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Abstract 
The rapid adoption of Electric Vehicles (EVs) in India, particularly electric two-wheelers 

(E2Ws), has amplified the urgency for sustainable end-of-life (EOL) EV lithium-ion battery 

(LIB) management. This thesis presents an integrated approach to forecasting LIB waste 

generation from E2Ws and identifying suitable locations for establishing a LIB recycling 

facility in Indore, India. A Seasonal Autoregressive Integrated Moving Average (SARIMA) 

model was developed using 94 months of historical E2Ws sales data (2017–2024) sourced from 

the VAHAN portal. The model demonstrated robust forecasting accuracy with an R² value of 

0.70 and an MAPE of 10.8%, effectively capturing both seasonal and non-seasonal patterns in 

EV adoption. Forecasts extended through 2030 were used to project future battery waste, 

considering average battery capacities and a base-case specific energy of 210 Wh/kg. Battery 

EOL contributions were assessed across three lifespan scenarios (4, 6, and 8 years), providing 

scenario-based waste timelines that align with practical battery degradation behaviour. 

In parallel, a GIS-based site suitability analysis was conducted using the Analytical Hierarchy 

Process (AHP) combined with spatial datasets including land use, proximity to roads, water 

bodies, industrial zones, slope, and elevation. The results identify optimal locations in the 

Indore district for LIB recycling infrastructure development, ensuring environmental 

compliance, logistical feasibility, and urban integration. 

This research delivers a novel methodological framework tailored to Indian conditions for 

linking EV market growth with battery waste forecasting and strategic infrastructure planning. 

The outcomes support policymakers, industry stakeholders, and urban planners in anticipating 

LIB waste flows, optimising recycling operations, and accelerating India's transition towards a 

circular economy in the EV sector. 

The integration of spatial and temporal analysis offers a practical tool for policymakers and 

planners to align infrastructure development with projected battery waste volumes. This study 

not only quantifies future waste but also provides actionable insights into regional 

infrastructure planning, supporting India's sustainable EV transition. 
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Chapter 1 

Introduction 

1 Introduction 

Lithium-ion batteries (LIBs) have revolutionised the energy storage sector, making them an 

essential component of modern technologies such as Electric Vehicles (EVs), consumer 

electronics, and renewable energy systems. This acceptance has been made possible by the 

increasing energy density, longer service life, and lower self-discharge rates of such secondary 

batteries when compared to the traditional ones (Xu et al., 2021). Given current global efforts 

to switch to sustainable energy sources, LIBs are expected to boom in demand in the coming 

years. The report by the International Energy Agency (IEA) states that demand for EVs will 

increase ten times in about eight years by 2030, exacerbating the use and waste of lithium 

batteries (International Energy Agency (IEA), 2022). 

Even though LIBs encourage the use of clean energy, which in turn helps to mitigate climate 

change effects through the reduction of greenhouse gases, they become a threat to the 

environment at the end of their useful life. Improper disposal carries the risk of leaching 

dangerous chemicals into the surroundings, such as lithium, cobalt, and nickel, that poison land, 

water, and biosystems (Ai et al., 2019). There is, therefore, a need to devise waste management 

techniques that can contain such environmental hazards while enabling the recovery of 

precious materials from waste. 

The increase in demand for LIBs presents another significant challenge: the appropriate 

disposal and recycling of spent batteries. In this regard, a study by X. Zhang et al., (2020) has 

indicated that the volume of LIB waste produced is anticipated to surpass 2 billion metric 

tonnes yearly around 2030 in the foreseeable future. This increase in the amount of battery 

waste calls for accurate estimated future waste generation models. This is because forecasting 

is fundamental in enabling various activities, including the planning of recycling plants by 

governments and industries, the formulation of circular economy policies and strategies, as 

well as sustainable battery usage policies. 

The study has these aims in mind and focuses on three key aspects of LIB waste management: 

forecasting the amount of waste to be produced, devising solutions for recycling applicable at 

the local level, and finally, analysing the impact of batteries on the environment. Such 

initiatives are essential in alleviating the negative effects of global warming and emerging 
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sustainable development issues. The drivers’ quick shift towards EVs may occur with lower 

emissions of greenhouse gases yet poses a two-edged problem in that there is the quest for 

more lithium, cobalt, nickel, and other finite mineral resources, alongside environmental 

concerns due to poor management of LIBs at the end of their life. In providing the models to 

predict waste and the site-specific strategies for waste recycling, this research aids in reducing 

waste generation and the unnecessary exploitation of natural resources. 

Such a framework is intended to facilitate the financing of the sustainable and circular economy 

for EV batteries, which respond to some of the key United Nations Sustainable Development 

Goals (SDGs), namely Responsible Consumption and Production (SDG 12) and Climate 

Action (SDG 13). It underscores the importance of eco-friendly approaches that seek an 

equilibrium between economic growth and environmental protection. This study seeks to make 

recommendations that will help decision-makers, city managers, and business owners alleviate 

the effects of LIB waste on the climate, deal with challenges to sustainable development, and 

strengthen the ability of the EV ecosystem to cope with changes in the environment. 

Most conventional approaches for waste management focus on the use of the straight-line 

model or the extrapolation of past data and incorporate seasonal variations and irregular factors. 

Regarding the generation of waste from LIBs, various temporal influences such as % society-

switching-to-EV-over-time, technological improvement and battery life span lead to variation 

in its temporal structure. Hence, sophisticated forecasting techniques are necessary to tackle 

these problems and make accurate predictions. 

The global shift toward electric mobility has ushered in a new era of energy storage demands, 

particularly in the form of LIBs. As EVs become increasingly prevalent, so too does the volume 

of EOL LIBs require safe and sustainable disposal or recycling. This concern is especially 

pertinent in the Indian context, where the market for E2Ws and four-wheelers is expanding 

rapidly due to government incentives, technological advances, and environmental concerns. 

In India alone, the EV market is projected to reach 10 million annual sales by 2030, with two-

wheelers comprising approximately 70% of the demand, according to a recent report by  

(Electric Vehicles: Electric Vehicle Industry in India and Its Growth, 2025) India’s EV stock 

exceeded 3 million units by the end of 2022 and is expected to grow exponentially. As the first 

generation of LIB-powered EVs approaches the end of its operational life, the country faces a 

looming wave of battery waste. By 2030. LIBs contain valuable but hazardous materials such 

as lithium, cobalt, and nickel(Dobó et al., 2023). Improper disposal can lead to environmental 
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degradation and safety hazards (Boyden et al., 2016). while efficient recycling can support 

resource recovery and circular economy goals. Given the scale of anticipated battery waste, it 

is imperative to develop infrastructure for environmentally sound and economically viable 

recycling. However, selecting an optimal site for a LIB recycling plant involves complex 

considerations, including proximity to battery waste generation centres, environmental 

sensitivity, land use compatibility, and infrastructural accessibility. 

This thesis aims to perform a site suitability analysis for establishing a LIB recycling plant, 

with a focus on spatial distribution and future forecasting of battery waste generated from EVs 

and other consumer electronics. A multi-criteria decision-making (MCDM) approach 

integrated with Geographic Information Systems (GIS) will be employed to evaluate spatial 

variables such as Land Use Land Cover, road networks, Industrial Area, slope, and proximity 

to surface water bodies. The analysis is supported by forecasting models to predict the quantity 

and geographical origin of battery waste from EVs up to 2035. By integrating spatial analysis 

with battery waste forecasting, this research contributes to both academic knowledge and 

practical planning for sustainable e-waste management in India. 
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Chapter 2 

Literature Review 

2. Literature review 

Recycling Technologies: The recycling of LIBs employs various techniques that could be 

termed hydrometallurgical or pyrometallurgical. Liu et al., (2022) In their systematic review, 

they stated that these techniques abandon the use of environmentally hazardous processes. The 

authors delve into processes like selective leaching, which have been developed to optimise 

the recovery of the metals present in spent batteries. 

Economic and Environmental Benefits of Recycling: The cost-effectiveness of LIBs and 

other battery recycling systems has been supported by the analysis by Ahmad et al. (2021). The 

study researched the cost and pollution benefits that come with the production process, where 

lithium, cobalt, nickel, and more metals are used in battery manufacture. The study also 

established that recycling materials could cut down GHG emissions by approximately 60% 

when compared to normal mining processes. 

The Perspective of Circular Economy Consideration: Chenet al., (2023) suggest a circular 

economy for LIB management while arguing that spent batteries and their components should 

be recycled and reused as sources of raw materials, thereby saving the cost of resources and 

decreasing the amount of waste production. Their assessments perceived that recycled 

resources in thermal batteries could decrease virgin materials by a great amount. 

Life Cycle Assessment (LCA) of LIB: Conducting life cycle assessments shall be the main 

objective of evaluating the drawbacks of lithium batteries from production through use to final 

disposal. Kuo et al., (2022) The research proposes LCA as a tool that can help manage the total 

emissions for every stage of a battery’s lifecycle. Its manufacture and use constitute the need 

for enhanced recycling practices in the batteries to avoid environmental destruction. 

Site Suitability for Recycling Plants: The site for the placement of recycling plants is very 

important in the quest to maximise the logistics and minimise the emissions associated with 

transport. Wang et al., (2021) used GIS to evaluate the feasibility of city residents and the 

location of EV sales for recycling plants of LIBs. 

Regulatory Frameworks: Waste management policies must be implemented to assist and 

promote the sustainable recycling of LIBs. In the work done by Lee et al. (2022), the existing 
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guidelines regarding the disposal and recycling of batteries are reviewed with strong support 

for more robust measures to be imposed so that practices within the sector are environmentally 

friendly. 

Recycling Technology Developments: The development of technology in recovering 

materials from batteries is key to achieving higher recovery rates at a lower cost. In the research 

done by Y. Zhang et al., (2023) It was reported that biotechnological methods, such as 

bioleaching and biotechnological hydrometallurgical circuits, are being developed for better 

recovery of metals from waste and spent batteries. 

