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ABSTRACT

Safe drinking water access continues to be a key issue in rural India, with chemical and
microbial contaminants being the main cause. This research evaluates the quality of water from
five villages in Indore: Borkhedi, Gokanya, Harsola, Memdi, and Simrol, through detailed
physicochemical and heavy metal analysis of 36 water samples. 24 parameters were examined,
viz., fluoride, nitrate, COD, BOD, TSS, and heavy metals such as Mn, Zn, Fe, Ni, Pb, and Cr.
On the basis of models like Dojlido, Bascaron, Brown, SRDD, Aquatic Toxicity Index, West
Java, Dinius, and Entropy-weighted WQI, the research compared the efficiency of various
Water Quality Index (WQI) models. Results indicated extensive pollution with fluoride content
above 2.4 mg/L, and organic contamination was widespread at most sites. Whereas the Dojlido
model presented inflated WQI values, the Entropy-weighted, Brown, and Bascaron indices
indicated contamination more accurately. Sensitivity analysis also identified Pb, Cr, and Cd as
the most significant parameters impacting WQI values. The research concludes that Bascaron,
Brown, and Entropy-weighted models present a balanced and context-suitable platform for
rural water quality monitoring and suggests their implementation for region-specific

sustainable water management.

Keywords: Rural Water Quality, AHP, Water Quality Index (WQI), Physicochemical
Parameters, Heavy Metal Analysis, Entropy Weighting Method, Sensitivity Analysis.
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CHAPTER1
INTRODUCTION

1.1 Overview

Water is one of the determinants of life here on Earth: it sustains human life, preserves
ecosystems, and fosters economic development. The availability, quality, and management of
water resources have impacts on the well-being of communities, the productivity of industries,
and overall natural-environment health. Earth is a planet where 71% of its surface is covered
by water, of which 97% of this is seawater (Musie & Gonfa, 2023). Since seawater is hardly
available for human consumption, the world population has to rely on only 3% of freshwater,
as indicated in the global water distribution. Of the available freshwater, only 0.06% can easily
be accessed, and the remaining 99.94 % comprises the frozen polar ice cap, glaciers, and
groundwater (Rijsberman, 2006). Lakes and rivers play a huge role in the global environment,
acting as irrigation water sources, fish farming, shipping transport, and industrial and drinking
water sources. Lakes and rivers hold 0.3% of the world's freshwater (El-Ghonemy, 2012).
According to the study by Misstear et al. (2017), the irrigation sector uses only about 70% of
the groundwater, and India, China, and the USA are the major leading countries in using this
water source. Critical water quality issues include more than 2 billion people worldwide using
sources of water contaminated with unsafe pathogens, while an estimated 4 billion lack access
to safe drinking water without treatment (Biswas & Tortajada, 2019; Vega et al., 2018).
Agricultural activities are responsible for the nutrient-rich runoff, which annually causes about
245,000 square kilometers of global waters to suffer from eutrophication and create hypoxic
zones that decimate aquatic ecosystems (Karunanidhi et al., 2021; Tyagi et al., 2020). Industrial
sources contribute to contamination because 30% of the world's available freshwater is used
industrially and in municipalities, and generates by-products that include heavy metals as well
as micropollutants, and over 1.5 billion people living in rural areas depend on unsafe
groundwater, especially due to high levels of fluoride and arsenic (Schwarzenbach et al., 2010).
Only about 10 percent of regions like South Asia receive proper treatment of wastewater, and
this means pathogens and toxic substances end up in the supply of drinking water (Biswas &
Tortajada, 2019; Vliet et al., 2021). India-based studies reveal that 26 percent of samples of
water exceeded the safe fluoride level and thus would pose threats of fluorosis, especially to
children (Karunanidhi et al., 2021). Even to date, untreated wastewater and agricultural runoff

continue to cause pollution to millions of people, and it is estimated that up to 40 percent of



the world's population suffers from severe water scarcity if considered both quality and quantity
(Schwarzenbach et al., 2010; Vliet et al., 2021).

Most of the water used for rural and urban drinking sources comes from groundwater. Most
of these sources are contaminated with fluoride, arsenic, and heavy metals, thus affecting
millions of people (Sharma et al., 2017; Singh & Singh, 2002). More than 14.5 million people
rely on water from this river in the Ganges basin, with a very high BOD all along, especially
near some of the large urban cities like Calcutta, which has values of BOD ranging up to 5.95
mg/L due to untreated sewage (Sarkar et al., 2007). The waters of the Yamuna River, despite
numerous restoration efforts, have remained under the "poor" rating for indices because of their
high coliform bacteria and ammonia levels, indicating that efforts to regain potable standards
continue to be a challenge (Sharma & Kansal, 2011). Even the Hindon River, Uttar Pradesh, is
heavily polluted, with COD at 337.4 mg/L and BOD at 51 mg/L (Suthar et al., 2010). For
instance, groundwater levels of irrigated areas such as Punjab, Rajasthan, and Tamil Nadu are
reducing by 1-2 meters a year, and such a trend is likely to jeopardize future water security
(Singh & Singh, 2002). At the per capita level, India's water availability is headed towards
crossing 1,170 m?*/yr just above the water-stressed threshold, requiring urgent resolution
through effective water management and control of pollution measures (Cronin et al., 2014).

Water quality monitoring is a highly challenging task since it heavily relies on a few
parameters, such as pH, turbidity, DO, and TDS, demanding time-consuming and resource-
intensive methods (Ahmed et al., 2020; Behmel et al., 2016). Worldwide, less than 40% of
water bodies are adequately monitored, while 80% of wastewater released only indicates there
are data gaps, mostly in poorer regions (Kirschke et al., 2020; Uddin et al., 2021). The
introduction of new technologies, like the use of loT-based monitoring systems, holds promises
but is limited to very high initial costs, while access is only accessible to the more affluent
countries of the world (Jan et al., 2021; Murray et al., 2022). Water quality's spatial and
temporal variability increases the complexity since many monitoring programs cannot boast
the resources needed to ensure complete coverage (Huang et al., 2021; Kachroud et al., 2019).
Although Water Quality Indices have certainly made the interpretation of data easier, the
outcome is generally afflicted by regional specificity that confines its applicability
(Boyacioglu, 2007; Kachroud et al., 2019).

The Water Quality Index is an integrated measure that converts complex data on water
quality into an easily understandable single numerical value, which gives a general judgment
regarding suitability for specific use-drinking, agricultural purposes, or recreation (Kachroud

etal., 2019). This index is primarily applied to monitor and better manage water quality. Thus,
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it simplifies the interpretation of environmental data for policymakers and stakeholders to act
on (Boyacioglu et al., 2007). Calculation of WQI has many steps: selection of relevant water
quality indicators such as pH, dissolved oxygen, and turbidity; assignment of weights
according to the importance of each parameter; normalization of parameter values; and
aggregation of these into a composite score by mathematical functions (Varadharajan, et al.,
2009; Gupta & Gupta, 2021; Jha et al., 2015; Sun et al., 2016). BOD, nitrate levels, and TDS
are the most frequently weighted upon expert judgment or statistical significance (Gupta &
Gupta, 2021; Yidana & Yidana, 2010).

Some of the common issues in WQI models are uncertainty at every step, like the choice
of parameters, derivation of sub-indices, weighting of parameters, and aggregation of the index
(Oliveira et al., 2019; Uddin et al., 2021). Regional guidelines for selecting parameters are
considered the most common restriction to the generalizability of WQI models. Overlapping
parameters, such as dissolved oxygen and biochemical oxygen demand or turbidity and total
solids, also skew the results, making them inaccurate in determining water quality (Oliveira et
al., 2019; Patel et al., 2023). The WQI of some studies ranges from "good" at the upstream sites
down to "poor" at the downstream due to the city's influence, where the values decrease by
11.6% in polluted areas (Gupta & Gupta, 2021; Kannel et al., 2007; Uddin et al., 2022).
Improved ways, such as using a machine learning-based weight assignment, can address these
issues and enhance the accuracy without losing ease of use (Gupta & Gupta, 2021; Uddin et
al., 2022).

1.1.1 Water Quality Issues and Challenges in Madhya Pradesh

The water quality issues in Madhya Pradesh are alarming as there are high levels of
industrial effluents, agricultural runoff, and improper waste management. Various studies have
shown that most of the rivers, such as the Betwa, Chambal, Narmada, and Kalpi, have been
saturated with a significant amount of pollutants. Industrial hotspots like Mandideep and
Nayapura reportedly have higher levels of Biochemical Oxygen Demand (BOD) and Chemical
Oxygen Demand (COD) compared to the permissible limit (Gupta et al., 2017; Verma et al.,
2014; Vishwakarma et al., 2013). Groundwater in areas including Jabalpur and Rewa is
contaminated with heavy metals such as chromium and has higher total dissolved solids and
nitrates that make water undrinkable (Ghoderao et al., 2022; Mishra et al., 2012). Water from
the Narmada River becomes more polluted during monsoon because it undergoes
sedimentation and expands human-induced activities (Gupta et al., 2017). In addition, 25% of
rural access to clean drinking water is reported in the Sagar and Indore zones of the region, and

all districts have high positive rates of microbiological contamination (Godftrey et al., 2011;
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Mishra & Nandeshwar, 2013). The overall water quality index (WQI) of many districts remains
highly poor to unsuitable for consumption, attesting to the urgency required in formulating
robust pollution control and sustainable water resource management strategies (Ghoderao et
al., 2022; Gupta et al., 2017).

The water pollution level in Indore is highly critical, and significant contamination has been
seen in both surface and ground sources. The Khan River is a major watercourse that is highly
polluted due to untreated domestic and industrial discharges, which show BOD and COD at
extremely high levels, often beyond permissible limits (Abhineet & Dohare, 2014; Dohare et
al., 2018). Groundwater in urban areas is also contaminated with nitrates, fluorides, and heavy
metals. Nitrate levels often exceed 45 mg/L, which is associated with agricultural runoff
(Dohare et al., 2014; Sharma & Thakkar, 2014). The water source of the city depends mainly
on the Narmada River and local reservoirs, and becomes turbid at levels of 1530 NTU during
monsoons, making it unsafe even with treatment due to potential microbial pollution (Khadse
et al., 2016). This important local water body, Sirpur Lake, suffers from eutrophication and
microbial contamination with a high coliform count, which reflects fecal pollution (Nighojkar,
& Chaurasia, 2017; Smruti & Sanjeeda, 2012). In addition, bacteriological analysis shows
widespread contamination with pathogens like E. coli, meaning there is an urgent need for strict
water quality management and public awareness campaigns (Smruti & Sanjeeda, 2012).

1.2 Motivation of the Study

Field surveys in five villages in the Indore district of Borkhedi, Gokanya, Harsola, Memdi,
and Simrol revealed the urgent issues of water quality, such as high concentrations of fluoride,
high organic and suspended loads. These problems are worsened by the lack of proper
sanitation infrastructure and the absence of continuous and reliable systems of monitoring. The
issue not only poses a risk to public health but also highlights a critical gap in rural water
management. Existing Water Quality Index (WQI) models tend to miss region-specific
pollutants or remain insensitive to changing field conditions. Inspired by these issues, this
research performs a comparative evaluation of several WQI models to compare their accuracy,
responsiveness, and context-specific appropriateness. The final objective is to determine
models that are scientifically robust, operationally viable, and able to facilitate informed

decision-making for sustainable water quality management in rural India.



Harsola

Memdi Gokanya Harsola

Figure 1.1 Water Quality and Sanitation Challenges in Villages (Source: Me)

This scenario highlights the need for a systematic assessment of water quality and targeted
interventions to ensure safe and sustainable water resources for these communities.
1.3 Scope of the study

The research focuses on assessing water quality in five selected villages of Indore through
established WQI models. It addresses region-specific water contamination issues, including
chemical contaminants such as fluoride and nitrates, and heavy metal contamination due to
deficient sanitation facilities. The study underscores the need for regionally adaptive WQI
models to address peculiar challenges at the rural level. It provides a comparative framework
to evaluate the efficacy of various WQI models in varied environmental conditions. These
findings can guide the sustainable management of water resources and policymaking in rural

communities.



CHAPTER 2
LITERATURE REVIEW

2.1 WQI model structure:
2.1.1 Selection of parameters:

The selection of appropriate parameters is an important step in developing WQI, as it
determines an index's effectiveness in showing water quality (Akhtar et al., 2021; Banda &
Kumarasamy, 2020) as shown in Figure 2. Parameters typically chosen are physicochemical
indicators like pH, turbidity, electrical conductivity, nitrates, and biological indicators like
dissolved oxygen and fecal coliform (Aljanabi et al., 2021; Sutadian et al., 2016). They should
represent the sources of pollution in the water body and the proposed water use, such as
drinking, irrigation, industrial, etc. (Kumar et al., 2024; Sutadian et al., 2016). According to the
study by (Sutadian et al., 2016), parameters for selection can be categorized into three distinct

systems: fixed, open, and mixed.
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Fixed system

The fixed system applies standardized and constant parameters used to compute WQI,
making it uniform and comparable within and among regions and time. Common parameters

include pH, DO, turbidity, and BOD, representing general water quality metrics (Akhtar et al.,



2021; Kumar et al., 2024). This approach allows for a fair and objective assessment of water
quality, but it can be ruthless because it does not take into consideration region-specific
contaminants or emerging substances like heavy metals or microplastics (Patel et al., 2023;
Terrado et al., 2010). For instance, the indexes such as the NSFWQI apply pre-set indicators.
This approach ensures that the system is transparent and easy to use but is likely to neglect
localized concerns over water quality (Kumar et al., 2024; Sutadian et al., 2016).

