
i  

ASSESSING RURAL WATER 

QUALITY THROUGH INDEX 
MODELS: EVALUATIONS FROM THE 

VILLAGES OF INDORE 
M. Tech. Thesis 

 
By 

DEBORSHEE SINHA (2302104011) 
 
 
 
 

 

 
DEPARTMENT OF CIVIL ENGINEERING 

 
INDIAN INSTITUTE OF TECHNOLOGY 
INDORE, SIMROL, MADHYA PRADESH, 

INDIA – 453552 

May 2025 



ii  

ASSESSING RURAL WATER 
QUALITY THROUGH INDEX 

MODELS: EVALUATIONS FROM THE 
VILLAGES OF INDORE 

 
A THESIS 

Submitted in partial fulfilment of the 
requirements for the award of the degree 

of 
Master of Technology 

 
by 

DEBORSHEE SINHA 
 

 
DEPARTMENT OF CIVIL ENGINEERING 

INDIAN INSTITUTE OF TECHNOLOGY 
INDORE 

May 2025 



iii  

INDIAN INSTITUTE OF TECHNOLOGY 
INDORE 

 
CANDIDATE’S DECLARATION 

I hereby certify that the work which is being presented in the thesis entitled ASSESSING 
RURAL WATER QUALITY THROUGH INDEX MODELS: EVALUATIONS FROM 
THE VILLAGES OF INDORE in the partial fulfillment of the requirements for the award of 

the degree of MASTER OF TECHNOLOGY and submitted in the DEPARTMENT OF 
CIVIL ENGINEERING, Indian Institute of Technology Indore, is an authentic record of 

my own work carried out during the time period from July 2023 of joining the M.Tech. program 

to May 2025 under the supervision of Dr. Mayur Shirish Jain, Assistant Professor, Department 

of Civil Engineering, Indian Institute of Technology Indore. 

The matter presented in this thesis has not been submitted by me for the award of any other 

degree of this or any other institute. 

 

Signature of the student 
(DEBORSHEE SINHA) 

 

This is to certify that the above statement made by the candidate is correct to the best of 

my/our knowledge. 

 
 
 

 
Signature of the Supervisor of 
M.Tech. thesis (with date) 
(Dr. Mayur Shirish Jain) 

 

Deborshee Sinha has successfully given his/her M.Tech. Oral Examination held on 24th May, 
2025. 

 
 
 

 
Signature(s) of Supervisor(s) of M.Tech. thesis Convener, DPGC 
Date: 29/5/2025 Date: 



iv  

ACKNOWLEDGEMENTS 
 
I extend my heartfelt gratitude to my project supervisor, Dr. Mayur Shirish Jain, for his 

invaluable guidance, insightful suggestions, and unwavering support throughout the course of 

my thesis. His guidance not only added value to the richness of my research but also influenced 

the breadth of my academic growth. It has been an honour to have him as my supervisor. 

 
I am also deeply thankful to the STWUTEE research group for their cooperation and 

knowledge exchange, which played an important part in broadening my knowledge of the topic. 

Their encouragement assisted me in gaining a balanced view on the research topic. A special 

mention of gratitude goes to Mr. Adarsh Singh, whose commitment and regular support were 

key to the successful completion of this project. A special mention of gratitude goes to Shiksha 

Singh, whose regular support and motivating words have been a source of strength during this 

academic journey. 

 
I wish to express our gratitude towards the Jaya Prakash Narayan (JPN) National Centre of 

Excellence in the Humanities for supporting this study with generous funding under Project 

ID: IITI/JPNC/PRJ/2023/14/P009. We are deeply grateful to the funding agency for helping us 

undertake work of utmost importance on the water quality monitoring of the rural areas of 

Indore. 

 
 
 
 
 
 
 
 
 
 
 
 

Deborshee Sinha (2302104011) 
 
 

 
Date: 23/05/2025 



v  

CERTIFICATE 
 
This is to certify that the Project Work entitled “ASSESSING RURAL WATER QUALITY 

THROUGH INDEX MODELS: EVALUATIONS FROM THE VILLAGES OF INDORE” is 

bonafide work of Mr. Deborshee Sinha in partial fulfilment of the academic requirements for 

the award of Post Graduate Programme in Water, Climate and Sustainability (WCS). This work 

is carried out by him, under my guidance and supervision. 

 
 
 
 
 
 
 
 
 

Signature of Guide 

Dr. Mayur Shirish Jain 



vi  

DEDICATION 
 
This thesis is dedicated to my beloved parents, whose unwavering love, 

enduring sacrifices, and constant encouragement have been the guiding force 

behind every step of my academic journey. 



vii  

ABSTRACT 

 
Safe drinking water access continues to be a key issue in rural India, with chemical and 

microbial contaminants being the main cause. This research evaluates the quality of water from 

five villages in Indore: Borkhedi, Gokanya, Harsola, Memdi, and Simrol, through detailed 

physicochemical and heavy metal analysis of 36 water samples. 24 parameters were examined, 

viz., fluoride, nitrate, COD, BOD, TSS, and heavy metals such as Mn, Zn, Fe, Ni, Pb, and Cr. 

On the basis of models like Dojlido, Bascaron, Brown, SRDD, Aquatic Toxicity Index, West 

Java, Dinius, and Entropy-weighted WQI, the research compared the efficiency of various 

Water Quality Index (WQI) models. Results indicated extensive pollution with fluoride content 

above 2.4 mg/L, and organic contamination was widespread at most sites. Whereas the Dojlido 

model presented inflated WQI values, the Entropy-weighted, Brown, and Bascaron indices 

indicated contamination more accurately. Sensitivity analysis also identified Pb, Cr, and Cd as 

the most significant parameters impacting WQI values. The research concludes that Bascaron, 

Brown, and Entropy-weighted models present a balanced and context-suitable platform for 

rural water quality monitoring and suggests their implementation for region-specific 

sustainable water management. 

 
Keywords: Rural Water Quality, AHP, Water Quality Index (WQI), Physicochemical 

Parameters, Heavy Metal Analysis, Entropy Weighting Method, Sensitivity Analysis. 
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CHAPTER 1 

INTRODUCTION 
 
1.1 Overview 

Water is one of the determinants of life here on Earth: it sustains human life, preserves 

ecosystems, and fosters economic development. The availability, quality, and management of 

water resources have impacts on the well-being of communities, the productivity of industries, 

and overall natural-environment health. Earth is a planet where 71% of its surface is covered 

by water, of which 97% of this is seawater (Musie & Gonfa, 2023). Since seawater is hardly 

available for human consumption, the world population has to rely on only 3% of freshwater, 

as indicated in the global water distribution. Of the available freshwater, only 0.06% can easily 

be accessed, and the remaining 99.94 % comprises the frozen polar ice cap, glaciers, and 

groundwater (Rijsberman, 2006). Lakes and rivers play a huge role in the global environment, 

acting as irrigation water sources, fish farming, shipping transport, and industrial and drinking 

water sources. Lakes and rivers hold 0.3% of the world's freshwater (El-Ghonemy, 2012). 

According to the study by Misstear et al. (2017), the irrigation sector uses only about 70% of 

the groundwater, and India, China, and the USA are the major leading countries in using this 

water source. Critical water quality issues include more than 2 billion people worldwide using 

sources of water contaminated with unsafe pathogens, while an estimated 4 billion lack access 

to safe drinking water without treatment (Biswas & Tortajada, 2019; Vega et al., 2018). 

Agricultural activities are responsible for the nutrient-rich runoff, which annually causes about 

245,000 square kilometers of global waters to suffer from eutrophication and create hypoxic 

zones that decimate aquatic ecosystems (Karunanidhi et al., 2021; Tyagi et al., 2020). Industrial 

sources contribute to contamination because 30% of the world's available freshwater is used 

industrially and in municipalities, and generates by-products that include heavy metals as well 

as micropollutants, and over 1.5 billion people living in rural areas depend on unsafe 

groundwater, especially due to high levels of fluoride and arsenic (Schwarzenbach et al., 2010). 

Only about 10 percent of regions like South Asia receive proper treatment of wastewater, and 

this means pathogens and toxic substances end up in the supply of drinking water (Biswas & 

Tortajada, 2019; Vliet et al., 2021). India-based studies reveal that 26 percent of samples of 

water exceeded the safe fluoride level and thus would pose threats of fluorosis, especially to 

children (Karunanidhi et al., 2021). Even to date, untreated wastewater and agricultural runoff 

continue to cause pollution to millions of people, and it is estimated that up to 40 percent of 
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the world's population suffers from severe water scarcity if considered both quality and quantity 

(Schwarzenbach et al., 2010; Vliet et al., 2021). 

Most of the water used for rural and urban drinking sources comes from groundwater. Most 

of these sources are contaminated with fluoride, arsenic, and heavy metals, thus affecting 

millions of people (Sharma et al., 2017; Singh & Singh, 2002). More than 14.5 million people 

rely on water from this river in the Ganges basin, with a very high BOD all along, especially 

near some of the large urban cities like Calcutta, which has values of BOD ranging up to 5.95 

mg/L due to untreated sewage (Sarkar et al., 2007). The waters of the Yamuna River, despite 

numerous restoration efforts, have remained under the "poor" rating for indices because of their 

high coliform bacteria and ammonia levels, indicating that efforts to regain potable standards 

continue to be a challenge (Sharma & Kansal, 2011). Even the Hindon River, Uttar Pradesh, is 

heavily polluted, with COD at 337.4 mg/L and BOD at 51 mg/L (Suthar et al., 2010). For 

instance, groundwater levels of irrigated areas such as Punjab, Rajasthan, and Tamil Nadu are 

reducing by 1-2 meters a year, and such a trend is likely to jeopardize future water security 

(Singh & Singh, 2002). At the per capita level, India's water availability is headed towards 

crossing 1,170 m³/yr just above the water-stressed threshold, requiring urgent resolution 

through effective water management and control of pollution measures (Cronin et al., 2014). 

Water quality monitoring is a highly challenging task since it heavily relies on a few 

parameters, such as pH, turbidity, DO, and TDS, demanding time-consuming and resource- 

intensive methods (Ahmed et al., 2020; Behmel et al., 2016). Worldwide, less than 40% of 

water bodies are adequately monitored, while 80% of wastewater released only indicates there 

are data gaps, mostly in poorer regions (Kirschke et al., 2020; Uddin et al., 2021). The 

introduction of new technologies, like the use of IoT-based monitoring systems, holds promises 

but is limited to very high initial costs, while access is only accessible to the more affluent 

countries of the world (Jan et al., 2021; Murray et al., 2022). Water quality's spatial and 

temporal variability increases the complexity since many monitoring programs cannot boast 

the resources needed to ensure complete coverage (Huang et al., 2021; Kachroud et al., 2019). 

Although Water Quality Indices have certainly made the interpretation of data easier, the 

outcome is generally afflicted by regional specificity that confines its applicability 

(Boyacioglu, 2007; Kachroud et al., 2019). 

The Water Quality Index is an integrated measure that converts complex data on water 

quality into an easily understandable single numerical value, which gives a general judgment 

regarding suitability for specific use-drinking, agricultural purposes, or recreation (Kachroud 

et al., 2019). This index is primarily applied to monitor and better manage water quality. Thus, 
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it simplifies the interpretation of environmental data for policymakers and stakeholders to act 

on (Boyacioglu et al., 2007). Calculation of WQI has many steps: selection of relevant water 

quality indicators such as pH, dissolved oxygen, and turbidity; assignment of weights 

according to the importance of each parameter; normalization of parameter values; and 

aggregation of these into a composite score by mathematical functions (Varadharajan, et al., 

2009; Gupta & Gupta, 2021; Jha et al., 2015; Sun et al., 2016). BOD, nitrate levels, and TDS 

are the most frequently weighted upon expert judgment or statistical significance (Gupta & 

Gupta, 2021; Yidana & Yidana, 2010). 

Some of the common issues in WQI models are uncertainty at every step, like the choice 

of parameters, derivation of sub-indices, weighting of parameters, and aggregation of the index 

(Oliveira et al., 2019; Uddin et al., 2021). Regional guidelines for selecting parameters are 

considered the most common restriction to the generalizability of WQI models. Overlapping 

parameters, such as dissolved oxygen and biochemical oxygen demand or turbidity and total 

solids, also skew the results, making them inaccurate in determining water quality (Oliveira et 

al., 2019; Patel et al., 2023). The WQI of some studies ranges from "good" at the upstream sites 

down to "poor" at the downstream due to the city's influence, where the values decrease by 

11.6% in polluted areas (Gupta & Gupta, 2021; Kannel et al., 2007; Uddin et al., 2022). 

Improved ways, such as using a machine learning-based weight assignment, can address these 

issues and enhance the accuracy without losing ease of use (Gupta & Gupta, 2021; Uddin et 

al., 2022). 

1.1.1 Water Quality Issues and Challenges in Madhya Pradesh 

The water quality issues in Madhya Pradesh are alarming as there are high levels of 

industrial effluents, agricultural runoff, and improper waste management. Various studies have 

shown that most of the rivers, such as the Betwa, Chambal, Narmada, and Kalpi, have been 

saturated with a significant amount of pollutants. Industrial hotspots like Mandideep and 

Nayapura reportedly have higher levels of Biochemical Oxygen Demand (BOD) and Chemical 

Oxygen Demand (COD) compared to the permissible limit (Gupta et al., 2017; Verma et al., 

2014; Vishwakarma et al., 2013). Groundwater in areas including Jabalpur and Rewa is 

contaminated with heavy metals such as chromium and has higher total dissolved solids and 

nitrates that make water undrinkable (Ghoderao et al., 2022; Mishra et al., 2012). Water from 

the Narmada River becomes more polluted during monsoon because it undergoes 

sedimentation and expands human-induced activities (Gupta et al., 2017). In addition, 25% of 

rural access to clean drinking water is reported in the Sagar and Indore zones of the region, and 

all districts have high positive rates of microbiological contamination (Godfrey et al., 2011; 
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Mishra & Nandeshwar, 2013). The overall water quality index (WQI) of many districts remains 

highly poor to unsuitable for consumption, attesting to the urgency required in formulating 

robust pollution control and sustainable water resource management strategies (Ghoderao et 

al., 2022; Gupta et al., 2017). 

The water pollution level in Indore is highly critical, and significant contamination has been 

seen in both surface and ground sources. The Khan River is a major watercourse that is highly 

polluted due to untreated domestic and industrial discharges, which show BOD and COD at 

extremely high levels, often beyond permissible limits (Abhineet & Dohare, 2014; Dohare et 

al., 2018). Groundwater in urban areas is also contaminated with nitrates, fluorides, and heavy 

metals. Nitrate levels often exceed 45 mg/L, which is associated with agricultural runoff 

(Dohare et al., 2014; Sharma & Thakkar, 2014). The water source of the city depends mainly 

on the Narmada River and local reservoirs, and becomes turbid at levels of 1530 NTU during 

monsoons, making it unsafe even with treatment due to potential microbial pollution (Khadse 

et al., 2016). This important local water body, Sirpur Lake, suffers from eutrophication and 

microbial contamination with a high coliform count, which reflects fecal pollution (Nighojkar, 

& Chaurasia, 2017; Smruti & Sanjeeda, 2012). In addition, bacteriological analysis shows 

widespread contamination with pathogens like E. coli, meaning there is an urgent need for strict 

water quality management and public awareness campaigns (Smruti & Sanjeeda, 2012). 

