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ABSTRACT

A Battery Emulator (BE) is a real-time hardware platform designed to replicate

the electrical behavior of real batteries, thereby facilitating safe, flexible, and

cost-effective testing of power electronic systems. Battery emulators are instrumental

in accelerating research and development in domains such as Electric Vehicles

(EVs), Battery Management Systems (BMS), and Renewable Energy System (RES)

integration, by mitigating the safety risks, variability, and financial constraints

associated with physical batteries.

This thesis presents the design and implementation of a versatile battery sim-

ulator integrated with a bidirectional DC-DC converter. The system is capable

of accurately emulating both charging and discharging behaviors across multiple

battery chemistries. At its core lies an equivalent circuit-based lithium-ion battery

model, selected and validated through rigorous simulation studies conducted in

MATLAB/Simulink.

The developed emulator is designed for seamless integration into both grid-

connected and standalone configurations, enabling comprehensive evaluation of bat-

tery performance under a wide range of operating scenarios. Simulation and experi-

mental validation confirm that the proposed emulator effectively replicates real battery

dynamics, positioning it as a valuable tool for modern energy storage research, system

development, and testing.
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Chapter 1

Introduction

With the increasing integration of renewable energy sources (RES) in modern

power systems, driven by the global pursuit of sustainable and cleaner energy, new

challenges have emerged for grid stability and reliability. The inherently intermittent

and unpredictable nature of RESs, such as solar and wind, significantly burdens ex-

isting electrical infrastructure, especially in regions where the grid is already weak

or underdeveloped. In such scenarios, maintaining voltage and frequency stability

becomes increasingly complex, and the risk of grid instability or blackout rises. [16]

Grid Energy Storage Systems (GESSs) have been deployed to mitigate these chal-

lenges to absorb fluctuations, smooth power output, and support grid reliability.

Among the various available storage technologies, Lithium-ion Batteries (LIBs) have

emerged as one of the most promising solutions due to their high energy density,

efficiency, and scalability. However, despite their advantages, the high cost of LIBs

presents a significant barrier to widespread deployment, particularly for research insti-

tutions, universities, and even industries aiming to evaluate and test advanced Power

Electronic Systems and Battery Management Systems (BMS). [3] [17]

A practical and cost-effective solution to address this limitation is using Battery
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Emulators (BEs)—real-time platforms designed to replicate the dynamic electrical

behavior of real batteries under various operating conditions. These systems allow re-

searchers and engineers to safely test and validate power electronic converters, control

strategies, and BMS algorithms without the risk, cost, or variability associated with

physical batteries.

1.1 Scope of the Study

This thesis focuses on the development of a versatile battery emulator integrated

with a bidirectional DC-DC converter, capable of emulating both charging and dis-

charging profiles across multiple battery chemistries. The core of the emulator is based

on an equivalent circuit model of a Li-ion battery, selected and validated through ex-

tensive simulation studies conducted in MATLAB/Simulink. Unlike some previous

works that rely on Digital Signal Processors (DSPs) or embedded C-code implemen-

tations, this study emphasizes a simulation-driven approach for proof-of-concept de-

velopment, prioritizing flexibility and adaptability over embedded implementation.

The emulator is designed to support integration in both grid-connected and stan-

dalone systems, enabling realistic and reproducible testing of power electronic hard-

ware and control systems under a variety of battery operating conditions.

1.2 Thesis Objectives

The key objectives of this thesis are:

1. To analyze and summarize the key characteristics and operational behavior of

Lithium-ion and other battery chemistries relevant to energy storage.
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2. To review current battery modeling approaches, with a focus on circuit-based

models suitable for emulator applications.

3. To develop an equivalent circuit-based battery model in MATLAB/Simulink

that can be adapted for various battery chemistries and operating conditions.

4. To design and implement a versatile battery emulator integrated with a bidirec-

tional DC-DC converter to support both charging and discharging emulation.

5. To validate the performance of the proposed emulator through simulation and

experimental testing using representative use cases.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

• Chapter 2 presents the motivation behind the adoption of Lithium-Ion Bat-

teries (LIBs) in electric vehicles and energy storage systems. It highlights the

limitations of conventional energy storage and the advantages offered by LIBs

in modern applications.[2]

• Chapter 3 provides a detailed background on Lithium-Ion Batteries, including a

comparison of various LIB chemistries. This chapter establishes the foundational

knowledge necessary for understanding their selection and behavior in emulation

platforms.

• Chapter 4 discusses key battery phenomena such as charging/discharging char-

acteristics, C-rate effects, and thermal behavior. It also introduces basic prin-

ciples of battery management, setting the stage for accurate battery emulation

and control.
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• Chapter 5 reviews the existing literature on battery modeling approaches, fo-

cusing on equivalent circuit models and the integration of experimental results.

The chapter also analyzes the accuracy and limitations of various modeling

strategies for emulation purposes.

• Chapter 6 presents the hardware topology and circuit design of the battery

emulator developed in this work. It includes the bidirectional DC-DC converter

architecture, control logic, and key design considerations for enabling both charg-

ing and discharging profiles.

• Chapter 7 concludes the thesis by summarizing the main contributions, dis-

cussing the limitations of the current emulator system, and outlining future

directions for improving model fidelity and expanding the emulator’s function-

ality.
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Chapter 2

Motivation for Lithium-Ion

Batteries (LIBs)

2.1 LIBs vs Other Grid Energy Storage Systems

(GESSs)

Among the numerous Grid Energy Storage Systems (GESSs) developed to date,

Battery Energy Storage Systems (BESSs), particularly Lithium-Ion Batteries (LIBs),

are regarded as the most promising solution. One of the primary advantages of LIBs is

their broad operational range—from milliseconds to several hours—at relatively high

power levels. This enables their use in both high-power and high-energy applications,

as illustrated in Fig. 2.1.

Unlike Pumped Storage Hydro (PSH) and Compressed Air Energy Storage

(CAES), LIBs can be installed virtually anywhere on the grid due to their compact

and modular nature. In contrast, PSH and CAES are limited by geographical and

topological constraints and involve high capital investments and lengthy planning

procedures [1].

Although technologies such as Supercapacitors (EDLCs) and Flywheels (FWs)
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Figure 2.1: Comparison of energy storage technologies - Discharge time vs Rated

power [1]

offer faster response times, they suffer from high self-discharge rates, limiting their

utility in high-energy applications [1]. LIBs, being part of the BESS category, also

benefit from distributed deployment capabilities. Figure 2.2 outlines various grid-

based applications of distributed GESSs.

2.2 LIBs vs Other BESS Technologies

LIBs encompass a variety of chemistries, which will be discussed in Chapter 3.

Nevertheless, their superiority over other BESS technologies is widely acknowledged

due to the following attributes. [3] [18] [7]

• High energy density and lightweight structure

• Long cycle life

• Low self-discharge rate
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Figure 2.2: Applications of distributed GESSs. [2]

• High charge/discharge capability

This dominance can also be seen in Figure 2.3, where specific power vs specific

energy is depicted for various energy storage technologies at the cell level, as they

are considered for the automotive industry. It should be noted that although the

application is different, the battery cells are, in most cases, the same. Hence, more

similar examples in which the automotive industry crosses with the grid energy storage

industry will be seen throughout the report. From another perspective, the advantages

of LIBs can be seen in Figure 2.4.

2.3 Overview of Alternative BESS Technologies

Nickel-Metal Hydride (Ni-MH)

Ni-MH batteries offer a broad operating temperature range −30◦C to +75◦C and

are inherently safer than LIBs. They have demonstrated reliability in automotive

7



Figure 2.3: Comparison of energy storage technologies at the cell level for automotive

applications [3]

Figure 2.4: General comparison of BESSs. [4]

applications. However, their high self-discharge rate, memory effect, lower energy

density (approximately 60% of LIBs), and the high cost of nickel restrict their use in

large-scale GESSs. [3] [1] [19]
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Lead-Acid (Pb-A)

Lead-acid batteries are among the oldest and most mature technologies. They are

used in several large-scale BESS applications, such as the 10MW/40MWh system in

California. However, their disadvantages include low energy density, short cycle life,

and environmental concerns due to lead toxicity [1]. Figure 2.5 provides a comparative

overview of Pb-A and LIB technologies [4].

Figure 2.5: Comparison of Pb-A and LIB technologies. [4]

Sodium-Sulphur (Na-S)

Na-S batteries, developed initially for automotive use in the 1960s, are now pri-

marily utilized in GESSs. Operating at temperatures between 300◦C and 350◦C, they

offer high energy density, long cycle life, and significant peak power capability. Despite

these advantages, the high operational temperature and the reactivity of sodium pose

safety risks. Moreover, in the event of system shutdowns, energy losses due to heat

dissipation can result in up to 20% self-discharge per day. [1] [20]
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Vanadium Redox (VR) Flow Batteries

Vanadium Redox batteries, introduced in the early 1980s, are flow batteries with

two separate liquid electrolytes stored in tanks and circulated through a membrane

to produce a voltage of 1.4–1.6 V. Their decoupled energy and power characteris-

tics allow scalable design. While they feature excellent cycle life, moderate cost, and

no self-discharge, their limited operating temperature range (10◦C to 35◦C) and low

technology maturity remain concerns. Ongoing research focuses on extending the

temperature range, improving energy/power density, and advancing membrane tech-

nologies [1]. A schematic of the VR battery system is shown in Figure 2.6.