Open system

The open system allows for flexibility in that parameters are selected based on the nature
of the water body, the use for which the water is intended, or regional issues. For instance,
depending on the severity of industrial pollution in an area, consideration might be given to
heavy metals or nitrates (Akhtar et al., 2021; Sutadian et al., 2016). The appropriateness and
flexibility of this system mean that consistency in the assessments may not be achieved; hence,
comparisons between regions become impossible (Sutadian et al., 2016; Terrado et al., 2010).
Research has proved that open systems are most effective in areas of special ecological
concerns or diverse uses of water, including irrigation, whether it is for agriculture or water
supplies to an urban center, where parameter inclusion can differ drastically (Akhtar et al.,
2021; Kumar et al., 2024).

Mixed system

The mixture of the fixed and open systems standardizes their compatibility as it couples the
universal parameters core set. These universal parameters include, for example, parameters like
pH and DO, which are complemented by additional parameters based on local environmental
needs or emerging pollutants (Kumar et al., 2024; Patel et al., 2023). This means it ensures the
consistency of assessment while at the same time ensuring comparability across regions. For
instance, the Canadian Council of Ministers of the Environment Water Quality Index, CCME
WQI, is a hybrid approach that can be applied suitably for changes requiring specific water-
use requirements (Kumar et al., 2024; Terrado et al., 2010). It is really effective in those areas
where the baseline quality of water should be evaluated along with some localized issues (Patel
et al., 2023; Sutadian et al., 2016).

2.1.2 Formation of sub-indices:

One of the important stages in the WQI model structure is to form sub-indices, which
transform individual water quality parameters into dimensionless values on one scale. Sub-
indices reduce complex variability in water-quality data and make it easy to compare. It uses
different approaches to generate sub-indices, ranging from linear interpolation-based, like in

the case of the National Sanitation Foundation WQI (NSFWQI), to non-linear applications
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recommended in the Oregon WQI, which is well-suited for managing extreme values (Lumb
et al., 2006; Neary et al., 2001a; Said et al., 2004). On the other hand, observations show that
though most of the WQIs utilized a scale of 0 to 100 for the sub-indices, the weights and
transformation functions were applied to control their sensitivities and reliabilities (Liou et al.,
2004; Lumb et al., 2006). For example, the Canadian CCME WQI combines scope, frequency,
and amplitude measures into sub-indices in an attempt to capture water quality trends, thereby
allowing for clear communication among diverse stakeholders (Rosemond et al., 2009; Neary
et al., 2001). The Bascaron model contains up to 26 parameters; for instance, a comprehensive
water quality assessment is provided, but it increases the computational complexity (Uddin et
al., 2021). Other approaches include Taiwan's Liou Index, which uses a combination of PCA
and hybrid aggregation functions that balance the parameter-by-parameter influence with
specific regional concerns (Liou et al., 2004). This practice of including biological and
physicochemical indicators in forming sub-indices has gained significant importance in the
global arena to improve the ecological relevance of WQIs (Lukhabi et al., 2023). Statistical
validation, including principal component analysis and sensitivity tests, ensures that such sub-
index transformations retain accuracy and sensitivity under various environmental conditions
(Neary et al., 2001). Statistical studies have revealed that sub-index reliability depends greatly
on adopting appropriate parameter thresholds that vary regionally and seasonally (Akhtar et
al., 2021; Uddin et al., 2021). Out of the 35 world reviews, a global survey by (Akhtar et al.,
2021), an overwhelming 82% of WQI models adopted sub-indices for rivers, lakes, and
estuaries, while the remaining focused on groundwater and wetlands.
Any WQI model is essentially supported by sub-indices that convert complex parameter data
into concise and interpretable scores that allow for strong assessments of water quality at
multiple temporal and spatial scales (Lukhabi et al., 2023; Lumb et al., 2006; Said et al., 2004).
The following methods are commonly employed in the development of sub-index functions:

e Expert judgments

e Statistical Techniques

e Factor Analysis (FA)

e Cluster Analysis (CA)

e Use of Water Quality Standards

Expert judgments:
Expert judgment is one of the key methods that have been used in determining sub-indices

for water quality index models, especially where scientific data is limited, vague, or regionally



specific. In such a case, the approach relies on the experience and opinion of water quality
experts in establishing parameter importance, methodologies for scaling, and aggregation sub-
indices. For instance, a Delphi study with 142 water quality experts concluded by finalizing 11
critical parameters from a list, which included pH, dissolved oxygen, and turbidity, with an
absolute global relevance yet localized adaptation (Horton et al., 1965; Sutadian et al., 2016).
Expert panels also provided feedback through several rounds of iteration, with improvements
to the curves of sub-indices to gain consensus on the extent of quality variation derived from
fluctuations in parameters (Banda & Kumarasamy, 2020; Horton et al., 1965). Techniques like
AHP are combined with expert elicitation to arrive at weights systematically applied to
parameters for the WQI to reflect practical and ecological priorities (Deininger, 1980; Steurer,
2011). Statistical verifications, including consistency ratio checks, have been applied to assure
reliability in scales and weightings derived from experts (Banda & Kumarasamy, 2020;
Deininger, 1980). Studies indicate that by basing models on expert judgment, such as Bascaron
and Liou indices, they have gained higher sensitivities to changes in pollutants and are more
fit for complicated, multi-parameter scenarios (Steurer, 2011; Sutadian et al., 2016). Second,
anonymous elicitation methods used in the Delphi method help avoid groupthink and biases
because experts can objectively revise their inputs independently (Deininger, 1980; Steurer,
2011). The empirical data is balanced with professional insight here to ensure the WQI is
equally robust from a scientific standpoint and implementable practically across various
environmental and policy frameworks.

Statistical Techniques:

Applying statistical techniques to build sub-indices for WQI models transforms raw data
into standardized metrics to effectively assess water quality. These techniques include
regression analysis that forms relationships between water quality parameters, such as nutrient
levels, with algal growth, which mostly have high correlation coefficients- R* > 0.85 with
adequate predictive power (Dutta et al., 2018; Ghesquiére et al., 2015). Correlation analysis
identifies interdependencies among parameters such as pH, dissolved oxygen (DO), and total
suspended solids (TSS), which streamlines the selection of key indicators for sub-indices (Shil
et al., 2019; Silva et al., 2021). Weighted methods allow assigning significance to parameters
according to the variability in the data and through expert knowledge; hence, factors such as
turbidity and nitrates are usually given more importance (Nagaraju et al., 2016; Shil et al.,
2019). Advanced techniques, such as the temporal and spatial discriminant analysis, can elevate
the accuracy of sub-index generation since they determine seasonally or regionally changing

parameters that explain significant water quality alterations (Mamun & An, 2021; Varol, 2020).
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Geospatial tools, like Kriging and statistical processing, can produce spatial distribution maps
of water quality indicators, making it easier for people to identify trends and pinpoint hotspots
of pollution (Masood et al., 2022; Silva et al., 2021). Descriptive statistics allow for the
establishment of base values in parameter variability; normalization techniques allow for
standardization and comparability across different datasets (Dutta et al., 2018; Nagaraju et al.,
2016). Validation through techniques such as Mann-Kendall trend tests ensures that the sub-
index transformations are still robust under temporal and environmental variability (Mamun &
An, 2021; Varol, 2020). The statistical methods used enhance the sub-indices' reliability,
accuracy, and interpretability. The sub-indices are strongly necessary for applications in WQI
models across dynamic and diverse water quality scenarios. Given their ability to describe
multidimensional datasets succinctly, they can provide useful insights for water resource
management and policy formulation.

Factor Analysis (FA):

Factor analysis is another critical statistical technique applied in multivariate analysis,
which is used to form sub-indices in WQI models. It applies the concept of grouping water
quality parameters into various factors to identify the underlying relationships among those
parameters and reduce the dimensionality of the data while retaining the variance. For example,
in the Carson Valley in Nevada, Factor Analysis was applied to 10 pollutant parameters and
was successfully reduced to two principal indices with 99% reliability using an F-test (R? =
0.9754) (Joung et al., 1979). Similarly, in the Ganga River, Factor Analysis effectively grouped
parameters like Dissolved Oxygen (DO), pH, and Total Dissolved Solids (TDS), explaining
over 80% of the total variance and reducing parameters from 28 to 9 (Tripathi & Singal, 2019a,
2019b). This technique helps attach weights to parameters by finding their relative contribution
to the overall water quality. For example, weights computed through Factor Analysis on
Turkish surface waters led to the development of an Ecological Water Quality Index, which
ensured that at least one parameter was taken from each factor class (Boyacioglu & Boyacioglu,
2020). Another example is its use in Rhodes Island, Greece, where Factor Analysis aggregated
critical parameters like nitrates, sulfates, and conductivity, simplifying the WQI development
process (Alexakis, 2022). The results of Factor Analysis can be statistically validated using
measures such as the Kaiser-Meyer-Olkin (KMO) measure (>0.5 for sampling adequacy) and
Bartlett's Test of Sphericity (p < 0.05 for significant correlations) (Tripathi & Singal, 2019;
Varol & Davraz, 2015). Rotation methods, such as Varimax, help to make the interpretation of
the parameter loadings easier. In Nile River pollution studies, Factor Analysis determined the

important sources of pollution to be agricultural runoff and industrial effluent, while accounting
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for more than 75% of the variability in water quality (Yousry & Gammal, 2015). One of the
powerful tools in forming WQI is factor analysis, as it offers an objective basis for parameter
selection, weight assignment, and pollution source identification, thus improving the scientific
robustness and applicability of water quality assessments. (Gulgundi & Shetty, 2018) utilized
PCA to assess the correlation among weighting parameters, as illustrated in Equation (2.1).

Zij = ailXj1 TaixXj2 + ai3Xj3 ... T aimMjm (2.1)
Where, Z = component score
x = the estimated variable value
1 = the component number
j = the sample number
a = the loading component
m = the total number of variables.
Cluster Analysis (CA):

Cluster Analysis (CA) is a well-established statistical method that groups similar data
points into clusters to draw patterns or trends from complex datasets in water quality. CA plays
a crucial role in WQI model sub-index formation, as it is necessary for the classification of
water quality parameters, monitoring sites, and seasonal variations. Data standardization is the
initial step prior to clustering, which standardizes the parameters measured in different units.
Distance metrics like Euclidean or Manhattan distances are often used to measure similarity
between the data points, whereas hierarchical methods such as Ward's linkage or k-means
clustering are used to determine clusters. In the context of the Godavari River, CA identified
34 monitoring stations into three groups, namely, less polluted, moderately polluted, and highly
polluted, based on which focused monitoring efforts could be made (Gupta et al., 2015).
Secondly, the Mekong Delta study classified water quality into four clusters according to key
parameters such as Total Suspended Solids (TSS) and coliform counts and exploited seasonal
and spatial variability (Giao & Nhien, 2021). CA not only helps reduce dimensionality but also
optimizes the monitoring network. For example, New Zealand showed how CA effectively
categorized 680 groundwater sites into representative clusters to streamline its monitoring
efforts while maintaining its data integrity (Daughney et al., 2012). The method's ability to
merge interval-valued data, demonstrated in the assessment of the Huaihe River, results in no
information loss while obtaining clusters, thus further enhancing data accuracy and reliability
(Shan et al., 2021). Validation techniques such as the Corrected Rand Index (CRI) are

commonly used to validate the soundness of the clustering results. The strength of this
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technique is its ability to consider various parameters so that the whole spectrum of water
quality changes across time and space can be represented.
Use of Water Quality Standards:

Sub-indices for WQI can be developed based on water quality standards, as standards offer
universally or regionally accepted standards for various parameters. Regulation-oriented
bodies, such as WHO, EPA, or regional bodies, define limits of permissible quantities for
various key parameters of water quality, such as pH, dissolved oxygen, nitrates, and heavy
metals. For example, in investigations of the Tigris River, standards were the linchpin to
transforming raw information into meaningful index values; the standards conformed to
international standards for potable water quality (Abed et al., 2022). Likewise, WQI Vietnam
used national standards for the allowable concentrations of chemicals, thereby ensuring the
index reflected the region's environmental conditions (Van et al., 2022). The CCME WQI,
widely referenced worldwide, based on the three-factor approach, correlates scope, frequency,
and amplitude to the standards set, thus providing a flexible yet robust framework (Banda &
Kumarasamy, 2020b). In South Africa, compliance with groundwater quality standards
allowed the classification of water resources into suitability classes for domestic use (Nzama
etal., 2021). Statistical analysis showed that it standardizes data interpretation while enhancing
indices' comparability across regions, as shown in 80% of global WQI applications (Akhtar et
al., 2021; Kumar et al., 2024). In addition, standards ensure indices reflect the actual
environmental and health risks, as any deviation from permissible limits is directly proportional
to the degree of severity of the indicated pollution. As seen in Brazil’s aquifer studies, the
integration of standards highlighted deficiencies in treatment infrastructure when groundwater
consistently failed to meet basic potability levels (Sabino et al., 2024). Moreover, sub-index
functions calibrated against these benchmarks, such as linear or non-linear transformations,
align parameter values with acceptable risk thresholds, offering insight into resource quality
(Sutadian et al., 2016). Across studies, standards provided a basis for developing indices that
are not only scientifically valid but also socially relevant, thus allowing policymakers to rank
interventions appropriately. This synergy between scientific rigor and practical utility
underscores the centrality of water quality standards in crafting meaningful WQI models.
2.1.3 Parameter weighting:

Parameter weights assignment is important in WQI development since they display the
relative significance of water quality parameters and influence the index score. Weights could
be either equal, in which case all the parameters are treated equally important, or unequal,

where weights are assigned per the importance of each parameter or specific water quality
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guidelines (Sarkar & Abbasi, 2006). Unequal weights are often encountered in WQI models
like the Horton, Bascaron, and Almeida indices, which apply weights with integer values and
whose summation exceeds 1. In contrast, the Oregon index assigns equal weights to all
parameters, while others, such as CCME, Smith, and Dojlido indices, do not apply parameter
weights at all. The use of unequal weighting systems enhances the robustness of a WQI model,
which in turn diminishes uncertainty and maximizes accuracy. The Delphi technique and the
Analytical Hierarchy Process (AHP) are widely adopted in methods for determining weights
(Mogane et al., 2023).

