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Abstract 

 This thesis investigates the application of a physics-informed artificial 

intelligence (ai) model for the structural analysis of locomotive components, 

with a specific focus on the blower cab, a critical subsystem responsible for 

ventilation in railway locomotives. The research investigates the ability of the 

AI model to forecast the structural behaviour of the blower cab under different 

pillar thicknesses, utilizing a dataset of simulation files to train, evaluate, and 

predict results.  

 

The methodology encompasses the generation of blower cab models with 

thicknesses ranging from 3 mm to 6.5 mm, finite element analysis (FEA) to 

produce result files, and the training of a physics-informed neural network to 

predict displacements. Testing on six configurations (3.5 mm and 5.5 mm 

thicknesses) yields accuracies exceeding 97%, with mean absolute errors 

(MAE) of 0.705 mm and 0.239 mm, respectively, and prediction times of less 

than 1 minute compared to 20 minutes for FEA. Predictive results for 

thicknesses of 4.5 mm and 6.5 mm (22.36 mm and 22.25 mm maximum 

displacements) align with structural mechanics principles, demonstrating a 

consistent decrease in displacement with increasing thickness. The model's high 

accuracy can be attributed to minimal design variations, although slight 

reductions in accuracy for specific configurations indicate sensitivity to the 

range of training data.  

 

The study also elucidates key concepts in neural network modelling, including 

epochs, width, depth, confidence values, early stopping, and learning rate, 

tailored to physics-informed ai applications. The results highlight the model's 

effectiveness in quickly assessing designs with minor variations, achieving an 

accuracy rate of over 97% across all test scenarios, while emphasizing the 

importance of traditional analysis tools for significant modifications. Future 

research endeavours intend to expand the model to encompass larger 

locomotive components, such as the engine and platform, and incorporate 

additional structural metrics, including stress and fatigue, to provide a more 

comprehensive analysis. This study develops a flexible framework that  
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combines physics-based artificial intelligence with locomotive design, enabling 

efficient and automated structural optimization in railway engineering. 
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Chapter 1 Introduction 

 

The fast-paced development of artificial intelligence (AI) has transformed numerous 

industries, and the rail sector stands out as a significant beneficiary. Rail transportation  

heavily relies on locomotives, which are intricate systems that require exceptional 

reliability, efficiency, and safety. The utilization of artificial intelligence, particularly 

through neural networks, presents substantial opportunities to improve locomotive 

performance by enabling predictive maintenance, optimizing traction, and facilitating 

autonomous operations. The focus of this thesis is the incorporation of neural networks 

into locomotive systems, taking inspiration from the groundbreaking work done by 

Wabtec corporation, a renowned pioneer in the field of rail technology. This 

introduction offers a thorough overview by explaining the basics of neural networks, 

the functioning of locomotives, and the impact of AI on revolutionizing locomotive 

systems.  

 

1.1 Neural networks: basics and concepts.  

 

Neural networks are computational models that draw inspiration from the structure and 

functionality of the human brain, enabling them to handle intricate data and recognize 

patterns (goodfellow et al., 2016). A neural network is composed of interconnected 

nodes, known as neurons, arranged in layers: an input layer, one or more hidden layers, 

and an output layer. Each node holds a value and processes inputs through weighted 

connections, utilizing an activation function to generate an output. The network refines 

these weights during the training process, commonly employing backpropagation and 

optimization methods like gradient descent. 

 

1.1.1 Organization of artificial neural systems.  

 

A typical neural network comprises:  
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The input layer of the system processes raw data, such as sensor readings or operational 

parameters, in locomotive applications. Beneath the surface carry out calculations, 

extract meaningful information, and uncover hidden patterns through interconnected 

nodes. Output layer generates the final prediction or classification, such as identifying 

faults or determining maintenance schedules.  

Weights are assigned to the connections between nodes, indicating the level of 

influence one node has on another. Activation functions, including sigmoid, RELU 

(rectified linear unit), or Tanh, introduce non-linearity, allowing the network to capture 

intricate relationships.  

1.1.2 Classification of neural networks.  

There are various types of neural networks that are applicable to locomotive 

applications:  

Feedforward neural networks (FNN): data flows in one direction, making them ideal 

for static data processing tasks, such as predicting the wear of locomotive components.  

Recurrent neural networks (RNN): specifically designed for sequential data, with loops 

that enable the retention of previous inputs, making them well-suited for analysing 

locomotive sensor data over time.  

Convolutional neural networks (CNN): highly effective for image-based tasks, such as 

analysing track images to detect defects. 

Long short-term memory (LSTM) networks: a specific type of recurrent neural network 

(RNN) that is particularly effective in capturing long-term dependencies, making it 

ideal for analysing track maintenance logs.  

Development of Our Skills  

Neural networks acquire knowledge through a training process, where they modify 

weights to minimize a loss function, often utilizing labelled data. The training 

comprises:  

Input data flows through the network, leading to the generation of predictions. The loss 

calculation involves finding the difference between the predicted and actual outputs, 

which is done using a loss function like mean squared error.  
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Backpropagation: The gradients of the loss function are computed, and weights are 

adjusted using optimization algorithms such as adam or stochastic gradient descent.  

The ability to learn and adapt makes neural networks valuable tools for predicting 

outcomes and making decisions in intricate systems like locomotives. 

 

Figure 1 : Showing the node. 

In the context of network-based computational models, a node, often represented as a 

discrete point or vertex within a graph-theoretic framework, serves as a fundamental 

unit for storing data or values pertinent to the system's operation. These nodes are linked 

by edges, forming a network structure that encompasses the connections and 

interactions between individual data points. This network architecture enables the 

representation and processing of intricate information, like the synaptic connections 

found within the human brain. Specifically, the network's functionality mirrors 

cognitive processes by facilitating dynamic information exchange, pattern recognition, 

and adaptive learning, like neural networks in biological systems. Such a structure 

underpins various computational paradigms, including artificial neural networks 

(ANN), where nodes (or neurons) process input data through weighted connections, 

iteratively adjusting based on learning algorithms to optimize performance, thereby 

emulating the adaptive and parallel processing capabilities of the human mind.  