Figure 2.6: Schematic of Vanadium Redox (VR) Flow Battery System [1]
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2.4 Cost Outlook for LIBs

Historically, the high cost of LIBs, driven by limited lithium availability and small-

scale production, restricted their adoption to consumer electronics. However, in recent

years, LIB deployment has expanded into the automotive and energy sectors. [18] [7]

Projections indicate significant cost reductions due to mass production and

technological advancements. Estimates suggest a decrease from approximately

Rs. 32,500/kWh in 2015 to Rs. 13,000/kWh by 2020, with some manufacturers like

A123 Systems aiming for Rs. 8,500/kWh within the same timeframe. [21] [22] Fig. 3.5

illustrates the expected cost decline as a function of electric vehicle (EV) production

scale. [5]

Figure 2.7: Projected cost decline of LIBs with EV production scale [5]
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Chapter 3

Background for Lithium-Ion

Batteries (LIBs)

3.1 Introduction to Lithium-Based Battery Tech-

nologies

Lithium-based batteries represent the forefront of energy storage technologies due

to their superior electrochemical characteristics. These batteries are categorized into

two primary types: lithium-metal batteries and lithium-ion batteries. The classifica-

tion depends on the anode material—lithium-metal batteries employ lithium metal

as the anode, while lithium-ion batteries use a carbon-based anode such as graphite.

Among these, lithium-ion batteries (LIBs) have become the most commercially suc-

cessful due to their optimal balance of energy density, safety, and cycle life. In recent

years, the deployment of LIBs has expanded beyond consumer electronics into electric

mobility, stationary storage systems, and grid support applications. [7]
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Figure 3.1: Projected cost decline of LIBs with EV production scale [5]

3.2 Operating Principle of Lithium-Ion Batteries

A typical lithium-ion battery consists of a graphite anode, a lithium metal oxide

cathode, and an electrolyte containing lithium salt (such as LiPF6) dissolved in a sol-

vent like ethylene carbonate (EC) or dimethyl carbonate (DMC). During discharge,

lithium ions move from the anode to the cathode through the electrolyte, while elec-

trons travel through the external circuit to supply power to a load. The reverse occurs

during charging, where lithium ions migrate back to the anode. The movement of

lithium ions between electrodes enables energy storage and release. This intercalation-

deintercalation mechanism allows for reversible cycling with high efficiency, which is

a major advantage over older battery chemistries.
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3.3 Classification of Lithium-Ion Battery

Chemistries

Lithium-ion batteries are available in various chemistries, each offering distinct

trade-offs between specific energy, cycle life, thermal stability, safety, and cost. The

major chemistries include:

• Lithium Cobalt Oxide (LCO)

• Lithium Nickel Oxide (LNO)

• Lithium Nickel Cobalt Aluminium Oxide (NCA)

• Lithium Nickel Manganese Cobalt Oxide (NMC)

• Lithium Manganese Oxide (LMO)

• Lithium Iron Phosphate (LFP)

• Lithium Titanate Oxide (LTO)

Each of these chemistries is discussed in detail below.

3.3.1 Lithium Cobalt Oxide (LCO)

Lithium Cobalt Oxide (LiCoO2) batteries are common in consumer electronics

due to their high energy density and stable performance. Their layered structure

allows efficient lithium-ion movement. However, high cost, limited cycle life, and poor

thermal stability restrict their use in high-power or safety-critical applications like

electric vehicles and grid storage. [7] [23] [24]
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(a) Discharge characteristics at 20°C (b) Prismatic battery cell

Figure 3.2: Saft MP 176065 LCO Prismatic Cell [6]

3.3.2 Lithium Nickel Oxide (LNO)

Lithium Nickel Oxide (LiNiO2) has higher energy density and lower cobalt con-

tent than LCO, reducing costs. However, it faces thermal instability and structural

degradation during cycling. Due to safety concerns and synthesis challenges, LNO is

typically used as a doped base material to enhance performance and stability.

(a) LCO and LNO cathode structure (b) LMO cathode structure

Figure 3.3: Layered vs spinel cathode structure [6]
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(a) Panasonic NCR18650B cell (NCA) (b) Keeppower NCA battery cells

(c) Keeppwer 3600mA battery discharge characteristics

Figure 3.4: An example of an NCA battery [6]

3.3.3 Lithium Nickel Cobalt Aluminium Oxide (NCA)

Lithium Nickel Cobalt Aluminium Oxide (LiNiCoAlO2) batteries offer high energy

density, long cycle life, and improved thermal stability due to aluminium. Commonly

used in electric vehicles, especially by Tesla, they provide high energy and power.
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However, their high cost, complex management, and safety concerns require robust

battery management systems. [7] [25]

3.3.4 Lithium Nickel Manganese Cobalt Oxide (NMC)

Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) batteries balance energy

density, power, cycle life, safety, and cost. Manganese improves thermal stability,

while nickel and cobalt enhance capacity [26]. Widely used in EVs, power tools, and

grid storage, variants like NMC 111, 532, and 811 optimize performance and cost,

with higher nickel reducing cobalt dependency.

Figure 3.5: Samsung SDI - Battery technology roadmap [5]

3.3.5 Lithium Manganese Oxide (LMO)

Lithium Manganese Oxide (LiMn2O4) batteries feature a spinel structure allowing

3D lithium diffusion, delivering high power and good thermal stability. Commonly

used in power tools, e-bikes, and hybrids, LMO offers safety and low cost but has

lower energy density and shorter cycle life, especially at high temperatures. [4]
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3.3.6 Lithium Iron Phosphate (LFP)

Lithium Iron Phosphate (LiFePO4) batteries are valued for their excellent thermal

and chemical stability, long cycle life, and high safety. The olivine structure provides

strong P–O bonds, minimizing oxygen release and reducing thermal runaway risk.

Despite a lower nominal voltage (about 3.2 V) and energy density compared to NCA or

NMC, LFP is preferred for stationary storage, electric buses, and commercial vehicles

due to its cost-effectiveness and reliability. [7]

(a) Discharge characteristics at T = 23°C (b) A123 battery cell

Figure 3.6: LFP battery - ANR26650m1-B series by A123 Systems [6]

3.3.7 Lithium Titanate Oxide (LTO)

Lithium Titanate (Li4Ti5O12) replaces the traditional graphite anode with a

lithium titanate structure, enabling fast charging, long cycle life, and high safety.

LTO cells show minimal volume change and strong thermal stability. However, they

have a lower nominal voltage (around 2.4 V) and reduced energy density, leading to

larger size and higher cost. LTO is increasingly used in rapid charging and long-life

applications like public transport and telecom backup power. [7]
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3.4 Comparative Evaluation of LIB Chemistries

The choice of lithium-ion battery chemistry is heavily dependent on the application.

NCA and NMC provide high specific energy and long cycle life, making them ideal

for electric mobility. LFP, while offering lower energy density, provides unmatched

thermal stability, safety, and cost advantages, which make it highly suitable for grid

energy storage systems (GESS). LTO, though expensive and bulky, is superior in

safety and longevity. A comparative evaluation of all chemistries reveals that no single

battery type is optimal for all parameters, and trade-offs must be made depending on

whether the application prioritizes energy density, power, cost, safety, or lifecycle.

3.5 Comparison of Current Lithium-Ion Battery

(LIB) Chemistries

This sub-section provides a comparative overview of the main performance param-

eters of commercially available LIB chemistries. Table 3.1 summarizes the key metrics

such as specific capacity, nominal voltage, specific energy, cycle life, safety, lifetime,

and cost.

Table 3.1: Comparison of various LIB chemistries [7]

Type Specific Capacity (mAh/g) Nominal Voltage (V) Specific Energy (Wh/kg) Cycle Life Safety Lifetime Cost

LCO 140 3.7 110–190 500–1000 Poor Average High

LMO 146 3.8 100–120 1000 Average Poor Average

NCA 180 3.6 100–150 2000–3000 Low High High

NMC 145 3.6 100–170 2000–3000 Low Good High

LFP 170 3.3 90–115 >3000 High Average Average

LTO 170 2.2 60–75 >5000 High High High

A graphical representation of these chemistries’ performance parameters is shown

in Figure 3.7.
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Figure 3.7: Comparison of various Li-ion chemistries [7]

Conclusion: From a grid energy storage system (GESS) perspective, NCA and

NMC offer the best specific energy and reasonable cycle life but suffer from low

safety and high cost. LMO and LFP offer better safety and cost profiles, though

LMO’s limited cycle life restricts its application. For stationary applications where

specific energy is less critical, LFP emerges as the most balanced option due to its

safety, lifetime, power capability, and reasonable cost. If LTO’s cost reduces, it could

become a strong candidate for GESS applications because of its high safety, rapid

charge/discharge capability, and very long cycle life. It is essential to monitor ongoing

developments in these technologies, particularly regarding cost and performance im-

provements. Emerging lithium-based battery technologies discussed in the following

section warrant careful observation for their potential future impact.
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3.6 Advanced Lithium-Based Battery Technolo-

gies

3.6.1 Lithium-Air Batteries

Lithium-air batteries offer very high theoretical energy density (up to 3500 Wh/kg)

by using a lithium metal anode and an air cathode. Despite this potential, challenges

like low efficiency, poor cycle life, and sensitive packaging keep them in early research

stages. [7]