Delphi method:

The Delphi method is a group of expert panels comprising stakeholders like policymakers
and water quality experts, presenting their consensus-based weights through interviews,
questionnaires, and discussions. For instance, (Horton et al., 1965) and (Brown et al.,1970)
applied this method to enhance the credibility of parameter weights in different indices. (Horton
et al., 1965) developed parameter weighting as part of WQI development; assigned weights as
four parameters (specific conductivity, chlorides, alkalinity, carbon chloroform extract) were
assigned one each; two for one parameter (coliform); and four for the remaining three, namely
dissolved oxygen, sewage treatment, and pH. (Brown et al.,1970) further developed this
approach using a large panel of water quality experts from the USA to add objectivity and
credence. Specialists graded relative parameters of water quality on a scale from 1 (most
significant) to 5 (least important). The arithmetic mean was then calculated for the experts'
ratings, and the parameter with the highest rating for significance was assigned a temporary
weight of 1.0. Other parameters were assigned temporary weights based on the highest rating
divided by the respective mean rating. The temporary weights were normalized by dividing
each by the total sum of weights, thus ensuring that the summation of all parameter weights
equalled 1. Since then, the Delphi method has been widely applied in various WQIs to establish
relative parameter weights and maintain consistency in the weighting process through expert
consensus(Sutadian et al., 2016).

Analytical Hierarchy Process (AHP):

Saaty developed AHP in the 1970s. It uses pairwise comparisons to derive parameter
weights by integrating qualitative and quantitative inputs. In this approach, weight assessment
is accomplished through pair-wise comparison matrices in which the respondents, either
experts or the public, are asked to give their preference by comparing several choices. (Sutadian
et al., 2016),(Ocampo-Duque et al., 2006), and (Gazzaz et al., 2012) studied how AHP can

reduce uncertainty and improve weighting accuracy. A study by (Gazzaz et al., 2012)
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mentioned that AHP reduces uncertainty and increases consistency by adopting a consistency
ratio to check on the legitimacy of the weight assignment process. For instance, West Java WQI
has been practiced as it was used to rank five key parameters (Sutadian et al., 2016). (Ocampo-
Duque et al., 2006) successfully applied AHP to combine five groups of similar parameters
into weights that accurately reflected their ecological significance. The methodology
incorporates expert opinions and ensures reliability through sensitivity analysis, enhancing the
WQI models' robustness. AHP further eliminates biases since it has been in direct contact with
stakeholder involvement when used to prioritize environmental and human health-related
parameters (Ocampo-Duque et al., 2006; Sutadian et al., 2016).

Though equal weights are usually preferred due to the simplicity of the approach and to be free
from subjective biases, unequal weights are imperative for applications emphasizing specific
water uses, including protection of drinking water safety or ecological health. If improper
weights are chosen, the index may become skewed as the less significant parameters get
overemphasized. The Participatory methods, such as the Budget Allocation Procedure (BAP)
and Simos' modified procedure, are less practiced but still provide practical remedies to
overcome the weighing limitations (Kodikara et al., 2010). Finally, careful proper weighing
according to the judgment of experts or water quality standards will ensure good and reliable
WQI models for all applications in water resource management.

2.1.4 Aggregation function:

Aggregation is a common final process in WQI development, where the parameter sub-
indices are summed up into a solitary WQI score (Sutadian et al., 2016). This step typically
involves mathematical calculations of sub-indices based on their assigned weights and finally
provides a comprehensive score to represent overall water quality. Aggregation can be staged
sequentially if sub-indices need to be aggregated before their aggregation results in the final
index value. Most often used aggregation functions are additive or arithmetic and multiplicative
or geometric; besides, some of the other less frequent aggregation functions are the minimum
operator and the harmonic mean of squares (Akhtar et al., 2021; Kumar et al., 2024; Patel et
al., 2023; Uddin et al., 2021). Additive aggregation is carried out through weighted or
unweighted summation, while Multiplicative aggregation accounts for the parameters'
interdependence. The selected approach varies based on the precision level needed and whether
the parameters are equally or unequally weighted (Abbasi & Abbasi, 2012). This aggregation
step is critical because it condenses various water quality parameters and condenses them into
a single-digit WQI, simplifying the interpretation and decision process. Variants of these

approaches are also used in some models for greater flexibility and adaptability. Finally, the
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aggregation process combines all sub-index values to fully represent water quality, thus clarity
and usefulness for the stakeholders. The different aggregation functions are discussed briefly
here.
Additive functions:

Various WQI models, including the Horton model, the SRDD model, the House index,
Malaysian and Dalmatian index models, employed a simple additive aggregation function

given by:
n

WQI =3 siw; (2.2)
i=1
In the above equation (2.2),
si= the sub-index value for parameter i
wi = i parameter weight value (which ranges from 0 to 1).
n = the total number of parameters.
Multiplicative functions:
Some index models used the multiplicative function for aggregation and can be expressed

as:

WQI = G s (2.3)
i=1
In the above equation (2.3),
si= the sub-index value for parameter i
wi = i parameter weight value (which ranges from 0 to 1).
n = the total number of parameters.
Combined aggregation functions:

The final WQI score has been derived using combined aggregation methods, where additive
and multiplicative functions are combined, by various researchers ((Abbasi & Abbasi, 2012;
Swamee & Tyagi, 2000)). The application of such methodology has been followed with
remarkable success by (Liou et al., 2004), (Alobaidy et al., 2010), and (Ewaid & Abed, 2017)
for the assessment of Taiwan's water quality. Another major model is the NSF, which integrates
both additive and multiplicative functions into its structure and shows how this approach of
combining these functions effectively captures the complexity involved in assessing water

quality.
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Square root of the harmonic mean functions:

The square root of the harmonic mean function is a numerical technique applied to
aggregate parameters or sub-indices in some WQI. The method uses the harmonic mean for
averaging and takes the square root for the final computation. This method emphasizes low
values in the data set, which is preferable if the worst parameter determines the overall score.

The function can be formulated as,

woI = \/Zn—ns—z (2.4)

=11
In the above equation (2.4),
si=the sub-index value for parameter i
n = the total number of parameters.
Minimum operator function:

(Smith, 1989) proposed the minimum operator function, as shown in Eq (5), the overall
water quality index score is determined by taking the minimum sub-index of the parameters
developed specifically for rivers and streams to assess New Zealand's water quality. After some
time, (Shah & Joshi, 2017) applied the Smith index for assessing surface water quality in India,
marking the first application of the Smith index in the Sabarmati River, Gujarat (India), though
it was initially recommended to apply it only in New Zealand. The mathematical expression of
the minimum operator function is,

WQI = Min(s1, Si+1, Si+2, -+, Isub, ) (2.5)
In the above equation (2.5),
si=the sub-index value for parameter i
n = the total number of parameters.
Unique linear/non-linear aggregation functions:

Few WQI models have used specific linear or non-linear aggregation functions to calculate
the final index value. A more interesting example is the Said index, as presented by (Said et
al., 2004), in which the parameter concentrations are directly used as sub-index values, and a
unique logarithmic aggregation function is applied. This concept introduces the parameter
concentrations into the computation of the final WQI, creating a new pathway for water quality

evaluation. The mathematical expression of the function is,

(DO)15
WQI = log[ ozl ] (2.6)
(3.8)TP(Turbi)015(15)10000 + 0.14(SC)05

In the above equation (2.6),
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DO = sub-index values for dissolved oxygen (% oxygen saturation)

Turbi = turbidity (nephelometric turbidity units [NTU])

TP = total phosphates (mg/L)

fecal = fecal coliforms (counts/100 mL) & SC = specific conductivity (S/cm at 25 °C)

2.2 Literature Gap

Water Quality Index (WQI) studies are confronted by several key gaps, where no
conventional framework of parameter selection exists, resulting in inconsistency and the loss
of emerging pollutants and heavy metals. Available aggregation methods, mainly additive and
multiplicative, oversimplify the interaction among parameters, requiring the creation of
sophisticated probabilistic as well as hybrid models. Although predictive accuracy is enhanced
through Al and ML, data limitation, computational intensity, and the absence of field validation
remain challenges. In particular, no study provides a thorough framework to identify
appropriate models of WQI for urban and rural settings, further confining their utility in the
real world. Industrial, irrigation, and aquatic ecosystem appraisal indices also lack
methodological standardization. Model validation is a significant lacuna since sensitivity
analysis, uncertainty assessment, and independent validation data are hardly ever integrated.
This study first attempts to develop a comparison among models of the Water Quality Index
applied exclusively to the rural villages of Indore. The research thus draws attention to the
region-specific issues in chemical and heavy metal contamination, which demand tailored WQI
models. It bridges the long-reproached gap in the methodologies applied to assess the water

quality in a rural context.
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CHAPTER 3
MATERIALS AND METHODS

3.1 Methodological Flow Diagram
The Water Quality Index (WQI) assessment methodology follows a well-organized
procedure, as shown in Figure 3.1. This is initiated with a literature review of WQI to appreciate
the prevailing frameworks, then proceeds to problem identification and research gap
identification. The selection of parameters includes incorporating the appropriate
physicochemical and heavy metal parameters. Objectives of the study are:
i.  To assess physico-chemical water quality parameters and heavy metals in five
villages (Simrol, Memdi, Borkhedi, Gokanya, Harsola).
ii.  To calculate the weightage of every parameter using AHP.
iii.  Comparative Assessment of Water Quality Index Models using modified calculated
weightage and Entropy weighted WQI for Rural Water Evaluation.
iv.  Todo a Sensitivity Analysis of Water Quality Models.

Sub Indices calculations
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Figure 3.1 Study Flow Chart
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Study sites are chosen, and Memdi, Simrol, Gokanya, Harsola, and Borkhedi are chosen as
field surveys are made to obtain water samples from rural freshwater sources. Thereafter, a
comprehensive analysis of physicochemical parameters and heavy metal concentration was
conducted through prescribed APHA methods for every village. Two parallel weightage
approaches are applied to the water quality parameters, one using the Analytic Hierarchy
Process (AHP) and the other through the Entropy method. The water quality parameters are
used to calculate sub-indices through linear interpolation. Subsequently, various aggregation
functions corresponding to different WQI models, such as Brown, SRDDI, Bascaron, Dinius,
West Java, Aquatic Toxicity, and Dojlido index, are applied to derive composite WQI scores.
The outcomes are analyzed to interpret spatial and model-specific trends, followed by a
sensitivity analysis to identify the most influential parameters. The research concludes with the
formulation of future directions for more adaptive and region-specific water quality monitoring
tools.

3.2 Study area

_~NMhow Telisil’

Figure 3.2 Study Area

The study was carried out among five selected villages in Madhya Pradesh, India, namely

Simrol (22.6763° N, 75.7333° E), Memdi (22.6842° N, 75.7747° E), Borkhedi (22.6533° N,
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75.7117° E), Gokanya (22.6874° N, 75.8271° E), and Harsola (22.6828° N, 75.7884° E). All
the villages come under the Mhow Tehsil of Indore District, located in Madhya Pradesh State,
belonging to India.
3.3 Sample collection and analysis

A total of 36 water samples were collected from five villages of Indore district that were
identified for sampling: Gokanya (G1-G6), Simrol (S1-S6), Memdi (M1-MS), Harsola (H1-

HS), and Borkhedi (B1-B8), as shown in Table 3.1.
Table 3. 1 Sample Locations of all Villages

Sample Description Longitude Latitude
G1 School tap water 75.911 22.572
G2 Borewell (near the primary school) 75.91 22.572
G3 Borewell 75911 22.571
G4 Handpump 75.913 22.562
G5 Handpump 75.913 22.561
G6 Borewell 75.91 22.566
S1 Borewell 75.912 22.54
S2 Handpump 75911 22.541
S3 Borewell 75911 22.539
S4 Handpump 75.912 22.54
SS Borewell 75911 22.539
S6 Borewell 75.912 22.539
M1 Handpump 75.893 22.535
M2 Borewell 75.894 22.535
M3 Borewell (near farmland) 75.894 22.534
M4 Borewell 75.893 22.534
M5 Borewell (near school) 75.892 22.534
M6 Handpump 75.893 22.535
M7 Handpump 75.892 22.533
M8 Borewell 75.893 22.533
H1 Handpump 75.817 22.571
H2 Handpump 75.818 22.57
H3 Handpump near school 75.818 22.569
H4 Tap water 75.817 22.57
H5 Tap water 75.816 22.57
H6 Borewell 75.815 22.57
H7 Borewell (near farmland) 75.819 22.569
HS Borewell 75.82 22.567
B1 Borewell 75.792 22.578
B2 Handpump 75.792 22.574
B3 Borewell 75.793 22.576
B4 Borewell 75.793 22.574
BS Tubewell 75.792 22.574
B6 Borewell 75.792 22.573
B7 Borewell 75.79 22.575
B8 School tap water 75.794 22.577

20



The sampling was conducted using grab sampling method to collect major rural freshwater
sources like handpumps, tubewells, and surface water bodies. All samples were retrieved in
pre-cleaned 1-litre polyethylene bottles, which were rinsed three times with the corresponding
source water to prevent cross-contamination. After collection, samples were put immediately
in insulated iceboxes and stored at 4°C to maintain their physicochemical integrity until
analysis. This handling method complies with the Standard Methods for the Examination of
Water and Wastewater (APHA, 2017) to ensure method consistency. The analyses were
performed at the Environmental Engineering Laboratory, IIT Indore. All physicochemical and
heavy metal parameters were determined under controlled laboratory conditions. Standard
solutions and blanks for reagents were made before every batch of tests to calibrate equipment
and ensure accuracy. To ensure analytical precision and reproducibility, all tests were
performed in triplicate. The parameters analyzed include:

(a) Physicochemical indicators: pH, turbidity (NTU), free chlorine, alkalinity, hardness,
electrical conductivity (EC), dissolved oxygen (DO), biochemical oxygen demand
(BOD), chemical oxygen demand (COD), total suspended solids (TSS), volatile
suspended solids (VSS), nitrate, fluoride, and chloride.