In the field of computational intelligence and machine learning, a group of nodes, 

typically represented as vertices in a graph-based structure, are combined to form a 

layer within a neural network architecture. Each node, acting as a separate processing 

unit, stores and manipulates data values, often representing features or activations 

within the context of the model. These layers, consisting of numerous interconnected 

nodes, are systematically arranged to create a neural network, a highly sophisticated 
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computational structure that is capable of modelling intricate relationships within data. 

In this architectural structure, every node in a specific layer is connected to nodes in 

neighbouring layers through weighted edges, creating a network of connections that 

enables the smooth flow and transformation of information. This intricate network, 

often called a neural network, mimics the synaptic connections found in biological 

neural systems, allowing for capabilities like pattern recognition, data categorization, 

and predictive modelling through iterative learning processes guided by algorithms like 

backpropagation. The neural network's hierarchical processing capability, supported by 

its layered arrangement and inter-node connectivity, enables it to extract and refine 

features at different levels, resulting in reliable computational performance. 

 

 

 

 

 

 

 

  

Figure 2 : Artificial Neural Network showing width and depth. 
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1.2 Locomotives: Locomotives are mechanical systems created to pull trains, powered 

by diesel, electric, or hybrid engines. The components of the electric vehicle consist of 

several critical parts, such as the engine, traction motors, braking systems, and control 

units, which must function reliably in different conditions. Wabtec, a renowned global 

company specializing in rail technology, has been at the forefront of innovation in 

locomotive design and operation, leveraging artificial intelligence (AI) to optimize 

performance . 

 

1.2.1 Components of locomotives.  

Engine: supplies power, usually through diesel combustion or electric motors.  

Traction motors: Transform energy into mechanical force to propel the wheels, where 

adhesion control is crucial for optimal performance. 

Control systems: Oversee operations, including speed, braking, and diagnostics, with 

the help of artificial intelligence for real-time decision-making.  

Sensors: gather information on variables such as temperature, vibration, and fuel 

consumption, supplying inputs for artificial intelligence models.  

 

 

Figure 3 : Locomotive and its parts. 

1.2.2 Parts of Locomotive 

1. Wheels 

The wheels of a locomotive are critical mechanical components that facilitate 

movement along the railway track. Typically constructed from high-strength steel 

alloys, locomotive wheels are designed to withstand significant dynamic loads, 

including the weight of the locomotive, payload, and tractive forces. The wheels are 

arranged in pairs, mounted on axles, and often feature a flanged design to ensure 
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alignment with the track. The wheel-rail interface is engineered to optimize traction, 

minimize wear, and ensure stability during high-speed operations or under varying 

track conditions. The wheel geometry, including diameter and profile, is carefully 

specified to balance load distribution and rolling resistance, adhering to standards such 

as those set by the International Union of Railways (UIC) or the Association of 

American Railroads (AAR). 

2. Trucks 

Trucks, also referred to as bogies in railway terminology, are modular assemblies that 

support the locomotive’s chassis and house the wheelsets, axles, and suspension 

systems. Each truck typically consists of a frame, multiple wheel-axle sets, and a 

suspension system (e.g., coil springs or air springs) to absorb shocks and vibrations 

caused by track irregularities. Trucks distribute the locomotive’s weight across multiple 

axles, enhancing stability and reducing track wear. In modern locomotives, trucks may 

incorporate advanced features such as traction motors (in electric or diesel-electric 

locomotives) and braking systems, contributing to the locomotive’s dynamic 

performance and operational safety. 

3. Nose Cab 

The nose cab refers to the forward section of the locomotive, often aerodynamically 

shaped to reduce air resistance and improve fuel efficiency, particularly in high-speed 

locomotives. Structurally, the nose cab may house auxiliary equipment, such as 

signalling systems, headlights, or collision mitigation devices (e.g., buffers or anti-

climbers). In some locomotive designs, the nose cab serves as an aesthetic and 

functional element, protecting internal components from environmental factors while 

minimizing drag. The design of the nose cab is informed by aerodynamic principles and 

computational fluid dynamics (CFD) to optimize performance under diverse operating 

conditions. 

4. Operator Cab 

The operator cab, also known as the driver’s cab or control cab, is the primary 

workspace for the locomotive’s crew, housing the controls, instrumentation, and 

interfaces necessary for safe and efficient operation. Ergonomically designed, the 

operator cab includes throttle controls, brake systems, monitoring displays, and 

communication systems compliant with railway signalling standards. Advanced 
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locomotives may feature digital dashboards, human-machine interfaces (HMIs), and 

integration with train control systems such as Positive Train Control (PTC) or European 

Train Control System (ETCS). The cab is engineered to provide visibility, acoustic 

insulation, and protection from environmental hazards, ensuring operator comfort and 

safety during extended operations. 

5. Auxiliary Cab 

The auxiliary cab is a secondary compartment or designated area within the locomotive 

that houses auxiliary systems critical to its operation. These may include electrical 

control panels, battery storage, or auxiliary power units (APUs) that provide energy for 

non-propulsive functions, such as lighting, heating, or onboard electronics. In some 

locomotive designs, the auxiliary cab may also contain diagnostic equipment or 

redundant control systems to enhance operational reliability. The layout and 

functionality of the auxiliary cab are optimized to ensure accessibility for maintenance 

and integration with the locomotive’s primary power and control systems. 