1.2 Motivation of the Study 

Field surveys in five villages in the Indore district of Borkhedi, Gokanya, Harsola, Memdi, 

and Simrol revealed the urgent issues of water quality, such as high concentrations of fluoride, 

high organic and suspended loads. These problems are worsened by the lack of proper 

sanitation infrastructure and the absence of continuous and reliable systems of monitoring. The 

issue not only poses a risk to public health but also highlights a critical gap in rural water 

management. Existing Water Quality Index (WQI) models tend to miss region-specific 

pollutants or remain insensitive to changing field conditions. Inspired by these issues, this 

research performs a comparative evaluation of several WQI models to compare their accuracy, 

responsiveness, and context-specific appropriateness. The final objective is to determine 

models that are scientifically robust, operationally viable, and able to facilitate informed 

decision-making for sustainable water quality management in rural India. 
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Figure 1.1 Water Quality and Sanitation Challenges in Villages (Source: Me) 
 
This scenario highlights the need for a systematic assessment of water quality and targeted 

interventions to ensure safe and sustainable water resources for these communities. 

1.3 Scope of the study 

The research focuses on assessing water quality in five selected villages of Indore through 

established WQI models. It addresses region-specific water contamination issues, including 

chemical contaminants such as fluoride and nitrates, and heavy metal contamination due to 

deficient sanitation facilities. The study underscores the need for regionally adaptive WQI 

models to address peculiar challenges at the rural level. It provides a comparative framework 

to evaluate the efficacy of various WQI models in varied environmental conditions. These 

findings can guide the sustainable management of water resources and policymaking in rural 

communities. 

Harsola Gokanya Harsola 

Harsola Gokanya Memdi 

Memdi 
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CHAPTER 2 

LITERATURE REVIEW 
 
2.1 WQI model structure: 
2.1.1 Selection of parameters: 

The selection of appropriate parameters is an important step in developing WQI, as it 

determines an index's effectiveness in showing water quality (Akhtar et al., 2021; Banda & 

Kumarasamy, 2020) as shown in Figure 2. Parameters typically chosen are physicochemical 

indicators like pH, turbidity, electrical conductivity, nitrates, and biological indicators like 

dissolved oxygen and fecal coliform (Aljanabi et al., 2021; Sutadian et al., 2016). They should 

represent the sources of pollution in the water body and the proposed water use, such as 

drinking, irrigation, industrial, etc. (Kumar et al., 2024; Sutadian et al., 2016). According to the 

study by (Sutadian et al., 2016), parameters for selection can be categorized into three distinct 

systems: fixed, open, and mixed. 

Figure 2.1 Historical development of the Water Quality Index models 
 
Fixed system 

The fixed system applies standardized and constant parameters used to compute WQI, 

making it uniform and comparable within and among regions and time. Common parameters 

include pH, DO, turbidity, and BOD, representing general water quality metrics (Akhtar et al., 
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2021; Kumar et al., 2024). This approach allows for a fair and objective assessment of water 

quality, but it can be ruthless because it does not take into consideration region-specific 

contaminants or emerging substances like heavy metals or microplastics (Patel et al., 2023; 

Terrado et al., 2010). For instance, the indexes such as the NSFWQI apply pre-set indicators. 

This approach ensures that the system is transparent and easy to use but is likely to neglect 

localized concerns over water quality (Kumar et al., 2024; Sutadian et al., 2016). 

Open system 

The open system allows for flexibility in that parameters are selected based on the nature 

of the water body, the use for which the water is intended, or regional issues. For instance, 

depending on the severity of industrial pollution in an area, consideration might be given to 

heavy metals or nitrates (Akhtar et al., 2021; Sutadian et al., 2016). The appropriateness and 

flexibility of this system mean that consistency in the assessments may not be achieved; hence, 

comparisons between regions become impossible (Sutadian et al., 2016; Terrado et al., 2010). 

Research has proved that open systems are most effective in areas of special ecological 

concerns or diverse uses of water, including irrigation, whether it is for agriculture or water 

supplies to an urban center, where parameter inclusion can differ drastically (Akhtar et al., 

2021; Kumar et al., 2024). 

Mixed system 

The mixture of the fixed and open systems standardizes their compatibility as it couples the 

universal parameters core set. These universal parameters include, for example, parameters like 

pH and DO, which are complemented by additional parameters based on local environmental 

needs or emerging pollutants (Kumar et al., 2024; Patel et al., 2023). This means it ensures the 

consistency of assessment while at the same time ensuring comparability across regions. For 

instance, the Canadian Council of Ministers of the Environment Water Quality Index, CCME 

WQI, is a hybrid approach that can be applied suitably for changes requiring specific water- 

use requirements (Kumar et al., 2024; Terrado et al., 2010). It is really effective in those areas 

where the baseline quality of water should be evaluated along with some localized issues (Patel 

et al., 2023; Sutadian et al., 2016). 

2.1.2 Formation of sub-indices: 

One of the important stages in the WQI model structure is to form sub-indices, which 

transform individual water quality parameters into dimensionless values on one scale. Sub- 

indices reduce complex variability in water-quality data and make it easy to compare. It uses 

different approaches to generate sub-indices, ranging from linear interpolation-based, like in 

the case of the National Sanitation Foundation WQI (NSFWQI), to non-linear applications 
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recommended in the Oregon WQI, which is well-suited for managing extreme values (Lumb 

et al., 2006; Neary et al., 2001a; Said et al., 2004). On the other hand, observations show that 

though most of the WQIs utilized a scale of 0 to 100 for the sub-indices, the weights and 

transformation functions were applied to control their sensitivities and reliabilities (Liou et al., 

2004; Lumb et al., 2006). For example, the Canadian CCME WQI combines scope, frequency, 

and amplitude measures into sub-indices in an attempt to capture water quality trends, thereby 

allowing for clear communication among diverse stakeholders (Rosemond et al., 2009; Neary 

et al., 2001). The Bascaron model contains up to 26 parameters; for instance, a comprehensive 

water quality assessment is provided, but it increases the computational complexity (Uddin et 

al., 2021). Other approaches include Taiwan's Liou Index, which uses a combination of PCA 

and hybrid aggregation functions that balance the parameter-by-parameter influence with 

specific regional concerns (Liou et al., 2004). This practice of including biological and 

physicochemical indicators in forming sub-indices has gained significant importance in the 

global arena to improve the ecological relevance of WQIs (Lukhabi et al., 2023). Statistical 

validation, including principal component analysis and sensitivity tests, ensures that such sub- 

index transformations retain accuracy and sensitivity under various environmental conditions 

(Neary et al., 2001). Statistical studies have revealed that sub-index reliability depends greatly 

on adopting appropriate parameter thresholds that vary regionally and seasonally (Akhtar et 

al., 2021; Uddin et al., 2021). Out of the 35 world reviews, a global survey by (Akhtar et al., 

2021), an overwhelming 82% of WQI models adopted sub-indices for rivers, lakes, and 

estuaries, while the remaining focused on groundwater and wetlands. 

Any WQI model is essentially supported by sub-indices that convert complex parameter data 

into concise and interpretable scores that allow for strong assessments of water quality at 

multiple temporal and spatial scales (Lukhabi et al., 2023; Lumb et al., 2006; Said et al., 2004). 

The following methods are commonly employed in the development of sub-index functions: 

• Expert judgments 

• Statistical Techniques 

• Factor Analysis (FA) 

• Cluster Analysis (CA) 

• Use of Water Quality Standards 
 
Expert judgments: 

Expert judgment is one of the key methods that have been used in determining sub-indices 

for water quality index models, especially where scientific data is limited, vague, or regionally 
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specific. In such a case, the approach relies on the experience and opinion of water quality 

experts in establishing parameter importance, methodologies for scaling, and aggregation sub- 

indices. For instance, a Delphi study with 142 water quality experts concluded by finalizing 11 

critical parameters from a list, which included pH, dissolved oxygen, and turbidity, with an 

absolute global relevance yet localized adaptation (Horton et al., 1965; Sutadian et al., 2016). 

Expert panels also provided feedback through several rounds of iteration, with improvements 

to the curves of sub-indices to gain consensus on the extent of quality variation derived from 

fluctuations in parameters (Banda & Kumarasamy, 2020; Horton et al., 1965). Techniques like 

AHP are combined with expert elicitation to arrive at weights systematically applied to 

parameters for the WQI to reflect practical and ecological priorities (Deininger, 1980; Steurer, 

2011). Statistical verifications, including consistency ratio checks, have been applied to assure 

reliability in scales and weightings derived from experts (Banda & Kumarasamy, 2020; 

Deininger, 1980). Studies indicate that by basing models on expert judgment, such as Bascaron 

and Liou indices, they have gained higher sensitivities to changes in pollutants and are more 

fit for complicated, multi-parameter scenarios (Steurer, 2011; Sutadian et al., 2016). Second, 

anonymous elicitation methods used in the Delphi method help avoid groupthink and biases 

because experts can objectively revise their inputs independently (Deininger, 1980; Steurer, 

2011). The empirical data is balanced with professional insight here to ensure the WQI is 

equally robust from a scientific standpoint and implementable practically across various 

environmental and policy frameworks. 

Statistical Techniques: 

Applying statistical techniques to build sub-indices for WQI models transforms raw data 

into standardized metrics to effectively assess water quality. These techniques include 

regression analysis that forms relationships between water quality parameters, such as nutrient 

levels, with algal growth, which mostly have high correlation coefficients- R² > 0.85 with 

adequate predictive power (Dutta et al., 2018; Ghesquière et al., 2015). Correlation analysis 

identifies interdependencies among parameters such as pH, dissolved oxygen (DO), and total 

suspended solids (TSS), which streamlines the selection of key indicators for sub-indices (Shil 

et al., 2019; Silva et al., 2021). Weighted methods allow assigning significance to parameters 

according to the variability in the data and through expert knowledge; hence, factors such as 

turbidity and nitrates are usually given more importance (Nagaraju et al., 2016; Shil et al., 

2019). Advanced techniques, such as the temporal and spatial discriminant analysis, can elevate 

the accuracy of sub-index generation since they determine seasonally or regionally changing 

parameters that explain significant water quality alterations (Mamun & An, 2021; Varol, 2020). 
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Geospatial tools, like Kriging and statistical processing, can produce spatial distribution maps 

of water quality indicators, making it easier for people to identify trends and pinpoint hotspots 

of pollution (Masood et al., 2022; Silva et al., 2021). Descriptive statistics allow for the 

establishment of base values in parameter variability; normalization techniques allow for 

standardization and comparability across different datasets (Dutta et al., 2018; Nagaraju et al., 

2016). Validation through techniques such as Mann-Kendall trend tests ensures that the sub- 

index transformations are still robust under temporal and environmental variability (Mamun & 

An, 2021; Varol, 2020). The statistical methods used enhance the sub-indices' reliability, 

accuracy, and interpretability. The sub-indices are strongly necessary for applications in WQI 

models across dynamic and diverse water quality scenarios. Given their ability to describe 

multidimensional datasets succinctly, they can provide useful insights for water resource 

management and policy formulation. 

Factor Analysis (FA): 

Factor analysis is another critical statistical technique applied in multivariate analysis, 

which is used to form sub-indices in WQI models. It applies the concept of grouping water 

quality parameters into various factors to identify the underlying relationships among those 

parameters and reduce the dimensionality of the data while retaining the variance. For example, 

in the Carson Valley in Nevada, Factor Analysis was applied to 10 pollutant parameters and 

was successfully reduced to two principal indices with 99% reliability using an F-test (R² = 

0.9754) (Joung et al., 1979). Similarly, in the Ganga River, Factor Analysis effectively grouped 

parameters like Dissolved Oxygen (DO), pH, and Total Dissolved Solids (TDS), explaining 

over 80% of the total variance and reducing parameters from 28 to 9 (Tripathi & Singal, 2019a, 

2019b). This technique helps attach weights to parameters by finding their relative contribution 

to the overall water quality. For example, weights computed through Factor Analysis on 

Turkish surface waters led to the development of an Ecological Water Quality Index, which 

ensured that at least one parameter was taken from each factor class (Boyacıoglu & Boyacıoglu, 

2020). Another example is its use in Rhodes Island, Greece, where Factor Analysis aggregated 

critical parameters like nitrates, sulfates, and conductivity, simplifying the WQI development 

process (Alexakis, 2022). The results of Factor Analysis can be statistically validated using 

measures such as the Kaiser-Meyer-Olkin (KMO) measure (>0.5 for sampling adequacy) and 

Bartlett's Test of Sphericity (p < 0.05 for significant correlations) (Tripathi & Singal, 2019; 

Varol & Davraz, 2015). Rotation methods, such as Varimax, help to make the interpretation of 

the parameter loadings easier. In Nile River pollution studies, Factor Analysis determined the 

important sources of pollution to be agricultural runoff and industrial effluent, while accounting 
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for more than 75% of the variability in water quality (Yousry & Gammal, 2015). One of the 

powerful tools in forming WQI is factor analysis, as it offers an objective basis for parameter 

selection, weight assignment, and pollution source identification, thus improving the scientific 

robustness and applicability of water quality assessments. (Gulgundi & Shetty, 2018) utilized 

PCA to assess the correlation among weighting parameters, as illustrated in Equation (2.1). 
Zij = ai1xj1 +ai2xj2 + ai3xj3 ... + aimmjm (2.1) 

Where, Z = component score 

x = the estimated variable value 

i = the component number 

j = the sample number 

a = the loading component 

m = the total number of variables. 

Cluster Analysis (CA): 

Cluster Analysis (CA) is a well-established statistical method that groups similar data 

points into clusters to draw patterns or trends from complex datasets in water quality. CA plays 

a crucial role in WQI model sub-index formation, as it is necessary for the classification of 

water quality parameters, monitoring sites, and seasonal variations. Data standardization is the 

initial step prior to clustering, which standardizes the parameters measured in different units. 

Distance metrics like Euclidean or Manhattan distances are often used to measure similarity 

between the data points, whereas hierarchical methods such as Ward's linkage or k-means 

clustering are used to determine clusters. In the context of the Godavari River, CA identified 

34 monitoring stations into three groups, namely, less polluted, moderately polluted, and highly 

polluted, based on which focused monitoring efforts could be made (Gupta et al., 2015). 