3.6.2 Lithium-Sulphur Batteries

Lithium-sulphur batteries provide high specific energy (up to 500 Wh/kg) and low

cost using a lithium anode and sulphur cathode. Their commercialization is hindered

by capacity loss due to the polysulfide shuttle effect, though ongoing research aims to

address these issues. [7]

Figure 3.8: An outlook for development of LIBs, where factor 10 means that the future

LIBs should reach 10x the energy density of the current LIBs. [8]
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3.7 Summary and Relevance to Grid Energy Stor-

age

In conclusion, lithium-ion batteries have undergone extensive development and

diversification. Each chemistry offers unique advantages and challenges. Among all

commercially available chemistries, Lithium Iron Phosphate (LFP) is particularly suit-

able for grid energy storage systems due to its inherent safety, thermal stability, long

lifespan, and cost efficiency. [8] For electric vehicle applications, high energy density

chemistries like NMC and NCA are preferred, while Lithium Titanate (LTO) can be

utilized in fast-charging, long-life applications if cost barriers are addressed. Looking

ahead, lithium-air and lithium-sulphur batteries may revolutionize the energy storage

landscape if their current limitations can be overcome through innovative material

science and engineering. [8]
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Chapter 4

Battery Phenomena and

Management

4.1 Battery Phenomena

Although a battery may seem like a generally simple device that allows it to store

and release electric energy, in its essence, it is a rather complicated unit that requires

considerable attention. The main complexity of the battery comes from its internal

chemistry and structure that affect its external character and performance, as also

portrayed in Chapter 3. In this section, it is intended to elaborate on some of the

main characteristics of a LIB as a background for the forthcoming chapters that will

be devoted to LIB modeling.

4.1.1 Rate-dependent Capacity (C-rate Effect)

The C-rate effect describes the decrease in usable battery capacity at high charge

or discharge rates. This occurs because, at high currents, ion diffusion in the elec-

trolyte lags behind the electrochemical reactions, leading to incomplete utilization of

active materials [27] [28]. Charging or discharging at lower rates allows more complete
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reactions, recovering capacity. This behavior is illustrated in (Fig. 4.3).

Figure 4.1: Effect of C-rate on battery capacity. [9]

4.1.2 Temperature Effect

Temperature significantly influences battery performance. Lithium-ion batteries

operate optimally within the range of 23–25 textdegree C. At lower temperatures,

internal resistance increases and chemical activity slows down, reducing performance.

Conversely, higher temperatures reduce resistance and can temporarily increase ca-

pacity, but they also elevate the self-discharge rate due to increased internal chemical

reactions [27] [29] [28].

4.1.3 Self-discharge

Self-discharge denotes the spontaneous loss of charge in a battery without any

external load. Although all battery chemistries experience self-discharge, lithium-ion

batteries exhibit relatively low self-discharge rates, as summarized in Table 4.1. It is

also temperature and SOC dependent; higher temperatures and higher SOCs tend to

accelerate self-discharge [30] [29].
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(a) (b)

Figure 4.2: LIB characteristics a) Calendar life vs temperature and SOC, b) Cycle life

vs DOD. [9]

Figure 4.3: Effect of battery capacity due to Temperature. [9]

Table 4.1: Self-discharge rates of common battery chemistries

Battery Type Self-discharge Rate (per month)

Nickel-Cadmium (NiCd) 15–20%

Nickel-Metal Hydride (NiMH) 20–30%

Lithium-Ion (Li-ion) 2–3%

Lead-Acid 4–6%
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4.1.4 Aging Effect (Capacity Fade)

Capacity fade, or battery aging, is the irreversible decline in battery capacity over

time due to repeated charge-discharge cycles. It directly impacts the battery’s cycle

life. High C-rates, overcharging, and deep discharges (high Depth of Discharge or

DOD) accelerate this phenomenon. Fig. 4.4a depicts the impact of DOD on cycle life.

Physically, aging results from processes like electrolyte decomposition, formation of

passive films, and dissolution of active materials. These increase internal resistance and

can lead to battery failure. Mitigation strategies include operating the battery at lower

C-rates, limiting DOD, and charging to a reduced cut-off voltage [31], [27]. Fig. 4.4a

and Fig. 4.4b compare macrocycle and combined cycle approaches, highlighting their

influence on battery life.

(a) (b)

Figure 4.4: LIB characteristics a) Macrocycle/Combined cycle vs Cycle-life, b) Com-

bined cycle example. [9]
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4.2 Battery SOC and SOH

Battery SOC (State of Charge)

SOC represents the remaining charge or usable energy in a battery. Since it cannot

be measured directly, estimation techniques are employed. Table 4.2 classifies these

methods into four categories:

1. Direct Measurement (e.g., Open Circuit Voltage, Terminal Voltage, Impedance

methods) – Generally less accurate and often unsuitable for real-time applica-

tions.

2. Book-keeping Estimation (e.g., Coulomb Counting, Modified Coulomb Count-

ing) – Commonly used due to their simplicity and moderate accuracy.

3. Adaptive Systems (e.g., Kalman Filter variants, Neural Networks) – Provide

high accuracy and can adapt to dynamic conditions.

4. Hybrid Methods (e.g., Coulomb Counting + Kalman Filter) – Combine multiple

techniques for improved accuracy.

Among these, adaptive systems like the Kalman Filter (including EKF and UKF) and

Lyapunov-Based methods show promising accuracy, provided detailed battery data is

available [32].

Table 4.2: Classification of SOC estimation methods

Category Examples

Direct Measurement OCV, Terminal Voltage, Impedance

Book-keeping Estimation Coulomb Counting, Modified Coulomb Counting

Adaptive Systems Kalman Filters (EKF, UKF), Neural Networks

Hybrid Methods Coulomb Counting + Kalman Filter
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Battery SOH (State of Health)

SOH assesses the current condition of a battery relative to its original state. Like

SOC, it is not directly measurable and must be estimated. Capacity fade trends are

typically used to infer SOH. Advanced SOC estimation techniques, such as Kalman

Filters and Lyapunov-Based methods, have been extended to estimate SOH as well [13]

[33]. Although SOH is less critical for day-to-day operation, it is vital for long-term

performance and safety assessment.

4.3 Li-ion Battery Pack Concept

A typical lithium-ion battery pack comprises numerous individual cells arranged

in series-parallel configurations to form modules. Several modules combine to form

a tray, each managed by a dedicated Battery Management System (BMS) to ensure

safe operation and uniform charging/discharging [34]. Fig. 4.5 shows an example of a

battery tray from Panasonic containing 312 18650-type cells.

Figure 4.5: LIB tray - Panasonic. [10]

Multiple trays form a battery rack, which typically delivers voltages between 500-

1000 V. A main BMS oversees the entire rack, communicates with the Power Con-

ditioning System (PCS), and reports key parameters like terminal voltage, SOC, and

28



SOH. Fig. 4.6 illustrates a battery pack from LG Chem, showing the full assembly

from individual prismatic cells to container-scale storage solutions.

Figure 4.6: LIB Assembly for a GESS by LG Chem. [11]

For high-energy applications, multiple racks can be paralleled with correspond-

ing PCSs, forming containerized storage systems with capacities in the MW/MWh

range. Detailed information about such configurations is provided in Appendix E and

F, including examples from Saft and NEC Energy Systems, respectively. In particu-

lar, the NEC racks use A123 Systems LFP battery cells, known for their safety and

stability [35].
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Chapter 5

Battery Modeling – Literature

Review

The growing interest in batteries and energy storage systems, initially driven by

battery-powered consumer electronics such as mobile phones and laptops, has recently

expanded significantly due to advancements in electric vehicles (EVs) and grid energy

storage applications. Consequently, a wide range of battery models have been devel-

oped and reported in the literature.

These models are generally categorized into four main groups: physical models,

empirical models, abstract models, and hybrid models that combine elements from

the previous three categories [27] [28].

5.1 Physical Models

Physical models represent the battery based on its fundamental electrochemical

processes and internal chemistry. These models tend to be highly detailed and com-

plex, requiring numerous input parameters and comprehensive knowledge of the bat-

tery’s chemical composition. As a result, physical models demand substantial com-
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putational resources but provide very high accuracy. This makes them particularly

suitable for battery cell development and research laboratories.

However, for practical applications such as battery emulator systems, the complex-

ity and computational demands of physical models often become prohibitive, especially

when deployed on resource-constrained hardware [27] [28] [36].

Among physical models, single particle models (SPM) and pseudo-double dimen-

sion (P2-D) models are widely recognized for lithium-ion batteries (LIB) [36]. Fig. 5.1

illustrates the general relationship between model complexity (computational power)

and accuracy, showing an increasing trend in computational requirements with higher

model fidelity.