6. Blower Cab 

The blower cab refers to a compartment or section of the locomotive dedicated to 

housing the blower systems, which are essential for cooling and ventilation. In diesel-

electric or electric locomotives, blowers (typically centrifugal or axial fans) are used to 

circulate air through the engine, traction motors, or other heat-generating components 

to prevent overheating. The blower cab is strategically positioned to ensure efficient 

airflow and is equipped with ducts, filters, and noise suppression systems to maintain 

operational efficiency and comply with environmental regulations. The design of the 

blower cab is critical to thermal management, particularly in high-power locomotives 

operating under demanding conditions. 

7. Engine Cab 

The engine cab, often referred to as the engine compartment, is the primary housing for 

the locomotive’s prime mover, which is typically a diesel engine in diesel-electric 

locomotives or a transformer and power electronics in electric locomotives. This 

compartment is engineered to protect the engine from environmental factors, facilitate 

maintenance access, and incorporate vibration-damping and noise-reduction measures. 

The engine cab is equipped with fuel lines, exhaust systems, and cooling interfaces, 
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ensuring optimal performance of the prime mover. In modern locomotives, the engine 

cab may also integrate advanced monitoring systems for real-time diagnostics and 

predictive maintenance. 

8. Radiator Cab 

The radiator cab is a specialized compartment that houses the locomotive’s radiator and 

associated cooling systems, designed to dissipate heat generated by the engine or 

electrical components. The radiator cab typically includes a heat exchanger, cooling 

fans, and coolant circulation systems to maintain optimal operating temperatures. 

Efficient thermal management within the radiator cab is critical to preventing engine 

overheating, particularly during high-load or high-temperature conditions. The design 

of the radiator cab incorporates considerations of airflow dynamics, material selection 

(e.g., corrosion-resistant alloys), and maintenance accessibility to ensure long-term 

reliability and performance. 

9. Platform 

The platform refers to the structural base or chassis of the locomotive, which serves as 

the foundation for mounting all major components, including the trucks, engine, cabs, 

and fuel tank. Constructed from high-strength steel or composite materials, the platform 

is designed to withstand significant mechanical stresses, including torsional forces, 

vibrational loads, and impacts. The platform also provides structural integrity to the 

locomotive, ensuring alignment of components and facilitating load transfer to the 

wheels. In some designs, the platform includes walkways or access points for 

maintenance personnel, adhering to safety standards for railway operations. 

10. Fuel Tank 

The fuel tank is a critical component in diesel locomotives, designed to store and supply 

diesel fuel to the engine. Typically located beneath the platform or integrated into the 

locomotive’s underframe, the fuel tank is constructed from robust materials (e.g., steel 

or aluminium) to ensure durability and prevent leaks. The tank’s design includes 

features such as baffles to minimize fuel sloshing, fuel gauges for monitoring, and 

safety systems to prevent spillage or combustion risks. The capacity and placement of 

the fuel tank are optimized to balance the locomotive’s weight distribution and 
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operational range, with considerations for fuel efficiency and compliance with 

environmental regulations. 

 

1.2.3 Obstacles in our process.  

Locomotives encounter numerous obstacles that AI can tackle.  

Maintenance: unexpected downtime caused by component failures leads to increased 

expenses and delays. Predictive maintenance using artificial intelligence can reduce 

this. Maximizing fuel efficiency and traction while driving on different tracks and in 

various weather conditions is crucial for saving money.  

Safety: identifying track defects or operational anomalies in real-time improves safety  

Environmental impact: optimizing operations to minimize emissions in line with global 

sustainability goals. 

 

AI utilization in trains: Wabtec Corp.'s involvement.  

Wabtec corporation has been leading the way in incorporating artificial intelligence (ai) 

into locomotive systems, utilizing neural networks for a wide range of applications. 

Notable advancements include:  

Predictive maintenance: Wabtec employs artificial intelligence to analyse locomotive 

data, generating customized maintenance instructions based on the specific needs of 

each locomotive, resulting in reduced downtime and expenses. Wabtec's cutting-edge 

adhesion control technology, powered by ai, enhances haulage capability by 15% 

compared to competitors by dynamically optimizing traction in real-time. Wabtec 

utilizes edge ai to analyse data in real-time while the locomotive is in operation, 

allowing for immediate decision-making in locomotive operations (Wabtec, 2024).  
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Chapter 2 Methodology 
 

Altair hyper mesh physics ai follows a systematic five-step process, with each step 

playing a vital role in ensuring precise predictions and efficient computational 

modelling. The procedures followed are as follows: 

  

1. Project initiation: this initial phase involves defining and naming the project while 

specifying the location of the input files. To maintain uniformity and ease of access, all 

input files should be kept in a single, organized folder.  

 

2. Dataset Preparation: In this step, the necessary data is collected and organized in a 

way that is suitable for analysis. This dataset forms the basis for model training, 

significantly impacting the accuracy and dependability of the predicted results. 

 

3. Model Training: The training phase involves feeding the dataset into the AI model, 

enabling it to learn patterns, correlations, and crucial relationships within the data. Fine-

tuning hyperparameters and employing optimization techniques are implemented to 

improve performance.  

 

4. Model Testing: After the training phase, the model is subjected to extensive testing 

using a distinct dataset to ensure its accuracy and reliability. This assessment examines 

the model's accuracy, generalizability, and effectiveness in predicting outcomes on data 

that it has not been trained on.  

 

5. Prediction Generation: In the final stage, the trained model is utilized to generate 

predictions using new input data. The AI system employs learned patterns to offer 

valuable insights and computational solutions for intricate physics-based simulations.  

By following a structured approach, this method guarantees a step-by-step progression 

from project initiation to final predictions, maximizing the potential of Altair hyper 

mesh physics ai for scientific and engineering purposes. 
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Figure 4 : Altair Hyper mesh user interface 

 

2.1 Model Training and Hyperparameters 

 

The process of training a model involves repeatedly adjusting the neural network's 

parameters using the training dataset to improve its performance. Key hyperparameters 

requiring adjustment include:  

• Epoch: Denotes the number of complete iterations over the training dataset. 