Secondly, the Mekong Delta study classified water quality into four clusters according to key 

parameters such as Total Suspended Solids (TSS) and coliform counts and exploited seasonal 

and spatial variability (Giao & Nhien, 2021). CA not only helps reduce dimensionality but also 

optimizes the monitoring network. For example, New Zealand showed how CA effectively 

categorized 680 groundwater sites into representative clusters to streamline its monitoring 

efforts while maintaining its data integrity (Daughney et al., 2012). The method's ability to 

merge interval-valued data, demonstrated in the assessment of the Huaihe River, results in no 

information loss while obtaining clusters, thus further enhancing data accuracy and reliability 

(Shan et al., 2021). Validation techniques such as the Corrected Rand Index (CRI) are 

commonly used to validate the soundness of the clustering results. The strength of this 
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technique is its ability to consider various parameters so that the whole spectrum of water 

quality changes across time and space can be represented. 

Use of Water Quality Standards: 

Sub-indices for WQI can be developed based on water quality standards, as standards offer 

universally or regionally accepted standards for various parameters. Regulation-oriented 

bodies, such as WHO, EPA, or regional bodies, define limits of permissible quantities for 

various key parameters of water quality, such as pH, dissolved oxygen, nitrates, and heavy 

metals. For example, in investigations of the Tigris River, standards were the linchpin to 

transforming raw information into meaningful index values; the standards conformed to 

international standards for potable water quality (Abed et al., 2022). Likewise, WQI Vietnam 

used national standards for the allowable concentrations of chemicals, thereby ensuring the 

index reflected the region's environmental conditions (Van et al., 2022). The CCME WQI, 

widely referenced worldwide, based on the three-factor approach, correlates scope, frequency, 

and amplitude to the standards set, thus providing a flexible yet robust framework (Banda & 

Kumarasamy, 2020b). In South Africa, compliance with groundwater quality standards 

allowed the classification of water resources into suitability classes for domestic use (Nzama 

et al., 2021). Statistical analysis showed that it standardizes data interpretation while enhancing 

indices' comparability across regions, as shown in 80% of global WQI applications (Akhtar et 

al., 2021; Kumar et al., 2024). In addition, standards ensure indices reflect the actual 

environmental and health risks, as any deviation from permissible limits is directly proportional 

to the degree of severity of the indicated pollution. As seen in Brazil’s aquifer studies, the 

integration of standards highlighted deficiencies in treatment infrastructure when groundwater 

consistently failed to meet basic potability levels (Sabino et al., 2024). Moreover, sub-index 

functions calibrated against these benchmarks, such as linear or non-linear transformations, 

align parameter values with acceptable risk thresholds, offering insight into resource quality 

(Sutadian et al., 2016). Across studies, standards provided a basis for developing indices that 

are not only scientifically valid but also socially relevant, thus allowing policymakers to rank 

interventions appropriately. This synergy between scientific rigor and practical utility 

underscores the centrality of water quality standards in crafting meaningful WQI models. 

2.1.3 Parameter weighting: 

Parameter weights assignment is important in WQI development since they display the 

relative significance of water quality parameters and influence the index score. Weights could 

be either equal, in which case all the parameters are treated equally important, or unequal, 

where weights are assigned per the importance of each parameter or specific water quality 
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guidelines (Sarkar & Abbasi, 2006). Unequal weights are often encountered in WQI models 

like the Horton, Bascaron, and Almeida indices, which apply weights with integer values and 

whose summation exceeds 1. In contrast, the Oregon index assigns equal weights to all 

parameters, while others, such as CCME, Smith, and Dojlido indices, do not apply parameter 

weights at all. The use of unequal weighting systems enhances the robustness of a WQI model, 

which in turn diminishes uncertainty and maximizes accuracy. The Delphi technique and the 

Analytical Hierarchy Process (AHP) are widely adopted in methods for determining weights 

(Mogane et al., 2023). 

Delphi method: 

The Delphi method is a group of expert panels comprising stakeholders like policymakers 

and water quality experts, presenting their consensus-based weights through interviews, 

questionnaires, and discussions. For instance, (Horton et al., 1965) and (Brown et al.,1970) 

applied this method to enhance the credibility of parameter weights in different indices. (Horton 

et al., 1965) developed parameter weighting as part of WQI development; assigned weights as 

four parameters (specific conductivity, chlorides, alkalinity, carbon chloroform extract) were 

assigned one each; two for one parameter (coliform); and four for the remaining three, namely 

dissolved oxygen, sewage treatment, and pH. (Brown et al.,1970) further developed this 

approach using a large panel of water quality experts from the USA to add objectivity and 

credence. Specialists graded relative parameters of water quality on a scale from 1 (most 

significant) to 5 (least important). The arithmetic mean was then calculated for the experts' 

ratings, and the parameter with the highest rating for significance was assigned a temporary 

weight of 1.0. Other parameters were assigned temporary weights based on the highest rating 

divided by the respective mean rating. The temporary weights were normalized by dividing 

each by the total sum of weights, thus ensuring that the summation of all parameter weights 

equalled 1. Since then, the Delphi method has been widely applied in various WQIs to establish 

relative parameter weights and maintain consistency in the weighting process through expert 

consensus(Sutadian et al., 2016). 

Analytical Hierarchy Process (AHP): 

Saaty developed AHP in the 1970s. It uses pairwise comparisons to derive parameter 

weights by integrating qualitative and quantitative inputs. In this approach, weight assessment 

is accomplished through pair-wise comparison matrices in which the respondents, either 

experts or the public, are asked to give their preference by comparing several choices. (Sutadian 

et al., 2016),(Ocampo-Duque et al., 2006), and (Gazzaz et al., 2012) studied how AHP can 

reduce uncertainty and improve weighting accuracy. A study by (Gazzaz et al., 2012) 
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mentioned that AHP reduces uncertainty and increases consistency by adopting a consistency 

ratio to check on the legitimacy of the weight assignment process. For instance, West Java WQI 

has been practiced as it was used to rank five key parameters (Sutadian et al., 2016). (Ocampo- 

Duque et al., 2006) successfully applied AHP to combine five groups of similar parameters 

into weights that accurately reflected their ecological significance. The methodology 

incorporates expert opinions and ensures reliability through sensitivity analysis, enhancing the 

WQI models' robustness. AHP further eliminates biases since it has been in direct contact with 

stakeholder involvement when used to prioritize environmental and human health-related 

parameters (Ocampo-Duque et al., 2006; Sutadian et al., 2016). 

Though equal weights are usually preferred due to the simplicity of the approach and to be free 

from subjective biases, unequal weights are imperative for applications emphasizing specific 

water uses, including protection of drinking water safety or ecological health. If improper 

weights are chosen, the index may become skewed as the less significant parameters get 

overemphasized. The Participatory methods, such as the Budget Allocation Procedure (BAP) 

and Simos' modified procedure, are less practiced but still provide practical remedies to 

overcome the weighing limitations (Kodikara et al., 2010). Finally, careful proper weighing 

according to the judgment of experts or water quality standards will ensure good and reliable 

WQI models for all applications in water resource management. 

2.1.4 Aggregation function: 

Aggregation is a common final process in WQI development, where the parameter sub- 

indices are summed up into a solitary WQI score (Sutadian et al., 2016). This step typically 

involves mathematical calculations of sub-indices based on their assigned weights and finally 

provides a comprehensive score to represent overall water quality. Aggregation can be staged 

sequentially if sub-indices need to be aggregated before their aggregation results in the final 

index value. Most often used aggregation functions are additive or arithmetic and multiplicative 

or geometric; besides, some of the other less frequent aggregation functions are the minimum 

operator and the harmonic mean of squares (Akhtar et al., 2021; Kumar et al., 2024; Patel et 

al., 2023; Uddin et al., 2021). Additive aggregation is carried out through weighted or 

unweighted summation, while Multiplicative aggregation accounts for the parameters' 

interdependence. The selected approach varies based on the precision level needed and whether 

the parameters are equally or unequally weighted (Abbasi & Abbasi, 2012). This aggregation 

step is critical because it condenses various water quality parameters and condenses them into 

a single-digit WQI, simplifying the interpretation and decision process. Variants of these 

approaches are also used in some models for greater flexibility and adaptability. Finally, the 
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aggregation process combines all sub-index values to fully represent water quality, thus clarity 

and usefulness for the stakeholders. The different aggregation functions are discussed briefly 

here. 

Additive functions: 

Various WQI models, including the Horton model, the SRDD model, the House index, 

Malaysian and Dalmatian index models, employed a simple additive aggregation function 

given by: 

 
 
 
In the above equation (2.2), 
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si = the sub-index value for parameter i 

wi = ith parameter weight value (which ranges from 0 to 1). 
n = the total number of parameters. 

Multiplicative functions: 

Some index models used the multiplicative function for aggregation and can be expressed 

as: 
 
 

 
In the above equation (2.3), 
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(2.3)	

si = the sub-index value for parameter i 

wi = ith parameter weight value (which ranges from 0 to 1). 
n = the total number of parameters. 

Combined aggregation functions: 

The final WQI score has been derived using combined aggregation methods, where additive 

and multiplicative functions are combined, by various researchers ((Abbasi & Abbasi, 2012; 

Swamee & Tyagi, 2000)). The application of such methodology has been followed with 

remarkable success by (Liou et al., 2004), (Alobaidy et al., 2010), and (Ewaid & Abed, 2017) 

for the assessment of Taiwan's water quality. Another major model is the NSF, which integrates 

both additive and multiplicative functions into its structure and shows how this approach of 

combining these functions effectively captures the complexity involved in assessing water 

quality. 
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Square root of the harmonic mean functions: 

The square root of the harmonic mean function is a numerical technique applied to 

aggregate parameters or sub-indices in some WQI. The method uses the harmonic mean for 

averaging and takes the square root for the final computation. This method emphasizes low 

values in the data set, which is preferable if the worst parameter determines the overall score. 

The function can be formulated as, 
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In the above equation (2.4), 

si = the sub-index value for parameter i 

n = the total number of parameters. 

Minimum operator function: 

#=1	 	 #	

(Smith, 1989) proposed the minimum operator function, as shown in Eq (5), the overall 

water quality index score is determined by taking the minimum sub-index of the parameters 

developed specifically for rivers and streams to assess New Zealand's water quality. After some 

time, (Shah & Joshi, 2017) applied the Smith index for assessing surface water quality in India, 

marking the first application of the Smith index in the Sabarmati River, Gujarat (India), though 

it was initially recommended to apply it only in New Zealand. The mathematical expression of 

the minimum operator function is, 

!"#	=	230('1,	'!+1,	'!+2,	.	.	.	,	#&'(#	 )	 (2.5)	
In the above equation (2.5), 

si = the sub-index value for parameter i 

n = the total number of parameters. 

Unique linear/non-linear aggregation functions: 

Few WQI models have used specific linear or non-linear aggregation functions to calculate 

the final index value. A more interesting example is the Said index, as presented by (Said et 

al., 2004), in which the parameter concentrations are directly used as sub-index values, and a 

unique logarithmic aggregation function is applied. This concept introduces the parameter 

concentrations into the computation of the final WQI, creating a new pathway for water quality 

evaluation. The mathematical expression of the function is, 
(67)1.5	

!"#	=	 log[	 	()*+,	 ]	 (2.6)	
(3.8)+,(?@AB3)0.15(15)10000	 +	 0.14(FG)0.5	

In the above equation (2.6), 
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DO = sub-index values for dissolved oxygen (% oxygen saturation) 

Turbi = turbidity (nephelometric turbidity units [NTU]) 

TP = total phosphates (mg/L) 

fecal = fecal coliforms (counts/100 mL) & SC = specific conductivity (S/cm at 25 ◦C) 

 
2.2 Literature Gap 

Water Quality Index (WQI) studies are confronted by several key gaps, where no 

conventional framework of parameter selection exists, resulting in inconsistency and the loss 

of emerging pollutants and heavy metals. Available aggregation methods, mainly additive and 

multiplicative, oversimplify the interaction among parameters, requiring the creation of 

sophisticated probabilistic as well as hybrid models. Although predictive accuracy is enhanced 

through AI and ML, data limitation, computational intensity, and the absence of field validation 

remain challenges. In particular, no study provides a thorough framework to identify 

appropriate models of WQI for urban and rural settings, further confining their utility in the 

real world. Industrial, irrigation, and aquatic ecosystem appraisal indices also lack 

methodological standardization. Model validation is a significant lacuna since sensitivity 

analysis, uncertainty assessment, and independent validation data are hardly ever integrated. 

This study first attempts to develop a comparison among models of the Water Quality Index 

applied exclusively to the rural villages of Indore. The research thus draws attention to the 

region-specific issues in chemical and heavy metal contamination, which demand tailored WQI 

models. It bridges the long-reproached gap in the methodologies applied to assess the water 

quality in a rural context. 
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CHAPTER 3 

MATERIALS AND METHODS 
 
3.1 Methodological Flow Diagram 

The Water Quality Index (WQI) assessment methodology follows a well-organized 

procedure, as shown in Figure 3.1. This is initiated with a literature review of WQI to appreciate 

the prevailing frameworks, then proceeds to problem identification and research gap 

identification. The selection of parameters includes incorporating the appropriate 

physicochemical and heavy metal parameters. Objectives of the study are: 

i. To assess physico-chemical water quality parameters and heavy metals in five 

villages (Simrol, Memdi, Borkhedi, Gokanya, Harsola). 

ii. To calculate the weightage of every parameter using AHP. 

iii. Comparative Assessment of Water Quality Index Models using modified calculated 

weightage and Entropy weighted WQI for Rural Water Evaluation. 

iv. To do a Sensitivity Analysis of Water Quality Models. 
 

Figure 3.1 Study Flow Chart 
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Study sites are chosen, and Memdi, Simrol, Gokanya, Harsola, and Borkhedi are chosen as 

field surveys are made to obtain water samples from rural freshwater sources. Thereafter, a 

comprehensive analysis of physicochemical parameters and heavy metal concentration was 

conducted through prescribed APHA methods for every village. Two parallel weightage 

approaches are applied to the water quality parameters, one using the Analytic Hierarchy 

Process (AHP) and the other through the Entropy method. The water quality parameters are 

used to calculate sub-indices through linear interpolation. Subsequently, various aggregation 

functions corresponding to different WQI models, such as Brown, SRDDI, Bascaron, Dinius, 

West Java, Aquatic Toxicity, and Dojlido index, are applied to derive composite WQI scores. 

The outcomes are analyzed to interpret spatial and model-specific trends, followed by a 

sensitivity analysis to identify the most influential parameters. The research concludes with the 

formulation of future directions for more adaptive and region-specific water quality monitoring 

tools. 

3.2 Study area 
 

Figure 3.2 Study Area 
 
The study was carried out among five selected villages in Madhya Pradesh, India, namely 

Simrol (22.6763° N, 75.7333° E), Memdi (22.6842° N, 75.7747° E), Borkhedi (22.6533° N, 
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75.7117° E), Gokanya (22.6874° N, 75.8271° E), and Harsola (22.6828° N, 75.7884° E). All 

the villages come under the Mhow Tehsil of Indore District, located in Madhya Pradesh State, 

belonging to India. 

