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Abstract

This thesis investigates the application of a physics-informed artificial
intelligence (ai) model for the structural analysis of locomotive components,
with a specific focus on the blower cab, a critical subsystem responsible for
ventilation in railway locomotives. The research investigates the ability of the
Al model to forecast the structural behaviour of the blower cab under different
pillar thicknesses, utilizing a dataset of simulation files to train, evaluate, and

predict results.

The methodology encompasses the generation of blower cab models with
thicknesses ranging from 3 mm to 6.5 mm, finite element analysis (FEA) to
produce result files, and the training of a physics-informed neural network to
predict displacements. Testing on six configurations (3.5 mm and 5.5 mm
thicknesses) yields accuracies exceeding 97%, with mean absolute errors
(MAE) of 0.705 mm and 0.239 mm, respectively, and prediction times of less
than 1 minute compared to 20 minutes for FEA. Predictive results for
thicknesses of 4.5 mm and 6.5 mm (22.36 mm and 22.25 mm maximum
displacements) align with structural mechanics principles, demonstrating a
consistent decrease in displacement with increasing thickness. The model's high
accuracy can be attributed to minimal design variations, although slight
reductions in accuracy for specific configurations indicate sensitivity to the

range of training data.

The study also elucidates key concepts in neural network modelling, including
epochs, width, depth, confidence values, early stopping, and learning rate,
tailored to physics-informed ai applications. The results highlight the model's
effectiveness in quickly assessing designs with minor variations, achieving an
accuracy rate of over 97% across all test scenarios, while emphasizing the
importance of traditional analysis tools for significant modifications. Future
research endeavours intend to expand the model to encompass larger
locomotive components, such as the engine and platform, and incorporate
additional structural metrics, including stress and fatigue, to provide a more

comprehensive analysis. This study develops a flexible framework that
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combines physics-based artificial intelligence with locomotive design, enabling

efficient and automated structural optimization in railway engineering.



TABLE OF CONTENT

Chapter 1 INtrOAUCTION. ..ot 16
1.1 Neural networks: basics and CONCEPLS. .......cccvvvveveiieieereiee e 16
1.1.1 Organization of artificial neural SyStems...........ccccccvveiiviie i, 16
1.1.2 Classification of neural NEtWOrKS. ..........ccocoiiiniiiiien e 17

1.2 LOCOMOTIVES: ..ottt bbbttt bbb sne e 20
1.2.1 Components of I0COMOLIVES. .......ccocieiieiiiie e 20
1.2.3 ODSEACIES IN QU PIrOCESS. .....covveiieiiiieteite sttt 24
Chapter 2 MethodolOgy .........ccoiiiiiiiiiieee s 25
2.1 Model Training and Hyperparameters..........cccovverineienese e, 26
2.2 EArlY STOPPING....eiiiiiiiiieiieee ettt 28
2.3 LEAINING FALE .....iceie ettt re e ae e nreas 28
2.4 OVEFAll TIOW.......oiiiiiiieee e 31
2.5 Right value of epoch, width and depth..........c..cocooiiiiii e, 31
2.6 CONTIAENCE VAIUE........ooiiiiieieee e 32
Chapter 3 Sample Model L........cccooiiiiiie e 34
3.2 Changes in the shape of HVAC dUCES. ......cccooeiiiiiiiiiccce e, 35
3.3 Creation and assessment of novel frameworks...........cccoveiiiiiiiiiee, 37
Chapter 4 Sample Model 2...........ooiiiiii e 39
4.1 Model Testing and RESUILS ..........cccooiiiiiiie e 42
Chapter 5 Locomotive COMPONENT ...........ccouiiieiieieiie e 44
Chapter 6 ReSUlIt & DISCUSSION .......cciiiiiiiiie e 48
8.1 RESUIL: ...t 50
8.2 DISCUSSION  ....ttetietieeieeieestestee e ete et e ste e e s seessaeteeseesseenteeneesseesteeneesseeaseensenneennens 51
Chapter 7 Conclusion and Scope for FULUFE...........ccooiiiiricieie e 53
78 o T 1151 o SR SSSRRS 53
T2 FUTUIE SCOPE ...ttt ettt nne s 54

R B  EINICES ...t nnnnnnnnn 56

0 - Unrestricted



Figure1:
Figure 2 :

Figure 3 :
Figure 4 :
Figure5:
Figure 6 :
Figure 7 :
Figure 8 :
Figure 9 :

Figure 10 :
Figure 11 :
Figure 12 :
Figure 13 :
Figure 14 :

LIST OF FIGURES

ShoWING the NOTE. ......coiiiiiii e 18
Artificial Neural Network showing width and depth..............ccccee. 19
LOCOMOtIVE @Nd ItS PAFTS......cccveiieirieiecie e 20
Altair Hypermesh user interface...........ccoccoveviiiiiici s 26
Width and Depth in neural NEtWorK ............ccooeiieiininiieeee, 27
Physical significance of Width..............cccoiiiiiiiie 27
Physical significance of depth...........ccccoov i, 28
Showing coordinate of nodes and Pressure. .........cccoccevveveiieceeseeceeinen, 29
Overall flow of PrediCtion ..........coovviiiiiii s 31

Overall flow (ANN SNOWN) ......ooiiiiii e 31
HVAC QUCL. ... 34
HVAC duct with entry and eXit ...........ccccoviieiiieiiie e 34
All seven input models are SROWN. ... 35
Two testing models oOf HVAC. ... 36

Figure 15 : Testing of HVAC dUCL..........cccooiiiieciccece e 37
Figure 16 : Prediction of HVAC dUCE .........coooiiiieiice e, 37
Figure 17 : Newly formed geOMELIY. ......cooiiiiiiiiiieiieiee e 38
Figure 18 : Prediction of newly formed geometry .........ccccoeieiiniienininineicee, 38
Figure 19 : Structural arm ..o 39
Figure 20 : Structural arm with dimension............cccccocvevieic i, 40
Figure 21 : Changes in Structural arm...........cccoooiiiiiiiic e 40
Figure 22 : Testing Of first MOdel ..........cooiiiiiiii e 40
Figure 23 : Testing of second MOdEl ...........cooiieiiiiiiic e 41
Figure 24 : Testing of third model.............cccoooiiiiiic 41
Figure 25 : Testing of fourth model.............cccoooiiiiiiiie 41
Figure 26 : Testing of fifth model ... 42
Figure 27 : Testing of sixth model ..., 42
Figure 28 : Geometry of bIOWEr Cab..........cccooviiiiiiii e 45
Figure 29 :Door centre Post and Door post in blower cab............c.ccoooiiiinnn, 45
Figure 30 : Post in blower cab model ..........ccoooiveiiiie i, 46
Figure 31 : Table of thiCKNESS ..o 46