Figure 5.1: Physical battery models - computational power vs model’s accuracy [5]

To mitigate computational burdens, reduced-order physical models have been de-

veloped that simplify full physical models while retaining an acceptable level of accu-

racy, depending on the degree of simplification [28].
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5.2 Empirical Models

Empirical models differ significantly from physical models in that they are typically

simple and require minimal computational power. These models generally rely on

fitting mathematical functions to experimentally obtained charge and discharge curves.

Common mathematical functions used include trigonometric, logarithmic, polynomial,

exponential, and power-law functions [36].

A notable example is the Shepherd’s original model, alongside variants such as the

Unnewehr Universal Model and the Nernst Model. These three models, expressed in

their generic forms, are:

V = V0 −Ri− µ/SOC (5.1)

V = V0 −Ri− µ(SOC) (5.2)

V = V0 −Ri+ µ1 ln(SOC) + µ2 ln(1− SOC) (5.3)

Where V is the terminal voltage, V0 is the nominal voltage, R is the internal resis-

tance, i is the current (positive for discharge, negative for charge), and µ, µ1, µ2 are

fitting parameters. These models vary in accuracy depending on the application. Shep-

herd’s model performs well in predicting terminal voltage during continuous current

discharge, whereas the Nernst model better handles dynamically varying currents. The

Universal model provides the most accurate State of Charge (SOC) estimate among

the three [36].

Shepherd’s original model, developed in 1963 [37], remains popular due to its

simplicity and minimal parameter requirements derived from manufacturer datasheets.

A modified version of this model, which includes separate equations for charge and

discharge modes, offers improved accuracy and has found use in simple EV battery
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modeling, as well as MATLAB-Simulink and PSIM implementations [38], [39], [40],

[41], [42].

Despite their simplicity and low computational cost, empirical models suffer from

limited accuracy when more detailed battery behavior is required. Other empirical

approaches, such as Peukert’s law, battery efficiency models, and Weibull fit models,

have been proposed to enhance predictive capability but have not shown significant

overall improvements [27].

33



Figure 5.2: Comparison of three different empirical models in a continuous discharging

mode [12]

5.3 Abstract Models (Equivalent Electrical Circuit

Models - EECMs)

Abstract models, often referred to as Equivalent Electrical Circuit Models

(EECMs), represent battery behavior using electrical components such as resistors,

capacitors, and diodes to mimic the battery’s external electrical characteristics. These

models strike a balance between computational complexity and accuracy, often out-

performing empirical models in terms of prediction fidelity [27].

EECMs require physical access to the actual battery for parameter identification,

which typically involves extensive testing [28] [43] [44] [45] [13].

There are three common types of EECMs:

• Impedance-based EECM: Uses Electrochemical Impedance Spectroscopy

(EIS) to measure the battery’s impedance at various frequencies by applying

small AC signals. While this method can characterize battery impedance accu-

rately, it requires offline testing with specialized equipment and does not support
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real-time parameter updates [28]. Figure 5.3a illustrates such a model.

• Voltage-Current (V-I) based EECM: Utilizes measurements of battery cur-

rent and open-circuit voltage (OCV) to derive the model. The typical structure

includes a controlled voltage source representing OCV, an internal series resis-

tance, and one or more RC networks to capture dynamic behavior. The Thevenin

model (1st order EECM) and Dual Polarization (DP) model (2nd order) are com-

mon examples, with higher-order models used as a trade-off between complexity

and accuracy [18], [28], [46], [44]. Figure 5.3b shows the Thevenin model with

series and transient RC elements.

• Run-time based EECM: Models battery runtime characteristics such

as C-rate effects and provides reasonable accuracy during continuous

charge/discharge, but struggles with dynamic load conditions due to increased

complexity [47], [44].

(a) Thevenin (RC) model (b) Impedance model

Figure 5.3: EECM

State-of-the-art EECMs combine elements from Thevenin and Run-time models

to achieve accurate voltage and SOC estimation under both static and dynamic con-

ditions while including runtime effects [47] [44] [34]. Figure 5.4 illustrates such an

advanced EECM, where a SOC-dependent controlled current source charges a capaci-

tor representing SOC, with temperature and degradation factors sometimes included.
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The dual RC model accounts for dynamic relaxation phenomena, while the lookup

table relates SOC to OCV.

Figure 5.4: Graphical representation of the advanced EECM [13]

Overall, EECMs offer a compelling balance of accuracy and computational effi-

ciency, with sophisticated parameter estimation techniques enabling SOC, terminal

voltage, and State of Health (SOH) estimations, making them suitable for Battery

Management Systems (BMS). Their main limitation lies in the complexity of param-

eter identification, requiring rigorous testing [45] [43] [13] [12] [48] [49].

5.4 Other Models

Several alternative modeling approaches have also been explored:

• Bio-inspired black-box models: These use intelligent algorithms, such as ar-

tificial neural networks or wavelet neural networks, to model battery behavior.

While these models can achieve reasonable accuracy, they demand high com-

putational resources and extensive training data. They also require significant

prior knowledge about the battery [28].

• Other approaches: Models such as stochastic models, transmission line mod-

els, and hydrodynamic models focus on specific battery characteristics but can-
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not generally comprehensively represent full battery behavior, resulting in lim-

ited adoption [28].

5.5 Operating Principle, Battery Modeling,

and Case Study

5.5.1 Functional Overview of the Model-Based Emulator

The lithium-ion battery emulator developed in this project operates using a

model-based closed-loop control architecture. This system is structured into

three primary stages: modeling, actuation, and sensing.

– Modeling Stage:

In this stage, a dynamic lithium-ion battery model implemented in software

calculates the reference terminal voltage Vbatt,ref. This value is determined

based on the present and historical values of the battery current Ibatt. The

reference voltage serves as the desired output for the hardware to emulate.

– Actuation Stage:

A switching-mode power converter generates a physical voltage that tracks

the computed Vbatt,ref, simulating the electrical response of a real battery.

This voltage output can be connected to external loads, both active and

passive.

– Sensing Stage:

The actual current Ibatt drawn by or supplied to the load is measured and

fed back to the model. This feedback mechanism ensures dynamic ad-

justment of the reference voltage, thereby enabling realistic emulation of

37



battery behavior.

The emulator’s accuracy depends on several factors, including the fidelity of the

battery model, converter bandwidth, switching ripple, and passive component

tolerances. Despite these limitations, such discrepancies are typically negligible

in energy-oriented applications such as Battery Energy Storage Systems (BESS),

especially when well-designed inductors and capacitors are employed to minimize

voltage ripple and enhance transient response.

The MATLAB/Simulink-based closed-loop control structure implemented for

the battery emulator is shown in Figure 5.5.

SOC0

Capacity

Ibatt

t

N_parallel

SOC

SOC

T

Ibatt

Voc

...

Discrete
1e-06	s.

Z-1

Z-1

Voc
SOC
T
Ibatt
dt
N_series
N_parallel

Vbatt

Ibatt_out

Figure 5.5: MATLAB Simulink model of the model-based lithium-ion battery emula-

tor.

38



5.5.2 Selection and Description of the Battery Model

Numerous battery modeling techniques are found in the literature, including

electrochemical, stochastic, analytical, and equivalent circuit-based methods.

Among these, the equivalent circuit approach is particularly attractive due to

its balance between accuracy and computational simplicity.

In this project, a hybrid dynamic equivalent circuit model was chosen, which

combines electrical elements with a nonlinear voltage-SOC (State of Charge)

relationship. This model includes:

– A series resistance Ri representing the internal resistance.

– An RC pair Rt, Ct modeling transient response to load variations.

– An open circuit voltage VOC calculated from SOC using a polynomial +

exponential function.

The state of charge and corresponding open-circuit voltage are defined as:

SOC = SOC0 −
1

3600Q

∫
Ibatt dt (5.4)

VOC = a3SOC3 + a2SOC2 + a1SOC + a0 + a5e
a4·SOC (5.5)

Where:

– Q is the nominal battery capacity in Ah.

– SOC0 is the initial state of charge.

– a0 to a5 are model coefficients obtained from experimental data.
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This model is computationally efficient, has a small parameter set, and has been

validated in previous studies with high precision (average error 42%).

Although this model does not account for thermal dynamics or aging, these as-

pects can be incorporated. Extended versions of the model can include power

loss, temperature effects, and state-of-health (SOH) degradation. Such enhance-

ments would rely on external environmental inputs and additional parameter

identification, without altering the emulator’s fundamental design.

Figure 5.6: Comparison of real and simulated battery terminal voltage using the

developed model.

To validate the accuracy of the hybrid equivalent circuit model, simulations

were conducted under various load conditions. The simulated voltage profile

was found to closely follow the real voltage profile obtained from experimental

data, indicating strong agreement.

5.5.3 Case Study: Kokam Li-ion Polymer Cell

To test and validate the emulator, a case study was conducted using a high-

performance commercial lithium-ion polymer cell—Kokam SLBP55205130H.
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This pouch-type cell uses Nickel Manganese Cobalt (NMC) chemistry, known

for its high-power density, long cycle life, and thermal stability.