3.3 Sample collection and analysis 

A total of 36 water samples were collected from five villages of Indore district that were 

identified for sampling: Gokanya (G1-G6), Simrol (S1-S6), Memdi (M1-M8), Harsola (H1- 

H8), and Borkhedi (B1-B8), as shown in Table 3.1. 
Table 3. 1 Sample Locations of all Villages 

 

Sample Description Longitude Latitude 
G1 School tap water 75.911 22.572 
G2 Borewell (near the primary school) 75.91 22.572 
G3 Borewell 75.911 22.571 
G4 Handpump 75.913 22.562 
G5 Handpump 75.913 22.561 
G6 Borewell 75.91 22.566 
S1 Borewell 75.912 22.54 
S2 Handpump 75.911 22.541 
S3 Borewell 75.911 22.539 
S4 Handpump 75.912 22.54 
S5 Borewell 75.911 22.539 
S6 Borewell 75.912 22.539 
M1 Handpump 75.893 22.535 
M2 Borewell 75.894 22.535 
M3 Borewell (near farmland) 75.894 22.534 
M4 Borewell 75.893 22.534 
M5 Borewell (near school) 75.892 22.534 
M6 Handpump 75.893 22.535 
M7 Handpump 75.892 22.533 
M8 Borewell 75.893 22.533 
H1 Handpump 75.817 22.571 
H2 Handpump 75.818 22.57 
H3 Handpump near school 75.818 22.569 
H4 Tap water 75.817 22.57 
H5 Tap water 75.816 22.57 
H6 Borewell 75.815 22.57 
H7 Borewell (near farmland) 75.819 22.569 
H8 Borewell 75.82 22.567 
B1 Borewell 75.792 22.578 
B2 Handpump 75.792 22.574 
B3 Borewell 75.793 22.576 
B4 Borewell 75.793 22.574 
B5 Tubewell 75.792 22.574 
B6 Borewell 75.792 22.573 
B7 Borewell 75.79 22.575 
B8 School tap water 75.794 22.577 
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The sampling was conducted using grab sampling method to collect major rural freshwater 

sources like handpumps, tubewells, and surface water bodies. All samples were retrieved in 

pre-cleaned 1-litre polyethylene bottles, which were rinsed three times with the corresponding 

source water to prevent cross-contamination. After collection, samples were put immediately 

in insulated iceboxes and stored at 4°C to maintain their physicochemical integrity until 

analysis. This handling method complies with the Standard Methods for the Examination of 

Water and Wastewater (APHA, 2017) to ensure method consistency. The analyses were 

performed at the Environmental Engineering Laboratory, IIT Indore. All physicochemical and 

heavy metal parameters were determined under controlled laboratory conditions. Standard 

solutions and blanks for reagents were made before every batch of tests to calibrate equipment 

and ensure accuracy. To ensure analytical precision and reproducibility, all tests were 

performed in triplicate. The parameters analyzed include: 

(a) Physicochemical indicators: pH, turbidity (NTU), free chlorine, alkalinity, hardness, 

electrical conductivity (EC), dissolved oxygen (DO), biochemical oxygen demand 

(BOD), chemical oxygen demand (COD), total suspended solids (TSS), volatile 

suspended solids (VSS), nitrate, fluoride, and chloride. 

(b) Heavy metals and ions: Manganese (Mn), Zinc (Zn), Iron (Fe), Nickel (Ni), Cadmium 

(Cd), Lead (Pb), Sodium (Na), Potassium (K), Calcium (Ca), and Chromium (Cr). 

The analytical methods and instruments used for each water quality parameter are detailed in 

Table 3.2, ensuring standardized and accurate measurements as per APHA guidelines. 

 
Table 3. 2 Instrumentation and Analytical Methods Used for Water Quality Parameter Analysis 
 

Parameter Method Used Instrument Name Company Model No. 
 

Titration 
Alkalinity 

 
Biochemical 

Method 
 

5-Day 

Burette, Conical flask Omsons — 
 
 

Kay Pee 
Oxygen 

Demand (BOD) 
Incubation 

Incubator 
 
 

Atomic Absorption 

Udyog 
 

Motras 

KL-103-0 

Cadmium (Cd) AAS 
 

Flame 
Calcium (Ca) 

Photometry 

Spectrophotometer 

Flame Photometer 

— 
Scientific 

YA- 
— 

SAN(INDIA) 
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Chemical 

Oxygen 

Demand (COD) 

Closed Reflux 

Colorimetric 

Method 
Titration 

 
COD Analyzer 

Hanna 

Instruments 

 
HI839800 

Chloride 
Method 

Burette, Conical flask Omsons — 

Chromium (Cr) AAS 

Dissolved 

Atomic Absorption 

Spectrophotometer 

Motras 
— 

Scientific 

Oxygen (DO) 

Electrical 

DO Meter DO Meter Lutron DO-5509 

Conductivity 

(EC) 

Research-grade 
benchtop meter 

Research-grade 
benchtop meter 

 
HR Fluoride Portable 

Hanna 
Instruments 

 
Hanna 

HI5522 

Fluoride photometer 
 

 
Free Chlorine photometer 

 
Titration 

Photometer 

EPA Compliant 

Benchtop Turbidity 

and Chlorine Meter 

Instruments 
 

Hanna 

Instruments 

HI97739 
 

 
HI83414 

Hardness 
Method 

Burette, Conical flask Omsons — 

 
Iron (Fe) AAS 

 
 

Lead (Pb) AAS 
 

Manganese 
AAS 

(Mn) 
 

Nickel (Ni) AAS 

Atomic Absorption 

Spectrophotometer 

Atomic Absorption 

Spectrophotometer 

Atomic Absorption 

Spectrophotometer 

Atomic Absorption 

Spectrophotometer 

Motras 
— 

Scientific 
Motras 

— 
Scientific 
Motras 

— 
Scientific 
Motras 

— 
Scientific 

Hanna 
Nitrate photometer Nitrate Photometer 

Instruments 
HI97728 

 
pH 

Potassium (K) 

Research-grade 

benchtop meter 

Flame 

Photometry 

Research-grade 

benchtop meter 

Flame Photometer 

Hanna 

Instruments 

YA- 

SAN(INDIA) 

 
HI5522 

 
 

— 
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Sodium (Na) 
 
 

Total Kjeldahl 

Nitrogen (TKN) 

Total Suspended 

Solids (TSS) 

 
Turbidity 

 
 

Volatile 

Suspended 

Solids (VSS) 

Flame 

Photometry 

Kjeldahl 

Digestion 

Method 

Gravimetric 

Method 

Nephelometric 

Method 

 
Gravimetric 

Method 

Flame Photometer 
 

 
Kjeldahl Apparatus 

 

 
Hot Air Oven 

 
EPA Compliant 

Benchtop Turbidity 

and Chlorine Meter 

 
Muffle furnace 

 
 

Atomic Absorption 

YA- 

SAN(INDIA) 

Pelican 

Equipment 

Kay Pee 

Udyog 

Hanna 

Instruments 

 
Kay Pee 

Udyog 

Motras 

— 
 

 
SUPRA-LX 

 

 
KL-103-0 

 

 
HI83414 

 
 

 
KL-103-0 

Zinc (Zn) AAS 
Spectrophotometer 

— 
Scientific 

 
 

 
3.4 Formation of sub-indices: 

Sub-index (SI) transformation is a fundamental element in Water Quality Index (WQI) 

models, whereby the recorded values of the water quality parameters are transformed into 

dimensionless scores, usually on a scale from 0 to 100, with 0 indicating the worst and 100 the 

best water quality. This process is vital for normalizing varied parameter units to a common 

scale. Different approaches have been utilized to obtain SI values, as elaborated in works by 

(Sutadian et al., 2016; Uddin et al., 2021). Most WQI models apply interpolation methods 

based on regulatory threshold limits (e.g., WHO, BIS, CPCB) to calculate sub-indices; 

however, some models apply the raw indicator values directly without normalization (Uddin et 

al., 2021). Linear interpolation rescaling functions suggested by (Uddin et al., 2022) (see 

Equations (3.1) – (3.3)) were utilized in this study to rescale raw measurements to SI values 

based on the guideline limits shown in Table 3.3. The respective SI calculation framework, as 

illustrated in Table 3.2, represents how these equations are utilized for various water quality 

parameters. 

F#	=	(F#	 	(F#'	×	!".)	 	−	F#	)	−	 (3.1)	
.	 ,	 (F?6'	−	F?6/)	

	
F#	=	F#'	

(!"!.	−	F?6/)	×	
(F?6'	−	F?6/)	

	
(3.2)	
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F#	=	(F#	 (!"!.	−	F?6/)	−	F#	)	−	 ×	F#	 (3.3)	
.	 ,	 (F?6'	−	F?6/)	 '	

	
F#/	= the Lower Limit of the possible SI value 

F#'	=the Upper Limit of the possible SI value 

F?6/= Lower Threshold value of the Water Quality Standards 

F?6'= Upper Threshold value of the Water Quality Standards 

!".	= Measured parameter value 

Table 3. 3 Standard limits for Water quality parameters 
 

Parameters Unit Acceptable 
Limit 

Permissible 
Limit 

Standards 

pH _ 6.5-8.5 No relaxation BIS (IS 10500-2012) 
Turbidity NTU 1 5 BIS (IS 10500-2012) 

Free Chlorine mg/L 0.2 1 BIS (IS 10500-2012) 

Alkalinity mg/L 200 600 BIS (IS 10500-2012) 

Hardness mg/L 200 600 BIS (IS 10500-2012) 

DO mg/L >6 - CPCB 
BOD5 mg/L < 2 No relaxation CPCB 
COD mg/L Not specified Not specified BIS (IS 10500-2012) 
TSS mg/L Not specified Not specified BIS (IS 10500-2012) 
VSS mg/L Not specified Not specified BIS (IS 10500-2012) 

Mn mg/L 0.1 0.3 BIS (IS 10500-2012) 
Zn mg/L 5 15 BIS (IS 10500-2012) 
Fe mg/L 0.3 No relaxation BIS (IS 10500-2012) 
Ni mg/L 0.02 No relaxation BIS (IS 10500-2012) 
Cd mg/L 0.003 No relaxation BIS (IS 10500-2012) 
Na mg/L 200 - WHO (1984) 
K mg/L 200 - WHO (1984) 
Ca mg/L 75 200 BIS (IS 10500-2012) 
Cr mg/L 0.05 No relaxation WHO 
Pb mg/L 0.01 No relaxation BIS (IS 10500-2012) 
EC μS/cm - 500 WHO (1984) 

Fluoride mg/L 1 1.5 BIS (IS 10500-2012) 
Chloride mg/L 250 1000 BIS (IS 10500-2012) 
Nitrate mg/L 45 No relaxation BIS (IS 10500-2012) 
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3.5 Parameter weighting: 

Weights for parameter assignment are an important part of the process of creating Water 

Quality Index (WQI) models since they indicate the relative importance of individual 

parameters with respect to their impact on total water quality. In this research, the Analytic 

Hierarchy Process (AHP) was utilized for weights assignment and provides a systematic, multi- 

criteria decision-making method. AHP facilitates the systematic ranking of water quality 

parameters based on their relative importance to one another in relation to suitability for 

drinking water. The AHP methodology was executed using Microsoft Excel 2021, wherein a 

pairwise comparison matrix was constructed, and consistency ratios were calculated to validate 

the reliability and consistency of the assigned weights. Parameters with greater significance to 

human health were given larger weights because of their toxicological effects at trace levels. 

Application of AHP in the research conforms to known practices for WQI construction, as 

evidenced by past studies (Kumar et al., 2024; Sarkar & Majumder, 2021; Horton, 1965; 

Sutadian et al., 2017; Uddin et al., 2021) and promotes model clarity and contextual 

applicability for water quality assessment. 

3.6 Aggregation function: 

Aggregation is the last step of the Water Quality Index (WQI) modeling process. Its 

purpose is to combine the sub-index values and parameter weightings into an individual 

numerical index, providing an overall picture of water quality. This process allows for the 

reduction of complicated, multi-parameter data to a form that can be interpreted by 

stakeholders, policymakers, and decision-makers at the community level. In this research, 

following the attribution of weights to every water quality parameter using the Analytic 

Hierarchy Process (AHP), the performance of seven varied aggregation functions, obtained 

from existing literature WQI models, was compared. The models used were: 

i. Aquatic Toxicity Index 

ii. Bascaron Index 

iii. Brown Index 

iv. Dinius Index 

v. Dojlido Index 

vi. Scottish Research Development Department (SRDD) Index 

vii. West Java Index 
 
All of these models used a distinct mathematical formula to aggregate sub-indices and 

weighting values. The approaches to aggregation varied from additive (arithmetic) and 
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.	 .	 .	 .	

multiplicative (geometric) methods to minimum operator and non-linear models, differing in 

their philosophies regarding parameter interaction and impact. The objective of the 

comparative study was to determine the effect different formulations have on WQI outputs 

when subjected to the same dataset and weights setup. All the calculations for the aggregation 

models were carried out in Microsoft Excel 2021 to maintain transparency, reproducibility, and 

ease of calculation. This comparative framework offers a strong platform for determining the 

most appropriate aggregation approach in rural water quality situations. 

3.7 Entropy-weighted water quality index: 

The theory of information entropy was first postulated by (Shannon, 1948) as a basic 

component of information theory. It was theorized that entropy is a measure of quantified 

uncertainty or information content of a system. Entropy mathematically has an inverse relation 

with the probability of occurrence of an event, the lower the probability of entropy, the greater 

the information entropy. Over the past few years, the theory of entropy has found growing 

application in different fields of hydrology and water quality evaluation (Adimalla, 2021; 

Ozkul et al., 2000; Singh et al., 2019) and has proved to be an effective instrument as the Water 

Quality Index. In order to calculate the Entropy-Based Water Quality Index (EWQI), a set of 

systematic procedures was followed. The first step is the allocation of an entropy weight to 

every water quality parameter. To this end, when there are m water samples (i = 1, 2, …, m) 

and each is analyzed for n quality parameters (j = 1, 2, …, n), an eigenvalue matrix X (Eq. 3.4) 

is formed based on the data observed. 
J11	 J12	 .	 J1!	

K	=	[	J21	 J22	 .	 J2!	]	 (3.4)	
J/1	 J/2	 .	 J/!	

This matrix is used as a basis for the calculation of the entropy weights for each parameter. 

Pre-treatment of data was performed to remove the effect of varying units and scales between 

water quality parameters. This was done by making use of two normalization functions (Eq. 

3.5 & 3.6). 

For the efficiency type, 
J#0	 −	(J#0)/#!	

	
	
For the cost type, 

L!0	=	 (J!0	)/+1	 −	(J!0	)/#!	
(3.5)	

(J#0)/+1	−	J#0	
L!0	=	 (J!0	)/+1	 −	(J!0	)/#!	 (3.6)	

The standardized matrix Y (Eq. 3.7) was obtained after undergoing this transformation. 
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.	 .	 .	 .	