Figure 32

: Different thickness used of training, testing and prediction .............. 47

0 - Unrestricted



0 - Unrestricted

Figure 33 : Testing of 3.5mm blower cab ............cccooeviiiiii 49
Figure 34 : Testing of 5.5 mm blower cab ...........ccccoeiviiiiic i 49
Figure 35 : Prediction of 4.5mm and 6.5 mm blower cab ............cc.ccoccoiiiiienne, 50



0 - Unrestricted

LIST OF TABLES
Table 1 : SUPPOITEA SOIVEIS.....cceeiieeciece e s 29
Table 2 : OptioNS FOr INPUL..........ooiiiiiiii e 30

Table 3 : Table Of ACCUNACY .......cccovveiiiiece e 43



ACRONYMS

ANN - Artificial neural network

FNN — feed forward neural network

FEA — finite element analysis

Al — artificial Intelligence

RNN - recurrent neural network

CNN - Convolutional neural network
LSTM - Long short-term memory

MAE — Mean absolute error

AAR - Association of American railroad
CFD - Computational fluid dynamics
HMI — Human machine interface

PTC — Positive train control

APU — Auxiliary Power Unit

PINN — Physics Informed Neural Network
FEM - Finite Element Method

HVAC - Heating Ventilation Air Conditioner

CAD - Computer Aided Design

0 - Unrestricted



Chapter 1 Introduction

The fast-paced development of artificial intelligence (Al) has transformed numerous

industries, and the rail sector stands out as a significant beneficiary. Rail transportation

heavily relies on locomotives, which are intricate systems that require exceptional
reliability, efficiency, and safety. The utilization of artificial intelligence, particularly
through neural networks, presents substantial opportunities to improve locomotive
performance by enabling predictive maintenance, optimizing traction, and facilitating
autonomous operations. The focus of this thesis is the incorporation of neural networks
into locomotive systems, taking inspiration from the groundbreaking work done by
Wabtec corporation, a renowned pioneer in the field of rail technology. This
introduction offers a thorough overview by explaining the basics of neural networks,
the functioning of locomotives, and the impact of Al on revolutionizing locomotive

systems.

1.1 Neural networks: basics and concepts.

Neural networks are computational models that draw inspiration from the structure and
functionality of the human brain, enabling them to handle intricate data and recognize
patterns (goodfellow et al., 2016). A neural network is composed of interconnected
nodes, known as neurons, arranged in layers: an input layer, one or more hidden layers,
and an output layer. Each node holds a value and processes inputs through weighted
connections, utilizing an activation function to generate an output. The network refines
these weights during the training process, commonly employing backpropagation and

optimization methods like gradient descent.

1.1.1 Organization of artificial neural systems.

A typical neural network comprises:
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The input layer of the system processes raw data, such as sensor readings or operational
parameters, in locomotive applications. Beneath the surface carry out calculations,
extract meaningful information, and uncover hidden patterns through interconnected
nodes. Output layer generates the final prediction or classification, such as identifying

faults or determining maintenance schedules.

Weights are assigned to the connections between nodes, indicating the level of
influence one node has on another. Activation functions, including sigmoid, RELU
(rectified linear unit), or Tanh, introduce non-linearity, allowing the network to capture

intricate relationships.

1.1.2 Classification of neural networks.

There are various types of neural networks that are applicable to locomotive

applications:

Feedforward neural networks (FNN): data flows in one direction, making them ideal
for static data processing tasks, such as predicting the wear of locomotive components.
Recurrent neural networks (RNN): specifically designed for sequential data, with loops
that enable the retention of previous inputs, making them well-suited for analysing

locomotive sensor data over time.

Convolutional neural networks (CNN): highly effective for image-based tasks, such as

analysing track images to detect defects.

Long short-term memory (LSTM) networks: a specific type of recurrent neural network
(RNN) that is particularly effective in capturing long-term dependencies, making it

ideal for analysing track maintenance logs.
Development of Our Skills

Neural networks acquire knowledge through a training process, where they modify
weights to minimize a loss function, often utilizing labelled data. The training

comprises:

Input data flows through the network, leading to the generation of predictions. The loss
calculation involves finding the difference between the predicted and actual outputs,

which is done using a loss function like mean squared error.
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Backpropagation: The gradients of the loss function are computed, and weights are
adjusted using optimization algorithms such as adam or stochastic gradient descent.
The ability to learn and adapt makes neural networks valuable tools for predicting

outcomes and making decisions in intricate systems like locomotives.

»{ A point / dot

A Dot is used to store the
value that dot is known
as node. (different from

mesh node)

Figure 1 : Showing the node.

In the context of network-based computational models, a node, often represented as a
discrete point or vertex within a graph-theoretic framework, serves as a fundamental
unit for storing data or values pertinent to the system's operation. These nodes are linked
by edges, forming a network structure that encompasses the connections and
interactions between individual data points. This network architecture enables the
representation and processing of intricate information, like the synaptic connections
found within the human brain. Specifically, the network's functionality mirrors
cognitive processes by facilitating dynamic information exchange, pattern recognition,
and adaptive learning, like neural networks in biological systems. Such a structure
underpins various computational paradigms, including artificial neural networks
(ANN), where nodes (or neurons) process input data through weighted connections,
iteratively adjusting based on learning algorithms to optimize performance, thereby

emulating the adaptive and parallel processing capabilities of the human mind.

In the field of computational intelligence and machine learning, a group of nodes,
typically represented as vertices in a graph-based structure, are combined to form a
layer within a neural network architecture. Each node, acting as a separate processing
unit, stores and manipulates data values, often representing features or activations
within the context of the model. These layers, consisting of numerous interconnected

nodes, are systematically arranged to create a neural network, a highly sophisticated
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computational structure that is capable of modelling intricate relationships within data.
In this architectural structure, every node in a specific layer is connected to nodes in
neighbouring layers through weighted edges, creating a network of connections that
enables the smooth flow and transformation of information. This intricate network,

often called a neural network, mimics the synaptic connections found in biological

network.
Here it is 3.

i |

Depth — Number of layers in the ‘

|
. )

| Dot |

Width - |
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dot in first - . .
layer.
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R

1 2 3

Figure 2 : Artificial Neural Network showing width and depth.

neural systems, allowing for capabilities like pattern recognition, data categorization,
and predictive modelling through iterative learning processes guided by algorithms like
backpropagation. The neural network's hierarchical processing capability, supported by
its layered arrangement and inter-node connectivity, enables it to extract and refine

features at different levels, resulting in reliable computational performance.
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1.2 Locomotives: Locomotives are mechanical systems created to pull trains, powered
by diesel, electric, or hybrid engines. The components of the electric vehicle consist of
several critical parts, such as the engine, traction motors, braking systems, and control
units, which must function reliably in different conditions. Wabtec, a renowned global
company specializing in rail technology, has been at the forefront of innovation in
locomotive design and operation, leveraging artificial intelligence (Al) to optimize
performance .