(b) Heavy metals and ions: Manganese (Mn), Zinc (Zn), Iron (Fe), Nickel (Ni), Cadmium
(Cd), Lead (Pb), Sodium (Na), Potassium (K), Calcium (Ca), and Chromium (Cr).

The analytical methods and instruments used for each water quality parameter are detailed in

Table 3.2, ensuring standardized and accurate measurements as per APHA guidelines.

Table 3. 2 Instrumentation and Analytical Methods Used for Water Quality Parameter Analysis

Parameter Method Used Instrument Name Company Model No.

Titration
Alkalinity Burette, Conical flask Omsons —
Method
Biochemical
iochemica 5-Day Kay Pee
Oxygen . Incubator KL-103-0
Incubation Udyog
Demand (BOD)
Atomic Absorption Motras
Cadmium (Cd) AAS o —
Spectrophotometer Scientific
. Flame YA-
Calcium (Ca) Flame Photometer —
Photometry SAN(INDIA)
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Chemical
Oxygen
Demand (COD)

Chloride

Chromium (Cr)

Dissolved
Oxygen (DO)
Electrical
Conductivity
(EC)

Fluoride

Free Chlorine

Hardness

Iron (Fe)

Lead (Pb)

Manganese

(Mn)

Nickel (Ni)

Nitrate

pH

Potassium (K)

Closed Reflux
Colorimetric

Method

Titration

Method

AAS

DO Meter

Research-grade

benchtop meter

photometer

photometer
Titration
Method

AAS

AAS

photometer

Research-grade
benchtop meter
Flame

Photometry

COD Analyzer

Burette, Conical flask

Atomic Absorption

Spectrophotometer

DO Meter

Research-grade

benchtop meter

HR Fluoride Portable

Photometer
EPA Compliant
Benchtop Turbidity
and Chlorine Meter

Burette, Conical flask

Atomic Absorption
Spectrophotometer
Atomic Absorption
Spectrophotometer
Atomic Absorption
Spectrophotometer
Atomic Absorption

Spectrophotometer
Nitrate Photometer

Research-grade

benchtop meter

Flame Photometer
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Hanna
HI839800
Instruments

Omsons —

Motras

Scientific

Lutron DO-5509

Hanna
HI5522
Instruments

Hanna

HI97739
Instruments

Hanna
HIR3414
Instruments

Omsons —

Motras

Scientific
Motras

Scientific
Motras

Scientific
Motras

Scientific

Hanna

HI97728
Instruments

Hanna
HI5522
Instruments
YA-

SAN(INDIA)



Flame YA-
Sodium (Na) Flame Photometer —
Photometry SAN(INDIA)
. Kjeldahl .
Total Kjeldahl o . Pelican
) Digestion Kjeldahl Apparatus ' SUPRA-LX
Nitrogen (TKN) Equipment
Method
Total Suspended  Gravimetric ) Kay Pee
' Hot Air Oven KL-103-0
Solids (TSS) Method Udyog
EPA Compliant
o Nephelometric o Hanna
Turbidity Benchtop Turbidity HI83414
Method Instruments
and Chlorine Meter
Volatile
Gravimetric Kay Pee
Suspended Muffle furnace KL-103-0
. Method Udyog
Solids (VSS)
Atomic Absorption Motras
Zinc (Zn) AAS —
Spectrophotometer Scientific

3.4 Formation of sub-indices:

Sub-index (SI) transformation is a fundamental element in Water Quality Index (WQI)
models, whereby the recorded values of the water quality parameters are transformed into
dimensionless scores, usually on a scale from 0 to 100, with 0 indicating the worst and 100 the
best water quality. This process is vital for normalizing varied parameter units to a common
scale. Different approaches have been utilized to obtain SI values, as elaborated in works by
(Sutadian et al., 2016; Uddin et al., 2021). Most WQI models apply interpolation methods
based on regulatory threshold limits (e.g., WHO, BIS, CPCB) to calculate sub-indices;
however, some models apply the raw indicator values directly without normalization (Uddin et
al., 2021). Linear interpolation rescaling functions suggested by (Uddin et al., 2022) (see
Equations (3.1) — (3.3)) were utilized in this study to rescale raw measurements to SI values
based on the guideline limits shown in Table 3.3. The respective SI calculation framework, as

illustrated in Table 3.2, represents how these equations are utilized for various water quality

parameters.
SI=(SI —SI)- (SIu X WQm)_ (3.1)
v U (STD.—STD)
(WQim —STD))
SI =S, X 3.2
(STD. — STD)) (32)
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Si=(sI —s1)— WQu=STD) ¢ (3.3)
v U (STD,—-STD)

SI; = the Lower Limit of the possible SI value

ST, =the Upper Limit of the possible SI value

STD= Lower Threshold value of the Water Quality Standards
STD.= Upper Threshold value of the Water Quality Standards
WQm = Measured parameter value

Table 3. 3 Standard limits for Water quality parameters

Parameters Unit Acceptable Permissible Standards
Limit Limit
pH _ 6.5-8.5 No relaxation BIS (IS 10500-2012)
Turbidity NTU 1 5 BIS (IS 10500-2012)
Free Chlorine mg/L 0.2 1 BIS (IS 10500-2012)
Alkalinity mg/L 200 600 BIS (IS 10500-2012)
Hardness mg/L 200 600 BIS (IS 10500-2012)
DO mg/L >6 - CPCB
BODs mg/L <2 No relaxation CPCB
COD mg/L Not specified Not specified BIS (IS 10500-2012)
TSS mg/L Not specified Not specified BIS (IS 10500-2012)
VSS mg/L Not specified Not specified BIS (IS 10500-2012)
Mn mg/L 0.1 0.3 BIS (IS 10500-2012)
Zn mg/L 5 15 BIS (IS 10500-2012)
Fe mg/L 0.3 No relaxation BIS (IS 10500-2012)
Ni mg/L 0.02 No relaxation BIS (IS 10500-2012)
Cd mg/L 0.003 No relaxation BIS (IS 10500-2012)
Na mg/L 200 - WHO (1984)
K mg/L 200 - WHO (1984)
Ca mg/L 75 200 BIS (IS 10500-2012)
Cr mg/L 0.05 No relaxation WHO
Pb mg/L 0.01 No relaxation BIS (IS 10500-2012)
EC uS/cm - 500 WHO (1984)
Fluoride mg/L 1 1.5 BIS (IS 10500-2012)
Chloride mg/L 250 1000 BIS (IS 10500-2012)
Nitrate mg/L 45 No relaxation BIS (IS 10500-2012)
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3.5 Parameter weighting:

Weights for parameter assignment are an important part of the process of creating Water
Quality Index (WQI) models since they indicate the relative importance of individual
parameters with respect to their impact on total water quality. In this research, the Analytic
Hierarchy Process (AHP) was utilized for weights assignment and provides a systematic, multi-
criteria decision-making method. AHP facilitates the systematic ranking of water quality
parameters based on their relative importance to one another in relation to suitability for
drinking water. The AHP methodology was executed using Microsoft Excel 2021, wherein a
pairwise comparison matrix was constructed, and consistency ratios were calculated to validate
the reliability and consistency of the assigned weights. Parameters with greater significance to
human health were given larger weights because of their toxicological effects at trace levels.
Application of AHP in the research conforms to known practices for WQI construction, as
evidenced by past studies (Kumar et al., 2024; Sarkar & Majumder, 2021; Horton, 1965;
Sutadian et al., 2017; Uddin et al., 2021) and promotes model clarity and contextual
applicability for water quality assessment.

3.6 Aggregation function:

Aggregation is the last step of the Water Quality Index (WQI) modeling process. Its
purpose is to combine the sub-index values and parameter weightings into an individual
numerical index, providing an overall picture of water quality. This process allows for the
reduction of complicated, multi-parameter data to a form that can be interpreted by
stakeholders, policymakers, and decision-makers at the community level. In this research,
following the attribution of weights to every water quality parameter using the Analytic
Hierarchy Process (AHP), the performance of seven varied aggregation functions, obtained
from existing literature WQI models, was compared. The models used were:

1. Aquatic Toxicity Index
ii.  Bascaron Index
iii.  Brown Index
iv.  Dinius Index
v.  Dojlido Index
vi.  Scottish Research Development Department (SRDD) Index

vii.  West Java Index

All of these models used a distinct mathematical formula to aggregate sub-indices and

weighting values. The approaches to aggregation varied from additive (arithmetic) and
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multiplicative (geometric) methods to minimum operator and non-linear models, differing in
their philosophies regarding parameter interaction and impact. The objective of the
comparative study was to determine the effect different formulations have on WQI outputs
when subjected to the same dataset and weights setup. All the calculations for the aggregation
models were carried out in Microsoft Excel 2021 to maintain transparency, reproducibility, and
ease of calculation. This comparative framework offers a strong platform for determining the
most appropriate aggregation approach in rural water quality situations.

3.7 Entropy-weighted water quality index:

The theory of information entropy was first postulated by (Shannon, 1948) as a basic
component of information theory. It was theorized that entropy is a measure of quantified
uncertainty or information content of a system. Entropy mathematically has an inverse relation
with the probability of occurrence of an event, the lower the probability of entropy, the greater
the information entropy. Over the past few years, the theory of entropy has found growing
application in different fields of hydrology and water quality evaluation (Adimalla, 2021;
Ozkul et al., 2000; Singh et al., 2019) and has proved to be an effective instrument as the Water
Quality Index. In order to calculate the Entropy-Based Water Quality Index (EWQI), a set of
systematic procedures was followed. The first step is the allocation of an entropy weight to
every water quality parameter. To this end, when there are m water samples (i =1, 2, ..., m)
and each is analyzed for n quality parameters (j = 1, 2, ..., n), an eigenvalue matrix X (Eq. 3.4)

is formed based on the data observed.

X111 X12 - X1p
X221 X2 - Xp

X=] ] (3.4)
Xm1 Xm2 - Xmn

This matrix is used as a basis for the calculation of the entropy weights for each parameter.
Pre-treatment of data was performed to remove the effect of varying units and scales between
water quality parameters. This was done by making use of two normalization functions (Eq.

3.5 & 3.6).

For the efficiency type,
Xij — (Xi)min
Y o mar — X)min (3:3)
For the cost type,
(i) max — Xy
Vij (3.6)

T @ mar — C)min

The standardized matrix Y (Eq. 3.7) was obtained after undergoing this transformation.
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Y11 Y12 - YVin
Y21 Y22 - Yon

Y = _ o ] (3.7)
Ymi Ym2 - Ymn
Next, the proportionate value of the j-th index in the i-th sample was computed using the below

(Eq. 3.8).

— Yij .
Pij _ y]/Z:il vy (3.8)
The information entropy is calculated using the formula below (Eq. 3.9)
;o
ej = _mzpij In Py (3.9

i=1
Using these entropy values, the entropy-based weight for each parameter was calculated

through the corresponding formula (Eq. 3.10)

1— e
wj = ?ﬁfjef) (3.10)

In the second step of the EWQI calculation, a quality rating (q;) was assigned to each water
quality parameter. This rating was determined using the (Eq. 3.11) that reflects the parameter’s

concentration relative to the acceptable standards.

q = (Cf/S_) x 100 (3.11)
J

Where,

Cj = the concentration of each water quality parameter in each water sample in mg/l,

Sj = the limit for drinking water of each parameter in mg/l according to quality standards for
drinking water of BIS, CPCB, and WHO.

The EWQI can be calculated in the third step using the following (Eq. 3.12),

n

EWQI = ijqj (3.12)
j=1

The water quality classification scale of EWQI, as suggested by (Jianhua et al., 2011; Singh et
al., 2019) is classified into five ranks, ranging from ‘‘excellent’’ to ‘‘extremely poor’’. The

classification ranks are listed in Table 3.4.
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Table 3.4 EWQI Scalebar

WQI Range Water Quality Categories
EWQI<50 Excellent
50-100 Good
100-150 Average
150-200 Poor
EWQI>200 Extremely Poor

3.8 Sensitivity Analysis:

Sensitivity analysis was performed to analyze the relative impact of single water quality
parameters on the final Water Quality Index (WQI) scores generated by each model (Li et al.,
2013; Rickwood & Carr, 2009; Scheili et al., 2015; Sun et al., 2012). In this present study, the
Sensitivity analysis was conducted by omitting particular parameters to determine how they
impact the overall index value, hence determining which indicators have the most significant
impact on water quality assessment results. This method was used by many researchers, one of
the significant studies by (Abtahi et al., 2015). The robustness of the mentioned WQI models
was tested in a systematic manner. All sensitivity analysis calculations were performed with
Microsoft Excel 2021 to ensure complete transparency and replicability of the results. The
analysis was conducted by sequentially deleting one parameter at a time from the input dataset
and then recalculating the WQI for each model. The new WQI scores (reduced indices) were
subsequently contrasted with the initial full-index values for the same model in order to
evaluate the level of variation induced by the exclusion of the parameter. The scale of deviation
between the initial and reduced indices is a proxy for that parameter's relative sensitivity in
every WQI model. Sensitivity analysis is crucial in assisting in maintaining the robustness of
WQI models by determining key parameters that have considerable influence on water quality

assessment in the rural setting of Indore villages.
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CHAPTER 4
RESULTS AND DISCUSSION

4.1 Physicochemical and Heavy Metal Characterisation of Water Samples:

36 water samples were collected from five rural villages of Indore district—Memdi, Simrol,
Gokanya, Harsola, and Borkhedi, and analyzed to assess the water quality based on a
comprehensive set of physicochemical and heavy metal parameters. The results are the basis for
the calculation of the Water Quality Index (WQI) and aid in unveiling site-specific patterns of
contamination. Parameters that were analyzed include a total of 24 critical physicochemical
indicators, heavy metals, and ionic components.