F	

L11	 L12	 .	 L1!	
M	 =	[	L21	 L22	 .	 L2!	]	 (3.7)	

L/1	 L/2	 .	 L/!	
Next, the proportionate value of the j-th index in the i-th sample was computed using the below 

(Eq. 3.8). 

O	 =	 L#0	 /	 (3.8)	
#0	 ⁄∑#=1	L#0	

The information entropy is calculated using the formula below (Eq. 3.9) 
/	1	

Q0	=	−	ln	S	∑	O!0	ln	O!0	
#=1	

(3.9)	

Using these entropy values, the entropy-based weight for each parameter was calculated 

through the corresponding formula (Eq. 3.10) 
 

U0	=	∑!	
1	−	Q0	
(1	−	 Q	)	 (3.10)	

0=1	 0	

In the second step of the EWQI calculation, a quality rating (qj) was assigned to each water 

quality parameter. This rating was determined using the (Eq. 3.11) that reflects the parameter’s 

concentration relative to the acceptable standards. 

 
 
Where, 

V0	=	(
G0⁄	 )	×	100	 (3.11)	

0	

Cj = the concentration of each water quality parameter in each water sample in mg/l, 

Sj = the limit for drinking water of each parameter in mg/l according to quality standards for 

drinking water of BIS, CPCB, and WHO. 

The EWQI can be calculated in the third step using the following (Eq. 3.12), 
!	

W!"#	=	∑	U0V0	
0=1	

(3.12)	

The water quality classification scale of EWQI, as suggested by (Jianhua et al., 2011; Singh et 

al., 2019) is classified into five ranks, ranging from ‘‘excellent’’ to ‘‘extremely poor’’. The 

classification ranks are listed in Table 3.4. 
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Table 3.4 EWQI Scalebar 
 

WQI Range Water Quality Categories 
 

EWQI<50 Excellent 

50-100 Good 

100-150 Average 

150-200 Poor 

EWQI>200 Extremely Poor 
 

 
3.8 Sensitivity Analysis: 

Sensitivity analysis was performed to analyze the relative impact of single water quality 

parameters on the final Water Quality Index (WQI) scores generated by each model (Li et al., 

2013; Rickwood & Carr, 2009; Scheili et al., 2015; Sun et al., 2012). In this present study, the 

Sensitivity analysis was conducted by omitting particular parameters to determine how they 

impact the overall index value, hence determining which indicators have the most significant 

impact on water quality assessment results. This method was used by many researchers, one of 

the significant studies by (Abtahi et al., 2015). The robustness of the mentioned WQI models 

was tested in a systematic manner. All sensitivity analysis calculations were performed with 

Microsoft Excel 2021 to ensure complete transparency and replicability of the results. The 

analysis was conducted by sequentially deleting one parameter at a time from the input dataset 

and then recalculating the WQI for each model. The new WQI scores (reduced indices) were 

subsequently contrasted with the initial full-index values for the same model in order to 

evaluate the level of variation induced by the exclusion of the parameter. The scale of deviation 

between the initial and reduced indices is a proxy for that parameter's relative sensitivity in 

every WQI model. Sensitivity analysis is crucial in assisting in maintaining the robustness of 

WQI models by determining key parameters that have considerable influence on water quality 

assessment in the rural setting of Indore villages. 
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CHAPTER 4 

RESULTS AND DISCUSSION 
 
4.1 Physicochemical and Heavy Metal Characterisation of Water Samples: 

36 water samples were collected from five rural villages of Indore district—Memdi, Simrol, 

Gokanya, Harsola, and Borkhedi, and analyzed to assess the water quality based on a 

comprehensive set of physicochemical and heavy metal parameters. The results are the basis for 

the calculation of the Water Quality Index (WQI) and aid in unveiling site-specific patterns of 

contamination. Parameters that were analyzed include a total of 24 critical physicochemical 

indicators, heavy metals, and ionic components. 

4.1.1 Borkhedi: 

The pH levels at all sites fall within the slightly alkaline to neutral range (7.09 to 8.03) and 

indicate no short-term threat of acidification, as shown in Table 4.1. Turbidity is highly variable, 

with very high readings at B1 (6.99 NTU), suggesting the possibility of particulate contamination, 

while sites such as B3 and B5 indicate little turbidity, perhaps hinting at greater sedimentation or 

reduced anthropogenic disturbance. Free chlorine is largely zero, with some slight readings at B2, 

B4, B5, and B6. Alkalinity varies extensively in space from 270.33 mg/l (B2) to a high of 611.67 

mg/l (B5), which may be due to variations in carbonate buffering capacity and the geology below. 

As shown in Figure 4.1 Hardness varies correspondingly from 244.33 to 560.00 mg/l, classifying 

the water as hard to very hard, likely the result of limestone or gypsum-bearing strata. Electrical 

conductivity (EC) is also varying, with the higher values showing at B3, B5, B6, and B8 (>1000 

µS/cm), pointing towards higher ionic load. BOD5 and COD levels indicate low to moderate organic 

contamination, with some peak values (e.g., B3 BOD: 24.09 mg/l), pointing towards localized 

inflow of biodegradable waste. Chloride levels are below critical levels but exhibit fluctuation, 

possibly due to discharge from households or natural mineralization. Nitrate levels reach a peak at 

S6 (11.53 mg/l). Notably, fluoride levels are generally in safe ranges (0.27–1.00 mg/l) except at 

B4, which registers a high reading of 1.50 mg/l, far exceeding the permissible limit, threatening to 

cause long-term dental or skeletal fluorosis if ingested regularly without treatment. Calcium and 

magnesium contents show trends like that of total hardness. High variability between sites indicates 

the influence of natural and anthropogenic processes, and targeted interventions are required, 

particularly in high-risk sites, to protect drinking water quality and provide for sustainable resource 

use in rural Borkhedi. 
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Table 4. 1 Physicochemical and Heavy Metal Profile of Water Samples from Borkhedi Village (B1–B8) 

 
Parameters Testeda B1 B2 B3 B4 B5 B6 B7 B8 

pH 7.97±0.01 7.26±0.00 7.36±0.00 8.03±0.00 7.39±0.01 7.66±0.01 7.41±0.00 7.09±0.00 

Turbidity (NTU) 6.99±0.10 2.00±0.00 0.75±0.13 2.27±0.29 0.45±0.05 1.07±0.06 2.27±0.06 1.20±0.00 

Free Chlorine (mg/L) 0.003±0.01 0.02±0.01 N.D 0.01±0.01 0.04±0.03 0.15±0.00 N.D N.D 

Alkalinity (mg/L) 289.00±1.00 270.33±1.53 413.67±1.53 350.33±0.58 611.67±0.58 350.67±1.15 404.67±0.58 371.00±1.00 

Hardness (mg/L) 255.00±1.00 244.33±1.15 459.00±1.00 300.33±0.58 479.67±0.58 360.00±0.00 459.67±0.58 560.00±0.00 

DO (mg/L) 5.33±0.12 5.50±0.00 6.17±0.12 5.10±0.10 5.10±0.00 5.87±0.06 5.50±0.00 4.40±0.00 

BOD5 (mg/L) 6.17±0.06 14.29±0.08 24.09±0.04 12.38±0.01 4.55±0.01 6.52±0.00 6.52±0.01 16.32±0.02 

COD (mg/L) 10.55±0.09 31.96±0.06 74.66±0.01 31.96±0.06 10.66±0.01 53.31±0.02 159.63±0.55 74.65±0.02 

TSS (mg/L) 299.67±1.53 151.00±1.00 99.33±1.15 145.00±1.00 99.00±1.00 120.33±1.53 250.00±0.00 181.33±0.58 

VSS (mg/L) 179.33±1.15 81.33±0.58 65.67±1.15 69.33±0.58 45.00±0.00 54.67±0.58 175.33±0.00 85.00±0.00 

Mn (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D 

Zn (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D 

Fe (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D 

Ni (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D 

Cd (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D 

Na (mg/L) 1.67±1.15 106.67±5.69 76.67±5.86 78.00±0.00 66.00±1.00 67.67±2.52 72.67±2.89 63.00±0.00 

K (mg/L) 26.00±0.00 26.00±0.00 26.33±0.58 3.67±0.58 1.67±1.15 2.80±0.00 2.00±0.00 2.63±0.06 

Ca (mg/L) 50.00±0.00 66.00±3.46 63.67±4.04 56.33±0.58 99.67±4.73 72.33±3.21 62.00±2.65 58.67±2.52 

Cr (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D 

Pb (mg/l) N.D N.D N.D N.D N.D N.D N.D N.D 

EC (μS/cm) 631.23±0.59 912.27±0.31 1176.67±0.58 918.47±0.31 1115.47±0.50 1005.80±0.72 951.40±0.40 1356.93±0.90 

F (mg/L) 0.90±0.00 1.00±0.00 0.40±0.00 1.50±0.00 0.27±0.06 0.30±0.00 0.53±0.06 0.27±0.06 

Cl- (mg/L) 93.49±0.53 177.61±0.58 195.60±0.59 161.46±0.52 181.61±0.58 161.91±0.08 67.98±0.00 237.71±0.21 

NO3- (mg/L) 3.03±0.06 8.53±0.12 6.57±0.06 5.53±0.15 7.63±0.06 11.53±0.06 10.60±0.10 4.07±0.12 

aMean ± standard deviation from triplicates, N.D = Not detectable 
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Figure 4. 1 Comparative analysis of key parameters across 8 locations in Borkhedi: (a) pH, 

Turbidity & DO, (b) BOD, COD, TSS & VSS, (c) Fluoride & Nitrate, (d) Alkalinity & 

Hardness, (e) Na, K & Ca, (f) Chloride, (g) EC, (h) Free Chlorine 

4.1.2 Gokanya: 

As shown in Table 4.2, the physicochemical parameters of water quality of Gokanya village at 

six sampling locations (G1 to G6), the results indicate considerable spatial variability of important 

physicochemical parameters. pH ranged from 7.09 to 8.18, largely within the acceptable range, 

signifying slightly alkaline to near-neutral water. Yet turbidity levels were significantly higher at 

G5 (13.00 NTU), above BIS norms (1 NTU in drinking water), indicating sediment or organic 

contamination. Free chlorine was missing from all samples except in G6 (0.07 mg/L), meaning poor 

disinfection, which could be a cause for concern in microbial safety. Alkalinity ranged from 75.33 

to 161 mg/L, and hardness showed a dramatic increase at G5 (769 mg/L), indicating possible 

requirements for water softening. As shown in the Figure 4.2, DO levels were quite moderate (4.00– 

6.07 mg/L), whereas BOD5 was at its peak at G3 (7.84 mg/L) and G2 (7.16 mg/L), reflecting high 

biodegradable organic load, likely from domestic sewage. COD levels were also maximal at G5 & 

G6, reinforcing the above deduction. TSS and VSS were also at their peaks at G5 (448.67 and 

234.67 mg/L, respectively), validating the suspended organic matter. Nitrate levels, especially at 

G5 (19.47 mg/L), suggest risks of agricultural runoff or fecal contamination. EC ranged from 

323.33 to 628.90 μS/cm, with high values suggesting mineral content in water. The fluoride levels 

were within permissible limits in some locations, though G3 (2.6 mg/L) and G4 (2.1 mg/L) were 

above 
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Table 4. 2 Physicochemical and Heavy Metal Profile of Water Samples from Gokanya Village (G1-G6) 
 

Parameters Testeda G1 G2 G3 G4 G5 G6 

pH 8.09±0.00 8.18±0.01 7.81±0.01 7.26±0.00 7.09±0.00 8.12±0.01 

Turbidity (NTU) 2.60±0.10 0.98±0.03 0.53±0.10 0.57±0.03 13.00±0.00 2.37±0.06 

Free Chlorine (mg/L) N.D N.D N.D N.D N.D 0.07±0.06 

Alkalinity (mg/L) 114.67±0.58 75.33±0.58 80.00±0.00 90.33±0.58 161.00±1.00 120.67±0.58 

Hardness (mg/L) 260.00±0.00 249.33±0.58 139.33±1.15 210.00±0.00 769.00±1.00 189.67±0.58 

DO (mg/L) 5.87±0.06 4.60±0.00 4.00±0.00 5.30±0.00 6.07±0.06 4.53±0.06 

BOD5 (mg/L) 1.30±0.01 7.16±0.01 7.84±0.02 2.61±0.01 3.90±0.01 3.25±0.01 

COD (mg/L) 10.55±0.09 223.50±0.50 202.63±0.04 160.00±0.11 244.93±0.80 288.00±1.00 

TSS (mg/L) 198.33±1.53 74.67±0.58 50.33±0.58 44.67±0.58 448.67±1.53 175.00±0.00 

VSS (mg/L) 119.33±1.15 39.00±1.00 35.00±0.00 24.67±0.58 234.67±1.53 84.67±0.58 

Mn (mg/L) N.D N.D N.D N.D N.D N.D 

Zn (mg/L) N.D N.D N.D 1.425±0.001 N.D N.D 

Fe (mg/L) N.D N.D N.D N.D 0.358±0.001 N.D 

Ni (mg/L) N.D N.D N.D N.D N.D N.D 

Cd (mg/L) N.D N.D N.D N.D N.D N.D 

Na (mg/L) 73.00±0.00 65.67±1.76 62.50±0.50 147.33±3.06 22.67±2.02 16.83±2.02 

K (mg/L) 0.67±0.29 0.70±0.17 0.33±0.29 1.17±0.29 0.17±0.29 2.33±0.76 

Ca (mg/L) 1.50±0.50 0.73±0.21 6.17±1.26 1.00±0.00 8.67±1.26 0.50±0.00 

Cr (mg/L) N.D N.D N.D N.D N.D N.D 

Pb (mg/L) N.D N.D N.D N.D N.D N.D 

EC (μS/cm) 628.90±0.10 570.37±0.15 600.80±0.26 499.53±0.15 323.33±1.53 318.10±0.10 

F (mg/L) 0.90±0.00 1.10±0.00 2.60±0.00 2.10±0.00 0.70±0.00 0.33±0.06 

Cl- (mg/L) 111.41±0.73 85.96±0.01 139.62±0.32 231.93±0.00 215.91±0.03 81.95±0.03 

NO3- (mg/L) 5.33±0.06 7.57±0.06 7.67±0.06 6.43±0.06 19.47±0.31 1.50±0.00 

aMean ± standard deviation from triplicates, N.D = Not detectable 
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the WHO permissible limit of 1.5 mg/L, with implications for health in the form of fluorosis. 