1.2.1 Components of locomotives.

Engine: supplies power, usually through diesel combustion or electric motors.
Traction motors: Transform energy into mechanical force to propel the wheels, where
adhesion control is crucial for optimal performance.

Control systems: Oversee operations, including speed, braking, and diagnostics, with
the help of artificial intelligence for real-time decision-making.

Sensors: gather information on variables such as temperature, vibration, and fuel

consumption, supplying inputs for artificial intelligence models.

]
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Figure 3 : Locomotive and its parts.

1.2.2 Parts of Locomotive
1. Wheels

The wheels of a locomotive are critical mechanical components that facilitate
movement along the railway track. Typically constructed from high-strength steel
alloys, locomotive wheels are designed to withstand significant dynamic loads,
including the weight of the locomotive, payload, and tractive forces. The wheels are

arranged in pairs, mounted on axles, and often feature a flanged design to ensure
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alignment with the track. The wheel-rail interface is engineered to optimize traction,
minimize wear, and ensure stability during high-speed operations or under varying
track conditions. The wheel geometry, including diameter and profile, is carefully
specified to balance load distribution and rolling resistance, adhering to standards such
as those set by the International Union of Railways (UIC) or the Association of
American Railroads (AAR).

2. Trucks

Trucks, also referred to as bogies in railway terminology, are modular assemblies that
support the locomotive’s chassis and house the wheelsets, axles, and suspension
systems. Each truck typically consists of a frame, multiple wheel-axle sets, and a
suspension system (e.g., coil springs or air springs) to absorb shocks and vibrations
caused by track irregularities. Trucks distribute the locomotive’s weight across multiple
axles, enhancing stability and reducing track wear. In modern locomotives, trucks may
incorporate advanced features such as traction motors (in electric or diesel-electric
locomotives) and braking systems, contributing to the locomotive’s dynamic

performance and operational safety.
3. Nose Cab

The nose cab refers to the forward section of the locomotive, often aerodynamically
shaped to reduce air resistance and improve fuel efficiency, particularly in high-speed
locomotives. Structurally, the nose cab may house auxiliary equipment, such as
signalling systems, headlights, or collision mitigation devices (e.g., buffers or anti-
climbers). In some locomotive designs, the nose cab serves as an aesthetic and
functional element, protecting internal components from environmental factors while
minimizing drag. The design of the nose cab is informed by aerodynamic principles and
computational fluid dynamics (CFD) to optimize performance under diverse operating

conditions.
4. Operator Cab

The operator cab, also known as the driver’s cab or control cab, is the primary
workspace for the locomotive’s crew, housing the controls, instrumentation, and
interfaces necessary for safe and efficient operation. Ergonomically designed, the
operator cab includes throttle controls, brake systems, monitoring displays, and

communication systems compliant with railway signalling standards. Advanced
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locomotives may feature digital dashboards, human-machine interfaces (HMIs), and
integration with train control systems such as Positive Train Control (PTC) or European
Train Control System (ETCS). The cab is engineered to provide visibility, acoustic
insulation, and protection from environmental hazards, ensuring operator comfort and

safety during extended operations.
5. Auxiliary Cab

The auxiliary cab is a secondary compartment or designated area within the locomotive
that houses auxiliary systems critical to its operation. These may include electrical
control panels, battery storage, or auxiliary power units (APUs) that provide energy for
non-propulsive functions, such as lighting, heating, or onboard electronics. In some
locomotive designs, the auxiliary cab may also contain diagnostic equipment or
redundant control systems to enhance operational reliability. The layout and
functionality of the auxiliary cab are optimized to ensure accessibility for maintenance

and integration with the locomotive’s primary power and control systems.
6. Blower Cab

The blower cab refers to a compartment or section of the locomotive dedicated to
housing the blower systems, which are essential for cooling and ventilation. In diesel-
electric or electric locomotives, blowers (typically centrifugal or axial fans) are used to
circulate air through the engine, traction motors, or other heat-generating components
to prevent overheating. The blower cab is strategically positioned to ensure efficient
airflow and is equipped with ducts, filters, and noise suppression systems to maintain
operational efficiency and comply with environmental regulations. The design of the
blower cab is critical to thermal management, particularly in high-power locomotives

operating under demanding conditions.
7. Engine Cab

The engine cab, often referred to as the engine compartment, is the primary housing for
the locomotive’s prime mover, which is typically a diesel engine in diesel-electric
locomotives or a transformer and power electronics in electric locomotives. This
compartment is engineered to protect the engine from environmental factors, facilitate
maintenance access, and incorporate vibration-damping and noise-reduction measures.

The engine cab is equipped with fuel lines, exhaust systems, and cooling interfaces,
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ensuring optimal performance of the prime mover. In modern locomotives, the engine
cab may also integrate advanced monitoring systems for real-time diagnostics and

predictive maintenance.
8. Radiator Cab

The radiator cab is a specialized compartment that houses the locomotive’s radiator and
associated cooling systems, designed to dissipate heat generated by the engine or
electrical components. The radiator cab typically includes a heat exchanger, cooling
fans, and coolant circulation systems to maintain optimal operating temperatures.
Efficient thermal management within the radiator cab is critical to preventing engine
overheating, particularly during high-load or high-temperature conditions. The design
of the radiator cab incorporates considerations of airflow dynamics, material selection
(e.g., corrosion-resistant alloys), and maintenance accessibility to ensure long-term

reliability and performance.
9. Platform

The platform refers to the structural base or chassis of the locomotive, which serves as
the foundation for mounting all major components, including the trucks, engine, cabs,
and fuel tank. Constructed from high-strength steel or composite materials, the platform
is designed to withstand significant mechanical stresses, including torsional forces,
vibrational loads, and impacts. The platform also provides structural integrity to the
locomotive, ensuring alignment of components and facilitating load transfer to the
wheels. In some designs, the platform includes walkways or access points for

maintenance personnel, adhering to safety standards for railway operations.
10. Fuel Tank

The fuel tank is a critical component in diesel locomotives, designed to store and supply
diesel fuel to the engine. Typically located beneath the platform or integrated into the
locomotive’s underframe, the fuel tank is constructed from robust materials (e.g., steel
or aluminium) to ensure durability and prevent leaks. The tank’s design includes
features such as baffles to minimize fuel sloshing, fuel gauges for monitoring, and
safety systems to prevent spillage or combustion risks. The capacity and placement of

the fuel tank are optimized to balance the locomotive’s weight distribution and
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operational range, with considerations for fuel efficiency and compliance with

environmental regulations.

