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Abstract
The cosmic dawn (CD) and the epoch of reionization (EoR) mark critical periods in
the early Universe, characterized by the formation of the first luminous sources and
the subsequent heating and ionization of the intergalactic medium (IGM). Despite
their significance, the physical conditions of the IGM during these epochs remain
poorly constrained due to observational challenges. The redshifted HI 21-cm signal
offers a unique window into these periods, and several experiments, such as EDGES,
SARAS, MWA, and the forthcoming SKA, are actively targeting the detection of this
signal. However, the signal is obscured by dominant foregrounds, instrumental sys-
tematics, and ionospheric distortions, further complicating by direction-dependent
and frequency-dependent variations in antenna beam patterns, particularly at low
radio frequencies.
This thesis focuses on addressing these challenges by developing a robust, end-to-end
data analysis pipeline that leverages machine learning (ML) and Bayesian statistical
techniques. Traditional inference methods become computationally expensive as the
dimensionality of the problem grows, necessitating scalable and adaptive approaches.
We systematically investigate each major observational obstacle, such as foreground
contamination and ionospheric effects, and train artificial neural networks (ANNs)
to recover global 21-cm signal parameters from all-sky averaged spectra. The trained
ANN achieves a signal parameter recovery accuracy of 96–97%, exhibiting resilience
to static and slowly time-varying ionospheric conditions. Additionally, the per-
formance of the ANN framework remains consistent across different sets of signal
simulation datasets using different input parameter distributions.
To enhance the generalization and stability of the ANN models, we evaluate vari-
ous sampling strategies for efficiently exploring the high-dimensional signal param-
eter space. Specifically, we compare random sampling, Latin hypercube (stratified)
sampling, and Hammersley sequence (quasi-Monte Carlo) sampling methods. Our
analysis reveals that, while a sufficient sample size is essential for effective ANN
training, the Hammersley sequence method yields superior robustness relative to
the other techniques. The sample size requirements scale with both the number of
free parameters and the intrinsic complexity of the data.
Furthermore, we extend our methodology by developing a hybrid inference frame-
work that integrates ANN-based inference with Bayesian methods to address the
influence of systematics expected in future experiments like SKA-Low. This frame-
work is used to quantify the impact of gain calibration errors and sky model posi-
tional uncertainties on the extracted power spectrum and astrophysical parameters.
Through detailed simulations, we quantify the sensitivity of the inferred parameters
to these systematics and determine threshold levels beyond which signal recovery
becomes significantly compromised. Our results indicate that to achieve optimal
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signal extraction, gain calibration errors must be constrained below 0.001%. Fur-
thermore, sky model positional inaccuracies exceeding 0.048 arcseconds result in
residual foreground contamination that effectively obscure the cosmological 21-cm
signal.
In summary, this thesis demonstrates the efficacy of machine learning techniques in
overcoming critical observational limitations in both global signal and interferomet-
ric 21-cm experiments. By facilitating accurate and efficient inference in the presence
of complex systematics, this study paves the way for robust signal extraction in the
upcoming era of precision cosmology.
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Chapter 1

Introduction

1.1 Timeline of the Cosmos
The Universe is a fascinating and complex place, with many mysteries still to be explored. Accord-
ing to the standard model of cosmology, the Universe began about 13.8 billion years ago with the
Big Bang. It started as an extremely hot and dense point, with incredibly high temperature and
energy. After the Big Bang, the Universe began expanding and cooling, passing through different
stages of development. In the first few moments, basic particles like protons, neutrons, electrons,
neutrinos, and photons were formed. About 100 seconds after the Big Bang, when the temper-
ature dropped to around 1010 K, conditions became right for nuclear fusion to occur. Protons
and neutrons started combining to form light elements such as deuterium and helium, in a process
known as Big Bang Nucleosynthesis. At this stage, the Universe was not yet transparent. Photons,
or particles of light, were constantly interacting with free electrons and other charged particles,
getting scattered in all directions. Because of this, light couldn’t travel freely, and the Universe
appeared like a hot, glowing fog.
With the ongoing expansion of the Universe, its temperature gradually decreased. Eventually, the
rate at which photons scattered off free electrons became slower than the rate of expansion. Around
380,000 years after the Big Bang (at a redshift of z ∼ 1100, and a temperature of about ≈ 3000 K),
The Universe cooled sufficiently to allow electrons and protons to recombine into neutral hydrogen
atoms. This process is known as recombination. Once neutral atoms formed, photons could travel
freely through space without being constantly scattered. This moment is called the decoupling of
matter and radiation. The leftover light from this time has been traveling through the Universe
ever since and is now observed as the Cosmic Microwave Background Radiation (CMBR) [14,15].
Today, this radiation has cooled to a temperature of about 2.7 K [14]. Studying the CMBR,
especially its small temperature variations (anisotropies), has greatly improved our understanding
of the Universe. These observations form the foundation of the standard cosmological model,
known as ΛCDM. Over time, various space missions have measured the CMBR, with the Planck
satellite providing the most accurate and detailed results so far [16].
Following recombination, the Universe became almost entirely neutral, composed primarily of
baryonic matter, about 75% in the form of neutral hydrogen (HI) and 25% as neutral helium by
mass. The absence of significant radiation sources caused the Cosmic Dark Ages, which persisted
until about z ∼ 30 and was primarily characterized by the lack of typical radiation emitters.
During this time, baryons fell into gravitational wells formed by collapsing dark matter halos,
leading to the creation of the first structures: the first stars and galaxies. This event marked the
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Figure 1.1: A chronological overview of the Universe’s major evolutionary epochs. Image credit:
Astronomy, Roen Kelly.
transition from the Dark Ages to the Cosmic Dawn (CD), typically associated with the redshift
range 30 < z < 12. The earliest luminous sources in the Universe, including the first generations
of stars, galaxies, quasars, and potentially dark matter decay or annihilation processes, emitted
significant amounts of ultraviolet (UV) and X-ray radiation. UV photons with energies exceeding
> 13.6 eV were sufficiently energetic to ionize the intergalactic medium (IGM), which was initially
composed primarily of neutral hydrogen (HI) [17]. This transition marked the start of the Epoch
of Reionization (EoR).
These key phases of cosmic evolution are illustrated in Figure 1.1. Observational constraints
on reionization come from several sources, including absorption features in high-redshift quasar
spectra [18–20] and measurements of the Thomson scattering optical depth from the CMB [21].
Together, these suggest that the EoR occurred over the redshift range 12 ≳ z ≳ 6.
However, observations of the Lyman-α forest in quasar (QSO) absorption spectra reveal that by
redshift z ∼ 5, the diffuse hydrogen gas in the intergalactic medium was fully ionized. This
implies a cosmic transition: from a neutral to a fully ionized Universe, during the epoch known
as reionization, which occurred between redshifts 1100 and 5. The precise timing and duration of
this epoch remain active areas of research in modern cosmology.

Hydrogen, although comprising only a small fraction of the total matter content of the Universe, is
the most abundant baryonic element and plays a foundational role in cosmic structure formation.
Its evolution is intricately linked to a broad range of astrophysical processes, including the birth of
the first stars, the assembly of galaxies, and the emergence of large-scale structure. Understanding
the distribution and thermodynamic state of hydrogen provides critical insight into the physical
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conditions that enabled the formation of complex structures and, ultimately, intelligent life.
In the present-day Universe, however, the majority of hydrogen resides in the intergalactic medium
(IGM), where it has remained predominantly ionized since the end of reionization. Neutral atomic
hydrogen (HI) and molecular hydrogen (H2) are found primarily within galaxies, but they consti-
tute only a small fraction of the total baryonic hydrogen content; even within galactic environments,
a significant portion of the interstellar medium (ISM) is ionized. The neutral component (HI) can
be probed via the 21-cm hyperfine transition line, which, when redshifted, provides a powerful
observational window into different epochs of cosmic history. Measurements of this signal, either
in absorption or emission, allow HI to serve as a tracer of the thermal and ionization state of the
IGM and the underlying matter distribution.
The 21-cm line is especially promising for exploring the early Universe, including the CD and
the EoR period that remain largely unconstrained observationally. As a result, 21-cm cosmology
has emerged as a frontier in observational astrophysics, capable of addressing several fundamental
questions:

Key Scientific Questions Addressed by 21-cm Cosmology:

• At what cosmic epoch did the first stars form, and what physical processes governed their
formation?

• What were the intrinsic properties of these primordial stars, their masses, chemical compo-
sitions, lifespans, and spectral characteristics?

• How did dark matter and the formation of early black holes influence the assembly and
evolution of the first galaxies?

• Through what mechanisms did the IGM transition from a cold, neutral state to a hot,
ionized medium during the Epoch of Reionization?

• What were the relative contributions of ionizing sources, such as Population III stars, star-
forming galaxies, and quasars, to reionization?

• How did the thermal and ionization history of the IGM evolve across cosmic time, particu-
larly during the Cosmic Dawn?

• What role did radiative feedback mechanisms, including X-ray heating and Lyman-α cou-
pling, play in shaping the global 21-cm signal and its fluctuations?

• To what extent can spatial fluctuations in the 21-cm brightness temperature constrain the
nature of dark matter, the characteristics of early luminous sources, and the formation of
large-scale structure?

• Can the 21-cm signal reveal signatures of exotic physics, such as dark matter, baryon inter-
actions, or imprints of non-standard inflationary dynamics, in the early Universe?

1.2 Observational Indicators for Investigating the
CD and EoR

The CD and EoR exploration relies on direct and indirect observational probes, supported by com-
parisons with theoretical models to understand their evolution. Direct probes target the redshifted
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21-cm signal to trace neutral hydrogen, while indirect probes, such as quasar spectra, CMB fea-
tures, Ly-α emission, galaxy UV luminosities, and metal absorption lines, provide complementary
constraints on the timing and nature of reionization[22].

1.2.1 CMB Anisotropies
CMB temperature and polarization anisotropies can provide an additional observational constraint
on the reionization process and its evolution [23–25]. Although the majority of CMB photons last
scattered at a redshift of approximately z ∼ 1100, a small fraction of less than 10 % underwent
secondary scattering during the EoR. The detection and analysis of this signal offer valuable con-
straints on the mean redshift and the temporal boundaries of the EoR. In particular, measurements
of the Thomson scattering optical depth from the CMB serve as a robust, model-independent probe
of the reionization history. The scattering of CMB photons during the EoR introduces two primary
observational effects: first, the free electrons generated during reionization suppress the primary
CMB anisotropies and produce additional polarization anisotropies at large angular scales; second,
secondary anisotropies are imprinted onto the CMB radiation field through subsequent scattering
processes [23, 24]. The secondary anisotropies have a minimal effect on the temperature fluctua-
tions of the CMB. However, they significantly influence the polarization angular power spectrum,
producing a distinctive ’reionization bump’ at large angular scales (corresponding to scales larger
than the horizon size during the EoR), as illustrated in Figure 1.2.

1.2.2 Sunyaev-Zel’dovich (kSZ) Effect
The CD and EoR can also be investigated through the kinetic Sunyaev-Zel’dovich (kSZ) effect.
In this phenomenon, CMB photons scatter off free electrons that possess a bulk motion relative
to the comoving frame. Unlike the thermal Sunyaev-Zel’dovich effect, the kSZ effect does not
induce any spectral distortion in the CMB; instead, it leads to either an increase or decrease in
the observed temperature. The kSZ effect generates secondary anisotropies in the CMB on small
angular scales, arising from the patchy distribution of ionized regions during reionization. These
anisotropies serve as a valuable probe of the reionization process. Using the latest Planck 2018
data [26], the Thomson scattering optical depth was measured as τ = 0.054 ±0.007, corresponding
to a midpoint of reionization around z ∼7.7. This implies that reionization was largely complete
by z ∼6 and likely did not begin earlier than z ∼9.

1.2.3 Quasars as Probes of Reionization
Quasars, among the brightest objects in the Universe, are active galactic nuclei powered by su-
permassive black holes (106–109 M⊙) surrounded by accretion disks. Their smooth spectra can be
used to probe the intergalactic medium (IGM) along the line of sight. The Gunn-Peterson (GP)
effect refers to the resonant absorption of Lyman-α photons by neutral hydrogen, producing a
characteristic trough in quasar spectra beyond the reionization epoch [27]. This absorption feature
directly constrains the evolution of the IGM’s ionization state.
The first Gunn-Peterson (GP) trough was observed in a quasar at redshift z = 6.28 [28]. Analysis
of Sloan Digital Sky Survey (SDSS) quasars in the redshift range 5.74 < z < 6.42 suggested that
the Universe was nearly fully ionized by z ∼ 6 [18]. More recent observations of quasar J1007+2115
at z = 7.5 indicated that reionization was still ongoing at z ≳ 7, with a volume-averaged neutral
hydrogen fraction of ⟨xHI⟩ = 0.39+0.22

−0.13 and evidence for patchy reionization from a weak Lyα
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Figure 1.2: The E-mode (curl-free) polarization power spectrum of the CMB displays excess
power at low multipoles (corresponding to large angular scales), primarily caused by Thomson
scattering between free electrons and the CMB quadrupole. The strength of this signal varies with
the optical depth, as illustrated by the different solid curves. A key advantage of the polarization
spectrum is that its amplitude and optical depth are not degenerate, meaning changes in one
cannot mimic the effects of the other. For instance, an increase in the overall amplitude (indicated
by the red dotted line) does not reproduce the distinctive bump observed at low multipoles. This
figure is adapted from [1].

damping wing [29]. A Bayesian damping wing analysis of four z ≳ 7 quasars—DESJ0252−0503
(z = 7.00), J1007+2115 (z = 7.51), ULASJ1120+0641 (z = 7.09), and ULASJ1342+0928 (z =
7.54) which incorporates uncertainties in the intrinsic quasar emission and IGM morphology, found
⟨xHI⟩ ≈ 0.25–0.34 individually and a combined constraint of 0.49 ± 0.11 at z = 7.29, supporting
the picture of ongoing and patchy reionization [2].

1.2.4 Additional indirect probes
Apart from these, additional observational probes include dark pixel analysis [30], the Lyα emitter
fraction [31], the luminosity function of Lyα emitters [32–35], and observations of Lyman-break
galaxies at z = 7 [36] and z = 7.6 [37]. These results are summarized in Figure 1.3.
However, indirect observations fail to resolve several fundamental aspects of the CD and EoR,
including the formation and evolution of early luminous sources (e.g., stars, galaxies, quasars),
their impact on the intergalactic medium (IGM), the topology of ionized regions, and the precise
starting and ending points of this era in cosmic time.
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Figure 1.3: Constraints on the neutral hydrogen fraction in the intergalactic medium (xHI)
across different redshifts. The data points represent estimates derived from dark pixel analysis,
Ly�� emitter fractions, LAE clustering, and observations of Lyman-break galaxies (LBGs). The red
pentagon indicates the combined damping wing constraint from four z ≳ 7 quasars [2]. The blue
curve and shaded regions represent the median and 1σ/2σ bounds from reionization modeling [3].
This figure is adapted from [2]

1.2.5 Redshifted neutral hydrogen (HI) 21cm signal
The redshifted 21-cm signal serves as one of the key observational probes for investigating the CD
and EoR. Atomic hydrogen (HI), which is the most abundant element in the Universe, emits 21-cm
radiation due to the spin-flip transition of the electron-proton system in its ground state. Although
this transition is forbidden with a spontaneous emission coefficient of A10 = 2.85 × 10−15 s−1

(corresponding to an emission time of 11 million years for a 21-cm photon from HI) [38], the 21-cm
signal remains abundant since approximately 75% of the baryons in the Universe consist of HI.
The radiation initially emitted at a frequency of 1420 MHz gets redshifted to lower frequencies
(νobs =

1420 MHz
(1+z) ) as it travels through the expanding Universe. Consequently, this signal encodes

information about the IGM at the time of its emission. Several ongoing and upcoming independent
efforts aim to detect the redshifted 21-cm signal, including single-dish experiments such as EDGES
[39], SARAS [40], REACH [41], PRIZM [42], and LEDA [43]. In parallel, radio interferometric
experiments like GMRT [44], LOFAR [45], MWA [46], HERA [47], and the SKA [48,49] are designed
to trace the evolution of this signal over cosmic time. A detailed discussion will be presented in
the upcoming Chapter 2.
From an observational perspective, the primary challenge lies in detecting an extremely faint
signal, with a peak amplitude of only a few hundred millikelvin, which is overwhelmed by contri-
butions from significantly stronger unwanted sources. These contaminants include astrophysical
foregrounds, ionospheric disturbances, radio frequency interference, and instrumental systematics.
The details for these individual challenge dicuss deatils in the Chapter 2. Significant efforts are
ongoing to efficiently mitigate foreground contamination, correct for ionospheric distortions, and
identify and remove instrumental systematics in both single-dish radiometer and interferometric
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experiments. Several independent analysis techniques have been developed, including polynomial
fitting, Singular Value Decomposition (SVD), Principal Component Analysis (PCA), Generalized
Morphological Component Analysis (GMCA), and machine learning-based methods. However,
each of these approaches involves trade-offs between signal preservation, computational efficiency,
and robustness against contaminants, highlighting the inherent challenges in reliably extracting the
faint cosmological 21-cm signal. In this thesis, we introduce an alternative 21-cm signal extraction
method based on the application of artificial neural networks, which will be discussed in detail in
the following chapters of this thesis.

1.3 Objective of the thesis
This thesis is focused on developing computationally efficient and statistically robust pipelines for
the recovery of the redshifted 21-cm signal, which serves as a critical probe of the early Universe,
including the CD and the EoR. The primary objective is to construct an ML-based framework capa-
ble of recovering the global 21-cm signal in the presence of realistic observational effects, including
bright astrophysical foregrounds, frequency-dependent ionospheric distortions, beam chromaticity,
and instrumental thermal noise.
In addition to the global signal analysis, the methodology is extended to interferometric obser-
vations. To this end, we develop hybrid frameworks that couple neural network emulators with
Bayesian inference schemes, enabling efficient and accurate recovery of the 21-cm power spectrum
along with constraints on the underlying astrophysical parameters. These models are specifi-
cally designed to account for a range of instrumental systematics, including calibration errors
and residual foreground contamination, and are tailored for application to data from current and
forthcoming interferometric arrays such as the SKA, MWA, and HERA. This work contributes
to advancing the data analysis capabilities within 21-cm cosmology and provides insights into the
impact of systematic effects on signal reconstruction and parameter estimation.

1.4 Thesis Arrangement
This thesis is structured into seven chapters. Chapter 1 presents the background, motivation, and
objectives of the study. Chapter 2 is divided into two parts: Part A offers an overview of the
redshifted HI 21cm signal, emphasizing its scientific importance, current observational facilities,
and approaches for setting upper limits on its detection. Part B addresses the observational
challenges in detecting the HI 21cm signal and reviews various mitigation techniques. Chapter 3
describes the machine learning methodologies employed in this work, including data preparation
and preprocessing steps critical for effective model training. The final chapter summarizes the key
findings and outlines potential directions for future research. A brief summary of each chapter is
provided below:

• Chapter 4:

Tripathi A. et al. 2024, [50], Monthly Notices of the Royal Astronomical Society, vol
528, 2, 1945–1964

In this chapter, we developed and presented an artificial neural network (ANN) based
framework for extracting the global 21-cm signal along with its associated astrophysical
and observational parameters. The ANN was trained on a composite sky spectrum com-
prising contributions from the HI signal, foreground emission, and ionospheric effects. Our
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ionospheric model incorporates the effects of refraction, absorption, and thermal emission,
each dependent on the total electron content (TEC) and electron temperature (Te).
The framework was designed to infer a total of 13 parameters: seven related to the global 21-
cm signal, four describing the foregrounds, and two characterizing ionospheric conditions.
Under scenarios with slowly varying ionospheric behavior, the trained ANN achieved a
prediction accuracy between 96% and 97%. For model training, the ionospheric parameters
were varied within a range of ±1 around their mean values. When tested against time-
dependent ionospheric conditions, the ANN model accurately recovered the ionospheric
parameters, closely matching the expected mean values, demonstrating its robustness and
predictive reliability in realistic observational scenarios.

• Chapter 5:

Tripathi A. et al. 2024, [51], Journal of Cosmology and Astroparticle Physics, vol
OCT 2024, 041

Due to the scarcity of observational data, our understanding of the Intergalactic Medium
(IGM) during these epochs remains limited, resulting in a broad and largely unconstrained
parameter space for the global 21cm signal. In the context of Simulation-Based Inference,
exploring this entire parameter space effectively becomes essential. However, navigating a
high-dimensional parameter space poses significant computational challenges. This work
focuses on determining efficient sampling strategies suited to the large dimensionality and
volume inherent in the 21cm signal parameter space. The sampling approach is used to
generate training datasets for Artificial Neural Network (ANN) models to infer parameters
from global signal experiments. We examine and compare three sampling methods: random
sampling, Latin hypercube sampling (a stratified approach), and Hammersley sequence
sampling (a quasi-Monte Carlo method). Our analysis shows that achieving robust and
accurate ANN model performance requires a sufficiently large number of training samples,
irrespective of the sampling technique. The necessary sample size is primarily governed by
data complexity and the number of free parameters, with more free parameters demanding
more realizations. Among the methods tested, ANN models trained with datasets generated
using Hammersley sequence sampling exhibit superior robustness compared to those trained
with Latin hypercube or random sampling techniques.

• Chapter 6:

Tripathi A. et al. 2025, [52], Journal of Cosmology and Astroparticle Physics, vol OCT
2025, 035

In this chapter, we have employed Artificial Neural Networks (ANNs) as emulators to model
the observed 21-cm power spectrum, incorporating the effects of telescope layout. This work
utilizes the 21cm End-to-End (E2E) pipeline, developed by our research group, to generate
synthetic observations from simulated sky models that include both the redshifted 21-cm
signal and astrophysical foregrounds. A hybrid framework was constructed by integrating
ANNs with Bayesian inference methods to extract astrophysical parameters from the mea-
sured power spectrum directly. This approach eliminates the need for explicit corrections
related to the interferometric array layout, directly inferring the astrophysical parameters
for the upcoming interferometric observation.
The study further investigates how gain calibration and sky model position errors impact
the recovery of the redshifted 21-cm power spectrum. We also evaluated how these errors
propagate to the inference of astrophysical parameters and established tolerances required
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for reliable signal recovery. Our results show that gain calibration errors must be nearly
0.001% to avoid significant signal distortion. Additionally, if sky position errors exceed
0.048 arcseconds, residual foreground contamination can dominate the observed spectrum,
rendering the target cosmological signal indistinguishable.
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Chapter 2

Probing Early Universe with
Redshifted 21cm Signal

2.1 Cosmological HI 21cm Signal
Following the recombination epoch, the Universe became neutral and dark, entering a phase com-
monly referred to as the ”Dark Ages,” during which baryonic matter was predominantly composed
of neutral hydrogen. Over time, the Universe underwent significant transitions, leading to the birth
of the first stars approximately 0.1 billion years after the Big Bang, corresponding to redshifts be-
tween 30 and 15. This era is known as the ”Cosmic Dawn.” Gravitational instabilities primarily
drove the formation of the earliest structures, although gas dynamics, cooling and heating pro-
cesses, radiative interactions, and feedback mechanisms increasingly influenced the development
of the first galaxies. These galaxies hosted the earliest stellar populations, initially dominated by
metal-free Population III stars, followed by the emergence of metal-enriched Population II stars
and black hole-driven sources.
The emergence of the first luminous sources produced ultraviolet (UV) radiation capable of ionizing
the surrounding intergalactic medium (IGM), initiating a gradual transition from a neutral to an
ionized state. This event marks the last major phase transition in the thermal and ionization
history of the Universe, referred to as the Epoch of Reionization (EoR). The 21-cm line arises
from the hyperfine transition between the hydrogen atom’s ground state’s singlet and triplet spin
states. In its ground state, a neutral hydrogen (Hi) atom consists of a proton and an electron,
both possessing intrinsic spin. The magnetic interaction between their spins causes a slight energy
splitting of the 1s level into two hyperfine states. The higher-energy state corresponds to parallel
spin alignment, while the lower-energy state corresponds to anti-parallel spin alignment. The
energy difference between these two levels is ∆E ≈ 5.9 µeV, leading to the emission or absorption
of a photon with a rest-frame wavelength of 21 cm (or frequency of 1420 MHz) during a spin-flip
transition, as illustrated in Fig. 2.1.
Although the spontaneous emission from this transition is extremely rare, having a lifetime of
approximately 11 million years, it remains a valuable cosmological probe. This is primarily because
the 21-cm signal is sourced by the abundant neutral hydrogen, which constitutes about 75% of the
Universe’s baryonic matter during the CD and EoR. The intensity of 21cm radiation is determined
by the spin temperature
The brightness of the 21-cm radiation is governed by the spin temperature, Ts, which is defined
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Figure 2.1: Illustration of the 21-cm spin-flip transition in neutral hydrogen, where the electron
shifts from a parallel (high-energy) to antiparallel (low-energy) spin state, emitting a 1420 MHz
photon.
by [53]:

n1

n0
= 3 exp

(
−T∗

Ts

)
, (2.1)

Here, n0 and n1 represent the populations of the singlet and triplet hyperfine states of neutral
hydrogen, respectively. The parameter T ∗ = 0.0682K corresponds to the temperature equivalent
of the 21-cm transition energy, given by hν21cm = 2kBT

∗ = 5.87× 10−6 eV. The factor of 3 arises
due to the degeneracy of the triplet state. The intensity of 21-cm emission from an H i cloud is
governed by the spin temperature Ts, which sets the population ratio between the two hyperfine
states.
The radiation intensity I(ν) can be described using the brightness temperature under the Rayleigh-
Jeans approximation as:

I(ν) =
2ν2

c2
kBTb, (2.2)

where ν represents the radiation frequency, c is the speed of light, and kB denotes Boltzmann’s
constant.
As the Universe expands, the wavelength λ of radiation emitted at a cosmological redshift z
stretches to λ(1 + z), causing the observed wavelength to be longer than the emitted one. The
optical depth for 21-cm radiation from an Hi cloud with a uniform spin temperature Ts, observed
at a wavelength of 21(1 + z) cm, is given by [54]:

τ(z) =
3cλ2

21hpA10nHI

32πkBTs(1 + z)
(
∂vr

∂r

) (2.3)

where hp is Planck’s constant, A10 = 2.85 × 10−15 s−1 is the spontaneous emission coefficient
associated with the hyperfine transition, and ∂vr/∂r denotes the radial velocity gradient along
the line of sight, with vr representing the physical radial velocity and r the comoving distance.
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Figure 2.2: Schematic illustrating the radiative transfer setup: CMB background radiation
passes through a hydrogen cloud at spin temperature TS , resulting in an observed brightness
temperature Tb. This figure is adapted from https://ned.ipac.caltech.edu/level5/March14/
Zaroubi/Zaroubi4.html.
The term nHI refers to the number density of neutral hydrogen atoms. In a fully neutral and
homogeneous Universe, nHI = n̄H(z), and the velocity gradient reduces to ∂vr/∂r = H(z)/(1+ z),
where H(z) is the Hubble parameter.
Radio telescopes measure the contrast between the brightness temperature Tb of the 21-cm ra-
diation emitted by neutral hydrogen (HI) in the intergalactic medium (IGM) and the cosmic
microwave background (CMB) temperature TCMB as shown in Fig. 2.2 This contrast, referred to
as the differential brightness temperature or 21-cm fluctuation, is defined as [38,54–56]:

δTb = Tb − TCMB.

δTb(ν) =
Ts − TCMB

1 + z
e−τ ≈ Ts − TCMB

1 + z
τ

≈ 26.8mK

(
Ωbh

0.0327

)(
Ωm

0.307

)−1/2(
1 + z

10

)1/2(
Ts − TCMB

Ts

)
(2.4)

where xHI is the fraction of neutral hydrogen, and Ts is the spin temperature of the HI gas. Ωb

and ΩM are the baryon and total matter density parameters, respectively, expressed relative to
the critical density. The Hubble parameter at redshift z is given by H(z), while TCMB(z) denotes
the CMB temperature at that epoch. The dimensionless Hubble parameter is h, defined in units
of 100 km s−1 Mpc−1, and ∂rvr refers to the radial velocity gradient along the line of sight. In
this equation 2.4, the optical depth τ ≪ 1. This also shows that the 21-cm signal can only be
detected when the spin temperature (Ts) of the gas differs from the CMB temperature (TCMB).
This is expected, as Ts = TCMB implies thermal equilibrium between the background and the gas,
resulting in no absorption or emission above the background. Equation 2.4 also indicates that Ts

determines whether the signal is observed in absorption or emission against the CMB.

2.2 Thermal history
The differential brightness temperature δTb, observed either as an absorption or emission feature,
as shown in Fig. 2.3, is primarily controlled by the relationship between the spin temperature TS

and the background CMB temperature TCMB. Because TS is also affected by the gas kinetic tem-
perature TK (as indicated in Eq. 2.5), understanding how these temperatures evolve with redshift
is crucial for decoding the observed 21-cm signal. A key observational approach for studying the
thermal history of the early intergalactic medium (IGM) involves tracking the global (sky-averaged)
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Figure 2.3: The figure illustrates the redshift evolution of the spin, CMB, and kinetic tempera-
tures, highlighting how their interplay is governed by different cosmic mechanisms. This figure is
adapted from [4]
21-cm signal across a broad frequency range. This method utilizes a single-element radiometer to
observe the sky-averaged differential brightness temperature δTb as a function of redshift (or its
corresponding frequency). The global 21-cm signal manifests as either an absorption or emission
feature depending on the evolution of the spin temperature TS . The influence of TS across cosmic
time, from the early Universe at z ∼ 200 to the completion of reionization around z ∼ 6, is outlined
below (for further discussion, see [4, 57,58]).
The spin temperature TS is determined by a weighted combination of the CMB temperature TCMB

and the kinetic temperature TK , modulated by coupling coefficients xk (collisional coupling) and
xα (Lyman-α coupling), and is given by:

TS =
TCMB + xkTK + xαTK

1 + xk + xα
(2.5)

where xk and xα represent the collisional and Lyman-α coupling coefficients, respectively. The
term xk arises from collisional excitation of the 21-cm hyperfine transition, while xα originates
from the Wouthuysen–Field effect, in which Lyman-α photons excite hydrogen atoms via electronic
transitions. Both coupling coefficients depend on the respective rates of collisions and Lyman-α
scattering within the neutral hydrogen gas.
As indicated by Eq. 2.4, the global 21-cm signal provides meaningful insight into the intergalactic
medium only when the spin temperature differs from the CMB temperature. The evolution of
the global signal reflects a complex interaction between cosmological and astrophysical processes,
whose relative impacts vary across different epochs, shaping the observed brightness temperature
accordingly. The following section provides a brief overview of this evolution. At redshifts z ≳ 200,
residual free electrons efficiently couple the gas kinetic temperature TK to the CMB temperature
Tγ through Compton scattering, enabling energy exchange between photons and electrons. As
a result, the temperatures remain tightly coupled, and the spin temperature Ts stays equal to Tγ

during this epoch. Consequently, no observable 21-cm signal exists during this epoch. As the
Universe expands and cools (z ∼ 30− 200), the ionization fraction and density decrease, reducing
the coupling between Tk and Tγ . The gas cools adiabatically as (1 + z)2, faster than the CMB
which cools as (1 + z), resulting in Tk < Tγ , as illustrated in Fig. 2.4. However, collisions are still

36



Figure 2.4: The figure illustrates the redshift evolution of the spin, CMB, and kinetic tempera-
tures, highlighting how their interplay is governed by different cosmic mechanisms. This figure is
adapted from [5].

efficient enough to couple Ts to Tk, allowing the 21-cm line to appear in absorption against the
CMB.
In the subsequent redshift range (z ∼ 20 − 30), the gas becomes too diffuse for collisions alone
to maintain the coupling, and Ts starts approaching Tγ , weakening the 21-cm signal. This epoch,
known as the Cosmic Dawn, signifies the formation of the first luminous sources. Lyman-α photons
from these sources can re-establish the coupling between Ts and Tk through the Wouthuysen-Field
effect, potentially leading to localized 21-cm absorption signals. X-rays and other high-energy
radiation from these sources may heat the IGM above the CMB temperature, creating spatial
variations in the signal including regions of absorption, emission, or no signal. Between redshifts
z ∼ 6− 20, additional heating mechanisms such as Lyman-α scattering, X-ray heating from early
galaxies and black holes, and weak shocks from structure formation raise the IGM temperature
(Tk) above the CMB. As reionization progresses, ionized regions (HII bubbles) begin to dominate,
and the 21-cm signal becomes increasingly complex, reflecting the morphology of these ionized
zones. Post-reionization (z ≲ 6), the IGM becomes almost fully ionized, and neutral hydrogen is
too scarce to produce a detectable 21-cm signal.
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2.3 21-cm Signal Detection: Methods and Obser-
vational Campaigns

Significant progress in astronomical instrumentation over recent decades has made it feasible to
detect the faint H i 21-cm signal from the CD and EoR. This signal can be explored through two
main approaches: the global (sky-averaged) signal and the power spectrum. Global signal exper-
iments typically use single-dish instruments or total power radiometers, whereas interferometers
are employed for power spectrum measurements.