Chloride levels were high at G4 and G5 (>200 mg/L) and may be a result of anthropogenic 

discharge. Heavy metal elements such as Manganese, Nickel, Cadmium, Chromium, and Lead were 

mostly not detected. High Na at G4 (147.33 mg/L) indicates potential salinity problems. These 

results necessitate specific water treatment measures at points such as G3, G4, and G5, where most 

of the parameters exceed safety limits. Overall, while some locations exhibit acceptable water 

quality, others indicate anthropogenic pollution, necessitating localized management and periodic 

monitoring. 

Figure 4. 2 Comparative analysis of key parameters across 6 locations in Gokanya: (a) pH, 

Turbidity & DO, (b) BOD, COD, TSS & VSS, (c) Fluoride & Nitrate, (d) Alkalinity & 

Hardness, (e) Na, K & Ca, (f) Zn & Fe, (g) EC, (h) Free Chlorine (i) Chloride 

4.1.3 Harsola: 

The quality of water in Harsola village, as analysed from eight samples (H1 to H8), indicates 

mixed properties in the area, as shown in Table 4.3. The pH ranges between 6.96 and 8.01, 

representing slightly alkaline to moderately alkaline conditions, still within safe drinking water 

limits. Turbidity levels are low (0.3–1 NTU) at most sites, indicating clean water, except for H4 

and H5, where turbidity peaks at 25.67 and 28 NTU, respectively, indicating potential particulate 

contamination, perhaps due to soil runoff or unlined source storage. Free chlorine, a disinfection 

indicator, is practically zero in most samples (0.00–0.04 mg/L), with the only exceptions being H4 

and H5 (0.34 and 0.28 mg/L), which indicate random or low-level chlorination practices in the 

village. Alkalinity, a measure of the water's buffering capacity, varies from 369 mg/L (H4) to 

1234.33 mg/L (H6), with several samples (H2, H3, H6, H7) going beyond desirable limits in 

standards (>600 mg/L) and posing the risks of an 



34  

Table 4. 3 Physicochemical and Heavy Metal Profile of Water Samples from Harsola Village (H1-H8) 
 

Parameters Testeda H1 H2 H3 H4 H5 H6 H7 H8 

pH 7.01±0.00 7.76±0.01 7.50±0.01 8.01±0.01 7.97±0.06 7.26±0.04 6.96±0.06 7.09±0.00 

Turbidity (NTU) 0.30±0.01 1.00±0.00 0.35±0.01 25.67±0.58 28.00±0.00 0.35±0.00 0.68±0.03 0.87±0.03 

Free Chlorine (mg/L) N.D 0.03±0.00 N.D 0.34±0.00 0.28±0.01 0.02±0.00 N.D 0.04±0.00 

Alkalinity (mg/L) 449.00±0.00 909.33±0.58 790.00±0.00 369.00±1.00 395.33±0.58 1234.33±0.58 1109.33±0.58 480.00±0.00 

Hardness (mg/L) 610.00±0.00 228.67±1.15 271.00±1.00 149.33±1.15 144.33±1.15 461.00±1.00 439.67±0.58 260.67±1.15 

DO (mg/L) 5.13±0.06 5.87±0.06 6.10±0.00 5.43±0.12 5.67±0.12 5.00±0.00 4.50±0.00 5.17±0.06 

BOD5 (mg/L) 11.07±0.01 7.27±0.12 6.51±0.02 5.22±0.01 6.17±0.15 10.43±0.00 15.58±0.11 8.13±0.12 

COD (mg/L) 74.66±0.01 10.66±0.01 21.33±0.00 53.28±0.07 10.66±0.01 95.33±0.58 53.32±0.01 10.66±0.01 

TSS (mg/L) 50.00±0.00 151.00±1.00 74.67±0.58 500.00±0.00 545.00±5.00 85.00±0.00 100.00±0.00 75.33±0.58 

VSS (mg/L) 35.00±0.00 85.33±0.58 30.00±0.00 294.67±0.58 310.00±0.00 34.67±0.58 69.67±0.00 40.00±0.00 

Mn (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D 

Zn (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D 

Fe (mg/L) N.D N.D N.D N.D 0.427±0.001 0.406±0.001 N.D N.D 

Ni (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D 

Cd (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D 

Na (mg/L) 98.67±1.15 124.00±3.46 118.67±3.51 15.00±0.00 15.33±0.58 75.33±1.15 92.33±1.53 72.67±2.52 

K (mg/L) 20.67±1.15 10.00±1.73 29.33±1.53 16.00±1.73 18.67±0.58 59.00±0.00 42.00±1.73 40.33±0.58 

Ca (mg/L) 101.67±2.89 90.67±2.31 60.00±2.65 7.33±0.58 6.67±0.58 85.00±0.00 107.33±0.58 35.00±0.00 

Cr (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D 

Pb (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D 

EC (μS/cm) 1718.00±1.00 1084.33±1.15 1180.33±1.53 243.53±0.06 242.90±0.10 1314.67±0.58 1176.33±1.53 787.60±0.20 

F (mg/L) 1.37±0.06 0.97±0.06 1.50±0.00 2.57±0.06 0.20±0.00 0.70±0.00 0.60±0.00 0.80±0.00 

Cl- (mg/L) 219.44±0.53 193.80±0.16 297.78±0.23 59.81±0.22 47.82±0.19 265.61±0.54 197.65±0.27 91.62±0.31 

NO3- (mg/L) 2.33±0.06 9.47±0.72 10.10±0.69 0.67±0.12 0.50±0.00 7.53±0.15 3.50±0.36 4.10±0.10 

aMean ± standard deviation from triplicates, N.D = Not detectable 
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overabundance of carbonate and bicarbonate ions that may affect taste and plumbing. In the same 

manner, total hardness, which is an analysis of calcium and magnesium salts, ranges extensively 

from 144.33 mg/L (H5) to 610 mg/L (H1), while H1, H3, H6, and H7 are categorized under very 

hard water (>300 mg/L), which shows possible scaling concerns and the requirement for softening 

in household application. The dramatic difference between low-turbidity and highly alkaline/hard 

profiles in certain samples indicates various sources or aquifers being exploited, each with unique 

geochemical reactions. 

Figure 4. 3 Comparative analysis of key parameters across 8 locations in Harsola: (a) pH, 

Turbidity & DO, (b) BOD, COD, TSS & VSS, (c) Fluoride & Nitrate, (d) Alkalinity & 

Hardness, (e) Na, K & Ca, (f) Ni, (g) EC, (h) Free Chlorine (i) Chloride 

4.1.4 Memdi: 

According to the water quality data analysed from Memdi village at eight monitoring stations 

(M1–M8), various notable trends were observed as shown in Table 4.4. The pH ranges between 

6.95 and 8.48, showing predominantly neutral to mildly alkaline conditions, with M5 and M8 

being on the higher side, possibly because of alkaline runoff or the presence of carbonates. 

Turbidity was very variable, with M6 and M7 having notably high values (~18–19 NTU), 

which suggests intense particulate content, likely from proximal anthropogenic activity or 

surface erosion. Free chlorine was predominantly non-detected, with only trace levels detected 

in M4, M7, and M8, suggesting poor or spasmodic disinfection. Alkalinity concentrations were 

highly variable, with M3, M6, and M7 having high values, indicative of buffering capacity 

against pH shift, possibly due to bicarbonate-rich geology. Hardness was most elevated at M3, 

M6, and M7, indicative of possible health effects and scaling, potentially due to the presence 

of calcium and magnesium salts from geological sources or wastewater seepage. DO values, 
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which are most essential for aquatic health, were below the optimum level at most of the sites, 

especially at M7 (2.57 mg/L), indicating possible organic pollution. BOD5 and COD values 

were extremely high, especially at M7 (BOD: 110.17 mg/L, COD: 201.10 mg/L), which 

validated high organic load, possibly due to unhindered domestic discharges. TSS and VSS 

data also corroborate this, with M7 once more exhibiting extreme values (TSS: 500.67 mg/L, 

VSS: 401.50 mg/L), reflecting high levels of suspended and organic solids. These higher values 

reflect compromised water quality and worse conditions in some areas. 

Figure 4. 4 Comparative analysis of key parameters across 8 locations in Harsola: (a) pH, 

Turbidity & DO, (b) BOD, COD, TSS & VSS, (c) Fluoride & Nitrate, (d) Alkalinity & 

Hardness, (e) Na, K & Ca, (f) Mn, Zn & Fe, (g) EC, (h) Free Chlorine (i) Chloride 

4.1.5 Simrol: 

The water quality profile of Simrol village water quality through tested samples (S1–S6) 

presents a complex array of variables that depict natural and human-induced factors as shown 

in Table 4.5. The pH range in all samples is within the acceptable limit for potable water (6.5– 

8.5). Turbidity levels have great variability, with S1 having the highest at 9.10 NTU, reflecting 

suspended particulate matter, probably due to surface runoff or unlined channels, and S4 and 

S5 having much clearer water. Free chlorine, an indicator for disinfection, does not exist in the 

majority of samples except S1, S2, S4, and S6, reflecting irregular chlorination or chlorination 

breakdown in warm temperatures. Alkalinity is between 60 and 110 mg/L, indicating 

moderate buffering capacity, with S1 being the highest, perhaps due to leaching of bicarbonate 

from local soil. Hardness is variable, with S1 showing the highest (163.67 mg/L), indicating 

the presence of calcium and magnesium, which may be geological deposits. 
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Table 4. 4 Physicochemical and Heavy Metal Profile of Water Samples from Memdi Village (M1-M8) 
 

Parameters Testeda M1 M2 M3 M4 M5 M6 M7 M8 
pH 6.95±0.04 7.48±0.01 7.06±0.01 7.32±0.01 8.01±0.01 7.29±0.01 7.17±0.01 8.48±0.01 

Turbidity (NTU) 1.56 ± 0.05 1.68 ± 0.04 0.63 ± 0.02 0.90 ± 0.08 1.16 ± 0.04 18.33 ± 0.05 19.43 ± 0. 04 8.51 ± 0. 03 

Free Chlorine (mg/L) N.D N.D N.D 0.02 ± 0.01 N.D N.D 0.03 ± 0.02 0.04 ± 0.01 

Alkalinity (mg/L) 190.33±0.58 100.33±0.58 210.33±0.58 190.67±1.15 120.67±1.15 340.67±0.58 281.00±1.00 121.33±1.15 

Hardness (mg/L) 265.43±0.15 86.30±0.05 310.38±0.45 271.58±0.30 96.50±0.02 429.32±0.74 334.68±0.20 93.33±0.16 

DO (mg/L) 3.17±0.21 4.20±0.10 4.07±0.12 3.57±0.06 4.13±0.06 3.40±0.10 2.57±0.06 5.03±0.06 

BOD5 (mg/L) 50.03±0.06 52.87±1.33 48.17±0.15 46.07±0.06 35.10±0.10 62.10±0.10 110.17±0.15 49.23±0.25 

COD (mg/L) 98.13±0.12 111.22±0.19 74.17±0.15 90.40±0.53 88.20±0.26 105.37±0.40 201.10±1.01 68.23±0.32 

TSS (mg/L) 150.33±0.58 200.50±0.50 50.67±0.58 100.83±0.29 50.00±0.00 150.83±0.76 500.67±1.15 50.83±0.29 

VSS (mg/L) 50.33±0.58 150.33±0.58 20.51±0.50 40.33±0.58 15.29±0.28 101.00±1.00 401.50±1.80 30.50±0.50 

Mn (mg/L) N.D N.D N.D N.D N.D N.D 0.054±0.002 N.D 

Zn (mg/L) N.D N.D N.D N.D N.D 0.69±0.03 0.90±0.01 N.D 

Fe (mg/L) N.D N.D N.D N.D N.D 2.254±0.003 8.608±0.004 N.D 

Ni (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D 

Cd (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D 

Na (mg/L) 97.67±0.29 9.00±0 80.33±3.69 48±2.29 20.83±1.76 101.17±9.41 31.83±4.25 8.50±1.50 

K (mg/L) 14.50±0 2.63±0.06 8.33±0.49 2.00±0 1.63±0.06 7.97±0.15 0.87±0.15 2.77±0.32 

Ca (mg/L) 52.50±0.87 7.00±0.87 65.83±2.52 52.67±2.52 5.83±0.76 72.67±3.55 56.67±1.76 3.33±0.32 

Cr (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D 

Pb (mg/L) N.D N.D N.D N.D N.D N.D N.D N.D 

EC (μS/cm) 261.73±0.21 56.07±1.10 263.26±0.02 196.05±0.02 72.38±0.03 337.23±0.07 201.26±0.03 57.45±0.04 

F (mg/L) N.D N.D N.D N.D N.D 1.90±0.00 N.D N.D 

Cl- (mg/L) 177.46±0.50 103.41±0.79 247.92±0.00 193.62±0.55 145.95±0.00 249.71±0.21 227.55±0.50 89.96±0.02 

NO3- (mg/L) 15.10±0.17 1.33±0.06 12.33±0.06 11.13±0.40 2.03±0.06 8.60±0.10 3.33±0.06 2.00±0.00 
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DO levels are found to be mostly adequate (more than 5 mg/L) in all areas except S3 and S5, where 

DO decreases to 3.2 and 3.7 mg/L, respectively, due to high organic load and microbial oxygen 

uptake. Accordingly, BOD5 and COD levels at S1 are distressingly high (82.17 mg/L and 180.10 

mg/L, respectively), suggesting ample biodegradable organic content, presumably from residential 

wastes. While S3–S6 possess moderate BOD5 & COD values, these are still higher than normal 

limits, which suggests continuous pollution. Total suspended solids and volatile suspended solids 

are also high in most samples, particularly S2, S3, and S5, which might further reduce DO values 

through microbial processes. The high and persistent BOD5, COD, and suspended solids in most 

samples suggest impaired water quality that might be ecologically and humanly hazardous. 