1.2.3 Obstacles in our process.
Locomotives encounter numerous obstacles that Al can tackle.

Maintenance: unexpected downtime caused by component failures leads to increased
expenses and delays. Predictive maintenance using artificial intelligence can reduce
this. Maximizing fuel efficiency and traction while driving on different tracks and in

various weather conditions is crucial for saving money.
Safety: identifying track defects or operational anomalies in real-time improves safety

Environmental impact: optimizing operations to minimize emissions in line with global

sustainability goals.

Al utilization in trains: Wabtec Corp.'s involvement.

Wabtec corporation has been leading the way in incorporating artificial intelligence (ai)
into locomotive systems, utilizing neural networks for a wide range of applications.

Notable advancements include:

Predictive maintenance: Wabtec employs artificial intelligence to analyse locomotive
data, generating customized maintenance instructions based on the specific needs of
each locomotive, resulting in reduced downtime and expenses. Wabtec's cutting-edge
adhesion control technology, powered by ai, enhances haulage capability by 15%
compared to competitors by dynamically optimizing traction in real-time. Wabtec
utilizes edge ai to analyse data in real-time while the locomotive is in operation,

allowing for immediate decision-making in locomotive operations (Wabtec, 2024).



Chapter 2 Methodology

Altair hyper mesh physics ai follows a systematic five-step process, with each step
playing a vital role in ensuring precise predictions and efficient computational

modelling. The procedures followed are as follows:

1. Project initiation: this initial phase involves defining and naming the project while
specifying the location of the input files. To maintain uniformity and ease of access, all
input files should be kept in a single, organized folder.

2. Dataset Preparation: In this step, the necessary data is collected and organized in a
way that is suitable for analysis. This dataset forms the basis for model training,

significantly impacting the accuracy and dependability of the predicted results.

3. Model Training: The training phase involves feeding the dataset into the Al model,
enabling it to learn patterns, correlations, and crucial relationships within the data. Fine-
tuning hyperparameters and employing optimization techniques are implemented to

improve performance.

4. Model Testing: After the training phase, the model is subjected to extensive testing
using a distinct dataset to ensure its accuracy and reliability. This assessment examines
the model's accuracy, generalizability, and effectiveness in predicting outcomes on data

that it has not been trained on.

5. Prediction Generation: In the final stage, the trained model is utilized to generate
predictions using new input data. The Al system employs learned patterns to offer
valuable insights and computational solutions for intricate physics-based simulations.
By following a structured approach, this method guarantees a step-by-step progression
from project initiation to final predictions, maximizing the potential of Altair hyper

mesh physics ai for scientific and engineering purposes.
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Figure 4 : Altair Hyper mesh user interface

2.1 Model Training and Hyperparameters

The process of training a model involves repeatedly adjusting the neural network's
parameters using the training dataset to improve its performance. Key hyperparameters

requiring adjustment include:

o Epoch: Denotes the number of complete iterations over the training dataset.
Each epoch involves processing all training samples, computing losses, and
updating model weights via backpropagation. The choice of epoch count is

critical to achieving convergence while avoiding overfitting.

e Width: Refers to the number of nodes in the input layer or a given layer. A
wider layer increases the model’s capacity to capture diverse input features,
enhancing accuracy by processing more data points from the input space, albeit

at the cost of increased computational requirements.

o Depth: Represents the total number of layers in the neural network. Greater
depth enables the model to learn hierarchical feature representations, improving
its ability to model complex relationships among input features. However,
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deeper networks may require advanced techniques (e.g., residual connections)
to mitigate issues like vanishing gradients.

Depth — Number of layers in the
network.
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Number of
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O

Figure 5 : Width and Depth in neural network
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Figure 7 : Physical significance of depth

2.2 Early stopping

Early stopping is a common technique employed during the training of physics-
informed neural networks to avoid overfitting and efficiently utilize computational
resources. By tracking the validation loss at the conclusion of each training cycle, the
training process is terminated if the loss does not show any improvement after a
predetermined number of cycles (patience parameter). This guarantees that the model
maintains its ability to generalize, especially in physics-based applications where
following the governing equations is crucial, while minimizing training on noisy or

sparse data.

2.3 Learning rate

The learning rate determines the size of parameter adjustments made during the
optimization process in neural network training. In physics-informed ai, where loss
functions combine data-driven and physics-based terms, an appropriately tuned
learning rate (typically 102 to 10° ) guarantees stable and efficient convergence.
Adaptive learning rate schedules or optimizers, commonly utilized to navigate the
intricate loss landscapes of physics informed neural network (pinn), thereby improving

the model's capacity to accurately model physical systems.
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Table 1 : Supported solvers Table 2 : Supported solvers

Supported File Format Supported File Format
Solvers Solvers
Abaqus .0db Marc 116
AcuSolve ensight Nastran .0p2
.h3d .h5
ANSYS st
. xdb
CCM+ .ensight PAM-CRASH  .dsy
Custom/user- .ensight OptiStruct .h3d
generated e .0p2
Radioss .h3d
.h3d .anim
Fluent ensight ultraFluidX .ensight
LS-DYN .d3plot
.d3eigv

Unearize  Hotspor Nows Trace Symmary  Explode Aign Matorints

Piot Create

Q0 IEQEI oW PLES FaPe A

Coordinate Pressure

13.000s /14,0005

Figure 8 : Showing coordinate of nodes and pressure.