2.3.1 Global 21-cm Signal: Detection Strategy
The global 21-cm signal, representing the sky-averaged differential brightness temperature of neu-
tral hydrogen during the cosmic dawn and the epoch of reionization, offers a powerful probe of the
early evolution of the thermal and ionization of the Universe. Unlike interferometric observations
that target spatial fluctuations, global signal experiments measure the absolute radio spectrum in
the ∼40–200 MHz range using single-element radiometers. Extracting the cosmological signal—
typically tens to hundreds of mK, requires precise calibration, robust foreground subtraction, and
careful modeling of instrumental systematics. Several global signal experiments, both operational
and in development, aim to detect this faint signal across different redshift intervals, from the Dark
Ages to the end of Reionization. This thesis focuses on the CD and the EoR. Notable efforts include
EDGES [39], SARAS [40], REACH [41], LEDA [43], SCI-HI [59], and BIGHORNS [60]. However,
terrestrial observations are hindered by radio frequency interference (RFI) and ionospheric effects,
motivating proposals for lunar-based experiments.
A probable discovery of the global 21-cm signal with an unusually deep absorption trough was
reported by the EDGES collaboration [61], challenging standard cosmological predictions and
spurring a wave of theoretical and experimental scrutiny. Independent results from the SARAS
experiment [62], however, rejected the EDGES profile with 95.3% confidence, reaffirming consis-
tency with standard models. As of now, no other experiment has confirmed a detection, and the
quest to uncover the true global 21-cm signal continues.

2.3.2 Power Spectrum Measurements of the 21-cm Signal
Global signal experiments target the detection of the sky-averaged 21-cm brightness temperature,
whereas power spectrum analyses are designed to probe spatial variations in the signal across red-
shift. These fluctuations arise because of inhomogeneities in the distribution of neutral hydrogen,
ionizing sources, and the underlying matter density field. The 21-cm power spectrum, typically
expressed as a function of comoving wavenumber k or angular scale and redshift (or frequency),
captures the statistical properties of these fluctuations and serves as a powerful tool for probing
the physics of the CD and EoR. Interferometric arrays such as the Giant Meterwave Radio Tele-
scope (GMRT [44]), Low Frequency Array (LOFAR) [63], Murchison Widefield Array (MWA) [46],
Hydrogen Epoch of Reionization Array (HERA) [47], and the upcoming Square Kilometre Array
(SKA) [64] are designed to measure the 21-cm power spectrum over a range of redshifts and scales.
These instruments correlate signals from multiple antenna elements to achieve the sensitivity re-
quired to detect faint 21-cm fluctuations buried beneath the foreground that are several orders of
magnitude brighter.
Power spectrum measurements offer key insights into the timing and topology of reionization, the
properties of the first galaxies and black holes, and potentially even fundamental physics such
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as non-standard heating mechanisms or exotic dark matter scenarios. However, accurate fore-
ground subtraction, calibration, and modeling of instrumental response remain major challenges
for these experiments. The fundamental observable in 21-cm interferometric experiments is the
power spectrum of brightness temperature fluctuations, PT (k, z). Under the assumption that these
fluctuations constitute a statistically homogeneous and isotropic random field, the power spectrum
is defined through the two-point correlation of the Fourier components of the brightness tempera-
ture field as:

⟨∆Tb(k, z)∆T ∗
b (k

′, z)⟩ = (2π)3δ3(k− k′)PT (k, z), (2.6)

where δ̃T b(k, z) is the Fourier transform of the brightness temperature fluctuation field, and δD
is the Dirac delta function ensuring statistical independence between different modes. The H i
power spectrum, PHI(k, z), is related to the temperature fluctuation power spectrum PT (k, z) as
described in [65].

PT (k, z) = T
2

b(z)PHI(k, z) (2.7)

Here, xHI denotes the average neutral hydrogen fraction, which can be related to the cosmological
H i density parameter ΩHI(z) via an appropriate conversion. The quantity T b represents the
characteristic brightness temperature, given by:

T b(z) ≈ 0.39mK×
(
ΩHI(z)

10−3

)[
0.29

Ωm +ΩΛ(1 + z)−3

]1/2(
1 + z

2.5

)1/2

(2.8)

Here, ΩHI(z) represents the cosmological abundance of neutral hydrogen at redshift z. The H i
power spectrum can be related to the underlying matter power spectrum through the following
expression:

PHI(k, z) = b2(k, z)P (k, z), (2.9)

The measurement of the 21-cm power spectrum (PS) offers the advantage of capturing spatial fluc-
tuations in the signal, unlike the global signal which represents a sky-averaged quantity. Although
the 21-cm signal is significantly non-Gaussian and the PS does not capture all the spatial infor-
mation, it still contains substantial insight into the underlying astrophysics. Moreover, from an
observational standpoint, the PS is more accessible and less complex to measure than higher-order
statistical estimators.
The 21-cm power spectrum serves as a sensitive probe of early-Universe astrophysics. The bright-
ness temperature fluctuations arise from perturbations in key physical quantities, including the
matter density, ionization fraction, Lyman-α coupling, and line-of-sight peculiar velocities, as de-
scribed in Eq. 2.10 [66].

δ21 ∝ Ab δb +Ax δx +Aα δα +AT δT − δ∂v, (2.10)

Each δ in the above expression represents the fractional perturbation of a specific physical param-
eter influencing the 21-cm signal. Specifically, δb captures the fluctuations in the baryonic matter
density, δα denotes variations in the Lyman-α coupling coefficient xα, δx reflects fluctuations in
the neutral hydrogen fraction, δT corresponds to perturbations in the kinetic temperature TK ,
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Figure 2.5: The Murchison Widefield Array (MWA) has provided current upper limit on the
21-cm power spectrum from the EoR. This figure is adapted from [6].

and δ∂v accounts for the gradient of the peculiar velocity along the line of sight. The coefficients
Ai quantify the relative contribution of each physical effect to the total brightness temperature
fluctuations. These components collectively modulate the amplitude and shape of the 21-cm power
spectrum, encoding rich astrophysical information about the processes governing the IGM during
the CD and the EoR. Consequently, precise measurements and modeling of each term are essential
for accurate interpretation of future 21-cm observations.
Although a direct detection of the 21-cm power spectrum remains elusive, several interferometric
experiments have placed increasingly stringent upper limits on the signal, especially during the
EoR. These constraints provide valuable insights into the ionization state of the IGM and the
properties of early astrophysical sources. Recent interferometric observations have progressively
tightened upper limits on the 21-cm power spectrum during the Epoch of Reionization. The MWA
has placed a 2σ upper limit on the 21-cm power spectrum of ∆2

21 < (43.9 mK)2 at redshift z ≈ 6.5
and wave number k = 0.15 h cMpc−1 [6] (see Fig. 2.5). The most stringent constraints to date
have been achieved by HERA, which reports ∆2

21 < (21.4 mK)2 at z ≈ 7.9 and k = 0.34 h cMpc−1,
and ∆2

21 < (59.1 mK)2 at z ≈ 10.4 with k = 0.36 h cMpc−1 [7] (see Fig. 2.6). The LOFAR-
EoR project has also significantly advanced these constraints, recently reporting upper limits of
∆2

21 < (68.7 mK)2 at z ≈ 10.1, ∆2
21 < (54.3 mK)2 at z ≈ 9.1, and ∆2

21 < (65.5 mK)2 at z ≈ 8.3,
all measured near k ≈ 0.076–0.083 h cMpc−1 [8] (see Fig. 2.7).
While none of these measurements have yet achieved a detection, they have successfully constrained
the parameter space of theoretical models describing the ionizing photon budget, source properties,
and heating history of the IGM. With continued improvements in calibration, foreground subtrac-
tion, and sensitivity, upcoming observations from HERA and the future Square Kilometre Array
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Figure 2.6: Latest upper limits on the 21-cm power spectrum during the EoR from HERA
observations. This figure is adapted from [7].
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Figure 2.7: Latest upper limits on the 21-cm power spectrum during the EoR from LOFAR
observations. This figure is adapted from [8]
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(SKA) are expected to push toward the first definitive detection of the 21-cm signal.

2.3.3 Tomographic Imaging with Next-Generation Radio Tele-
scopes

Alongside power spectrum measurements, upcoming highly sensitive radio telescopes such as SKA-
Low are expected to enable tomographic imaging of the IGM during the CD and EoR [67]. This
technique involves constructing three-dimensional data cubes from redshifted 21-cm maps across
multiple frequency channels, allowing for spatial and temporal resolution of the evolving IGM.
Tomographic imaging is crucial for visualizing the morphology and topology of ionized regions,
connecting them to underlying galaxy populations, and probing the physical conditions and radia-
tion sources driving reionization. Unlike statistical approaches, tomography provides direct insight
into the structure and evolution of ionized bubbles, quasar environments, and feedback processes.
Once instruments like the SKA become operational, 21-cm tomography will offer a transformative
window into the early Universe, complementing statistical constraints such as the power spectrum.
Although spatial resolution may be limited, instruments like LOFAR are also projected to produce
tomographic maps under specific observational conditions [68].

2.4 Observational Challenges and Current Miti-
gation Strategies

Detecting the redshifted H i 21-cm signal from the CD and EoR presents a number of formidable
observational challenges. Foremost among them is the presence of bright astrophysical foregrounds,
primarily Galactic synchrotron emission and extragalactic point sources, which can be 4–5 orders
of magnitude brighter than the cosmological 21-cm signal. Accurately modeling and removing
these foregrounds without losing the underlying cosmological signal is a major technical hurdle.
Additionally, the ionosphere introduces time- and direction-dependent phase and amplitude dis-
tortions, especially at low frequencies, further complicating detection. Instrumental systematics,
such as chromatic responses of antennas, beam variations, and radio frequency interference (RFI),
also degrade sensitivity and must be meticulously mitigated. Achieving the dynamic range and sta-
bility required to isolate the faint 21-cm signal demands rigorous calibration techniques, advanced
statistical methods, and long integration times. Together, these factors make the detection and
interpretation of the H i 21-cm signal one of the most complex tasks in observational cosmology.
This section outlines the key observational challenges encountered in 21-cm signal detection exper-
iments. In the subsequent sections, we also provide a brief overview of widely adopted techniques
for foreground mitigation and methods used for parameter estimation.

2.4.1 Foreground
The detection of the redshifted 21-cm signal from the CD and EoR is severely hindered by astro-
physical foregrounds, which are several orders of magnitude brighter than the cosmological signal.
These foregrounds primarily include diffuse galactic synchrotron emission (DGSE), free-free emis-
sion from both galactic and extragalactic sources, and compact sources such as star-forming galaxies
and active galactic nuclei (AGNs) [9] a schematic representation is shown in Fig. 2.8. While these
foregrounds are of astrophysical interest in their own right, they act as contaminants in 21-cm cos-
mology and must be mitigated to uncover the underlying cosmological information. The dominant
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Figure 2.8: An illustration depicting various foreground components relevant to redshifted 21-cm
experiments at 150 MHz is shown, figure adapted from [9].
foreground component at frequencies below 150 MHz is DGSE, which originates primarily from
our Galaxy. Fig. 2.9 presents a brightness temperature map of the DGSE observed at 408 MHz
[10]. It follows a power-law dependence on frequency, T (ν) ∝ ν−α, making its brightness temper-
ature particularly significant at the low frequencies of interest for EoR and CD observations. This
emission is especially strong near the Galactic plane but is also observed at high latitudes near the
North Celestial and South Galactic Poles [69, 70]. In addition to synchrotron radiation, free-free
emission and contributions from radio haloes and relics add to the diffuse galactic foreground.
Extragalactic foregrounds comprise mainly compact radio sources such as AGNs and star-forming
galaxies. Although considerable progress has been made in constraining the number counts and
luminosity functions of these populations, uncertainties remain, particularly at the faint end of the
flux density distribution. Their spatial clustering introduces additional challenges, with studies

Figure 2.9: All-sky map of Galactic synchrotron emission, showing bright foregrounds along the
Galactic plane and fainter regions at high latitudes, figure adapted from [10].

43



showing that source clustering dominates the angular power spectrum at scales larger than about
one arcminute for flux densities above ∼ 0.1 mJy at 150 MHz.
The spectral smoothness of foregrounds, particularly synchrotron radiation, is a key feature lever-
aged by foreground mitigation strategies. Since the 21-cm cosmological signal is expected to
fluctuate rapidly with frequency, foreground separation methods exploit this contrast. Techniques
such as Principal Component Analysis (PCA), Generalized Morphological Component Analysis
(GMCA), Independent Component Analysis (ICA), and Gaussian Process Regression (GPR) are
commonly employed. However, these approaches assume perfect spectral smoothness, and their
efficacy is reduced in the presence of non-smooth spectral features or instrumental chromaticity,
which can introduce mode-mixing and complicate signal recovery. In global 21-cm signal exper-
iments and radio interferometric observations alike, careful foreground modeling, instrumental
calibration, and algorithmic sophistication are essential to isolate the cosmological 21-cm signal
from these dominant foreground contaminants.
The foreground challenges differ significantly between global 21-cm experiments and radio inter-
ferometric (power spectrum) experiments due to their distinct observational strategies. In global
experiments, which aim to detect the sky-averaged 21-cm signal, the primary difficulty lies in the
need to separate a faint, frequency-dependent signal from extremely bright foregrounds (e.g., galac-
tic synchrotron emission) that are also spectrally smooth. This demands exquisite instrumental
calibration and beam modeling, as any frequency-dependent systematics (e.g., chromatic beam
effects) can mimic or obscure the global signal. Conversely, in radio interferometric observations,
which measure spatial fluctuations of the 21-cm signal via the power spectrum, the dominant issue
is “mode-mixing,” where instrumental chromaticity and calibration errors scatter smooth fore-
ground power into higher Fourier modes, contaminating the 21-cm window. While both types of
experiments rely on the spectral smoothness of foregrounds for mitigation, global experiments are
more sensitive to spectral calibration and beam chromaticity, whereas interferometers are more
vulnerable to baseline-dependent leakage and angular-spectral coupling caused by the instrument
and ionosphere.

2.4.2 Mitigation strategies for Foreground
To address foreground contamination, some ground-based experiments employ a ‘foreground avoid-
ance’ strategy, while others focus on modelling and subtracting the foregrounds. In this section,
we provide a brief overview of both approaches.

a) Foreground Avoidance
The foreground avoidance technique is a conservative yet widely utilized strategy in 21cm cos-
mology for mitigating contamination from bright, spectrally smooth astrophysical foregrounds:
primarily Galactic synchrotron emission and extragalactic point sources, which can exceed the cos-
mological 21cm signal by five to six orders of magnitude. This method operates in Fourier space,
particularly within the two-dimensional (2D) cylindrical power spectrum defined by the transverse
and line-of-sight wave numbers, k⊥ and k∥, respectively. In this representation, foreground con-
tamination is predominantly restricted to a region termed the wedge (see Fig. 2.10), which arises
due to the chromatic response of the interferometer and the geometry of its baselines. The horizon
delay limit for each baseline bounds the wedge. Foreground avoidance involves discarding data
within this contaminated wedge and restricting analysis to the cleaner Epoch of Reionization (EoR)
window the region outside the wedge where the 21cm signal is expected to dominate (see Fig. 2.10).
The extent of the EoR window is determined by instrumental and observational parameters: the

44



Intrinsic Foregrounds

EoR Window

Foreground 
Wedge

horiz
on

prim
ary

 field
 of v

iew

h

h

Figure 2.10: A conceptual illustration of the 2D power spectrum highlights how ”intrinsic fore-
grounds” dominate the low k∥ modes. Due to the instrument’s chromatic response, this contami-
nation spreads into the so-called ”foreground wedge,” which is bounded by the primary beam and
the horizon. The region beyond this wedge, known as the ”EoR window,” is where the 21-cm signal
is least affected by foregrounds, figure adapted from [11].

minimum accessible k∥ is set by the total bandwidth, the maximum k∥ by the frequency resolution,
and the range in k⊥ is limited by the array’s shortest and longest baselines.
Several studies have characterized the EoR window and its limitations. For instance, [71] focused
on bright point sources while neglecting diffuse emission and thermal noise, whereas [72] explored
how uv-gridding and the instrument’s point spread function contribute to foreground leakage. [73]
demonstrated that chromaticity, calibration errors, and model inaccuracies can leak foreground
power into high k∥ modes. Notably, [74] found that diffuse Galactic synchrotron emission, rather
than point sources, constitutes the dominant foreground challenge for signal isolation. Although the
foreground avoidance approach sacrifices a significant portion of Fourier modes, thereby reducing
sensitivity, it offers a robust and model-independent framework for isolating the cosmological 21cm
signal, particularly valuable in the initial detection phase for experiments such as HERA and MWA.

b) Foreground Subtraction
Foreground subtraction is a widely used method in 21cm cosmology that seeks to recover the
faint cosmological signal by modeling and removing bright foregrounds from observational data.
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Most subtraction techniques rely on the spectrally smooth nature of foregrounds, such as Galac-
tic synchrotron and free–free emission, and employ line-of-sight fitting, typically using low-order
polynomials or similar basis functions to capture this smooth component, which is then subtracted
from the data [75–78]. However, a major limitation of parametric approaches is that they rely on
extrapolations from high-frequency, low-resolution sky maps, while observations at EoR-relevant
frequencies and resolutions remain scarce. To overcome these limitations, several non-parametric
or ’blind’ methods, such as PCA, ICA, or Gaussian Process Regression, Machine learning, are being
developed, offering a data-driven alternative that minimizes prior assumptions about foreground
structure. A key complication arises from instrumental effects, including beam chromaticity and
polarized foreground leakage, which can distort the spectral coherence of foregrounds and intro-
duce artificial structure along the frequency (i.e., line-of-sight) axis [79,80]. This leakage can cause
decorrelation and mimic 21cm signal fluctuations, thereby increasing the risk of residual bias.
Typically, foreground subtraction assumes a functional form for foregrounds, and the residuals
after subtraction include not only the cosmological signal but also fitting errors and thermal noise.
Since the 21cm signal is a line emission, redshifted to low radio frequencies, any distortion in its
frequency structure could lead to misinterpretation of the spatial distribution of neutral hydrogen.
Since thermal noise per resolution element is often much higher than the signal, the central chal-
lenge is to design an optimal subtraction algorithm that can minimize foreground contamination
without introducing systematic bias or significantly suppressing the cosmological signal.
i) Parametric Method
The parametric method is one of the most commonly employed techniques for subtracting astro-
physical foregrounds in 21cm cosmology. It exploits the fact that foregrounds, such as Galactic
synchrotron and free–free emission, as well as extragalactic point sources, are typically spectrally
smooth, in contrast to the fluctuating nature of the redshifted 21cm signal. This method fits
smooth functional forms along each line of sight (LoS), most commonly using low-order polynomi-
als in logarithmic frequency space, to model and subtract the dominant foreground contribution. A
classic implementation of this technique was introduced by [75], where the foreground was modeled
as the sum of four components, each described by a power-law spectrum with spatially constant
spectral indices. The parameters of these power laws were fit simultaneously with frequency cor-
relation parameters to estimate the residual power spectrum. Building on this, [76] proposed a
refined model allowing for spatially varying spectral indices, by fitting the logarithm of intensity
along each LoS with a second-order polynomial in log ν, offering greater flexibility to account for
spatial foreground variation. This approach has been widely adopted in several other works as well
[77, 80].
In general, the parametric foreground model can be expressed as:

Tobs(ν) =

N∑
n=0

an log
n(ν) + T21(ν) + n(ν) (2.11)

where Tobs is the observed brightness temperature, an are polynomial coefficients, T21 is the
cosmological 21cm signal, and n represents thermal noise.
While the method is computationally efficient and straightforward to implement, it does rely on
prior assumptions about the spectral form of the foregrounds. It makes it vulnerable to overfit-
ting, leading to signal loss, especially if higher-order polynomials remove both foregrounds and
components of the cosmological signal. Moreover, instrumental effects, such as beam chromaticity
and polarized foreground leakage, can disrupt the spectral smoothness of the foregrounds, making
them harder to model accurately with simple functions. Nevertheless, parametric methods remain
a valuable starting point in many global signal and interferometric experiments (e.g., EDGES,
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SARAS), often serving as a benchmark against which more sophisticated blind or semi-blind ap-
proaches, such as PCA, ICA, or Gaussian Process Regression, are tested.
ii) Non-Parametric Foreground Removal Methods
Unlike parametric techniques, which assume a specific functional form for foregrounds, non-parametric
or blind methods make minimal or no assumptions about the spectral structure of the data. These
approaches aim to isolate and subtract foregrounds by statistically identifying their dominant
modes directly from the observed data, primarily relying on foregrounds’ spectral smoothness and
statistical redundancy in contrast to the rapidly fluctuating cosmological 21-cm signal.
Popular non-parametric methods include:

• Wp Smoothing: Fits a smooth function to the line-of-sight signal using a regularization
parameter that allows for controlled spectral flexibility [81]. This enables deviations from
ideal smoothness, which helps to model real-world foreground variations and instrumental
effects.

• Fast Independent Component Analysis (FastICA): Assumes that the foreground
components are statistically independent and separates them using blind source separation
techniques [82]. FastICA allows the data to determine the shape of the foregrounds without
assuming a polynomial or analytic form, and has been successfully applied to CMB and
21 cm datasets.

• Generalized Morphological Component Analysis (GMCA): An ICA-based tech-
nique that incorporates sparsity and morphological diversity, often using wavelet transforms
to isolate signal components more effectively in frequency and angular space [83].

• Gaussian Process Regression (GPR): Uses Gaussian processes with specific covariance
structures to model the foregrounds, noise, and the cosmological signal [84]. GPR provides a
flexible Bayesian framework that can preserve the 21 cm signal while fitting and subtracting
smooth foregrounds.

• HIEMICA (HI Expectation-Maximization ICA): A semi-blind Bayesian approach
that jointly estimates the 3D 21 cm power spectrum and foreground parameters without
strong prior assumptions [85]. It uses the Expectation-Maximization (EM) algorithm and
has been shown to outperform PCA in multiple regimes.

• Deep Learning-Based Methods: Recent progress in deep learning has enabled data-
driven techniques for modeling and mitigating foregrounds in 21-cm cosmology. For in-
stance, [13,86] developed an artificial neural network (ANN) for extracting astrophysical pa-
rameters from mock global 21-cm data, incorporating instrumental effects and foregrounds,
and later extended it to interferometric power spectrum foreground mitigation [87]. [88]
introduced a convolutional denoising autoencoder (CDAE), trained on SKA simulations,
achieving high-accuracy signal recovery. Further developments include U-Net architectures
applied to post-reionization foreground removal [89], frequency-differenced maps for dy-
namic range compression [90], and VAE-assisted Gaussian Process Regression for power
spectrum reconstruction from mock LOFAR data [91]. In this thesis, we extend such frame-
works to both global and interferometric 21-cm pipelines.

Non-parametric methods are particularly useful when accurate foreground models are unavail-
able or when instrumental effects (e.g., beam chromaticity, polarization leakage) distort the ideal
spectral smoothness of foregrounds. These techniques have been applied in both global signal
experiments and interferometric studies (e.g., LOFAR, HERA, SKA-Low).
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However, blind methods must be applied with care. Aggressive mode subtraction or component
filtering may lead to substantial signal loss. To mitigate this, many pipelines incorporate sig-
nal injection tests to evaluate how much of the cosmological signal is preserved after foreground
removal.

2.4.3 Ionospheric effects
The Earth’s ionosphere presents significant challenges for both global 21-cm signal experiments and
radio interferometers, especially at low radio frequencies. The ionosphere introduces frequency-
dependent (chromatic) effects such as refraction, absorption, and thermal emission, primarily from
its F and D-layers. A schematic depiction of these ionospheric effects is shown in Fig. 2.11.
These effects can distort the shape and reduce the amplitude of the faint cosmological 21-cm
signal, sometimes to a degree greater than the signal itself, making detection and calibration
extremely difficult [12,50,92–94]. Moreover, ionospheric conditions vary with time, direction, and
location, leading to complex, direction-dependent phase errors for radio interferometers. This
variability complicates calibration, as standard methods may not fully correct for spatial and
temporal fluctuations in electron density, especially during periods of severe ionospheric activity
[95, 96]. For global 21-cm experiments, the ionospheric effects do not average out over time and
must be accounted for at each timestep, further increasing the complexity of foreground calibration
and signal extraction. Advanced techniques, such as direction-dependent calibration and machine
learning approaches, are being developed to mitigate these challenges, but the ionosphere remains
a fundamental obstacle for precise low-frequency radio astronomy.
To mitigate these challenges, several approaches have been developed. For interferometric exper-
iments, direction-dependent calibration methods, such as facet-based calibration and peeling, are
widely employed to model and correct for spatially varying ionospheric phase errors [95,96]. More
recently, machine learning (ML) techniques, including deep learning models, have been explored to
predict and correct ionospheric distortions by learning from both observational and simulated data
sets. These methods aim to model complex, non-linear ionospheric behavior in real time, improv-
ing calibration accuracy. In the context of global 21-cm signal experiments, mitigation strategies
include ionospheric absorption and refraction modeling based on real-time GPS-derived total elec-
tron content (TEC) measurements and ray-tracing simulations. Parametric modeling techniques
are used to fit and subtract ionospheric effects alongside foreground and instrumental systematics
in the data analysis pipeline. AI/ML frameworks such as artificial neural networks have been
employed to model the ionospheric effects and foregrounds, enabling more robust extraction of
the global 21-cm signal [50]. These data-driven methods show promise in dealing with the’ com-
plex, time-variable nature of ionospheric distortions. However, their integration into large-scale
observational campaigns like those planned for the SKA remains an ongoing research effort.

2.4.4 Radio Frequency Interference
Terrestrial radio interferometers are particularly vulnerable to radio frequency interference (RFI)
originating from various human-made sources such as telecommunications infrastructure, FM ra-
dio broadcasts, aircraft communication, wind turbines, and satellite transits through the telescope
beam [97,98]. These RFI signals are generally localized in both time and frequency, enabling their
identification and excision through high time and frequency resolution in interferometric data.
However, this flagging process disrupts the smoothness of the instrumental bandpass response,
introducing irregularities into the measured visibilities. In power spectrum (PS) estimation, which
involves Fourier transforming the visibilities along the frequency axis to delay space, these irregu-
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Figure 2.11: Schematic illustration of ionospheric refraction and absorption by uniform iono-
spheric layers (not to scale), figure adapted from [12].

larities translate into rapid fluctuations across the delay domain. Consequently, spurious structures
appear in the line-of-sight Fourier modes, potentially mimicking or obscuring the cosmological 21-
cm signal. For instruments such as the MWA and LOFAR, around 1 to 3% of data channels may
be excised due to RFI [99, 100]. If uncorrected during calibration, imaging, and foreground sub-
traction, the resulting excess power does not average down with integration time and can dominate
the true 21-cm signal by one to two orders of magnitude [97]. To mitigate these effects, spectral
techniques such as CLEAN and least squares spectral analysis (LSSA) have been employed, with
LSSA showing consistent efficacy across various RFI flagging patterns [101]. However, ongoing
investigation of alternative mitigation strategies is critical to optimize signal recovery.

2.5 Observational Approaches
To observe the redshifted 21-cm signal from the CD and the EoR, several ongoing experiments
employ different observational strategies. Based on their working principles, these efforts can
be broadly categorized into two classes: (i) radiometer-based experiments, which measure the
sky-averaged brightness temperature (known as the global 21-cm signal), and (ii) interferometric
techniques, which utilize arrays of radio antennas to detect spatial fluctuations in the signal. These
methods are described in detail below.

2.5.1 Single Radiometer Measurement Approach
Global 21-cm signal experiments use single radiometer systems designed to measure the sky-
averaged brightness temperature as a function of frequency, aiming to detect the faint, global
signature of the redshifted 21-cm line from neutral hydrogen across cosmic time, particularly dur-
ing the CD and the EoR. These systems typically consist of a wide-beam antenna (e.g., dipole,
fat-dipole-like monopole antenna, blade or conical log-spiral) coupled with a calibrated receiver
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that measures total power over a frequency range of 40–200 MHz, corresponding to redshifts
z ∼ 6–35 [39, 40, 102]. The observed antenna temperature Tant(ν) is modeled as a combination of
sky temperature, instrumental systematics, and noise, expressed as:

Tant(ν) =

∫
B(n̂, ν)Tsky(n̂, ν) dΩ∫

B(n̂, ν) dΩ
+ Tsys(ν), (2.12)

where B(n̂, ν) is the frequency-dependent antenna beam response, Tsky(n̂, ν) is the sky bright-
ness temperature distribution dominated by Galactic synchrotron emission, and Tsys(ν) represents
receiver system temperature including electronic noise [103]. The cosmological 21-cm signal, ex-
pected at the level of ∼ 10–200 mK, is superimposed on foregrounds that can reach ∼ 104–105 K.
Foreground separation is performed using smooth spectral models, such as maximally smooth
functions or polynomial fitting, exploiting the fact that the cosmological signal has a non-smooth
spectral shape due to astrophysical processes like Lyman-α coupling and X-ray heating [104,105].
The radiometer equation governs the thermal noise level for such measurements:

∆T =
Tsys√
B tint

, (2.13)

where B is the bandwidth and tint is the integration time, typically several hundred to thousands of
hours to achieve the required sensitivity [56]. Mitigating systematic errors due to beam chromatic-
ity, ground reflections, cable reflections, ionospheric effects, and radio frequency interference (RFI)
is critical; therefore, experiments are conducted in radio-quiet zones with carefully engineered in-
strument designs and calibration strategies. Notable single-radiometer experiments employing this
methodology include EDGES, SARAS, LEDA, and REACH, all aiming to constrain astrophysical
parameters and the timing of key phases in the early Universe [39–41].

2.5.2 Interferometric Measurement Approach
A radio interferometer records spatial Fourier components of the sky’s brightness distribution under
the far-field approximation. The reconstruction of the sky image is achieved via inverse Fourier
transformation of these measurements. This process, known as aperture synthesis, involves an
array of spatially separated antennas that collectively emulate a large, synthetic aperture. The
maximum baseline between any two antennas defines the effective resolution of the array. Since the
aperture is sampled at discrete positions, it is inherently incomplete. Each pair of antennas samples
a specific spatial frequency, determined by their separation in units of the observing wavelength.
By correlating the signals from each antenna pair, one obtains complex visibilities containing both
amplitude and phase information, which together map the Fourier plane of the sky brightness
distribution. The fundamental principle underlying the imaging of distant radio sources using an
interferometer is described by the van Cittert–Zernike theorem, which relates the spatial coherence
of radiation to the intensity distribution of a distant, spatially incoherent source. According to
this theorem, the mutual coherence function of the electric fields received at two points on the
aperture plane is proportional to the spatial Fourier transform of the sky brightness distribution.
Mathematically, this can be expressed as:

⟨Eν(r1)E
∗
ν (r2)⟩ ∝

∫
Iν(ŝ) e

2πiντ12 dΩ ≡ V (r1 − r2, ν), (2.14)

where Eν(r1) and Eν(r2) are the electric fields at positions r1 and r2 on the aperture plane, Iν(ŝ)
is the sky intensity in the direction ŝ, and dΩ is the solid angle element. The quantity V (r1−r2, ν)

50



is the visibility function, a complex quantity dependent on the baseline vector r1 − r2 and the
observing frequency ν. A radio interferometer effectively samples this visibility function, providing
a measure of the spatial coherence of the incoming wavefronts.
In radio interferometry, the visibilities measured by a network of telescopes must be expressed
within a coordinate system that effectively connects the sky brightness distribution to the physical
configuration of the array elements. Consider an interferometer directed toward a unit vector s⃗0,
which defines the phase center. The sky brightness distribution is denoted as I(l,m, n) = I(s⃗),
where l, m, and n are the direction cosines corresponding to the unit vector s⃗. The reference direc-
tion s⃗0 corresponds to (l = 0,m = 0, n = 1), and any deviation from this direction is represented
as s⃗ = s⃗0 + σ⃗. The visibility measurements are naturally represented on the so-called uv-plane,
which is the tangent plane to the celestial sphere at s⃗0 and serves as the projection surface for
synthesizing the two-dimensional sky image. This uv-plane is perpendicular to the baseline vectors
between antenna elements and defines the spatial frequency coordinates used in aperture synthesis
imaging. The transformation between the celestial and instrumental coordinate systems is given
by:
The transformation between the Earth-based Cartesian coordinates (x, y, z) and the interferometric
coordinate system (u, v, w) is given by:uv

w

 =
1

λ

 sin(H) cos(H) 0
− sin(δ0) cos(H) sin(δ0) sin(H) cos(δ0)
− cos(δ0) cos(H) − cos(δ0) sin(H) sin(δ0)

xy
z

 (2.15)

Here, H is the hour angle and δ0 is the declination of the phase center (pointing direction of the
array). The coordinates (u, v, w) are expressed in units of wavelength λ, and define the projected
baseline components in the coordinate frame centered on the pointing direction. The w-axis points
toward the phase center, while the u and v axes span the plane perpendicular to the line of sight.
In the Earth-based Cartesian coordinate system, the physical positions of antennas are described
by (x, y, z) in meters, while in the interferometric coordinate system, these are represented as
(u, v, w) and expressed in units of the observing wavelength λ. The position vectors r⃗1 and r⃗2 from
Equation 2.15 can be written in the UVW coordinate system as r⃗1(u1, v1, w1) and r⃗2(u2, v2, w2).
The baseline vector b⃗ between the two antennas is then defined as:

b⃗(u, v, w) = r⃗1 − r⃗2,

with components u = u1 − u2, v = v1 − v2, and w = w1 − w2. Note that the vectors r⃗1 and r⃗2
are not generally coplanar with the aperture plane; that is, their projections along the pointing
direction ŝ0 yield nonzero w components (r⃗1 · ŝ0 = w1 ̸= 0 and r⃗2 · ŝ0 = w2 ̸= 0). As a result,
signals arriving from a distant source will reach the two antennas at different times, introducing a
geometric delay given by:

τ =
b⃗ · ŝ0
ν

=
w2 − w1

ν
,

where ν is the observing frequency. This delay must be corrected before cross-correlating the
signals from each antenna pair.
Equation 2.14 can be reformulated in the UVW coordinate system as:

V (u, v, w) =

∫∫
I(l,m, n) e−2πi(ul+vm+w

√
1−l2−m2) dldm√

1− l2 −m2
, (2.16)
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where dΩ = dldm
n = dldm√

1−l2−m2
, and (l,m) are the direction cosines on the tangent plane to the

celestial sphere at the phase center s⃗0. Since the measured visibilities are sampled in the (u, v, w)
domain, one can, in principle, recover the sky intensity distribution through the inverse Fourier
transform of Equation 2.16.
If the field of view is sufficiently small (i.e., close to the phase center), the curvature of the sky
can be neglected and the w-term can be approximated as zero (w = 0). Under this small-angle
approximation, Equation 2.16 simplifies to a two-dimensional Fourier transform:

V (u, v) =

∫∫
I(l,m) e−2πi(ul+vm) dldm, (2.17)

which directly relates the measured visibility function V (u, v) to the sky brightness distribution
I(l,m) via a 2D spatial Fourier transform.
The observed source brightness distribution is related to the measured visibilities through the van
Cittert–Zernike theorem (see Equation 2.14). Each interferometric baseline samples the complex
visibility function at a specific point in the uv plane. Since the array consists of a finite number of
antenna pairs, the coverage of the uv plane is inherently discrete and incomplete, leading to gaps in
the sampling. As a result, the inverse Fourier transform of Equation 2.17 is performed as a discrete
summation over the available uv points. To enhance this sampling, the technique of Earth rotation
aperture synthesis is employed. As the Earth rotates, the projection of each baseline changes with
time, enabling the interferometer to sample additional regions of the uv plane. This improves the
uv coverage and thus the fidelity of the reconstructed image by effectively increasing the number
of independent measurements of the visibility function.