Each epoch involves processing all training samples, computing losses, and 

updating model weights via backpropagation. The choice of epoch count is 

critical to achieving convergence while avoiding overfitting. 

• Width: Refers to the number of nodes in the input layer or a given layer. A 

wider layer increases the model’s capacity to capture diverse input features, 

enhancing accuracy by processing more data points from the input space, albeit 

at the cost of increased computational requirements. 

• Depth: Represents the total number of layers in the neural network. Greater 

depth enables the model to learn hierarchical feature representations, improving 

its ability to model complex relationships among input features. However, 
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deeper networks may require advanced techniques (e.g., residual connections) 

to mitigate issues like vanishing gradients. 

  

•  

Figure 5 : Width and Depth in neural network 

 

Figure 6 : Physical significance of width 



 

 

0 - Unrestricted 

 

Figure 7 : Physical significance of depth 

 

2.2 Early stopping 

 

Early stopping is a common technique employed during the training of physics-

informed neural networks to avoid overfitting and efficiently utilize computational 

resources. By tracking the validation loss at the conclusion of each training cycle, the 

training process is terminated if the loss does not show any improvement after a 

predetermined number of cycles (patience parameter). This guarantees that the model 

maintains its ability to generalize, especially in physics-based applications where 

following the governing equations is crucial, while minimizing training on noisy or 

sparse data.  

2.3 Learning rate  

 

The learning rate determines the size of parameter adjustments made during the 

optimization process in neural network training. In physics-informed ai, where loss 

functions combine data-driven and physics-based terms, an appropriately tuned 

learning rate (typically 10-3 to 10-5 ) guarantees stable and efficient convergence. 

Adaptive learning rate schedules or optimizers, commonly utilized to navigate the 

intricate loss landscapes of physics informed neural network (pinn), thereby improving 

the model's capacity to accurately model physical systems. 
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Table 1 : Supported solvers 

Supported 

Solvers 

File Format 

Abaqus .odb 

AcuSolve 
.ensight 

.h3d 

ANSYS .rst 

.rth 

CCM+ .ensight 

Custom/user-

generated 

.ensight 

.unv 

.h3d 

Fluent .ensight 

LS-DYN .d3plot 

.d3eigv 
 

Table 2 : Supported solvers 

Supported 

Solvers 

File Format 

Marc .t16 

Nastran .op2 

.h5 

.xdb 

PAM-CRASH .dsy 

OptiStruct .h3d 

.op2 

Radioss .h3d 

.anim 

ultraFluidX .ensight 
 

 

 

Figure 8 : Showing coordinate of nodes and pressure. 

In the context of computational modelling, particularly within finite element methods 

(FEM) or mesh-based numerical simulations, the values of relevant variables—such as 

displacements, stresses, or other physical quantities—are stored at the nodes of a 

discretized mesh. The mesh, which can be structured or unstructured, divides the 
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computational domain into a finite number of elements connected at nodes, which act 

as discrete points for data representation. Each node within the mesh is uniquely defined 

by its spatial coordinates, typically expressed in a cartesian coordinate system (e.g., 

(x,y) in two dimension and (x,y,z) in three dimensions), as illustrated in the referenced 

figure. These coordinates serve as reference points within the geometric domain, 

facilitating the accurate mapping of physical phenomena across the mesh. The nodal 

values, along with their respective coordinates, enable the interpolation of field 

variables across elements, forming the foundation for numerical solutions to partial 

differential equations that govern the system's behaviour. The establishment of nodal-

based storage and coordinate associations is crucial for guaranteeing the precision and 

consistency of the computational model, as they establish the spatial connections and 

data distribution within the discretized domain. 

Table 2 : Options for input 

Input Feature Description 

cae.coord Spatial coordinates used as a predictor of behaviour. 

It is recommended to always keep it on. 

cae.part_label Part name is used as a predictor of behaviour. This is 

valuable when working with large assemblies. In most 

cases, it is recommended to keep it on. However, it 

may make sense to turn it off in cases with inconsistent 

part names. 

cae.shell_thickness The thickness of 2D shell elements is used as a 

predictor of behaviour. This is required when the 

dataset has varying thicknesses between simulation 

models. This feature is only detected for Opti 

Struct and Radios. Solver input files must be in the 

same directory as the associated output file and have 

the same base name. 

cae.material_label Material name is used as a predictor of behaviour. This 

is required when the dataset has varied material 

assignments between simulation models. This feature 

is only detected for Opti Struct and Radios. Solver 
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input files must be in the same directory as the 

associated output file and have the same base name. 

               

2.4 Overall flow 

 

 

Figure 9 : Overall flow of prediction 

 

Figure 10 : Overall flow (ANN shown) 

 

2.5 Right value of epoch, width and depth 

 

Epoch: An epoch signifies the completion of a complete pass through the training 

dataset, involving the forward propagation of inputs, the calculation of loss, and the 

adjustment of weights using backpropagation. The suggested range for epochs is 
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between 500 and 3000, with a preference for starting at the higher end to guarantee an 

adequate number of training iterations. To avoid overfitting, an early stopping 

mechanism is put in place, which terminates training if the validation loss does not 

show any improvement after a predetermined number of epochs, enhancing 

computational efficiency and model performance.  

 

Width and depth. The width of a neural network, which refers to the number of nodes 

in each layer, and the depth, which refers to the number of layers, are crucial 

hyperparameters. It is suggested to begin with a configuration of 30 nodes per layer and 

3 layers for optimal performance. The evaluation of model performance involves 

comparing the errors made during training and testing phases. Overtraining: happens 

when the training error is much smaller than the testing error, suggesting that the model 

is overfitting. This implies that the model has learned from the training data but 

struggles to apply that knowledge to new, unseen data. Undertraining happens when 

the training error surpasses the testing error, suggesting that the learning capacity is not 

sufficient to capture data patterns. Preference: a slight bias toward overtraining is 

preferred, as it guarantees strong feature learning, as long as overfitting is prevented 

using techniques like regularization or early stopping. The iterative adjustment of width 

and depth, guided by error analysis, is crucial to fine-tune the model's architecture for 

tailored applications. 