In the context of computational modelling, particularly within finite element methods
(FEM) or mesh-based numerical simulations, the values of relevant variables—such as
displacements, stresses, or other physical quantities—are stored at the nodes of a

discretized mesh. The mesh, which can be structured or unstructured, divides the
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computational domain into a finite number of elements connected at nodes, which act
as discrete points for data representation. Each node within the mesh is uniquely defined
by its spatial coordinates, typically expressed in a cartesian coordinate system (e.g.,
(x,y) in two dimension and (x,y,z) in three dimensions), as illustrated in the referenced
figure. These coordinates serve as reference points within the geometric domain,
facilitating the accurate mapping of physical phenomena across the mesh. The nodal
values, along with their respective coordinates, enable the interpolation of field
variables across elements, forming the foundation for numerical solutions to partial
differential equations that govern the system's behaviour. The establishment of nodal-
based storage and coordinate associations is crucial for guaranteeing the precision and
consistency of the computational model, as they establish the spatial connections and
data distribution within the discretized domain.
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Table 2 : Options for input

Input Feature

cae.coord

cae.part_label

cae.shell_thickness

cae.material_label

Description

Spatial coordinates used as a predictor of behaviour.

It is recommended to always keep it on.

Part name is used as a predictor of behaviour. This is
valuable when working with large assemblies. In most
cases, it is recommended to keep it on. However, it
may make sense to turn it off in cases with inconsistent
part names.

The thickness of 2D shell elements is used as a
predictor of behaviour. This is required when the
dataset has varying thicknesses between simulation
models. This feature is only detected for Opti
Struct and Radios. Solver input files must be in the
same directory as the associated output file and have
the same base name.

Material name is used as a predictor of behaviour. This
is required when the dataset has varied material
assignments between simulation models. This feature

is only detected for Opti Struct and Radios. Solver



input files must be in the same directory as the

associated output file and have the same base name.
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2.5 Right value of epoch, width and depth

Epoch: An epoch signifies the completion of a complete pass through the training
dataset, involving the forward propagation of inputs, the calculation of loss, and the
adjustment of weights using backpropagation. The suggested range for epochs is
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between 500 and 3000, with a preference for starting at the higher end to guarantee an
adequate number of training iterations. To avoid overfitting, an early stopping
mechanism is put in place, which terminates training if the validation loss does not
show any improvement after a predetermined number of epochs, enhancing

computational efficiency and model performance.

Width and depth. The width of a neural network, which refers to the number of nodes
in each layer, and the depth, which refers to the number of layers, are crucial
hyperparameters. It is suggested to begin with a configuration of 30 nodes per layer and
3 layers for optimal performance. The evaluation of model performance involves
comparing the errors made during training and testing phases. Overtraining: happens
when the training error is much smaller than the testing error, suggesting that the model
is overfitting. This implies that the model has learned from the training data but
struggles to apply that knowledge to new, unseen data. Undertraining happens when
the training error surpasses the testing error, suggesting that the learning capacity is not
sufficient to capture data patterns. Preference: a slight bias toward overtraining is
preferred, as it guarantees strong feature learning, as long as overfitting is prevented
using techniques like regularization or early stopping. The iterative adjustment of width
and depth, guided by error analysis, is crucial to fine-tune the model's architecture for

tailored applications.

2.6 confidence value

Evaluation of Our Model and Its Reliability Confidence value. After a neural network
generates a prediction, a confidence value is calculated to measure the degree of
agreement between the predicted output and the model's learned parameters. The
confidence value, expressed as a normalized score ranging from 0 to 1, represents the
model's level of certainty in its prediction. When the value of a value approaches 1, it
indicates a strong alignment with the learned representations, resulting in improved
predictive accuracy. This metric is a starting point for assessing prediction reliability
but needs to be complemented with other validation methods. Model Assessment via

Experimentation. In addition to confidence values, model validation is performed by
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conducting empirical testing on a distinct test dataset. This process assesses the model's
ability to generalize by calculating error metrics, such as mean squared error (MSE) or
classification accuracy, which offer a precise evaluation of prediction errors in practical
situations. The testing process uncovers the practical effectiveness of the model,
uncovering potential problems such as overfitting or underfitting, and complements the
probabilistic insights provided by confidence values. By combining these methods, we

can thoroughly assess the model's ability to make accurate predictions.
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Chapter 3 Sample Model 1

3.1 Overview of geometric models and data file.

The research concentrates on examining heating, ventilation, and air conditioning
(HVAC) duct systems, employing eleven different geometric models to explore the
influence of geometry on performance metrics, particularly pressure distribution. These
models act as the basis for training and testing a predictive framework that aims to
evaluate the impact of geometric changes on the performance of heating, ventilation,
and air conditioning (HVAC) systems. The dataset consists of seven separate files, all
in the h3d format, which are utilized for training purposes. These files contain
information about the shape and layout of the HVAC duct model, as well as the pressure
distribution that was calculated using computer simulations. Furthermore, two separate
files, both in h3d format, are designated for testing purposes to assess the model's ability
to accurately predict outcomes. Furthermore, two prediction files are included in the
dataset: one file contains solely the geometric data, stored with an .x_b extension, while
the other is a mesh file, stored with a .fem extension, which provides the discretized

i

computational domain for finite element analysis.

I

Figure 11 : HVAC duct Figure 12 : HVAC duct with entry and exit
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3.2 Changes in the shape of HVAC ducts.

The eleven geometric models are created with slight differences in their arrangements
to investigate how the performance of the HVAC system can be affected by changes in
geometry. Specifically, the training process focuses on identifying and quantifying how
these geometric changes affect the pressure distribution within the duct system. Each
result file combines the geometric model and the pressure results, allowing for a

thorough examination of how design parameters impact system performance.

Figures: Seven
models are used as a
input to train physics
Al

Explanation: Each
model is showing
front and side view.

) 6 7

Source: Altair HyperWorks Tutorials

Figure 13 : All seven input models are shown.



Figure 14 : Two testing models of HVAC.

Assessment of Machine Learning Algorithm Utilizing Physics-Based Constraints.
Experimenting with shapes. The validation of the physics-informed Al model requires
two distinct testing geometries, each representing a different computational domain to
evaluate the model's predictive accuracy. The second geometry, as shown in the figure,
is thoroughly examined to assess the model's effectiveness. The mean absolute error
(MAE) for these geometries is calculated as 200 Mpa, indicating the average difference
between the predicted stress values and the reference data, thereby serving as a measure
of the model's accuracy. Prediction of the results using cad and mesh files. The
subsequent visualizations, depicted in the figure below, illustrate the model's
predictions obtained from computer-aided design (cad) models and their corresponding
mesh files. The CAD model specifies the system's shape and structure, while the mesh
file divides it into smaller units called nodes and elements for numerical calculations.

These visualizations allow for a side-by-side comparison of predicted and actual results,
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emphasizing the model's compatibility with engineering processes and its practicality in real-

life scenarios.