Interference of the Environment through Ineffective Disposal: The inappropriate 

management of LIB batteries can have dangerous repercussions on the environment, such as 

introducing toxic elements to soil and water sources. In a paper published by Patel et al., 

(2022)The dangers brought by the dumping of waste in landfills are examined, and a call for 

recycling efforts is made. 

Prospective Trends in the Management of Secondary Li-ion Batteries: Markers of current 

and future literature stress the rapid promotion of the development of management of waste 

systems for LIBs, which is bound to increase alongside the adoption of EVs. Smith et al., (2023) 

studied how advanced analytics and machine learning technologies can be incorporated into 

LIB waste forecasts and decision-making processes. 

Regional Characteristics of LIB Recycling: Because of regulations and economies, LIB 

recycling is approached within each region. Johnson et al., (2022) used a bibliometric approach, 

where they described those nations that are at the top in the adoption of EVs are also 

constructing recycling facilities at a steep rate. 

2.1 Critical review of literature: 

Table 1: Summary of literature reviewed 

Title Authors Source and 
Impact Factor 

Key Aspects Summary 

The Future of 
Automotive 
Recycling: 
Charting a 
Sustainable 
Course (Gaines, 
2014) 

Gaines, L. Sustainable 
Materials and 
Technologies 
(IF: 10.593) 

Discusses 
global LIB 
recycling 
needs, 
challenges, 
and future 
strategies. 

Emphasises the 
importance of early 
planning for LIB 
recycling 
infrastructure and 
evaluates recycling 
technologies, such 
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as 
hydrometallurgical 
and 
pyrometallurgical 
methods. 

Estimation of 
EV Waste in the 
Future and Its 
Environmental 
Impact 

Zhang, X., Li, 
W., & Meng, F. 

Journal of 
Cleaner 
Production (IF: 
11.072) 

Forecasts 
future LIB 
waste volumes 
and examines 
their 
environmental 
implications. 

Estimates global 
LIB waste to 
exceed 2 million 
metric tons 
annually by 2030 
and emphasises the 
role of forecasting 
models in planning 
waste management 
strategies. 

Time Series 
Analysis: 
Forecasting and 
Control (G. E. 
P. Box et al., 
2016) 

Box, G. E. P., 
Jenkins, G. M., 
& Reinsel, G. 
C. 

Wiley 
Publications 
(Impact: Highly 
Cited) 

Introduces 
SARIMA and 
other time 
series 
forecasting 
models, with 
practical 
applications. 

Provides 
theoretical 
foundations and 
practical guidance 
for implementing 
SARIMA, 
emphasising its 
suitability for 
seasonal and non-
stationary datasets. 

Global EV 
Outlook 
2022(Executive 
Summary – 
Global EV 
Outlook 2022 – 
Analysis - IEA, 
2022.) 

International 
Energy Agency 
(IEA) 

IEA Report 
(Non-Journal; 
Highly 
Referenced) 

Highlights 
global EV 
adoption 
trends and the 
corresponding 
rise in LIB 
demand and 
waste. 

Projects a tenfold 
increase in EV 
adoption by 2030, 
which will drive 
LIB demand and 
waste, and 
underscores the 
need for 
forecasting tools to 
prepare for this 
shift. 

Challenges and 
Prospects of 
Recycling Li-
Ion Batteries 

Chen, R., Lu, 
Y., & Yan, Y. 

Nature 
Sustainability 
(IF: 27.157) 

Analyzes the 
challenges in 
recycling 
LIBs and 
presents a 
framework for 

Explores barriers 
such as cost, 
technology, and 
policy and 
emphasises the 
importance of 
integrating 
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a circular 
economy. 

forecasting with 
recycling system 
design. 

Time series 
analysis and 
forecasting 
techniques for 
municipal solid 
waste 
management. 
(Navarro-Esbrí 
et al., 2002)  

Navarro-Esbrí 
J, 
Diamadopoulos 
E, Ginestar D 

Resources, 
Conservation, 
and Recycling 
(IF:11.2) 

Demonstrates 
the use of 
SARIMA for 
waste 
forecasting in 
municipal 
systems. 

Illustrates the 
reliability of 
SARIMA in 
forecasting waste 
generation and 
provides insights 
into seasonal waste 
patterns applicable 
to LIB waste 
forecasting. 

Lithium 
Recovery from 
Waste LIBs: An 
Economic and 
Environmental 
Analysis 

Sun, L., Qi, Z., 
& Zhang, Y. 

Environmental 
Research 
Letters  
(IF: 8.985) 

Analyses the 
economic and 
environmental 
feasibility of 
lithium 
recovery 
processes. 

Concludes that 
lithium recovery is 
essential for 
sustainable LIB 
waste management 
and presents cost-
benefit analyses to 
support recycling 
initiatives. 

Improved State-
of-health 
prediction 
based on an 
auto-regressive 
integrated 
moving average 
with exogenous 
variables model 
in overcoming 
battery 
degradation-
dependent 
internal 
parameter 
variation (Kim 
et al., 2022)  

Kim S, Lee P, 
Lee M, Kim J 
Na W 

Journal of 
Energy Storage  
(IF: 8.9) 

Helps in 
understanding 
the forecasting 
methods 
(SARIMA) 
model 

Highlights the 
improved accuracy 
of SARIMA with 
machine learning 
models and 
compares 
performance 
metrics like RMSE 
and MAPE. 

Environmental 
impacts, 
pollution 
sources, and 

Wojciech 
Mrozik, 
ORCID 
Mohammad Ali 

Energy & 
Environmental 
Science  
(IF: 39.714) 

Explores the 
environmental 
hazards posed 
by LIB waste 

Identifies risks 
such as 
groundwater 
contamination and 
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pathways of 
spent LIBs 
(Mrozik et al., 
2021) 

Rajaeifar, 
Oliver 
Heidrichab and 
Paul 
Christensenabc 

and recycling 
inefficiencies. 

resource depletion 
and advocates for 
robust forecasting 
models to guide 
recycling and waste 
management 
policies. 

Critical review 
of life cycle 
assessment of 
LIBs for EVs: A 
lifespan 
perspective (Lai 
et al., 2022) 
 

Lai X, Chen Q, 
Tang X, Zhou 
Y, Gao F, Guo 
Y 
Zheng Y 

eTransportation 
(IF:15) 

It gives the 
EVs waste an 
environmental 
footprint, and 
its impact is 
calculated at 
various 
ecological 
levels by the 
LCA approach 

This study provides 
an overview of the 
framework, 
methods, and 
technical 
challenges of life 
cycle assessment 
(LCA), 
comprehensively 
reviewing them. 
This leads to the 
construction of a 
cradle-to-cradle 
LCA framework 
for LIBs, which 
analyses carbon 
emissions during 
battery production 
and recycling, as 
well as under 
different energy 
mixes. 
 

 

2.2. Objectives of the Study: 

The present study aims to project LIB waste generation by employing the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) approach. The SARIMA model is 

considered a powerful approach to forecasting time series data as it accommodates seasonality, 

trend, and noise features of the series. Hence, it is ideal for time series data with periodic 

fluctuations (Box et al., 2015). The authors of this research will, therefore, apply SARIMA to 

available and historical data for the following purposes: 
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• To forecast monthly E2Ws sales in India using the SARIMAX time series model based 

on historical sales data from 2017 to 2024, thereby identifying future market trends 

through robust statistical modelling. 

• To estimate the mass of lithium-ion batteries associated with the forecasted E2Ws sales, 

using standardised assumptions on battery capacity and specific energy values relevant 

to dominant battery chemistries (LFP and NMC). 

• To project the quantity of EOL LIB waste expected to be generated from E2Ws up to 

2030, under three different battery lifespan scenarios (4, 6, and 8 years), simulating 

real-world battery performance degradation. 

 

To conduct spatial site suitability analysis using GIS-based Multi-Criteria Decision Analysis 

(MCDA) with Analytic Hierarchy Process (AHP), identifying optimal locations for LIB 

recycling facilities in Indore district, Madhya Pradesh. 

2.3. Scope of the Study:  

It is anticipated that the results of this research will enrich the existing literature regarding the 

potential solutions to handle battery waste. It is important to be able to estimate the volume of 

LIB waste because: 

• Infrastructure Planning: It should enable the designing and sizing of recycling and/or 

treatment facilities within the existing ones in anticipation of waste generation. 

• Policy Making: It can assist governments in regulating the proper disposal or recycling 

of waste batteries. 

• Economic Rationales: It can help increase the recovery of waste materials with primary 

metals, thus lessening dependence on primary mining. 

• Environmental Protection: Mitigating the adverse impacts of LIB waste on ecosystems 

and public health. 

In addition, utilizing the SARIMA approach in this context illustrates how advanced statistical 

techniques can help overcome issues related to the environment. Machine learning models, for 

example, are often constrained by overwhelming computational requirements and tedious data 

preparation processes. SARIMA offers a time series analysis that is simple in application yet 

effective in results, making it possible for more researchers and practitioners to employ it 
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2.4. Challenges  

Although this study reveals an interesting application of SARIMA for LIBs waste 

forecasting, there are several challenges. These include: 

Limitations of Forecasting into the Future: Effective forecasting hinges on the availability 

of historical data of sufficient quality, which in some areas may be lacking or incomplete. 

Assumptions of Models: For instance, the SARIMA models are based on stationary time 

series observations, which often necessitate the application of data transformation 

techniques that may otherwise hinder the interpretation of results. 

Change in Context: Technological progress, changes in policies, and economic growth 

breed uncertainty along time series models as they do not account for such elements. 

Notwithstanding these constraints, this study establishes a basic framework for LIB waste 

forecasting, which is open to improvement with the addition of more predictors and more 

sophisticated modelling techniques in the subsequent study. 