4.1.1 Borkhedi:

The pH levels at all sites fall within the slightly alkaline to neutral range (7.09 to 8.03) and
indicate no short-term threat of acidification, as shown in Table 4.1. Turbidity is highly variable,
with very high readings at B1 (6.99 NTU), suggesting the possibility of particulate contamination,
while sites such as B3 and B5 indicate little turbidity, perhaps hinting at greater sedimentation or
reduced anthropogenic disturbance. Free chlorine is largely zero, with some slight readings at B2,
B4, B5, and B6. Alkalinity varies extensively in space from 270.33 mg/l (B2) to a high of 611.67
mg/l (B5), which may be due to variations in carbonate buffering capacity and the geology below.
As shown in Figure 4.1 Hardness varies correspondingly from 244.33 to 560.00 mg/l, classifying
the water as hard to very hard, likely the result of limestone or gypsum-bearing strata. Electrical
conductivity (EC) is also varying, with the higher values showing at B3, B5, B6, and B8 (>1000
uS/cm), pointing towards higher ionic load. BODsand COD levels indicate low to moderate organic
contamination, with some peak values (e.g., B3 BOD: 24.09 mg/l), pointing towards localized
inflow of biodegradable waste. Chloride levels are below critical levels but exhibit fluctuation,
possibly due to discharge from households or natural mineralization. Nitrate levels reach a peak at
S6 (11.53 mg/l). Notably, fluoride levels are generally in safe ranges (0.27—1.00 mg/l) except at
B4, which registers a high reading of 1.50 mg/l, far exceeding the permissible limit, threatening to
cause long-term dental or skeletal fluorosis if ingested regularly without treatment. Calcium and
magnesium contents show trends like that of total hardness. High variability between sites indicates
the influence of natural and anthropogenic processes, and targeted interventions are required,
particularly in high-risk sites, to protect drinking water quality and provide for sustainable resource

use in rural Borkhedi.
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Table 4. 1 Physicochemical and Heavy Metal Profile of Water Samples from Borkhedi Village (B1-BS)

Parameters Tested® B1 B2 B3 B4 B5 B6 B7 B8
pH 7.97+0.01 7.26+0.00 7.36+0.00 8.03+0.00 7.39+0.01 7.66+0.01 7.4140.00 7.09+0.00
Turbidity (NTU) 6.99+0.10 2.00+0.00 0.7540.13 2.27+0.29 0.45+0.05 1.074+0.06 2.27+0.06 1.20+0.00
Free Chlorine (mg/L) 0.003+0.01 0.02+0.01 N.D 0.01+£0.01 0.04+0.03 0.15+0.00 N.D N.D
Alkalinity (mg/L) 289.00+1.00 270.33+1.53 413.67+1.53 350.33+0.58 611.67+0.58 350.67£1.15 404.67+0.58 371.00£1.00
Hardness (mg/L) 255.00+1.00 244.33+1.15 459.00+1.00 300.33+0.58 479.67+0.58 360.00+£0.00 459.67+0.58 560.00+0.00
DO (mg/L) 5.33+0.12 5.50+0.00 6.17+0.12 5.10+0.10 5.10+0.00 5.87+0.06 5.50+0.00 4.40+0.00
BODs (mg/L) 6.17+0.06 14.294+0.08 24.09+0.04 12.38+0.01 4.55+0.01 6.52+0.00 6.52+0.01 16.32+0.02
COD (mg/L) 10.55+0.09 31.96+0.06 74.66+0.01 31.96+0.06 10.66+0.01 53.314+0.02 159.63+0.55 74.65+0.02
TSS (mg/L) 299.67+1.53 151.00£1.00 99.33+1.15 145.00+1.00 99.00+1.00 120.33+1.53 250.0040.00 181.33+0.58
VSS (mg/L) 179.33£1.15 81.334+0.58 65.67+1.15 69.33+0.58 45.00+0.00 54.67+0.58 175.33+0.00 85.00+0.00
Mn (mg/L) ND ND ND ND ND ND ND ND
Zn (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D
Fe (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D
Ni (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D
Cd (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D
Na (mg/L) 1.67£1.15 106.67+£5.69 76.67+5.86 78.00+0.00 66.00+1.00 67.67+£2.52 72.67+2.89 63.00+0.00
K (mg/L) 26.00+0.00 26.00+0.00 26.33+0.58 3.67+0.58 1.67+1.15 2.80+0.00 2.00+0.00 2.63+0.06
Ca (mg/L) 50.00+0.00 66.00+3.46 63.67+4.04 56.33+0.58 99.67+4.73 72.33+£3.21 62.00+2.65 58.67+2.52
Cr (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D
Pb (mg/l) ND N.D N.D N.D N.D ND ND ND
EC (uS/cm) 631.23+0.59 912.27+0.31 1176.67+0.58 918.47+0.31 1115.4740.50 1005.80+0.72 951.40+0.40 1356.93+0.90
F (mg/L) 0.90+0.00 1.00+0.00 0.40+0.00 1.5040.00 0.27+0.06 0.30+0.00 0.5340.06 0.27+0.06
Cl- (mg/L) 93.49+0.53 177.61£0.58 195.60+0.59 161.46+0.52 181.61+0.58 161.91+£0.08 67.98+0.00 237.71+0.21
NO3- (mg/L) 3.03+0.06 8.53+0.12 6.57+0.06 5.53+0.15 7.63+0.06 11.534£0.06 10.60+0.10 4.07+0.12

aMean + standard deviation from triplicates, N.D = Not detectable
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Figure 4. 1 Comparative analysis of key parameters across 8 locations in Borkhedi: (a) pH,
Turbidity & DO, (b) BOD, COD, TSS & VSS, (¢) Fluoride & Nitrate, (d) Alkalinity &
Hardness, (e) Na, K & Ca, (f) Chloride, (g) EC, (h) Free Chlorine

4.1.2 Gokanya:

As shown in Table 4.2, the physicochemical parameters of water quality of Gokanya village at
six sampling locations (G1 to G6), the results indicate considerable spatial variability of important
physicochemical parameters. pH ranged from 7.09 to 8.18, largely within the acceptable range,
signifying slightly alkaline to near-neutral water. Yet turbidity levels were significantly higher at
G5 (13.00 NTU), above BIS norms (1 NTU in drinking water), indicating sediment or organic
contamination. Free chlorine was missing from all samples except in G6 (0.07 mg/L), meaning poor
disinfection, which could be a cause for concern in microbial safety. Alkalinity ranged from 75.33
to 161 mg/L, and hardness showed a dramatic increase at G5 (769 mg/L), indicating possible
requirements for water softening. As shown in the Figure 4.2, DO levels were quite moderate (4.00—
6.07 mg/L), whereas BODs was at its peak at G3 (7.84 mg/L) and G2 (7.16 mg/L), reflecting high
biodegradable organic load, likely from domestic sewage. COD levels were also maximal at G5 &
G6, reinforcing the above deduction. TSS and VSS were also at their peaks at G5 (448.67 and
234.67 mg/L, respectively), validating the suspended organic matter. Nitrate levels, especially at
G5 (19.47 mg/L), suggest risks of agricultural runoff or fecal contamination. EC ranged from
323.33 to 628.90 uS/cm, with high values suggesting mineral content in water. The fluoride levels
were within permissible limits in some locations, though G3 (2.6 mg/L) and G4 (2.1 mg/L) were

above
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Table 4. 2 Physicochemical and Heavy Metal Profile of Water Samples from Gokanya Village (G1-G6)

Parameters Tested® Gl G2 G3 G4 G5 G6
pH 8.09+0.00 8.18+0.01 7.81£0.01 7.26+0.00 7.09+0.00 8.12+0.01
Turbidity (NTU) 2.60+0.10 0.98+0.03 0.534+0.10 0.57+0.03 13.00+0.00 2.37+0.06
Free Chlorine (mg/L) N.D ND N.D N.D N.D 0.07+0.06
Alkalinity (mg/L) 114.67+0.58 75.33+0.58 80.00+0.00 90.33+0.58 161.00£1.00 120.67+0.58
Hardness (mg/L) 260.00+0.00 249.334+0.58 139.33£1.15 210.00+0.00 769.00£1.00 189.67+0.58
DO (mg/L) 5.87+0.06 4.60+0.00 4.00+0.00 5.30+0.00 6.07+0.06 4.534+0.06
BODs (mg/L) 1.30£0.01 7.16£0.01 7.84+0.02 2.61+0.01 3.90+0.01 3.25+0.01
COD (mg/L) 10.554+0.09 223.504+0.50 202.63+0.04 160.00+0.11 244.934+0.80 288.00+1.00
TSS (mg/L) 198.33£1.53 74.67+0.58 50.33+0.58 44.67+0.58 448.67+1.53 175.00+0.00
VSS (mg/L) 119.33£1.15 39.00+1.00 35.00+0.00 24.67+0.58 234.67+1.53 84.67+0.58
Mn (mg/L) ND N.D N.D N.D ND ND
Zn (mg/L) N.D N.D N.D 1.425+0.001 N.D N.D
Fe (mg/L) N.D N.D N.D N.D 0.358+0.001 N.D
Ni (mg/L) N.D ND ND ND ND N.D
Cd (mg/L) N.D ND ND ND ND ND
Na (mg/L) 73.00+0.00 65.67+1.76 62.50+£0.50 147.33£3.06 22.67£2.02 16.83+2.02
K (mg/L) 0.67+0.29 0.70+0.17 0.334+0.29 1.17+0.29 0.17+0.29 2.33+0.76
Ca (mg/L) 1.50+0.50 0.73£0.21 6.17£1.26 1.00+0.00 8.67+£1.26 0.50+0.00
Cr (mg/L) N.D N.D N.D N.D N.D N.D
Pb (mg/L) ND N.D N.D N.D ND N.D
EC (uS/cm) 628.90+£0.10 570.37+0.15 600.80+0.26 499.53+0.15 323.33+1.53 318.10+£0.10
F (mg/L) 0.90+0.00 1.10+£0.00 2.60+0.00 2.10+0.00 0.70+0.00 0.33+0.06
Cl- (mg/L) 111.41+£0.73 85.96+0.01 139.62+0.32 231.934+0.00 215.91+0.03 81.95+0.03
NO3- (mg/L) 5.33+0.06 7.57+0.06 7.67+0.06 6.43+£0.06 19.47+0.31 1.50+0.00

aMean + standard deviation from triplicates, N.D = Not detectable
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the WHO permissible limit of 1.5 mg/L, with implications for health in the form of fluorosis.
Chloride levels were high at G4 and G5 (>200 mg/L) and may be a result of anthropogenic
discharge. Heavy metal elements such as Manganese, Nickel, Cadmium, Chromium, and Lead were
mostly not detected. High Na at G4 (147.33 mg/L) indicates potential salinity problems. These
results necessitate specific water treatment measures at points such as G3, G4, and G5, where most
of the parameters exceed safety limits. Overall, while some locations exhibit acceptable water

quality, others indicate anthropogenic pollution, necessitating localized management and periodic

monitoring.
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Figure 4. 2 Comparative analysis of key parameters across 6 locations in Gokanya: (a) pH,
Turbidity & DO, (b) BOD, COD, TSS & VSS, (c) Fluoride & Nitrate, (d) Alkalinity &
Hardness, (¢) Na, K & Ca, (f) Zn & Fe, (g) EC, (h) Free Chlorine (i) Chloride

4.1.3 Harsola:

The quality of water in Harsola village, as analysed from eight samples (H1 to H8), indicates
mixed properties in the area, as shown in Table 4.3. The pH ranges between 6.96 and 8.01,
representing slightly alkaline to moderately alkaline conditions, still within safe drinking water
limits. Turbidity levels are low (0.3—1 NTU) at most sites, indicating clean water, except for H4
and H5, where turbidity peaks at 25.67 and 28 NTU, respectively, indicating potential particulate
contamination, perhaps due to soil runoff or unlined source storage. Free chlorine, a disinfection
indicator, is practically zero in most samples (0.00-0.04 mg/L), with the only exceptions being H4
and H5 (0.34 and 0.28 mg/L), which indicate random or low-level chlorination practices in the
village. Alkalinity, a measure of the water's buffering capacity, varies from 369 mg/L (H4) to
1234.33 mg/L (H6), with several samples (H2, H3, H6, H7) going beyond desirable limits in
standards (>600 mg/L) and posing the risks of an
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Table 4. 3 Physicochemical and Heavy Metal Profile of Water Samples from Harsola Village (H1-HS)