 

2.6 confidence value 

 

Evaluation of Our Model and Its Reliability Confidence value. After a neural network 

generates a prediction, a confidence value is calculated to measure the degree of 

agreement between the predicted output and the model's learned parameters. The 

confidence value, expressed as a normalized score ranging from 0 to 1, represents the 

model's level of certainty in its prediction. When the value of a value approaches 1, it 

indicates a strong alignment with the learned representations, resulting in improved 

predictive accuracy. This metric is a starting point for assessing prediction reliability 

but needs to be complemented with other validation methods. Model Assessment via 

Experimentation. In addition to confidence values, model validation is performed by 
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conducting empirical testing on a distinct test dataset. This process assesses the model's 

ability to generalize by calculating error metrics, such as mean squared error (MSE) or 

classification accuracy, which offer a precise evaluation of prediction errors in practical 

situations. The testing process uncovers the practical effectiveness of the model, 

uncovering potential problems such as overfitting or underfitting, and complements the 

probabilistic insights provided by confidence values. By combining these methods, we 

can thoroughly assess the model's ability to make accurate predictions.  
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Chapter 3 Sample Model 1 
 

3.1 Overview of geometric models and data file. 

  

The research concentrates on examining heating, ventilation, and air conditioning 

(HVAC) duct systems, employing eleven different geometric models to explore the 

influence of geometry on performance metrics, particularly pressure distribution. These 

models act as the basis for training and testing a predictive framework that aims to 

evaluate the impact of geometric changes on the performance of heating, ventilation, 

and air conditioning (HVAC) systems. The dataset consists of seven separate files, all 

in the h3d format, which are utilized for training purposes. These files contain 

information about the shape and layout of the HVAC duct model, as well as the pressure 

distribution that was calculated using computer simulations. Furthermore, two separate 

files, both in h3d format, are designated for testing purposes to assess the model's ability 

to accurately predict outcomes. Furthermore, two prediction files are included in the 

dataset: one file contains solely the geometric data, stored with an .x_b extension, while 

the other is a mesh file, stored with a .fem extension, which provides the discretized 

computational domain for finite element analysis.  

 

Figure 11 : HVAC duct 

 

Figure 12 : HVAC duct with entry and exit 
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3.2 Changes in the shape of HVAC ducts.  

 

The eleven geometric models are created with slight differences in their arrangements 

to investigate how the performance of the HVAC system can be affected by changes in 

geometry. Specifically, the training process focuses on identifying and quantifying how 

these geometric changes affect the pressure distribution within the duct system. Each 

result file combines the geometric model and the pressure results, allowing for a 

thorough examination of how design parameters impact system performance.  

 

 

Figure 13 : All seven input models are shown. 
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Figure 14 : Two testing models of HVAC.  

Assessment of Machine Learning Algorithm Utilizing Physics-Based Constraints. 

Experimenting with shapes. The validation of the physics-informed AI model requires 

two distinct testing geometries, each representing a different computational domain to 

evaluate the model's predictive accuracy. The second geometry, as shown in the figure, 

is thoroughly examined to assess the model's effectiveness. The mean absolute error 

(MAE) for these geometries is calculated as 200 Mpa, indicating the average difference 

between the predicted stress values and the reference data, thereby serving as a measure 

of the model's accuracy. Prediction of the results using cad and mesh files. The 

subsequent visualizations, depicted in the figure below, illustrate the model's 

predictions obtained from computer-aided design (cad) models and their corresponding 

mesh files. The CAD model specifies the system's shape and structure, while the mesh 

file divides it into smaller units called nodes and elements for numerical calculations. 

These visualizations allow for a side-by-side comparison of predicted and actual results, 
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emphasizing the model's compatibility with engineering processes and its practicality in real-

life scenarios. 

 

Figure 15 : Testing of HVAC duct 

 

Figure 16 : Prediction of HVAC duct 

3.3 Creation and assessment of novel frameworks. 

 

In order to strengthen the predictive power of the trained model, two more HVAC duct 
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models were created. These models include minor adjustments in the geometry, 

particularly in the design of the exit vent and the length of the duct. These modifications 

were purposefully implemented to evaluate the model's resilience and its capacity to 

perform well even when faced with variations that were not part of the training data. 

The effectiveness of these new models is assessed by comparing their predicted 

pressure distributions with the simulation results, offering valuable insights into their 

ability to capture the impact of geometric changes. This approach guarantees a thorough 

examination of the HVAC duct system's behaviour in different geometric settings, 

ultimately contributing to the overarching goal of improving HVAC design for 

increased efficiency and performance. 

 

Figure 17 : Newly formed geometry. 

 

Figure 18 : Prediction of newly formed geometry 
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Chapter 4 Sample Model 2 
 

When creating and assessing a physics-based artificial intelligence (AI) model for 

structural analysis, a sample model with a mechanical arm is utilized to simulate a 

typical engineering situation. The arm is designed with a fixed boundary condition at 

one end, limiting all its movements, while an external force is applied at the other end, 

causing mechanical stresses and deformations. This arrangement mirrors a typical 

loading scenario in structural mechanics, allowing for the evaluation of the model’s 

predictive abilities in a controlled environment. The model’s training and testing 

processes involve a dataset consisting of 30 separate simulation files. Among these, 24 

files have been designated for training the neural network, furnishing a comprehensive 

dataset to fine-tune the model’s parameters and accurately capture the physical 

behaviour of the arm in different scenarios. The remaining 6 files are set aside for 

testing, acting as a separate dataset to assess the model’s ability to generalize its 

performance.  