2.5.3 Calibration and Imaging of Interferometric Data
As indicated by Equation 2.14, raw interferometric data consists of electric field correlations mea-
sured across antenna pairs, which in themselves do not directly convey astrophysical information.
To extract scientifically meaningful results, the data must undergo a series of post-processing steps,
beginning with calibration to correct for instrumental and systematic effects, followed by imaging
techniques to reconstruct the sky brightness distribution and deconvolve the instrument’s response.

a) Direction-Independent Calibration
The visibilities recorded by an interferometer are affected by instrumental responses, particularly
complex, frequency-dependent gain factors introduced by the receiver electronics. These gains alter
the measured signal multiplicatively. The observed visibility between a pair of antennas i and j is
given by:

V obs
ij = gig

∗
jV

true
ij + nij , (2.18)

where V obs
ij is the measured visibility, V true

ij is the true sky visibility, gi and gj are the complex gain
terms for antennas i and j respectively, and nij denotes the noise contribution on the baseline. Each
component in Equation 2.18 is typically a function of frequency and time. Accurate calibration of
these gains is essential to recover the true sky signal and ensure reliable imaging outcomes.
Antenna-based complex gain solutions are estimated and applied to the observed visibilities in order
to correct for instrumental effects. It is typically achieved by observing standard calibration sources,
called calibrators, whose intrinsic visibilities are well-characterized. These calibrator observations,
conducted periodically during the observation session, are used to solve for the complex gains. The
derived gain solutions are then interpolated and applied to the target field visibilities. However,
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this approach assumes temporal stability of the instrumental gains; any fluctuations occurring
during the target observations remain uncorrected.
To address this limitation, a technique known as self-calibration is employed. In this method,
a sky model of the target field itself is iteratively used to refine the gain solutions over the actual
observation time. Self-calibration involves repeated cycles of imaging and calibration to converge
on both accurate gain solutions and an improved sky model [106]. The methodology described
above operates under the assumption that the gain errors are constant across the entire field of
view. In other words, the gain terms gi in Equation 2.18 are considered to be direction-independent,
thereby characterizing a “direction-independent” calibration regime.

b) Direction-Dependent Calibration
At low radio frequencies (typically in the range of a few hundred MHz), the instrumental response
becomes increasingly direction-dependent due to several factors. The primary beam pattern of
the antennas varies significantly across the wide field of view, and this response evolves with both
frequency and time. Moreover, the Earth’s ionosphere introduces additional time- and direction-
dependent distortions such as refractive shifts and phase delays [107]. These spatially varying
effects necessitate the use of direction-dependent calibration (DDC).
The core principle behind DDC involves solving for antenna or station gains in multiple directions
across the field of view, particularly in the directions of bright off-axis sources. These corrections
are essential at low frequencies, where ionospheric disturbances are more pronounced and the field
of view is inherently larger.

c) Imaging
Following calibration, the measured visibilities are transformed into sky images to recover the
intensity distribution of celestial sources. Since the visibility data are obtained at discrete locations
in the uv plane, they can be described by a sampling function S(u, v), which is mathematically
expressed as a sum of Kronecker delta functions:

S(u, v) =
∑
k

δ(u− uk)δ(v − vk) (2.19)

where the index k corresponds to a specific baseline measurement.
The observed sky image is obtained via a Fourier inversion of the sampled visibility function:

Iobs(l,m) =

∫∫
S(u, v)V (u, v)e2πi(ul+vm) dudv (2.20)

This reconstructed image, Iobs(l,m), is referred to as the dirty image. It represents the convolution
of the true sky brightness distribution with the instrument’s point spread function (PSF). To
recover the intrinsic sky signal, a deconvolution algorithm is applied to the dirty image, effectively
mitigating the distortions introduced by the incomplete sampling in the uv plane.
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2.6 21-cm Parameter Extraction and Inference
The redshifted 21-cm signal offers a unique probe into the astrophysics of the early Universe,
particularly during the CD and EoR. Extracting the underlying physical parameters from this
signal requires sophisticated inference techniques that can disentangle the weak cosmological signal
from bright astrophysical foregrounds and instrumental systematics.
The primary goal of 21-cm parameter inference is to constrain astrophysical parameters such as:

• the ionizing efficiency of galaxies (ζ),

• the minimum virial temperature or halo mass of star-forming galaxies (Tvir),

• the X-ray luminosity per star formation rate (LX/SFR),

• the mean free path of ionizing photons (Rmfp),

• and the spin temperature evolution (Ts).

These parameters govern the timing and morphology of reionization and heating and are typically
inferred by comparing simulations of the 21-cm signal to observational data. Various methods have
been developed to extract these parameters and interpret the 21-cm signal within this context, as
detailed below.

2.6.1 Bayesian Inference Methods
Bayesian inference provides a principled probabilistic framework for estimating astrophysical pa-
rameters from 21-cm observations, where the data are often noisy and contaminated by foregrounds.
The core of Bayesian analysis is Bayes’ theorem:

P (θ|D) =
P (D|θ)P (θ)

P (D)
, (2.21)

where P (θ|D) is the posterior probability of the model parameters θ given the data D, P (D|θ) is
the likelihood, P (θ) is the prior distribution, and P (D) is the evidence.
Bayesian frameworks such as 21CMMC [108] wrap around fast semi-numerical simulations like 21cmFAST
[5] to infer parameters like the ionizing efficiency ζ, X-ray luminosity, and minimum virial mass.
For global signal experiments, Bayesian inference tools such as MCMC and MultiNest are com-
monly used for parameter estimation. Signal reconstruction techniques often rely on simulation
frameworks like ARES [109], 21cmFAST [5], and SCRIPT [110] to model and fit the sky-averaged
brightness temperature spectrum. For modeling foregrounds, a log-log polynomial function is
typically employed due to its flexibility in capturing the smooth spectral behavior of foreground
emission. These techniques provide full posterior distributions, allowing for robust uncertainty
quantification and model comparison. However, they are computationally intensive due to the
requirement of evaluating many simulations.

2.6.2 Hybrid Inference Methods
Hybrid methods combine the efficiency of machine learning (ML) with the statistical rigor of
Bayesian inference, offering a powerful framework for parameter estimation in 21-cm cosmology.
These approaches typically involve training machine learning models, such as Gaussian Processes or
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neural networks, to emulate computationally expensive forward simulations or likelihood functions.
Once trained, these surrogate models are integrated into Bayesian frameworks (e.g., MCMC or
nested sampling) for efficient posterior sampling [111–113].
Traditional parameter estimation techniques (e.g., [114]) often rely on strong assumptions about
the form of prior distributions and are typically validated under idealized scenarios. While useful,
these methods may not account for real-world complexities like instrumental systematics and non-
Gaussian noise. Later efforts (e.g., [115, 116]) adopted broader, less informative priors to recover
the global 21-cm signal from synthetic data, still assuming simplified instruments and foregrounds.
To address more realistic scenarios, [117] introduced a method using Singular Value Decomposition
(SVD) to construct basis functions that model systematics specific to each global signal experiment.
These basis vectors allow for better separation of the foregrounds and instrumental modes from the
cosmological signal. Similarly, HIBayes [115] offers a fully Bayesian framework that models the
signal as a Gaussian process and foregrounds as a high-order polynomial, enabling joint inference
while accounting for model uncertainty.
Recent hybrid methods go a step further by using machine learning to accelerate the inference
pipeline. For instance, Bayesian Neural Networks (BNNs) can learn posterior distributions di-
rectly from data, enabling rapid inference with uncertainty quantification. These models are
especially advantageous in high-dimensional parameter spaces where traditional MCMC methods
are computationally prohibitive. Neural networks and GPs have already been applied to 21-cm
power spectrum analyses for efficient likelihood evaluations [84, 87, 118, 119]. Complementary to
this, Fisher matrix-based forecasting approaches have also been employed to predict constraints
on astrophysical parameters, such as the efficiency and spectral properties of high-redshift X-
ray sources that heated the IGM [120]. Overall, hybrid inference methods represent a promising
and flexible solution to the challenges of parameter estimation in the presence of complex fore-
grounds, instrumental systematics, and large parameter spaces. By combining the strengths of
both simulation-driven statistical modeling and data-driven machine learning, these frameworks
are well-suited for next-generation global and interferometric 21-cm experiments.

2.6.3 Machine Learning-Based Inference
Machine learning, particularly deep learning, has become an increasingly powerful tool in 21-cm
cosmology for inferring astrophysical parameters directly from observations. These models are
capable of learning complex, non-linear relationships and non-Gaussian priors from training data,
making them highly effective for many astronomical tasks. Supervised learning techniques, such as
regression-based Artificial Neural Networks (ANNs), are useful for predicting specific parameters,
while unsupervised approaches can identify anomalies, uncover hidden patterns, or detect outliers
in large datasets. These capabilities are particularly valuable in data-driven astronomy, where
traditional statistical methods may struggle with scalability or model assumptions. Unlike classical
Bayesian techniques such as MCMC, which are computationally intensive and limited by their
reliance on specific priors, ML models offer a data-driven alternative. By training on a broad and
diverse set of simulated 21-cm data, these models can generalize well to unseen data, allowing for
fast and efficient parameter inference across large parameter spaces. Once trained, such models
can infer key astrophysical quantities almost instantaneously.
In recent years, Artificial Neural Networks (ANNs) have been effectively employed to extract
global 21-cm signal parameters from mock observational datasets, accounting for foreground con-
tamination, instrumental effects under simplified assumptions, and thermal noise [13, 86, 87, 118].
Building on this foundation, the present thesis advances a more robust ANN-based framework
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that accounts for additional observational complexities, including ionospheric distortions, realistic
foregrounds, and thermal noise. Furthermore, we develop an ANN-based emulator to replicate
simulated observed power spectra for the SKA-Low AA* telescope layout. This emulator is em-
ployed to investigate the impact of gain calibration errors and sky model position uncertainties on
the recovery of astrophysical parameters, thereby enabling us to determine acceptable thresholds
for these systematics.
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Chapter 3

Machine learning Methods

In this chapter, we provide an overview of machine learning approaches, including training strategies
and optimization algorithms, which are applied extensively throughout this thesis. The content
related to artificial neural networks (ANN) is adapted from the paper “Extracting the Global 21-cm
Signal from Cosmic Dawn and Epoch of Reionization in the Presence of Foreground and Ionosphere”
[50].
In recent years, diverse strategies have been explored for estimating astrophysical and cosmological
parameters from observational data affected by strong foreground contamination. Traditional ap-
proaches have often relied on Bayesian inference frameworks, where the effectiveness of parameter
recovery depends heavily on the choice and quality of statistical priors, as illustrated by [114].
Progressively, incorporating broader and more informative priors has improved these methods.
However, with the increasing complexity and volume of astronomical datasets, machine learning
(ML) techniques have emerged as a highly effective alternative due to their flexibility and com-
putational speed. Notably, [118] highlighted the potential of ML models in extracting parameters
directly from noisy 21-cm spectra. Building on such developments, the present work utilizes arti-
ficial neural networks (ANNs) as described by [86].
In essence, supervised machine learning operates through two core steps: first, the model is trained
using input–output pairs from a labeled dataset; second, its predictive ability is assessed by ap-
plying it to unseen data, comparing predicted values with true outcomes. Machine learning tech-
niques are now deeply embedded in astrophysical research, supporting applications such as galaxy
morphology classification, photometric redshift estimation, pulsar candidate identification, radio
interferometric calibration, cosmological parameter inference, and automated data quality assess-
ment in large-scale sky surveys. As next-generation surveys promise to deliver exponentially larger
and deeper datasets, machine learning is expected to play a central role in future data analysis
pipelines. One particularly valuable application is in direct parameter inference from observational
data, offering a more computationally efficient pathway than traditional sampling techniques like
Markov Chain Monte Carlo (MCMC). The following sections provide a focused discussion on the
structure and implementation of ANNs for this purpose, detailing their suitability for parameter
estimation tasks in the context of global 21-cm signal analysis.
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3.1 Artificial Neural Network (ANN)
Artificial Neural Networks (ANNs) are computational models inspired by biological neural systems’
structural and functional principles. A standard feed-forward ANN architecture comprises three
main layers: an input layer, one or more hidden layers, and an output layer. The depth of the
network corresponds to the number of hidden layers, while the width is determined by the number of
neurons within each layer. In a feed-forward configuration, information flows in a single direction,
from the input to the output, without forming cycles. Each neuron in one layer is typically
connected to every neuron in the subsequent layer, and these connections are characterized by
adjustable weights and biases that are optimized during the training process [121]. A schematic
diagram illustrating the feed-forward ANN architecture is presented in Fig. 3.1.
Following the structure outlined in [86, 118], let us consider an input dataset with n features:
x1, x2, . . . , xn. Each input feature xj is passed to the corresponding input neuron, which is con-
nected to the hidden layer neurons with weights w(1)

ij and biases b1j . The pre-activation input zi to
the i-th hidden neuron is calculated as:

zi =

n∑
j=1

w
(1)
ij xj + b1j (3.1)

The output yi of the hidden neuron is obtained by applying a non-linear activation function h(·)
to zi:

yi = h(zi) (3.2)

The final network output Y ′
i is computed as a linear combination of the activated outputs from

the hidden layer, with weights w(2)
ij and biases b2j :

Y ′
i =

n∑
j=1

w
(2)
ij yj + b2j (3.3)

The performance of the network is evaluated by a loss function. For regression tasks, we employ
the Mean Squared Error (MSE) as the cost function E, defined over Nt training epochs and N
output targets as:

E =
1

Nt

Nt∑
n=1

En(w, b) =
1

Nt

Nt∑
n=1

[
1

N

N∑
i=1

(
Y ′
i,n − Yi,n

)2] (3.4)

Here, Y ′
i,n denotes the network prediction and Yi,n is the true value for the i-th output of the n-th

training sample.

3.1.1 Training Method
The ANN is trained using the backpropagation algorithm in conjunction with gradient descent
optimization. Gradient descent is an iterative procedure that aims to minimize the loss function
by adjusting the model parameters (weights and biases) in the direction of the negative gradient of
the loss. After each forward pass, gradients of the loss function with respect to weights and biases
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Input layer

Hidden layer
Output layer

Figure 3.1: Schematic representation of a fully connected feedforward neural network consisting
of an input layer (yellow), a hidden layer (blue), and an output layer (red). Each neuron in one layer
is connected to every neuron in the subsequent layer, enabling complex function approximation
and learning representations.
are computed and used to update the parameters. A schematic illustration of the backpropagation
process is shown in Fig. 3.2, and the corresponding mathematical update rules are given below:

∆w
(l)
ij = −η

∂E

∂w
(l)
ij

= w
(l)
ij − η

Nt∑
n=1

∂En

∂w
(l)
ij

(3.5)

∆b
(l)
ij = −η

∂E

∂b
(l)
ij

= b
(l)
ij − η

Nt∑
n=1

∂En

∂b
(l)
ij

(3.6)

Here, w(l)
ij and b

(l)
ij denote the weights and biases at layer l, En is the error for the n-th training

sample, Nt is the total number of training samples in a batch, and η is the learning rate, a
hyperparameter that controls the step size at each iteration during the optimization process of a
neural network. It governs how significantly the model’s weights are updated in response to the
computed gradient of the loss function. A high learning rate may lead to faster convergence but
carries the risk of overshooting the minimum of the loss surface. In contrast, a low learning rate
ensures more stable convergence but can result in slower training or entrapment in local minima.
Choosing an appropriate learning rate is crucial for achieving both efficient and effective model
training.

Prediction and Validation
Once the ANN model is trained, it can be used to make predictions on previously unseen input
data. For each input vector x = [x1, x2, . . . , xn], the network computes the forward pass using the
trained weights and biases to generate the predicted output Y′. The prediction is computed using
the same forward propagation described in Equations 3.1–3.3.
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Figure 3.2: Illustration of the backpropagation algorithm in a neural network. The process begins
by computing the error between the predicted and actual outputs (Step 1). This error is propagated
backward through the network (Step 2), and the gradient of the error is calculated with respect
to each weight (Step 3). These gradients are used to update the weights and minimize the overall
prediction error during training. This figure is adapted from https://www.analyticsvidhya.
com/blog/2023/01/gradient-descent-vs-backpropagation-whats-the-difference/.
To evaluate the generalization ability of the trained model, we validate it on a separate validation
dataset that was not used during training. The same cost function, such as Mean Squared Error
(MSE), is computed on the validation set:

MSEval =
1

Nv

Nv∑
n=1

[
1

N

N∑
i=1

(
Y ′
i,n − Yi,n

)2] (3.7)

where Nv is the number of validation samples. A low validation error indicates good generaliza-
tion, whereas a significantly higher validation error compared to the training error may suggest
overfitting.
To further assess the performance, additional metrics such as the coefficient of determination
(R2 score), root mean squared error (RMSE), and mean absolute error (MAE) may also be used
depending on the specific requirements of the regression task.

3.1.2 Implementation Details
The Artificial Neural Network (ANN) model utilized in this study was implemented in Python,
leveraging the Sequential API provided by the Keras library, with TensorFlow 1 serving as the
computational backend. Additionally, the scikit-learn 2 library [122] was employed for data
preprocessing, normalization, and model evaluation procedures. The architecture of the ANN,
including the number of hidden layers and neurons per layer, was determined empirically through

1https://www.tensorflow.org/
2https://scikit-learn.org/stable/
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performance validation on the training and validation datasets. The output layer was configured
to have as many neurons as the number of target parameters to be predicted. The selection of ac-
tivation function, network width, and depth in an ANN can be determined through trial-and-error
methods or by utilizing optimization techniques such as Keras Tuner 3, RandomizedSearchCV,
GridSearchCV, or Optuna. Activation functions introduce non-linearity into neural networks, en-
abling them to learn complex patterns and approximate non-linear mappings between inputs and
outputs. Without activation functions, a neural network composed solely of linear transforma-
tions would be limited to modeling only linear relationships, regardless of its depth. By applying
non-linear activation functions, such as ReLU (Rectified Linear Unit), sigmoid, ELU (Exponential
Linear Unit), or tanh, after each layer, the network gains the capacity to capture intricate fea-
tures in the data, making them essential for tasks such as classification, regression, and function
approximation. A linear activation function is used in the output layer, as is standard practice for
regression tasks.
The training of the ANN was performed using the Adam optimizer, which combines the benefits
of Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp) for
faster and more stable convergence. The optimizer plays a central role in adjusting the network’s
weights and biases by minimizing the loss function through gradient-based updates. It directly in-
fluences the convergence speed, stability, and generalization capability of the model. Learning rate
and other optimizer-specific hyperparameters were carefully tuned to achieve optimal performance.
The choice of optimizer can significantly affect the efficiency and accuracy of the training process.
A comprehensive description of the final ANN architecture, including the choice of activation func-
tions, number of neurons, hidden layers, training configuration, and selected hyperparameters, is
provided in the following chapters.

3.2 Data Preparation and Preprocessing
Adequate data preparation and preprocessing are fundamental to constructing robust, high-performing
machine learning (ML) models. Any ML framework’s predictive success and generalizability are
intrinsically linked to the quality, structure, and scale of the input data. These preparatory steps
are designed to ensure that the dataset is cleansed of inconsistencies, properly scaled, and struc-
tured in a manner that facilitates efficient learning and improved generalization to unseen data.
The preprocessing workflow begins with data cleaning, which involves detecting and addressing
missing values, eliminating outliers, and removing redundant or non-informative features. These
actions reduce noise and potential biases, enabling the learning algorithm to focus on meaningful
patterns within the data.
In this study, we utilize supervised machine learning models, which require the availability of
well-labeled training and validation datasets. These datasets are constructed to represent a com-
prehensive and diverse range of possible 21cm global signal, foregrounds, ionospheric effects, and
instrumental systematics. To enable an efficient and representative exploration of the underlying
parameter space, we employ three sampling techniques: Random Sampling, Latin Hypercube Sam-
pling [123], and Hammersley Sequence Sampling [124]. A detailed discussion of these methods and
their implementation is presented in Chapter 5. Once the dataset is constructed, it is partitioned
into training, validation, and testing subsets. Before training, the input features are subjected
to preprocessing to enhance the model’s ability to learn relevant features and improve convergence.
The most widely adopted techniques include Min-Max normalization and standardization, both
implemented using Scikit-learn.

3https://www.tensorflow.org/
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• Min-Max normalization (via MinMaxScaler) rescales the data to a fixed range, typically
[0, 1], by subtracting the minimum value and dividing by the range of the variable. This
method is particularly advantageous when dealing with features expressed in different units
or spanning different dynamic ranges.

• Standardization (via StandardScaler) transforms the input data such that each feature
has zero mean and unit variance. This is especially beneficial for algorithms that usually
assume distributed input features or are sensitive to the relative magnitudes of feature
values.

Throughout this work, the preprocessing pipeline has been refined iteratively. Initially, we em-
ployed basic ’MinMaxScaler’ and ’StandardScaler’ to scale the datasets. Subsequently, a loga-
rithmic transformation was applied to enhance model robustness and better capture subtle signal
variations, followed by normalization and standardization. Additionally, the label values were nor-
malized using Min-Max scaling to maintain consistency across all input–output mappings. The
data under consideration poses substantial challenges: the cosmological 21-cm signal is exceedingly
weak, while foreground emissions are 5 to 6 orders of magnitude stronger. Ionospheric effects fur-
ther complicate the extraction of the signal by introducing direction-dependent spectral distortions,
primarily due to the chromatic response of the instrument’s beam. These challenges necessitate
careful preprocessing to ensure that the machine learning models can distinguish between the subtle
cosmological signal and the dominant foreground and instrumental systematics.

3.3 Evaluation Metrics
To assess the performance of the machine learning models in recovering the global 21-cm signal
or its power spectrum, we employ two standard regression metrics: the Root Mean Squared Error
(RMSE) and the Coefficient of Determination R2 score.

3.3.0.1 Root Mean Squared Error (RMSE):
The RMSE measures the average magnitude of the prediction errors. It is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(Yi − Ŷi)2 (3.8)

where Yi is the true value, Ŷi is the predicted value, and N is the total number of data points.
RMSE is expressed in the same units as the target variable and is sensitive to large deviations.

3.3.0.2 Coefficient of Determination (R2 Score):
The R2 score indicates the proportion of variance in the target variable that is explained by the
model. It is calculated as:

R2 = 1−
∑N

i=1(Yi − Ŷi)
2∑N

i=1(Yi − Ȳ )2
(3.9)

where Ȳ is the mean of the true values. An R2 score of 1 signifies an ideal fit between the predicted
and actual values, whereas a score of 0 indicates that the model’s predictions are no better than
simply using the mean of the target data.
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These metrics together provide a comprehensive assessment of the regression model’s predictive
accuracy and generalization capability.
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Chapter 4

Extracting the Global 21-cm signal
from Cosmic Dawn and Epoch of
Reionization in the presence of
Foreground and Ionosphere

Adapted from: Anshuman Tripahi, Abhirup Datta, Madhurima Choudhury, Suman Majumdar
“Extracting the Global 21-cm signal from Cosmic Dawn and Epoch of Reionization in the presence of
Foreground and Ionosphere, Volume 528, Issue 2, 2024, Pages 1945-1964, 10.1093/mnras/stae078
Detection of redshifted H i 21-cm emission is a potential probe for investigating the Universe’s
first billion years. However, given the significantly brighter foreground, detecting 21-cm is obser-
vationally difficult. The Earth’s ionosphere considerably distorts the signal at low frequencies by
introducing directional-dependent effects. Here, for the first time, we report the use of Artificial
Neural Networks (ANNs) to extract the global 21-cm signal characteristics from the composite
all-sky averaged signal, including foreground and ionospheric effects such as refraction, absorption,
and thermal emission from the ionosphere’s F and D-layers. We assume a ’perfect’ instrument and
neglect instrumental calibration and beam effects. To model the ionospheric effect, we considered
the static and time-varying ionospheric conditions for the mid-latitude region where LOFAR is
situated. In this work, we trained the ANN model for various situations using a synthetic set of
the global 21-cm signals created by altering its parameter space based on the ”tanh” parametrized
model and the Accelerated Reionization Era Simulations (ARES) algorithm. The obtained result
shows that the ANN model can extract the global signal parameters with an accuracy of ≥ 96% in
the final study when we include foreground and ionospheric effects. On the other hand, a similar
ANN model can extract the signal parameters from the final prediction data set with an accuracy
ranging from 97% to 98% when considering more realistic sets of the global 21-cm signals based
on physical models.

4.1 Introduction
The period from the beginning of star and galaxy formation [Cosmic Dawn (CD)] till the change
of the state of the Universe from an absolutely neutral to a fully ionized state, i.e., the Epoch of
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Reionization (EoR), is still observationally unexplored to astronomers. Detection of the redshifted
H i 21-cm line is noticed as one of the most promising future probes of the Universe at these red-
shifts (z≈ 7 − 30) [125, 126]. The redshifted H i 21-cm lines are formed due to hyperfine splitting
of the 1S ground state. Studying these epochs can answer many essential cosmological queries,
such as the features of the early galaxies, the physics of mini-quasars, the development of very
metal-poor stars, and other major research topics on the origin and evolution of the Universe. The
primary science goal of upcoming radio telescopes like the SKA is to study these three extended
epochs of the universe’s structure formation history. In past decades, significant progress has been
made in the theoretical modelling of the expected redshifted 21-cm signal. There are two different
experimental techniques for observing these signals in the observational field. [126–128]:
(a) using several dishes and huge interferometric arrays at very low radio frequencies to obtain
statistical power spectra of the H i 21-cm variations, for example, Giant Meterwave Radio Tele-
scope (GMRT [44]), Hydrogen Epoch of Reionization Array (HERA [47]), Low Frequency Array
(LOFAR[63]), Murchison Wide-field Array (MWA [46]), Square Kilometer Array(SKA [64]), etc.
(b) using a single radiometer to observe the sky-averaged signature of the redshifted H i 21-cm
line, for example, Broadband Instrument for global Hydrogen Reionization Signal (BIGHORN
[129]), Large-Aperture Experiment to Detect the Dark Ages (LEDA [43]), Experiment to Detect
the global EoR Signature (EDGES [61]), Shaped Antenna measurement of the background Radio
Spectrum (SARAS [116,130]),etc.
Recently, the EDGES team announced a probable discovery of the Cosmic Dawn’s sky-averaged
H i 21-cm global signal. They observed that the measured signal had an absorption trough double
the magnitude expected by the standard cosmological model [61]. However, this supposed detec-
tion has been challenged by another independent experiment SARAS [62]. This contradiction in
independent detection of the global 21-cm signal from ground-based observation further highlights
its challenges. One of the reason why this signal is very difficult to detect is because it is very
faint. The signal is embedded behind a sea of dazzling galactic as well as extragalactic foregrounds.
The magnitude of the foregrounds is several orders brighter than the signal, approximately 104 to
106 order brighter than the signal. Furthermore, human-made radio frequency interference (RFI),
mainly by the FM band and Earth’s ionosphere, will also affect ground-based observation. The
ionosphere distorts the lower frequency signal significantly when it passes through the ionosphere.
The ionosphere is the uppermost layer of the atmosphere, extending from ∼ 50 to ∼ 600 km above
the Earth’s surface. The impacts of solar activity significantly affect the electron density in the
ionosphere. The ionospheric existence causes three significant effects in detecting the redshifted
global 21-cm signal from the ground-based antenna. All radio waves, including galactic and extra-
galactic foregrounds, are refracted by the ionosphere, which also attenuates any trans-ionospheric
signal and emits thermal radiation [131, 132]. Further, due to solar activation of the ionosphere,
these effects are fundamentally time variable [133, 134]. These ionospheric effects scale as ν−2,
where ν represents the frequency of observations. Hence, as the observing frequencies get lower,
the effect of the ionosphere increases more. It demonstrates that when detecting the signal from
the Cosmic Dawn and the Dark Ages (z ≥ 15), ionospheric effects will have a stronger influence
on global signals than when detecting the signal from the Epoch of Reionization (15 ≥ z ≥ 6) [92].
The effects of static ionosphere refraction and absorption for ground-based observation between 30
and 100 MHz were previously examined by [93]. In [92], they presented the dynamic ionosphere
effects like refraction, absorption, and thermal emission. They also demonstrated how these com-
bined effects affect the global 21-cm signal from Epoch Reionization and Cosmic Dawn when we
are observing from the ground. [12, 94] recently investigated the chromatic ionospheric effects on
global 21-cm data by modelling the two principal ionospheric layers, the F and D layers, with a re-
duced spatial model with temporal variance. The investigation focuses on the chromatic distortions
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induced by the ionosphere.
Several studies have been done in recent years based on machine learning (ML) techniques to
perform signal parameter estimation or signal modelling. [118] and [135] have employed machine
learning techniques to predict 21-cm power spectrum parameters. Similarly, [136] extends the
ANN to extract the 21-cm PS and corresponding EoR parameters from synthetic observations
for different telescope models. [111] used Artificial Neural Network (ANN) to emulate the 21-cm
power spectrum for a wide range of parameters. Similarly, [113] have developed an ANN-based
emulator for the signal bispectrum, which they have further used to estimate signal parameters
via a Bayesian inference pipeline. The global 21-cm signal from Cosmic Dawn and EoR has
also been emulated using ANN by [137–139]. Convolutional Neural Networks (CNN) have been
utilized to identify reionization sources from 21-cm maps [140]. [141] and [142] have used deep
learning models to emulate 21-cm maps from the dark matter distribution directly. [143] used
deep learning with CNN to predict astrophysical parameters directly from 21-cm maps. [144]
used CNN to estimate parameters and infer posteriors on 3D-tomographic 21-cm images. An
ANN model that can extract astrophysical parameters of 21 cm from mock observation data sets,
including the effects of foregrounds, instruments, and noise, has been successfully developed and
presented by [13,86]. The relevance of non-parametric techniques for this purpose has already been
demonstrated in several previous studies [81, 117]. These studies have shown that using a simple
parametric technique for signal and foreground subtraction can result in over-subtraction, leading
to the loss of the signal.
In this paper, we use ANNs to extract the global 21-cm signal parameters along with foreground
and ionospheric parameters from the composite all-sky averaged signal, containing foreground
and ionospheric effects. This study considers perfect instrument conditions, representing an ideal
scenario in which the instrument is assumed not to modify the signal. In the first case of study, we
follow the tanh parametrized model and Accelerated Reionization Era Simulations (ARES) code
[145] to construct the cosmological signal. We use the log (T) − log (ν) polynomial model to map
the bright, dominant foregrounds. According to [146], a 3rd or 4th-order polynomial is sufficient to
map the sky’s spectrum. In contrast, [147] demonstrated that when adding the antenna’s principal
chromatic beam, a 7th-order polynomial is required. We followed [92] to add the ionospheric effect
into the simulated signal and foreground. In this, we consider mainly three effects induced as a
resultant: refraction, absorption, and thermal emission, and all these are directly proportional to
the electron density (TEC) and temperature of the electrons at various layers of the Ionosphere
(Te). These ionospheric effects introduce two more parameters into our training data sets. To
check and validate the robustness and reliability of the developed model, we have considered a
minute variation to the parameters TEC and Te to generate our final training data set. To further
check and validate the ANN model’s robustness, we use a more realistic set of global 21-cm signals
presented in [13] instead of parametrized global 21-cm signals. This global 21-cm signal data
has different parameters than the tanh parametrized global signal. In section 4.2 of this paper, we
briefly review about 21-cm signal. Section 4.3 mentions the details about the foreground model that
we used to map the galactic and extragalactic sources. Section 4.4 discusses the ionospheric effects
and their impacts on the global 21-cm signal observation. We briefly discuss the ANN overview
and matrices we used to evaluate the performance of our ANN model in section 4.5. Section 4.6
describes the methodology and procedures to simulate the global 21-cm signal, foreground, and
ionospheric effects for training and testing the ANN model. We present the results obtained by
our model for all the cases in section 4.7. In the last section, we summarize our work and discuss
the implications of our predictions.
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4.2 global 21-cm Signal
The 21-cm line of the neutral hydrogen is formed as a result of the hyperfine splitting of the 1S
ground state caused by the interchange of the magnetic moments of the proton and electron. The
quantity we can measure is known as ”differential brightness temperature”, δTb. We measure this
quantity relative to Cosmic Microwave Background (CMB) followed by [56]:

δTb ≡ Tb − Tγ (4.1)

δTb=
TS − TR

1 + z
(1− e−τν )

≈ 27xH i(1 + δb)

(
Ωbh

2

0.023

)(
0.15

Ωm,0h2

1 + z

10

) 1
2

(
1− Tγ(z)

Ts

)[
∂rνr

(1 + z)H(z)

]−1

mK,

(4.2)

where xH i is the hydrogen neutral fraction, δb represents the fractional over-density in baryons, Ωm

and Ωb signify total matter density and baryon density, respectively, H(z) is the Hubble parameter,
Tγ(z) denotes CMB temperature at redshift z, and Ts is spin temperature, and ∂rνr is the velocity
gradient along the line of sight.
The 21-cm global signal is a sky averaged signal that offers information on global cosmic occur-
rences. It can tell us about the story of the thermal history of ionizing radiation like UV radiation
which interrupts neutral hydrogen, X-rays that heat the gas and elevate Tk, and Lyα, which is ac-
countable for the Wouthuysen-Field coupling [148]. In the study, the peculiar velocity and density
fluctuation components in the global signal (Eqn. 4.2) are neglected since they average out to a
linear order and amount to a minor correction. As a result, the density, neutral fraction, and spin
temperature all affect the form of the global signal [149].