A battery pack was assembled using 30 of these cells connected in series. The

technical specifications are summarized below:

Table 5.1: Technical Specifications of Kokam Cell Pack

Parameter Single Cell 30-Cell Pack

Nominal Voltage 3.7 V 111 V

Capacity 11 Ah (40.7 Wh) 11 Ah (1221 Wh)

Charge Limit Voltage 4.3 V 129 V

Discharge Limit Voltage 2.7 V 81 V

Weight 0.28 kg ∼9 kg

Dimensions (mm) 207×137×5.6 ∼240×170×180

This pack configuration serves as the reference system for emulator design. Nev-

ertheless, the same emulator framework can be used to mimic different battery

technologies by updating the corresponding model and parameters.

5.5.4 Parameter Identification Strategy

To implement the battery model, nine parameters must be determined:

– Three electrical elements: Ri, Rt, Ct

– Six coefficients: a0 to a5 defining the VOC-SOC relationship

Electrical Parameter Extraction:

1. Charge the battery to full capacity.
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2. Discharge at a constant current and record the terminal voltage until it

reaches its minimum.

3. Measure the internal resistance during load connection:

Ri =
V0 − V1

I
(5.6)

4. After load disconnection, observe the voltage relaxation:

Rt =
Voc − V ′

t

I
(5.7)

Ct =
τ

Rt

(5.8)

Figure 5.7: Extracted E0 (Open Circuit Voltage) lookup table from experimental data.

The E0 curve was obtained by applying small discharge pulses at steady-state

intervals and plotting the resulting stabilized voltage. This data was curve-fitted

using polynomial and exponential segments for high accuracy in modeling the

nonlinear characteristics of the battery.

VOC-SOC Curve Fitting:

– Apply small discharge pulses (∼1% capacity) and allow voltage to stabilize.

– In the 20–100% SOC range, fit a cubic polynomial:
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1. Fit the polynomial to the OCV-SOC curve:

p(SOC) = a3SOC3 + a2SOC2 + a1SOC + a0 (5.9)

2. In the 0–10% range, fit the exponential tail:

log(VOC − p(SOC)) = a4SOC + log(a5) (5.10)

The final set of parameters used in the emulator is listed below:

Table 5.2: Final Parameters for Emulator Implementation

Parameter Single Cell 30-Cell Pack

Ri (Internal Resistance) 3.3 mΩ 99 mΩ

Rt (Transient Resistance) 15 mΩ 450 mΩ

Ct (Capacitance) 555 F 18.5 F

a3, a2, a1, a0 0.315, 0.075, 0.495, 3.575 9.45, 2.25, 14.85, 107.25

a5, a4 1.035, 35 31.05, 35

Experimental validation showed that the reconstructed VOC-SOC curve closely

aligned with real battery behavior, confirming the effectiveness of the modeling

and identification process.

Figure 5.8: Simulated battery voltage (Vbatt) profile during discharge cycles.
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The voltage response across different SOC levels confirmed the emulator’s fi-

delity in replicating the transient and steady-state behavior of the real battery

pack, especially during dynamic load conditions. Fig.5.9a and Fig.5.9b show the

voltage vs. time characteristics during the charging process for a single cell and

a multi-cell configuration, respectively. Fig.5.9a illustrates the typical CC-CV

charging profile of a single Li-ion cell. The voltage rises steadily during the

constant current phase and stabilizes during the constant voltage phase as the

charging current tapers off. Fig.5.9b presents the voltage response of a multi-cell

series pack. The overall profile follows a similar CC-CV pattern, but the total

voltage increases more rapidly due to the series connection. Minor variations in

the voltage slope may occur due to inter-cell imbalance.

These plots demonstrate the scalability of the charging behavior from single to

multiple cells and support the accuracy of the modeled charging dynamics.

(a) Voltage vs Time during charging (b) CC Charging

Figure 5.9: Charging behavior plots: (a) Single Cell, (b) Multiple Cell

The graphs depicting State of Charge (SOC), charging current, and cumulative

capacity (Ah) provide insight into the battery’s dynamic behavior during the

charging process. The SOC curve shows the gradual increase in battery charge

level over time, corresponding with the controlled charging current profile. The
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current graph illustrates the transition from constant current to constant voltage

mode, where the current decreases as the battery approaches full charge. The

Ah graph represents the total charge delivered to the battery, confirming the

capacity utilization during the charging cycle.

Together, these plots validate the consistency between the charging current,

SOC progression, and capacity gain, supporting the accuracy of the battery

model under test conditions.

Figure 5.10: State of Charge (SOC), charging current, and cumulative capacity (Ah)

profiles during the battery charging process.

The SOC versus voltage graph illustrates the relationship between the battery’s

state of charge and its terminal voltage during the charging/discharging cycle.

This characteristic curve reflects the battery’s electrochemical behavior, showing

a nonlinear voltage increase with SOC, especially in the mid-range, followed by

a plateau near full charge. This plot is essential for SOC estimation and battery
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management system calibration.

Figure 5.11: State of Charge (SOC) versus voltage curve for the battery during charge.

5.5.5 Discussion on Rint and Thevenin Models

Rint model, including equivalent series resistance: Polarization refers to any

departure of the cell’s terminal voltage away from OCV due to a passage of

current. For example, a cell’s voltage drops when it is under load. This can be

modelled in part as a resistance in series with the ideal voltage source (the Rint

model).

V (t) = OCV (z(t))− i(t)R0 (5.11)

On charge: V (t) > OCV (z(t))

On discharge: V (t) < OCV (z(t))
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Power dissipated by R0 as heat leads to imperfect energy efficiency.

Diffusion Voltage: The Rint model suffices for simple electronics designs but

not for advanced consumer electronics and XEV applications. The i(t)·R0 model

gives an instantaneous response to a change in input current. In practice, we also

observe a dynamic (non-instantaneous) response to a current step. Similarly,

when the cell rests, voltage doesn’t immediately return to OCV — it relaxes

gradually. This is caused by the slow diffusion processes in the cell, so we refer

to this slowly changing voltage as a diffusion voltage.

Thevenin Model Cell Voltage: Diffusion voltages can be closely approxi-

mated in a circuit using one or more parallel resistor-capacitor subcircuits. Cell

voltage in the Thevenin model is:

V (t) = OCV (z(t))− VC1(t)− i(t)R0 (5.12)

To identify parameter values from test data, it’s simpler to write the voltage in

terms of element currents:

V (t) = OCV (z(t))−R1iR1(t)−R0i(t) (5.13)

To find the expression for iR1(t), recognize that the current through R1 plus the

current through C1 must equal i(t). Further, iC1(t) = C1
dVC1(t)

dt
which gives:

iR1(t) + C1
dVC1(t)

dt
= i(t) (5.14)

VC1(t) = R1iR1(t) (5.15)
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iR1(t) +R1C1
diR1(t)

dt
= i(t) (5.16)

diR1(t)

dt
=

i(t)− iR1(t)

R1C1

(5.17)

Figure 5.12: Simulated battery voltage (Vbatt) profile during discharge cycles.

To implement the control strategy, MATLAB Function Blocks were used. The

following figures show the custom-written code for various components of the

emulator model:
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23/5/25 4:01 PM Block: BATTERY_BLOCK_CO.../MATLAB Function 1 of 1

function SOC = SOC_computation_ideal(SOC0, Capacity, Ibatt, t, N_parallel)
    % Ideal SOC computation without CV mode, current limiting, or self-discharge
 
    % Compute total battery capacity (Ah)
    Capacity_total = Capacity * N_parallel;
 
    % Compute per-cell current (not needed here but shown for clarity)
    I_per_cell = Ibatt / N_parallel;
 
    % Persistent variables
    persistent prev_t SOC_internal;
 
    % Initialize at the start of simulation
    if isempty(prev_t)
        prev_t = t;
        SOC_internal = SOC0;
    end
 
    % Time step
    dt = t - prev_t;
 
    % Update SOC if valid dt
    if dt > 0
        SOC_internal = SOC_internal + (Ibatt * dt) / (Capacity_total * 3600) * 100;
 
        % Clamp SOC between 0 and 100
        SOC_internal = max(0, min(100, SOC_internal));
    end
 
    % Output
    SOC = SOC_internal;
 
    % Update previous time
    prev_t = t;
end
 
 

Figure 5.13: MATLAB Function Block Code – SOC Estimation
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23/5/25 4:02 PM Block: BATTERY_BLOCK_C.../MATLAB Function1 1 of 1

function Voc = Voc_computation(SOC, T, Ibatt)
    % Voc_computation calculates the open-circuit voltage (Voc) based on SOC and 
temperature
    % for a Li-ion 18650 battery.
    %
    % Inputs:
    % SOC   - State of Charge (in percentage, 0 to 100)
    % T     - Temperature (in degrees Celsius)
    % Ibatt - Battery current (in Amperes)
    %
    % Output:
    % Voc   - Open-circuit voltage (V)
 
    % Ensure SOC is within limits (0% to 100%)
    SOC = max(0, min(100, SOC));
 
    % Coefficients for SOC-based Voc polynomial equation
    a5 = -1.035;
    a4 = -35;
    a3 = 0.315;
    a2 = -0.075;
    a1 = 0.495;
    a0 = 3.575;
 