Fle Edt Vew Hypelesh Skewh Topology 10 Moron Vaidete Araiyze Sisieion DesgnSpece Optimze DesgnExplorer Post Repon Physcatl © Q Untesr (B2 101
.“@ ¥
Pregct
Deploy

. Predicted  soce
- Model Testing = E 5
+ Touiosd e Tom S
Hose! b Dot ||
‘model_sample sample_test 2 7
b
Accuracy - W
93.88%
Cloupiay Fie.
Average
Ao
; (<
' True
I (
= I
| I <
o d
| 44
No
St Max = 1
Noats
Ming 4. lZS( 02
e
Q@O P ED X0 @DF =IO N 130008/ 130008
- Wihtoder - %

Figure 15 : Testing of HVAC duct
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Figure 16 : Prediction of HVAC duct

3.3 Creation and assessment of novel frameworks.

In order to strengthen the predictive power of the trained model, two more HVAC duct
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models were created. These models include minor adjustments in the geometry,
particularly in the design of the exit vent and the length of the duct. These modifications
were purposefully implemented to evaluate the model's resilience and its capacity to
perform well even when faced with variations that were not part of the training data.
The effectiveness of these new models is assessed by comparing their predicted
pressure distributions with the simulation results, offering valuable insights into their
ability to capture the impact of geometric changes. This approach guarantees a thorough
examination of the HVAC duct system's behaviour in different geometric settings,
ultimately contributing to the overarching goal of improving HVAC design for

increased efficiency and performance.

# Al 4 Alv
Model Info: Untitled* Model Info: Untitled?

1B

Figure 17 : Newly formed geometry.

4 Al v )
Model Info: Untitled*§s

i : Predicted result

Figure 18 : Prediction of newly formed geometry



Chapter 4 Sample Model 2

When creating and assessing a physics-based artificial intelligence (Al) model for
structural analysis, a sample model with a mechanical arm is utilized to simulate a
typical engineering situation. The arm is designed with a fixed boundary condition at
one end, limiting all its movements, while an external force is applied at the other end,
causing mechanical stresses and deformations. This arrangement mirrors a typical
loading scenario in structural mechanics, allowing for the evaluation of the model’s
predictive abilities in a controlled environment. The model’s training and testing
processes involve a dataset consisting of 30 separate simulation files. Among these, 24
files have been designated for training the neural network, furnishing a comprehensive
dataset to fine-tune the model’s parameters and accurately capture the physical
behaviour of the arm in different scenarios. The remaining 6 files are set aside for
testing, acting as a separate dataset to assess the model’s ability to generalize its

performance.

Arm

Clamped
" Load

Figure 19 : Structural arm

The differences in design among these files are quite minimal, mainly consisting of
minor geometric or parametric adjustments, as depicted in the accompanying image.
This image overlays two distinct geometries to visually emphasize the subtle
modifications in the arm’s structure, enabling a comprehensive comprehension of the

incremental design modifications. After the training phase, the model is evaluated on
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the six designated geometries to determine its ability to accurately predict outcomes.

The findings of this assessment are depicted in the figure provided, which illustrates

the model’s effectiveness in various test scenarios.

520 mm

Figure 20 : Structural arm with dimension

Change Change

in the in the

model model
1vs2 10vs 15

Figure 21 : Changes in structural arm
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Figure 27 : Testing of sixth model

4.1 Model Testing and Results

The table below presents the summarized quantitative results, indicating that the
predictive accuracy of the model consistently exceeds 95% for all tested geometries.
The high accuracy of the model can be attributed to its consistent design, which enables
the neural network to effectively generalize from the training data to the test cases. The
subtle modifications in the model's structure guarantee that the learned representations
remain relevant, reducing prediction errors and increasing reliability in situations where

configurations are closely related.
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Table 3 : Table of accuracy
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Chapter 5 Locomotive Component

In the context of a structural analysis study utilizing a physics-informed artificial
intelligence (Al) model, the real component selected for investigation is the blower cab,
a critical subsystem within a locomotive’s architecture. Locomotives are equipped with
several specialized cabs, including the nose cab, operator cab, auxiliary cab, blower
cab, engine cab, and radiator cab, each serving distinct functional roles. For the
purposes of this analysis, the blower cab is chosen as the focal component due to its
structural significance and relevance to thermal management within the locomotive.
The blower cab, designed to house ventilation and cooling systems, comprises Six
structural pillars or posts, which provide mechanical stability and support. This study
focuses on evaluating the blower cab’s structural performance by varying the thickness
of these pillars and employing a physics-informed Al model to predict the resulting

mechanical behaviour.

To facilitate this analysis, a systematic methodology is adopted, encompassing the

following steps:

1. Generation of Blower Cab Models with Varying Thickness: Multiple
configurations of the blower cab are created by systematically altering the
thickness of the six pillars. These variations represent distinct design scenarios,
enabling the assessment of structural responses under different geometric

parameters.

2. Structural Analysis and Result File Generation: Finite element analysis
(FEA) or equivalent computational methods are applied to each blower cab
configuration to simulate mechanical behaviour under specified loading
conditions. The resulting data, encapsulating nodal coordinates, stresses,
displacements, or other relevant physical quantities, are stored in result files for

subsequent use.

3. Training the Physics-Informed Al Model: The physics-informed Al model,
typically a neural network augmented with physical constraints (e.g., governing

equations), is trained using the result files from the analysed configurations.
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This training process optimizes the model’s parameters to capture the

relationship between pillar thickness and structural performance.

4. Model Testing: The trained model is evaluated on a separate set of blower cab
configurations to assess its generalization capability and predictive accuracy,

ensuring robustness across unseen data.

5. Model Prediction: The validated model is deployed to predict the structural
behaviour of new blower cab configurations, providing insights into the impact

of pillar thickness variations on performance.

Blower Cab Model

Geometry

CBH Blower Cab FEA

Figure 28 : Geometry of blower cab

Door Centre Post

Door Post b —

Figure 29 :Door centre Post and Door post in blower cab
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Figure 30 : Post in blower cab model

A total of eight simulation files are generated to support this study, strategically divided
as follows: four files are allocated for training, two for testing, and two for prediction.
The training files correspond to blower cab configurations with pillar thicknesses of 3
mm, 4 mm, 5 mm, and 6 mm, which provide a comprehensive dataset to capture the
structural behaviour across a range of thicknesses. The testing phase utilizes
configurations with thicknesses of 3.5 mm and 5.5 mm to evaluate the model’s
performance on intermediate values. Finally, the prediction phase involves
configurations with thicknesses of 4.5 mm and 6.5 mm, enabling the model to forecast
outcomes for novel designs. These configurations and their respective purposes are
summarized in the table below, ensuring a structured approach to data allocation and
model evaluation.