δTb ≈ 27(1− xi)

(
Ωbh

2

0.023

)(
0.15

Ωm,0h2

1 + z

10

) 1
2
(
1− Tγ(z)

Ts

)
(4.3)

To construct the global signal, we primarily use this equation (4.3).
The spin temperature influences the detectability of the 21-cm signal. Three main quantities
determine spin temperature: (i) absorption/emission of 21-cm photons by CMB radiation; (ii)
collisions with other hydrogen atoms, free electrons, and protons; (iii) scattering of Lyα photons
that cause a spin-flip through intermediate excitation. In this given limit, the spin temperature
sky-average defined as [53]:

Ts =
Tγ + yαTα + ycTK

1 + yα + yc
, (4.4)

where Tγ is the temperature of radio background, primarily CMB, Tα is the color temperature of
ambient Lyman-alpha photons, and TK is kinetic gas temperature. yα, yk represents the coupling
coefficient, which arises due to atomic collision and Lyman-alpha scattering.

68



4.3 Foreground
The bright foregrounds, mostly caused by galactic and extragalactic sources, are the greatest
observational obstacle in observing the global 21-cm signal for studying the CD-EoR. The radio
emission from galactic and extragalactic sources is substantially brighter than the global 21-cm
signal. We used a very basic model termed log polynomial (log(T)− log(ν)) to map the foreground,
which is based on [126, 147]. In our study, we constrain our foreground model to a 3rd order
polynomial in log(T)− log(ν), followed by [86,146] which depicts diffuse foregrounds:

lnTFG =

n=3∑
i=0

ai [ln(ν/ν0)]
i
, (4.5)

where a0, a1, a2, ...., an denote foreground model parameters and ν0 is arbitrary reference frequency.
In this study, the derived value of the foreground parameters (a0, a1, a2, a3)= (3.3094, −2.42096,
−0.08062, 0.02898) are taken from [150, 151] and reference frequency taken around ν0 = 80 MHz
followed by [86]. We varied these foreground parameters to construct the different realization of
foregrounds (see in the Tab (4.3)).

4.4 Ionospheric Effects
The ionosphere is a region of the Earth’s atmosphere that has a high concentration of electrically
charged atoms and molecules. The Sun is one of the most powerful energy sources in the Solar
System. Its intense Ultraviolet (UV) and X-ray radiation interact with the Earth’s atmosphere
to create the ionosphere through photo-ionization. The electron density and temperature change
significantly depending on the type of solar fluctuations. Any electromagnetic signal travelling
through an optically thin medium, such as the ionosphere, obeys the radiative transfer equation.
To understand these effects, the ionosphere is divided into various layers, such as D-layers (60−90
km), E-layers, and a composite F-layer (160− 600 km) [92].

4.4.1 F-layer refraction
The F-layer of the ionosphere, located between ∼ 200 to ∼ 400 km above the Earth’s surface,
accounts for most of the ionospheric electron column density. Outside of this layer, the electron
density is very low compared to the inside. Although the electron density varies within the F-
layer, we consider it a homogenous shell 200 to 400 km in height and assuming a constant electron
density of ∼ 5 × 1011 electrons/m3 which resulting column density of 10 TEC units [92, 93]. Due
to density differences between the layers, any incoming beam experiences Snell’s refraction at the
boundaries of the F-layer. The ionosphere’s refraction acts like a spherical lens, deflecting incoming
light towards the zenith [92, 93]. As a result of this refraction, any radio antenna located on the
ground captures the signal from a wider area of the sky, resulting in a higher antenna temperature.
The angular deviation experienced by any incoming ray with angle θ to the horizon in the parabolic
layer, which is surrounded by free space with refractive index η = 1, can be calculated as follows
[92,93,152] :
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Figure 4.1: (a) The deviation angle δθ is plotted as a function of frequency for a typical mid-
latitude daytime TEC value (TEC = 10 TECU). (b) The percentage increase in the field of view
as a function of frequency for the same TEC value.

δθ(ν, t)=
2d

3RE

(
νp(t)

ν

)2(
1 +

hm

RE

)
×
(
sin2θ +

2hm

RE

)−3/2

cosθ,

(4.6)

where RE = 6378 km is the Earth’s radius, h represents the altitude, hm represents the altitude
where the electron density is maximum in the F-layer, which is hm = 300 km, and d represents the
change in altitude with respect to hm where the electron density is zero, which is 200 km in our
simulation and νp is the plasma frequency [153].
As seen from equation (4.6), the ionospheric refraction is proportional to ν2, with the greatest
deviation happening for the horizon ray, which has an incidence angle of 0. As a result of this
ionospheric refraction, the field of view at a particular observation frequency will be larger than
the primary beam of the antenna. The ionospheric refraction’s impact on the angular deviation,
as shown in Fig. (4.1a) and increase in the field of view (FoV) is calculated and plotted across
the frequency (ν), as shown in Fig. (4.1b). The resultant antenna temperature, which includes
ionospheric refraction, as described by [93].

T iono
sky (ν, TEC(t),Θ0,Φ0)=

∫ 2π

0

dΦ

×
∫ π/2

0

dΘB′(ν, t; Θ−Θ0 − δθ(t),Φ)

×Tsky(ν, t; Θ0,Φ0)sinΘ,

(4.7)

where Tiono
sky refers to the antenna temperature that considers ionospheric refraction, (Θ0, Φ0) is

the pointing centre. B′(ν, t;Θ − Θ0 − δθ(t),Φ) describes a modified field of view caused by the
ionosphere’s refractive effect, and Tsky(ν,Θ,Φ) denotes actual sky temperature which includes
signal and foreground.
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4.4.2 D-layer absorption and thermal emission
The D-layer is the lowest layer of the ionosphere, extending from ∼ 60 to ∼ 90 km above the Earth’s
surface [93]. Due to solar insolation, high electron concentrations in the D-layer are projected to
last only during the daytime. At night-time, residual electron concentrations are mostly found of
the order of ∼ 108 electron/m3.
The high concentration of atmospheric gas in the D-layer at these heights results in significant
electron collision frequencies, which cause radio wave attenuation ([133]; [134]). The absorption
by the D-layer can be expressed follows [92,133]:

LdB(ν, TECD) = 10 ∗ log10 (1 + τ(ν, TECD)) (4.8)

where TECD signifies the D-electron layer’s column density and τ indicates the optical depth.
The D-layer is also responsible for thermal emission [92, 131, 132, 154], which is included as a
τ(ν,TEC(t)) < Te > into the final term [see in Eq. (4.9)]. The terms τ(ν, TEC(t)) represents
optical depth for the corresponding ionosphere, and < Te > is average electron temperature,
which causes thermal radiation. In our simulations, we consider mid-latitude ionosphere, and we
take D-layer electron temperature Te = 800 K [155]. We have calculated the attenuation factor
and thermal emission for the corresponding mid-latitude ionosphere and plotted them against
the frequency (ν), shown in Fig.(4.2a) and Fig.(4.2b). In the plot, we see that as we go lower
in frequency (ν), this attenuation factor and thermal emission increase compared to the higher
frequency (ν).
Finally, the brightness temperature of the radio signal recorded by the ground-based radio antenna
in the presence of all three ionospheric effects is defined as [92]:

T iono
Ant (ν, TEC(t),Θ0,Φ0)= T iono

sky (ν, t; Θ0,Φ0)

×(1− τ(ν, TEC(t))

+τ(ν, TEC(t))∗ < Te >,

(4.9)

where Tiono
Ant is the effective brightness temperature captured by any ground-based antenna, Tiono

sky

denotes the changed sky brightness temperature as a result of ionospheric refraction, and (Θ0,Φ0)
are pointing center.

4.5 Basic Overview of Artificial Neural Network
An ANN is a computational algorithm inspired by human biological neural networks. A basic
architectural neural network is made up of three primary layers: an input layer, a hidden layer,
and an output layer. The number of hidden layers defining its depth and the number of neurons
in those layers determines the network width. In a feed-forward network, each neuron in a layer
is coupled to every neuron in the next layer, and the information flow is unidirectional. The
connections between neurons are associated with weights and biases [121].
To describe the detailed structure of the ANN architecture, we followed [86, 118]. We considered
that there is an n input training data set (x1, x2....., xn). Each input data set is fed by particular
neurons in the input layer. For example, the input data xj is provided to the jth neurons in the
input layer, which is further connected to the next layer neurons ( hidden layer) with associated a
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Figure 4.2: (a) For the TEC value (TEC= 10 TECU), attenuation is plotted as a function of
frequency in the solid line. (b) The variation in thermal emission from the ionosphere is also
depicted in the solid line.
weight w(1)

ij and a bias b1j . In general, this can be described as:

zi =

n∑
j=1

w
(1)
ij xj + b1j (4.10)

In the hidden layer, the output from Eqn. (4.10) is further activated by a non-linear activation
function h, such that yi = h(zi). The final output Y

′

i which is the linear combinations of the
activated outputs of the neurons in the hidden layer with weights w

(2)
ij and biases b2j can be

described as [118]:

Y
′

i =

n∑
j=1

w
(2)
ij yj + b2j (4.11)

After each forward pass, a cost or error function is computed at the output layer. This cost function
is optimized during training by back-propagating errors iteratively. We can define the total loss
(cost) function of the network as follows:

E =
1

Nt

Nt∑
n=1

En(w, b)

=
1

Nt

Nt∑
n=1

[
1

N

N∑
n=1

(
Y

′

(i,n) − Y(i,n)

)2]
,

(4.12)

where Nt represents the number of training epochs, N represents the number of output data
elements, Y′ denotes prediction by the ANN, and Y denotes the actual output feature. These
weights (w) and the biases (b) are updated at the end of each training epoch by using methods
called gradient descent in the following manners described below:
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∆wl
ij = wl

0ij − η
∂E

∂wl
ij

= wl
0ij − η

Ntrain∑
n=1

∂En

∂wl
(ij)

∆blij = bl0ij − η
∂E

∂blij
= bl0ij − η

Ntrain∑
n=1

∂En

∂bl(ij)
,

(4.13)

where wl
0ij and bl0ij represent the initial weights and bias, respectively, and η is the learning

rate. We employed Python and the Sequential Model from the Keras API in our feed-forward
network. To develop our network, we utilized standard sci-kit learn [122] and Keras modules. We
pick the number of hidden layers and number of neurons such that we can get optimum network
performance. The number of neurons in the output layer is the same as the number of output
parameters we want to predict. The ANNs architecture employed in our study is discussed in
detail in the following sections.

4.5.1 R2 and RMSE Scores
We choose R2 and root mean square error (RMSE) scores as a metric to evaluate network perfor-
mance. The coefficient of R2 and RMSE is obtained for each parameter from the test set of the
predictions. The R2 scores is defined as:

R2 =

∑
(ypred − ȳorig)

2∑
(yorig − ȳorig)2

= 1−
∑

(ypred − yorig)
2∑

(yorig − ȳorig)2
, (4.14)

where ȳorig is the average of the original parameter, the sum is that the score R2 = 1 denotes a
flawless inference of the parameters across the whole test set, whereas R2 might range between 0
and 1.
We have followed [118] to calculate the normalized RMSE score for prediction :

RMSE =

√√√√ 1

Npred

Npred∑
i=1

(
yorig − ypred

yorig

)2

, (4.15)

where Npred represents the total number of samples in prediction data sets, a lower RMSE value
suggests that the parameter prediction is more accurate.

4.6 Building Of Training and Test Data Sets
We follow the steps below to construct the data sets for all the different realizations to combine
them to build the final training data sets. We created 360 sets of data sets for all the different
realizations for both types of signals, parametrized and physical. These data sets are created using
each parameter value sampled randomly and uniformly from the given parameter range by the
following Tab.(4.1), Tab.(4.2) and Tab.(4.3). We further split these constructed data sets into
three chunks for training, validation and testing of the model. In the test set, we add additional
thermal noise for the corresponding observational hour by following the radiometer equation details
described in the section (4.6.4).
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4.6.1 Simulation methods for the global 21-cm signal
Case 1: parametrized model
In the first case study, we used the tanh parameterization model to replicate the global 21-cm
signal across the redshift range 6 < z < 40 suggested by [109]. This approach utilizes rudimentary
tanh functions to describe the Lyα background, IGM temperature (T), and ionization percentage
(X̄) , where Lyα background defines the amount of the Wouthuysen-Field coupling [146]. Each
quantity is allowed to grow as a tanh function [109] by following given Eq.(4.16):

P (z) =
Pref

2

(
1 + tanh

(z0 − z)

∆z

)
, (4.16)

where P(z) denotes the tanh model’s primary parameter. Pref is step height, z0 is pivot redshift,
and ∆z indicates duration. These are free parameters, and their characteristics are directly linked
to IGM features but not to source attributes. That is why this model behaves like an intermediate
model, which lies between the physical models and phenomenological models like cubic spline [102]
or Gaussian [115,147] models. Now we evolve the model parameters Jα(z) (Lyα background), T(z)
(IGM temperature), and X̄i (ionization fraction) as tanh function by plugging these parameters
into Eqn.(4.16), the details are shown below:

Jα(z) =
Jref
2

(
1 + tanh

(Jz0 − z)

Jdz

)
X̄i(z) =

Xref

2

(
1 + tanh

(Xz0 − z)

Xdz

)
T (z) =

Tref

2

(
1 + tanh

(Tz0 − z)

Tdz

)
,

(4.17)

where Jref represents Lyα flux ( in order of 10−21 erg s−1 cm−2Hz−1sr−1 ), Jdz and Jz0 both
represents Lyα background for corresponding redshift interval ∆z and for the central redshift z0
respectively, Tdz and Tz0 are X-ray heating term for the interval ∆z and for the central redshift z0
respectively, and Tref denote step height corresponding T(z) parameter, which is fixed at 1000 K.
The exact height of the step is not essential because the signal is saturated with low redshifts. Xref

represents the step height corresponding to the ionization percentage, and ∆z and z0 are repre-
sented by Xdz and Xz0. Finally, we have seven signal parameters along with two fixed parameters (
Xref = 1.0, Tref = 1000 K) to simulate the global 21-cm signal using the tanh parametrization [86].
To generate a simulated 21-cm global signal, we use ARES to determine the coupling coefficient and
enter the parameter values into Eq.(4.2). We named this simulated signal as a parametrized global
21-cm signal. The derived value of the parameters is taken from [146] : Jref = 11.69, Jdz = 3.31,
Jz0 = 18.54, Xz0 = 8.68, Xdz = 2.83, Tz0 = 9.77, Tdz = 2.82. To produce our training sets, we
modified these values by 50% [ see Tab. 4.1]. The number of parameters explored is sufficient to
cover a wide spectrum of signal morphologies. Figure (4.3a) depicts a typical collection of created
signals that we will employ. The idea behind the chosen tanh model was that it can very well
mimic the shape of the Global 21-cm signal and is very well tied to the physical characteristics of
the IGM. The tanh parameters are closely related to the IGM characteristics, although they do not
provide knowledge about the source properties. As a result, it lies between the phenomenological
turning point model and other fully physical theories.
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(a) Global 21cm Signals.
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(b) Global 21cm signals with added
foreground.
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(c) Global 21cm signals and foreground
with ionospheric refraction.
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(d) Excess temperature cause by iono-
spheric refraction.
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(e) Global 21cm signals and foreground
with all three ionospheric effects.
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(f) Contribution of all three ionospheric
effects.

Figure 4.3: (a) Simulated global 21-cm training data generated by varying signal parameters.
(b) Foregrounds added, showing their dominance over the signal. (c) Inclusion of ionospheric
refraction for fixed TEC = 10TECU. (d) Excess antenna temperature due to refraction. (e)
Combined ionospheric effects, refraction, absorption, and thermal emission, for varying TEC and
Te. (f) Total ionospheric contribution. Colored curves represent sample training sets; light gray
shows the full distribution.
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Case 1 (Parametrized)
Parameter Range
Lyα flux (Jref) 5.85–17.54
Lyα background at z0 (Jz0) 9.27–27.81
Ionization step at z0 (Xz0) 4.34–13.02
X-ray heating term at z0 (Tz0) 4.89–14.65
Lyα background at ∆z (Jdz) 1.65–4.96
X-ray heating at ∆z (Tdz) 1.41–4.23
Ionization step at ∆z (Xdz) 1.42–4.25

Table 4.1: Parameter ranges used to build the training dataset for the parametrized case of global
21-cm signals.
Case 2: Physical Model
In the second case study, we used the similar data set as a training data set for the signal that
was earlier used in [13] to construct the training data set for the global 21-cm signals. They used
different physical models based on a semi-numerical algorithm to produce various realizations of
the global 21-cm signals across the redshift range 6 < z < 50. The calculation that had been used
in the signal construction closely follows [156] and [126], and the parameters given as input to the
model are the following astrophysical parameters:

• ionizing photons escape fraction fesc,

• X-ray heating efficiency fxh,

• star formation efficiency f⋆,

• radio background efficiency parameter, fR,

• number of Lyman-alpha photons produced per baryon in the interested frequency range,
Nα,

They vary these astrophysical parameters in the given range, shown in Tab. (4.2), to construct
the training data set for global 21-cm shown in figure(4.4 a), the detailed calculation and process
described in [13, 157]. [13] mentioned that the parameters fx and fxh are highly correlated, so in
our case study, we combine these two parameters and take them as a single parameter so that we
can improve network performance. In their study, they used two different kinds of global signals
the first one when there is no excess radio background fR = 0 traditional set of signals, and another
case when the excess background is present fR non zero, exotic set of signals. For this study, we
have considered the traditional set of the global 21-cm signals for constructing the training data
sets.

4.6.2 Simulation of foreground
To add foreground into the global 21-cm signal in both cases parametrized and physical, we follow
the log(T)−log(ν) polynomial model described in Section 4.3. We simulated foreground by varying
its parameters (a0, a1, a2, a3) with (±15%,±10%,±1%,±1%) respectively from its original given
value to build the training data for all the scenarios, for more details [see Tab. 4.3]. Each sample
in the training data set (see Fig.4.3b) is given by :
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Case 2 (Physical)
Parameter Range
Normalization factor (fx) · X-ray heating efficiency (fxh) 0.0255–7.9800
Radio background efficiency (fR), Traditional 0
Radio background efficiency (fR), Exotic 1800–2000
Star formation efficiency (fstar) 0.0030–0.0099
Ionizing photon escape fraction (fesc) 0.06–0.19
Lyman-alpha photon number (Nα) 9000–800000

Table 4.2: Parameter ranges used to construct the training dataset of global 21-cm signals for
the physical case [13].

Tsky(ν) = T21,parametrized(ν) + TFG(ν), (4.18)

where Tsky(ν) is the total sky temperature without including ionospheric effects, T21,parametrized(ν)
is the global 21-cm signal temperature constructed using the parametrized model, TFG(ν) fore-
ground temperature constructed using the log-log polynomial model. For the second case, each
sample in the training data set (see Fig.4.4b) can be defined as:

Tsky(ν) = T21,Physical(ν) + TFG(ν), (4.19)

where T21,Physical(ν) represents the global 21-cm signal temperature constructed using a semi-
numerical physical model.

4.6.3 Simulation of ionospheric effects
To simulate the ionospheric effect, we chose two different scenarios. In the first scenario, we have
added only the ionospheric refraction effect for the corresponding fixed TEC value, which is 10
TECU, into the foreground added signal to construct the training data sets shown in Fig.(4.3c)
and Fig.(4.4c). Each sample of the training data set is constructed by the following equation (4.7).
In the second case study, we have added ionospheric effects, mainly refraction, absorption, and
thermal emission, while building the final training data sets shown in Fig.(4.3e) and Fig.(4.4e). In
the final training data set, all the samples are constructed by the following equation (4.9).
These ionospheric effects introduce two more parameters in the parameter set: TEC ( Total electron
content) and Te, representing the thermal temperature of the electron of the D-layer. In our
simulation, we have used an F-layer total electron content of TEC 10 TECU and a D-layer electron
temperature of Te = 800 K for the mid-latitude ionosphere. We used the International Reference
Ionospheric (IRI) model to obtain the TEC value for the D-layer [158]. According to this model,
the usual ratio of electron column densities in the D-layer and F-layer is 8.0× 10−4 [92].
For both sets of signals, the parametrized and the physical, to build the final training data sets.
We have varied ionospheric parameters by (TEC, Te) (±1%,±1%), respectively from their original
defined values. The detailed variation that has been used in our simulation to construct the training
data set for each case study in this paper is summarized in Tab.4.3.
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(b) Foreground added global 21cm sig-
nals.
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(c) Global 21cm signals and foreground
with ionospheric refraction.
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(d) Excess temperature due to iono-
spheric refraction.
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(e) Global 21cm signals and foreground
with all three ionospheric effects.
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(f) Contribution due to all the iono-
spheric effects

Figure 4.4: (a) The training data set of the global 21-cm signal was generated using physical
model (semi numerical approach). (b) The training data set after we add foreground into the
signal. (c) The training data set was constructed by including the ionospheric refraction effect
into the signal and foreground for the corresponding fixed TEC value 10 TECU. (d) The excess
temperature caused by ionospheric refraction as recorded by the antenna in the training data sets.
(e) The samples of the training data set were constructed by adding all three ionospheric effects-
refraction, absorption, and thermal emission into the signal and foreground for variable TEC and
Te values. (f) Contribution of all ionospheric effects to the training data sets. In each subplot, a
subset of the training data sets is shown in color, while the remaining training data sets are plotted
in the background using light gray color. 78



Parameters Case b Case c Case d
Zeroth order foreground coefficient (a0) ±15% ±15% ±15%

First order foreground coefficient (a1) ±10% ±10% ±10%

Second order foreground coefficient (a2) ±1% ±1% ±1%

Third order foreground coefficient (a3) ±1% ±1% ±1%

Total electron content (TEC) Fixed ±1%

Thermal electron temperature (Te) ±1%

Table 4.3: The percentage variation of each parameter of the foreground and ionosphere from
its actual value to create upper and lower boundaries and construct the training data set for each
scenario for the Case 1 study when we took the parametrized model and case 2 when we consider
physical model.
4.6.4 Thermal Noise
The thermal noise, n(ν), in the measured spectrum may be represented as follows using the ideal
radiometer equation:

n(ν) ≈ Tsys(ν)√
δν · τ

, (4.20)

where, Tsys(ν) is system temperature, δν is the observational bandwidth and τ is the observation
time. We are working with simulated observations, which are created using a set of assumptions
about signal, foreground, and ionosphere effects. In the future, a similar network will be used to
anticipate the redshifted global 21-cm signal based on actual measurements. Actual data from
simple observations will replace the with the test data sets.

4.7 Results
In this section, we will discuss results from simulations representing different signal extraction
scenarios: signal only, signal with foreground, signal and foreground with ionospheric refraction
corresponding to a fixed TEC value, and signal and foreground with all three ionospheric effects
with variable TEC and Te values. We constructed 360 samples of the data sets for training, val-
idation, and testing of the ANN model for the each following cases. We use 240 (67%) samples
of the data sets for the training and validation, and the rest of the 120 (33%) data sets we used
to test the trained ANN model. The validation mainly guides us in tuning the model’s hyper-
parameters, for example, the number of the hidden layer, the number of neurons in the hidden
layer, the activation function, the learning rate, etc. It also assists us in identifying overfitting
and underfitting by comparing the model loss of the training and validation. In the test set, we
add additional thermal noise, n(ν), corresponding to 1000 hours of observation by following the
radiometer equation (4.20) to construct the final test data set for the each cases of studies.

4.7.1 Case 1a: Signal only (parametrized model)
In the first case, to train our model, we choose the parametrized global 21-cm signals as training
data sets, shown in figure (4.3a). The model we use for training is constructed with Keras’ Se-
quential API and comprises 1024 input neurons matching with 1024 frequency channels and two
hidden layers with 16 and 11 neurons, respectively, each activated by the ’elu’ activation function.
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The output layer has 7 neurons to predict the global 21-cm signal parameters. The input training
data sets are normalized using the’ StandardScaler’ function, and corresponding parameters are
normalized using ’MinMaxScaler’ available in sklearn. We tested our saved model with a test data
set and calculated the R2-score and RMSE score for each parameter from the predictions of test
sets to figure out how well the network predicts the parameters. The result of R2-score is listed in
Tab. (4.4) and RMSE scores are listed in Tab. (4.5), and the plots of the original versus predicted
values of the parameters for the test data set are shown in Fig. (4.5). The R2 scores for the
predicted signal parameters range from 0.98 to 0.99, which shows the network predicted signal
parameter is very accurate. To check the overfitting for all the cases, we have plotted training loss
and validation loss as a function of the number of epochs [see Fig. 4.6]. In Fig. (4.6), we can see
that training loss and validation loss closely flow, and both got converse after 20 epochs for all the
cases.

4.7.2 Case 1b: Signal with foreground
Foregrounds would dominate during the observations of the 21-cm signal for all ground-based
experiments. In this case, we train our ANN model with training data constructed by adding
foreground to the parametrized global 21-cm signals, shown in Fig. (4.3b). In [86] has already
shown a similar implementation. It is a proof-of-concept to see how effectively our model extracts
parameters when adding the foreground. The model architecture we used is different from the first
case. The model we have used has 4 layers made using sequential API from Keras. The input layer
has 1024 neurons that correspond to the 1024 frequency channel, while the hidden layers have 32
and 16 neurons that are activated by the ’sigmoid’ activation function. The output layer has 11
output neurons to predict the global 21-cm signal and foreground parameter. We will use the same
model architecture, optimizer, and normalization method for the other cases. The only difference
is the number of neurons in the output layer, depending on the number of output parameters. We
calculate the R2-scores and RMSE for each parameter from the test set predictions to determine
how well the network predicts the parameters. The plots of the original versus the predicted values
of the parameters for the test data set are shown in Fig. (4.7), and R2 score and RMSE score for
corresponding parameters are listed in Tab. 4.4 and Tab. 4.5. The R2 score for this case ranges
from 0.97 to 0.98 for predicted signal parameters, which are significantly lower than the previous
case (Case 1a). In the predicted foreground parameters, a0 has the highest R2 score of 0.99.

4.7.3 Case 1c: Signal and foreground with ionospheric re-
fraction

The ionosphere of the Earth severely distorts low-frequency radio measurements in ground-based
observations. We add the ionospheric refraction effects into the signal and foreground while con-
structing data sets to check this effect, shown in Fig. (4.3c). We followed the same ANN model
structure that was used in Case 1b and trained the ANN model using training data sets constructed
by adding the effects of ionospheric refraction. We tested the trained model with test data sets
and calculated the R2 score and RMSE score corresponding parameters to evaluate our model
performance; the detailed result is listed in Tab. (4.4) and Tab. (4.5). The predicted values of the
parameters by the network are plotted in Fig. (4.8). In this case, the obtained R2 score for the
signal parameters ranges from 0.94 to 0.96.
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Parameter Case 1a Case 1b Case 1c Case 1d
Jref 0.9809 0.9778 0.9553 0.9614
Jz0 0.9957 0.9780 0.9442 0.9738
Xz0 0.9865 0.9760 0.9534 0.9713
Tz0 0.9911 0.9746 0.9534 0.9668
Jdz 0.9826 0.9735 0.9482 0.9634
Xdz 0.9830 0.9848 0.9487 0.9578
Tdz 0.9874 0.9781 0.9574 0.9595
a0 0.9936 0.9757 0.9810
a1 0.9738 0.9494 0.9655
a2 0.9773 0.9534 0.9586
a3 0.9774 0.9568 0.9610
TEC 0.9658
Te 0.9728

Table 4.4: The computed R2-scores for all signal, foreground, and ionosphere parameters for each
case studied are listed here. We used the parametrized model to construct the global 21-cm signal.

4.7.4 Case 1d: Signal and foreground with all three iono-
spheric effects- refraction, absorption and thermal Emis-
sion

In this case, we add other ionospheric effects like absorption and thermal emission and construct
the training data set, which we name the ”final training data set”, shown in Fig. (4.3e). We
utilized the same architecture as in previous cases (Cases 1b and 1c) to build an ANN model; the
only difference here is that the output layer of the model has 13 output neurons corresponding
to the 7 signal parameters, 4 foreground parameters, and 2 ionospheric parameters. We test this
model with test data and calculate the R2 score and RMSE score corresponding parameters to
evaluate our model performance. The R2 and RMSE scores for each parameter are listed in Tab.
4.4 and Tab. 4.5, and predicted values of the parameters by the network are plotted in Fig. (4.9).
From Table 4.4, and 4.5, we can see that R2 values slightly decrease, and the RMSE value slightly
increases when we introduce foreground and ionospheric effects into the signals compared to Case
1a when we take signal only. When we add more complexity to the training data set, we have to
train our network sufficiently well to maintain high accuracy levels.

4.7.5 Case 2a : Signal only (physical model)
To check the robustness and reliability of the network, we trained the ANN model for all the
scenarios that we have studied previously with an entirely new set of the global 21-cm signal,
taken from [13]. They constructed the global 21-cm signals by using semi-numerical code followed
by [157]. It contains a more realistic and diverse group of the 21-cm signal than the parametrized
model signals. The signal parameters are also different than the parametrized model; here we use
astrophysical parameters (fxh ∗ fx, fstar,fesc, Nα). In the first case of the study, we take global 21-cm
signals as a training, validation, and testing of the ANN model, shown in Fig. (4.4a). The training
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Parameter Case 1a Case 1b Case 1c Case 1d
Jref 0.0337 0.0440 0.0608 0.0628
Jz0 0.0175 0.0438 0.0675 0.0605
Xz0 0.0329 0.0453 0.0621 0.0616
Tz0 0.0253 0.0470 0.0645 0.0577
Jdz 0.0353 0.0482 0.0650 0.0608
Xdz 0.0370 0.0467 0.0584 0.0658
Tdz 0.0312 0.0434 0.0642 0.0636
a0 0.0232 0.0449 0.0439
a1 0.0477 0.0639 0.0590
a2 0.0443 0.0621 0.0642
a3 0.0445 0.0599 0.0625
TEC 0.0578
Te 0.0588

Table 4.5: The calculated RMSE values for all the signal, foreground, and ionospheric parameters
are listed here for each case studied.

model consists of a four-layer structure built with Keras’ sequential API, with 1024 input neurons
matching 1024 frequency channels and two hidden layers with 12 and 11 neurons activated by the
’elu’ activation function. The output layer contains four output neurons that predict astrophysical
parameters of the global 21-cm signal (fxh∗fx, fstar, fesc, Nα). We used the StandardScaler function,
which is available in ’sklearn’ to preprocess input signals. At the same time, we use MinMaxScaler
to scale the signal parameters before passing them to the model. We use ’adam’ as the optimizer
and’ mean squared error’ as the loss function. Once the network is trained and validated, we save
the model. We used the same optimizer and normalization method for the other cases.
We test the model using a test data set and obtain the R2 scores and RMSE for each parameter
from the test set predictions to see how well the network predicts the parameters. The predicted
parameters are plotted in Fig. (4.10) and the corresponding R2 score and RMSE score for each
parameter are listed in Tab.4.6 and Tab. 4.7. From the Tab.4.6, we can see that the parameter
Nα has the highest R2 scores of 0.99 and parameters fesc has the lowest R2 score of 0.98. To check
the overfitting for all the cases, we have plotted training loss and validation loss, similar to the
parametrized case [see Fig. (4.11)]. In Fig. (4.11), we can see that training loss and validation
loss closely flow, and both got converse after 20 epochs for all the cases.

4.7.6 Case 2b : Signal with foreground
In this case, we train our model with a training data set, which is constructed by the combination
of the foreground with different realizations of the global 21-cm signal, shown in Fig. (4.4b).
We employed a 5-layer model architecture for training, with 1024 input neurons matching the
1024 frequency channels and three hidden layers with 32, 16 and 16 neurons activated by the
’elu’ activation function. The output layer of the model has 8 output neurons corresponding to
4 astrophysical parameters of the global 21-cm signal and 4 foreground parameters. We test our
trained model with the test data set and calculate the R2 and RMSE scores for the corresponding
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parameters shown in Tab. 4.6 and Tab. 4.7, and plot of predicted values of the parameters
against the original values is shown in Fig. (4.12). From Tab. 4.6, we can see that the foreground
parameters’ R2 score is much higher than the signal parameters; this means the network predicts
the foreground parameter more accurately than the signal parameters. In the signal, the parameter
fx,h ∗ fx has the highest R2 scores of 0.98, and Nα has the lowest R2 scores of 0.96.
follow

4.7.7 Case 2c : Signal and foreground with ionospheric re-
fraction

In the third case, we added foreground and ionospheric refraction effects for corresponding fixed
TEC value into the global 21-cm signal to build the training data set, shown in Fig. (4.4c), and
randomly divide these samples into the same ratio as in Case 2(b) to train and test the ANN model.
We follow the same model architecture that we used previously for the signal in the foreground
case to build the model for this case. Now we train this model and save it for further validation
and testing. We test the saved model with test data sets, and we calculate the R2 score and RMSE
score for the corresponding parameter. Details of the result are listed in Tab. 4.6 and Tab. 4.7, and
a plot of predicted values of the parameters against the original values is shown in Fig. (4.13). The
R2 score for the foreground parameters has been improved from the previous case, but the signal
parameter R2 score decreases in comparison; this means adding more complexity to the training
data making signal extraction more difficult. We obtained the R2 score for the signal parameters
around 0.96 to 0.98 [see Tab. 4.6].