    % Compute Open-Circuit Voltage (Voc)
    % Compute Open-Circuit Voltage (Voc)
    Voc = a3 * (SOC/100)^3 + a2 * (SOC/100)^2 + a1 * (SOC/100) + a0 + (a5 * exp(a4 * 
(SOC/100)));
 
    % Ensure Voc does not go below 2.5V (minimum Li-ion voltage)
    Voc = max(2.5, Voc);
 
    
    
    % Define temperature-dependent internal resistance (R_int)
    % Typical 18650 battery internal resistance values (mΩ)
    R_25 = 20e-3;  % Internal resistance at 25°C (Ohms)
    R_T = R_25 * (1 + 0.01 * (T - 25));  % Resistance varies ~1% per °C deviation
 
 
end
 

Figure 5.14: MATLAB Function Block Code – Voltage Calculation
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23/5/25 4:02 PM Block: BATTERY_BLOCK_C.../MATLAB Function2 1 of 2

function [Vbatt, Ibatt_out] = Vbatt_computation(Voc, SOC, T, Ibatt, dt, N_series, 
N_parallel)
    % Computes battery terminal voltage based on Voc, internal resistance, and RC network
 
    % Battery parameters (assumed for Li-ion 18650)
    Ro_25 = 0.01;  % Internal resistance at 25°C (Ohm per cell)
    Rn_25 = 0.005; % Network resistance at 25°C (Ohm per cell)
    Cn_25 = 500;   % Network capacitance at 25°C (Farads per cell)
 
    % Adjust internal resistance based on SOC and Temperature
    Ro = (Ro_25 * (1 + 0.01 * (T - 25))) * (N_series / N_parallel); % Ohmic resistance
    Rn = (Rn_25 * (1 + 0.005 * (T - 25))) * (N_series / N_parallel); % Network resistance
    Cn = (Cn_25 * (1 - 0.002 * (T - 25))) * (N_parallel / N_series); % Network 
capacitance
 
    % Compute open-circuit voltage for entire pack
    Voc_total = Voc * N_series;
 
    % Persistent Variables for RC Network
    persistent V_RC prev_Ibatt;
    
    % Initialize persistent variables with default values
    if isempty(V_RC)
        V_RC = 0;
    end
    if isempty(prev_Ibatt)
        prev_Ibatt = 0;
    end
 
    % Compute RC time constant
    tau = max(Rn * Cn, 1e-6); % Prevent near-zero tau
    alpha = min(dt / tau, 1); % Stability factor: dt/tau should not exceed 1
 
    % Update RC voltage with stability control
    V_RC = V_RC + alpha * (Rn * Ibatt - V_RC);
 
    % **Clamping V_RC to avoid overflow**
    V_RC = max(min(V_RC, 5 * Voc_total), -5 * Voc_total);
 
    % Compute battery terminal voltage before adding hysteresis
    Vbatt = Voc_total - (Ibatt * Ro) - V_RC;
 
    % Hysteresis Effect
    k1 = 0.005;  % Charging hysteresis coefficient
    k2 = 0.004;  % Discharging hysteresis coefficient
 
    if Ibatt < 0  % Charging
        Vhyst = k1 * log(1 + abs(Ibatt));
    else  % Discharging
        Vhyst = -k2 * log(1 + abs(Ibatt));
    end

Figure 5.15: MATLAB Function Block Code – Mode Switching Logic
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Chapter 6

Hardware Topology and Circuit

Design of Battery Emulator

6.1 Overview of the Hardware Architecture

The hardware architecture of the developed battery emulator comprises two main

bidirectional power converter stages: an Active rectifier interfacing with the

AC grid and a bidirectional DC-DC converter that emulates the behavior

of the battery terminal.

The active rectifier draws power from the AC grid and regulates the intermediate

DC link voltage. It also enables reverse power flow during charging conditions

by operating as an inverter, thus maintaining the stability of the DC link.

The bidirectional DC-DC converter operates as a controlled voltage source using

pulse-width modulation (PWM). It generates the terminal voltage Vbatt based

on the reference voltage Vbatt,ref computed in real time by the battery model.

The converter supports two-quadrant operation, enabling both charging and

discharging through the connected load. [14], [50]
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Figure 6.1: Full wave rectifier and Buck/Boost Converter with Battery. [14]

A DC-link capacitor CDC acts as an energy buffer between the two converter

stages, facilitating smooth power transfer. The emulator functions in the follow-

ing modes:

– Discharge Mode: The active rectifier draws energy from the grid to main-

tain the DC-link voltage. The bidirectional converter steps this voltage

down to supply the external load, effectively emulating battery discharge.

– Charge Mode: When the load injects current into the emulator, the

bidirectional converter boosts the voltage and transfers the energy to the

DC-link. The active rectifier, acting as an inverter, feeds this power back

to the grid.

Protection mechanisms such as fuses and internal current limiting circuits are

incorporated to ensure safe and reliable operation under abnormal or fault con-

ditions.

6.2 DC/DC Bidirectional Converter Design

The HBC is specifically sized to support a 1C charge/discharge rate for the

emulated battery pack, i.e., 11 A for an 11 Ah battery. The converter was
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designed considering both dynamic performance and efficiency, using a switching

frequency of 25 kHz as a balance between control bandwidth and switching losses.

Figure 6.2: Buck Boost Bidirectional Converter. [15]

To minimize ripple while maintaining fast dynamic response, the output inductor

(L) and capacitor (C) were selected based on the following design constraints:

– Output current ripple: ≤ 1% of rated current

– Output voltage ripple: ≤ 1% of rated voltage

The minimum required inductance and capacitance values were calculated using:

Lmin =
100 · Vin

8 · fsw · Iout · ri
= 2mH (6.1)

Cmin =
25

L · f 2
sw · rv

= 2mF (6.2)

However, higher values were selected in practice to ensure robustness under

varying conditions [51] [14]. The final specifications of the Converter are given

below:
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Table 6.1: Electrical Parameters of the DC DC Converter

Parameter Symbol Value

Rated Power PN 1.22 kW

Input Voltage Vin 400 V DC

Input Current Iin 6 A DC

Output Voltage Vout 100 V DC

Output Current Iout 10 A DC

Output Inductor / Resistance L,RL 12 mH, 400 mΩ

Output Capacitor / Resistance C,RC 60 µF, 1.4 Ω

Switching Frequency fsw,HBC 25 kHz

6.2.1 Simulation Results

The experimental evaluation of the Converter under a 1C load condition (11 A)

confirms its ability to deliver stable and regulated output. As shown in Fig. 6.3,

the output voltage is maintained near 100 V, and the current remains within the

1% ripple constraint. The SOC profile reflects smooth charging/discharging be-

havior, validating effective integration with the battery simulator. These results

confirm the suitability of the selected inductor and capacitor values, demonstrat-

ing reliable performance with good transient and steady-state response.

The measured output current of the DC-DC Converter, as shown in Figure 6.4,

follows the expected charging profile with high fidelity. The current remains

steady at 10 A with minimal ripple, well within the 1

The measured output voltage (Vout) closely follows the reference voltage (Vref),

demonstrating accurate voltage regulation and effective control. The minimal

deviation between the two confirms the converter’s fast dynamic response and

steady-state accuracy.
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Figure 6.3: Measured output voltage (Vout) and (VBridge) under load.

Figure 6.4: Measured output current (Iout).
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Figure 6.5: Measured output voltage (Vout) and reference voltage (Vref) waveforms

showing accurate tracking and stable regulation under load condition.

6.3 Single-Phase Active Rectifier

A single-phase active rectifier was implemented to interface with the AC mains,

providing improved power quality and control compared to conventional diode

rectifiers. Operating at a PWM switching frequency of 5 kHz, the active rectifier

regulates energy flow from the AC source to the DC bus while maintaining a

stable DC-link voltage. This configuration allows precise input current control,

supports power factor correction, and ensures reliable operation of the down-

stream Half-Bridge DC-DC converter during simulated evaluation.[52]

When sizing the DC-link capacitor CDC, the trade-off between ripple suppression

and dynamic performance was considered. The minimum required capacitance

can be estimated by:

CDC ≥ 1

32 · rDC,max · LR · f 2
sw,VSI

(6.3)
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Table 6.2: Electrical Parameters of the Single-Phase VSI

Parameter Symbol Value

Rated Power PN,VSI 20 kW

AC Input Voltage (Grid) Vin, VSI 230 V AC

AC Input Current Iin, VSI 30 A RMS

Maximum DC Link Voltage VDC, max 400 V DC

DC Link Capacitance CDC 3000 µF

Switching Frequency Fsw, VSI 10 kHz

Input Inductors LR 12 mH

Inductor Parasitic Resistance RR 300 mΩ

The RMS current through the DC-link capacitor is given by:

IDC, rms =
VDC

8
√
2 · LR · fsw, VSI

(6.4)

Where:

– LR is the AC-side inductance,

– rDC,max is the maximum acceptable ripple (typically 1%).

Film capacitors were preferred over electrolytic types due to their higher toler-

ance for ripple current, enabling a more compact and durable DC-link design.