Figure 31 : Table of thickness
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Figure 32 : Different thickness used of training, testing and prediction



Chapter 6 Result & Discussion

The structural integrity of a blower cab, a vital part of a locomotive that houses
ventilation systems, is assessed using a physics-based artificial intelligence (ai) model.
The blower cab, which was previously described as having six structural pillars, is
subjected to simulations with different pillar thicknesses to evaluate its mechanical
behaviour, particularly the displacement caused by applied loads. The study examines
four different configurations, each characterized by pillar thicknesses of 3.5 mm, 4.5
mm, 5.5 mm, and 6.5 mm, as illustrated in the accompanying figures. These simulations
compare the predicted displacements (from the Al model) with the simulated
displacements (from finite element analysis, FEA), allowing for an assessment of the
model's predictive accuracy. The first set of figures demonstrates the predicted and
simulated displacement fields for a blower cab with a pillar thickness of 3.5 mm. The
contour plots, labelled as "contour plot (mag),"” illustrate the magnitude of displacement
in the system, with a colour gradient ranging from blue (minimum displacement) to red
(maximum displacement). The projected displacement graph displays a maximum
displacement of 2.372e+01 mm (23.72 mm), whereas the simulated graph indicates a
maximum displacement of 2.423e+01 mm (24.23 mm). The average absolute difference
(MAE) between the predicted and simulated outcomes is 0.705 mm, indicating a high
level of accuracy with a 97.2% confidence. The simulation time for the feature
extraction is around 20 minutes, while the Al model's prediction time is less than 1
minute, emphasizing the computational efficiency of the Al approach. The note clarifies
that the time taken for preprocessing and training the model is not included in these
metrics. 5.5 mm thickness configuration: the second set of figures presents the
displacement fields for a blower cab with a pillar thickness of 5.5 mm. The
displacement fields are shown for the case of a single-stage blower with a fan diameter
of 1.5 m and a fan speed of 1,000 rpm. The projected displacement graph displays a
maximum displacement of 2.228e+01 mm (22.28 mm), whereas the simulated graph
suggests a maximum displacement of 2.317e+01 mm (23.17 mm). The mean error is
0.239 mm, with an accuracy of 98.9%, indicating a more precise alignment between
predicted and simulated outcomes compared to the 3.5 mm case. The simulation
duration is around 20 minutes, while the prediction time is significantly shorter, taking
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less than a minute. The third figure illustrates the anticipated movement for a blower
cab with a pillar thickness of 4.5 mm. The maximum displacement is 2.236e+01 mm
(22.36 mm), with a colour distribution indicating areas of high displacement primarily
at the top centre of the structure, consistent with the loading conditions (likely an axial
or distributed load applied to the top surface). The fourth figure illustrates the predicted
displacement for a thickness of 6.5 mm, with a maximum displacement of 2.225e+01
mm (22.25 mm). The displacement distribution is comparable to the 4.5 mm case, but
with a slightly lower maximum displacement, indicating enhanced structural stiffness

as a result of the increased thickness.

( . | 35mm |
predicicd Thickness

Ve B
Mean Absolute Error 0.705 mm
Time for simulation 20 min
Time for prediction < 1 min
Accuracy 97.2%

3.5mm
Thickness

Note: Preprocessing time and Model training time is not taken into
consideration.

Simulated

an

Figure 33 : Testing of 3.5mm blower cab

( ) ) 5.5mm

™

h

Mean Absolute Error 0.239 mm
Time for simulation 20 min
Time for prediction < 1 min

Accuracy 99.8%

" 5.5mm
Simulated
tmurate Thickness

Note: Preprocessing time and Model training time is not taken into
consideration. 4

Figure 34 : Testing of 5.5 mm blower cab
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6.1 Result:

The outcomes of the simulations and predictions are summarized as follows: Changes
in Position: For the 3.5 mm thickness, the maximum predicted displacement is 23.72
mm, which is slightly lower than the simulated value of 24.23 mm, with an MAE of
0.705 mm and an accuracy of 97.2%. For the 5.5 mm thickness, the maximum predicted
displacement is 22.28 mm, which is slightly lower than the simulated value of 23.17
mm. The difference is only 0.239 mm, indicating a high level of accuracy with a 98.9%
confidence. For the 4.5 mm thickness, the estimated maximum displacement is 22.36
mm. For the 6.5 mm thickness, the estimated maximum displacement is 22.25 mm.
Precision and mistake: The accuracy of the Al model increases as the thickness of the
model increases, with a higher accuracy rate of 98.9% achieved at a thickness of 5.5
mm. This trend indicates that the model performs better when the configurations are
similar to the training data, such as 3 mm, 4 mm, 5 mm, and 6 mm. The mean
attenuation coefficient decreases from 0.705 mm at a thickness of 3.5 mm to 0.239 mm
at a thickness of 5.5 mm, suggesting better predictive accuracy for thicker
configurations. Computational efficiency: The Al model showcases remarkable
computational efficiency, as it can predict outcomes in less than a minute, while the
simulation time for the feature extraction process is around 20 minutes. This efficiency
is a significant advantage of the physics-informed ai approach, although preprocessing

and training times are not considered in these metrics.
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Figure 35 : Prediction of 4.5mm and 6.5 mm blower cab
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6.2 Discussion:

The analysis uncovers several significant findings regarding the performance of the
physics-based artificial intelligence model and the structural characteristics of the

blower cab.

The Al model demonstrates exceptional accuracy, with a range of 97.2% to 98.9%,
when evaluated on various thicknesses. The enhanced precision at 5.5 mm in
comparison to 3.5 mm indicates that the model performs better when dealing with
thicknesses that are closer to the training data (3 mm, 4 mm, 5 mm, 6 mm). The 3.5 mm
configuration, being an intermediate value, exhibits a slightly higher MAE, possibly
due to its placement at the lower end of the training range, where extrapolation effects
may be more noticeable. The high level of accuracy achieved for both tested
configurations demonstrate the model's ability to handle minor geometric variations,
which aligns with the earlier finding that even small design changes can result in

reliable predictions.

