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Abstract

The coexistence nature of both coherent and incoherent state in non-locally cou-

pled identical oscillators in a structurally symmetric network is termed as chimera.

Study of chimera has become very popular in the past decades due to its peculiar

behavior. There has been numerous method adopted to observe chimera. Here we

investigate on Kuramoto model and the logistic map model. We study the impact of

multiplexing a repulsively coupled second layer on the positively coupled first layer.

We report that a repulsively coupled layer enhance the appearance of chimera in

the positively coupled layer. We study the logistic map model for both single and

multiplex network, ignoring the effect of the delay. Furthermore adding delay to the

nodes of a single layer network, we investigate how does this affect the dynamics

of the system. We also study the role of homogeneous and heterogeneous delay to

produce chimera state.
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Chapter 1

Introduction

We have various problems related to complex systems around us, and such systems

are studied and solved by constructing networks. The dynamical behavior of a

network is either observed to be in a synchronized or desynchronized state (i.e.,

each node either behaves in the same manner like the all other nodes, or they are

independent of each other). A different phenomenon, unlike the synchronized and

desynchronized state, was observed by Kuramoto and Battogtokh in 2002 for a model

of identical but non-locally coupled oscillators in a ring network [1]. Later in 2006, it

was defined as chimera state by Abrams and Strogatz [2]. Chimera state is referred

to as a mathematical hybrid state in which coherent and incoherent dynamics coexist

in non-locally coupled oscillators in a structurally symmetric network [3].

In Greek mythology, the fire-breathing hybrid creature of Lycia is known as Chimera.

Chimera occurs in a variety of physical, chemical, biological, neuronal, ecological,

technological, or socio-economic systems [4]. The coexisting behavior of coherent

and incoherent state at the same time fascinates and motivates the researchers to

find out the factors that are responsible for the emergence of chimera. Chimera

has observed in many network systems. Recent literature has indicated a strong

1



2 Chapter 1. Introduction

connection between the occurrence of chimera and various responses of neurons

in brain networks. For example, the chimera state has been related to the uni-

hemispheric sleep in mammals where half of the brain remains asleep, while the

other half remains active [2].

1.1 Network

To better understand a complex system, we need to apprehend how its components

interact with each other. It consists of different types of networks. Nodes in a

network are connected through edges. These nodes are connected to each other

through links. N represents the number of nodes, and We often call N as the size

of the network. To distinguish the nodes, we denote them with i = 1, 2, ..., N. L

represents the number of links, which gives us a basic idea about the total number

of interactions exists between the nodes [5]. The network depicted in figure 1.1

depicting has N=7 and L=8.

Figure 1.1: Schematic diagram of a network consisting of 7 nodes.

For example, two persons in a social network can interact academically or socially

or both, two communication hubs may be connected via rail or road or air or by

all of them. Real world complex system from various field ranging from science and

engineering to sociology or economics and model them as networks which will help
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us to make some understanding of the underlying interaction patterns [3]. There are

different types of network, but here we used a regular network to study its behavior,

and how does the state of the system evolve with time? Some of the important

properties of a network are listed below.

1.1.1 Degree

The total number of connection of a node has to all the other nodes in a network is

said to be the degree of a network. Degree of the ith node is denoted by ki.

1.1.2 Average degree

Average Degree is denoted by 〈k〉 and is defined for this network is

〈k〉 =
1

N

N∑
i=1

ki (1.1)

1.2 Adjacency matrix

The architecture of a network can be understood by analyzing an adjacency matrix.

A network consisting of N nodes represented by a N×N matrix containing elements

either 0 or 1. The elements Aij of the adjacency matrix A are defined as

Aij=

1 if i ∼ j i.e. ith and jth node are connected.

0 otherwise

The diagonal entries of the adjacency matrix are zero represents no self-connection

in the network.

1.3 Theoretical Model

In the previous section, we have mentioned there are a plethora of systems which

shows different behavior such as synchronization, desynchronization, or chimera.

To understand the mechanism behind such phenomenon that draws the attention
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of many researchers we need to construct a theoretical model which must contain

all the parameters that are involved in a system and hence will be able to give us

the accurate and necessary results we expect to observe. Here we used two different

types of mathematical models.