 

Figure 4. 5 Comparative analysis of key parameters across 8 locations in Harsola: (a) pH, 

Turbidity & DO, (b) BOD, COD, TSS & VSS, (c) Fluoride & Nitrate, (d) Alkalinity & 

Hardness, (e) Na, K & Ca, (f) Mn, Zn, Fe & Fe, (g) EC, (h) Free Chlorine (i) Chloride 

4.2 Sub-indices of water quality parameters: 

The sub-index scores were calculated on a 0–100 scale in which a value of 100 represented 

outstanding water quality for a particular parameter, and decreasing values correspond to 

increasing quality and augmented pollution loads. The sub-index scores were the basic inputs 

in all subsequent WQI model aggregations, making it possible for final score computation 

model-wise in all index frameworks. Table 4.6 below shows the sub-index values of all water 

quality parameters for different villages. 
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Table 4. 5 Physicochemical and Heavy Metal Profile of Water Samples from Simrol Village (S1-S6) 
 

Parameters Testeda S1 S2 S3 S4 S5 S6 

pH 7.48±0.01 7.73±0 7.62±0.01 7.18±0.01 7.68±0 7.41±0.01 

Turbidity (NTU) 9.10 ± 0.01 2.68 ± 0.03 1.51 ± 0.01 0.96 ± 0.01 0.77 ± 0.02 2.52 ± 0.02 

Free Chlorine (mg/L) 0.09 ± 0 0.02 ± 0.01 N.D 0.01 ± 0.01 N.D 0.01 ± 0 

Alkalinity (mg/L) 110.33±0.58 80.67±1.15 70.67±1.15 91.00±1.73 60.33±0.58 72.33±2.52 

Hardness (mg/L) 163.67±1.53 120.01±1.52 107.22±1.03 134.70±2.38 91.33±1.04 106.30±1.97 

DO (mg/L) 6.33±0.06 6.67±0.06 3.20±0.10 6.13±0.06 3.70±0 5.20±0.10 

BOD5 (mg/L) 82.17±0.15 56.13±0.15 47.33±0.31 44.23±0.25 59.10±0.10 60.27±0.25 

COD (mg/L) 180.10±0.10 98.10±0.10 72.10±0.17 86.17±0.15 91.17±0.15 101.33±1.53 

TSS (mg/L) 71.67±1.53 102.33±2.52 83.33±1.53 79.33±1.15 91.33±1.15 50.00±0 

VSS (mg/L) 46.00±1.00 50.67±1.15 56.33±1.53 30.33±1.53 65.00±2.00 26.67±1.15 

Mn (mg/L) 0.078±0.002 N.D N.D N.D N.D N.D 

Zn (mg/L) 0.544±0.004 0.018±0.001 N.D 0.087±0 0.061±0.002 0.624±0.005 

Fe (mg/L) 0.282±0.001 0 N.D N.D N.D 0.314±0.001 

Ni (mg/L) N.D N.D N.D N.D N.D 0.062±0.002 

Cd (mg/L) N.D N.D N.D N.D N.D N.D 

Na (mg/L) 101.80±1.51 159.00±6.09 92.40±1.20 28.80±3.65 188.07±8.02 96.50±0.70 

K (mg/L) 36.57±0.38 3.57±0.15 3.60±0 2.40±0 8.40±0 4.47±0.31 

Ca (mg/L) 126.00±1.04 100.60±2.42 87.00±2.16 128±0.35 134.80±3.08 99.47±0.70 

Cr (mg/L) N.D N.D N.D N.D N.D N.D 

Pb (mg/L) N.D N.D N.D N.D N.D N.D 

EC (μS/cm) 176.63±0.12 129.01±0.12 113.08±0.01 145.68±0.07 96.29±0.27 115.65±0.09 

F (mg/L) 1.70±0.00 3.70±0.00 2.60±0.00 1.17±0.06 2.43±0.15 2.87±0.06 

Cl- (mg/L) 287.91±0.00 283.52±0.41 235.61±0.55 239.93±0.00 361.54±0.36 202.47±0.53 
NO3- (mg/L) 6.37±0.64 9.83±0.06 3.63±0.06 6.10±0.17 16.50±0.26 4.13±0.06 
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Table 4. 6 Sub-Indices value of Water Quality parameters in Borkhedi 
 

SI for B1 SI for B2 SI for B3 SI for B4 SI for B5 SI for B6 SI for B7 SI for B8 
100.00 38.00 100.00 76.50 44.50 58.00 45.50 29.50 

0.00 50.00 81.25 43.25 88.75 73.25 43.25 70.00 

100.00 97.50 100.00 98.75 95.00 81.25 100.00 100.00 

77.75 82.42 46.58 62.42 0.00 62.33 48.83 57.25 

86.25 88.92 35.25 74.92 30.08 60.00 35.08 10.00 

88.83 91.67 100.00 85.00 85.00 97.83 91.67 73.33 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

99.17 46.67 61.67 61.00 67.00 66.17 63.67 68.50 

87.00 87.00 86.84 98.17 99.17 98.60 99.00 98.69 

60.00 47.20 49.06 54.94 20.26 42.14 50.40 53.06 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 0.00 100.00 46.00 100.00 100.00 100.00 

87.53 76.32 73.92 78.47 75.79 78.41 90.94 68.31 
93.27 81.04 85.40 87.71 83.04 74.38 76.44 90.96 
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Table 4. 7 Sub-Indices value of Water Quality parameters in Gokanya 
 

SI for G1 SI for G2 SI for G3 SI for G4 SI for G5 SI for G6 
100.00 100.00 100.00 38.00 29.50 100.00 

35.00 75.50 86.75 85.75 0.00 40.75 

71.33 81.17 80.00 77.42 59.75 69.83 

121.33 131.17 130.00 127.42 109.75 119.83 

85.00 87.67 115.17 97.50 0.00 102.58 

97.83 76.67 66.67 88.33 100.00 75.50 

35.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 

100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 85.75 100.00 100.00 

100.00 100.00 100.00 100.00 0.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 

63.50 67.17 68.75 26.34 88.67 91.59 

99.67 99.65 99.84 99.42 99.92 98.84 

98.80 99.42 95.06 99.20 93.06 99.60 

0.00 0.00 0.00 0.09 35.33 36.38 

100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 

100.00 80.00 0.00 0.00 100.00 100.00 

85.15 88.54 81.38 69.08 71.21 89.07 
88.16 83.18 82.96 85.71 56.73 96.67 
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Table 4. 8 Sub-Indices value of Water Quality parameters in Memdi 
 

SI for M1 SI for M2 SI for M3 SI for M4 SI for M5 SI for M6 SI for M7 SI for M8 
22.50 49.00 28.00 41.00 75.50 39.50 33.50 99.00 

61.00 58.00 84.25 77.50 71.00 0.00 0.00 0.00 

100.00 100.00 100.00 100.00 100.00 100.00 96.25 95.00 

52.42 74.92 47.42 52.33 69.83 14.83 29.75 69.67 

83.64 100.00 72.41 82.11 100.00 42.67 66.33 100.00 

52.83 70.00 67.83 59.50 68.83 56.67 42.83 83.83 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

100.00 100.00 100.00 100.00 100.00 100.00 73.00 100.00 

100.00 100.00 100.00 100.00 100.00 93.10 91.00 100.00 

100.00 100.00 100.00 100.00 100.00 0.00 0.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

51.17 95.50 59.84 76.00 89.59 49.42 84.09 95.75 

92.75 98.69 95.84 99.00 99.19 96.02 99.57 98.62 

58.00 94.40 47.34 57.86 95.34 41.86 54.66 97.34 

47.65 88.79 47.35 60.79 85.52 32.55 59.75 88.51 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 100.00 100.00 0.00 100.00 100.00 

76.34 86.21 66.94 74.18 80.54 66.71 69.66 88.01 
66.44 97.04 72.60 75.27 95.49 80.89 92.60 95.56 
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Table 4. 9 Sub-Indices value of Water Quality parameters in Simrol 
 

SI for S1 SI for S2 SI for S3 SI for S4 SI for S5 SI for S6 
49.00 61.50 56.00 34.00 59.00 45.50 

0.00 33.00 62.25 76.00 80.75 37.00 

88.75 97.50 100.00 98.75 100.00 98.75 

72.42 79.83 82.33 77.25 84.92 81.92 

59.08 70.00 73.20 66.33 77.17 73.43 

100.00 100.00 53.33 100.00 61.67 86.67 

0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 

61.00 100.00 100.00 100.00 100.00 100.00 

94.56 99.82 100.00 99.13 99.39 93.76 

94.00 100.00 100.00 100.00 100.00 0.00 

100.00 100.00 100.00 100.00 100.00 0.00 

100.00 100.00 100.00 100.00 100.00 100.00 

49.10 20.50 53.80 85.60 5.97 51.75 

81.72 98.22 98.20 98.80 95.80 97.77 

59.20 79.52 90.40 57.60 52.16 80.42 

64.67 74.20 77.38 70.86 80.74 76.87 

100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 

0.00 0.00 0.00 0.00 0.00 0.00 

61.61 62.20 68.59 68.01 51.79 73.00 
85.84 78.16 91.93 86.44 63.33 90.82 
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Table 4. 10 Sub-Indices value of Water Quality parameters in Harsola 
 

SI for H1 SI for H2 SI for H3 SI for H4 SI for H5 SI for H6 SI for H7 SI for H8 
25.50 63.00 50.00 75.50 73.50 38.00 23.00 29.50 

92.50 75.00 91.25 0.00 0.00 91.25 83.00 78.25 

100.00 96.25 100.00 57.50 65.00 97.50 100.00 95.00 

0.00 0.00 0.00 7.75 1.17 0.00 0.00 0.00 

0.00 92.83 82.25 100.00 113.92 34.75 40.08 84.83 

85.50 97.83 100.00 90.50 94.50 83.33 75.00 86.17 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 100.00 0.00 0.00 100.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

50.67 38.00 40.67 92.50 92.34 62.34 53.84 63.67 

89.67 95.00 85.34 92.00 90.67 70.50 79.00 79.84 

18.66 27.46 52.00 94.14 94.66 32.00 14.14 72.00 

0.00 0.00 0.00 51.29 51.42 0.00 0.00 0.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

26.00 100.00 0.00 100.00 0.00 0.00 0.00 0.00 

70.74 74.16 60.30 92.03 93.62 64.59 73.65 87.78 
94.82 78.96 77.56 98.51 98.89 83.27 92.22 90.89 
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4.3 Weightage of Parameters: 

AHP was used in this study to allocate weights through a structured decision framework 

that allows for pairwise comparison of parameters in accordance with how important each 

parameter is to the quality of drinking water. AHP calculations were done with the aid of 

Microsoft Excel 2021, where a pairwise comparison matrix was created. To ensuring 

reasonable consistency in judgment, the Consistency Ratio (CR) was determined and found to 

be 0.0977, well below the acceptable limit of 0.10. This validates that the matrix is consistent 

and reliable, thereby establishing the validity of the weighting process. As shown in Figure 4.6, 

Parameters with severe human health hazards like lead (Pb), cadmium (Cd), chromium (Cr), 

and nitrate (NO₃⁻) were weighted more heavily because of their toxicological effects even at 

trace concentrations. BOD5, COD, fluoride, iron (Fe), and turbidity, which are moderately 

weighted parameters, show organic contamination or aesthetic issues. 

 

Figure 4. 6 AHP Weightage 
 

Conversely, parameters such as potassium (K), sodium (Na), and free chlorine were assigned 

lesser weights due to their comparatively lesser health risks and rural site variance in detection. 

This organised and validated method adds to the scientific and contextual strength of the WQI 

framework application for rural water quality monitoring in Indore's villages. 

4.4 WQI values: 

4.4.1 Borkhedi: 

The comparative Water Quality Index (WQI) analysis of Borkhedi’s eight sampling sites 

(B1–B8), evaluated using seven established models, Bascaron, Brown, SRDD, Aquatic 

Toxicity, Dojlido, West Java, and Dinius, reveals marked inter-model variability, shaped by 
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each model’s aggregation logic as shown in Figure 4.7. However, the Dojlido index usually 

records high values: B1, 100; B4, 88.31; and B6, 90.56, putting several sites under "excellent" 

to "good" categories. 

Figure 4. 7 WQI Values of Borkhedi 
 

However, more conservative models, such as SRDD and Aquatic Toxicity Index, record lower 

values, placing B5, B3, and B8 under the "moderate to poor" category, due to sensitivity toward 

the parameters of BOD, COD, nitrate, and turbidity. Notably, in both Dinius and West Java 

indices, WQI values reduce to zero for all samples because of the multiplicative aggregation 

structure, where the value of a single critical pollutant nullifies the overall index, emphasizing 

no compromise in any dimension of water quality. These formulations, stringent as they are, 

emphasize cumulative pollution impact, supporting the requirement for all fundamental quality 

parameters to be fulfilled. 

4.4.2 Memdi: 

WQI evaluation of Memdi village at eight sampling locations (M1–M8) indicates model- 

dependent categorizations, indicating variable levels of contamination and model sensitivity as 

shown in the Figure 4.8. The highest values throughout the sites are reported by the Dojlido 

index, which rates M2, M5, and M8 as 94.96, 100, and 100, respectively—"excellent" water 

quality. But this positive presentation is decidedly different from the more conservative ratings 

of SRDD and Aquatic Toxicity Index. For example, M6 and M7 rate 25.60 and 33.60 with the 

Aquatic Toxicity model, which positions them as "poor," most likely because of high BOD5, 

COD, or turbidity. Likewise, SRDD ratings for M3 and M6 (44.88 and 51.15) mark moderate 

to poor water quality, adding to the concern. Bascaron and Brown models all sit at most sites 

between 60 and 80, providing a balanced reading. Sites M5 and M8, which have the same 

uniform high score on all the models, seem to have good water quality and could be assisted 



47  

by well-conserved sources or low anthropogenic pressure. The divergent performance between 

models, particularly between additive and multiplicative models, supports multi-model 

verification to avoid spurious classification. 

Figure 4. 8 Values of Memdi 
 

4.4.3 Simrol: 

The Water Quality Index (WQI) assessment of Simrol village at six locations (S1–S6) 

indicates significant inter-model variation, exemplifying the significance of aggregation logic 

in determining ultimate classification. As shown in Figure 4.9, the Dojlido model gives the 

higher ranks to all locations, with S3 (89.97), S5 (83.69), and S6 (83.92) getting close to the 

"excellent" category. Conversely, the SRDD and Aquatic Toxicity Index models that focus on 

environmental risk and health issues rank some of the sites, most notably S1 and S5, as "poor 

to very poor" with scores as low as 27.86 and 27.94, respectively. These low scores indicate 

the presence of key pollutants like high BOD5, low DO, or excess turbidity. S1 stands out as 

the most impaired site, with Aquatic Toxicity and Dojlido giving the lowest score on all indices 

(27.86 and 28.55), indicating various parameter exceedances. While S3 and S4 are consistently 

high on most models, this implies stable groundwater or relatively shielded sources. Most 

samples fall into the moderate to good category using Brown and Bascaron indices, providing 

a middle ground between rigorous and liberal extremes. Notably, S5 shows the highest 

divergence with values between 83.69 (Dojlido) and 27.94 (Aquatic Toxicity), showcasing the 

significance of model choice in the proper evaluation of water safety. The findings highlight 

the need for the use of several WQI models together, since depending on one model might 

underestimate the contamination (as is the case with Dojlido) or even overestimate individual 

parameter infringements (as in SRDD). 
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Figure 4. 9 Values of Simrol 
 

4.4.4 Gokanya: 

WQI analysis of Gokanya's six sampling points (G1–G6) under several different index 

models indicates substantial differences in the interpretation of water quality based on the 

model employed, as shown in Figure 4.10. 