[53]

6.3.1 Simulation Results

The simulation confirms that the active rectifier maintains a stable DC-link

voltage and delivers a sinusoidal input current. Figure 6.7 shows the input

voltage and current waveforms, with a noticeable phase difference indicating

potential for improved power factor correction.
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Figure 6.6: Active Rectifier. [14]

Figure 6.7: Simulated input voltage (Vac) and current (Iac) waveforms of the single-

phase active rectifier.

Figure 6.8 illustrates the simulated DC-link voltage (Vdc) and current (Idc) wave-

forms. The DC voltage remains stable around the desired reference, indicating

effective voltage regulation. The output current shows expected dynamic be-

havior in response to load conditions, validating the control performance of the

rectifier.

Cosine and sine reference signals are used to generate the modulation signals
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Figure 6.8: Simulated DC-link voltage (Vdc) and current (Idc) waveforms of the single-

phase active rectifier.

for the active rectifier. These waveforms ensure proper phase control and enable

sinusoidal current shaping. Figure 6.9 shows the generated reference signals.

Figure 6.9: Generated cosine and sine reference signals for modulation.

PWM signals are generated by comparing the reference waveforms with a carrier

signal to control the switching of the rectifier. Figure 6.10 presents the generated

PWM signals.
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Figure 6.10: PWM signals used for switch control in the active rectifier.

6.4 Prototype Evaluation

No physical prototype was built; instead, the entire system was evaluated us-

ing MATLAB / Simulink simulations. The Converter and Active rectifier were

modeled with realistic parameters, including a 400 V DC link voltage. The simu-

lations showed effective control and decoupling of the converter stages, validating

the proposed design.

The controller uses a PI feedback loop to regulate output voltage and ensure

stable operation under varying loads.

6.5 Scalability Considerations

The proposed architecture can easily scale for higher-power applications. For

ratings up to 100 kW, it is feasible to redesign existing stages with appropri-

ately rated components. For applications requiring even greater power, multiple

emulator units can be connected in parallel. This modularity offers a clear ad-
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Figure 6.11: Simulink model diagram of the DC-DC converter used in the simulation

study.

vantage over linear amplifiers, which typically suffer from low efficiency and are

not suitable for high-power scenarios.

6.6 Grid Synchronization and Power Control

Techniques

6.6.1 Phase-Locked Loop (PLL) Structure

To ensure synchronization with the grid, a Phase Locked Loop (PLL) is

implemented in the control system. For this study, the T/4 Delay PLL algo-
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+− PI(s) PI(s)+−

Figure 6.12: Block diagram of the controller implemented for the DC-DC converter.

rithm was adopted due to its effectiveness in handling grid-connected applica-

tions. [54]

This algorithm requires transformation between the stationary α-β reference

frame and the rotating d-q reference frame. To generate the orthogonal β

component, the real signal α is phase-shifted by 90◦ (π/2). In discrete time

with sampling period T , this is achieved by delaying the α signal by N = T/4

samples.
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The orthogonal component β(n) can be expressed as:

β(n) = −α(n−N) (6.5)

From the α-β signals, the Park transformation produces the d-q components:

vd(n) = α(n) cos(θ(n)) + β(n) sin(θ(n)) (6.6)

vq(n) = −α(n) sin(θ(n)) + β(n) cos(θ(n)) (6.7)

The PLL error signal is defined as:

e(n) = vd(n) · vq(n) (6.8)

A proportional-integral (PI) controller acts on this error to adjust the estimated

grid angle θ(n) and frequency ω(n):

ω(n) = ω(n− 1) +Kp(e(n)− e(n− 1)) +Kie(n) (6.9)

θ(n) = θ(n− 1) + ω(n)T (6.10)

Here Kp and Ki are the gains of the PI controller.

6.6.2 Bidirectional Battery Charging/Discharging Con-

trol

The emulator supports bidirectional current flow that enables both charging

and discharging of the emulated battery. Current direction and magnitude are

managed by the control algorithms of the Converter and AC-DC converters,

responding to the real-time battery model outputs. [15]

The hardware design, combined with software control, achieves rapid dynamic

response and high efficiency during both energy injection and absorption phases.
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Figure 6.13: Diagram of the Active rectifier stage

6.7 Power Control Strategy and PR Current

Controller

The control system of the grid-connected emulator uses a single-phase active

rectifier with real-time power control and current regulation. The schematic of

this system is shown in the control block diagram. Fig. 6.13

To monitor and regulate power flow, instantaneous active (P) and reactive (Q)

power are calculated using the following expressions derived from α− β theory:

P =
1

2
(VαIα + VβIβ) (6.11)

Q =
1

2
(VαIβ − VβIα) (6.12)
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These power values are compared against reference values, and the resulting error

is processed by a PI controller. The corrected output is then used to compute

the reference current.

The reference angle is calculated from the power ratio:

θref = tan−1 Q

P
(6.13)

The corresponding q-axis reference current is computed by:

Iq =
P

Vg cos(θref )
(6.14)

The final reference current injected into the grid becomes:

iref = 2Iq sin(ωt− θref ) (6.15)

This reference current is compared with the measured current Iα, and the re-

sulting error is sent to the current controller.

6.8 Proportional Resonant (PR) Current Con-

troller

The current control uses a Proportional Resonant (PR) controller, ideal for reg-

ulating sinusoidal currents in grid-tied systems without d-q transformation. Un-

like an ideal PR controller with infinite gain at resonance, a non-ideal version

with damping is employed to limit harmonic amplification. Its transfer function

is:

GPR(s) = Kp +
2Kis

s2 + 2ωcs+ ω2
n

(6.16)
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where Kp is proportional gain, Ki integral gain, ωn grid frequency, and ωc damp-

ing cutoff. This ensures stable, fast, and accurate current control with harmonic

rejection.

6.9 Bidirectional Battery Charger Circuit and

Control Scheme

Bidirectional battery chargers play a vital role in modern energy storage sys-

tems, especially in electric vehicles, renewable energy integration, and microgrid

applications. These systems must efficiently manage energy flow in both direc-

tions — charging the battery from a power source and discharging energy back

to the load or grid. To achieve high efficiency and compact design, bidirectional

DC-DC converters are commonly employed.

The converter topology used in this project consists of a single voltage source,

a low-pass LC filter, two MOSFET switches, and a rechargeable battery. This

simple yet effective circuit allows bidirectional current flow through controlled

switching and energy storage components. The converter operates as a buck

converter during battery charging and as a boost converter during discharging,

depending on the power flow direction and switch states.

6.9.1 Battery Charging Operation: Buck Mode

During the charging phase, the converter steps down the input voltage and

supplies a regulated current to the battery. This operation is essentially that of

a buck converter. Two distinct switching intervals define the charging behavior:
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In the first interval, often referred to as Mode-I, switch M1 is turned ON while

M2 remains OFF. Under these conditions, both freewheeling diodes are non-

conducting. The input supply is directly connected to the inductor and battery,

causing the inductor current to increase linearly as energy is stored magnetically.

This interval corresponds to the time when the PWM signal is high (from 0 to

D · T , where D is the duty cycle and T is the switching period).

(a) Switches M1, M4, M5 (b) Switches M1, M4, M6

(c) Switches M2, M3, M5 (d) Switches M2, M3, M6

Figure 6.14: Switching cycle during Buck Mode.

In the second interval (Mode-II), both switches M5 and M6 are turned OFF.

The energy stored in the inductor is now released to the battery through diode

D6, maintaining a continuous current path. This freewheeling mode ensures

the output current remains nearly constant, reducing stress on the battery and

improving charge quality.

The average output voltage in buck mode is determined by the duty cycle and

input voltage, as given by:

V0 =
ton
T

Vs (6.17)
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or equivalently,

V0 = DVs

(
∵ D =

ton
T

)
(6.18)

This equation illustrates that by modulating the duty cycle D, the controller can

regulate the voltage supplied to the battery with high precision. The resulting

current waveform exhibits a controlled ramp-up and ramp-down behavior across

switching cycles, as visualized in the standard charging mode waveforms. The

inductor current oscillates between a minimum (I1) and maximum (I2) value,

while the average output current remains stable due to the smoothing effect of

the capacitor.

6.9.2 Battery Discharging Operation: Boost Mode

When the system operates in discharging mode, the converter topology transi-

tions into a boost converter configuration. In this mode, the battery acts as the

energy source, and power is delivered to the external load or system supply.

The discharging process is also divided into two operational intervals. During

Mode-III, switch M6 is turned ON while M5 is kept OFF. The battery current

flows through the inductor, charging it magnetically. Both freewheeling diodes

remain non-conducting during this stage, and no energy is transferred to the

load yet.

In Mode-IV, both switches are OFF, and diode D1 becomes forward-biased. The

inductor releases its stored energy through the diode into the load. This results

in a boost of the battery voltage, as energy from the inductor adds to the battery

voltage at the output.
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The average output voltage during boost operation is given by:

V0 =
1

1−D
Vs

(
∵ D =

ton
T

)
(6.19)

This expression shows that as the duty cycle increases, the output voltage rises,

allowing the system to deliver higher voltages than the battery’s nominal rating.