4.7.8 Case 2d : Signal and foreground with all three iono-
spheric effects- refraction, absorption, and thermal emis-
sion

In the last case, we have constructed training data sets by the combination of the global 21-cm
signal, foreground, and ionospheric effects (refraction, absorption, and thermal emission), shown
in Fig. (4.4e). To build the model for this case, we use the same architecture that we used in
previous models except for the outer layer. Here, the output layer of the model has 10 output
neurons corresponding to the 4 signal parameters, 4 foregrounds, and 2 ionospheric parameters.
Once the models were trained and validated, we saved them for further testing. We tested the
saved train model with the test data set and calculated the R2 score and RMSE score for the
corresponding parameters to check the network performance. The values of R2 score and RMSE
score of each parameter are tabulated in Tab. (4.6) and Tab. (4.7). The plots of the actual versus
predicted values of the parameters for the test data set are shown in Fig. (4.14). The R2 score for
the foreground and ionospheric parameters is much higher than the signal parameters R2 score.
The reason is simple: foreground and ionospheric effects dominated the final training data sets
signal that we are giving to the network as fed compared to the signals. The R2 score we obtained
for the signal parameters is around 0.96 to 0.98 [see Tab. 4.6].
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Parameter Case 2a Case 2b Case 2c Case 2d
fxh ∗ fx 0.9906 0.9813 0.9839 0.9804
fstar 0.9893 0.9731 0.9675 0.9704
fesc 0.9863 0.9772 0.9756 0.9751
Nα 0.9952 0.9607 0.9579 0.9620
a0 0.9752 0.9812 0.9981
a1 0.9964 0.9957 0.9990
a2 0.9739 0.9773 0.9793
a3 0.9736 0.9743 0.9773
TEC 0.9733
Te 0.9742

Table 4.6: The computed R2-scores for all signal, foreground, and ionosphere parameters for
each case studied are listed here. We used physical model (semi numerical model) to construct the
global 21-cm signal.

4.7.9 Time varying ionospheric effects- refraction, absorp-
tion and thermal emission

We conducted further assessments to evaluate the robustness of the ANN model. We used a
dynamic ionospheric model with temporal variations. This model assumes random fluctuations in
Total Electron Content (TEC) and electron temperature (Te) throughout the observation period.
We integrated the F-layer TEC and Te values at 15-minute intervals over a span of 1000 hours
to create an observational data set, see Fig. (4.15) and Fig. (4.16). We calculated the average
antenna temperatures measured by the radiometer for each integration over the entire 1000-hour
observation period to create the final observation data set that accounts for the time-varying
ionospheric effects. Additionally, we have included the thermal noise associated with the 1000-
hour observation in this recorded data set. We feed this noise-added final observation data set to
the trained ANN model and extract the parameters. The ANN model demonstrated commendable
performance for both parametrized and physically-based signal scenarios. Even in time-varying
conditions, the ANN model exhibited accurate predictions. The predicted mean values by the
ANN are closely aligned with the actual mean values of TEC and Te, see Fig. (4.17, 4.18, 4.19 and
4.20) and rest other parameters like signal and foreground are also consistent with the actual one
[see Tab. 4.8, 4.9] . This is clearly indicating the ANN model’s accuracy and ability to capture
complex temporal variations in ionospheric phenomena.

4.8 Summary and Discussions
In this study, we presented an ANN model to extract the 21-cm global signal by estimating their
parameters from a combined spectrum that included signal, foreground, ionospheric effects, and
thermal noise. We trained our ANN model with four different scenarios described in detail in
Section 4.7. To check the robustness of the ANN, we also used two different ways of modelling the
global 21-cm signal; one is based on the functional parametrized [109, 145] and the other one is a
physically motivated approach [13, 157]. The parameter space in both cases is entirely different;
parametrized model parameters are more directly related to IGM properties; however, the physical
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Parameter Case 2a Case 2b Case 2c Case 2d
fxh · fx 0.0174 0.0428 0.0395 0.0411
fstar 0.0287 0.0476 0.0540 0.0488
fesc 0.0334 0.0453 0.0507 0.0475
Nα 0.0176 0.0562 0.0567 0.0508
a0 0.0473 0.0410 0.0442
a1 0.0107 0.0276 0.0094
a2 0.0433 0.0503 0.0420
a3 0.0481 0.0533 0.0445
TEC 0.0480
Te 0.0473

Table 4.7: Root Mean Square Error (RMSE) values for signal, foreground, and ionospheric
parameters in each of the studied cases. Missing values indicate parameters not included in the
respective case.
model includes both IGM and source properties. In the physical model, the parameter fR played
the most crucial role in defining the form of the reconstructed signal in the semi-numerical code
[13]. A high fR value implies a strong radio background, resulting in a substantial absorption
trough signal. In contrast, fR = 0 suggests that the excess radio background is turned off, resulting
in a conventional signal. In our study, We have taken the traditional data set of the global 21-cm
signals from [13].
For both parametrized and physical models, in the final case studies, Case 1d and Case 2d, the
trained ANN model predicted the signal parameters from the test data set with an accuracy of
≥ 96%. This clearly demonstrates how a basic ANN model can easily manage up to 13 parameters
(7 signal parameters, 4 foreground parameters, and 2 ionospheric parameters. We have estimated
the uncertainty of the parameter by calculating the RMSE score of the individual parameters for
all the cases [ See Tab. 4.5, 4.7]. We found the error in the parameter estimation increase when
we increase the number of training parameters, e.g., in the first case of the study, when we used
signal only (Case 1a), the ANN estimated the parameter with a maximum error of ≈ 4%, but in
the final case (Case 1d), the maximum error was ≈ 6%. Similarly, in the second case of the study
for Case 2a, the maximum error was ≈ 3%, but in the final case- Case 2d, the maximum error
was ≈ 5%. This clearly indicates that when complexity increased in the training data set, the
prediction accuracy slightly decreased with the reference lower complexity training data set [see
Tab. 4.4, 4.5, 4.6, and 4.7]. It means adding complexity to the training data set, making signal
extraction more challenging for the network. The accuracy levels will remain high if the network
has been trained well enough. We also demonstrated that for the dynamic ionospheric model where
TEC and Te are varying randomly, ANN prediction accuracy is still consistent [see Tab. 4.8, 4.9].
To further emphasise the utility of the ANN method, we conducted an analysis attempting to fit
the signal, foreground, and ionospheric effects using a simple analytical approach. This method
failed to extract the signal parameters from both scenarios. Conversely, our trained ANN model
demonstrated remarkable accuracy in predicting parameters for the same data set, as elaborated in
Appendix A. Additionally, we evaluated the ANN’s performance in terms of accuracy by comparing
it with existing prior signal extraction methods. To assess this, we compared the predictions of
these prior models with the true parameters, calculating the Mean Absolute Percentage Error
(MAPE), as detailed in Appendix B. Our findings revealed that the predicted parameters by the
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Parameter Actual
Value

Predicted
by ANN

Percentage
Error (%)

Jref 11.690 11.823 1.138
Jz0 18.540 18.693 0.825
Xz0 8.680 8.627 0.610
Tz0 9.770 10.144 3.828
Jdz 3.310 3.407 2.930
Xdz 2.820 2.901 2.872
Tdz 2.830 2.853 0.813
a0 3.323 3.336 0.391
a1 -2.354 -2.416 2.638
a2 -0.0805 -0.0806 0.124
a3 0.0290 0.0290 0.000
⟨TEC⟩ 10.0 10.001 0.010
⟨Te⟩ 800.00 799.73 0.033

Table 4.8: Comparison of actual and ANN-predicted parameter values for the time-varying iono-
spheric model. Percentage errors are computed for each parameter.

ANN model are significantly more accurate than these traditional methods.
The other benefit of using ANN is that it can efficiently extract the observed sky signal’s charac-
teristics without modelling and eliminating foreground and ionospheric effects. Compared to the
other existing parameter estimation techniques, ANN can extract features from data by building
functions that connect the input and output parameters. The ANN model, unlike Bayesian ap-
proaches, does not require a defined prior; instead, we must provide training data sets, which may
be seen as playing a similar role as the prior in Bayesian techniques. We may avoid computing the
likelihood function a large number of times by using ANN to arrive at inferred parameter values.
As a result, even when dealing with a larger dimensional parameter space, ANN is computationally
faster and more efficient.
In this work, the ANN model on a limited set of scenarios involving the signal, foregrounds, and
both static and time-varying ionospheric conditions, which is very robust and sensitive for all the
given input parameters with their defined parameter ranges used in the preparation of the data
sets. By incorporating problems like beam chromaticity, and other systematic effects, we hope
to create a more reliable ANN model in the future. Depending on telescope design and their
geomagnetic, various systematics corrupt observations, such as standing waves from cable lengths
internal to the system, chromaticity caused by environmental factors like antenna ground planes
[159, 160], ionosphere and RFI. These non-astronomical signal need to be modelled for accurate
signal extraction. We plan to include these effects in our future study.
In this chapter, the ANN model is trained and tested on a limited set of scenarios involving
the signal, foregrounds, and ionospheric effects. These experiments demonstrate good prediction
accuracy within the restricted parameter space. However, to make the approach more practical,
the ANN must be trained on the full range of possible signal and foreground scenarios, especially
since we lack prior observational constraints. In the next chapter, we expand the parameter space
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Parameter Actual
Value

Predicted
by ANN

Percentage
Error (%)

fxhfx 2.815 2.257 19.822
fstar -2.162 -2.194 1.480
fesc 0.133 0.127 4.511
Nα 4.719 4.643 1.611
a0 3.384 3.323 1.803
a1 -2.354 -2.406 2.209
a2 -0.0805 -0.0806 0.124
a3 0.0290 0.0289 0.345
⟨TEC⟩ 10.000 10.001 0.010
⟨Te⟩ 800.00 800.44 0.055

Table 4.9: Comparison of actual and ANN-predicted parameter values for the physical model
with time-varying ionosphere. Includes percentage errors for each parameter.
to more comprehensively cover all relevant scenarios. The ANN is trained on this broader dataset,
and the details of this extended framework are discussed there.
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Figure 4.5: Case 1a: Parmeterized global 21-cm signals. The original values of the parameters
are shown by the solid straight line in each plot, while the dots indicate the predicted values by
ANN.
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Figure 4.6: This graph depicts the evolution of the network’s loss function when parametrized
signals were incorporated. For all situations, the training loss is represented as a solid line, and
the validation loss is plotted as a dashed line as a function of epochs. We can see that the test loss
function closely follows the training loss function.
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Figure 4.7: Case1b: parametrized global 21-cm signal with foreground. The original values of the
parameters are shown by the solid straight line in each plot, while the dots indicate the predicted
values by ANN.
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Figure 4.8: Case 1c: parametrized global 21cm signal and foreground with ionospheric refraction
for fixed TEC value. The original values of the parameters are shown by the solid straight line in
each plot, while the dots indicate the predicted values by ANN.
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Figure 4.9: Case 1d: parametrized global 21-cm signal and foreground with all three ionospheric
effects- refraction, absorption, and thermal emission. The original values of the parameters are
shown by the solid straight line in each plot, while the dots indicate the predicted values by ANN.
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Figure 4.10: Case 2a: Global 21-cm signal constructed using physical model. The original values
of the parameters are shown by the solid straight line in each plot, while the dots indicate the
predicted values by ANN. However, Fstar and Nα are plotted in logarithmic scale.
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Figure 4.11: This graph shows the evolution of the network’s loss function when we used a signal
generated by a physical model. In all cases, the training loss is depicted as a solid line as a function
of epochs, whereas the validation loss is plotted as a dashed line. The test loss function closely
matches the training loss function in this case.
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Figure 4.12: Case 2b: Signals with foreground. In the each plots the original values of the
parameters are shown by the solid straight line, while the dots indicate the predicted values by
ANN. However, Fstar and Nα are plotted in logarithmic scale.
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Figure 4.13: Case 2c: Signal and foreground with ionospheric refraction for fixed TEC value.
In the each plots, the original values of the parameters are shown by the solid straight line, while
the dots indicate the predicted values by ANN. However, Fstar and Nα are plotted in logarithmic
scale.
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Figure 4.14: Case 2d: Signal and foreground with all three ionospheric effects-Refraction, Ab-
sorption, and Thermal Emission. In the each plots the original values of the parameters are shown
by the solid straight line, while the dots indicate the predicted values by ANN. However, Fstar and
Nα are plotted in logarithmic scale.
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Figure 4.15: The blue lines in this graph depict the F-layer Total Electron Content (TEC)
variation across a 1000-hour observation period. The red dashed line represents the calculated
mean TEC value derived from these fluctuations.
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Figure 4.16: The blue lines in this graph depict the variation of the D-layer electron temperature
(Te) across a 1000-hour observation period. The red dashed line represents the calculated mean
Te value derived from these fluctuations.
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Figure 4.17: This histogram presents the distribution of TEC values containing the entire obser-
vation duration in the context of the parametrized signal scenario. The blue dashed line denotes
the average value of the actual TEC, while the orange dashed line corresponds to the mean of the
predicted TEC values by the ANN model.
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Figure 4.18: This histogram presents the distribution of Te values containing the entire obser-
vation duration in the context of the parametrized signal scenario. The blue dashed line denotes
the average value of the actual Te, while the orange dashed line corresponds to the mean of the
predicted Te values by the ANN model.
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Figure 4.19: This histogram presents the distribution of TEC values containing the entire ob-
servation duration in the context of the Physical signal scenario. The blue dashed line denotes
the average value of the actual TEC, while the orange dashed line corresponds to the mean of the
predicted TEC values by the ANN model.
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Figure 4.20: This histogram presents the distribution of Te values containing the entire obser-
vation duration in the context of the Physical signal scenario. The blue dashed line denotes the
average value of the actual Te, while the orange dashed line corresponds to the mean of the pre-
dicted Te values by the ANN model.
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Appendix A: Extraction of Signal, Foreground and
Ionospheric effect Parameters using Analytical Method
We attempted to analytically fit two scenarios: one with signal and foreground and another with
signal, foreground, and ionospheric effects using Least Square Fit from Scipy libraries in Python.
For the first scenario, input data sets are simulated based on equation 4.18, and the corresponding
true input parameters are listed in Tab. 4.10. Similarly, for the second scenario, the simulation
relied on equation 4.9, with the true input parameters listed in Tab. 4.11. We follow two approaches
to fit the signal and foreground. In the first approach, We attempted to fit both the signal and
foreground simultaneously for the given sky signal simulated using equation 4.18, but encountered
significant instability in the fit. The residual left after the best-fit signal and foreground is shown
in Fig. 4.21, and best-fit parameters are listed in the table Tab. 4.10. In the second approach, we
attempted individual fitting of the foreground and signal from the sky signal, initially fitting the
foreground by following equation 4.5 and subtracting its best-fit model from the total observed
sky signal. The remaining 21 cm signal was then fitted separately using the signal’s parametrized
model, described in section 4.6.1. However, the fitting function failed to accurately capture the
foreground and global signal parameters. It is evident from the distinct residual signal, noticeably
different from the input signal, indicating inaccurate foreground fitting (Fig. 4.21). The small
uncertainty in the best-fit foreground parameters indicates under-constraint. The fitting function’s
performance for signal fitting was notably inadequate. The summarized results are in Tab. 4.10.
We attempted to fit the total sky signal, incorporating the global 21 cm signal, foreground, and
ionospheric effects similarly to the previous case. However, the fitting function failed to accurately
capture the foreground and ionospheric parameters, as indicated by the statistically significant
magnitude of the residual (Fig. 4.22). We also applied ANN to fit the same data sets for both
scenarios, resulting in ANN-predicted parameters that closely approximated the true values of
the parameters, see Tab. (4.10, 4.11) and reconstructed 21-cm signals in Fig. 4.21 and 4.22,
accompanied by residuals from the true input signals.

Parameter True Analytical
(Simult.)

Analytical
(Indiv. ± Unc.) ANN

Jref 11.6900 −5.64×105 (0.0036± 8.74)×107 11.5351
Jz0 18.5400 5.89×103 9.18± 2.75×103 18.5470
Xz0 8.6800 7.92×105 9.14± 0.22 8.5926
Tz0 9.7700 6.34×105 10.50± 0.37 9.8942
Jdz 3.3100 6.39×104 2.21± 0.21 3.3012
Xdz 2.8200 −7.91×104 2.96± 0.44 2.8133
Tdz 2.8300 6.72×102 1.50± 0.37 2.8163
a0 3.30942 3.30940 3.30941± 3.48×10−7 3.31261
a1 -2.40960 -2.40963 −2.40959± 2.57×10−6 -2.41448
a2 -0.08062 -0.08059 −0.08054± 9.02×10−6 -0.08063
a3 0.02898 0.02905 0.02909± 9.53×10−6 0.02897

Table 4.10: Comparison of true values, analytical fits (simultaneous and individual), and ANN
predictions for signal and foreground parameters.
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Parameter True Value Analytical
(Simult.)

Analytical
(Indiv. ± Unc.) ANN

Jref 11.6900 −5.98×102 10.9367± 9.49×105 11.6877
Jz0 18.5400 1.08×102 12.1768± 1.58×105 18.5304
Xz0 8.6800 −5.55×106 7.1700± 4.91×105 8.6748
Tz0 9.7700 9.78×104 8.0830± 2.82×104 9.7236
Jdz 3.3100 −4.15 3.2672± 1.83×104 3.3036
Xdz 2.8200 2.38×105 2.0259± 3.12×105 2.8140
Tdz 2.8300 4.33×103 0.3418± 1.43×104 2.8284
a0 3.30942 3.30932 3.30930± 5.98×10−6 3.30651
a1 -2.40960 -2.40946 −2.40951± 7.57×10−6 -2.40808
a2 -0.08062 -0.08074 −0.08071± 3.48×10−5 0.08063
a3 0.02898 0.03076 0.03079± 8.36×10−5 0.02897
TEC 10.0000 1.0299 10.1183± 0.0076 9.9998
Te 800.0000 275.6359 813.7119± 0.8743 799.8309

Table 4.11: True values, analytical best-fit estimates (simultaneous and individual), and ANN
predictions for the signal, foreground, and ionospheric parameters.

Appendix B: Comparison with Other Existing Tech-
niques
We evaluated the accuracy of our ANN predictions in comparison to other methods by calculating
the Mean Absolute Percentage Error (MAPE) detailed in Tab. 4.12. Our study demonstrated
that while some prior techniques performed well with simpler signal models (those with fewer free
parameters), they faltered when dealing with more complex signal models requiring additional
parameters. In contrast, the ANN model consistently outperformed these methods. Tab. 4.12
demonstrates that our ANN predictions exhibited less than 5% error across all parameters, re-
gardless of the signal scenarios, including foreground with ionospheric effects. For the physical
signals, except for one parameter with more than 10% error, all other parameters are accurately
constrained, with most falling below the range of 5% to 1.0% error.
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Figure 4.21: In this figure: true 21-cm signal (solid red line); residual after simultaneous fitting of
signal and foreground (yellow solid line); residual after fitting foreground individually (cyan dashed
line); best-fitted 21-cm signal from foreground residual (orange solid line); ultimate residual after
fitting both foreground and signal individually (black dashed line). Signal reconstructed with
ANN predicted parameters (blue dashed line) and residual between the true 21-cm signal and
ANN reconstructed signal (brown dashed line).
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Figure 4.22: In this figure: true 21-cm signal (solid red line); residual after simultaneous fitting
of signal, foreground, and ionospheric effects (yellow solid line); residual after fitting foreground
and ionospheric effect individually (cyan dashed line); best-fitted 21-cm signal from foreground
residual (orange solid line); ultimate residual after fitting both foreground with ionospheric effects
and signal individually (black dashed line). Signal reconstructed with ANN predicted parameters
(blue dashed line) and residual between the true 21-cm signal and ANN reconstructed signal (brown
dashed line).
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Chapter 5

Comparing sampling techniques to
chart parameter space of 21 cm
Global signal with Artificial
Neural Networks

Adapted from: Anshuman Tripahi, Gursharanjit Kaur, Abhirup Datta, Suman Majumdar “Com-
paring sampling techniques to chart parameter space of 21 cm Global signal with Artificial Neural
Networks, Volume 2024, number 10, Pages 041, 10.1088/1475-7516/2024/10/041
Understanding the first billion years of the universe requires studying two critical epochs: the
Epoch of Reionization (EoR) and Cosmic Dawn (CD). However, due to limited data, the proper-
ties of the Intergalactic Medium (IGM) during these periods remain poorly understood, leading to
a vast parameter space for the global 21cm signal. Training an Artificial Neural Network (ANN)
with a narrowly defined parameter space can result in biased inferences. To mitigate this, the train-
ing dataset must be uniformly drawn from the entire parameter space to cover all possible signal
realizations. However, drawing all possible realizations is computationally challenging, necessitat-
ing the sampling of a representative subset of this space. This study aims to identify optimal
sampling techniques for the extensive dimensionality and volume of the 21cm signal parameter
space. The optimally sampled training set will be used to train the ANN to infer from the global
signal experiment. We investigate three sampling techniques: random, Latin hypercube (strati-
fied), and Hammersley sequence (quasi-Monte Carlo) sampling, and compare their outcomes. Our
findings reveal that sufficient samples must be drawn for robust and accurate ANN model training,
regardless of the sampling technique employed. The required sample size depends primarily on
two factors: the complexity of the data and the number of free parameters. More free parameters
necessitate drawing more realizations. Among the sampling techniques utilized, we find that ANN
models trained with Hammersley sequence sampling demonstrate greater robustness compared to
those trained with Latin hypercube and Random sampling.
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5.1 Introduction
The ΛCDM (Lambda Cold Dark Matter) cosmological model asserts that the initial structures in
the universe formed during the Cosmic Dawn as hydrogen gas collapsed under the effect of gravity.
The ultraviolet (UV) photons emitted by the first luminous sources initiated the ionization of
the surrounding intergalactic medium (IGM), causing the last transition phase in the universe’s
evolution. This phase transition period is called the Epoch of Reionization (EoR) [18,126,156,164].
Due to the lack of observational data at these high redshifts, the characteristics and timeline of
the EoR remain poorly constrained. The HI 21cm signal stands out as a promising probe for
exploring these uncharted redshift ranges. This signal originates from the hyperfine splitting of
the ground state of the hydrogen atom, which arises from the spin alignments of the proton and
electron [38, 55, 165]. The ”spin-flip” transition responsible for the signal is inherently forbidden.
Nevertheless, an abundance of hydrogen in the universe makes it an important astrophysical probe
[166].
However, there are several challenges in observing the signal. The 21 cm signal is overshadowed
by the foregrounds, 104 times brighter than the signal in the redshifted frequency range. The
foregrounds are predominantly due to galactic synchrotron emission. These foregrounds, along
with the ionospheric effects and the instrument response to the observation, pose a significant
challenge to the detectability. Two distinct experimental techniques are used for observing these
faint cosmological signals. One approach involves single-radiometer, as seen in experiments like Ex-
periment to Detect the Global Epoch of Reionization Signature (EDGES, [167]), Shaped Antenna
Measurement of the Background Radio Spectrum (SARAS, [40, 168]), Radio Experiment for the
Analysis of Cosmic Hydrogen (REACH, [41]) and Large-Aperture Experiment to Detect the Dark
Ages (LEDA, [43]). Alternatively, interferometers such as the Giant Meterwave Radio Telescope
(GMRT, [44]), Hydrogen Epoch of Reionization Array (HERA, [47]), Low-Frequency Array (LO-
FAR [63]), and the upcoming Square Kilometer Array (SKA, [64]) are utilized. Recently, EDGES
has reported a possible detection of the sky-averaged global 21 cm signal with an unexpectedly
deep absorption trough at 78 MHz [168]. The depth is more than twice what the standard cosmol-
ogy model predicted. If true, the signal can give new insights into the physics of the reionization
era. However, another independent experiment, SARAS, has challenged this detection, suggesting
that the anomalous result might be due to uncalibrated systematics [167]. Thus, it emphasizes
that correctly modelling and removing the corruption from the signal is essential.
Over recent years, machine learning (ML) algorithms have gained extensive popularity in sig-
nal modelling and parameter estimation. For signal modelling, approaches such as those by
[111,113,135,137–139] leverage Artificial Neural Networks (ANN) to model the 21cm signal across
various aspects. Simultaneously, [13,50,86,87,169] employ ANN algorithms to extract parameters
linked to the signal. Additionally, simulation-based inference (SBI) techniques, leveraging deep
learning, are increasingly preferred for astrophysical inference from cosmic 21 cm signals, partic-
ularly for retrieving posteriors of astrophysical parameters via likelihood-free Bayesian inference
directly from power spectrum and light-cone image analysis [170–174]. [175] introduced the Solid
Harmonic Wavelet Scattering Transform (WST) and ”3D ScatterNet” to enhance the inference of
astrophysical parameters. Apart from the ML algorithm, several traditional methods are used to
remove the signal and associated parameters [114,161–163]. Currently, due to limited observational
constraints on intergalactic medium (IGM) properties, there is no singular and firmly established
set of quantities to parameterize the underlying astrophysical processes shaping the signal. Several
potential parameters have been suggested in various proposed models of the signal[108,176–178].
Previously, [13, 50, 86] successfully developed and presented an ANN model capable of extracting
astrophysical parameters of the 21 cm signal from mock observation data sets. These models
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considered limited sets of possible signal combinations, incorporating the effects of foregrounds,
ionosphere, instruments, and noise. To develop a robust ANN model for foreground removal, it is
crucial to consider all possible varieties of signals in the training set [177]. However, considering all
the possible signal combinations will be computationally expensive. To address this issue, in this
study, we create a sub-sample from the entire signal parameter space, ensuring it represents the
overall parameter space using various sampling methods. Nonetheless, there are no straightforward
rules to determine the optimal sampling technique and identify the minimum number of samples
required for training the ANN model in a robust and accurate manner, which poses uncertainties.
Addressing these questions requires a more in-depth exploration.
To address these questions, this study explores three distinct sampling methods—Random (Rand)
sampling, Latin hypercube sampling (LHS), and Hammersley sequence sampling (HSS)—to com-
prehensively map the parameter space and generate various global 21cm signal types. We also
analyzed the minimum number of samples required to train the ANN effectively, ensuring its
robustness across different signal types. Furthermore, our investigation aims to understand the
efficiency of these sampling algorithms and determine the minimum training data size needed
to achieve consistent accuracy as the parameter space dimensionality and dataset complexity in-
crease, particularly with the addition of foreground and thermal noise to the global 21cm signal.
Additionally, we conducted generalizability tests by generating multiple training datasets through
repeated parameter space sampling. The ANN was trained multiple times with these datasets and
subsequently tested with unknown datasets generated using various sampling methods. This ap-
proach allows us to examine the consistency of the sampling algorithms in effectively covering the
parameter space and to understand the clustering issues associated with these sampling methods
by examining the consistency of the ANN’s predictions.
This paper is structured as follows: Section 5.2 outlines the observable aspects of the HI 21cm
Signal. Section 5.3 delves into the observational challenges, while Section 5.4 describes the methods
for simulating the global 21cm signal. Section 5.5 covers sampling techniques, and Section 5.6
provides a basic overview of ANN. Section 5.7 discusses the training and test datasets for the
ANN, and Section 5.8 outlines the results, including a discussion of the ANN predictions. The
final section, Section 5.9, comprises the summary and overall discussions.

5.2 HI 21cm Signal
The 21cm signal arises because of hyperfine splitting of 1S ground level of hydrogen atom due to
the interaction of magnetic moments of electrons and protons. Commonly, this transition is known
as the spin-flip transition, where the spin transition from parallel to anti-parallel takes place. This
transition results in the spontaneous emission of 21cm photon.
A single dish experiment measures the brightness temperature of the signal Tb in contrast to
the background temperature of Cosmic Microwave Background (CMB), TCMB ; this is called the
differential brightness temperature:

δTb ≈ 27(1− xHI)

(
Ωbh

2

0.023

)(
0.15

Ωm,0

1 + z

10

)1/2(
1− TCMB(z)

Ts

)
(5.1)

where xHI is the neutral fraction of hydrogen, Ωb and Ωm are the baryon and total matter density,
respectively, in units of the critical density, H(z) is the Hubble parameter at redshift z and, Ts is
the spin temperature of neutral hydrogen.
The spin temperature, which is the relative populations of hydrogen atoms in the two spin states,
is decided by competition between 3 processes and their corresponding physical quantities: (1) ab-
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sorption of CMB photons and stimulated emission; TCMB , the temperature of CMB, (2) collisions
with other hydrogen atoms (H-H), free electrons (H-e), free hydrogen nuclei (H-p); Tk, Kinetic
gas temperature of IGM, and (3) scattering of Lyman- α photons, Tα, colour temperature for
Wouthuysen–Field effect. The spin temperature, Ts is calculated as [55][179]:

T−1
s =

T−1
CMB + xkT

−1
k + xαT

−1
α

1 + xk + xα
(5.2)

Here, xk, xα are collisional and Lyman- α coupling coefficients. Thus, the global signal evolves
over the redshift range as a function of the properties of IGM.

5.3 Observational Challenges
Observing the redshifted 21cm signal poses challenges due to various observational obstacles, in-
cluding bright foregrounds, ionospheric effects, beam chromaticity, thermal noise, and radio fre-
quency interference (RFI). In this study, our primary focus is on addressing two specific challenges:
the impact of foreground and thermal noise, while simulating observations to construct the training
datasets.

5.3.1 Foregrounds
About 70% of the foregrounds obscuring the 21 cm signal come from galactic synchrotron sources,
and the rest are free-free emissions and thermal dust emissions. Extragalactic foregrounds are
primarily caused by radio emission from star-forming galaxies. There are two ways to deal with the
foreground: avoiding and removing it. The former can be applied for interferometric observations
but not for the global 21cm signal. For global 21cm experiments, the foregrounds must be modelled
and removed. The foregrounds are spectrally smooth compared to the global 21cm signal. The
high coherence of the diffuse galactic foregrounds across frequency compared to the signal can be
used for foreground subtraction [78]. Due to their spectral smoothness, the foregrounds can be
modelled as a low-order polynomial [126]. In this study, we simulated the diffuse foreground using
a third-order polynomial in log(ν)− log(T ), as previously described by [86,150].

log(TFG) =

n∑
i=0

ai

(
log

(
ν

ν0

))
(5.3)

where ν0 = 80 MHz. The four foreground parameters, constants of the log(ν)− log(T ) polynomial,
are varied around their inferred value by [150], a0 = log(T0) = 3.30955; a1 = −2.42096; a2 =
−0.08062; a3 = 0.02898.

5.3.2 Thermal Noise
The thermal noise, denoted as n(ν), in the observed spectrum can be expressed using the ideal
radiometer equation in the following manner:

n(ν) ≈ Tsys(ν)√
δν · τ

, (5.4)

In this context, Tsys(ν) represents the system temperature, δν is the observational bandwidth, and
τ denotes the observation time.
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5.4 Models for the Global 21cm Signal
To simulate the global 21cm signal, we employed two distinct models. The first model is based on
a parametrized model, while the other utilizes a semi-numerical astrophysical approach. Further
details are provided below:

5.4.1 tanh Parametrization Model
We have used the tanh model to simulate the global 21 cm signal during the cosmic dawn (CD) and
the EoR using ARES [180]. The model uses simple parametric forms for the Lyman α background,
IGM temperature, and re-ionization histories [181]. This method models the signal using IGM
properties like the strength of Lyman α coupling, Jα(z); the temperature of the IGM, T (z);
and ionization fraction, Xi, but does not take into account the source properties. Each of these
quantities is evolved as:

A(z) =
Aref

2

(
1 + tanh

(
z0 − z

∆z

))
(5.5)

Here Aref is the step height, z0 is the pivot redshift, and ∆z is the width. The quantities become
zero at high redshift, turn on for a redshift interval ∆z around a z0, the central redshift, and
achieve maximum Aref saturation at low redshift.
The step height, Aref , in units of 10−21 ergs−1cm−2Hz−1sr−1 corresponding to the Lyman α (Lyα)
background is Jref . It saturates at low redshift, with a value of 11.69, as determined by [181] using
MCMC parameter estimation. In our study, we treat it as a constant, as done in our work. The
redshift interval and pivot redshift for Lyα background tanh parametrization are Jdz and Jz0
respectively. Similarly, for X-ray heating, the temperature of IGM, T (z), Tdz and Tz0 denotes
redshift interval and central redshift in units of Kelvin. The amplitude, Aref , corresponding to
IGM temperature, represented by Tref , saturates at around 1000K. For the ionization fraction,
Xi, the natural value for step height is unity. The redshift interval ∆z and the pivot redshift z0
over which ionization takes place are given by Xdz and Xz0, respectively. The values for these
parameters inferred by [181] are: Jdz = 3.31, Jz0 = 18.54, Tdz = 2.82, Tz0 = 9.77, Xdz = 2.83,
Xz0 = 8.68.

5.4.2 Astrophysical Model
We used a semi-numerical model which simulates the global signal based on the evolution of the
properties of the IGM during the EoR, described in [182]. The astrophysical input parameters to
simulate the global 21 cm signal from the Cosmic Dawn are the following:

1. Star formation efficiency, f∗: A high value of star-forming efficiency implies earlier cosmic
heating and a shallower absorption feature;

2. The escape fraction of the ionizing photons into the IGM, fesc: The number of ionizing
photons able to reach the IGM decides the duration of the reionization;

3. X-ray heating efficiency, fX : The efficiency of X-ray sources to heat the IGM decides the
depth of the absorption trough. For high values of fX , the shallower absorption feature is
shifted to higher redshifts;

4. Number of Ly α photons produced per baryon, Nα: The Lyman α background emission
depends upon the metallicity of the stars;
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Figure 5.1: Each subplot illustrates training datasets for the global 21cm signal, constructed
using Random, Latin hypercube, and Hammersley sequence sampling methods, respectively, for
the parametrized signal. The final subplot depicts training datasets with added foreground and
thermal noise. Signal subsets are highlighted in color, while the remaining sets are displayed in
gray as the background.