Parameters Tested® H1 H2 H3 H4 H5 H6 H7 H8
pH 7.01£0.00 7.760.01 7.50+0.01 8.01+0.01 7.97+0.06 7.26+0.04 6.96+0.06 7.09+0.00
Turbidity (NTU) 0.30+£0.01 1.00+0.00 0.3540.01 25.67+0.58 28.00+0.00 0.35+0.00 0.68+0.03 0.87+0.03
Free Chlorine (mg/L) N.D 0.03+0.00 N.D 0.34+0.00 0.28+0.01 0.02+0.00 N.D 0.04+0.00
Alkalinity (mg/L) 449.00+0.00 909.33+0.58 790.00+0.00 369.00£1.00 395.33+0.58 1234.334+0.58 1109.33+0.58 480.00+0.00
Hardness (mg/L) 610.00=0.00 228.67+1.15 271.00+1.00 149.33+£1.15 144.33+1.15 461.00+1.00 439.67+0.58 260.67+1.15
DO (mg/L) 5.13£0.06 5.87+0.06 6.10+£0.00 5.43+0.12 5.67+0.12 5.00+0.00 4.50+0.00 5.17+0.06
BODs (mg/L) 11.07+0.01 7.27+0.12 6.51+£0.02 5.224+0.01 6.17+£0.15 10.434+0.00 15.58+0.11 8.13+£0.12
COD (mg/L) 74.66+0.01 10.66+0.01 21.33+0.00 53.28+0.07 10.66+0.01 95.334+0.58 53.32+0.01 10.66+0.01
TSS (mg/L) 50.00+0.00 151.00£1.00 74.67+0.58 500.00+0.00 545.00£5.00 85.00+0.00 100.00£0.00 75.33+0.58
VSS (mg/L) 35.00+0.00 85.33+0.58 30.00+0.00 294.67+0.58 310.00+0.00 34.67+0.58 69.67+0.00 40.00+0.00
Mn (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D
Zn (mg/L) ND ND ND ND ND ND ND ND
Fe (mg/L) N.D N.D N.D N.D 0.427+0.001 0.406+0.001 N.D N.D
Ni (mg/L) ND ND ND ND ND ND ND ND
Cd (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D
Na (mg/L) 98.67+1.15 124.00£3.46 118.67+£3.51 15.004+0.00 15.334£0.58 75.33+1.15 92.33+£1.53 72.67£2.52
K (mg/L) 20.67+1.15 10.00+1.73 29.33+1.53 16.00+1.73 18.67+£0.58 59.00+0.00 42.00£1.73 40.33+0.58
Ca (mg/L) 101.67+£2.89 90.67+2.31 60.00+2.65 7.33+0.58 6.67+£0.58 85.00+0.00 107.33+0.58 35.00+0.00
Cr (mg/L) N.D N.D N.D ND ND ND ND ND
Pb (mg/L) ND ND ND ND ND ND ND ND
EC (uS/cm) 1718.00+1.00 1084.33+1.15 1180.33+1.53 243.534£0.06 242.90+0.10 1314.67+0.58 1176.33+1.53 787.60+0.20
F (mg/L) 1.37+0.06 0.97+0.06 1.5040.00 2.57+0.06 0.2040.00 0.70+0.00 0.60+0.00 0.80+0.00
Cl- (mg/L) 219.44+0.53 193.80+0.16 297.78+0.23 59.81+£0.22 47.82+0.19 265.61+0.54 197.65+0.27 91.62+0.31
NO3- (mg/L) 2.334+0.06 9.47+0.72 10.10+0.69 0.67+0.12 0.5040.00 7.53+0.15 3.50+0.36 4.10£0.10

aMean + standard deviation from triplicates, N.D = Not detectable
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overabundance of carbonate and bicarbonate ions that may affect taste and plumbing. In the same
manner, total hardness, which is an analysis of calcium and magnesium salts, ranges extensively
from 144.33 mg/L (HS) to 610 mg/L (H1), while H1, H3, H6, and H7 are categorized under very
hard water (>300 mg/L), which shows possible scaling concerns and the requirement for softening
in household application. The dramatic difference between low-turbidity and highly alkaline/hard
profiles in certain samples indicates various sources or aquifers being exploited, each with unique

geochemical reactions.
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Figure 4. 3 Comparative analysis of key parameters across 8 locations in Harsola: (a) pH,
Turbidity & DO, (b) BOD, COD, TSS & VSS, (c) Fluoride & Nitrate, (d) Alkalinity &
Hardness, (¢) Na, K & Ca, (f) Ni, (g) EC, (h) Free Chlorine (i) Chloride

4.1.4 Memdi:

According to the water quality data analysed from Memdi village at eight monitoring stations
(M1-M8), various notable trends were observed as shown in Table 4.4. The pH ranges between
6.95 and 8.48, showing predominantly neutral to mildly alkaline conditions, with M5 and M8
being on the higher side, possibly because of alkaline runoff or the presence of carbonates.
Turbidity was very variable, with M6 and M7 having notably high values (~18-19 NTU),
which suggests intense particulate content, likely from proximal anthropogenic activity or
surface erosion. Free chlorine was predominantly non-detected, with only trace levels detected
in M4, M7, and M8, suggesting poor or spasmodic disinfection. Alkalinity concentrations were
highly variable, with M3, M6, and M7 having high values, indicative of buffering capacity
against pH shift, possibly due to bicarbonate-rich geology. Hardness was most elevated at M3,
M6, and M7, indicative of possible health effects and scaling, potentially due to the presence

of calcium and magnesium salts from geological sources or wastewater seepage. DO values,
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which are most essential for aquatic health, were below the optimum level at most of the sites,
especially at M7 (2.57 mg/L), indicating possible organic pollution. BODs and COD values
were extremely high, especially at M7 (BOD: 110.17 mg/L, COD: 201.10 mg/L), which
validated high organic load, possibly due to unhindered domestic discharges. TSS and VSS
data also corroborate this, with M7 once more exhibiting extreme values (TSS: 500.67 mg/L,
VSS: 401.50 mg/L), reflecting high levels of suspended and organic solids. These higher values

reflect compromised water quality and worse conditions in some areas.
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Figure 4. 4 Comparative analysis of key parameters across 8 locations in Harsola: (a) pH,
Turbidity & DO, (b) BOD, COD, TSS & VSS, (c) Fluoride & Nitrate, (d) Alkalinity &
Hardness, (¢) Na, K & Ca, (f) Mn, Zn & Fe, (g) EC, (h) Free Chlorine (i) Chloride

4.1.5 Simrol:

The water quality profile of Simrol village water quality through tested samples (S1-S6)
presents a complex array of variables that depict natural and human-induced factors as shown
in Table 4.5. The pH range in all samples is within the acceptable limit for potable water (6.5—
8.5). Turbidity levels have great variability, with S1 having the highest at 9.10 NTU, reflecting
suspended particulate matter, probably due to surface runoff or unlined channels, and S4 and
S5 having much clearer water. Free chlorine, an indicator for disinfection, does not exist in the
majority of samples except S1, S2, S4, and S6, reflecting irregular chlorination or chlorination
breakdown in warm temperatures. Alkalinity is between 60 and 110 mg/L, indicating
moderate buffering capacity, with S1 being the highest, perhaps due to leaching of bicarbonate
from local soil. Hardness is variable, with S1 showing the highest (163.67 mg/L), indicating

the presence of calcium and magnesium, which may be geological deposits.
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Table 4. 4 Physicochemical and Heavy Metal Profile of Water Samples from Memdi Village (M1-M8)

Parameters Tested? M1 M2 M3 M4 MS Meé M7 M8
pH 6.95+0.04 7.48+0.01 7.06+0.01 7.32+0.01 8.01+0.01 7.29+0.01 7.17£0.01 8.48+0.01
Turbidity (NTU) 1.56 +0.05 1.68 +0.04 0.63 £ 0.02 0.90 £ 0.08 1.16 £ 0.04 18.33+0.05 19.43 £ 0. 04 8.51+0.03
Free Chlorine (mg/L) N.D N.D N.D 0.02+0.01 N.D N.D 0.03 +0.02 0.04 +0.01
Alkalinity (mg/L) 190.33+0.58 100.33+0.58 210.33+0.58 190.67+1.15 120.67+1.15 340.67+0.58 281.00+1.00 121.33£1.15
Hardness (mg/L) 265.43+0.15 86.30+0.05 310.38+0.45 271.58+0.30 96.50:£0.02 429.32+0.74 334.68+0.20 93.33+0.16
DO (mg/L) 3.17+0.21 4.20£0.10 4.07+0.12 3.57+0.06 4.13£0.06 3.40£0.10 2.57+0.06 5.03+0.06
BODs (mg/L) 50.03+0.06 52.87+1.33 48.17+0.15 46.07+0.06 35.10£0.10 62.10£0.10 110.170.15 49.23+0.25
COD (mg/L) 98.13+0.12 111.22+0.19 74.17+0.15 90.40+0.53 88.20+0.26 105.37+0.40 201.10+1.01 68.23+0.32
TSS (mg/L) 150.330.58 200.50£0.50 50.67+0.58 100.83+0.29 50.00+0.00 150.83+0.76 500.67<1.15 50.83+0.29
VSS (mg/L) 50.33+0.58 150.330.58 20.510.50 40.33+0.58 15.29+0.28 101.00+1.00 401.50+1.80 30.50+0.50
Mn (mg/L) N.D N.D N.D N.D N.D N.D 0.054+0.002 N.D
Zn (mg/L) N.D N.D N.D N.D N.D 0.69+0.03 0.90+0.01 N.D
Fe (mg/L) N.D N.D N.D N.D N.D 2.254+0.003 8.608+0.004 N.D
Ni (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D
Cd (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D
Na (mg/L) 97.67+0.29 9.00+0 80.33+3.69 48+2.29 20.83£1.76 101.17£9.41 31.83+4.25 8.50+1.50
K (mg/L) 14.50+0 2.630.06 8.33+0.49 2.000 1.63£0.06 7.97£0.15 0.87+0.15 2.77+0.32
Ca (mg/L) 52.50+0.87 7.000.87 65.83+2.52 52.67+2.52 5.83+0.76 72.67+3.55 56.67+1.76 3.33+0.32
Cr (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D
Pb (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D
EC (uS/cm) 261.73+0.21 56.07+1.10 263.260.02 196.050.02 72.38+0.03 337.23£0.07 201.260.03 57.45+0.04
F (mg/L) N.D N.D N.D N.D N.D 1.90+0.00 N.D N.D
Cl- (mg/L) 177.46£0.50 103.41+0.79 247.92+0.00 193.62+0.55 145.95+0.00 249.71+0.21 227.55+0.50 89.96+0.02
NO3- (mg/L) 15.10£0.17 1.33£0.06 12.33+0.06 11.13+0.40 2.030.06 8.60+0.10 3.33£0.06 2.00+0.00
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DO levels are found to be mostly adequate (more than 5 mg/L) in all areas except S3 and S5, where
DO decreases to 3.2 and 3.7 mg/L, respectively, due to high organic load and microbial oxygen
uptake. Accordingly, BODs and COD levels at S1 are distressingly high (82.17 mg/L and 180.10
mg/L, respectively), suggesting ample biodegradable organic content, presumably from residential
wastes. While S3—S6 possess moderate BODs & COD values, these are still higher than normal
limits, which suggests continuous pollution. Total suspended solids and volatile suspended solids
are also high in most samples, particularly S2, S3, and S5, which might further reduce DO values
through microbial processes. The high and persistent BODs, COD, and suspended solids in most

samples suggest impaired water quality that might be ecologically and humanly hazardous.
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Figure 4. 5 Comparative analysis of key parameters across 8 locations in Harsola: (a) pH,
Turbidity & DO, (b) BOD, COD, TSS & VSS, (c) Fluoride & Nitrate, (d) Alkalinity &
Hardness, (¢) Na, K & Ca, (f) Mn, Zn, Fe & Fe, (g) EC, (h) Free Chlorine (i) Chloride

4.2 Sub-indices of water quality parameters:

The sub-index scores were calculated on a 0—100 scale in which a value of 100 represented
outstanding water quality for a particular parameter, and decreasing values correspond to
increasing quality and augmented pollution loads. The sub-index scores were the basic inputs
in all subsequent WQI model aggregations, making it possible for final score computation
model-wise in all index frameworks. Table 4.6 below shows the sub-index values of all water

quality parameters for different villages.
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Table 4. 5 Physicochemical and Heavy Metal Profile of Water Samples from Simrol Village (S1-S6)

Parameters Tested” S1 S2 S3 S4 S5 S6
pH 7.48+0.01 7.7320 7.62+0.01 7.18+0.01 7.68+0 7.41£0.01
Turbidity (NTU) 9.10+ 0.01 2.68+0.03 1.51+0.01 0.96 + 0.01 0.77 £ 0.02 2.52+0.02
Free Chlorine (mg/L) 0.09+0 0.02 +0.01 N.D 0.01+0.01 N.D 0.01+0
AlKalinity (mg/L) 110.33£0.58 80.67+1.15 70.67£1.15 91.00+1.73 60.33+0.58 72.33+2.52
Hardness (mg/L) 163.67+1.53 120.01£1.52 107.22+1.03 134.70+2.38 91.33+1.04 106.30+£1.97
DO (mg/L) 6.33£0.06 6.67+0.06 3.2040.10 6.130.06 3.70£0 5.20+0.10
BOD;s (mg/L) 82.17+0.15 56.13£0.15 4733031 44234025 59.10£0.10 60.27+0.25
COD (mg/L) 180.100.10 98.10+0.10 72.10£0.17 86.17+0.15 91.17+0.15 101.33+1.53
TSS (mg/L) 71.67+1.53 102.3342.52 83.33+1.53 79.33+1.15 91.33+1.15 50.00+0
VSS (mg/L) 46.00£1.00 50.67£1.15 56.33+1.53 30.33+1.53 65.002.00 26.67+1.15
Mn (mg/L) 0.078+0.002 N.D N.D N.D N.D N.D
Zn (mg/L) 0.544+0.004 0.018+0.001 N.D 0.087+0 0.061+0.002 0.624+0.005
Fe (mg/L) 0.282+0.001 0 N.D N.D N.D 0.314+0.001
Ni (mg/L) N.D N.D N.D N.D N.D 0.062:£0.002
Cd (mg/L) N.D N.D N.D N.D N.D N.D
Na (mg/L) 101.80+1.51 159.00£6.09 92.40+1.20 28.80+3.65 188.07+8.02 96.500.70
K (mg/L) 36.57+0.38 3.57+0.15 3.60+0 2.40+0 8.40+0 4.47£0.31
Ca (mg/L) 126.00+1.04 100.60+2.42 87.00+2.16 128+0.35 134.80+3.08 99.47+0.70
Cr (mg/L) N.D N.D N.D N.D N.D N.D
Pb (mg/L) N.D N.D N.D N.D N.D N.D
EC (uS/cm) 176.63+0.12 129.01£0.12 113.08+0.01 145.68+0.07 96.29+0.27 115.65+0.09
F (mg/L) 1.70+0.00 3.70+0.00 2.600.00 1.17+0.06 2.43+0.15 2.87+0.06
Cl- (mg/L) 287.910.00 283.52+0.41 235.61%0.55 239.93+0.00 361.54+0.36 202.47+0.53
NO3- (mg/L) 6.37+0.64 9.83+0.06 3.63+0.06 6.10£0.17 16.50£0.26 4.13£0.06
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Table 4. 6 Sub-Indices value of Water Quality parameters in Borkhedi