Waste forecasts of LIBs are important in managing waste as well as making waste 

management strategies effective, as it’s limited. Coupled with this, work done by Y. Zhang 

et al., (2023) stresses predictive models that are required to envisage the amounts of LIB 

waste at a given point in time, given the expected sales of EVs. The authors employed time 

series analysis to predict amounts of LIB waste, illustrating this with the evidence that there 

is a need for precise data in developing strategies for recycling.  
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Chapter 3 

Forecasting Lithium Battery Waste by Two-Wheeler EVs 
 

3.  Methodology 
This study proposes a systematic, data-driven framework to forecast LIB waste arising from  

E2Ws adoption in India. The methodology is structured into three interdependent phases: (i) 

time series forecasting of EV sales, (ii) battery lifespan modelling, and (iii) quantification of 

EOL LIB waste. Each phase is designed to integrate real-world assumptions and practical 

constraints in order to produce reliable and policy-relevant waste estimates. A schematic 

representation of the methodology is provided in Figure 1. 

 

Figure 1: Methodology adopted in this study 
3.1. Phase I: Time Series Forecasting of EV Sales: 

Accurate forecasting of E2Ws sales is fundamental to estimating the future burden of LIB 

waste. In this study, historical sales data were used to develop a time series forecasting model 

based on Seasonal Autoregressive Integrated Moving Average (SARIMA), a widely adopted 

statistical approach that captures both trend and seasonality in time dependent. This section 

outlines the data acquisition, preprocessing procedures, model development, and validation 

methodology adopted in Phase I. 
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Figure 2: SARIMA model methodology 
3.1.1. Data Collection 

The main data source is the VAHAN portal (https://parivahan.gov.in/parivahan/) from the 

Ministry of Road Transport and Highways, Government of India, which provides authentic 

registered vehicle data. Monthly sales data of electric E2Ws in India were collected for the 

https://parivahan.gov.in/parivahan/
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period ranging from January 2017 to October 2024. The data collected for this study include 

the different classes of E2Ws, such as M-Cycle/Scooter, M-Cycle/Scooter-With Side Car, 

Moped and Motorised Cycle (CC>25cc), as classified in the Vahan Portal. Further, the data 

from these classes of two-wheelers have been aggregated and collectively referred to as E2Ws 

for the purpose of forecasting future sales. For the visualisation of the sales data, the plot is 

provided in Figure 3. Table 1 shows the units sold over the course of a year. 

 

Figure 3: Monthly E2Ws sales plot 
3.2 Data Preprocessing: 

To process the data for time series modelling, Standard data processing procedures were 

followed. First, the dataset was searched for missing values and outliers. . The data was then 

dated-indexed and resampled to maintain a uniform monthly frequency. In this research, real-

life monthly sales figures of E2Ws available in India from January 2017 to October 2024 were 

used. The data showed significant non-stationarity and seasonality, which were handled by 

second-order differencing and seasonal decomposition. To identify potential anomalies within 

the dataset, the Z-score method was applied.  

The Z-score is computed as: Z = 𝑉𝑎𝑙𝑢𝑒−𝑀𝑒𝑎𝑛
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑒𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

 

Data points with a Z-score exceeding +3 or falling below -3 were considered statistical outliers. 

These pre-processing techniques were necessary to make the data conform to SARIMA 

modelling assumptions and to improve the accuracy of forecasts 
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Table 2: Electric two-wheeler monthly sales data 

Month/
Year Jan Feb Mar April May June July Aug Sep Oct Nov Dec 

2017 110 81 146 97 94 136 119 107 117 167 236 195 

2018 199 171 518 524 698 1010 1297 1587 2382 2847 3633 3568 

2019 2929 3493 6003 3547 1755 1814 1727 1645 1673 2241 3425 2057 

2020 2373 2286 3063 91 584 1600 1632 2324 3367 2764 4214 4931 

2021 5375 6961 1253
9 6043 1430 5031 16004 17717 19608 22871 26845 28986 

2022 32006 37874 5805
6 56376 44669 47097 49990 55701 56612 81280 81560 67910 

2023 67313 68601 9009
3 69921 109383 47911 56139 64311 65149 77208 94514 77873 

2024 84762 85267 141328 66408 66103 55092 63576 88878 89037 138591     

 

3.2.1. Exploratory Data Analysis (EDA):  

From the visual inspection of the Monthly E2Ws sales dataset plot in Figure 3, sales figures 

for electric E2Ws in India between January 2017 and October 2024 were inspected to 

understand underlying patterns and trends. The pattern of E2Ws sales exhibits a distinct 

exponential increase from the end of 2020. It is then a phase transition from a basically flat and 

idle phase to an accelerating rise trend in volume sales. We can also observe the impact of 

COVID-19 on the sales figures in April 2020, a sudden drop in sales; however, following that, 

a visible upward trend began to emerge. 

Moreover, the series exhibits large seasonal variations—periodic drops and spikes—pointing 

towards a possible effect of seasonal or policy-related factors on consumer purchasing 

behaviour. Some evident sudden spikes in sales also indicate the existence of external shocks, 

e.g., policy shifts, subsidies such as FAME Phase I and FAME Phase 2 programs by the 

Government of India and supply chain events(Electric Vehicles: Electric Vehicle Industry in 

India and Its Growth, 2021.-b). 

This preliminary analysis confirms that the data is non-stationary and contains both trend and 

seasonal aspects. From this initial inspection and data pattern analysis, it helps to identify and 
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select an appropriate time series model, thereby establishing the necessity of differencing and 

seasonal modelling procedures like SARIMA for efficient forecasting.  

3.2.2 Seasonality and trend analysis: 

To detect seasonality and trend in time series data, both STL (seasonal-trend decomposition 

using losses) and classical Decomposition techniques were used (Wen et al., 2019). These 

methods allowed us to deconstruct the time series data into its core components- trend, 

seasonality and residuals, facilitating a clear understanding of underlying patterns (Bandara et 

al., 2025). From the STL decomposition, we can understand a robust, noise-resistant view of 

seasonal behaviour, while the classical method validated its consistency across time. The 

results from both decompositions provided strong evidence of a repeating annual pattern, 

justifying the incorporation of seasonal components into the forecasting model. Based on these 

insights, a Seasonal ARIMA (SARIMA) framework with a 12-month periodicity and seasonal 

differencing (D=1) was selected for further modelling and evaluation. 

3.2.3 Tests of Stationarity and Differencing 

Before applying the SARIMA model for time series data one of the basic assumptions are 

made, that is data should be stationary, and it is necessary in the series and should be tested for 

stationarity to check the stationarity of the time series data the Augmented Dicky fuller test is 

performed. 

• Augmented Dickey-Fuller (ADF) test 

Making time series data stationary is an important requirement for time series forecasting. This 

ensures that the statistical properties (mean, variance, and autocorrelation) associated with the 

data remain unchanged over time, allowing predictions to be accurate Manuca & Savit, (1996). 

The Augmented Dickey-Fuller (ADF) test is performed to check for stationarity in the time 

series data. A high p-value (> 0.05) indicates no stationarity, so data transformation is required. 

Differentiation is the most common method of removing trends and seasonality from a time 

series. The first differencing is calculating the difference between two consecutive data points. 

It removes linear trends and partially stabilises the variance. If still present, for residual trends 

or seasonality, second differencing can be applied, as this will stabilise variance further, 

producing a zero-mean series. ADF tests are repeated at each stage to confirm the succeeding 

stationary condition. Stationarity means the model captures stable relationships, which are 

valid for predicting EV sales and the output of LIB waste generation. Proper preprocessing, 

like differencing, improves the extent to which time series models can be relied on.  
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The ADF test examines the presence of a unit root in the series by evaluating whether the null 

hypothesis of non-stationarity can be rejected (Paparoditis & Politis, 2018). A low p-value 

(typically less than 0.05) suggests the series is stationary, allowing model fitting without 

additional differencing; otherwise, differencing is required to stabilise the mean. In SARIMA 

modelling, the ADF test is typically applied before model specification to determine the order 

of non-seasonal differencing (d) and, when used in conjunction with seasonal decomposition, 

informs the need for seasonal differencing (D). The ADF test output includes the test statistic, 

critical values, and p-value, and is implemented using statistical software such as Python's stats 

model’s package. Identifying the correct level of differencing through the ADF test ensures the 

time series meets the stationarity condition, improving the accuracy and reliability of 

SARIMA-based forecasts. 

3.2.4 SARIMA Model Overview: 

The SARIMA model is a modified version of the ARIMA model with an added focus on 

seasonality. It applies primarily to time series data that can be observed as having a definite 

trend and a cyclical data pattern (seasonality). The SARIMA model is the Extended version of 

ARIMA, first introduced by Box and Jenkins in 1970 as part of the broader Box-Jenkins 

methodology for time series forecasting (G. Box, 2013). Their work laid the foundation for 

modelling non-stationary seasonal data using autoregressive and moving average structures 

and remains one of the most influential contributions to time series analysis. 

SARIMA model structure 

The following notation is used to express the elements of the SARIMA model: 

ΦP(BS)ϕP(B)(1 − B)d(1 − BS)Dyt = ΘQ(B5)θq(B)ϵt     Eq1 

Where, 

Non-seasonal components: 

ΦP(B): Non-seasonal autoregressive polynomial of order p. 

(1−B)d: Non-seasonal differencing of order d. 

θq(B): Non-seasonal moving average polynomial of order q. 

 Seasonal components: 

ΦP(BS): Seasonal autoregressive polynomial of order P. 

(1−BS)D: Seasonal differencing of order D and seasonality s. 

ΘQ(BS): Seasonal moving average polynomial of order Q. 
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Other terms: 

B: Backwards shift operator 

s: Seasonality period. 

ϵt: White noise error term. 

3.2.5 SARIMA Model Parameters and Their Identification 

• Non-Seasonal Parameters (p, d, q): 

Autoregressive order (p): the number of lag observations (previous values) included in the 

model to forecast the current value. In other words, it explains how many past observations the 

current value of the time series will be for the forecast. The value of 𝑝 is established from the 

behaviours of the Autocorrelation Function (ACF) and Partial Autocorrelation Function 

(PACF) graphs. 