The parameters are described in detail in [13, 182]. Due to the limited observation for detecting
the 21 cm signal from the Cosmic Dawn, the astrophysical parameters and the IGM properties
still need to be determined. Some of the astrophysical parameters are poorly constrained, like
the optical depth of the CMB by Planck data [183]. Thus, the astrophysical parameters can have
any value within an extensive range. For this work, we have assumed the following ranges for the
parameters to simulate the different realization of the global 21cm as tabulated in Tab. 5.1.

5.5 Sampling the parameter space
To train artificial neural networks (ANNs) or any machine learning model for parameter extraction
from the 21 cm signal, a comprehensive training set is required, ideally covering all possible signal
templates. As described earlier, the challenge is the computational power required to construct
such a gallery, given that the parameters governing the signal theoretically span large ranges. The
problem can be tackled by considering a sub-sample of the parameter space that optimally covers
the range of all parameters. For instance, Cohen 2017 [177] computed 193 signal realizations for
different sets of astrophysical parameters. For this work, we consider and compare three different
sampling techniques to optimally sample the parameter space of the global 21 cm signal:
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Figure 5.2: Each subplot illustrates training datasets for the global 21cm signal, constructed
using Random, Latin hypercube, and Hammersley sequence sampling methods, respectively, for
the physical signal. The final subplot depicts training datasets with added foreground and thermal
noise. Signal subsets are highlighted in color, while the remaining sets are displayed in gray as the
background.
5.5.1 Random sampling
Random sampling is the commonly used sampling to ensure an unbiased selection of points in
the parameter space. Each parameter is assumed to have a uniform probability distribution. This
implies that each possible value within the parameter space has an equal likelihood of being selected
during the sampling process.

5.5.2 Latin hypercube sampling
Latin hypercube sampling (LHS) is a type of stratified sampling [123]. In LHS, the range of each
input parameter is divided into N intervals having equal marginal probability 1

N
. The key idea is

to ensure an even and representative sampling of the entire parameter space. For each parameter,
N samples are drawn at random from each interval. In the case of a Latin square with only two
parameters x and y, the xi, yi, for i = 1, 2, ..., N are sampled independently. The samples taken
from each parameter are matched at random as (xi, yj) for i, j = 1, 2, ..., N . A Latin hypercube
extends this concept to higher-dimensional spaces. Simple Latin hypercube design and its variant
have been commonly used in computer experiments designed for their space-filling properties. In
cosmology, the use of LH algorithms has been explored for the construction of training sets for
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emulators [111,113,135,184].
LHS has certain merits over random sampling. Random sampling could lead to the clustering of
points in specific regions of the parameter space, thereby creating an uneven representation across
different regions. LHS ensures an even coverage of the whole parameter space by spreading the
sample points over the entire range of each parameter. Furthermore, LHS can achieve this goal
with a relatively small number of samples compared to random sampling.

5.5.3 Hammersley sequence sampling
Hammersley sequence sampling (HSS) is a sampling method developed by Kalagnanam and Di-
wekar [124] to address certain limitations associated with other sampling methods, particularly in
the context of quasi-monte carlo methods and numerical integration. Low discrepancy sequences
(LDS) like Hammersley sequences are one of the solutions to achieve a distribution of points with
low discrepancy, where discrepancy is a metric for the deviation from a uniform distribution. The
low discrepancy sequences have a deterministic structure as opposed to the stochastic nature of the
random sampling, meaning that the sequence of points is fully determined by the number of points
and the dimensionality of the space. Notably, in scenarios involving large-dimensional parameter
spaces, the HSS demonstrates good uniformity over the Latin hypercube sampling [185].
To construct a Hammersley sequence sample, n relatively prime numbers (integers that have no
common divisors other than 1) are chosen: p1, p2, .., pn. Each non-negative integer k can be
expressed with a prime base p

k = a0 + a1p+ a2p
2 + a3p

3 + ... (5.6)

where, ai is an integer in [0, p – 1]. Subsequently, the following expression is computed for each
prime p:

ϕp(k) =
a0
p

+
a1
p2

+
a2
p3

+ ... (5.7)

For d dimensions, the kth d-dimensional Hammersley’s point is ( kn , ϕp1(k), ϕp2(k), ..., ϕpd−1
(k)) for

k = 0, 1, 2, ..., n1 ,where n is the total number of Hammersley’s points and p1 < p2 < ... < pd1.
HSS finds its main applications in computer graphics and design optimization. This work is the
first to employ this sampling method in the context of cosmology.

5.6 Artificial Neural Networks
Artificial neural networks (ANNs) are widely used supervised machine learning algorithms, with
applications increasingly found in cosmology as well. Mathematically, for a given set of [xi, yi],
ANNs try to find a function, f(x), such that yi = f(xi) through a series of weighted summations.
This operation occurs in a series of layers. The neurons are the building blocks of the ANN. The
ANN contains n number of layers, with one input layer, one output layer, and n-2 hidden layers.
The input values xi with D dimensions are given to the first layer with D nodes. The output from
one layer ai goes to the next layer’s jth neuron as input aj . The computation for the activation of
the jth neuron in layer l + 1 is given by:

al+1
j = h

(
D∑
i=1

wjia
l
i + wj0

)
(5.8)
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Here, h represents the activation function, l denotes the layer index, and a refers to the inputs for
the corresponding layer. For l= 0, a0i = xi which represents the input values for the first layer.
The terms wji and wj0 are weights and biases associated with the neuron set, respectively. There
is no activation function used in the output layer.
The aim is to train the model to minimize the loss function, i.e., finding the weight values that
mimic the function. It involves updating the weights with an optimizer using back-propagation
to reduce the loss at a rate called the learning rate. The default loss function in the training of
ANNs, including in this work, is the Mean Squared Error (MSE), given by:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (5.9)

Here, n is number of samples, yi is the true output label and ŷi is the prediction after updating
the weights, wji, and biases, wj0, with every iterations of the ANNs. The prediction ŷj for the jth

neuron in the output layer is calculated as:

ŷj =

D∑
i=1

wji · aL−1
i + wj0 (5.10)

Here, L is the index of the final layer. Most optimizers are based on the gradient descent method
of loss optimization.
The number of layers, number of neurons in each layer, learning rate, and activation function are
to predecided. These parameters are known as hyperparameters. We can search over a range of
hyperparameters and use the ones giving minimum loss and maximum accuracy. In this work,
Scikit-learn 1 and Keras2 are used for building an ANN. We optimized hyperparameters using trial
and error to determine the best architecture for the ANNs. Details of the final architecture are
provided in the following section.

5.6.1 Metric of accuracy
For testing and validating the data set, RMSE and R-squared value is used as a measure to see
the difference between predictions of input parameters made by the model for testing data and the
actual value.
If N samples are there for testing, and ytrue, ypred are the actual and predicted value of the param-
eter, ytrue, mean of all actual values of the parameter. Then,

RMSE(ytrue, ypred) =
√

1

N

∑
(ytrue − ypred)2 (5.11)

R2(ytrue, ypred) = 1−
∑N

i=1(ytrue − ypred)
2∑N

i=1(ȳtrue − ytrue)2
(5.12)

5.7 Training and testing data set
In this work, we systematically explored parameter space using diverse sampling techniques to
ensure comprehensive coverage. We generated a comprehensive array of global 21cm signals to

1https://scikit-learn.org/stable/
2https://keras.io/
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Parametrized Physical
Parameters Ranges Parameters Ranges

Jz0 9.27, 27.81 fx * fxh 0.0255, 7.9800
Xz0 4.34, 13.02 fstar 0.0030, 0.0099
Tz0 4.89, 14.65 fesc 0.06, 0.19

Signal Jdz 1.65, 4.96 Nα 9000-800000
Tdz 1.41, 4.23
Xdz 1.42, 4.25
a0 2.97, 3.64 a0 2.97, 3.64

Foreground a1 -2.45, -2.37 a1 -2.45, -2.37
a2 -0.082, -0.079 a2 -0.082, -0.079
a3 0.027, 0.030 a3 0.027, 0.030

Table 5.1: The range of parameters used to build the training dataset for the Parametrized and
Non-parametrized (Physical) cases of global 21cm signals and foregrounds.

enhance the robustness of our ANN model training. Additionally, we drew datasets of various sizes
for each sampling method to determine the minimum sample size requirement for training the
ANN more robustly and accurately. Our objective extended to evaluating the efficacy of various
sampling methods in ANN training, described in section 5.5. Furthermore, we also check the
robustness of these trained ANN models, which are trained with the different sampled datasets
by testing them with test datasets sampled with other sampling methods, to understand whether
the prediction accuracy of the final trained ANN model is consistent with any random sets of the
datasets or not.
To perform the above operation, we used two different types of signal models, one parametrized and
the other non-parametrized, based on the semi-numerical model, details described in section 5.4. In
the parametrized model, we used 6 parameters to simulate the global 21cm signal, and for the non-
parametrized model, we used 3 parameters to simulate the global 21cm signal. Incorporating these
two distinct models not only introduced diversity in the signal parameters but also enabled the
exploration of different dimensions within these parameters. Similarly, integrating foreground and
noise into the dataset added complexity and increased the dimensionality of free parameters. We
employed the same sampling methods used for the signal case to chart both signal and foreground
parameters simultaneously.

5.7.1 Signal only
For this scenario, we simulated the training and testing datasets by sampling the parameter space
of the global 21 cm signal, defined within a specific range of parameter values, using three distinct
sampling methods. The signal simulated utilizing the physical model and tanh parametrization
illustrated in Fig. 5.1 and 5.2, respectively.
We generated three datasets of varying sizes - 1000, 5000, and 10,000 samples - using given sampling
methods. Subsequently, we utilized these datasets to train ANN models, aiming to analyze how
the performance of the ANNs varies across these different dataset sizes. For the training of the
ANN, we split these sampled datasets into a 7:3 ratio, allocating 70 % for training and reserving
the remaining 30 % for network testing.
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5.7.2 Foreground and thermal noise corrupted signal
In this scenario, our training dataset is created by exploring the parameter space of both the
signal and foreground using the three given sampling methods. These sampled parameters are
then utilized to construct the signal and foreground components. We utilized two different models
to simulate the signal: the parametrized and physical models. We have simulated the foreground
using a log-log polynomial model, as detailed in section 3. To simulate a realistic observational
scenario spanning 1000 hours, we have added the thermal noise into the simulated signal and
foreground datasets using the radiometer equation, resulting in the generation of our final training
datasets. We generated three different dataset sizes: 10,000, 50,000, and 200,000 samples by
drawing parameters from the specified ranges for the parametrized signal case. We created dataset
sizes of 10,000, 50,000, and 100,000 samples for the physical case. Given the comparatively larger
size of the datasets compared to scenarios where only the signal is considered, adhering to the
common thumb rule, we have partitioned the datasets in a 9:1 ratio. Here, 90 % is designated for
training the ANN model, while 10% is set aside for evaluating its performance, which should be
sufficient. This split ensures an adequate representation of the variety of signals in the dataset,
enhancing the accuracy and robustness of the model’s predictions.

5.8 Results
In this study, we trained the ANN model under two scenarios: one with the signal alone and another
that included the signal, foreground, and thermal noise. These datasets were generated using
three unique sampling methods: Random sampling, Latin hypercube sampling, and Hammersley
sequence sampling. To ensure accurate and robust training, we employed varying dataset sizes, as
elaborated below. We also employed two distinct types of global signals generated by two different
models: one based on parametrized modelling and the other referred to as non-parametrized to
showcase ANNs generalizability. The detailed result for the non-parametric signal is showcased in
Appendix 5.9.

5.8.1 Signal only
The model we use for training is constructed with Keras’ Sequential API and comprises 1024
input neurons matching with 1024 frequency channels and three hidden layers with 64, 27 and
18 neurons, respectively; these hidden layers are activated by ReLU (Rectified Linear Unit) and
‘tanh’ activation function. The output layer has 6 neurons to predict the parametrized global 21cm
signal parameters. The input training data sets are normalized and standardized with the ’Min-
MaxScaler’ and ‘StandardScaler’ functions, and corresponding parameters are normalized using
‘MinMaxScaler’, available in Scikit-learn. We evaluated the performance of the trained ANN using
a test dataset and assessed its prediction accuracy by calculating the R2 and the RMSE.
The ANN trained with 1000 datasets achieved the overall R2 score of 0.6744 for datasets sampled
using HSS. For LHS, the overall R2 score obtained is 0.6594, while for Random sampling, the
R2 score is obtained at 0.6367. Similarly, with 5000 datasets, the overall R2 score of 0.9059 was
achieved for datasets sampled using HSS. For LHS, the overall R2 score obtained was 0.8937, while
the overall R2 score of 0.8837 was obtained for the dataset sampled using Random sampling. With
10,000 datasets, the overall R2 score of 0.9259 was obtained for datasets sampled using HSS. For
Random sampling, the overall R2 score obtained was 0.9187, while the overall R2 score of 0.9210
was obtained for the dataset sampled using LHS. The detailed results for each sampling method
with the various dataset sizes, the R2 and RMSE score for the individual parameters are listed
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Figure 5.3: The scatter plots above show predicted signal parameter values obtained through an
ANN model trained on the global 21cm signal. The signal data sets are generated by sampling
the parameter space using Hammersley sequence sampling in three sizes: 1000, 5000, and 10,000
samples. Blue points in each scatter plot denote predictions made by the ANN trained with 1000
samples, while magenta and green points indicate predictions from ANN models trained with 5000
and 10000 samples, respectively. The true value of the parameters are plotted in solid black line
in the each plot.

in Tab. 5.2 and Tab. 5.3. We also individually show the predicted parameter values against the
original values for each sampling method across different dataset sizes. These visualizations are
presented in Fig. 5.3 for HSS, Fig. 5.4 for LHS, and Fig. 5.5 for Random sampling.
Our investigation revealed that, across all three sampling techniques, the accuracy of the ANN
improved with an increase in the number of training datasets. For example, when dealing with
datasets consisting of 10,000 samples, all three sampling methods demonstrated significantly higher
prediction accuracy compared to situations where the network was trained with 5,000 and 1,000
samples using the same techniques. Further details are provided in Tab. 5.2. Additionally, it was
observed that ANN models trained with Hammersley sequence-sampled datasets achieved slightly
higher overall R2 scores for dataset sizes of 1000, 5000, and 10,000 compared to models trained
with LHS and Randomly sampled datasets.

5.8.2 Signal and foreground with thermal noise
In this study, we trained an ANN using datasets that included signals corrupted with foreground
and thermal noise. The addition of foreground into the global 21cm signal not only increases the
complexity of the dataset but also expands the dimensionality of the parameter space. We followed
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Figure 5.4: The scatter plots above show predicted signal parameter values obtained through an
ANN model trained on the parametrized global 21cm signal. The signal datasets are generated
by sampling the parameter space using Latin hypercube sampling in three sizes: 1000, 5000, and
10,000 samples. Blue points in each scatter plot denote predictions made by the ANN trained with
1000 samples, while magenta and green points indicate predictions from ANN models trained with
5000 and 10000 samples, respectively. The true values of the parameters are plotted in a solid
black line in each plot.

Size 1000 5000 10000
HSS LHS Rand HSS LHS Rand HSS LHS Rand

Avg. 0.6744 0.6594 0.6379 0.9059 0.8937 0.8837 0.9259 0.9187 0.9210
Jz0 0.9471 0.9442 0.9389 0.9821 0.9780 0.9770 0.9868 0.9844 0.9859
Xz0 0.8797 0.8552 0.8687 0.9716 0.9681 0.9693 0.9751 0.9793 0.9758
Tz0 0.8589 0.8899 0.8908 0.9449 0.9431 0.9410 0.9686 0.9583 0.9615
Jdz 0.5514 0.4943 0.4107 0.9094 0.8790 0.8978 0.9323 0.9294 0.9258
Xdz 0.1942 0.1372 0.0807 0.7982 0.7759 0.7200 0.8395 0.8075 0.8161
Tdz 0.6151 0.6377 0.6377 0.8289 0.8180 0.7973 0.8450 0.8534 0.8607

Table 5.2: The computed R2-scores for all signal parameters for predicted each case studied are
listed here. We used the parametrized model to construct the global 21cm signal.
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Figure 5.5: The scatter plots above show predicted signal parameter values obtained through an
ANN model trained on parametrized the global 21cm signal. The signal data sets are generated
by sampling the parameter space using Random sampling in three sizes: 1000, 5000, and 10,000
samples. Blue points in each scatter plot denote predictions made by the ANN trained with 1000
samples, while magenta and green points indicate predictions from ANN models trained with 5000
and 10000 samples, respectively. The true values of the parameters are plotted in a solid black line
in each plot.

Size 1000 5000 10000
HSS LHS Rand HSS LHS Rand HSS LHS Rand

Jz0 0.0661 0.0679 0.0720 0.0392 0.0429 0.0447 0.0354 0.0356 0.0346
Xz0 0.1044 0.1137 0.1035 0.0502 0.0513 0.0508 0.0460 0.0420 0.0452
Tz0 0.1077 0.0944 0.0980 0.0680 0.0678 0.0716 0.0586 0.0588 0.0572
Jdz 0.1905 0.1997 0.2211 0.0876 0.1018 0.0920 0.0754 0.0772 0.0788
Xdz 0.2661 0.2740 0.2657 0.1303 0.1347 0.1527 0.1153 0.1265 0.1238
Tdz 0.1805 0.1710 0.1754 0.1186 0.1242 0.1294 0.1118 0.1118 0.1060

Table 5.3: The computed RMSE scores for all signal parameters for predicted each case studied
are listed here. We used the parametrized model to construct the global 21cm signal.

118



a methodology similar to that used for signal data to construct our training datasets. We charted
the parameter space for both the signal and foreground components using three different sampling
methods. We generated three distinct dataset sizes for the parametrized signal: 10,000, 50,000,
and 200,000 samples to explore the minimum sample size required to train the ANN for improved
accuracy and robustness effectively. We pursued two distinct approaches to train the ANN with
a signal corrupted by foreground and thermal noise. In the first method, we normalized and
standardized with ’MinMaxScaler’ and ‘StandardScaler’; in the second method, we logarithmically
scaled the training dataset. Subsequently, we normalized and standardized the datasets further.
In the first case, we achieved better accuracy in recovering only two foreground parameters, a1
and a2, while the rest of the parameters are recovered poorly. In the second case, we successfully
recovered all parameters with reasonable accuracy, except for the two foreground parameters a1
and a2, where the accuracy ranged from 50 % to 60 % in the best-case scenario. Based on these
experiences, we decided to train two separate ANN models for both parametrized and physical
cases. The first ANN model focused on the recovery of the two foreground parameters (a1, a2)
without the use of logarithmically scaled datasets. For the remaining parameters, the second ANN
model utilized logarithmically scaled datasets. A detailed description of the architectures of these
ANN models is described below.
The first ANN model’s architecture featured an input layer with 1024 neurons, aligning with the
data’s 1024 frequency channels. This was followed by two hidden layers with 64 and 16 neurons,
respectively, and the output layer with 2 neurons to predict the two foreground parameters (a1, a2).
In the case of the second ANN model, the input layer mirrored the first model with 1024 neurons.
Following this, four hidden layers were introduced, consisting of 256, 64, 32, and 16 neurons. The
output layer of the second ANN model comprised 8 neurons, each representing 6 signal parameters
and 2 foreground parameters (a0, a3). In both models, each hidden layer utilized the Exponential
Linear Unit (ELU) activation function. To mitigate overfitting, both ANN models employed the
‘normal’ kernel initializer and implemented L2 kernel regularization. Before training the ANN
models in both scenarios, we normalized the parameters using the ‘MinMaxScaler’ scaling.
The ANN trained with 10,000 datasets achieved the overall R2 score of 0.7534 for datasets sampled
using LHS. For Random, the overall R2 score obtained was 0.7307, while the R2 score of 0.7307 was
obtained for the dataset sampled using HSS. Similarly, with 50,000 datasets, the overall R2 score of
0.8738 was achieved for datasets sampled using Random sampling. For LHS, the overall R2 score
obtained was 0.8679, while the overall R2 score of 0.8673 was obtained for the sampled dataset
using HSS. With 200,000 datasets, the overall R2 score of 0.9296 was attained for datasets sampled
using LHS. For HSS, the overall R2 score obtained was 0.9139, while the R2 score of 0.9016 was
obtained for the sampled dataset using Random sampling. The detailed results for each sampling
method with the various dataset sizes, the R2 and RMSE score for individual parameters are listed
in Tab. 5.4 and Tab. 5.5. We also individually showed the predicted parameter values against the
original values for each sampling method across different dataset sizes. These visualizations are
presented in Fig. 5.6 for HSS, Figure 5.7 for LHS, and Fig. 5.8 for Random sampling.
We noticed that as we increased the complexity and dimensionality of the problem, achieving an
optimal solution with the ANN required drawing more sample sets to cover the entire parameter
space. In contrast to the scenario where only the signal was considered, where optimal ANN
prediction was achieved with 10,000 datasets, here, with the same number of datasets, we only
achieved an accuracy of around ∼ 75%, regardless of the sampling method. For this particular case,
to attain a similar level of accuracy in prediction, we found that drawing approximately 200,000
samples was necessary.
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Figure 5.6: The scatter plots above show predicted signal and foreground parameter values
obtained through an ANN model trained on a parametrized global 21cm signal. The signal and
foreground data sets are generated by sampling the parameter space using Hammersley sequence
sampling in three sizes: 10,000, 50,000, and 200,000 samples. Magenta scatter points in each
scatter plot denote predictions made by the ANN trained with 10,000 samples, while yellow and
blue scatter points indicate predictions from ANN models trained with 50,000 and 200,000 samples,
respectively. The actual values of the parameters are plotted in a solid black line in each plot.
Size 10000 50000 200000

HSS LHS Rand HSS LHS Rand HSS LHS Rand
Total 0.7252 0.7534 0.7307 0.8673 0.8679 0.8738 0.9139 0.9296 0.9016
Jz0 0.8993 0.9020 0.9109 0.9573 0.9659 0.9626 0.9753 0.9798 0.9784
Xz0 0.8297 0.8962 0.8414 0.9447 0.9408 0.9447 0.9798 0.9796 0.9461
Tz0 0.8875 0.8689 0.8634 0.9315 0.9336 0.9396 0.9483 0.9554 0.9434
Jdz 0.2186 0.2677 0.2813 0.6651 0.7356 0.7244 0.8246 0.8603 0.8328
Xdz 0.6568 0.6968 0.6595 0.7838 0.7934 0.8025 0.8248 0.8458 0.8361
Tdz 0.4979 0.5837 0.5005 0.7953 0.7472 0.7875 0.8896 0.9083 0.7240
a0 0.7229 0.7452 0.7292 0.8375 0.8672 0.8773 0.9086 0.9214 0.8889
a1 0.9994 0.9997 0.9996 0.9989 0.9997 0.9999 0.9994 0.9999 0.9994
a2 0.6095 0.6460 0.5964 0.8274 0.7659 0.7684 0.8606 0.9152 0.9363
a3 0.9298 0.9281 0.9248 0.9319 0.9296 0.9311 0.9277 0.9302 0.9304

Table 5.4: The computed R2-scores for all signal and foreground parameters for each case studied
are listed here. We used the parametrized model to construct the global 21cm signal and the log-
log polynomial to construct the foreground.
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Figure 5.7: The scatter plots above show predicted signal and foreground parameter values ob-
tained through an ANN model trained on a parametrized global 21cm signal. The signal and
foreground data sets are generated by sampling the parameter space using Latin hypercube sam-
pling in three sizes: 10,000, 50,000, and 200,000 samples. Magenta scatter points in each scatter
plot denote predictions made by the ANN trained with 10,000 samples, while yellow and blue
scatter points indicate predictions from ANN models trained with 50,000 and 200,000 samples,
respectively. The actual values of the parameters are plotted in a solid black line in each plot.

Size 10000 50000 200000
HSS LHS Rand HSS LHS Rand HSS LHS Rand

Jz0 0.0917 0.0914 0.0861 0.0593 0.0532 0.0556 0.0456 0.0408 0.0423
Xz0 0.1180 0.0904 0.1139 0.0679 0.0709 0.0673 0.0409 0.0412 0.0670
Tz0 0.0980 0.1049 0.1063 0.0750 0.0737 0.0705 0.0659 0.0610 0.0683
Jdz 0.2567 0.2426 0.2442 0.1655 0.1494 0.1513 0.1211 0.1082 0.1185
Xdz 0.1651 0.1580 0.1666 0.1332 0.1307 0.1281 0.1210 0.1133 0.1166
Tdz 0.2019 0.1828 0.2016 0.1310 0.1453 0.1336 0.0961 0.0874 0.1508
a0 0.1480 0.1464 0.1500 0.1170 0.1051 0.1008 0.0870 0.0808 0.0964
a1 0.0068 0.0048 0.0053 0.0092 0.0043 0.0028 0.0066 0.0021 0.0065
a2 0.1803 0.1750 0.1833 0.1189 0.1400 0.1394 0.1073 0.0840 0.0728
a3 0.0758 0.0769 0.0778 0.0750 0.0762 0.0759 0.0077 0.0760 0.0759

Table 5.5: The computed RMSE-scores for all signal and foreground parameters for each case
studied are listed here. We used the parametrized model to construct the global 21cm signal and
the log-log polynomial to construct the foreground.
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Figure 5.8: The scatter plots above show predicted signal and foreground parameter values
obtained through an ANN model trained on a parametrized global 21cm signal. The signal and
foreground data sets are generated by sampling the parameter space using Random sampling in
three sizes: 10,000, 50,000, and 200,000 samples. Magenta scatter points in each scatter plot denote
predictions made by the ANN trained with 10,000 samples, while yellow and blue scatter points
indicate predictions from ANN models trained with 50,000 and 200,000 samples, respectively. The
actual values of the parameters are plotted in a solid black line in each plot.

5.8.3 Generalizability test of the ANN models
To assess the robustness and generalizability of our trained ANN models, we conducted tests
using separate unknown test datasets generated via three distinct sampling techniques. This
comprehensive analysis aims to identify the most robustly trained ANN model among those trained
with differently sampled datasets. Throughout the training process, we identified the likelihood
of bias when drawing conclusions based on a single instance of training the ANN model. This
recognition stemmed from factors including variations in initial sample seeds, clustering issues,
dataset partitioning, and the inherent variability in training the ANN itself. To mitigate this bias
and ensure the consistency of our results across multiple trials, we repeated the entire training
and sampling procedure 11 times and saved these individual ANN models for further testing with
unknown test datasets drawn via these three distinct sampling techniques: HSS, LHS and Random.
We computed the mean prediction accuracy in terms of R2 and found that ANNs trained on
Hammersley-sampled datasets exhibited lower fluctuations from the mean R2 value across test
datasets, compared to those trained on LHS and Random datasets. For instance, the ANN trained
on HSS-sampled datasets achieved a mean R2 score of 0.9309, with a range of 0.9255 to 0.9373.
Similarly, for LHS-sampled test datasets, the mean R2 score was 0.9285 (range: 0.9213 to 0.9348),
and for Random-sampled test datasets, it was 0.9290 (range: 0.9221 to 0.9348). In contrast,
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ANNs trained on LHS-sampled datasets had a mean R2 score of 0.9204 on HSS-sampled test
datasets (range: 0.9093 to 0.9308), 0.9219 on LHS-sampled test datasets (range: 0.9100 to 0.9347),
and 0.9209 on Random-sampled test datasets (range: 0.9089 to 0.9347). For ANNs trained on
Random-sampled datasets, the mean R2 scores were 0.9195 on HSS-sampled test datasets (range:
0.8911 to 0.9296), 0.9205 on LHS-sampled test datasets (range: 0.8924 to 0.9315), and 0.9194 on
Random-sampled test datasets (range: 0.8940 to 0.9313). For a detailed visual representation of
these results, refer to Fig. 5.9, depicted in the first row. The histogram plots are color-coded:
blue represents the prediction accuracy, in terms of R2 score, of HSS-trained ANN models; orange
represents ANN models trained with LHS-sampled datasets, and green represents the R2 score
histogram for ANN models trained with Random-sampled datasets.
Similarly, for the parametrized signal and foreground case, ANN models trained with Hammersley
sampled datasets consistently exhibited high prediction accuracy across all test datasets, with the
highest R2 score approximately around 0.92 and the lowest around 0.88, with a mean of approxi-
mately 0.91 for each case. Detailed results are depicted in Fig. 5.9 in the second row. Conversely,
ANN models trained with Latin hypercube and Random sampled datasets showed inconsistent
prediction accuracy for both cases. For test datasets generated with HSS, the lowest R2 score was
less than 0.70, approximately 19-20 % lower than the mean R2 score, approximately 0.90. Sim-
ilar fluctuations were observed for test datasets constructed using Latin hypercube and Random
sampling methods; detailed results are presented in Fig. 5.9, with the colour scheme remaining con-
sistent across all subplots. Similarly, for the non-parametrized signal case, we observed consistent
behaviour, with ANN models trained on Hammersley sampled datasets exhibiting less deviation
from the mean R2 score compared to models trained on LHS and Random datasets, the detailed
result present in Appendix of this chapter.

5.9 Summary and discussions
In this study, our objective was to systematically explore the vast parameter space encompassing
the 21cm global signal and foreground. Our goal was to simulate all possible variations using these
parameters and then utilize the generated datasets to enhance the resilience of our trained ANN
model. Recognizing the computational challenges posed by considering every possible parameter
combination, we tested diverse sampling techniques to map the parameter space efficiently. De-
termining the ideal number of training datasets necessary for robust ANN model training is not
straightforward due to the complexity of the model and the multitude of free parameters involved.
Therefore, our research delved into a detailed analysis to establish the minimum dataset require-
ment. This exploration was essential in understanding how the number of datasets correlates with
the model’s complexity and the number of free parameters, ensuring comprehensive coverage of
the parameter space and enabling the robust training of the ANN model. In our study, we ex-
plored various aspects by mapping the parameter space using three distinct sampling methods:
Random, Latin hypercube, and Hammersley sequence sampling. Additionally, we investigated
different sample sizes within specified boundary conditions to determine the minimum number of
samples required to train the ANN effectively. To evaluate the performance of these sampling
methods, we calculated metrics such as the R2 score and Root Mean Square Error (RMSE) us-
ing the ANN model. Additionally, we test the ANN’s performance across different dataset sizes
generated through these sampling techniques. These are some key findings noted from this study:

• Regardless of the sampling method, the ANN’s performance improved when trained with
larger, well-sampled datasets. For instance, in parametrized signal scenarios, training with
1000 samples yielded an R2 score of 0.6744, while 5000 samples improved the score to
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Figure 5.9: The figure illustrates ANN model predictions for various trials trained on datasets
sampled using HSS, LHS, and Randommethods with optimal sample sizes. Histograms depict ANN
prediction accuracy measured by R2 scores. Panels in the figure’s rows correspond to different
signal scenarios: the top three panels in the first row show predictions for the Parameterized
signal, followed by predictions for the Parameterized signal with foreground and thermal noise in
the second row. Histograms are colour-coded: blue represents HSS-trained ANN models, orange
represents LHS-trained ANN models, and green represents the Random-trained ANN model’s
prediction accuracy.

0.9059. Increasing the sample size to 10,000 resulted in a marginal improvement to 0.9226,
indicating diminishing returns relative to the computational cost.

• The number of free parameters played a critical role; fewer parameters required fewer sam-
ples for optimal results, while more parameters necessitated larger sample sizes. For exam-
ple, in the case of parametric signals with 6 free parameters, 10,000 datasets were sufficient
for optimal results. However, for foreground-corrupted signals with 10 free parameters,
200,000 datasets were needed to achieve the same level of accuracy. This trend persisted
when introducing different signal models as well.

• Models trained with datasets from HSS showed consistent performance across various un-
known test datasets, regardless of the sampling method used. Conversely, models trained
with LHS and Random methods exhibited inconsistent prediction accuracy, indicating less
robustness.

• In lower dimensions (< 10), the ANN trained with HSS sampled datasets demonstrated
slightly higher accuracy than those trained with LHS and Random methods. However, in
higher-dimensional parameter spaces ( ≥ 10), HSS performance declined due to clustering
issues. For instance, when dealing with signal, foreground, and noise in parametric signal
cases, HSS performance was slightly lower than the other sampling methods.
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• We also obtained consistent results when using a non-parametric signal model instead of a
parametric one. The primary difference observed was that, since the non-parametric model
only had three free parameters for signal modeling, optimal ANN performance was achieved
with a smaller dataset size. This finding suggests that the efficacy of sampling methods is
influenced more by the dimensionality of the parameter space associated with the signal
rather than by the specific signal model employed.

To address the high-dimensionality limitations of Hammersley sequence sampling, future research
will explore alternative sampling methods that may offer viable solutions. Additionally, we plan to
consider the ionospheric effect and beam chromaticity effect, investigating how these parameters
impact the parameter space when combined with signal and foreground parameters. This inves-
tigation will help us to determine the minimum number of samples required for robust training
of the ANN model, enabling accurate parameter inference from real observational datasets. In
this study, we have compared these sampling methods solely within an ANN-based framework. In
future research, we plan to incorporate other machine learning regression models to evaluate and
compare their performance.

Appendix: Non parametric model
We have conducted similar analyses across different signal model to demonstrate their generaliz-
ability. The comprehensive results are discussed below.