1.3.1 Kuramoto Model

To solve such one of real-world phenomenon related to oscillators, Kuramoto model

came into existence. A Japanese physicist, Yoshiki Kuramoto, proposed this model,

which later used to solve various problems. Synchronization is well defined and

studied using this model [1].

θ̇i = ωi + λ
2N∑
j=1

Aij(sin (θj − θi + α)) (1.2)

Where θi and ωi are the phase and natural frequency of the ith oscillator respectively.

Here i varies from 1,2,...,2N. λ is coupling strength. αi is a constant phase lag

parameter.

Equation(1.2) is a first order differential equation (θi is differentiated with respect

to time). Phase (θi) could be easily solved and analyzed by using the Runge-Kutta

method, and as a result, we would be able to predict the dynamics of the system

[6].

1.3.1.1 Order parameter(R):

Another important parameter used in the Kuramoto model is order parameter,

denoted by R. Order parameter is used to determine the state of a system and help

us to predict whether the state is in a coherent or in an incoherent state. Defined

as:
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R(t) =
1

N

∣∣∣∣∣
N∑
i=1

eiθi(t)

∣∣∣∣∣ (1.3)

We calculate order parameter for the transient time i.e.

R =
1

T

T∑
t=0

R(t) (1.4)

The magnitude of R lies between 0 and 1. R=1 denotes the system is in a completely

coherent state, and 0 denotes the system is completely in an incoherent state [7].

1.3.2 Logistic Map Model

The dynamics of a system is determined using the second model which is defined

as:

zt+1(i) = f(zt(i)) +
ε∑

j=1Aij

mN∑
j=1

Aij × [f(zt(j))− f(zt(i))] (1.5)

Where ε is the coupling strength, m is the number of layers in the network, i and

j are the indices of the oscillators. N is the total number of nodes in a layer. The

denominator term
∑N

j=1Aij in the above equation is the average degree of ith node

i.e. with how many nodes the ith node is connected with. A is the adjacency matrix

which gives us information about node connection in a network. The function f(z)

that repeatedly appears in the above model is the logistic map, and defined as [3].

f(z) = µz(1− z) (1.6)

The logistic map is an iterative second order polynomial used in this model. This

map gives the value of z for the next time step provided that we know the previous

value of z. With the help of this model, we were able to determine the dynamics of

any node at any time in terms of zt(i).
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Chapter 2

Inhibition induces Chimera

Since its discovery, a numerous approach has been taken to study chimera state. We

are going to discuss various method followed by us in this chapter, to study chimera

and its peculiar behavior. In this chapter we are going to observe the impact of

multiplexing a repulsively coupled layer with a positively coupled layer. Further-

more, this approach of constructing a framework of network is acceptable. Here, we

consider a multiplex network consisting of two identical layers but nature of coupling

is different. Specifically, we consider attractive and repulsive couplings nature of a

layer. Such type of attractive and repulsive coupling nature has observed in many

real world complex system. For example, the brain has inhibitory and excitatory

neurons representing repulsive and attractive couplings, respectively. Studies on the

impact of inhibition on the emergence of the chimera state in the multiplex frame-

work will be useful for a better understanding of such complex systems in different

conditions [6].

2.1 Network Architecture

We considered a multiplex network comprising two layers, where each layer is a

regular ring network consisting of 100 non-local identical oscillators coupled to each

other by some coupling strength λ, and it varies from 0 to 5. In a layer, a node

7
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is connected to it’s “p” number of nearest neighboring nodes in both the direction.

The mirror nodes of the two layers are connected to each other. Hence the degree

of each node in a layer is equal to 2p+1.

We connect the nodes of the second layer in the multiplex network in two different

ways:

(1). Attractively coupled

(2). Repulsively coupled

Figure 2.1: Schematic diagram depicting the two different types of coupling archi-
tecture followed to observe chimera state.

The mathematical representation of a network is obtained by constructing an ad-

jacency matrix in C++, which shows the connectivity of each node in a network.

Adjacency matrix for this multiplex network is

A=

A1 I

I A2


Here A1 and A2 is the adjacency matrix for the first and second layer respectively.

I is the identity matrix representing the connectivity between the mirror nodes.

Aij are the elements of the adjacency matrix(A2) for the second layer, where the

nodes are repulsively coupled and defined by
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Aij=

-1 if i ∼ j i.e. ith and jth node are connected.