Differencing order (d): This factor specifies how often the time series should be differenced 

to achieve stationarity, that is, to eliminate trends or seasonal patterns in the data. Differencing 

the data helps in mitigating seasonality and trends. It is typical to try d=1 first and see whether 

one can get the series stationary using the ADF test. 

Moving Average order (q): This parameter states the number of lagging forecast errors in 

predicting future values. It denotes the lagged average of past forecast error (prediction value 

minus actual value), which affects the current value. Like p, q is determined using ACF and 

PACF plots. 

• Seasonal Parameters (P, D, Q, s): 

Seasonal Autoregressive Order (P): The contribution of past seasonal observations to the 

current value of the time series is analysed in this seasonal lag and hence comes in a similar 

order with the inclusion of p, but not as P. The degrees of P are assigned accordingly to the 

calendar in the series under consideration. 

Seasonal Differencing Order (D): It is often necessary to include seasonal differencing to 

stabilise the time series. Suppose the data display seasonality without such a fixed nature (i.e., 

it shows an upward or downward trend, a seasonal repetition of patterns). In that case, this sort 

of differencing can be performed to mitigate such seasonal variations in trends. The limit of 

values for D usually varies from 0 to 1. 

Seasonal Moving Average Order (Q): This is the total number of seasonal forecast error metrics 

that were lagged and included in the model. It is almost identical to q, but concerning the 

temporal aspect of the time series. This tail end of the hybrid equation combines previously 
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measured season forecast errors, contributing instead of being a standalone measurement, as in 

the non-seasonal case. 

Seasonal Period (s): This is the time taken to complete one seasonal cycle and represents the 

frequency at which the seasonality is repeatable in the data. To illustrate in year data, the 

seasonal period might be s=12 if the data in question is monthly, such that one cycle takes 12 

months. If the data in discussion is daily, then s=7, some might say that seasonality is in weeks. 

3.2.6 Diagnostic Checking 

Diagnostic checking is performed to evaluate the adequacy and validity of the model. These 

checks are essential to ensure that the residuals, representing the portion of the data not 

explained by the model, resemble white noise. This indicates that the model has effectively 

captured the underlying structure of the time series. 

Initially, the residuals were subjected to visual inspection using a histogram and the kernel 

density estimation (KDE) plot to assess their distribution. Ideally, the residuals should follow 

a normal distribution, evidenced by a bell-shaped and symmetric curve. This was further 

supported by the Q-Q (quantile-quantile) plot, which compares the quantiles of a normal 

distribution. A good fit is indicated when the residuals lie approximately 45-degree reference 

line. 

Secondly, the autocorrelation of residuals was evaluated using the Autocorrelation function 

plot, also known as the correlogram. For a well-specified SARIMA model, the residuals should 

not exhibit significant autocorrelation. In this study, the majority of the ACF spikes fell within 

the 95% confidence interval, suggesting that the residuals, suggesting that the residuals are 

largely uncorrelated. 

In addition to the graphical methods, statistical tests were applied to reinforce the findings. The 

Ljung-Box test was employed to examine whether the residuals are independently distributed. 

Furthermore, the Jarque-Bera test was conducted to assess the normality of residuals. The 

resulting p-values supported the assumption of normal distribution. Lastly, the results indicated 

a relatively constant variance over time, supporting the model’s assumption of homoscedastic 

errors. 

Overall, these diagnostic checks confirm the adequacy of the SARIMA model by ensuring that 

the residuals exhibit the characteristics of white noise, thereby validating the model’s suitability 

for reliable forecasting  
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3.2.7 Model Training and Validation 

To evaluate the predictive performance of the SARIMA model, the available time series data 

were divided into subsets: the training set and the testing set. The training set, consisting of the 

initial portion of the dataset, was used to fit the SARIMA model and estimate its parameters. 

The remaining data comprised the testing set, which was reserved for out-of-sample testing 

validation. Model forecasts generated from the training data were compared against the actual 

observed values in the testing set. This approach allows for the evaluation of the model's 

generalisation ability and helps to avoid overfitting. Common accuracy matrices such as Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error 

(MAPE), and R2 were employed to quantify the forecasting performance. A lower value of 

these matrices indicates better model accuracy. this validation step is crucial to ensure that the 

selected model performs reliably when applied to future data. To perform the above approach, 

the SARIMAX function from the statsmodels Python package was used using various 

combinations of parameters, the optimal of which was selected based on the Evaluation matrix 

results on the testing set. 

3.2.8 Metrics for Model Evaluation 

1. Root Mean Square Error (RMSE): 

Measures the square root of the average squared differences between predicted and actual 

values. 

Formula: RMSE =√1
𝑛
∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1  

Interpretation: Smaller values indicate better performance. RMSE is sensitive to outliers 

because of the squared term. 

2. Mean Absolute Percentage Error (MAPE): 

Measures the average percentage error between actual and predicted values. 

Formula: MAPE 𝑀𝐴𝐸 = 100
𝑛

∑ |𝑦𝑖 − 𝑦𝑜|𝑛
𝑖=1  

Interpretation: MAPE values below 10% are considered excellent, 10-20% good, and above 

30% indicate poor performance(Montaño Moreno et al., 2013). 

3. Mean Absolute Error (MAE): 

Measures the average magnitude of the errors without considering their direction. 
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Formula:  𝑀𝐴𝐸 = 1
𝑛
∑ |𝑦𝑖 − 𝑦𝑜|𝑛

𝑖=1  

Interpretation: MAE is less sensitive to outliers compared to RMSE. 

4. Coefficient of Determination (R2): 

Measures how much of the variance in the actual data is explained by the model. 

Formula: R2 =  1 −
∑ (𝑦𝑖−𝑦∞)2𝑛

𝑖=1
∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1
 

Interpretation: R2 values range from 0 to 1, where higher values indicate a better fit. Negative 

values indicate the model performs worse than a simple mean or mode. 

3.3 Phase II: Battery Lifespan Modelling 

Battery lifespan modelling is critical for accurately estimating the volume/mass of the battery 

that will retire after serving a particular time. Battery lifespan refers to a lithium-ion cell's 

operational duration, typically measured by its cycle or calendar life (Jaguemont et al., 2016). 

Cycle life denotes the total number of complete charging and discharging processes the battery 

can sustain before its performance drops below an acceptable threshold(Z. Zhang et al., 2022) 

and the timeline of lithium-ion batteries (LIBs) reaching EOL, which forms the basis for waste 

forecasting and circular economy planning. The estimation of the LIB life span is crucial. The 

exact life span of a LIB estimation is challenging due to the influence of multiple factors that 

impact the life span of EV batteries, such as temperature, charge-discharge cycle, user 

behaviour and Overcharge and Over-discharge (X. Zhang et al., 2021). 

In this study, the battery lifespan refers to the operational period during which a battery retains 

acceptable performance in its primary application—E2Ws—before degrading to the point of 

replacement. In practical life, lithium-ion batteries used in EVs are retired after use, reaching 

80% of their nominal capacity (J. Zhang et al., 2024). Previously, some studies have assumed 

a calendar life of the lithium-ion battery, which is used to power EVs, ranging between 8 and 

10 years (Englberger et al., 2019; Maisel et al., 2023; Yang et al., 2024). Additionally, Ai et al. 

(2019) compiled findings from multiple sources, reporting LIBs' lifespans varying from as low 

as 3 years to as high as 16 years. Depending on operational and environmental conditions. 

Based on these prior works, many researchers adopt a maximum functional lifespan of 10 years 

as a standard assumption for EV Battery performance. This study employs a time-lag-based 

deterministic model wherein each battery is assumed to be retired after a predefined lifespan. 

On the safer side, to maintain a conservative and realistic estimate, we assume a battery life 
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span that typically ranges from 4 to 8 years, depending on usage intensity, ambient temperature, 

charging behaviour, and battery chemistry employed. 

According to the Global EV Outlook reports IEA, 2023 most commonly used lithium-ion 

chemistries in EV drives are Lithium Iron Phosphate (LFP) and Nickel Manganese Cobalt 

Oxide (NMC), which dominate the market due to their energy density stability and 

performance, which translates into a lifespan of 4–8 years under real-world conditions. Based 

on literature and market practice, this study models three lifespan scenarios: short (4 years), 

base (6 years), and long (8 years), assuming 100% LIB penetration in E2Ws. The number of 

batteries reaching EOL in a given year is estimated by shifting the SARIMA-forecasted E2Ws 

sales forward by the assumed lifespan. 

The following formula gives the battery retirement count for year t: 

𝐸𝑜𝐿𝑡 = ∑ (𝑆𝑡−𝐿𝑖 × (1 − 𝑅𝑖))
𝑛

1=1
       Eq. 2 

Where: 

𝐸𝑜𝐿𝑡: Number of batteries reaching EOL in year t 

𝑆𝑡−𝐿𝑖: Number of E2Ws sold in the year 𝑡 − 𝐿𝑖 

Li: Assumed lifespan of the battery (years) 

Ri: Second-life or reuse rate (fraction of batteries not contributing to immediate waste) 

n: Number of lifespan scenarios considered (e.g., 3 for 4, 5, 8 years) 

• This model assumes each vehicle sold in year t−Li will result in one LIB reaching EOL in 

year t, adjusted for any reuse rate R. If reuse is excluded (i.e. R=0), the formula simplifies 

to EoLt=St-L. 

• The output of this phase is a timeline of retired battery quantities (units/year), which 

directly feeds into the waste quantification phase, where the total battery mass (kg) and 

energy capacity (kWh) are estimated. 

• The retirement year for each cohort of sold vehicles was determined as: 

• Retirement Year=Sales Year + Battery Lifespan  



22 
 

3.4 Phase III: Estimating End-of-Life Battery waste from the sales of Electric E2Ws 
Vehicles. 

3.4.1. Formulation of Battery waste: 

Total Energy Used in Month m of Year t: The total energy required for the EVs sold in 

month m of year t is: 

𝐸𝑚,𝑡 =  𝑆𝑚,𝑡 ×  𝐶  

𝐸𝑚,𝑡 Is that the month's total energy consumption in kWh? 