Signal only
To ensure consistency and generalizability of the sampling techniques, we employ a different signal
model, a non-parametrized signal model. This allows us to highlight any biases of the sampling
techniques over the signal model, and assess performance in lower dimensions due to fewer free
parameters. In contrast to the parametric model, the architecture of the ANN for this case is
different. The input layer consisted of 1024 neurons, corresponding to the 1024 frequency channels.
There were two hidden layers with 64 and 16 neurons, respectively, and these layers were activated
using the ’sigmoid’ and ’relu’ activation functions. To prevent overfitting, we also applied L2 kernel
regularization. The output layer has 3 neurons, each representing different signal parameters. We
have used Adam optimizer with a learning rate of 10−4.
Similar to the parametric context, a consistent trend is observed in the non-parametric signal
scenario: the ANN model trained with 1000 datasets achieves an overall R2 score of around 0.92,
which increases to approximately 0.93 with 5000 datasets, and around 0.94 with 10,000 datasets.
Detailed results for each sampling method and dataset size, including R2 and RMSE scores, are
provided in Tab. 5.6 and Tab. 5.7. Visualizations comparing predicted parameter values against
original values for each sampling method are displayed in Fig. 5.10 (HSS), Fig. 5.11 (LHS), and Fig.
5.12 (Random sampling). Notably, model performance improves with larger sample sizes, with all
methods achieving comparable accuracy levels for substantial datasets. The lower dimensionality
of the problem compared to the parametric case allows for higher prediction accuracy with fewer
sampled datasets.
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Size 1000 5000 10000
HSS LHS Rand HSS LHS Rand HSS LHS Rand

Avg. 0.9155 0.9252 0.9214 0.9392 0.9367 0.9346 0.9447 0.9446 0.9418
f∗.fesc 0.9936 0.9922 0.9893 0.9945 0.9957 0.9940 0.9974 0.9970 0.9944
fX,h.fX 0.8255 0.8373 0.8408 0.8785 0.8682 0.8642 0.8837 0.8737 0.8783
Nα 0.9275 0.9454 0.9341 0.9531 0.9539 0.9555 0.9531 0.9532 0.9527

Table 5.6: The computed R2-scores for all signal parameters for each case studied are listed here.
We used the physical model to construct the global 21cm signal.

Size 1000 5000 10000
HSS LHS Rand HSS LHS Rand HSS LHS Rand

f∗.fesc 0.0230 0.0253 0.0281 0.0149 0.0162 0.0162 0.0130 0.0135 0.0150
fX,h.fX 0.1154 0.1000 0.1130 0.1022 0.1064 0.1043 0.0875 0.0851 0.0800
Nα 0.0554 0.0482 0.0530 0.0447 0.0421 0.0421 0.0408 0.0392 0.0390

Table 5.7: The computed RMSE scores for all signal parameters for each case studied are listed
here. We used the physical model to construct the global 21cm signal.
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Figure 5.10: The scatter plots above show predicted signal parameter values obtained through
an ANN model trained on a physical global 21cm signal. The signal data sets are generated by
sampling the parameter space using Hammersley sequence sampling in three sizes: 1000, 5000,
and 10,000 samples. Blue points in each scatter plot denote predictions made by the ANN trained
with 1000 samples, while magenta and green points indicate predictions from ANN models trained
with 5000 and 10000 samples, respectively. The actual value of the parameters is plotted in a solid
black line in each plot.
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Figure 5.11: The scatter plots above show predicted signal parameter values obtained through
an ANN model trained on a physical global 21cm signal. The signal data sets are generated by
sampling the parameter space using Latin hypercube sampling in three sizes: 1000, 5000, and
10,000 samples. Blue points in each scatter plot denote predictions made by the ANN trained with
1000 samples, while magenta and green points indicate predictions from ANN models trained with
5000 and 10000 samples, respectively. The actual values of the parameters are plotted in a solid
black line in each plot.
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Figure 5.12: The scatter plots above show predicted signal parameter values obtained through
an ANN model trained on a physical global 21cm signal. The signal data sets are generated
by sampling the parameter space using Random sampling in three sizes: 1000, 5000, and 10,000
samples. Blue points in each scatter plot denote predictions made by the ANN trained with 1000
samples, while magenta and green points indicate predictions from ANN models trained with 5000
and 10000 samples, respectively. The actual value of the parameters is plotted in a solid black line
in each plot.
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Figure 5.13: The scatter plots above show predicted signal and foreground parameter values ob-
tained through an ANN model trained on a physical global 21cm signal. The signal and foreground
data sets are generated by sampling the parameter space using Hammersley sequence sampling in
three sizes: 10,000, 50,000, and 100,000 samples. Magenta scatter points in each scatter plot denote
predictions made by the ANN trained with 10,000 samples, while yellow and blue scatter points
indicate predictions from ANN models trained with 50,000 and 100,000 samples, respectively. The
actual values of the parameters are plotted in a solid black line in each plot.
Signal with foreground and thermal noise
Similar to the parametrized case, we introduced the effects of foreground and thermal noise in
the non-parametric signal. Given fewer free parameters than the parametric case, we generated
datasets in three sizes: 10,000, 50,000, and 100,000 samples. The architecture of the ANN model
closely resembles that of the parametrized case, with the primary difference being the output layer
of the second ANN model, which comprises 5 neurons. Each neuron represents 3 signal parameters
and 2 foreground parameters (a0, a3). Here, we observe a consistent trend similar to parametric
scenarios: the ANN model trained with 10000 datasets achieves an overall R2 score of around
0.92, which increases to approximately 0.94 with 50000 datasets, and around 0.96 with 10,0000
datasets. The detailed results for each sampling method with the various dataset sizes, the R2 and
RMSE score for individual parameters, are listed in Tab. 5.8 and Tab. 5.9. We also individually
visualized the predicted parameter values against the original values for each sampling method
across different dataset sizes. These visualizations are presented in Fig. 5.13 for HSS, Fig. 5.14
for LHS, and Fig. 5.15 for Random sampling.
In our study, we observed that for optimal performance of the ANN model with any sampling
method, training with a sufficient number of datasets is essential. For example, training the ANN
model with 100,000 datasets resulted in precise prediction of signal parameters, with R2 scores
ranging from 0.92 to 0.98 and root mean square error (RMSE) values between 0.021 and 0.066.
Additionally, the ANN effectively predicted foreground parameters, yielding R2 scores ranging
from 0.95 to 0.99 and RMSE values between 0.008 and 0.064, showcasing significantly improved
accuracy compared to the model trained with 10,000 datasets. Detailed results are provided in
Tab.5.8 and Tab.5.9.
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Figure 5.14: The scatter plots above show predicted signal and foreground parameter values ob-
tained through an ANN model trained on a physical global 21cm signal. The signal and foreground
data sets are generated by sampling the parameter space using Latin hypercube sampling in three
sizes: 10,000, 50,000, and 200,000 samples. Magenta scatter points in each scatter plot denote
predictions made by the ANN trained with 10,000 samples, while yellow and blue scatter points
indicate predictions from ANN models trained with 50,000 and 100,000 samples, respectively. The
actual values of the parameters are plotted in a solid black line in each plot.

Size 10000 50000 100000
HSS LHS Rand HSS LHS Rand HSS LHS Rand

Avg. 0.9277 0.9187 0.9018 0.9505 0.9448 0.9429 0.9670 0.9647 0.9608
f∗.fesc 0.9813 0.9532 0.9776 0.9890 0.9510 0.9634 0.9843 0.9903 0.9860
fX,h.fX 0.8574 0.8727 0.8272 0.8807 0.8502 0.8570 0.9139 0.9168 0.9142
Nα 0.9395 0.9398 0.8502 0.9512 0.9454 0.9405 0.9620 0.9563 0.9629
a0 0.9925 0.9978 0.9960 0.9968 0.9959 0.9969 0.9988 0.9986 0.9973
a1 0.9996 0.9969 0.9974 0.9993 0.9982 0.9998 0.9999 0.9991 0.9998
a2 0.7921 0.7281 0.7291 0.9080 0.9386 0.9084 0.9590 0.9415 0.9242
a3 0.9317 0.9427 0.9353 0.9340 0.9327 0.9337 0.9505 0.9504 0.9400

Table 5.8: The computed R2-scores for all signal and foreground parameters for each case studied
are listed here. We used the physical model to construct the global 21cm signal and the log-log
polynomial to construct the foreground.
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Size 10000 50000 100000
HSS LHS Rand HSS LHS Rand HSS LHS Rand

f∗.fesc 0.0303 0.0457 0.0319 0.0219 0.0460 0.0403 0.0265 0.0205 0.0246
fX,h.fX 0.0886 0.0819 0.0945 0.0770 0.0885 0.0853 0.0670 0.0661 0.0675
Nα 0.0457 0.0433 0.0715 0.0424 0.0432 0.0456 0.0363 0.0386 0.0361
a0 0.0248 0.0137 0.0179 0.0113 0.0184 0.0151 0.0098 0.0107 0.0149
a1 0.0054 0.0159 0.0145 0.0075 0.0037 0.0036 0.0023 0.0085 0.0035
a2 0.1279 0.1497 0.1465 0.0880 0.0714 0.0878 0.0581 0.0695 0.0763
a3 0.0757 0.0708 0.0739 0.0741 0.0749 0.0740 0.0644 0.0643 0.0711

Table 5.9: The computed RMSE-scores for all signal and foreground parameters for each case
studied are listed here. We used the physical model to construct the global 21cm signal and the
log-log polynomial to construct the foreground.

Figure 5.15: The scatter plots above show predicted signal and foreground parameter values
obtained through an ANN model trained on a physical global 21cm signal. The signal and fore-
ground data sets are generated by sampling the parameter space using Random sampling in three
sizes: 10,000, 50,000, and 100,000 samples. Magenta scatter points in each scatter plot denote
predictions made by the ANN trained with 10,000 samples, while yellow and blue scatter points
indicate predictions from ANN models trained with 50,000 and 100,000 samples, respectively. The
actual values of the parameters are plotted in a solid black line in each plot.
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Generalizability test
We have conducted a generalizability test to demonstrate the robustness of the ANN model for
non-parametrized scenarios. The detailed results are plotted below in the histogram, see Fig. 5.16.
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Figure 5.16: The figure illustrates ANN model predictions for various trials trained on datasets
sampled using HSS, LHS, and Random methods with optimal sample sizes. Histograms depict
ANN prediction accuracy measured by R2 scores. Panels in the figure’s rows correspond to different
scenarios: the top three panels in the first row show predictions for the Non-parametrized signal,
followed by predictions for the Non-parametrized signal with foreground and thermal noise in
the second row. Histograms are colour-coded: blue represents HSS-trained ANN models, orange
represents LHS-trained ANN models, and green represents the Random-trained ANN model’s
prediction accuracy.
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Training loss and validation loss of the ANN models
We have plotted the training and validation loss of the ANN models for various scenarios; see
Fig.5.17 and Fig.5.18.
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Figure 5.17: The figure illustrates the evolution of the network’s loss function across various
scenarios. The training loss is denoted by a solid line, and the validation loss is indicated by a
dashed line over epochs. Notably, the test loss closely follows the training loss in this visualization.
training loss for parametrized signal (left) and non-parametrized signal (right).
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Figure 5.18: The figure illustrates the evolution of the network’s loss function across various
scenarios. The training loss is denoted by a solid line, and the validation loss is indicated by a
dashed line over epochs. Notably, the test loss closely follows the training loss in this visualization.
Top row: training and validation loss for parametrized signals with foreground. Bottom row:
training and validation loss for foreground-added non-parametrized signals.
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Chapter 6

Impact of Calibration and Position
Errors on Astrophysical
Parameters of the H i 21cm Signal

Adapted from: Anshuman Tripathi, Abhirup Datta, Aishrila Mazumder, Suman Majumdar
“Impact of Calibration and Position Errors on Astrophysical Parameters of the H i 21cm Sig-
nal”, Journal of Cosmology and Astroparticle Physics, Volume 2025, number 10, Pages 035,
10.1088/1475-7516/2025/10/035
The Epoch of Reionization (EoR) and Cosmic Dawn (CD) are pivotal stages during the first billion
years of the universe, exerting a significant influence on the development of cosmic structure. The
detection of the redshifted 21-cm signal from these epochs is challenging due to the dominance of
significantly stronger astrophysical foregrounds and the presence of systematics. This work used
the 21cm E2E (end to end) pipeline, followed by simulation methodology described [186] to conduct
synthetic observations of a simulated sky model that includes both the redshifted 21-cm signal and
foregrounds. A framework was constructed using Artificial Neural Networks (ANN) and Bayesian
techniques to directly deduce astrophysical parameters from the measured power spectrum. This
approach eliminates the need for explicit telescope layout effects correction in interferometric arrays
such as SKA-Low. The present work investigates the impact of gain calibration errors and sky
model position errors on the recovery of the redshifted 21-cm power spectrum for the SKA-Low
AA∗ array configuration. We assessed the effects of these inaccuracies on the deduced astrophysical
parameters and established acceptable tolerance levels. Based on our results, the gain calibration
error tolerance for ideal signal detection is 0.001 %. However, if the sky model position errors
exceed 0.048 arcseconds, the remaining foregrounds would obscure the target signal.

6.1 Introduction
The redshifted 21cm line is a potential probe of the early Universe [38, 55, 165], mainly from the
era post recombination until the universe became fully ionized. Based on the theoretical model, in
the first billion years of the Universe, Cosmic Dawn (CD) is when the first star or galaxy will be
formed (30 > z > 12). These stars and galaxies are formed due to gravitational instability, which
causes small-scale fluctuation in the matter density. The UV photons produced by these objects
ionized the neutral hydrogen (H i) in the intergalactic medium (IGM). This transition period is
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known as Epoch of Reionization (EoR) [4, 54, 57, 164,187]. Based on various indirect observations
such as quasar absorption [18] at high redshifts, Thompson scattering optical depth [26] suggest
that the reionization extended the process and lasted at least til the redshift z ∼ 6.
The observation of H i 21cm power spectrum using large interferometric arrays currently holds the
most significant potential to observe the redshifted H i 21cm line [65, 188–190]. The 21cm signal
inherently encodes information about the underlying dark matter distribution and the properties
of the ionizing sources. As a result, it has the potential to trace the history of reionization,
reflecting the evolution of the average ionization state of the intergalactic medium (IGM) with
redshift during the EoR. Detection of the redshifted H i signal is the key science goal of several
ongoing and future experiments. Recently, the detection of a global 21cm signal reported by the
Experiment to Detect Global Epoch of Reionization Signature (EDGES) team [167]. However,
the detection has been challenged by another independent experiment, SARAS [40, 168]. Besides
EDGES and SARAS, there are other independent single radiometer experiments like BIGHORNS
[60], SCI-HI [59], and LEDA [43] are also aiming to detect the global signal but have not yet to
report any detection. Conversely, interferometers focusing on statistical fluctuations have yielded
significant upper limits on the EoR power spectrum (PS) amplitude. The most sensitive operational
interferometers, such as the GMRT, MWA, LOFAR, and HERA, have all established upper limits
on the power spectrum amplitude of the signal [6,7,91,191,192], but there has been no confirmed
detection of the cosmological H i 21cm signal.
However, observing the 21cm signal is highly challenging due to bright astrophysical foregrounds
primarily Galactic synchrotron emission and extragalactic point sources that are several orders of
magnitude brighter than the signal of interest [193–199]. Additionally, other sources of contam-
ination, such as the Earth’s ionosphere and instrument systematics, make detection even more
difficult. The observation of the 21cm signal heavily relies on the accuracy of foreground removal
and the use of instruments with high sensitivity and controlled systematics. Over the past decade,
several novel methods have been proposed to quantify and mitigate each type of contamination for
foreground avoidance and removal [71,72,74,84,200–203] , model the systematics of the instruments
[204–207] , address calibration effects [100,112,208–213], and account for the impact of the Earth’s
ionosphere [214–216]. These advancements are paving the way for highly sensitive next-generation
interferometers, such as the Hydrogen Epoch of Reionization Array (HERA, [217]) and the Square
Kilometer Array (SKA-Low, [49]), to detect the 21-cm signal and characterize the multi-redshift
power spectrum (PS). This will result in tighter constraints on astrophysical parameters in the
early universe. The forthcoming SKA-Low is specifically designed to have the sensitivity needed
to detect the PS precisely and is anticipated to generate tomographic images of the HII regions
[67].
The EoR signal can be distinguished from foreground contamination because the EoR signal ex-
hibits a spectral structure and is inherently uniform in spatial wavenumber (k) space, whereas
foregrounds are spectrally smooth [218]. The foregrounds’ smooth spectral nature, along with the
inherent chromaticity of the instruments, limit the contamination to the ’wedge’ in cylindrical
Fourier space (i.e., the 2D power spectrum) [71, 72, 74]. The area outside this wedge, where the
foregrounds are less prominent than the EoR signal, is referred to as the ’EoR window’ [73]. How-
ever, the interaction between astrophysical foregrounds and the instrument results in the leakage
of wedge power into the clean modes of the window, a phenomenon known as ’mode mixing’ [73].
This mode mixing impacts the ”EoR window,” the region outside the wedge, complicating the
detection process. One major recurring challenge in detecting cosmic signals is improper calibra-
tion. In radio astronomy sky-based calibration is commonly used, but CD/EoR observations often
produce inaccurate models due to low angular resolutions and noise confusion, resulting in residual
errors and hindering target cosmological signal detection [11,71,210,219]. The redundant calibra-
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tion method, investigated by observatories such as HERA, addresses this by repeatedly measuring
the redundant baselines of interferometers to correct for the incoming sky signal and instrumental
parameters [220]. However, as demonstrated by [221], redundant calibration remains susceptible to
errors introduced during the absolute calibration step, which necessarily depends on a sky model.
Even in the case of a perfectly redundant array with identical antenna beams, incompleteness in the
sky model leads to frequency-dependent calibration errors that can contaminate the 21cm power
spectrum. To mitigate these limitations, [222] introduced a unified Bayesian calibration framework
that integrates both sky-based and redundant approaches. This framework explicitly accounts for
instrumental systematics, such as antenna position offsets, beam non-uniformities, and incomplete
sky models, thereby improving the robustness and accuracy of 21cm power spectrum estimation.
The signal-to-noise ratio (SNR) is a critical factor in the detection of faint cosmic signals, such
as the redshifted 21-cm line from the epoch of reionization. [71] demonstrated that even minor
calibration errors can significantly reduce the dynamic range, thereby obscuring the cosmologi-
cal signal. Building on this, [186], through an analysis of the one-dimensional power spectrum
(1D PS), determined that the optimal calibration error tolerance for reliable signal detection is
approximately 0.01%. Consistently, [11] showed that calibration errors must be limited to be-
low approximately 10−5 or 0.001 % in amplitude in order to prevent contamination of the EoR
window in power spectrum measurements. Despite these insights, further investigation is needed
to determine the precise tolerance limits for various instrumental imperfections that could hinder
weak signal detection. This study aims to quantify the tolerance levels required for the successful
detection of the redshifted 21-cm signal and the recovery of astrophysical parameters from the
epoch of reionization using the SKA-Low telescope. To achieve this, we utilize a hybrid machine
learning (ML) approach that integrates artificial neural networks (ANN) with Bayesian methods to
analyze the effects of imperfections on observational data and their direct impact on the associated
astrophysical parameters.
Over the past few years, machine learning (ML) techniques have seen extensive application in var-
ious areas of cosmology and astrophysics, particularly in imaging, statistics and inference. Among
these ML techniques, artificial neural networks (ANNs) are commonly used in 21cm cosmology
for signal modelling, in both kinds, the global signal [137–139] and the power spectrum [223,224].
ANNs are also employed to infer parameters linked to the signal directly, bypassing traditional
Bayesian approaches in both the global 21cm signal [13, 50, 51, 86] and power spectrum [87, 118].
Besides ANNs, other ML algorithms are also widely used in various applications of 21cm cosmol-
ogy. For example, [140] utilized Convolutional Neural Networks (CNNs) to detect reionization
sources in 21-cm maps. In [141], deep learning models were employed to replicate the entire time-
evolving 21-cm brightness temperature maps from the reionization epoch. The authors validated
their predicted 21-cm maps against brightness temperature maps generated by radiative transfer
simulations. [143] employed deep learning with CNNs to directly extract astrophysical parameters
from 21-cm images. [135] conducted a comparative analysis of machine learning techniques for pre-
dicting the 21-cm power spectrum from reionization simulations. [225] proposes a Convolutional
Denoising Autoencoder (CDAE) to recover the Epoch of Reionization (EoR) signal by training on
SKA images simulated with realistic beam effects.
In this work, we have developed an emulator using an artificial neural network (ANN) framework.
This trained ANN emulator was employed as model statistics to constrain EoR astrophysical pa-
rameters from the total observed sky power spectrum, which includes the H i signal and systematic
effects, via a Bayesian inference process. The motivation for building ANN emulators arises from
the computational challenges in EoR 21cm cosmology. Generating numerous observable model
signals for multi-dimensional parameter space to perform Bayesian inference using semi-numerical
or radiative transfer methods is computationally intensive. Additionally, incorporating telescope
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layout effects through simulated observations further increases the computational expense. To ad-
dress these challenges, we adopted a formalism already utilized by several groups [223,224], using
emulators for EoR signal modeling instead of actual simulations. To construct the training datasets
for the emulators, we performed simulated radio interferometric observations using a 21cm E2E
pipeline for SKA-Low core array configurations. This allowed us to calculate the total observed
sky power spectrum with telescope layout effect. We also studied the systematic biases introduced
in the observed power spectrum by comparing it with the true power spectrum. Furthermore, we
examined how these biases influence parameter extraction and quantified the tolerance levels for
calibration and position errors necessary for the successful detection of the H i 21cm signal from
the EoR using this sensitive telescope through Bayesian inferences. This is followup work by [186],
which quantified the tolerance for calibration and position errors in detecting the H i 21cm signal
using various interferometers by analyzing variations in RMS in the image plane and visually ex-
amining the 2D and 1D power spectra. Our research investigates the effects of gain calibration and
position errors on astrophysical parameters, quantifying the tolerance levels needed to obtain in-
ferred parameters that closely match the true values. Specifically, this work highlights the impact
of these errors on the 21cm signal’s astrophysical parameters when no mitigation techniques are
applied to the residual foreground contamination caused by them. Furthermore, we are developing
a mitigation pipeline, as outlined by [226], to effectively correct these errors, enabling the accurate
inference of the true power spectrum and astrophysical parameters.
The structure of this paper is organized as follows: Section 6.2 outlines the simulation methodology
for the H i signal and provides a description of the foreground models used. Section 6.3 provides the
input parameters and telescope array information for performing synthetic observations. Section
6.4 discusses the Power Spectrum (PS) estimation. Section 6.5 covers the emulation details of
the PS. Section 6.6 presents the formulation of Bayesian Inference for EoR parameter estimation.
Section 6.7 outlines the method for calculating error covariances of the PS. Finally, Section 6.8
presents the results.

6.2 Astrophysical Components in the Simulation
To perform the synthetic observation using the 21cm E2E pipeline, the sky model provided to the
pipeline includes the simulated redshifted 21cm signal along with the point source astrophysical
foreground model, as detailed below.

6.2.1 H i 21cm Maps
To generate 21cm maps for our simulated observation, we use a semi-numerical simulation 21cm-
FAST [5,227]. 21cmFAST generates H i 21cm maps by first constructing a matter density field and
applying the Zeldovich approximation. It employs the guided excursion set formalism to convert
the matter density field at a given redshift into an ionization field, which is subsequently used
to derive 21-cm brightness temperature fluctuations. In contrast to a detailed radiative transfer
approach, this method employs perturbation theory, excursion set formalism, and analytical pre-
scriptions to generate evolved fields for density, ionization, peculiar velocity, and spin temperature.
These fields are subsequently integrated to determine the 21-cm brightness temperature. Instead
of relying on a halo finder, the code directly processes the evolved density field, enhancing compu-
tational efficiency and minimizing memory consumption. This enables the production of numerous
realizations of 21-cm maps, power spectra of brightness temperature, matter density, velocity, spin
temperature, and ionization fraction at specific redshifts, all at a very low computational cost.
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We simulated lightcones in a 500 Mpc3 comoving box with 2323 of grid cells for a range for redshift
extent of 8.73 ≤ z ≤ 9.29. The constructed lightcone volume is saved on a grid of size 232 × 232 ×
64 and projected on a World Coordinate System (WCS) to generate an input signal for simulating
observations. For this study, we simulate different lightcones to probe different realizations of
reionization history using varying EoR parameters. To simulate these lightcones, we use three key
EoR parameters Rmfp, Tvir, and ζ which can be tweaked to create different reionization histories.
These parameters are commonly used to characterize the EoR, as they effectively capture the
timing, source population, and morphology of reionization while remaining physically interpretable
and computationally efficient [108]. We describe these in detail below following [108,118]:

• Rmfp, Mean Free path of ionizing photon: The ionizing photons travel through the ionized
IGM strongly depends on the presence of absorption systems and the sizes of ionized regions
[228]. Distance travel by a photon from its source of origin to its sink within ionized regions
is called the mean free path of ionizing photon [229, ]. In the semi-numerical model, Rmfp

specifies the maximum scale over which ionizing photons can propagate; it does not directly
determine the sizes of the ionized regions but limits their growth only once they approach
this maximum scale, typically toward the later stages of reionization.

• Tvir, Minimum virial temperature of haloes producing ionizing photons: This represents
the minimum mass of haloes producing ionizing photons during the EoR. Usually, Tvir is
chosen to be larger than 104K such that atomic cooling become effective [230,231].

• ζ, Ionizing efficiency: Ionizing efficiency refers to the ability of sources, such as stars or
galaxies, to convert their energy into ionizing photons that can ionize hydrogen in the
intergalactic medium. This is a combination of several degenerate astrophysical parameters
and is defined as ζ = fescf⋆ Nγ/(1 + nrec) [232, 233]. Here, fesc is the fraction of ionizing
photons escaping from galaxies into the IGM, f⋆ is the fraction of baryons locked into stars
and Nγ is the number of ionizing photons produced per baryon in stars and nrec is the mean
recombination rate per baryon.

6.2.2 Foreground Models
The foreground component employed in this study includes compact sources based on the Tiered
Radio Extragalactic Continuum Simulation (T-RECS, [234]). T-RECS simulates the continuum
radio sky from 150 MHz to 20 GHz, modeling Active Galactic Nuclei (AGNs) and Star-Forming
Galaxies (SFGs), incorporating observational constraints for realistic cosmological evolution. For
this study, a subset covering approximately 4 deg2 was extracted from the full 25 deg2 T-RECS
catalogue, with a flux cut-off applied between 0.6 Jy to 3.1 mJy at 150 MHz. Flux densities
originally specified at 150 MHz were extrapolated to 142 MHz using a spectral index α = −0.8,
yielding a total of 2522 compact sources within the chosen field of view. To maintain simplicity, the
current analysis focuses solely on compact sources and excludes both diffuse foreground emission
and complex sources with extended morphology or non-power-law spectral characteristics. Future
studies will incorporate these additional components to evaluate their influence on signal recovery.

6.3 Synthetic Observations
To conduct synthetic observations, we utilized a 21cm end-to-end (E2E) pipeline [186]. This
pipeline employs the OSKAR software package [235] for simulating SKA-Low configurations, the
Common Astronomy Software Applications (CASA) package [236] for further reading and process-

139



Figure 6.1: Telescope configuration utilized in the simulation: SKA-Low AA* (with a 2 km
central core).
ing of the visibility data. In this simulated observation, the sky was observed with a phase center
at α = 15h00m00s and δ = −30◦ for a duration of 4 hours (±2 hours hour angle). The observing
bandwidth of the lightcone spans 8 MHz with a channel separation of 125 kHz. For additional
details, refer to Tab. 6.1.

6.3.1 Telescope Model
In this work, we focus primarily on the upcoming SKA-Low telescope. The Square Kilometre Array
(SKA)1 is a next-generation, highly sensitive radio telescope designed to detect low-frequency radio
signals, such as the 21-cm signal, making it a powerful tool for probing the Epoch of Reionization
(EoR) [49]. The SKA-Low array design includes 512 stations (referred to as AA4), each with a 35-
meter diameter, comprising 256 antennas per station. Approximately 50 % of these stations will be
concentrated within a 1 km diameter central core, while the remaining stations are distributed along
three spiral arms, arranged in clusters of 6 stations with logarithmic spacing. The configuration
allows for a maximum baseline of about 73.4 km. In this study, we focus on the AA∗ SKA-Low
layout, which consists of 307 stations with a maximum baseline of 73.4 km. From this layout,
we selected all stations located within a 2 km radius (equivalent to a maximum baseline of 2000
meters from the central station), resulting in a subset of 231 stations, array shown in Fig. 6.1.

1https://www.skao.int/en/explore/telescopes/ska-low
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Parameters SKA (AA∗)
Central Frequency 142 MHz (z∼9)

Bandwidth 8 MHz
Number of frequency channels 64

Image Field of view 4◦
Number of array elements (Na) 231

Maximum baseline (m) ∼2000
Effective collective area (Aeff) ∼ 962 m2

Core area of an array (Acore) ∼ 12.57 km2

Table 6.1: Parameter values used to conduct these synthetic simulations.

6.4 Power Spectrum
A key scientific objective of both ongoing and upcoming radio interferometric arrays is to detect
and characterize fluctuations in the brightness temperature of the redshifted 21cm signal from the
EoR. Various statistical tools are available in interferometric experiments to estimate the 21-cm
brightness temperature fluctuations through the power spectrum (PS), either directly from the
measured visibilities using the delay spectrum technique [237, 238], or via image-based methods
that involve gridding, calibration, and deconvolution to reconstruct the full 2D or 3D power spec-
trum [45, 211]. In this study, we compute the theoretical power spectrum (PS) from the image
plane and the observed PS from simulated visibility data using the SKA-Low layout, as illustrated
in Fig. 6.2.

6.4.1 Theoretical Power Spectrum
The fluctuation of the brightness temperature δTb for the 21 cm signal can be defined as [239]:

δTb(ν) ∼ 27xHI(1+δm)

(
H

dvr

dr +H

)(
1− Tγ

TS

)
×

(
1 + z

10

0.15

Ωmh2

)1/2(
Ωmh2

0.023

)(
Ωbh

0.031

)
[mK] (6.1)

where, xHI denotes the neutral hydrogen fraction, Ωm represents the matter overdensity, and H
refers to the Hubble parameter. Additionally, dvr/dr signifies the local gradient of gas velocity
along the line of sight, while TS and Tγ correspond to the spin temperature of the intergalactic
medium (IGM) and the temperature of the cosmic microwave background (CMB), respectively.
We can define the dimensionless 21cm power spectrum as :

∆2(k) =
k3

2π2
P (k) (6.2)

P (k) can define as
< δTb(k)δTb(k

′) >= (2π)3δ(k + k′)P(k) (6.3)

where δTb(k) is Fourier conjugate of δTb(ν).
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6.4.2 Observational Power Spectrum
The interferometric visibility is defined as the correlation between the signals received by a pair of
antennas, which is given by [106,201] :

V (U, ν) =

∫∫
A(ŝ, ν)B(ν)I(ŝ, ν)e−i2πνU.ŝdΩ, (6.4)

Here, U represents the baseline vector, while I(ŝ, ν) and A(ŝ, ν) correspond to the specific intensity
and the antenna beam pattern, respectively, both as functions of frequency (ν). The term B(ν)
represents the instrumental bandpass response. For this simulated observation, we assume an
isotropic, frequency-independent antenna beam pattern, resulting in a flat bandpass response with
B(ν) = 1. The unit vector is defined as ŝ ≡ (l,m, n), where l, m, and n are the direction cosines
pointing towards the east, north, and zenith, respectively, with n =

√
1− l2 −m2. The solid angle

element is given by dΩ = dldm√
1−l2−m2

. In this study, A(ŝ, ν) is assumed to be 1, meaning the primary
beam effect is not taken into account.
The inverse Fourier transform of V (U, ν) along the frequency axis converts the visibility into the
delay domain, denoted as τ , resulting in V (U, τ). Based on this approach, the cylindrical power
spectrum, as described in [201], is expressed as follows:

P (k⊥, k∥) =
( λ2

2kB

)2(X2Y

ΩB

)
|V (U, τ)|2, (6.5)

where λ represents the wavelength corresponding to the central frequency, kB is the Boltzmann
constant, Ω denotes the primary beam response, and B is the bandwidth. The factors X and
Y convert angular and frequency measurements into the transverse co-moving distance D(z) and
the co-moving depth along the line of sight, respectively [201]. The term k⊥ corresponds to the
Fourier modes perpendicular to the line of sight, while k∥ represents the modes along the line of
sight, defined as follows:

k⊥ =
2π|U|
D(z)

& k∥≈
2πτν21H0E(z)

c(1 + z)2

Here, ν21 represents the rest-frame frequency of the 21 cm spin-flip transition of H i, while z denotes
the redshift corresponding to the observing frequency. The Hubble parameter is given by H0, and
E(z) ≡ [ΩM(1 + z)3 + ΩΛ]

1/2. The parameters ΩM and ΩΛ correspond to the matter and dark
energy densities, respectively [240].
The 1D power spectrum is derived from the 2D power spectrum by performing a spherical average
of P (k⊥, k∥) and is given by:

∆2(k) =
k3

2π2
< P (k) >k (6.6)

where, k =
√
k2⊥ + k2∥.