 

Figure 19 : Structural arm 

 

 

The differences in design among these files are quite minimal, mainly consisting of 

minor geometric or parametric adjustments, as depicted in the accompanying image. 

This image overlays two distinct geometries to visually emphasize the subtle 

modifications in the arm’s structure, enabling a comprehensive comprehension of the 

incremental design modifications. After the training phase, the model is evaluated on 



 

 

0 - Unrestricted 

the six designated geometries to determine its ability to accurately predict outcomes. 

The findings of this assessment are depicted in the figure provided, which illustrates 

the model’s effectiveness in various test scenarios.  

 

 

       

Figure 20 : Structural arm with dimension                     Figure 21 : Changes in structural arm 

 

                         

 

Figure 22 : Testing of first model 
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Figure 23 : Testing of second model 

 

Figure 24 : Testing of third model 

 

Figure 25 : Testing of fourth model 
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Figure 26 : Testing of fifth model 

 

Figure 27 : Testing of sixth model 

  

 

 

4.1 Model Testing and Results 

 

The table below presents the summarized quantitative results, indicating that the 

predictive accuracy of the model consistently exceeds 95% for all tested geometries. 

The high accuracy of the model can be attributed to its consistent design, which enables 

the neural network to effectively generalize from the training data to the test cases. The 

subtle modifications in the model's structure guarantee that the learned representations 

remain relevant, reducing prediction errors and increasing reliability in situations where 

configurations are closely related. 
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Table 3 : Table of accuracy 
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Chapter 5 Locomotive Component 
 

In the context of a structural analysis study utilizing a physics-informed artificial 

intelligence (AI) model, the real component selected for investigation is the blower cab, 

a critical subsystem within a locomotive’s architecture. Locomotives are equipped with 

several specialized cabs, including the nose cab, operator cab, auxiliary cab, blower 

cab, engine cab, and radiator cab, each serving distinct functional roles. For the 

purposes of this analysis, the blower cab is chosen as the focal component due to its 

structural significance and relevance to thermal management within the locomotive. 

The blower cab, designed to house ventilation and cooling systems, comprises six 

structural pillars or posts, which provide mechanical stability and support. This study 

focuses on evaluating the blower cab’s structural performance by varying the thickness 

of these pillars and employing a physics-informed AI model to predict the resulting 

mechanical behaviour. 

To facilitate this analysis, a systematic methodology is adopted, encompassing the 

following steps: 

1. Generation of Blower Cab Models with Varying Thickness: Multiple 

configurations of the blower cab are created by systematically altering the 

thickness of the six pillars. These variations represent distinct design scenarios, 

enabling the assessment of structural responses under different geometric 

parameters. 

2. Structural Analysis and Result File Generation: Finite element analysis 

(FEA) or equivalent computational methods are applied to each blower cab 

configuration to simulate mechanical behaviour under specified loading 

conditions. The resulting data, encapsulating nodal coordinates, stresses, 

displacements, or other relevant physical quantities, are stored in result files for 

subsequent use. 

3. Training the Physics-Informed AI Model: The physics-informed AI model, 

typically a neural network augmented with physical constraints (e.g., governing 

equations), is trained using the result files from the analysed configurations. 
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This training process optimizes the model’s parameters to capture the 

relationship between pillar thickness and structural performance. 

4. Model Testing: The trained model is evaluated on a separate set of blower cab 

configurations to assess its generalization capability and predictive accuracy, 

ensuring robustness across unseen data. 

5. Model Prediction: The validated model is deployed to predict the structural 

behaviour of new blower cab configurations, providing insights into the impact 

of pillar thickness variations on performance. 

 

Figure 28 : Geometry of blower cab 

 

Figure 29 :Door centre Post and Door post in blower cab 

 



 

 

0 - Unrestricted 

 

 

Figure 30 : Post in blower cab model 

A total of eight simulation files are generated to support this study, strategically divided 

as follows: four files are allocated for training, two for testing, and two for prediction. 

The training files correspond to blower cab configurations with pillar thicknesses of 3 

mm, 4 mm, 5 mm, and 6 mm, which provide a comprehensive dataset to capture the 

structural behaviour across a range of thicknesses. The testing phase utilizes 

configurations with thicknesses of 3.5 mm and 5.5 mm to evaluate the model’s 

performance on intermediate values. Finally, the prediction phase involves 

configurations with thicknesses of 4.5 mm and 6.5 mm, enabling the model to forecast 

outcomes for novel designs. These configurations and their respective purposes are 

summarized in the table below, ensuring a structured approach to data allocation and 

model evaluation. 

 

 

 

 

 

 

 

 

 

 

Figure 31 : Table of thickness 

Training 

Thickness 

Testing 

Thickness 

Prediction 

3 3.5 
 

4 
 

4.5 

5 5.5 
 

6 
 

6.5 
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Figure 32 : Different thickness used of training, testing and prediction 
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Chapter 6 Result & Discussion 
 

The structural integrity of a blower cab, a vital part of a locomotive that houses 

ventilation systems, is assessed using a physics-based artificial intelligence (ai) model. 