Figure 4. 10 WQI Values of Gokanya 
 

The Dojlido index presents high values for most samples. The Dinius WQI and West Java 

index values are zero for all samples, emphasizing the models' strict sensitivity towards any 

extreme exceedance. The SRDD and Aquatic Toxicity indices, with their conservative and 

health-oriented weighting, place G5 and G4 in the "poor" category (WQI < 50) as signs of 

likely contamination by organics or turbidity. To be precise, G5 indicates a WQI of 36.20 

(SRDD) and 0.46 (Aquatic Toxicity Index)—the most degraded site, possibly due to high 

BOD5 or COD. By comparison, G6 performs well uniformly in all models with WQI of 80.01 
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(Brown), 84.54 (Dojlido), and 64.01 (Aquatic Toxicity), indicating it is the best of all for 

consumption. Bascaron and Brown models tend to place all samples in the "moderate to good" 

category, but lack the clear discrimination provided by SRDD and Dojlido. The findings reveal 

that model choice plays a vital role in the interpretation of the final WQI. Whereas Dojlido 

could hide local pollution through averaging, multiplicative models such as Dinius and West 

Java reveal decisive failures. 

4.4.5 Harsola: 

The eight water sampling points of Harsola (H1–H8) analyzed for water quality index show 

model-specific water quality classification as per varied aggregation approaches. As shown in 

Figure 4.11, the Dojlido index, which tends to be higher in values, categorizes H3, H5, and H8 

as excellent (WQI > 85), with H5 having 100, indicating none of the parameters were below 

threshold in this model's computation. In contrast, the SRDD and Aquatic Toxicity Index 

provide very conservative predictions, with H1, H2, H5, and H7 belonging to the "poor to 

moderate" category. H1, H5, and H7 are especially health-impacting public health concerns, 

having scores less than 45 in SRDD and Aquatic Toxicity models, indicating high sensitivity 

to parameters such as DO, COD, turbidity, and nitrates. H6 and H7 possess Aquatic Toxicity 

scores of only 27.45 and 30.89, indicating severe degradation and possible chemical or organic 

pollution. In contrast, H3 and H8 show relatively stable and good-quality water in most models, 

implying good aquifer conditions or negligible anthropogenic interference. Brown and 

Bascaron indices are moderate throughout, classifying most sites in the 60–70 WQI range, 

falling under the "moderate to good" category. 

Figure 4. 11 WQI Values of Harsola 
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4.5 Entropy-weighted water quality index values: 

The Entropy-Weighted Water Quality Index (EWQI) values for five villages—Gokanya, 

Simrol, Borkhedi, Memdi, and Harsola, indicate extensive spatial variation in water quality 

status as shown in Table 4.11. Gokanya and Simrol show EWQI values between 63.77 and 

104.45, indicating them to be in the category of "good to average" quality. Strikingly, the peak 

EWQI (104.45) of Gokanya indicates a change towards the average class, indicating moderate 

contamination, whereas Simrol has comparatively better status, with most of the values falling 

short of 100. Borkhedi is seen to have increasing EWQI values, especially reaching 117.60, 

which puts some regions of the village in the "average" water quality class, probably due to the 

higher organic load and suspended solids found previously. More troubling are the results in 

Memdi and Harsola, where EWQI levels go over 150 in several samples—152.0 in Memdi and 

124.14 in Harsola, emphatically classifying them within the "poor" and on the verge of being 

"extremely poor." These are in accordance with previous WQI model predictions that Memdi 

(M6, M7) and Harsola (H1, H5) were severely affected by high BOD, COD, and turbidity. The 

entropy-weighted method places greater emphasis on highly variable parameters, thus 

exaggerating the influence of low-performing variables. The uniform trend of elevated EWQI 

levels in Memdi and Harsola calls for immediate attention, as water for drinking from these 

areas could be unhealthy to consume without treatment. Moreover, entropy-based weighting 

guarantees objectivity, making the EWQI model suitably useful in rural water quality 

monitoring where limited resources necessitate data-driven planning. 

Table 4. 11 Entropy-weightage water quality parameters for all villages 
 

 

Parameters 
Weightage (%) 

 Gokanya Simrol Borkhedi Memdi Harsola 

pH 5.32 2.82 7.89 7.95 8.07 

Turbidity 6.05 2.31 5.57 5.94 5.69 

Free Chlorine 6.18 2.29 5.27 9.51 5.39 

Alkalinity 6.15 2.79 5.94 1.38 6.07 

Hardness 6.07 2.75 7.05 5.54 2.15 

DO 3.84 3.79 5.68 7.31 5.82 

BOD 8.43 2.43 5.90 6.93 6.04 

COD 4.88 4.45 7.95 4.62 8.13 

TSS 6.55 3.81 5.32 6.26 5.44 
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VSS 2.51 3.84 2.63 2.97 2.69 

Mn 0.00 2.24 0.00 0.00 0.00 

Zn 6.18 3.78 0.00 0.00 0.00 

Fe 6.18 3.98 9.21 6.44 9.48 

Ni 0.00 2.24 0.00 0.00 0.00 

Cd 0.00 0.00 0.00 0.00 0.00 

Na 6.83 3.57 7.67 6.72 7.84 

K 6.38 2.27 5.51 4.62 8.39 

Ca 2.99 4.80 7.90 6.10 8.08 

EC 5.71 2.79 0.00 0.00 0.00 

Cr 0.00 0.00 0.00 0.00 0.00 

Pb 0.00 0.00 2.57 5.18 2.63 

F 3.28 7.53 1.70 2.80 1.74 

Cl- 4.02 17.63 3.07 5.42 3.14 

NO3- 2.39 17.84 3.14 4.25 3.21 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. 12 EWQI Values of villages 
 

4.6 Result of Sensitivity Analysis: 

4.6.1 Borkhedi 

Sensitivity analysis of Borkhedi presents remarkable differences in the sensitivity of 

various water quality parameters on WQI models. Compared to all models, SRDD has the 

maximum mean sensitivity (7.94) with a high standard deviation (8.75), which reflects that its 

ratings are significantly sensitive to each parameter's change, especially parameters such as 
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COD, BOD5, and EC. By contrast, the lowest sensitivity (mean = 1.90) is evidenced through 

the Dojlido model, indicating its aggregation structure is more inert or resistant to single 

parameter deviations, but has the possibility of missing localized peaks of pollution. Aquatic 

Toxicity, Bascaron, Brown, and Entropy models give moderate and uniform sensitivity (mean 

≈ 4.17), indicating an equal response to parameters. The variation in sensitivity of all water 

quality parameters is shown in Figure 4.13. They illustrate the significance of choosing suitable 

WQI models depending on regional contamination patterns as well as the desired sensitivity of 

the evaluation. 

 

Figure 4. 13 Sensitivity Analysis of Water Quality Parameters in Borkhedi 

Table 4. 12 Sensitivity Analysis of all WQI Models in Borkhedi 

WQI Models Mean STD 

Dojlido 1.90 3.06 

Aquatic toxicity 4.25 2.80 

SRDD 7.94 8.75 
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Bascaron 4.17 4.68 

Brown 4.17 4.68 

Entropy 4.17 4.76 

 
4.6.2 Gokanya 

Sensitivity analysis of Gokanya reveals that among all the models, SRDD is the most 

sensitive (mean = 7.96, STD = 8.27), which indicates its high responsiveness to parameter 

changes, particularly nitrate, EC, and COD. The Dojlido index, having a low mean (2.29) and 

low standard deviation (1.79), is still the least sensitive, which reaffirms its poor ability to 

reflect parameter variability. Moderate and consistent sensitivity is seen in Bascaron, Brown, 

and Entropy models (mean = 4.17), revealing a balanced reaction to both stable and variable 

water quality conditions. Aquatic Toxicity Index (mean = 3.64) shows intermediate behavior, 

with factors such as VSS and fluoride having more significant impacts on its output. The 

variation in sensitivity of all water quality parameters is shown in Figure 4.14. Generally, 

SRDD appears to be the strictest model, and Dojlido can potentially underrepresent the risks 

of contamination in this area. 

Figure 4. 14 Sensitivity Analysis of Water Quality Parameters in Gokanya 
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Table 4. 13 Sensitivity Analysis of all WQI Models in Gokanya 
 

WQI Models Mean STD 

Dojlido 2.29 1.79 

Aquatic toxicity 3.64 2.72 

SRDD 7.96 8.27 

Bascaron 4.17 4.45 

Brown 4.17 4.45 

Entropy 4.17 5.45 

 
4.6.3 Simrol 

The sensitivity analysis of Simrol shows that the SRDD model once more proves the most 

sensitive to the variation of individual parameters, with a mean value of 6.98 and a high 

standard deviation of 8.84. 

Figure 4. 15 Sensitivity Analysis of Water Quality Parameters in Simrol 

The variation in sensitivity of all water quality parameters is shown in Figure 4.15. To the 

surprise of all, the Dojlido model, although with a moderate mean value of 3.51, displays 
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maximum variability (STD = 9.66), and hence it is less predictable in its parameter-specific 

sensitivity. Models such as Bascaron and Brown are still moderate and consistent in behaviour 

(mean = 3.75), whereas Entropy-based WQI has a little more sensitivity (4.17), possibly 

because data-driven weight allocation enhances parameters such as COD and heavy metals. 

The Aquatic Toxicity Index (mean = 3.98) is conservative and responsive in its behaviour and 

is sensitive to organic and nutrient indicators. The entropy, Brown, and Bascaron consistency 

provide a stable model for frequent monitoring. 

Table 4. 14 Sensitivity Analysis of all WQI models in Simrol 
 

WQI Models Mean STD 

Dojlido 3.51 9.66 

Aquatic toxicity 3.98 4.08 

SRDD 6.98 8.84 

Bascaron 3.75 4.73 

Brown 3.75 4.73 

Entropy 4.17 5.69 

 
4.6.4 Memdi 

The sensitivity analysis of Memdi indicates that the SRDD model is most sensitive to 

parameter changes, with a mean sensitivity of 7.97 and a standard deviation of 8.30, being 

heavily dependent on parameters such as COD, TSS, and VSS. The variation in sensitivity of 

all water quality parameters is shown in Figure 4.16. Conversely, the Dojlido model has the 

lowest sensitivity (mean = 1.46), which means that it is least sensitive to variation in individual 

parameters and can potentially mask localised pollution. Bascaron, Brown, and Entropy models 

have the same mean values (4.17), but Entropy is marginally more variable (STD = 5.10), 

meaning moderate sensitivity with a bit of parameter-specific spikes. The Aquatic Toxicity 

Index is intermediate with a mean of 3.67, indicating moderate sensitivity to organics and heavy 

metals. SRDD model sensitivity to the extremes emphasises it as most diagnostic of 

contaminated sites, such as Memdi, whereas Dojlido is too conservative and may be 

underestimating risks. 
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Figure 4. 16 Sensitivity Analysis of Water Quality Parameters in Memdi 

Table 4. 15 Sensitivity Analysis of all WQI models in Memdi 

WQI Models Mean STD 

Dojlido 1.46 2.11 

Aquatic toxicity 3.67 2.79 

SRDD 7.97 8.30 

Bascaron 4.17 4.59 

Brown 4.17 4.59 

Entropy 4.17 5.10 
 

 
4.6.5 Harsola 

Harsola's sensitivity analysis indicates that the SRDD model is most sensitive (mean = 7.91, 

STD = 9.16), as it has a robust response to changes in individual parameters like COD, EC, Cr, 

and turbidity. The variation in sensitivity of all water quality parameters is shown in Figure 

4.17. The Dojlido model, having the lowest mean value of 2.81 and STD of 5.17, demonstrates 
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very little fluctuation and hence might be underestimating the effects of certain pollutants. 

Moderate and virtually equal sensitivity scores are found in Bascaron, Brown, and Entropy 

models (mean ≈ 4.17), suggesting a stable but less variable response profile. Notably, the 

Aquatic Toxicity Index reveals a different pattern of moderate sensitivity (mean = 4.91), but 

with a lower standard deviation, indicating a specialized reaction to a subset of influential 

factors such as nitrate and heavy metals. 

Figure 4. 17 Sensitivity Analysis of Water Quality Parameters in Harsola 

Table 4. 16 Sensitivity Analysis of all WQI Models in Harsola 

WQI Models Mean STD 

Dojlido 2.81 5.17 

Aquatic toxicity 4.91 2.79 

SRDD 7.91 9.16 

Bascaron 4.17 5.02 

Brown 4.17 5.02 

Entropy 4.17 5.16 
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CHAPTER 5 

CONCLUSIONS AND FUTURE SCOPE 
 

5.1 Conclusions: 

Rural water quality in five villages of Indore was assessed through a study evaluating 24 

physicochemical and heavy metal parameters through different Water Quality Index (WQI) 

models. Several contaminations were reported, with fluoride as high as 2.4 mg/L, and organic 

pollutants and heavy metals such as Mn, Zn, Fe, and Ni identified in many samples. The 

Dojlido Index produced the highest values of WQI (almost 100) in areas such as Borkhedi 

(B1), Memdi (M5, M8), and Harsola (H5), but it grossly overestimated water quality, not 

detecting major contamination. The SRDD model was best in indicating the maximum 

sensitivity (7.97 in Memdi), successfully raising alarms on toxic pollutants, but its variability 

lowered its reliability. Conversely, the Bascaron, Brown, and Entropy-weighted WQI models 

exhibited moderate sensitivity and more realistically tracked field-measured conditions and 

were thus appropriate for rural use. The Aquatic Toxicity Index generated unrealistically low 

results at many sites (e.g., 25.60 at site M6), resulting in excessively negative assessments not 

consistent with potability criteria. West Java and Dinius models yielded close-to-zero WQI 

values at all locations, validating their structural inappropriateness for groundwater-based rural 

situations. Thus, Bascaron, Brown, and Entropy-based indices are advised for field-based, 

context-specific, and sustainable rural water quality monitoring in India. 

5.2 Future Scope 

(a) Expansion of Sampling Base: Additional incorporation of villages and seasonal data 

(pre-monsoon, monsoon, post-monsoon) would increase the spatial-temporal resolution 

and robustness of generalizability. 
(b) Integration of Microbiological Indicators: Since the lack of disinfection and 

sanitation infrastructure was observed in the study, the addition of coliform and E. coli 

parameters is critical for a comprehensive evaluation of drinking water safety. 

(c) Machine Learning for Weight Optimization: Future research may consider the hybrid 

weighting schemes of AHP, Entropy, and ML-based optimization (e.g., Random Forest, 

PCA-AHP) for adaptive index models. 
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(d) Region-Specific WQI Development: The findings of this study can form the basis of 

a new composite WQI specifically for central Indian rural settings, balancing scientific 

precision and usability. 

(e) Uncertainty Quantification: Additional enhancement of uncertainty analysis through 

stochastic simulations can quantify the influence of measurement errors and data gaps 

on WQI results. 

(f) Policy Translation and Community Involvement: Findings can be translated into 

decision-support tools for rural water boards and Panchayats. Locally adaptable 

participatory structures (e.g., MAGs – Management Action Groups) could also be 

activated to co-monitor and co-manage water safety. 
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APPENDIX 
 
 

 
 

 
Figure A. 1 Collecting Water Samples from Different Locations 
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Figure A. 2 Instruments used in the Environmental Lab at IITI 
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