Battery Waste Generated in Month m of Year t: The total weight of LIB waste generated 

in month m of year t is: 

𝑊𝑚, 𝑡 =  (𝐸𝑚,𝑡  × 𝐶 )

𝑆𝐸(𝑘𝑊ℎ
𝑘𝑔 )

         Eq. 3 

Where (𝑊𝑡𝑜𝑡𝑎𝑙)𝑎𝑛𝑛𝑢𝑎𝑙 = ∑ 𝑆𝑚,𝑡×𝐶(𝑘𝑊ℎ)

𝑆𝐸(𝑘𝑊ℎ
𝑘𝑔 )

12

𝑛=1

 𝑜𝑟 ∑ 𝑤𝑚,𝑡
12
ℎ=1     Eq. 4 

Where: 

o Wm,t  = the total potential battery waste (in kg) for month m of year t. 

o Wtotal = Total battery waste (kg) over n months 

o Sm,t = Forecasted and past sales for month m of year t 

o C = Battery capacity per EV (kWh) 

o SE = Specific energy of battery (Wh/kg) 

o T = Number of years 

3.4.2. Average battery Capacity(C) Estimation:  

The estimation of the average battery capacity required for E2Ws in this study is based on data 

presented in the ICCT (International Council on Clean Transportation) Working Paper (Gode 

et al., 2021). This report offers comprehensive insights into the battery capacity of various 

E2Ws models in the Indian market. By referencing the net battery capacities of E2Vs and 

utility/multi-purpose vehicles, ranging from 0.3 kWh in entry-level models to 9.7 kWh in 

premium variants, I derived average capacity and vehicle categories. This value serves as a 

representative and realistic benchmark for modelling battery demand and evaluating future 

requirements in India’s dynamic and rapidly expanding electric mobility sector.  
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Figure 4: Battery capacity of different types of E2Ws sold in India 
3.4.3 Battery Specific Energy (Wh/kg) 

Common LIB Chemistries in EVs: Lithium-ion batteries (LIBS) are the dominant energy 

storage technology in EVs due to their high energy density, long cycle life, and decreasing 

costs. Among the various LIB chemistries, the following are most widely used in modern EVs: 

• Nickel Manganese Cobalt Oxide (NMC): Known for its balanced energy density, 

power output, and thermal stability. Variants like NMC622 and NMC811 are widely 

used by manufacturers such as BMW and Hyundai (Tallman et al., 2021). 

• Nickel Cobalt Aluminium Oxide (NCA): Offers higher energy density compared to 

NMC and is commonly used in Tesla vehicles. However, it is less thermally stable than 

LFP. 

• Lithium Iron Phosphate (LFP): Provides excellent thermal stability and long cycle 

life at a lower cost, though with lower specific energy. It is increasingly adopted in EVs 

targeting affordability and safety, such as those from Tata Motors and BYD. 
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The mass of LIB waste from the EOL EVs was estimated through the reverse-calculation 

approach based on rated battery capacity and cell-level specific energy density. Through the 

estimation of cell mass entering the waste stream, which is critical for assessing recycling 

potential and planning infrastructure. Current commercial lithium-ion cells using nickel 

manganese cobalt (NMC) and nickel cobalt aluminium (NCA) technologies demonstrate 

specific energy levels ranging from 220 to 260 Wh/kg. In contrast, lithium iron phosphate 

(LFP) cells typically have specific energy values between 150 and 160 Wh/kg. The specific 

energy and energy density of these batteries have more than doubled compared to the original 

designs, which had a specific energy of just 120 Wh/kg (Frith et al., 2023). Similarly, Schmuch 

et al., (2018) reported specific energy NMC 622/811 cells with 230–250 Wh/kg, and LFP 

chemistry around 160 Wh/kg. These values are further supported by Liao et al., (2024)  which 

show energy densities of 200 Wh/kg for cylindrical NCA cells and around 163 Wh/kg for LFP 

prismatic cells. 

In this study, a foundation assumption established a base case scenario with specific energy of 

210 Wh/kg; which serve as the cornerstone for all subsequent battery mass calculation This 

representative average was derived by taking the midpoint between lower bound of 160 Wh/kg 

and the upper bound 260 Wh/kg, taking into account the two most widely LIB chemistries, 

LFP and NMC. IT is important to note that this specific energy estimate applies strictly to the 

cell mass only, excluding other battery pack components. All the estimations concerning 

battery cell mass throughout this study are based on this benchmark case scenario. This 

methodological approach is critical not only for accurately modelling battery material flow 

analysis (MFA) but also for projecting future recycling volumes. It also aids in informing 

infrastructure planning and development for battery retirement management after they have 

completed their life cycle services. By anchoring the analysis to standardised and representative 

energy density, the study ensures consistency, relevance, and scalability in assessing material 

and energy flows across the LIB value chain. 
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Chapter 4 

Site Suitability Analysis for the LIB Recycling Plant for Indore City 
4.1 Study Area: 

This Study focuses on the part of Indore city located in the Indore district of Madhya Pradesh, 

India, which falls under the geographical coordinates of nearly 220 43’ N latitude and 760 42'E 

longitude and 1805 feet above MSL (mean sea level)(Goyal, 2011). It lies on the Malwa Plateau 

and is linked by national highways, railways, and air transport, making it the ideal logistics and 

industrial hub of central India (Kumar et al., 2007), (Verma & Bhonde, 2014). Indore has been 

ranked as the cleanest city in India for the sixth consecutive year under the Swachh Survekshan 

mission from 2017 to 2023, marking strong urban management and civic participation. 

Indore's climate is considered to be semi-arid, with hot summers, monsoon season from June 

to September, and cool, dry winters (Kawadia & Tiwari, 2017). This sort of climatic condition 

is generally quite appropriate for industrial operations, including the handling and processing 

of LIB waste, which is susceptible to extreme environmental changes. 

Indore has logistics and environmental planning advantages for setting up a LIB recycling plant 

site. The city has several industrial areas, such as the Sanwer Industrial Area, Pithampur 

Industrial Area, and, lastly, the emerging Super Corridor, in addition to these potential zones 

for industrial development, all plus the existing utility networks. Added to this are the 

advantages of the major EV markets' proximity and pre-existing solid waste infrastructure, 

which include the Indore Integrated Solid Waste Management Plant, besides growing Clean 

Energy initiatives' ecosystem to solidify the case for the study. 

This study brings in the site suitability analysis concerning a wide variety of geospatial and 

environmental parameters using the GIS-based multi-criteria decision analysis (MCDA) 

framework. The factors under consideration include land use/land cover, proximity to 

transportation networks, distance from residential zones, groundwater sensitivity, and slope. 

Satellite imagery, municipal land use maps, and field verification were used to create spatial 

data for these layers. The model used is a weighted overlay to identify those optimal locations 

for Indore's urban and peri-urban areas where recycling plants could be located. 
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A base map of Indore has been prepared using GIS software (QGIS/ArcGIS), which delineates 

study boundaries and thematic layers used for spatial analysis (Figure 5). It supports the 

geospatial approach to evidence-based decision-making in sustainable infrastructure planning 

for the emerging EV ecosystem. 

 

Figure 5: Study area map for the LIB recycling plant 
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4.2. Methodology: 

 

Figure 6: Flow chart for site suitability analysis 
4.2.1. Data Collection: 

The study is conducted in Indore, Madhya Pradesh, a rapidly growing urban centre with 

increasing EVs adoption and lithium-operated battery consumer Electronics. The present study 

utilised a range of spatial and non-spatial datasets to conduct a site suitability analysis for the 

establishment of a LIB recycling plant in Indore district, Madhya Pradesh, India. The 

administrative boundary shapefile for Indore district was obtained from the Survey of India, 

which provided the geographic extent for the study area and served as a base layer for spatial 

analysis. 

The following datasets were collected, which include Primary as well as secondary sources: 

Table 3: Inventory of spatial data layers and corresponding data sources 

Sl No. Spatial Layers (GIS format) Data Source 

1 India, Madhya Pradesh and Indore District 
Shape File Survey of India 

2 Land Use/Land Cover (LULC) map (10M 
resolution) Esri Sentinel-2 

3 Road network Open Street Map 
4 River Open Street Map 
5 Slope and elevation (DEM) https://earthexplorer.usgs.gov 

6 Industrial Area Open Street Map 

7 Surface Water Bodies Landsat and Sentinel using Google 
Earth Engine and OpenStreetMap 

https://earthexplorer.usgs.gov/
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The Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) provides 

near-global elevation coverage between 60°N and 60°S, including the entire Indore district in 

Madhya Pradesh, India. The DEM tiles, available in 5° × 5° extents and referenced to the 

WGS84 geographic coordinate system, were mosaicked to create a seamless elevation surface 

for the study area. Using the Spatial Analyst tools in ArcGIS software, a slope map was derived 

from the DEM. 

 

Figure 7: SRTM DEM map of Indore district 
SRTM data were collected during NASA’s 11-day STS-99 mission in February 2000 by a 

specially modified radar system onboard the Space Shuttle Endeavour. This system was based 

on the earlier Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) 

technology. The SRTM DEM, with a spatial resolution of 30 meters (1 arc-second), was utilised 

in this study, which served as essential input parameters in the Analytical Hierarchy Process 

(AHP)-based site suitability analysis for identifying optimal locations for LIB recycling in the 

Indore district. 

Land use and land cover (LULC) information was extracted at 10m resolution for the year 2024 

from Esri Sentinel-2 imagery, which offers high-resolution satellite data suitable for classifying 
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built-up areas, vegetation, barren land, and other surface types. This LULC data provided 

insights into existing land utilisation and helped in identifying potential sites with minimal 

environmental disruption. 

Additional thematic layers—including roads, rivers, and industrial areas—were sourced from 

OpenStreetMap (OSM) and processed using QGIS. These layers were used to assess the 

proximity of candidate sites to essential infrastructure such as transportation networks and 

existing industrial zones, as well as to evaluate potential environmental constraints related to 

water bodies. 