The maximum displacement of the structure decreases as the pillar thickness increases,
from 23.72 mm at 3.5 mm to 22.25 mm at 6.5 mm (predicted values). This trend is in
line with the principles of structural mechanics, where thicker materials exhibit greater
stiffness, resulting in reduced deformation when subjected to the same loading
conditions. The distribution of displacement, mainly concentrated at the top centre of
the blower cab, indicates that the applied load (likely axial or distributed) causes
bending or compressive stresses, with the pillars offering resistance. The uniformity in
displacement patterns across different thicknesses suggests that the structural behaviour

remains consistent, enabling accurate predictions through artificial intelligence.

The computational efficiency of the Al model is impressive, as it can predict the
outcome in less than a minute, while the FEA simulation takes around 20 minutes. This
demonstrates the model's potential for quick design iterations in engineering projects.
Nevertheless, the absence of preprocessing and training times suggests that the overall
workflow may necessitate substantial initial computational resources. In practical
scenarios, it is crucial to assess this trade-off, as the time spent on initial training may
be compensated by the model's capability to offer near-instantaneous predictions during

iterative design processes.
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Despite its impressive performance, the model encounters limitations when it comes to
predicting behaviour for configurations that fall outside the training data. Furthermore,
the accuracy metrics are derived from displacement magnitudes, but additional factors,
such as stress concentrations or failure criteria, may necessitate further examination to
guarantee the overall structural integrity. The note clarifies that preprocessing and
training times, although not explicitly mentioned in the reported metrics, are crucial for

the practicality of the ai approach.
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Chapter 7 Conclusion and scope for future
7.1 Conclusion

The physics-informed ai model demonstrates exceptional performance in predicting the
structural behaviour of a blower cab under varying pillar thicknesses, achieving
accuracies of 97.2% and 98.9% for thicknesses of 3.5 mm and 5.5 mm, respectively,
with corresponding mean absolute errors (MAE) of 0.705 mm and 0.239 mm. The
predicted displacements for thicknesses of 4.5 mm and 6.5 mm (22.36 mm and 22.25
mm, respectively) further confirm the model's reliability, showing a consistent trend of
decreasing displacement with increasing thickness, in line with expected structural
mechanics principles. The ai model's computational efficiency, with prediction times
of less than 1 minute compared to 20 minutes for finite element analysis (FEA),
underscores its potential as a powerful tool for rapid design optimization in locomotive
engineering. This physics-informed ai model proves particularly effective for
predicting the behaviour of similar models, serving as a valuable tool to significantly
reduce the time required for predictions. By utilizing a trained model, it facilitates
quicker analysis of designs that share similar structural characteristics, thereby
expediting the design iteration process. In all six testing scenarios, the model
consistently attains an accuracy surpassing 97%, with the third model demonstrating
the lowest accuracy, albeit still slightly above 97%. The primary reason for this high
accuracy is the small changes in the blower cab model, which are even smaller than
those observed in previous HVAC models, enabling the ai to generalize effectively
within the trained parameter space. Nevertheless, the third model's lower accuracy can
be attributed to a more significant variation in thickness compared to the other
configurations, emphasizing the model's sensitivity to larger geometric discrepancies.
Although it may be tempting to strive for even higher accuracy, it is not recommended,
as it can result in overfitting, where the model becomes too specialized to the training
data, making it less effective in handling new situations. The effectiveness of the
physics-informed Al model relies on the magnitude of dimensional alterations in the
design. In cases where the dimensional variations of models are minimal, as observed
in this study, the ai model can accurately predict structural behaviour, providing a time-
saving alternative to traditional analysis methods. However, when the dimensions vary

greatly, the physics-based Al model is less reliable, and traditional analysis tools like
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FEA are required to guarantee precise outcomes. Consequently, although the Al model
is proficient in expediting the analysis process for repetitive models with minor
adjustments, it is crucial to perform a comprehensive validation using recognized
analysis tools prior to finalizing any design. This guarantees that the model's predictions
match real-world outcomes, reducing the chances of unforeseen risks arising from
untested assumptions. The small difference in accuracy observed between the tested
thicknesses indicates that the model's performance may be influenced by the range of
training data, emphasizing the importance of choosing appropriate training
configurations to ensure reliable generalization. Future research should concentrate on
increasing the size of the training dataset to encompass a wider variety of thicknesses
and incorporate additional structural metrics, such as stress or fatigue analysis, to offer
a more thorough assessment of the blower cab's performance. Furthermore, the entire
computational process, including preprocessing and training times, should be measured
to evaluate the practicality of implementing these ai models in real-world industrial
environments. This research establishes a solid basis for utilizing physics-informed
artificial intelligence in structural analysis, providing a scalable and efficient method to
improve the design and reliability of locomotive components, especially in iterative

design processes where similar models undergo minor modifications.

7.2 Future Scope

The present research has effectively showcased the effectiveness of a physics-based
artificial intelligence (ai) model in predicting the structural behaviour of a blower cab
by adjusting pillar thicknesses, resulting in high accuracy and computational
efficiency. Nevertheless, the scope of this research can be greatly broadened to
encompass a wider range of applications within the field of locomotive engineering.
This study primarily aimed to predict outcomes based on changes in thickness for a
smaller component, but future research can expand this approach to larger and more
intricate locomotive components, such as the engine and platform. These parts, crucial
for the locomotive's stability and efficiency, are more complicated because they are
larger, have intricate shapes, and are subjected to various types of forces. By
incorporating physics-based Al into the analysis of locomotive components, this
approach can automate the process of evaluating design optimization and performance

across a broader spectrum of subsystems. For example, automating the prediction of
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structural responses for the engine, which houses the prime mover and is subjected to
substantial thermal and mechanical stresses, could simplify the design process,
minimizing the need for time-consuming finite element analysis (FEA). In a similar
manner, utilizing the model on the platform, which acts as the base structure
supporting various subsystems, could facilitate the evaluation of load distribution and
structural integrity under different operational conditions. This automation would not
only improve the scalability of the proposed methodology but also contribute to the
creation of a comprehensive ai-driven framework for locomotive design, capable of
handling various components with minimal human intervention. Additionally, future
research could incorporate other design factors beyond thickness, such as material
properties, geometric configurations, and dynamic loading conditions, to develop a
more comprehensive predictive model. By integrating real-time data from locomotive
operations, such as vibration or temperature profiles, the model's effectiveness could
be improved, allowing for predictive maintenance and real-time monitoring of
structural health. These advancements would make the physics-informed ai model a
groundbreaking tool in railway engineering, paving the way for fully automated, data-

driven design and analysis workflows for future locomotives.
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