0 otherwise

2.2 Method:

The Kuramoto model mentioned in chapter 1 was solved in C++ using 4th order

Runge–Kutta method. To understand the evolution of oscillators with time, we run

the code for a sufficiently long time. Here we simulated the code up to 15000 times.

The phase of each oscillator for the last 5000 transient time is taken to study how

these oscillators are interdependent in a network. Using these phase values, we were

able to estimate the order parameter, which in turn could define the state of the

system. We also computed laplacian distance measure |D| defined by [6]

|D| = ∇2
i θ = |(θi+1(t)− θi(t))− (θi(t)− θi−1(t))| (2.1)

2.2.1 Initial condition:

To observe chimera it is very necessary to consider some specific initial conditions.

We take the initial phases of the oscillator from a uniform random distribution

denoted by r(i) which is multiplied by a Gaussian distribution as given below.

θi(t = 0) = 6r(i) exp[−30(
i

N
− 1

2
)] (2.2)

θi values resulted from the above equation lies between -π to π.
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Figure 2.2: Same Initial phase given to both the layers in the multiplex network, at
time=0.

2.3 Result

We have earlier discussed that the second layer coupled in two different ways. Fur-

ther, we want to investigate the impact of the negatively coupled second layer on

the positively coupled first layer.

2.3.1 Second layer is attractively coupled

We present results for the multiplex network with both the layers represented by 1D

lattices and the nodes of the second layer is attractively coupled. Order parameter

plot for both the layers with the same degree equal to 65 is shown below. Coupling

strength varies from 0 to 5, with step size h=0.025.
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Figure 2.3: Order parameter plot with the coupling strength for the two layers in
the multiplex network.

We plot phases of the oscillators and study the interdependence of the oscillators

with each other. Chimera pattern is observed for small and high range value of

coupling strength, and order parameter(R) obtained for these λ values lies between

0 and 1. In the mid-range values of λ, R equals to 1. As a result, we expect the

same phase for all the oscillators, and hence, they are in a perfectly synchronized

state.

Figure 2.4: (a) Snapshot of the phase plot for the first layer of the multiplex net-
work consisting of two attractively coupled layers, (b) Spatio-temporal pattern of
the phase plot for the last 200 transient time, and (c) Laplacian distance mea-
sure |D| of the phase plot. Parameters: Network size N=N1=N2=100, node
degree=〈k1〉=〈k2〉=64, coupling strength λ=1.29, natural frequency ω=0.5, and lag
parameter α=1.45 [6].
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2.3.2 Multiplexing with a repulsively coupled layer:

We consider a repulsively coupled layer to observe its impacts on the dynamics of

the Kuramoto oscillators in the first layer. As expected, the dynamics of the nodes

in the first layer is different from the section:2.3.1.

These plots depict chimera state in the dynamics of Kuramoto oscillators of the

positive layer multiplexed with a negative layer at a particular transient time.

Figure 2.5: Snapshots of the phase plot show chimera state in the positive layer
upon multiplexing with a negative layer. (a) and (c) is in a completely synchronized
state for the multiplex network consisting of two positively coupled layers. (b) and
(d) shows chimera state for the positive layer which is multiplexed with a negative
layer [6].

In the case of the multiplex network consisting of two positive layers, coherent state

is highly stable with time for the mid coupling range (2 . λ . 4). This behavior

observed due to the high dependence of a node to its neighboring nodes in a network.

Whereas in the second case, the positive layer shows chimera state for the same range

value of coupling strength.
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Figure 2.6: Spatio-temporal patterns of the phase plot show chimera state in the
positive layer upon multiplexing with a negative layer. (a) and (c) is in a completely
synchronized state for the multiplex network consisting of two positively coupled
layers. (b) and (d) shows chimera state for the positive layer, which is multiplexed
with a negative layer [6].