 4.2.2. Software Used: 

Quantum GIS 3.36- QGIS is a robust, free, and open-source desktop Geographic Information 

System (GIS) application that provides users with comprehensive tools for viewing, editing, 

and analysing geospatial data. It supports a wide range of data formats and allows for extensive 

customization through plugins. QGIS is compatible with multiple operating systems, including 

Windows, macOS, and Linux, making it accessible to a diverse user base.  

ArcGIS - The ESRI Software Company developed this software, which is not free. ArcGIS 

Desktop is a comprehensive desktop GIS software suite that enables users to create maps, 

conduct spatial analysis, and manage data. All layers are defined using this software. 

Google Earth Engine (GEE) – GEE is a cloud-based platform used in this study for processing 

and analysing satellite imagery. It provides access to a large repository of geospatial datasets, 

such as Landsat and Sentinel, and supports fast, large-scale analysis through cloud computing.  

4.2.3. Criteria Selection for Site Suitability 

The selection of appropriate criteria is a critical step in the site suitability analysis for industrial 

infrastructure, particularly for environmentally sensitive facilities such as LIB recycling plants. 

In this study, six spatial criteria were identified based on their relevance to environmental, 

technical, and logistical feasibility. These criteria were selected through a review of existing 

literature, expert knowledge, and alignment with regulatory and planning guidelines. The 

selected layers include Land Use and Land Cover (LULC), proximity to industrial areas, 

surface water bodies, road networks, and slope, each of which plays a significant role in 

determining the suitability of a site. The Analytical Hierarchy Process (AHP) was employed to 

assign relative weights to these criteria and integrate them into a comprehensive multi-criteria 

decision-making framework. 
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The following six criteria were selected for AHP-GIS analysis in Table 4. 

Table 4: Criteria-based Thematic Layers Selection 

Criterion Justification 

Settlements (LULC) To reduce health/safety risks 

Proximity to roads and rail For transportation/logistics 

Land use compatibility (industrial zones) Legal and operational feasibility 

Distance from water bodies To prevent water pollution 

Slope/elevation Site engineering feasibility 

River To ensure environmental protection 

 

4.2.4. Analytical Hierarchy Process (AHP) 

The Analytic Hierarchy Process (AHP) is one of the multi-criteria decision-making methods 

that was originally developed by Prof. Thomas L. Saaty(R. W. Saaty, 1987). The procedure of 

AHP can be divided into three parts, which include identifying a hierarchy of objectives, 

criteria and alternatives; pairwise comparison of criteria; and integration with the results from 

pairwise comparison as relative importance over all levels of the hierarchy. This method is used 

to determine the percentage importance of the parameters used in the identification of suitable 

sites for. The integration of AHP with GIS gives an efficient and user-friendly way for solving 

complex problems, as it is a combination of decision-making support methods and tools with 

powerful capabilities of mass data computation, visualisation, and mapping(Chandio et al., 

2013).  The implementation of AHP can be summarized as following procedure: definition of 

objective; identification of criteria; data collection and preprocess; digitization of criteria and 

convert all data into vector data; classification of raster datasets; creation of preference matrix; 

determination of criteria weights according to calculation based on preference matrix; weighted 

summation of criteria raster datasets as result(Kaya et al., 2022),(Ifg, 2017.). The AHP 

procedure involves performing the comparison of pairs of parameters within a set of reciprocal 

matrices in comparing pairs of factors(T. L. Saaty, 2005). The AHP scale of relative importance 

is used on a scale of 1 to 9(T. L. Saaty, 2014), as shown in Table No. 5. Based on a literature 

review of previous studies, specific conditions of Land Suitability analysis, 6 criteria 

considered as main factors are chosen for this study, including: Topographic conditions (Slope), 

Industrial Area, LULC, RIVER, Road Network, and Surface Water Bodies. 
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Table 5: Hierarchy structuring based on importance scale 

VALUE SIGNIFICANCE 

1 Equal importance 

3 Moderate importance of one over the other 

5 Strong importance 

7 Very strong importance 

9 Extremely strong importance 

 

The pairwise comparison matrix for criteria, denoted by C, is structured as follows: 

𝐶 = 

[
 
 
 
 

1 𝑎12 𝑎13 … 𝑎1𝑛
1/𝑎12 1 𝑎23 … 𝑎2𝑛

⋮ ⋮ 1 ⋮ ⋮
⋮ ⋮ ⋮ 1 ⋮

1/𝑎1𝑛 1/𝑎2𝑛 1/𝑎3𝑛 … 1 ]
 
 
 
 

 

where aij represents the relative importance of criterion i compared to criterion j. 

The matrix is reciprocal, meaning aij = 1/aji 

• Criteria Selection Description: 

Table 6: Classification and suitability scale 

 Reclassification Suitability scale 

Distance from major roads <250 m 1 

 250-750 m 5 

 750-1500 m 4 

 1500 -2000 m 3 

 >2000 m 2 

Surface water Body <250 m 1 

 250-500 m 2 

 500-1000 m 3 

 1000-4000 m 4 

 >4000 m 5 

River/streams 0-500 m 1 

 500-1000 m 2 

 1000-2000 m 3 
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 2000-4000 m 4 

 >4000 m 5 

Slope 0-5 (%) 5 

 5-10 (%) 4 

 10-15 (%) 3 

 15-20 (%) 2 

 >20 (%) 1 

Industrial Area <1000 m 5 

 1000-2000 m 4 

 2000-4000 m 3 

 4000-6000 m 2 

 >6000 m 1 

 

• Calculation of the Weights of Each Criterion 

To calculate the weight of each criterion, perform the following steps: 

1. Calculate the Eigenvector of the Comparison Matrix: Solve the following equation: 

𝐶 ⋅ 𝑊 = 𝜆𝑚𝑎𝑥 ⋅ 𝑊         Eq. 5  

   where: 

• W is the vector of criteria weights (which we need to determine), 

• 𝜆𝑚𝑎𝑥 is the principal eigenvalue of the matrix (which indicates the consistency of the 

pairwise comparisons). 

 

2. Normalise the Eigenvector: Normalise the vector W by dividing each entry by the sum of 

all entries: 

𝑊𝑖 = 𝑊𝑖

∑ 𝑊𝑖
𝑛
𝑖=1

          Eq. 6 

where Wi is the normalised weight for criterion i. 

 

3. Consistency Check: The Consistency Ratio (CR) checks how consistent the pairwise 

comparisons are. If the CR exceeds 0.1, the comparisons should be revised. 

𝐶𝑅 = 𝐶𝐼
𝑅𝐼

          Eq. 7 

where: 
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• CI (Consistency Index) is calculated as: 𝐶𝐼 =  𝜆𝑚𝑎𝑥−𝑛
𝑛−1

    

• RI (Random Index) is a value that depends on the size of the matrix. For an (n x n) 

matrix, the typical values of RI are found in a predefined table. 

• If CR > 0.1, you should revise the pairwise comparisons. 

 

4. Pairwise Comparisons for Each Land Parcel 

Next, perform pairwise comparisons for each land parcel (site). For each site and criterion, 

compare how suitable the site is in terms of the selected criterion. For example, if you're 

comparing two sites based on soil quality, evaluate how well each site supports the desired soil 

type. 

Construct a comparison matrix for each site: 

 

𝐶 =  

[
 
 
 
 1 𝑎12

𝑠𝑖𝑡𝑒 𝑎13
𝑠𝑖𝑡𝑒 … 𝑎1𝑛

𝑠𝑖𝑡𝑒

1/𝑎12
𝑠𝑖𝑡𝑒 1 𝑎23

𝑠𝑖𝑡𝑒 … 𝑎2𝑛
𝑠𝑖𝑡𝑒

⋮ ⋮ 1 ⋮ ⋮
⋮ ⋮ ⋮ 1 ⋮

1/𝑎1𝑛
𝑠𝑖𝑡𝑒 1/𝑎2𝑛

𝑠𝑖𝑡𝑒 1/𝑎3𝑛
𝑠𝑖𝑡𝑒 … 1 ]

 
 
 
 

 

Calculate the Land Suitability Score 

For each site, multiply the normalised weights of the criteria by the values in the comparison 

matrix. The final score for each site is the weighted sum of the scores for all criteria. 

where: 

 𝑆𝑠𝑖𝑡𝑒 = ∑ 𝑤𝑖
𝑛
𝑖=1 ⋅ 𝑎𝑖𝑗

𝑠𝑖𝑡𝑒        Eq. 8 

 𝑆𝑠𝑖𝑡𝑒 is the suitability score for a particular site, 

 𝑤𝑖 is the weight of criterion i, 

𝑎𝑖𝑗
𝑠𝑖𝑡𝑒 is the relative importance of site j under criterion i. 

Rank the Sites 

After calculating the suitability scores for all sites, rank them from the most suitable to the least 

suitable. The site with the highest score is the most suitable for the proposed activity. 

𝑅𝑎𝑛𝑘𝑒𝑑 𝑆𝑖𝑡𝑒𝑠 =  {𝑆𝑠𝑖𝑡𝑒 1, 𝑆𝑠𝑖𝑡𝑒 2, 𝑆𝑠𝑖𝑡𝑒 3, ……… , 𝑆𝑠𝑖𝑡𝑒 𝑛} 

The site with the highest score is the most suitable for the land use. 

Using the AHP methodology in land suitability analysis allows for a systematic and consistent 

approach to evaluate and prioritize land parcels based on multiple criteria. By using pairwise 

comparisons, eigenvalue calculations, and a final suitability score, this methodology helps 

decision-makers identify the most appropriate land for their intended purpose, considering both 
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quantitative and qualitative factors. Check the consistency ratio (CR) to ensure valid 

comparisons (CR < 0.1 acceptable). Weights are integrated into the GIS model for weighted 

overlay. 

4.3. GIS-Based Weighted Overlay Analysis 

Reclassify all raster layers (criteria) into standardised suitability scales (e.g., 1–5). Apply the 

AHP-derived weights to each layer using the Raster Calculator tool. Generate a final suitability 

map showing areas classified as: Highly Suitable, Suitable, Moderately Suitable, Low Suitable, 

and Not Unsuitable, overlay constraint layers (e.g., protected zones, water bodies) to mask out 

restricted areas(How Weighted Overlay Works—ArcGIS Pro | Documentation). 