6.5 Emulating H i 21cm Power Spectrum
The objective of developing ANN-based emulators for this work is to study the power spectrum,
as these emulators can generate efficient and reliable EoR models. ANNs are a class of machine
learning models inspired by the neural architecture of the human brain. They consist of multiple
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Figure 6.2: Shows a comparison between the theoretical spherical power spectrum (PS) and
the simulated observed PS for the same sky model. The theoretical PS for the signal models
is represented by a black dashed line, while the simulated observed PS for the SKA-Low array
configurations is shown as solid blue lines.
layers of interconnected computational units, referred to as neurons, which process and propa-
gate information through the network. Each neuron applies a transformation to its input via a
mathematical function known as an activation function, and passes the result to subsequent lay-
ers. Hidden layers those situated between the input and output layers facilitate the learning of
complex and non-linear relationships within the data. Commonly used activation functions such
as the Rectified Linear Unit (ReLU) and the Exponential Linear Unit (ELU) introduce the neces-
sary non-linearity for the network to approximate highly intricate mappings between inputs and
outputs.
These models can then be utilized as substitutes for computationally intensive simulations in
Bayesian parameter inference. In addition to this, a non-parametric feature of ANN emulators is
the ability to replicate various signal features without relying on their specific parametric char-
acteristics, as they are solely dependent on the training data sets. This capability allows us to
utilize the features directly without the need to remove or apply any cleaning algorithms, thereby
enabling the inference of associated label parameters. In this study, we are developing an emulator
by training it on a set of mock observed power spectra generated from simulated observations
with the SKA-Low interferometric array. We also train the emulator on the theoretical power
spectrum, that is, in the absence of both instrumental effects and array configuration influences.
We use the ANN model to build these emulators. To develop ANN architecture, we are using the
Python-based deep learning Keras API, and standard sci-kit learn [241]. To achieve significant ac-
curate PS from the emulator for test set of EoR parameter we have to train the emulator with the
sufficient number of the training datasets. To construct an optimal training data set, we sample
the parameter space with Latin Hypercube Sampling. Latin Hypercube sampling method samples
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Figure 6.3: The figure shows a comparison between the simulated true power spectrum (solid
lines) and the emulated power spectrum by the ANN (dots). The left panel shows emulator
predictions trained on theoretical power spectra, while the right panel presents predictions based
on observed power spectra from SKA-Low.

the multi-dimensional parameter space such that no two parameters share the same value in the
parameter space, providing an all-unique set of parameters. We generated 300 unique combinations
of astrophysical parameters using Latin Hypercube Sampling from the defined parameter ranges
to construct the training and test datasets. These sampled parameter sets were used to simulate
lightcones, as detailed in Section 6.2.1, and subsequently to compute the observed power spectra
using the 21cm end-to-end (E2E) pipeline. To develop construct training and test datasets for
the theoretical PS, we use 21cmFast. The parameters range we follow to construct the training
datasets are Rmfp = (10 Mpc, 60 Mpc ), log(Tvir) = (4.5 K, 6.0 K ), and ζ = (10, 60). We construct
training and test data sets of observed/theoretical power spectrum (∆2(k)) by following these sam-
ple parameters for 6 different k modes. We use 270 PS data sets to train and validate the ANN
model and 30 data sets to test the ANN emulator. We constructed the network architecture by
following Python-based Keras’ Sequential API. The network consists of an input layer consisting
3 neurons matching with the training 3 EoR key parameter (Rmfp, log(Tvir), ζ) and two hidden
layers with 28 and 14 neurons, respectively, each activated by the ’elu’ activation function. The
number of neurons in the hidden layers is determined empirically through trial and error, based
on the configuration that yields the best performance in terms of accuracy and robustness. The
output layer has 6 neurons to predict the observed PS. To ensure effective model training and con-
vergence, the input PS values are standardized using the StandardScaler function, which removes
the mean and scales the features to unit variance. The corresponding EoR parameters are nor-
malized to the [0, 1] range using MinMaxScaler. Both scalers are implemented using the sklearn
library. This preprocessing step is essential for bringing all input features to a comparable scale,
thereby enhancing training stability and learning efficiency. We trained this ANN model using
different PS observed by SKA-Low interferometric arrays, to create emulator. Fig. 6.3 presents
a comparison between the true test set 21-cm PS, shown as solid lines, and the emulated PS by
the ANN, represented by dots. For this comparison, we randomly selected five test sets of power
spectra and compared them with the predicted PS from the emulators in each case.
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6.6 Bayesian Inference of EoR Parameters
To constrain the EoR parameters and associated errors in the inferred parameter values, the
Bayesian approach is one of the most popular methods. In the Bayesian approach, the posterior
distribution of the parameters can be defined using Bayes’ theorem:

p(θ|D,M) =
p(D|θ,M)Π(θ|M)

p(D|M)
(6.7)

where θ represents the parameters, D is data, and M represents a model. The evidence p(D|M)
serves as a constant normalization factor for a given model. The posterior distribution is determined
solely by the product of the likelihood function L = p(D|θ,M) and the prior distribution of the
parameters θ, denoted as Π(θ|M). For this study, we considered a multivariate Gaussian likelihood
which can expressed as:

lnL = −1

2
[d⃗ref − µ]T [σ2]−1[d⃗ref − µ]− 1

2
ln(2π det{σ2}) (6.8)

where d⃗ref represents reference data, µ represents the model observable corresponding to the ob-
servable parameters and σ2 is the error covariance associated with d⃗ref .
We design our pipeline to extract the most likely EoR parameter values using MCMC for the given
log-likelihood. We used the CosmoHammer [242] Python package, utilizing an affine-invariant [243]
Markov Chain Monte Carlo (MCMC) ensemble sampler, to conduct model parameter estimation.
We have tested the performance of the pipeline using both the theoretical power spectrum and the
simulated observed power spectrum. Further details are discussed in Section 6.8.

6.7 Error Covariances of Power Spectrum
The error estimate in the observables is essential to predict the posterior of the parameters. The
EoR 21cm signal has varoius contamination from the foreground, systematics, noise, calibration
errors etc. To estimate the error covariance of the power spectrum (PS), we assume that the fore-
grounds have been perfectly modeled and entirely removed from the observed signal. This perfect
modelling assume of the sky and instrument to establish a baseline for evaluating performance
under idealized conditions. This allows us to isolate the intrinsic capabilities and limitations of the
methodology without complications from model inaccuracies. In the following section, we introduce
modelling imperfections such as gain calibration and sky position errors to assess the robustness of
the method and quantify their impact on power spectrum estimation. This comparison highlights
the potential biases that arise when instrumental and modelling errors are neglected, motivating
future work on mitigation strategies. Under the perfect modelling assumption, the remaining ob-
served signal consists of the EoR 21cm signal and Gaussian thermal noise. Hence, in this analysis,
the total covariance (σ2

t ) is defined as the sum of the sample variance (σ2
SV) and the thermal noise

variance (σ2
N).

σ2
t (i) = σ2

SV (i) + σ2
N (i) (6.9)

In this analysis, we assume that the measurements at any two bins are mutually uncorrelated which
simplifies the error computation. In this study we use variance instead of covariance to calculate
error σ2. We estimated the sample variance for the bin average power spectrum P (ki) by following
equation
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σ2
SV (Pi) = [∆2(ki)]

2/Nki ] (6.10)

where Nki
denotes the number of measurement at each k-mode. The thermal noise for given radio

interferometric array can be estimated using the following equation [77,244]:

σN (Pi) =
k3

2π2
√

Nki

(
2T 2

sky

Btobs

D2(z)∆DΩFoV

np

(
AeffAcore

A2
coll

))
(6.11)

where Aeff , Acoll, and Acore denote the effective area, collecting area, and core area, respectively,
of the specified radio interferometric array. The symbol tobs signifies the total observation time in
hours. Additionally, D and ∆D denote the comoving distance to the redshifts where the center
is located and the comoving distance corresponding to a bandwidth B at that comoving distance.
Tsky denotes the sky temperature calculated using Tsky ∼ 180

(
ν

180MHz

)−2.6

K [57], symbol ΩFoV

denotes field of view symbol, np represents the number of polarization and Nki denotes the number
of measurement at each k-mode.

6.8 Result
This section presents the simulation results and discusses their implications for real observations.
Detailed outcomes for each case are provided in the following subsections.

6.8.1 Perfect Observing Condition
In this study, we infer astrophysical parameters from the power spectra (PS) obtained using the
SKA-Low interferometric array. We assumed that foregrounds were perfectly removed from the
observed PS and that there were no calibration or positional errors, as shown in Fig. 6.2. To
achieve this, we simulated observations using the 21cm E2E pipeline with only input H i lightcone
maps and calculated the PS from the resulting observed H i visibility. To derive the astrophysical
parameters, we employed an emulator-based Markov Chain Monte Carlo (MCMC) pipeline. The
advantage of employing this emulator-based MCMC pipeline lies in its ability to reduce computa-
tional time significantly. Furthermore, since the emulators are trained on observed power spectra
that inherently incorporate the effects of the telescope layout, they enable direct parameter infer-
ence without requiring separate corrections for these effects. The astrophysical parameters inferred
using the SKA-Low interferometric array are presented in Fig. 6.4. In this case, we found that
the two parameters, ζ and Tvir, closely matched the actual values. However, the third parameter,
Rmfp, was not correctly constrained. To investigate this issue, we examined whether the lack of
constraint could be due to the effects introduced by the telescope layout. Additionally, we com-
pared this result with the inferred astrophysical parameters derived from theoretical power spectra.
A similar trend was observed in this case as well. Specifically, ζ and Tvir closely matched the actual
values, as shown in Fig. 6.4. However, Rmfp remained unconstrained, which may be attributed
to the degeneracy of the Rmfp parameter. To further assess the robustness of this pipeline, we
inferred parameters for two additional power spectra generated using astrophysical parameters
near the boundary values of those used in the training dataset. The inferred parameters for these
power spectra are presented in Fig. 6.7, with set 2 on the left and set 3 on the right, as detailed
in Appendix 6.9. Similar to the initial case, the astrophysical parameters ζ and Tvir were well-
constrained and closely aligned with the true values in most instances, as depicted in Fig. 6.7.
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However, the parameter Rmfp remained poorly constrained across both sets. A possible reason is
that variations in Rmfp within the explored range do not lead to sufficiently distinct signatures
in the 21-cm power spectrum for the models considered. In other words, the power spectrum is
comparatively insensitive to this parameter, especially when contrasted with Tmin

vir and ζ, which
more directly regulate the abundance and brightness of the galaxy population and therefore im-
print more strongly on the signal. Consequently, the inferred constraints on Rmfp are dominated
by degeneracies rather than by any clear physical imprint.
As discussed in [111], one manifestation of this degeneracy occurs around redshift z ≃ 9.0, where
a population of low-mass galaxies with relatively bright stellar populations can reproduce the
same observational signatures as the fiducial model. Such galaxies tend to ionize the IGM earlier,
effectively masking the influence of Rmfp on the morphology of ionized regions. A natural way to
mitigate this issue is to exploit the redshift evolution of reionization: combining observations across
multiple redshifts provides additional temporal information that can help disentangle early ionizing
efficiency from the mean free path of ionizing photons. In future work, a detailed investigation
is needed to fully understand this behaviour. We also plan to test it explicitly by incorporating
multi-redshift observations to assess whether they can improve constraints on Rmfp.
We also noticed that the power spectrum from set 1, whose astrophysical parameters are around
the centre of the boundaries, generated more accurate conclusions. By contrast, the power spectra
generated in close proximity to the boundary values of the astrophysical parameters yielded an
inferred parameter mean that slightly differed from the actual value. For example, in Set 3, the true
value of ζ is 57.42, while the inferred mean using the theoretical power spectrum is 50.8. Using the
SKA power spectrum, the inferred mean is 59.8. Although these values differ from the true mean,
they still lie within 1σ of the inferred uncertainty range (see Table 6.2). This mismatch could be
due to the ANN emulator being trained on less training datasets. Potential future development
of a more precise emulation could involve training it with a more extensive dataset that cover the
parameter space in the effective manner.

6.8.2 Imperfect Observing Conditions
Sensitive radio observations targeting the H i signal from the CD and EoR are highly suscepti-
ble to contamination from various sources. Small errors in early data processing steps, such as
calibration, can propagate into the final power spectrum (PS) estimates, potentially leading to
misinterpretation of the results. In [186], the authors investigated the effects of gain calibration
errors and sky model position errors on the recovery of the 21-cm power spectrum. In this study,
we build upon that work by examining how such errors impact the recovery of astrophysical pa-
rameters. [186] previously conducted a visual comparison of the power spectrum, analyzing both
2D and 1D residual PS in the presence of gain calibration and sky position errors. They also
evaluated how the root mean square (RMS) of the residual image varies with different levels of
gain calibration and position errors, comparing these values against the signal and thermal noise
levels. Their findings showed that a gain calibration error as small as 0.01% could result in a
high image RMS in SKA-Low observations, potentially causing confusion or even masking faint
cosmological signals. Likewise, a sky model position error exceeding 0.48 arcseconds was found
to significantly elevate the image RMS, leading to similar challenges in signal detection. In our
analysis, we extend this investigation by comparing the corrupted 1D power spectrum with the
original and estimating the astrophysical parameters from the corrupted spectra in two scenarios:
one with gain calibration errors and another with sky model position errors.
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6.8.2.1 Gain Calibration Errors
Gain calibration errors were incorporated by applying complex gain perturbations to each antenna
individually, as expressed in Equation 6.12, following the methodology of [186]. These per-antenna
errors propagate through the visibilities since each visibility is formed from a pair of antennas and
thus impact the entire k space range. The visibility measured between a pair of antennas i and j,
denoted as V m

ij (t), is given by:

V m
ij (t) = gi(t) g

∗
j (t)V

t
ij(t) (6.12)

Here, V t
ij(t) is the true visibility from the sky, while gi(t)and gj(t) are the complex gains of an-

tennas i and j, respectively. Although gain calibration attempts to estimate and correct for these
instrumental effects, it is typically imperfect, leaving behind residual errors that can propagate
through the analysis and bias the recovered signal.
The complex gain for each antenna can be modeled as:

gi = (ai + δai) exp[−i(ϕi + δϕi)] (6.13)

where ai is the nominal amplitude and ϕi the phase (in radians), with δai and δϕi representing
the residual errors in amplitude and phase, respectively. In an ideal scenario, ai = 1 and ϕi = 0,
yielding a perfect gain of 1. However, with calibration imperfections, the gain simplifies to:

gi = (1 + δai) exp[−i δϕi] (6.14)

To assess the influence of gain calibration errors on the observed power spectrum (PS) and their
subsequent impact on associated astrophysical parameters for SKA-Low, we introduced various
gain calibration errors as detailed in [186]. The resulting residual PS was visually compared with
the actual PS, depicted in the left panel of Fig. 6.5. The parameter obtained from the PS analysis
with SKA-Low, incorporating actual signal and PS for gain error residuals, is depicted in the right
panel of Fig. 6.5. Upon examining the plotted residual PS spectrum, we observed that for gain
calibration error of 0.001 %, the residual PS overlaps with the true PS. For residual PS with a
gain calibration error of 0.01%, we observe overlapping at lower k modes but with minor deviation
at higher k modes. However, when deriving astrophysical parameters from the residual power
spectrum, we found that for a gain calibration error of 0.001%, the derived parameters match those
derived from the true PS. In contrast, for PS with the gain calibration error of 0.01%, the derived
parameters exhibit significant differences from the actual values. This indicates that astrophysical
parameters are highly sensitive to gain calibration errors, and even minor deviations in the PS due
to gain calibration errors can severely impact the estimation of parameters, introducing bias. The
sensitivity of derived parameters to gain calibration errors clearly suggests that the gain calibration
error threshold should be much lower than 0.01%, ideally closer to 0.001%. If the gain calibration
error exceeds 0.001%, it is advisable to model them to prevent bias in the derived parameter values.

6.8.2.2 Sky Model Position Error
To evaluate the impact of sky model position errors in the sky model, simulations were conducted
using inaccurate sky models as described in [186]. Sky model position errors were modeled with
zero-mean Gaussian distributions and varying standard deviations (up to 0.048”, 0.48”, and 4.8”)
and applied to the right ascension (RA) of sources, resulting in a new catalog with positional
inaccuracies. Residuals were then obtained following equation 4 from [186], by subtracting the
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corrupted sky from the true sky, and these residuals were used to analyze the effects on the PS.
Unlike gain calibration errors which arise from instrumental calibration inaccuracies sky model
position errors are rooted in prior assumptions about the sky and do not depend on the calibration
solution itself. However, they can still introduce significant foreground residuals that mimic spectral
structure, making them especially relevant for 21cm cosmology. This distinction is important, as
position errors affect subtraction fidelity rather than the correction of instrumental response, and
thus represent a separate and critical source of systematic error.
Similar to gain calibration errors, we evaluated the impact of sky model position errors on the
observed power spectrum (PS) and their effect on the inferred astrophysical parameters for SKA-
Low. Different sky model position errors, as described above, were introduced, and the resulting
residual PS was compared with the true PS, as shown in the left panel of Fig. 6.6. The parameters
obtained from the PS, which incorporates actual signals and position error residuals, are depicted
in the right panel of Fig. 6.6. Upon examining the plotted residual PS spectrum, we found that for
a sky model position error of 0.048”, the residual PS overlaps with the true PS. At lower k modes,
the residual PS with this position error overlaps well with the true PS, but at higher k modes,
there is a minor deviation. This occurs because real-space scales are more affected by arcsecond-
level errors at higher k values. However, since we used the entire k range to derive astrophysical
parameters from the residual power spectrum, we observed that for a position error of 0.048”,
the derived parameters closely match those obtained from the true PS. Similarly, for a sky model
position error of 0.48”, the derived parameters exhibit substantial deviations from the true values.
This indicates that astrophysical parameters are highly sensitive to sky model position errors, and
even small deviations in the PS due to these errors can severely impact parameter estimation,
introducing bias. The sensitivity of derived parameters to sky model position errors, similar to
gain calibration errors, suggests that the acceptable sky model position error threshold should
be much lower than 0.48”, ideally around 0.048”. If the sky model position error exceeds 0.048”,
modeling the errors becomes crucial to prevent bias in the derived parameter values.

6.9 Summary and Discussion
This study presents the development of an ANN and Bayesian-based framework for inferring as-
trophysical parameters from observed H i power spectra (PS). We used the 21cm E2E pipeline to
generate the mock observed power spectrum (PS) for SKA-Low core array configurations. How-
ever, generating a large number of modeled observable signals across a multi-dimensional parameter
space for Bayesian inference is computationally expensive, particularly when using simulated obser-
vations. To address this, we adopted a formalism utilized by several groups, employing emulators
for modelling the EoR signal instead of actual simulations.
For constructing the training datasets of observed PS, EoR 21cm signals were generated using
the semi-numerical simulation 21cmFAST, with key EoR parameters (Rmfp, Tvir, and ζ) described
in section 6.2.1. These signals served as sky signals for mock observations using the 21cm E2E
pipeline with interferometric arrays like SKA Low, allowing us to construct sets of PS under
different astrophysical conditions. These simulated observed PS were then used to train emulator,
facilitating Bayesian inference of the corresponding astrophysical parameters. A key advantage of
our ANN-based emulators, beyond conserving computational resources, is their ability to perform
direct parameter inference using observed power spectrum (PS) data while inherently accounting
for telescope layout effects. In radio interferometric observations, limited and uneven uv-coverage
introduces deviations from the theoretical PS through sampling artifacts, resolution loss, and
convolution with the uv-sampling window. Traditionally, inferring astrophysical parameters from
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the observed PS requires applying separate corrections to account for these instrumental and
sampling effects before comparing with theoretical models. In our approach, however, the ANN
models are trained directly on observed-like PS data that already include all such instrumental
and sampling-induced distortions. As a result, the emulator learns to incorporate these effects
during training, allowing for parameter inference directly from the observed PS without requiring
additional correction steps. This contrasts with methods relying on theoretical PS models, where
observed data must first be adjusted to match idealized conditions to enable accurate parameter
estimation.
In the first case of the study, we perform the inference using the developed ANN and Bayesian-based
pipeline assuming perfect observing conditions where we assume the foreground had been perfectly
removing only signal and layout effect is there in the observed PS. We infer the astrophysical EoR
parameters for the three sets for the signals constructed using the true astrophysical parameters, as
listed in Tab.6.2. Both sample variance and thermal noise (calculated for 1000 hours of observation
with the given interferometer at redshift z=9) are incorporated in the inference. The detailed results
are listed in Tab.6.2. Additionally, we have inferred astrophysical parameters from theoretical
power spectra (PS) and compared these findings with parameters inferred from observed PS. In all
three cases, the inferred mean values of the parameters Tvir and ζ showed excellent agreement with
the true input values, with the true values consistently falling within the 1σ confidence intervals of
the inferred posteriors (see Tab. 6.2). However, the parameter Rmfp was often poorly constrained,
indicating a high level of degeneracy. In the second case of the study, we assumed that the
foregrounds were not perfectly removed, leaving some residual foreground due to gain calibration
or sky model position errors. This study aimed to determine the threshold level of gain calibration
or sky model position error for SKA-Low. In a previous study by [186], 2D and 1D power spectra
with gain and position errors were visually examined. They also calculated the root mean square
(RMS) in the residual image across different percentage errors in gain calibration and sky model
position, comparing it with signal levels and thermal noise. They found the gain calibration error
threshold to be 0.01 % and the sky model position error threshold to be 0.48”.
In this study, we delve deeper and systematically analyze these effects by performing inference
on the observed power spectra upcoming SKA-Low. This allows us to understand the impact
of various gain calibration and sky model position errors on astrophysical parameters. The key
findings noted from this study:

• Our analysis showed that the calibration error threshold for SKA-Low is 0.001%. Exceeding
this threshold results in significant deviations in the inferred astrophysical parameters from
their actual values, severely affecting the astrophysical processes. An equivalent calibration
threshold was identified by [11].

• The position error threshold for SKA-Low is found to be < 0.48”, as displacements >
0.048” cause significant deviations between the inferred astrophysical parameters and their
actual values. This suggests that sky model position errors can bias the inference of the
astrophysical parameters.

• We also observed that, among all three parameters, ζ is the most sensitive to the power
spectrum (PS). Even small variations in the PS, caused by calibration gain or position
errors, have a significant impact on the ionization efficiency parameter, ζ.

Thus, we conclude that for the upcoming SKA Low interferometer, the gain calibration error
should be nearly 0.001%, and the sky model position error should be less than 0.48” to avoid
biasing the inference. Beyond these thresholds, these errors start to affect the results. To reduce
their impact, calibration must be performed with the same level of accuracy, or we need to develop
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modeling or mitigation techniques to eliminate the residual foregrounds arising from calibration or
sky model inaccuracies, ensuring minimal influence on the inference. It is important to note that the
simulations presented in this study rely on several simplifying assumptions regarding foregrounds
and instrumental effects. This underscores the need for more realistic and detailed simulations,
including factors such as primary beam chromaticity and other instrumental systematics, to more
accurately assess the robustness of parameter inference and to inform optimal array design. These
complexities will be addressed in future work for a more comprehensive understanding.
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Figure 6.4: Depicts the posterior distribution of model parameters obtained through power
spectrum analysis, comparing the theoretical power spectrum with the observed power spectrum
from SKA-Low. The enclosed areas between the inner and outer contours signify the 1σ and 2σ
confidence levels, respectively.
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Figure 6.5: (Left) Residual power spectra for gain calibration errors (0.001%, 0.01%, and 0.1%)
compared to the signal power for SKA-Low array layouts. Error bars represent 1σ uncertainties,
including sample variance and thermal noise. (Right) Posterior distributions of model parameters
from the power spectrum analysis (blue), with gain calibration errors of 0.001% (magenta) and
0.01% (orange) for SKA-Low. The shaded regions represent the 1σ and 2σ confidence intervals.
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Figure 6.6: (Left) Residual power spectra for position errors (0.048”, 0.48”, and 4.8”) for SKA-
Low. The error bars are 1σ uncertainties for the k-bins including sample variance and thermal
noise. (Right) Posterior distributions of model parameters from residual power spectra for position
errors of 0.048” (magenta) and 0.48” (orange), with SKA-Low. The shaded regions represent the
1σ and 2σ confidence intervals.
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Appendix: Robustness Evaluation of the Emulator-
based MCMC Pipeline
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Figure 6.7: Depicts the posterior distribution of model parameters obtained through power
spectrum analysis, comparing the theoretical power spectrum with the observed power spectrum
from SKA-Low for two different test sets (left: Set 2, right: Set 3). The enclosed areas between
the inner and outer contours signify the 1σ and 2σ confidence levels, respectively.
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Set
Parameters
&
True value

Theoretical PS Observed PS
with SKA-Low

Rmfp: 34.67 – –
Set 1 ζ: 27.92 27.5+3.7

−3.4 27.76+7.5
−6.9

Tvir: 5.428 5.428+0.023
−0.032 5.437+0.033

−0.046

Rmfp: 12.2 50.0+0
−27 –

Set 2 ζ: 18.42 18.09+0.80
−0.75 17.7+4.2

−3.2

Tvir: 4.738 4.734+0.046
−0.048 4.761+0.041

−0.062

Rmfp: 44.33 – –
Set 3 ζ: 57.42 50.8+9.0

−11.9 59.8+0.0
−9.3

Tvir: 5.928 5.917+0.022
−0.035 5.926+0.013

−0.013

Table 6.2: Inferred EoR model parameters (ζ, Tvir, and Rmfp) with 1σ uncertainties for differ-
ent parameter sets. Theoretical power spectrum (PS) estimates are compared with observed PS
constraints from SKA-Low.

155





Chapter 7

Summary and Future scope

In this Chapter, we briefly summarize the work done in the thesis, and highlight the future scope
of the work done.

7.1 Summary
This thesis presents a comprehensive machine learning (ML)-based framework developed to ex-
tract both the global 21-cm signal and the 21-cm power spectrum from the early Universe, with
a particular focus on the Cosmic Dawn (CD) and the Epoch of Reionization (EoR). The 21-cm
signal, originating from the hyperfine transition of neutral hydrogen, serves as a powerful probe
of the thermal and ionization history of the intergalactic medium (IGM). However, the detection
of this faint cosmological signal is extremely challenging due to contamination from bright astro-
physical foregrounds, primarily Galactic synchrotron radiation, as well as ionospheric distortions
and instrumental systematics, all of which are several orders of magnitude stronger than the signal
itself.
To address these challenges, the first part of this thesis is devoted to developing a robust, data-
driven pipeline using Artificial Neural Networks (ANNs). The ANN is trained on an extensive
library of mock observations that combine theoretical global 21-cm signal models, foregrounds,
ionospheric effects, and thermal noise. Two types of signal models are employed: (i) a param-
eterized tanh-based model implemented through the Accelerated Reionization Era Simulations
(ARES), which effectively captures the characteristic features of the global signal and reflects key
IGM properties; and (ii) physically motivated models generated by varying source parameters,
allowing for a more realistic description of astrophysical scenarios. The tanh-based model, in par-
ticular, serves as an intermediate approach between purely phenomenological models (e.g., turning
points) and fully physical simulations, it is computationally efficient while maintaining a direct
connection to the thermal and ionization state of the IGM. Foregrounds are modeled using a log-log
polynomial function, and ionospheric effects are incorporated by modeling frequency-dependent re-
fraction from the F-layer as well as thermal absorption and emission from the D-layer. Instrumental
noise is included via the standard radiometer equation. These components are combined to form
composite spectra that serve as the input to the ANN, which learns to map from contaminated
observations to the underlying astrophysical parameters.
We developed and discuss an ANN-based framework trained on composite sky spectra that incor-
porated the global 21-cm signal, astrophysical foregrounds, and ionospheric effects. The trained
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neural network was evaluated on independent test datasets and achieved prediction accuracies
ranging from 96% to 97% in scenarios for fixed ionospheric and slowly time varying ionospheric
conditions. These results demonstrate the potential of ANNs for accurate parameter inference
in the presence of complex observational contaminants. The model’s predictive performance was
robust across both types of signal models, recovering the global 21-cm signal parameters with
consistent accuracy. Furthermore, we compared the ANN’s performance against conventional
analytical fitting approaches. The ANN consistently outperformed the analytical models, which
failed to recover the signal and tended to overfit the foreground component. This highlights the
ANN’s superior capability to disentangle faint cosmological signals from dominant foreground and
ionospheric contributions.
A significant challenge in simulation-based inference frameworks is that they heavily rely on the
training dataset. To ensure the robustness of data-driven models, it is essential to construct training
sets that adequately sample the full range of the astrophysical parameter space. This requirement
becomes particularly demanding in the context of 21-cm cosmology, where direct observational
constraints are limited and the underlying parameter space is high-dimensional and complex. In
this thesis, we present a systematic evaluation of three widely used sampling strategies, Random
Sampling, Latin Hypercube Sampling (LHS), and Hammersley Sampling, to assess their effec-
tiveness in generating representative training datasets for ANN models. Our results demonstrate
that Hammersley Sampling offers superior performance in terms of coverage and uniformity in
the parameter space, resulting in more accurate and robust ANN predictions. Beyond comparing
sampling strategies, we investigate the crucial question of how many training samples are required
to reliably train ANNs under varying conditions, including changes in model complexity and pa-
rameter dimensionality. We assess model performance across different signal scenarios, including
both parametric (tanh-based) and physically motivated global 21-cm signals. The study reveals
that the ANN’s predictive performance is highly sensitive to the number of training samples, re-
gardless of the sampling method employed. As the dimensionality of the parameter space increases,
particularly when foreground contamination and thermal noise are incorporated, the training data
required for stable convergence and accurate inference also increases. Notably, the robustness of
the ANN framework remains consistent across different signal models, indicating that performance
is primarily influenced by the complexity and dimensionality of the input space rather than the
specific form of the underlying signal or signal simulation model. These findings emphasize the
importance of effective sampling strategies and sufficient data volume in designing reliable machine
learning pipelines for global 21-cm signal recovery.
In the final part of this thesis, we extend the machine learning framework to interferometric ex-
periments. Specifically, we develop a hybrid pipeline that combines Artificial Neural Network
(ANN) emulators with Bayesian inference techniques to extract astrophysical parameters from the
redshifted 21-cm power spectrum (PS) observed by the SKA-Low telescope. The ANN emulator
is trained on simulated PS data generated using the SKA-Low AA* array configuration. This
approach allows the emulator to learn a direct mapping between the observed PS and the un-
derlying astrophysical parameters—without requiring explicit removal of instrumental effects or
sampling artifacts. In interferometric observations, limited and non-uniform uv-coverage intro-
duces complications such as resolution loss, mode mixing, and convolution with the telescope’s
sampling window, all of which distort the observed PS. Traditional parameter inference pipelines
typically apply separate corrections to account for these effects before comparing data with theo-
retical models. In contrast, our ML-based framework incorporates these observational effects into
the training process, enabling end-to-end inference directly from the observed PS. We further ap-
ply this pipeline to investigate the impact of two critical systematics: gain calibration errors and
source position uncertainties in the input sky model. Our results show that both types of errors
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can significantly affect the recovery of astrophysical parameters. Specifically, gain calibration er-
rors must be controlled to below 0.001% to prevent distortion of the recovered signal. Likewise,
sky model position errors exceeding 0.048 arcseconds lead to residual foreground contamination
that overwhelms the 21-cm signal, making reliable inference impossible. These findings highlight
the practical utility of our ANN+Bayesian pipeline and underscore the importance of controlling
instrumental systematics in upcoming 21-cm cosmology experiments.

7.2 Future Scope
In the next phase of this research, We plan to systematically extend the current 21-cm signal
extraction pipeline by incorporating additional real-world observational complexities such as radio
frequency interference (RFI), instrumental systematics, real-time ionospheric fluctuations, and re-
alistic antenna beam patterns. These enhancements will make the pipeline directly applicable to
data from ongoing global 21-cm experiments, thereby improving its robustness and observational
relevance. Building on this, We aim to further expand the scope of the pipeline to target the 21-cm
signal from the Dark Ages, an unexplored cosmic epoch preceding the formation of the first lumi-
nous sources. During this period, the 21-cm signal serves as a pristine probe of primordial density
fluctuations and cosmic evolution. However, detecting this signal is exceptionally challenging due
to its extremely low brightness temperature and the need to observe at ultra-low radio frequen-
cies (below 50 MHz), which are inaccessible from Earth due to ionospheric opacity and terrestrial
interference.
To address these challenges, We propose developing an advanced machine learning-based frame-
work specifically designed for Dark Ages observations. This framework will incorporate realis-
tic simulations of ultra-low-frequency foregrounds, complex space-based instrumental effects, and
novel observational constraints relevant to upcoming lunar or space-based missions such as DARE,
LuSEE-Night, and FARSIDE, which plan to operate on the radio-quiet far side of the Moon.
These platforms present unique operational challenges, including the absence of ionospheric con-
tamination but the presence of strong cosmic ray and thermal backgrounds, operation with semi-
calibrated or uncalibrated instrumentation in harsh space environments, extremely sparse and low
signal-to-noise data regimes, and the need for autonomous, real-time processing pipelines suitable
for onboard analysis. To effectively address these requirements, the next-generation pipeline will
integrate semi-supervised learning, physics-informed neural networks, and Bayesian deep learning
techniques. This combination will enable improved generalization from limited labeled data, incor-
poration of known physical constraints, and robust uncertainty quantification in signal extraction.
In parallel, as instruments like the SKA and JWST come online, they will produce unprecedented
volumes of complex astrophysical data. This necessitates the development of scalable and com-
putationally efficient analysis frameworks. Leveraging machine learning’s strengths in handling
high-dimensional and noisy data, We also plan to explore the synergy between SKA and JWST
observations. By jointly constraining astrophysical parameters using combined datasets from both
facilities, we can enhance our understanding of cosmic structure formation and evolution.
To support the broader scientific community, We plan to develop a publicly accessible repository
of mock observations and simulation outputs generated through this work. This resource will
serve as a standardized platform for testing, validating, and benchmarking signal recovery tech-
niques, similar to curated datasets that have accelerated progress in fields like image processing and
computer vision. Ultimately, equipping the pipeline to handle increasingly realistic observational
conditions and making its outputs openly available will significantly enhance our ability to extract
astrophysical information from 21-cm data. It will also help establish a foundation for future data-
driven research in radio astronomy and cosmology, where expertise in machine learning, statistical
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inference, and Big Data handling will be indispensable.
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