2.4 Conclusion

From the above studies discussed in the this chapter, we observed that chimera

state only appears for some specific initial conditions. We also report for the range

of coupling strength and different parameters for which chimera state is seen. Upon

multiplexing with a negative layer, the coherent state observed in the positive layer

for case(1) is destroyed. Hence chimera state is enhanced in the positive layer by

multiplexing with a negative layer in the multiplex network.
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Chapter 3

Chimera in Logistic map model

Modeling the real world complex systems into the multiplex network framework

is one of the advancement in network science. With the help of such models we

were able to understand the dynamics of the system. The mathematical model in

this chapter we are going to study is based on the logic map. Population growth

is studied using the logistic map. We studied the emergence of chimera states by

considering regular network. We also investigate chimera in both single as well

as in multiplex network. We also studied the range of coupling strength displaying

chimera states for both the layers. We considered two cases, (i) a single layer network

(ii) a multiplex network consisting of two structurally identical layers [3].

3.1 Theoretical model

Dynamics of the ith node in the network is studied by using a parameter zt(i) at

time t using the mathematical model discussed in the first chapter. It is mandatory

to chose µ value in the chaotic region to observe chimera. In this case we assume µ

value to be equal to 3.8 [3]. We choose the initial states zt=0(i) as a random number

chosen such that it lies between 0 and Gaussian function given below,

exp[
−(i− N

2
)2

2σ2
] (3.1)

15



16 Chapter 3. Chimera in Logistic map model

3.2 Network Architecture

3.2.1 Single layer network

First, we considered a single layer network with 100 non-locally coupled identical

oscillators, and average degree k equals to 64 for each node. We developed a code in

C++, to get zt(i) values after some time t for all the oscillators. The time evolution

of each node is predicted from equation (1.5). Coupling strength (ε) values lies

between 0 and 1. In this case N=100, i and j=1,2,...,100, m=1 and
∑N

j=1Aij = 64

[8]. The initial states zt=0(i) in a single layer network is plotted with the node index

as shown in figure 3.1.

0 20 40 60 80 100
Node Index

0.0

0.2

0.4

0.6

0.8

1.0

Z 0
 v
al
ue

Figure 3.1: Initial states for a single layer network.

These 100 random variables z0(i) lies between 0 and 1, and these values are taken as

the initial condition at time t=0 in the logistic map model to observe the evolution

of each node after some transient time t=5000.

3.2.2 Multiplex network(Two layer)

Next, we consider a multiplex network consisting of two identical regular networks,

which is a much more realistic representation of the real network model. Adjacency

matrix for this two-layer multiplex network is
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A =

A1 I

I A2


Here A1 and A2 is the adjacency matrix for the first and second layer respectively. I

is the identity matrix indicating a bi-directional connection between the two layers.

We took 100 nodes for each layer. Average degree for each node equals to 64 in the

intralayer edges and 1 in the inter layer edges. Each node has an equal number of

neighbors in each direction in a layer. To better understand the time evolution of

nodes with time, we considered two cases.

(1) First, we give same initial states z0(i) to the nodes for both the layers.

(2) Second, we considered different initial states to both layers.

Figure 3.2 represent the initial states zt=0(i) for ith node in the network. In the

figure 3.2 (a) initial states are the same for both the layers. But in the figure 3.2 (b)

initial states for the nodes in the first layer are different from the nodes in the second

layer. As mentioned above the initial condition is given and then coupling strength

(ε) is varied between 0 and 1 for both the layers. For each coupling strength, the

system has been evolved up to 15000 time steps, and at t=15000 the corresponding

zt values are observed. The plot of zt values with the node index i shows chimera

pattern in both the layers as shown in the result section.

Figure 3.2: Initial states for the two layers in the Multiplex network.
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3.3 Result

3.3.1 Single layer network

We observed the evolution of zt(i) after some transient for different values of coupling

strength (ε). For small values of coupling strength nodes behave independently of

each other. zt(i) values are scattered as shown in the figure 3.3 (a), which are

not in a synchronized state. But for mid-range values of coupling strength (ε),

some nodes evolve according to their neighboring nodes, and some are independent

of their neighboring nodes. As a result, some nodes are coherent, and some are

incoherent. So this gives us the chimera state (figure 3.3 (c) and (d)) For higher

coupling strength values (ε) nodes are highly dependent on their neighboring nodes.

Thus the nodes are synchronized (figure 3.3 (d)).