 

Figure 8: AHP integrated suitability analysis methodology 
4.4. Validation 

Final site options are shortlisted from highly suitable zones. Cross-verification is done using 

ground data, regulatory constraints, and logistic feasibility. Recommendations are supported 

with a multi-criteria ranking table comparing top locations. Awareness has been brought 

regarding this requirement of planned battery recycling facilities, a regulation framework, and 

sustainable solutions for handling waste in countries that are moving toward addressing the 

environmental challenges that EV adoption has created. 
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Chapter 5 

5. Results and Discussion 
5.1. Outlier Detection 

The result of the Z score is given in Figure 3. It serves as a valuable tool for anomalies. It’s 

worth noting that, in this time series data, the z-score statistical test did not reveal anomalies.  

 

 

Figure 9: Data plot with anomalies 
5.2. Seasonality and trend:  

1. Trend 

Upward Trend: 

There is a clear exponential increase in sales starting around mid-2021, with steep growth 

afterwards. Early Flat Period. From 2016 to mid-2020, the sales remained low and flat, 

suggesting minimal market penetration or adoption in the early years. 

2. Seasonality 

There appears to be repeating peaks and dips in the recent years (2022–2025), especially in the 

last quarters of each year. This suggests potential seasonal behaviour, likely influenced by 

Government incentives or policy rollouts. Festive buying seasons (e.g., Diwali in India), End-

of-year inventory clearance. 
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Figure 10: Seasonality and trend analysis plots 
5.3. Stationarity check and differencing  

Sales data from EVs is subjected to an Augmented Dickey-Fuller (ADF) test to check the 

stationarity. The EV sales data used in this study represent a non-stationary monthly time series. 

The result shows that the original time series data was non-stationary with test statistics 1.218 

and a p-value of 0.95, which is higher than all critical values at the 1%, 5%, and 10% levels. 

After applying second differencing, the series remains non-stationary, with a p-value of 0.5877, 

still higher than 0.05 still exceeding the threshold for rejecting null hypothesis of a unit root 

however after second differencing, the test statistics sharply decreased to -6.873 with a highly 

p-value of 0.0000001 well below all critical values (1%: -3.551; 5%: -2.914; 10%: -2.955). 

This confirms that the time series became stationary after second differencing, justifying the 

use of d=2 in the SARIMA model configuration. In achieving stationarity, all the test statistics 

are presented in the table, No.2. The second differencing gives a mean and a stable variance. it 

is adopted for further study. 

Table 7: Stationarity statistics 

Differencing 

Level 

Test 

Statistic 
p-value 

Critical 

Value 

(1%) 

Critical 

Value 

(5%) 

Critical 

Value 

(10%) 

Stationarity 

Conclusion 
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5.4.Model Identification and Parameter Estimation 

5.4.1. Model Identification Using ACF and PACF: 

After performing second differencing, the data were found to be stationary. The test statistics 

are presented in Table 2, indicating that the d value is 2 for second-order differencing.  The 

ACF and PACF plots help to determine the parameters for the SARIMA model. In the ACF 

plot, Figure 5, significant lags were observed up to approximately lag 30. This suggests the 

presence of a moving average (MA) process, at lag 1, 3, and 4, showed a clear spike beyond 

the 95% confidence bound, which signifies a strong correlation at these lags, indicating the 

order q could be 1,3 and 4. The PACF plot, Figure 6, shows clear spikes at lags 1 and 3, 

followed by a sharp cutoff, suggesting an autoregressive (AR) process with order p values 1 

and 3.  

 

Figure 11: ACF Plot of the Second time differenced of the original sales data 

Original Data 1.218 0.996 -3.544 -2.91 -2.593 Non-

stationary 

After First 

Differencing 

-1.388 .5877 -3.551 -2.914 -2.595 Non-

stationary 

After Second 

Differencing 

-6.873 0.0000001 -3.551 -2.914 -2.955 Stationary 
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Figure 12: PACF plot of the second time differenced of the original sales data 

 

In order to identify the seasonal parameters, the annual seasonality exhibited by the monthly 

E2Ws sales series, season differencing at the shift of the time series of 12 months of the original 

series was performed. The Autocorrelation Function (ACF) of the differenced series showed 

sharp spikes at lags 1 and 4, thereafter declining gradually. It is a sign of a strong seasonal 

moving average (MA) component. So, from the ACF of the seasonal component, we can take 

the moving average parameter Q, which can be taken in between 1 and 4 to build the SARIMA 

model.  At the same time, the Partial Autocorrelation Function (PACF) plot of the seasonal 

component showed significant spikes at lags 1 and 2 beyond the 95% confidence interval. At 

these lags, good autocorrelation in the PACF plot Figure 6 after lag 2 became fainter. So, to 

build the SARIMA model, we can start with the seasonal Autoregressive parameters 1 and 2. 

To empirically evaluate this, multiple SARIMA models were tested with varying values of 

non-seasonal moving average parameter q, autoregression parameter p. and Seasonal MA 

Parameter Q, seasonal AR parameter P.  The non-seasonal parameter (3, 2, 3) and seasonal 

parameter (2, 1, 3, 12) demonstrated superior performance across key forecasting metrics, 

including a lower MAPE, MAE and a reasonably high score R2, in these observations, which 

are consistent with identifying SARIMA parameters for a dataset showing trends and 

seasonality. 
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Figure 13: ACF and PACF plot of the seasonal component of the time series data 
5.4.2. Model Parameter Estimation and Fitting: 

Based on the analysis of the seasonal and non-seasonal ACF and PACF plots, a range of 

SARIMA model specifications was evaluated. The best-fitting model was identified through 

iterative testing using model selection criteria: Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC), and Hannan-Quinn Information Criterion (HQIC). The SARIMA 

(3,2,3) (2,1,3) [12] model demonstrated optimal performance with the lowest values across all 

criteria: AIC = 873.094, BIC = 893.360, and HQIC = 880.422. The model also achieved a log-

likelihood of –424.547, indicating a good balance between model fit and complexity. 

Table 8 summarises the key statistics: This model effectively captures both the non-seasonal 

and annual seasonal dynamics in the monthly sales time series data from January 2017 to 

October 2024 (n = 94 observations). 

Table 8: Evaluation matrices 

Matrices Value 

Log-Likelihood -424.547 

AIC 873.094 

BIC 893.360 

HQIC 880.422 

 
5.5. Model Validation: Training and Testing  

To evaluate the predictive performance of the selected SARIMAX (3,2,3) (2,1,3,12) model, the 

dataset comprising 94 monthly observations from January 2017 to October 2024 was 
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partitioned into training and testing sets. The first 77 observations (January 2017 to May 2023) 

were used to train the model, while the remaining observations (August 2023 to October 2024) 

were reserved for testing and validation purposes. 

 

Figure 14: Plot of the fitted SARIMA model over training and testing 

 

The model was trained on the training dataset using the maximum likelihood estimation 

approach. After fitting, one-step-ahead dynamic forecasts were generated for the test set, and 

the forecasted values were compared with the actual sales data to assess predictive accuracy. 

The model's performance was evaluated using standard statistical metrics, including Mean 

Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), Mean Absolute Error 

(MAE), and the coefficient of determination (R²). 

The results yielded a MAPE of 10.93%, indicating a relatively low average percentage 

deviation between predicted and actual values. The RMSE was 13897.8, and the MAE was 

9499.81, suggesting a reasonable error magnitude. Furthermore, the model achieved an R² 

score of 0.678, which confirms that a substantial proportion of the variance in E2Ws sales is 

explained by the fitted model. These metrics demonstrate that the SARIMAX model offers 

robust forecasting capability and generalises well to unseen data. The validated model was then 

used for full-sample forecasting and diagnostic analysis. 
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Table 9: Standard statistical matrix 

Parameter Values 
MAPE 10.93% 
R2 0.678 
MAE 9499.81 
RMSE 13897.8 

 

5.6. Evaluation matrices 

Reasonable Accuracy (MAPE 10.93%): With a Mean Absolute Percentage Error of 10.93%, 

the model achieves a commendable level of accuracy, indicating that it reliably captures trends 

and seasonality in the data, which can be used to make long-term forecasts. 

Explained Variance (R² 0.678): The R² value of 0.678 shows that the model explains a 

significant 0.678% of the variance in the data, providing valuable insights into the underlying 

patterns and trends. 

Trend and Seasonality Capture: The model successfully identifies and predicts the increasing 

trend in battery waste over time, making it a reliable tool for long-term planning and 

infrastructure development. 

The model demonstrates strong predictive capabilities with reliable accuracy and practical 

trend analysis. These results underscore its utility in supporting sustainable waste management 

strategies and decision-making for the growing two-wheeler EV market. 

The model's robustness was assessed using a 77-month training and 17-month testing, which 

is approximately an 80-20 split, ensuring validation of unseen data. Although SARIMA 

provided valuable insights into the time series patterns, the exponential sales growth hints at 

the potential for improvement by integrating models designed for rapid trend escalation. 

Further, this SARIMA model is fitted and used for forecasting the monthly sales till 2030. 