SI for B1 SI for B2 SI for B3 SI for B4 SI for BS SI for B6 SI for B7 SI for B8
100.00 38.00 100.00 76.50 44.50 58.00 45.50 29.50
0.00 50.00 81.25 43.25 88.75 73.25 43.25 70.00
100.00 97.50 100.00 98.75 95.00 81.25 100.00 100.00
77.75 82.42 46.58 62.42 0.00 62.33 48.83 57.25
86.25 88.92 35.25 74.92 30.08 60.00 35.08 10.00
88.83 91.67 100.00 85.00 85.00 97.83 91.67 73.33
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
99.17 46.67 61.67 61.00 67.00 66.17 63.67 68.50
87.00 87.00 86.84 98.17 99.17 98.60 99.00 98.69
60.00 47.20 49.06 54.94 20.26 42.14 50.40 53.06
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 0.00 100.00 46.00 100.00 100.00 100.00
87.53 76.32 73.92 78.47 75.79 78.41 90.94 68.31
93.27 81.04 85.40 87.71 83.04 74.38 76.44 90.96
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Table 4. 7 Sub-Indices value of Water Quality parameters in Gokanya

SI for G1 SI for G2 SI for G3 SI for G4 SI for G5 SI for G6
100.00 100.00 100.00 38.00 29.50 100.00
35.00 75.50 86.75 85.75 0.00 40.75
71.33 81.17 80.00 7742 59.75 69.83
121.33 131.17 130.00 127.42 109.75 119.83
85.00 87.67 115.17 97.50 0.00 102.58
97.83 76.67 66.67 88.33 100.00 75.50
35.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 85.75 100.00 100.00
100.00 100.00 100.00 100.00 0.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00
63.50 67.17 68.75 26.34 88.67 91.59
99.67 99.65 99.84 99.42 99.92 98.84
98.80 99.42 95.06 99.20 93.06 99.60
0.00 0.00 0.00 0.09 35.33 36.38
100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00
100.00 80.00 0.00 0.00 100.00 100.00
85.15 88.54 81.38 69.08 71.21 89.07
88.16 83.18 82.96 85.71 56.73 96.67
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Table 4. 8 Sub-Indices value of Water Quality parameters in Memdi

SI for M1 SI for M2 SI for M3 SI for M4 SI for M5 SI for M6 SI for M7 SI for M8
22.50 49.00 28.00 41.00 75.50 39.50 33.50 99.00
61.00 58.00 84.25 77.50 71.00 0.00 0.00 0.00
100.00 100.00 100.00 100.00 100.00 100.00 96.25 95.00
5242 74.92 47.42 52.33 69.83 14.83 29.75 69.67
83.64 100.00 72.41 82.11 100.00 42.67 66.33 100.00
52.83 70.00 67.83 59.50 68.83 56.67 42.83 83.83

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100.00 100.00 100.00 100.00 100.00 100.00 73.00 100.00
100.00 100.00 100.00 100.00 100.00 93.10 91.00 100.00
100.00 100.00 100.00 100.00 100.00 0.00 0.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
51.17 95.50 59.84 76.00 89.59 49.42 84.09 95.75
92.75 98.69 95.84 99.00 99.19 96.02 99.57 98.62
58.00 94.40 47.34 57.86 95.34 41.86 54.66 97.34
47.65 88.79 47.35 60.79 85.52 32.55 59.75 88.51
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 0.00 100.00 100.00
76.34 86.21 66.94 74.18 80.54 66.71 69.66 88.01
66.44 97.04 72.60 75.27 95.49 80.89 92.60 95.56
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Table 4. 9 Sub-Indices value of Water Quality parameters in Simrol

SI for S1 SI for S2 SI for S3 SI for S4 SI for S5 SI for S6
49.00 61.50 56.00 34.00 59.00 45.50
0.00 33.00 62.25 76.00 80.75 37.00
88.75 97.50 100.00 98.75 100.00 98.75
72.42 79.83 82.33 77.25 84.92 81.92
59.08 70.00 73.20 66.33 77.17 73.43
100.00 100.00 53.33 100.00 61.67 86.67
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
61.00 100.00 100.00 100.00 100.00 100.00
94.56 99.82 100.00 99.13 99.39 93.76
94.00 100.00 100.00 100.00 100.00 0.00
100.00 100.00 100.00 100.00 100.00 0.00
100.00 100.00 100.00 100.00 100.00 100.00
49.10 20.50 53.80 85.60 5.97 51.75
81.72 98.22 98.20 98.80 95.80 97.77
59.20 79.52 90.40 57.60 52.16 80.42
64.67 74.20 77.38 70.86 80.74 76.87
100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00
0.00 0.00 0.00 0.00 0.00 0.00
61.61 62.20 68.59 68.01 51.79 73.00
85.84 78.16 91.93 86.44 63.33 90.82
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Table 4. 10 Sub-Indices value of Water Quality parameters in Harsola

SI for H1 SI for H2 SI for H3 SI for H4 SI for HS SI for H6 SI for H7 SI for H8
25.50 63.00 50.00 75.50 73.50 38.00 23.00 29.50
92.50 75.00 91.25 0.00 0.00 91.25 83.00 78.25
100.00 96.25 100.00 57.50 65.00 97.50 100.00 95.00

0.00 0.00 0.00 7.75 1.17 0.00 0.00 0.00
0.00 92.83 82.25 100.00 113.92 34.75 40.08 84.83
85.50 97.83 100.00 90.50 94.50 83.33 75.00 86.17
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 0.00 0.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
50.67 38.00 40.67 92.50 92.34 62.34 53.84 63.67
89.67 95.00 85.34 92.00 90.67 70.50 79.00 79.84
18.66 27.46 52.00 94.14 94.66 32.00 14.14 72.00
0.00 0.00 0.00 51.29 51.42 0.00 0.00 0.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
26.00 100.00 0.00 100.00 0.00 0.00 0.00 0.00
70.74 74.16 60.30 92.03 93.62 64.59 73.65 87.78
94.82 78.96 77.56 98.51 98.89 83.27 92.22 90.89

44



4.3 Weightage of Parameters:

AHP was used in this study to allocate weights through a structured decision framework
that allows for pairwise comparison of parameters in accordance with how important each
parameter is to the quality of drinking water. AHP calculations were done with the aid of
Microsoft Excel 2021, where a pairwise comparison matrix was created. To ensuring
reasonable consistency in judgment, the Consistency Ratio (CR) was determined and found to
be 0.0977, well below the acceptable limit of 0.10. This validates that the matrix is consistent
and reliable, thereby establishing the validity of the weighting process. As shown in Figure 4.6,
Parameters with severe human health hazards like lead (Pb), cadmium (Cd), chromium (Cr),
and nitrate (NOs") were weighted more heavily because of their toxicological effects even at
trace concentrations. BODs, COD, fluoride, iron (Fe), and turbidity, which are moderately

weighted parameters, show organic contamination or aesthetic issues.
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Figure 4. 6 AHP Weightage

Conversely, parameters such as potassium (K), sodium (Na), and free chlorine were assigned
lesser weights due to their comparatively lesser health risks and rural site variance in detection.
This organised and validated method adds to the scientific and contextual strength of the WQI
framework application for rural water quality monitoring in Indore's villages.
4.4 WQI values:
4.4.1 Borkhedi:

The comparative Water Quality Index (WQI) analysis of Borkhedi’s eight sampling sites
(B1-B8), evaluated using seven established models, Bascaron, Brown, SRDD, Aquatic

Toxicity, Dojlido, West Java, and Dinius, reveals marked inter-model variability, shaped by
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each model’s aggregation logic as shown in Figure 4.7. However, the Dojlido index usually
records high values: B1, 100; B4, 88.31; and B6, 90.56, putting several sites under "excellent"

to "good" categories.
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Figure 4. 7 WQI Values of Borkhedi

However, more conservative models, such as SRDD and Aquatic Toxicity Index, record lower
values, placing B5, B3, and B8 under the "moderate to poor" category, due to sensitivity toward
the parameters of BOD, COD, nitrate, and turbidity. Notably, in both Dinius and West Java
indices, WQI values reduce to zero for all samples because of the multiplicative aggregation
structure, where the value of a single critical pollutant nullifies the overall index, emphasizing
no compromise in any dimension of water quality. These formulations, stringent as they are,
emphasize cumulative pollution impact, supporting the requirement for all fundamental quality
parameters to be fulfilled.

4.4.2 Memdi:

WQI evaluation of Memdi village at eight sampling locations (M1-MS8) indicates model-
dependent categorizations, indicating variable levels of contamination and model sensitivity as
shown in the Figure 4.8. The highest values throughout the sites are reported by the Dojlido
index, which rates M2, M5, and M8 as 94.96, 100, and 100, respectively—"excellent" water
quality. But this positive presentation is decidedly different from the more conservative ratings
of SRDD and Aquatic Toxicity Index. For example, M6 and M7 rate 25.60 and 33.60 with the
Aquatic Toxicity model, which positions them as "poor," most likely because of high BODs,
COD, or turbidity. Likewise, SRDD ratings for M3 and M6 (44.88 and 51.15) mark moderate
to poor water quality, adding to the concern. Bascaron and Brown models all sit at most sites
between 60 and 80, providing a balanced reading. Sites M5 and M8, which have the same

uniform high score on all the models, seem to have good water quality and could be assisted
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by well-conserved sources or low anthropogenic pressure. The divergent performance between
models, particularly between additive and multiplicative models, supports multi-model

verification to avoid spurious classification.
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Figure 4. 8 Values of Memdi

4.4.3 Simrol:

The Water Quality Index (WQI) assessment of Simrol village at six locations (S1-S6)
indicates significant inter-model variation, exemplifying the significance of aggregation logic
in determining ultimate classification. As shown in Figure 4.9, the Dojlido model gives the
higher ranks to all locations, with S3 (89.97), S5 (83.69), and S6 (83.92) getting close to the
"excellent" category. Conversely, the SRDD and Aquatic Toxicity Index models that focus on
environmental risk and health issues rank some of the sites, most notably S1 and S5, as "poor
to very poor" with scores as low as 27.86 and 27.94, respectively. These low scores indicate
the presence of key pollutants like high BODs, low DO, or excess turbidity. S1 stands out as
the most impaired site, with Aquatic Toxicity and Dojlido giving the lowest score on all indices
(27.86 and 28.55), indicating various parameter exceedances. While S3 and S4 are consistently
high on most models, this implies stable groundwater or relatively shielded sources. Most
samples fall into the moderate to good category using Brown and Bascaron indices, providing
a middle ground between rigorous and liberal extremes. Notably, S5 shows the highest
divergence with values between 83.69 (Dojlido) and 27.94 (Aquatic Toxicity), showcasing the
significance of model choice in the proper evaluation of water safety. The findings highlight
the need for the use of several WQI models together, since depending on one model might
underestimate the contamination (as is the case with Dojlido) or even overestimate individual

parameter infringements (as in SRDD).
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4.4.4 Gokanya:

WQI analysis of Gokanya's six sampling points (G1-G6) under several different index
models indicates substantial differences in the interpretation of water quality based on the

model employed, as shown in Figure 4.10.
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Figure 4. 10 WQI Values of Gokanya

The Dojlido index presents high values for most samples. The Dinius WQI and West Java
index values are zero for all samples, emphasizing the models' strict sensitivity towards any
extreme exceedance. The SRDD and Aquatic Toxicity indices, with their conservative and
health-oriented weighting, place G5 and G4 in the "poor" category (WQI < 50) as signs of
likely contamination by organics or turbidity. To be precise, G5 indicates a WQI of 36.20
(SRDD) and 0.46 (Aquatic Toxicity Index)—the most degraded site, possibly due to high
BODs or COD. By comparison, G6 performs well uniformly in all models with WQI of 80.01
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(Brown), 84.54 (Dojlido), and 64.01 (Aquatic Toxicity), indicating it is the best of all for
consumption. Bascaron and Brown models tend to place all samples in the "moderate to good"
category, but lack the clear discrimination provided by SRDD and Dojlido. The findings reveal
that model choice plays a vital role in the interpretation of the final WQI. Whereas Dojlido
could hide local pollution through averaging, multiplicative models such as Dinius and West
Java reveal decisive failures.

4.4.5 Harsola:

The eight water sampling points of Harsola (H1-H8) analyzed for water quality index show
model-specific water quality classification as per varied aggregation approaches. As shown in
Figure 4.11, the Dojlido index, which tends to be higher in values, categorizes H3, HS, and H8
as excellent (WQI > 85), with H5 having 100, indicating none of the parameters were below
threshold in this model's computation. In contrast, the SRDD and Aquatic Toxicity Index
provide very conservative predictions, with H1, H2, HS, and H7 belonging to the "poor to
moderate" category. H1, HS, and H7 are especially health-impacting public health concerns,
having scores less than 45 in SRDD and Aquatic Toxicity models, indicating high sensitivity
to parameters such as DO, COD, turbidity, and nitrates. H6 and H7 possess Aquatic Toxicity
scores of only 27.45 and 30.89, indicating severe degradation and possible chemical or organic
pollution. In contrast, H3 and H8 show relatively stable and good-quality water in most models,
implying good aquifer conditions or negligible anthropogenic interference. Brown and
Bascaron indices are moderate throughout, classifying most sites in the 60-70 WQI range,

falling under the "moderate to good" category.