Figure 3.3: The figure illustrates different states for single layer network for different
values of coupling strength (ε) [8].
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3.3.2 Multiplex network

3.3.2.1 For same initial condition

In this case, we get symmetric plots for both the layers. The mathematical expla-

nation for this behavior is as follows:

Since we give same initial state zt(i) to both the layers the term [f(zt(j))− f(zt(i))]

in the equation(1.5) is same for both the layers. As a result both layers behave

symmetrically (figure 3.4).

Figure 3.4: Chimera state for multiplex network for different values of coupling
strength(ε) [1].

3.3.2.2 For different initial condition

For different initial states, the term [f(zt(j))− f(zt(i))] in the equation(1.5) is dif-

ferent for both the layers. As a result we get different values of zt+1(i) for each node

in both the layers. Hence both layer behave differently and they are independent of

each other (figure 3.5).
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Figure 3.5: Chimera state for multiplex network for different values of coupling
strength(ε) [3].

3.4 Conclusion

Based on the observations, we conclude that the chimera state is highly dependent

on the initial condition. For both single layer and multiplex network, chimera pat-

tern is observed for mid coupling strength(ε) values. For small values of coupling

strength(ε), the system is in a desynchronized state, i.e., the nodes are independent

of each other. But for high values of coupling strength(ε), the nodes are completely

dependent on each other. As a result, the system is in a synchronized state.
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Designing chimera by introducing
heterogeneous delay

Likewise, we discussed in the previous chapters, where we have ignored the effects of

delay on the system. It has been proved that the oscillators behave differently with

delay and without delay. Hence delay plays a crucial role in the dynamics of the

system. It is defined as the time taken, reaching the information from one node to

another. In real life, we have many examples of such a phenomenon. Consider the

case of fans sitting in a football stadium. Even if everyone were successfully clapping

in perfect synchrony, it would not sound that way to the fans themselves, as the

applause coming from far across the field would be significantly delayed, because

of the finite speed of sound [9]. Next, we are going to study the impact of delay

on the given network. The investigations resulted in engineering single-cluster and

the multi-cluster chimera state. Here, in this report, we approach the problem of

managing the chimera states by introducing heterogeneous delay on the edges of a

network. The presence of heterogeneous delays in a network is more realistic in the

context of real-world networks where interactions (edges) between the pairs of nodes

are subjected to heterogeneous perturbations from its surroundings [10].

21
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4.1 Theoretical Model

After introducing delay, the dynamics of the network defined by the new modified

mathematical model turns out to be

zi(t+ 1) = f [zi(t)] +
ε∑

j=1Aij

mN∑
j=1

Aij × {f [zj(t−Dij)]− f [zi(t)]} (4.1)

Where ε is the coupling strength and varies between 0 and 1, m is the number of

layers in the network, i and j are the indices of the oscillators. N is the total number

of nodes in a layer. A is the adjacency matrix which gives us information about

node connection in a network. Elements (Dij ) of the delay matrix D is the time

delay given to the edges of the network.

Dij =

 τ if Aij is delayed.

0 otherwise

The existing problems based on delay could be better solved by considering the het-

erogeneous delay in a model. So we took τ value from a random uniform distribution

bounded by 0 ≤ τ ≤ τmax and τmax=10 [10]. The initial values of z for each node is

a random variable lies between 0 and 1. We were able to reproduce successfully the

results that are reported in the paper ”Engineering chimera patterns in networks

using heterogeneous delays.”

4.2 Spatial inverse participation ratio (sIPR)

Till now, there has been numerous technique adopted to identify chimera. In this

section, we are presenting one such technique known as spatial inverse participation

ratio (sIPR) borrowed from the eigenvector localization concepts. sIPR defined as

sIPR =

∑
i(〈di〉t)4

[
∑

i(〈di〉t)2]2
(4.2)
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Where di is in laplace form and is a second order differentiation with respect to

time. (〈di〉t) is the time average of di.

di = |(zi+1(t)− zi(t))− (zi(t)− zi−1(t))| (4.3)

di is interpreted as relative spatial distances between neighboring node. Using equa-

tion (4.3), we could compute the spatial distance of a node with respect to its

neighboring nodes [10].

4.3 Result

Primarily it has been observed that those particular nodes attached to the delay

edges evolve differently with that of the neighboring nodes without delay. These

delay nodes with delayed edges pop out from the symmetric profile and break the

symmetry of the system. Thus we were able to promote chimera and design the

incoherent region in the system.