The blower cab, which was previously described as having six structural pillars, is 

subjected to simulations with different pillar thicknesses to evaluate its mechanical 

behaviour, particularly the displacement caused by applied loads. The study examines 

four different configurations, each characterized by pillar thicknesses of 3.5 mm, 4.5 

mm, 5.5 mm, and 6.5 mm, as illustrated in the accompanying figures. These simulations 

compare the predicted displacements (from the AI model) with the simulated 

displacements (from finite element analysis, FEA), allowing for an assessment of the 

model's predictive accuracy. The first set of figures demonstrates the predicted and 

simulated displacement fields for a blower cab with a pillar thickness of 3.5 mm. The 

contour plots, labelled as "contour plot (mag)," illustrate the magnitude of displacement 

in the system, with a colour gradient ranging from blue (minimum displacement) to red 

(maximum displacement). The projected displacement graph displays a maximum 

displacement of 2.372e+01 mm (23.72 mm), whereas the simulated graph indicates a 

maximum displacement of 2.423e+01 mm (24.23 mm). The average absolute difference 

(MAE) between the predicted and simulated outcomes is 0.705 mm, indicating a high 

level of accuracy with a 97.2% confidence. The simulation time for the feature 

extraction is around 20 minutes, while the AI model's prediction time is less than 1 

minute, emphasizing the computational efficiency of the AI approach. The note clarifies 

that the time taken for preprocessing and training the model is not included in these 

metrics. 5.5 mm thickness configuration: the second set of figures presents the 

displacement fields for a blower cab with a pillar thickness of 5.5 mm. The 

displacement fields are shown for the case of a single-stage blower with a fan diameter 

of 1.5 m and a fan speed of 1,000 rpm. The projected displacement graph displays a 

maximum displacement of 2.228e+01 mm (22.28 mm), whereas the simulated graph 

suggests a maximum displacement of 2.317e+01 mm (23.17 mm). The mean error is 

0.239 mm, with an accuracy of 98.9%, indicating a more precise alignment between 

predicted and simulated outcomes compared to the 3.5 mm case. The simulation 

duration is around 20 minutes, while the prediction time is significantly shorter, taking 
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less than a minute. The third figure illustrates the anticipated movement for a blower 

cab with a pillar thickness of 4.5 mm. The maximum displacement is 2.236e+01 mm 

(22.36 mm), with a colour distribution indicating areas of high displacement primarily 

at the top centre of the structure, consistent with the loading conditions (likely an axial 

or distributed load applied to the top surface). The fourth figure illustrates the predicted 

displacement for a thickness of 6.5 mm, with a maximum displacement of 2.225e+01 

mm (22.25 mm). The displacement distribution is comparable to the 4.5 mm case, but 

with a slightly lower maximum displacement, indicating enhanced structural stiffness 

as a result of the increased thickness. 

 

Figure 33 : Testing of 3.5mm blower cab 

 

Figure 34 : Testing of 5.5 mm blower cab 

 



 

 

0 - Unrestricted 

6.1 Result: 

 

 The outcomes of the simulations and predictions are summarized as follows: Changes 

in Position: For the 3.5 mm thickness, the maximum predicted displacement is 23.72 

mm, which is slightly lower than the simulated value of 24.23 mm, with an MAE of 

0.705 mm and an accuracy of 97.2%. For the 5.5 mm thickness, the maximum predicted 

displacement is 22.28 mm, which is slightly lower than the simulated value of 23.17 

mm. The difference is only 0.239 mm, indicating a high level of accuracy with a 98.9% 

confidence. For the 4.5 mm thickness, the estimated maximum displacement is 22.36 

mm. For the 6.5 mm thickness, the estimated maximum displacement is 22.25 mm. 

Precision and mistake: The accuracy of the AI model increases as the thickness of the 

model increases, with a higher accuracy rate of 98.9% achieved at a thickness of 5.5 

mm. This trend indicates that the model performs better when the configurations are 

similar to the training data, such as 3 mm, 4 mm, 5 mm, and 6 mm. The mean 

attenuation coefficient decreases from 0.705 mm at a thickness of 3.5 mm to 0.239 mm 

at a thickness of 5.5 mm, suggesting better predictive accuracy for thicker 

configurations. Computational efficiency: The AI model showcases remarkable 

computational efficiency, as it can predict outcomes in less than a minute, while the 

simulation time for the feature extraction process is around 20 minutes. This efficiency 

is a significant advantage of the physics-informed ai approach, although preprocessing 

and training times are not considered in these metrics. 

 

Figure 35 : Prediction of 4.5mm and 6.5 mm blower cab 
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6.2 Discussion:  

 

The analysis uncovers several significant findings regarding the performance of the 

physics-based artificial intelligence model and the structural characteristics of the 

blower cab.  

The AI model demonstrates exceptional accuracy, with a range of 97.2% to 98.9%, 

when evaluated on various thicknesses. The enhanced precision at 5.5 mm in 

comparison to 3.5 mm indicates that the model performs better when dealing with 

thicknesses that are closer to the training data (3 mm, 4 mm, 5 mm, 6 mm). The 3.5 mm 

configuration, being an intermediate value, exhibits a slightly higher MAE, possibly 

due to its placement at the lower end of the training range, where extrapolation effects 

may be more noticeable. The high level of accuracy achieved for both tested 

configurations demonstrate the model's ability to handle minor geometric variations, 

which aligns with the earlier finding that even small design changes can result in 

reliable predictions.  

The maximum displacement of the structure decreases as the pillar thickness increases, 

from 23.72 mm at 3.5 mm to 22.25 mm at 6.5 mm (predicted values). This trend is in 

line with the principles of structural mechanics, where thicker materials exhibit greater 

stiffness, resulting in reduced deformation when subjected to the same loading 

conditions. The distribution of displacement, mainly concentrated at the top centre of 

the blower cab, indicates that the applied load (likely axial or distributed) causes 

bending or compressive stresses, with the pillars offering resistance. The uniformity in 

displacement patterns across different thicknesses suggests that the structural behaviour 

remains consistent, enabling accurate predictions through artificial intelligence. 

The computational efficiency of the AI model is impressive, as it can predict the 

outcome in less than a minute, while the FEA simulation takes around 20 minutes. This 

demonstrates the model's potential for quick design iterations in engineering projects. 

