions and by not at all considering the lag parameter in the equation.

We put random values of delays in 20 of the connections at random positions first
and later put them on the adjacent nodes, switching 20-Solitary to a Chimera state.

Fig 3.2 : Delay, Phases and Frequency of 2, 5 and 
10-Solitary states.

2-Solitary 5-Solitary 10-Solitary
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3.2 Discussion

Since, other than delay, these states are dependent on inter and intra-layer coupling
strength, it seems necessary to see the coupling strength combination for which these
states are achievable. Moreover, It is essential to know how the number of those
combinations increase or decrease with increasing delay value.

For  this  matter,  we  plot  the  phase  diagram  for  inter  and  intra-layer  coupling
strengths  with  increasing  delay  for  the  1-Solitary  state.  Since  the  frequency
difference is the only legitimate parameter, we check the corresponding frequency
difference in the system of 8 nodes. 

In  figure  (3.4),  we see  how the  obtainable  region  can  be  reached  sooner  if  we
increase  the  delay.  Below  the  middle  line  is  the  region  where  the  system  is
synchronized, and we do not have any frequency difference among the nodes. 

Solitary State Chimera State

Figure 3.3 : Switching between Solitary and Chimera state
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Though the value in Y and X axis are correct, these are just the schematic diagrams
of the two regions. The real plots are [A], [B], [C] and [D] in the appendix. Below
0.1 intra-layer coupling is the region when the system is not synchronized and is of
no interest to us. One can see from these diagrams that the states are obtainable only
for the combinations of low intra-layer and high inter-layer coupling strength.

3.3 Conclusion

I want like to conclude the discussion by bringing in light, the progress we’ve made
so far.

i. Chimera states could not be achieved without using special initial conditions
and the lag parameter which we can now.

ii. The natural appearance of Solitary state in 1-KO is not yet discovered. Still,
we can induce it using this method.

Fig 3.4 : Phase spaces with different delay
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iii. Even  when  we  apply  the  appropriate  conditions  for  Chimera,  it  was
completely unknown where in the network Chimera will appear. So is the
case  for  Solitary  states.  The number  and position  of  solitary  nodes  were
parameter dependent, which now is completely on our control.

iv. Most  importantly,  by  simple  tuning,  this  method  allows  the  switching
between the two chimera-like states. 
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Appendix :-

Please note that each pixel in the figure represents the frequency difference of the
solitary node and the synchronized chunk.  The value of those differences  in the
desired location can be read from the colorbar next to each figure.

Its clear that as we increase the intra-layer coupling strength, the difference in the
frequency decreases no matter what delay value we take. On those locations, all the
nodes are so tightly sync due to the intra-layer coupling that the inter-layer coupling
is unable to amplify the effect of the delay.

[A] . 

[B] . 

23



  [C] . 

  [D] . 

24