The various figures shown below reveals that heterogeneous delay added to the nodes

leads to chimera state in the system. By appropriately placing delay to the desired

nodes, we were able to engineer chimera state in a specific region.
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Figure 4.1: The set of figures illustrates the delay matrices and their corresponding
chimera state observed after introducing heterogeneous delay. Parameters: Network
size N= 100, node degree=k= 64, coupling strength= ε = 0.77 [10].
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Figures 4.1 (a) and (c) are the Delay matrices representing a regular network with

a large and relatively smaller cluster of the delayed nodes, respectively. The con-

sequence of such delay configuration turns out to be with large ICR in (b) and

smaller ICR in (d). The delay configuration in (e) elicits the in-between nodes are

incoherent. Introducing two different clusters of delayed nodes separated by the un-

delayed nodes produces the delay matrix shown in figure (g). The outcome of such

configuration displays two ICR in (h), and as a result, we obtain a multi-chimera

state.

Figure 4.2 illustrates sIPR values obtained for different coupling strength values for

an undelayed regular ring network. We get a clear understanding of the various

state of the system as a function of coupling strength.

Figure 4.2: Coupling strength correlating the state of the system (i.e., the system
can either be in a state of incoherent, chimera, coherent, or synchronized state) for
an undelayed regular network [10].

For the coherent and incoherent state, di takes low and high value, respectively.

Whereas in chimera state, di can take both high and low value. As a result, sIPR

value is high for chimera state and low value for the coherent and incoherent state.

The synchronous region in figure 4.2 shows a smooth spatial profile and the corre-

sponding di values for this region equal to zero. sIPR value for this region cannot

be defined. Hence we assume the sIPR value to be equals to 1
N

.
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Figure 4.3: snapshots and Laplacian profiles of the dynamical states for the regular
network corresponding to various points in the sIPR profile plotted in 4.2. [(a) and
(b)] ε=0.10 and sIPR = 0.0100175, [(c) and (d)] ε=0.34 and sIPR = 0.0359414, [(e)
and (f)] ε= 0.4 and sIPR = 0.136304, [(g) and (h)] ε=0.76 with sIPR = 0.0146935.
Other parameters are network size (N) = 100, node degree=k=64 [10].
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Figure 4.4 (b) depicts delay is given to all the nodes. As a result, this type of delay

configuration shows a transition from a coherent state to incoherent state without

showing any chimera state in the high coupling region. This different approach of

introducing delays to all nodes destroys the chimera state.

Figure 4.4: Delay matrices representing the heterogeneous delay induced in the
network and corresponding sIPR profile for the delay configuration [10].

4.4 Conclusion

Based on our studies, we were able to engineer chimera state by inducing the ICR

after suitably placing the heterogeneous delay to the set of nodes in a network. We

also observed for low coupling strength values, the heterogeneous delay produces an

incoherent state. In the mid coupling strength region, we noticed the occurrence

of chimera state, but such delay configuration cannot control the location of the

incoherent region. Whereas for high coupling strength values the location of the

incoherent region coincides with the edges having the heterogeneous delays. By
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appropriately placing delays to the nodes, we were able to design both the single-

cluster and the multi-cluster chimera state. The number of nodes with delays is

also an important factor for the observation of the chimera state. We explored sIPR

value could help us to identify the chimera state. But we cannot distinguish between

the ICR and CR corresponding to their sIPR values.



Chapter 5

Summary

To summarize, we have observed the occurrence of chimera state for both the Ku-

ramoto and logistic map model in case of single and multiplex networks. In chapter

2, we reported multiplexing with a repulsively coupled layer enhance chimera in the

positively coupled layer. We also studied how does the state of a system vary with

coupling strength and the other parameters like phase lag parameter. In chapter 3,

we observed the emergence of a chimera state for both single and multiplex network.

A specific initial condition is used to find chimera state. We also investigated how

does coupling nature of the network affect the system to be in the coherent or in

chimera state. Eventually, in chapter 4, we were able to design ICR for the high

coupling strength region by introducing heterogeneous delays to specific nodes in a

network. We also adopted a new technique known as sIPR to identify chimera state.

By appropriately placing heterogeneous delays to the cluster of nodes enable us to

engineer both single and the multi-cluster chimera state.

29
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