Proper control of the duty cycle ensures safe and efficient energy transfer from

the battery, especially in grid-tied or high-voltage systems.

The corresponding current waveforms in discharging mode show the inductor

current increasing and decreasing symmetrically, similar to charging operation,

but in the reverse direction. These controlled waveforms help maintain smooth

power delivery and reduce electromagnetic interference.

(a) Switches M1, M5, M6 (b) Switches M1, M4, M5

(c) Switches M2, M3, M6 (d) Switches M2, M3, M5

Figure 6.15: Switching cycle during Boost Mode.
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6.10 Control Strategy for Bidirectional Opera-

tion

To ensure accurate and responsive control of current flow during both charging

and discharging, a closed-loop feedback control system is implemented. The core

of the control scheme relies on a Proportional-Integral (PI) controller paired with

a PWM generator.

The system operates by continuously comparing the actual inductor current with

a predefined reference current. This comparison generates an error signal, which

is processed by the PI controller. The output of the controller modulates the

duty cycle of the PWM signal, which in turn drives the gate signals of switches

S5 and S6.

Depending on the desired mode of operation:

– In charging mode, PWM1 activates switch M5, and switch M6 remains

OFF.

– In discharging mode, PWM2 activates switch M6, while switch M5 is turned

OFF.

This logical switching ensures proper directionality of energy flow and maintains

system stability under dynamic conditions. The use of a PI controller enables

tight current regulation with minimal steady-state error, while the PWM gen-

erator allows for high-resolution control of the power electronic switches.

The overall scheme ensures that the converter can adaptively and efficiently

manage the transitions between buck and boost modes, with reliable performance

across different load scenarios and battery states.

71



6.11 Conclusion

In summary, the bidirectional DC-DC converter circuit provides a compact and

flexible solution for managing both charging and discharging cycles in energy

storage systems. Its ability to operate in both buck and boost configurations

using a simple dual-switch structure makes it highly suitable for modern appli-

cations, including battery emulation, electric vehicle charging, and smart grid

interfaces.

The integrated PI-based control scheme further enhances the performance by

ensuring accurate current control and seamless mode switching. Together, the

power stage and control system provide a foundation for reliable, high-efficiency

bidirectional power conversion essential in advanced battery management and

testing applications.

6.12 Dual Loop Control of Bidirectional DC-

DC Buck-Boost Converter

Bidirectional DC-DC converters have gained significant importance in modern

power electronics, especially in applications such as battery energy storage sys-

tems, renewable energy integration, and electric vehicles. Among various topolo-

gies, the buck-boost bidirectional converter is highly versatile as it can operate in

both step-down (buck) and step-up (boost) modes, ensuring voltage regulation

in both directions of power flow. However, maintaining stability and dynamic

performance across varying operating conditions poses a control challenge.

To address these challenges, dual-loop control has emerged as an effective tech-
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nique that improves both transient response and steady-state accuracy. In a

dual-loop control structure, two control loops are employed:

– Inner Loop (Current Control Loop): This loop regulates the induc-

tor current and ensures fast response and protection against overcurrent

conditions.

– Outer Loop (Voltage Control Loop): This loop regulates the output

voltage by generating the reference current for the inner loop.

Operation Principle

In the buck mode, the converter steps down the input voltage to a lower output

voltage. In the boost mode, it increases the input voltage. The bidirectional

nature allows seamless transition between charging and discharging modes in

energy storage applications.

For such converters, the state-space averaged model provides the basis for control

design. Considering a simplified non-isolated buck-boost converter, the voltage-

current relationships in continuous conduction mode (CCM) can be expressed

as:

6.13 Operation Principle

In the buck mode, the converter steps down the input voltage to a lower output

voltage. Conversely, in the boost mode, it increases the input voltage. The bidi-

rectional nature of the converter allows a seamless transition between charging

and discharging modes in energy storage applications.

For such converters, the state-space averaged model provides the basis for control
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design. Considering a simplified non-isolated buck-boost converter operating in

continuous conduction mode (CCM), the voltage-current relationships can be

expressed as follows:

Vout =

D · Vin, Buck mode

Vin

1−D
, Boost mode

(6.20)

where D is the duty cycle, Vin is the input voltage, and Vout is the output voltage.

In the dual-loop control strategy, the outer voltage loop compares the measured

output voltage Vout to the reference voltage Vref and generates a reference current

Iref as:

Iref = Kv · (Vref − Vout) (6.21)

Here, Kv is the proportional-integral (PI) gain of the voltage controller.

This reference current Iref is then used by the inner current loop, which compares

it to the measured inductor current IL. The resulting error is processed by

another PI controller to produce the duty cycle D for the PWM control signal:

D = f(Ki · (Iref − IL)) (6.22)

where Ki is the PI gain of the current controller, and f(·) represents the PWM

modulation function.
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6.14 Advantages of Dual Loop Control

– Improved Transient Response: The inner current loop provides a fast

dynamic response to disturbances, ensuring quick correction of current de-

viations.

– Enhanced Stability: The separation of time scales between the slower

outer voltage loop and the faster inner current loop enhances overall system

stability and robustness.

– Robustness to Load Variations: The inner current loop acts as a buffer,

making the system less sensitive to sudden load changes and maintaining

steady output voltage.

– Bidirectional Operation: The same dual-loop control structure can be

effectively adapted to manage both charging (buck mode) and discharging

(boost mode) operations, facilitating seamless bidirectional power flow.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis has explored the modeling and emulation of Lithium-ion Batteries

(LIBs), with a specific focus on empirical techniques and real-time implemen-

tation. Several key conclusions can be drawn from the work presented in the

previous chapters:

The motivation for selecting LIBs as a core energy storage medium was discussed

in Chapter 2, emphasizing their high energy density, scalability, and suitability

for both high-power and high-energy applications. Although LIBs are currently

associated with high costs, projections indicate a significant reduction in cost as

manufacturing processes improve and economies of scale take effect [55]. Alter-

natives such as Sodium-Sulfur (Na-S) and Vanadium Redox (VR) flow batteries

were also acknowledged for their potential in stationary storage applications,

particularly for long-duration and large-scale energy requirements [2].

In Chapter 3, a comparative analysis of prevailing LIB chemistries was con-

ducted. Among these, Lithium Iron Phosphate (LFP) emerged as a favor-

76



able candidate due to its thermal stability, long lifecycle, and relatively lower

cost [5]. However, chemistries like Lithium Nickel Cobalt Aluminum Oxide

(NCA), Lithium Nickel Manganese Cobalt Oxide (NMC), and Lithium Titanate

Oxide (LTO) also exhibit promising capabilities, though their adoption is cur-

rently limited by cost and availability of raw materials. Novel chemistries such

as lithium-silicon anodes were briefly reviewed, presenting interesting prospects

for future energy-dense solutions [48].

Prior to the modeling phase, Chapter 4 presented a comprehensive review of

battery behavior, including the effects of C-rate, temperature, and aging. These

parameters significantly influence battery performance and underline the com-

plexity of accurate modeling.

Chapter 5 offered a literature review of existing battery modeling methodolo-

gies. Empirical and semi-empirical models, such as the Shepherd model, offer a

reasonable balance between computational simplicity and accuracy when oper-

ating within specified ranges [56]. However, their dynamic performance is often

limited due to oversimplified assumptions and lack of non-linear behaviors.

In Chapter 6, the hardware topology and circuit design of the battery emulator

were presented, highlighting the roles of the active rectifier and the bidirectional

DC-DC converter. The active rectifier ensures regulated DC link voltage and

supports bidirectional power flow, while the DC-DC converter accurately emu-

lates battery terminal behavior using reference voltages from the battery model.

The overall design offers a reliable and flexible platform for real-time battery

emulation, laying the groundwork for experimental validation in the subsequent

chapter.
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7.2 Future Work Recommendations

The following recommendations are proposed to further improve the accuracy

and applicability of the Curve Fitting Model:

– Validation with Real Battery Data: Conduct a rigorous comparison

between simulated results and measurements obtained from actual LIB cells

under various load profiles.

– Dynamic Voltage Modeling: Incorporate a more detailed dynamic volt-

age response (especially VBOUT ) to enhance realism under transient condi-

tions.

– Constant Voltage (CV) Charging Phase: Integrate modeling of the

final charging phase using the concept of virtual impedance to improve

emulation during tapering current scenarios.

– State-of-Charge (SOC) Estimation Improvements: Implement ad-

vanced SOC estimation algorithms such as Extended Kalman Filter (EKF),

Unscented Kalman Filter (UKF), or machine learning techniques [23].

– Incorporation of State-of-Health (SOH) and Aging Effects: Intro-

duce modules that account for battery degradation over time to estimate

SOH and remaining useful life (RUL).

– Temperature Feedback Loop: Develop a temperature feedback mecha-

nism that adjusts the model in real time based on thermal conditions.

– Precision Optimization: Explore different IQmath ranges and data

quantization techniques to improve numerical stability and model fidelity

in fixed-point environments.
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In addition, close monitoring of trends in the LIB market and ongoing techno-

logical advancements will be essential. The industry is rapidly evolving, and it

remains to be seen which LIB technology will ultimately dominate in terms of

efficiency, cost, and safety.
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