Nevertheless, the absence of preprocessing and training times suggests that the overall 

workflow may necessitate substantial initial computational resources. In practical 

scenarios, it is crucial to assess this trade-off, as the time spent on initial training may 

be compensated by the model's capability to offer near-instantaneous predictions during 

iterative design processes.  
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Despite its impressive performance, the model encounters limitations when it comes to 

predicting behaviour for configurations that fall outside the training data. Furthermore, 

the accuracy metrics are derived from displacement magnitudes, but additional factors, 

such as stress concentrations or failure criteria, may necessitate further examination to 

guarantee the overall structural integrity. The note clarifies that preprocessing and 

training times, although not explicitly mentioned in the reported metrics, are crucial for 

the practicality of the ai approach. 
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Chapter 7 Conclusion and scope for future 
 

7.1 Conclusion 

 

The physics-informed ai model demonstrates exceptional performance in predicting the 

structural behaviour of a blower cab under varying pillar thicknesses, achieving 

accuracies of 97.2% and 98.9% for thicknesses of 3.5 mm and 5.5 mm, respectively, 

with corresponding mean absolute errors (MAE) of 0.705 mm and 0.239 mm. The 

predicted displacements for thicknesses of 4.5 mm and 6.5 mm (22.36 mm and 22.25 

mm, respectively) further confirm the model's reliability, showing a consistent trend of 

decreasing displacement with increasing thickness, in line with expected structural 

mechanics principles. The ai model's computational efficiency, with prediction times 

of less than 1 minute compared to 20 minutes for finite element analysis (FEA), 

underscores its potential as a powerful tool for rapid design optimization in locomotive 

engineering. This physics-informed ai model proves particularly effective for 

predicting the behaviour of similar models, serving as a valuable tool to significantly 

reduce the time required for predictions. By utilizing a trained model, it facilitates 

quicker analysis of designs that share similar structural characteristics, thereby 

expediting the design iteration process. In all six testing scenarios, the model 

consistently attains an accuracy surpassing 97%, with the third model demonstrating 

the lowest accuracy, albeit still slightly above 97%. The primary reason for this high 

accuracy is the small changes in the blower cab model, which are even smaller than 

those observed in previous HVAC models, enabling the ai to generalize effectively 

within the trained parameter space. Nevertheless, the third model's lower accuracy can 

be attributed to a more significant variation in thickness compared to the other 

configurations, emphasizing the model's sensitivity to larger geometric discrepancies. 

Although it may be tempting to strive for even higher accuracy, it is not recommended, 

as it can result in overfitting, where the model becomes too specialized to the training 

data, making it less effective in handling new situations. The effectiveness of the 

physics-informed AI model relies on the magnitude of dimensional alterations in the 

design. In cases where the dimensional variations of models are minimal, as observed 

in this study, the ai model can accurately predict structural behaviour, providing a time-

saving alternative to traditional analysis methods. However, when the dimensions vary 

greatly, the physics-based AI model is less reliable, and traditional analysis tools like 
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FEA are required to guarantee precise outcomes. Consequently, although the AI model 

is proficient in expediting the analysis process for repetitive models with minor 

adjustments, it is crucial to perform a comprehensive validation using recognized 

analysis tools prior to finalizing any design. This guarantees that the model's predictions 

match real-world outcomes, reducing the chances of unforeseen risks arising from 

untested assumptions. The small difference in accuracy observed between the tested 

thicknesses indicates that the model's performance may be influenced by the range of 

training data, emphasizing the importance of choosing appropriate training 

configurations to ensure reliable generalization. Future research should concentrate on 

increasing the size of the training dataset to encompass a wider variety of thicknesses 

and incorporate additional structural metrics, such as stress or fatigue analysis, to offer 

a more thorough assessment of the blower cab's performance. Furthermore, the entire 

computational process, including preprocessing and training times, should be measured 

to evaluate the practicality of implementing these ai models in real-world industrial 

environments. This research establishes a solid basis for utilizing physics-informed 

artificial intelligence in structural analysis, providing a scalable and efficient method to 

improve the design and reliability of locomotive components, especially in iterative 

design processes where similar models undergo minor modifications.  

7.2 Future Scope 

 

The present research has effectively showcased the effectiveness of a physics-based 

artificial intelligence (ai) model in predicting the structural behaviour of a blower cab 

by adjusting pillar thicknesses, resulting in high accuracy and computational 

efficiency. Nevertheless, the scope of this research can be greatly broadened to 

encompass a wider range of applications within the field of locomotive engineering. 

This study primarily aimed to predict outcomes based on changes in thickness for a 

smaller component, but future research can expand this approach to larger and more 

intricate locomotive components, such as the engine and platform. These parts, crucial 

for the locomotive's stability and efficiency, are more complicated because they are 

larger, have intricate shapes, and are subjected to various types of forces. By 

incorporating physics-based AI into the analysis of locomotive components, this 

approach can automate the process of evaluating design optimization and performance 

across a broader spectrum of subsystems. For example, automating the prediction of 
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structural responses for the engine, which houses the prime mover and is subjected to 

substantial thermal and mechanical stresses, could simplify the design process, 

minimizing the need for time-consuming finite element analysis (FEA). In a similar 

manner, utilizing the model on the platform, which acts as the base structure 

supporting various subsystems, could facilitate the evaluation of load distribution and 

structural integrity under different operational conditions. This automation would not 

only improve the scalability of the proposed methodology but also contribute to the 

creation of a comprehensive ai-driven framework for locomotive design, capable of 

handling various components with minimal human intervention. Additionally, future 

research could incorporate other design factors beyond thickness, such as material 

properties, geometric configurations, and dynamic loading conditions, to develop a 

more comprehensive predictive model. By integrating real-time data from locomotive 

operations, such as vibration or temperature profiles, the model's effectiveness could 

be improved, allowing for predictive maintenance and real-time monitoring of 

structural health. These advancements would make the physics-informed ai model a 

groundbreaking tool in railway engineering, paving the way for fully automated, data-

driven design and analysis workflows for future locomotives. 
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