]
i

@ (=3
< (=]
73.56 |
73.56 !
77.18
B7.69 |

77.16 '
77.16 :
75.69 !
88.26 |

66.11
66.11
66.33
66.33
67.39
67.39

,,,,,,,,,,,,,,,,

0

Hl H2 H3 H4 HS H6 H7 H8

Bascaron Brown SRDD index Aquatic toxicity Index Dojlido

Figure 4. 11 WQI Values of Harsola

49



4.5 Entropy-weighted water quality index values:

The Entropy-Weighted Water Quality Index (EWQI) values for five villages—Gokanya,
Simrol, Borkhedi, Memdi, and Harsola, indicate extensive spatial variation in water quality
status as shown in Table 4.11. Gokanya and Simrol show EWQI values between 63.77 and
104.45, indicating them to be in the category of "good to average" quality. Strikingly, the peak
EWQI (104.45) of Gokanya indicates a change towards the average class, indicating moderate
contamination, whereas Simrol has comparatively better status, with most of the values falling
short of 100. Borkhedi is seen to have increasing EWQI values, especially reaching 117.60,
which puts some regions of the village in the "average" water quality class, probably due to the
higher organic load and suspended solids found previously. More troubling are the results in
Memdi and Harsola, where EWQI levels go over 150 in several samples—152.0 in Memdi and
124.14 in Harsola, emphatically classifying them within the "poor" and on the verge of being
"extremely poor." These are in accordance with previous WQI model predictions that Memdi
(M6, M7) and Harsola (H1, H5) were severely affected by high BOD, COD, and turbidity. The
entropy-weighted method places greater emphasis on highly variable parameters, thus
exaggerating the influence of low-performing variables. The uniform trend of elevated EWQI
levels in Memdi and Harsola calls for immediate attention, as water for drinking from these
areas could be unhealthy to consume without treatment. Moreover, entropy-based weighting
guarantees objectivity, making the EWQI model suitably useful in rural water quality
monitoring where limited resources necessitate data-driven planning.

Table 4. 11 Entropy-weightage water quality parameters for all villages

Weightage (%)
Parameters
Gokanya Simrol Borkhedi Memdi Harsola

pH 5.32 2.82 7.89 7.95 8.07
Turbidity 6.05 2.31 5.57 5.94 5.69
Free Chlorine 6.18 2.29 5.27 9.51 5.39
Alkalinity 6.15 2.79 5.94 1.38 6.07
Hardness 6.07 2.75 7.05 5.54 2.15
DO 3.84 3.79 5.68 7.31 5.82
BOD 8.43 243 5.90 6.93 6.04
COD 4.88 4.45 7.95 4.62 8.13
TSS 6.55 3.81 532 6.26 5.44
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VSS 2.51 3.84 2.63 297 2.69

Mn 0.00 2.24 0.00 0.00 0.00
/n 6.18 3.78 0.00 0.00 0.00
Fe 6.18 3.98 9.21 6.44 9.48
Ni 0.00 2.24 0.00 0.00 0.00
Cd 0.00 0.00 0.00 0.00 0.00
Na 6.83 3.57 7.67 6.72 7.84
K 6.38 2.27 5.51 4.62 8.39
Ca 2.99 4.80 7.90 6.10 8.08
EC 5.71 2.79 0.00 0.00 0.00
Cr 0.00 0.00 0.00 0.00 0.00
Pb 0.00 0.00 2.57 5.18 2.63
F 3.28 7.53 1.70 2.80 1.74
Cl- 4.02 17.63 3.07 542 3.14
NO3- 2.39 17.84 3.14 4.25 3.21
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Figure 4. 12 EWQI Values of villages

4.6 Result of Sensitivity Analysis:
4.6.1 Borkhedi

Sensitivity analysis of Borkhedi presents remarkable differences in the sensitivity of
various water quality parameters on WQI models. Compared to all models, SRDD has the
maximum mean sensitivity (7.94) with a high standard deviation (8.75), which reflects that its

ratings are significantly sensitive to each parameter's change, especially parameters such as
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COD, BOD:s, and EC. By contrast, the lowest sensitivity (mean = 1.90) is evidenced through
the Dojlido model, indicating its aggregation structure is more inert or resistant to single
parameter deviations, but has the possibility of missing localized peaks of pollution. Aquatic
Toxicity, Bascaron, Brown, and Entropy models give moderate and uniform sensitivity (mean
~ 4.17), indicating an equal response to parameters. The variation in sensitivity of all water
quality parameters is shown in Figure 4.13. They illustrate the significance of choosing suitable
WQI models depending on regional contamination patterns as well as the desired sensitivity of

the evaluation.
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Figure 4. 13 Sensitivity Analysis of Water Quality Parameters in Borkhedi

Table 4. 12 Sensitivity Analysis of all WQI Models in Borkhedi

WQI Models Mean STD
Dojlido 1.90 3.06
Aquatic toxicity 4.25 2.80
SRDD 7.94 8.75
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Bascaron 4.17 4.68

Brown 4.17 4.68

Entropy 4.17 476

4.6.2 Gokanya

Sensitivity analysis of Gokanya reveals that among all the models, SRDD is the most
sensitive (mean = 7.96, STD = 8.27), which indicates its high responsiveness to parameter
changes, particularly nitrate, EC, and COD. The Dojlido index, having a low mean (2.29) and
low standard deviation (1.79), is still the least sensitive, which reaffirms its poor ability to
reflect parameter variability. Moderate and consistent sensitivity is seen in Bascaron, Brown,
and Entropy models (mean = 4.17), revealing a balanced reaction to both stable and variable
water quality conditions. Aquatic Toxicity Index (mean = 3.64) shows intermediate behavior,
with factors such as VSS and fluoride having more significant impacts on its output. The
variation in sensitivity of all water quality parameters is shown in Figure 4.14. Generally,
SRDD appears to be the strictest model, and Dojlido can potentially underrepresent the risks

of contamination in this area.

s 28.00 + 28.00 + 28.00 28.00 + 28.00 + 28.00 +
Nitrate 8.0( h((’ 8.00 N 8.0(

Chloride
Fluoride
Pb

Cr

EC

Ca

K

Na

Cd

Ni

Fe

Zn

Mn

VSS

TSS
COD
BOD

DO
Hardness
Alkalinity
Free Chlorine
Turbidity

pH 9.00 *

Parameters Dojlido  Aquatic toxicity =~ SRDD Bascaron Brown EWQI

18.75 4 18.75 A

9.50 9.50 1

AN

025 4.°

9.00 -~ 9.00 -~ 9.00 -~ 9.00 -~
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Table 4. 13 Sensitivity Analysis of all WQI Models in Gokanya

WQI Models Mean STD
Dojlido 2.29 1.79
Aquatic toxicity 3.64 2.72
SRDD 7.96 8.27
Bascaron 4.17 4.45
Brown 4.17 4.45
Entropy 4.17 5.45

4.6.3 Simrol

The sensitivity analysis of Simrol shows that the SRDD model once more proves the most

sensitive to the variation of individual parameters, with a mean value of 6.98 and a high

standard deviation of 8.84.
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Figure 4. 15 Sensitivity Analysis of Water Quality Parameters in Simrol

The variation in sensitivity of all water quality parameters is shown in Figure 4.15. To the

surprise of all, the Dojlido model, although with a moderate mean value of 3.51, displays
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maximum variability (STD = 9.66), and hence it is less predictable in its parameter-specific
sensitivity. Models such as Bascaron and Brown are still moderate and consistent in behaviour
(mean = 3.75), whereas Entropy-based WQI has a little more sensitivity (4.17), possibly
because data-driven weight allocation enhances parameters such as COD and heavy metals.
The Aquatic Toxicity Index (mean = 3.98) is conservative and responsive in its behaviour and
is sensitive to organic and nutrient indicators. The entropy, Brown, and Bascaron consistency
provide a stable model for frequent monitoring.

Table 4. 14 Sensitivity Analysis of all WQI models in Simrol

WQI Models Mean STD
Dojlido 3.51 9.66
Aquatic toxicity 3.98 4.08
SRDD 6.98 8.84
Bascaron 3.75 4.73
Brown 3.75 4.73
Entropy 4.17 5.69
4.6.4 Memdi

The sensitivity analysis of Memdi indicates that the SRDD model is most sensitive to
parameter changes, with a mean sensitivity of 7.97 and a standard deviation of 8.30, being
heavily dependent on parameters such as COD, TSS, and VSS. The variation in sensitivity of
all water quality parameters is shown in Figure 4.16. Conversely, the Dojlido model has the
lowest sensitivity (mean = 1.46), which means that it is least sensitive to variation in individual
parameters and can potentially mask localised pollution. Bascaron, Brown, and Entropy models
have the same mean values (4.17), but Entropy is marginally more variable (STD = 5.10),
meaning moderate sensitivity with a bit of parameter-specific spikes. The Aquatic Toxicity
Index is intermediate with a mean of 3.67, indicating moderate sensitivity to organics and heavy
metals. SRDD model sensitivity to the extremes emphasises it as most diagnostic of
contaminated sites, such as Memdi, whereas Dojlido is too conservative and may be

underestimating risks.
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Figure 4. 16 Sensitivity Analysis of Water Quality Parameters in Memdi

Table 4. 15 Sensitivity Analysis of all WQI models in Memdi

WQI Models Mean STD
Dojlido 1.46 2.11
Aquatic toxicity 3.67 2.79
SRDD 7.97 8.30
Bascaron 4.17 4.59
Brown 4.17 4.59
Entropy 4.17 5.10
4.6.5 Harsola

Harsola's sensitivity analysis indicates that the SRDD model is most sensitive (mean=7.91,
STD =9.16), as it has a robust response to changes in individual parameters like COD, EC, Cer,
and turbidity. The variation in sensitivity of all water quality parameters is shown in Figure

4.17. The Dojlido model, having the lowest mean value of 2.81 and STD of 5.17, demonstrates
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very little fluctuation and hence might be underestimating the effects of certain pollutants.
Moderate and virtually equal sensitivity scores are found in Bascaron, Brown, and Entropy
models (mean = 4.17), suggesting a stable but less variable response profile. Notably, the
Aquatic Toxicity Index reveals a different pattern of moderate sensitivity (mean = 4.91), but
with a lower standard deviation, indicating a specialized reaction to a subset of influential

factors such as nitrate and heavy metals.
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Figure 4. 17 Sensitivity Analysis of Water Quality Parameters in Harsola

Table 4. 16 Sensitivity Analysis of all WQI Models in Harsola

WQI Models Mean STD
Dojlido 2.81 5.17
Aquatic toxicity 491 2.79
SRDD 7.91 9.16
Bascaron 4.17 5.02
Brown 4.17 5.02
Entropy 4.17 5.16
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CHAPTERS
CONCLUSIONS AND FUTURE SCOPE

5.1 Conclusions:

Rural water quality in five villages of Indore was assessed through a study evaluating 24
physicochemical and heavy metal parameters through different Water Quality Index (WQI)
models. Several contaminations were reported, with fluoride as high as 2.4 mg/L, and organic
pollutants and heavy metals such as Mn, Zn, Fe, and Ni identified in many samples. The
Dojlido Index produced the highest values of WQI (almost 100) in areas such as Borkhedi
(B1), Memdi (M5, MS), and Harsola (H5), but it grossly overestimated water quality, not
detecting major contamination. The SRDD model was best in indicating the maximum
sensitivity (7.97 in Memdi), successfully raising alarms on toxic pollutants, but its variability
lowered its reliability. Conversely, the Bascaron, Brown, and Entropy-weighted WQI models
exhibited moderate sensitivity and more realistically tracked field-measured conditions and
were thus appropriate for rural use. The Aquatic Toxicity Index generated unrealistically low
results at many sites (e.g., 25.60 at site M6), resulting in excessively negative assessments not
consistent with potability criteria. West Java and Dinius models yielded close-to-zero WQI
values at all locations, validating their structural inappropriateness for groundwater-based rural
situations. Thus, Bascaron, Brown, and Entropy-based indices are advised for field-based,
context-specific, and sustainable rural water quality monitoring in India.

5.2 Future Scope

(a) Expansion of Sampling Base: Additional incorporation of villages and seasonal data
(pre-monsoon, monsoon, post-monsoon) would increase the spatial-temporal resolution
and robustness of generalizability.

(b) Integration of Microbiological Indicators: Since the lack of disinfection and
sanitation infrastructure was observed in the study, the addition of coliform and E. coli
parameters is critical for a comprehensive evaluation of drinking water safety.

(¢) Machine Learning for Weight Optimization: Future research may consider the hybrid
weighting schemes of AHP, Entropy, and ML-based optimization (e.g., Random Forest,
PCA-AHP) for adaptive index models.
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(d) Region-Specific WQI Development: The findings of this study can form the basis of
a new composite WQI specifically for central Indian rural settings, balancing scientific
precision and usability.

(e) Uncertainty Quantification: Additional enhancement of uncertainty analysis through
stochastic simulations can quantify the influence of measurement errors and data gaps
on WQI results.

(f) Policy Translation and Community Involvement: Findings can be translated into
decision-support tools for rural water boards and Panchayats. Locally adaptable
participatory structures (e.g., MAGs — Management Action Groups) could also be

activated to co-monitor and co-manage water safety.
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