Based on this forecast, further, the potential battery waste is calculated till 2030 

5.7. Model Diagnostics 

The diagnostic evaluation of the fitted SARIMA (3,2,3) (2,1,3) [12] model demonstrates that 

the residuals generally satisfy the assumptions of randomness and normality. The Ljung–Box 

Q-test at lag 1 yields a test statistic of 0.74 (p = 0.39), indicating no significant autocorrelation 

and suggesting that the residuals behave like white noise. The Jarque–Bera test confirms the 

normality of residuals (JB = 0.30, p = 0.86), with a skewness of –0.20 and kurtosis of 2.83, 
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indicating a nearly symmetric distribution. As illustrated in Figure 15, the standardised 

residuals oscillate randomly around zero without discernible patterns, while the histogram and 

kernel density estimate closely approximate a normal distribution. The normal Q–Q plot shows 

that most residuals lie along the 45-degree line, with only slight deviations at the tails, 

reinforcing the normality assumption. Furthermore, the correlogram of residuals shows all 

autocorrelation values within the 95% confidence interval, reaffirming the absence of residual 

autocorrelation. However, the model reveals some evidence of heteroskedasticity (H = 4.13, p 

= 0.02), suggesting that the variance of the residuals may vary over time. Although this does 

not critically impair the model’s predictive accuracy, it may influence the width and reliability 

of forecast intervals. Overall, the residual diagnostics (Figure 15) support the adequacy of the 

SARIMA model in capturing the underlying structure of the time series data for reliable 

forecasting. 

 

Figure 15: Model diagnostic plot 
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5.8. Forecasting future sales using the optimised SARIMA model: 

After successfully finalising the SARIMA model, which demonstrated satisfactory accuracy in 

its predictions, we will leverage this model to project future sales figures from November 2024 

through December 2030. This forecasting will provide valuable insights into expected sales 

trends over the coming years. Notably, the forecast indicates a significant increase in sales of 

E2Ws vehicles, demonstrating an upward trend throughout the forecast period. The projected 

monthly sales figures increase from approximately 120,747 units in November 2024 to 341,345 

units by December 2030, representing nearly a tripling of monthly demand over the forecast 

horizon. These upward trends reflect the anticipated expansion of the India EV market, driven 

by policy incentives, cost reduction and rising Environmental awareness. Table 12, showing 

the monthly E2Ws Sales forecasts from the SARIMA model, is provided, along with another 

table displaying the annual sales forecasts over six years, highlighting projected trends and 

expected growth. To further illustrate the data, the monthly sales forecasts produced by the 

model are visually represented in Figures 10 and 11.  

 

Figure 16: SARIMA model forecasted and past data plot 
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Figure 17: Forecasted monthly sales till 2030 
5.9. Estimation of Potential EV Waste 

The forecasted E2Ws sales data were further utilised to estimate the potential LIB waste that 

will accumulate as a result of increased adoption. This estimation was grounded in a base case 

scenario where the average specific energy of battery cells was assumed to be 210 Wh/kg, 

derived as the mean of the representative range (160 Wh/kg to 260 Wh/kg) commonly observed 

in lithium iron phosphate (LFP) and nickel manganese cobalt (NMC) chemistries. Furthermore, 

the average battery capacity per E2Ws was set at 2.025 kWh, as referenced from industry-

based benchmarks and reports such as the ICCT Working Paper (Gode et al., 2021). 

By combining these parameters, the estimated battery mass per unit was calculated and applied 

to the SARIMA-forecasted sales figures to compute monthly and annual projections of LIB 

waste. The waste estimation considers only the cell mass of the battery, which is directly linked 

to material recovery and recycling system design. 

The results indicate a substantial and accelerating increase in battery waste. In 2025, the total 

estimated potential battery waste corresponding to forecasted E2Ws Sales is approximately 

17.17 million kilograms, which nearly doubles to 37.02 million kilograms by 2030. Monthly 

projections reveal a consistent upward trend, with peaks in months exhibiting strong sales, such 

as March and October. This exponential growth reflects the cumulative impact of widespread 

E2Ws adoption and aligns with the battery replacement cycles reaching end-of-life. 

Figure 18 offers insights into the Estimated Potential Future LIB waste corresponding to 

forecasted E2Ws, providing a clear graphical overview of the anticipated sales patterns over 
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time. Along with the monthly potential battery waste from E2Ws Sales, the annual potential 

waste is also calculated from the monthly Sales Data for both historical sales and Forecasted 

Sales The results are visualized in Figure 19 and Figure 20, while Table 10 presents the 

potential battery waste corresponding E2Ws from past sales data and table 11 illustrates future 

potential waste from forecasted data 

 

 

Figure 18: Monthly forecasted sales and corresponding battery mass waste potential 
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Figure 19: Projected LIB waste generation from past sales data 
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Table 10: Estimated annual waste in Kg from past sales 

Year 2017 2018 2019 2020 2021 2022 2023 2024 

Annua
l 
Waste 
in Kg 

13596.4
3 

179636.
8 

31155
1 

28185
1 

163359
6 

645233
5 

856686
9 

1072153
6 

 

 

Table 11: Estimated projected annual waste from forecasted EV Sales 

Year 2025 2026 2027 2028 2029 2030 
Annually 
forecasted 
potential 
waste in 
Kg 

17172434 18691656 22757866 27163475 31916459 37018331 

Table 12: Estimated future EVs waste from forecasted Two-Wheeler sales 

Month 
Sarima 
Forecasted 
Sales 

Estimated 
Potential Future 
EVswaste from 
Forecasted 
Electric Two-
Wheler Vehicle 
in Kg 

Month 
Sarima 
Forecasted 
Sales3 

Estimated 
Potential 
Future 
EVswaste 
from 
Forecasted 
Electric Two-
Wheler 
Vehicle in Kg 

30-11-2024 120747 1164346.1 31-01-2028 215665 2079626.8 
31-12-2024 112074 1080713.6 29-02-2028 219028 2112055.7 
31-01-2025 113262 1092169.3 31-03-2028 242957 2342799.6 
28-02-2025 116139 1119911.8 30-04-2028 225925 2178562.5 
31-03-2025 138648 1336962.9 31-05-2028 218938 2111187.9 
30-04-2025 122350 1179803.6 30-06-2028 219090 2112653.6 
31-05-2025 114661 1105659.6 31-07-2028 229277 2210885.4 
30-06-2025 114305 1102226.8 31-08-2028 232621 2243131.1 
31-07-2025 123386 1189793.6 30-09-2028 236692 2282387.1 
31-08-2025 126228 1217198.6 31-10-2028 261163 2518357.5 
30-09-2025 129433 1248103.9 30-11-2028 262182 2528183.6 
31-10-2025 152702 1472483.6 31-12-2028 253415 2443644.6 
30-11-2025 153124 1476552.9 31-01-2029 255362 2462419.3 
31-12-2025 143786 1386507.9 28-02-2029 258975 2497258.9 
31-01-2026 145045 1398648.2 31-03-2029 283159 2730461.8 
28-02-2026 147973 1426882.5 30-04-2029 266370 2568567.9 
31-03-2026 171250 1651339.3 31-05-2029 259633 2503603.9 
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30-04-2026 154032 1485308.6 30-06-2029 260036 2507490 
31-05-2026 146547 1413131.8 31-07-2029 270477 2608171.1 
30-06-2026 146244 1410210 31-08-2029 274070 2642817.9 
31-07-2026 155859 1502926.1 30-09-2029 278394 2684513.6 
31-08-2026 158750 1530803.6 31-10-2029 303119 2922933.2 
30-09-2026 162296 1564997.1 30-11-2029 304388 2935170 
31-10-2026 186181 1795316.8 31-12-2029 295872 2853051.4 
30-11-2026 186727 1800581.8 31-01-2030 298070 2874246.4 
31-12-2026 177490 1711510.7 28-02-2030 301934 2911506.4 
31-01-2027 178947 1725560.4 31-03-2030 326371 3147148.9 
28-02-2027 182070 1755675 30-04-2030 309831 2987656.1 
31-03-2027 205723 1983757.5 31-05-2030 303346 2925122.1 
30-04-2027 188491 1817591.8 30-06-2030 304000 2931428.6 
31-05-2027 181253 1747796.8 31-07-2030 314692 3034530 
30-06-2027 181161 1746909.6 31-08-2030 318537 3071606.8 
31-07-2027 191086 1842615 30-09-2030 323112 3115722.9 
31-08-2027 194186 1872507.9 31-10-2030 348090 3356582.1 
30-09-2027 198002 1909305 30-11-2030 349610 3371239.3 
31-10-2027 222209 2142729.6 31-12-2030 341345 3291541.1 
30-11-2027 222980 2150164.3       
31-12-2027 213967 2063253.2       

5.10.  Scenario-Based Analysis of Battery Lifespan and Waste Contribution 

To enhance the robustness of battery waste estimation, this study incorporated realistic battery 

degradation patterns by modelling three different lifespan scenarios. As lithium-ion batteries 

typically retire once their usable capacity drops below 80% of the original, the effective EOL 

contribution was recalculated under three lifespan assumptions: a low-performing scenario (4 

years), a base-case scenario (6 years), and an optimistic scenario (8 years). For each scenario, 

the projected battery waste from E2Ws sales was shifted forward in time to reflect the actual 

year when the battery is likely to reach its end of service. 

This scenario-based temporal adjustment resulted in significantly different annual waste 

contributions over the forecast horizon. For instance, under the 4-year scenario, waste volumes 

rise earlier, peaking sooner due to quicker battery turnover. In contrast, the 8-year scenario 

delays peak waste generation, extending the material load into the 2030s. The base case (6 

years) provides a balanced estimate aligned with industry standards. Figure 20 presents a 

comparative visualisation of annual battery waste contributions across the three scenarios, 

offering a dynamic and forward-looking view of waste emergence patterns. These insights are 
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critical for aligning infrastructure deployment, recycling capacity planning, and policy 

implementation with actual battery retirement timelines. 

 

Figure 21: Effective battery waste contribution in the base case scenario of a 6-year 
battery life span 

 

Figure 22: Waste contribution after the end of life of lithium-ion batteries in all three 
scenarios 
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5.11. Site Suitability Result 

This section presents the reclassification results of each spatial criterion used in the site 

suitability analysis. The reclassified raster layers represent the spatial distribution of suitability 

classes on a scale of 1 (least suitable) to 5 (most suitable)(Akther et al., 2019). These individual 

suitability layers form the basis for the multi-criteria decision-making process using the AHP 

model. 

5.11.1. Slope 

The slope map was derived from the SRTM DEM and reclassified into five suitability classes. 

Areas with a slope of 0–5%, which are ideal for construction and industrial infrastructure, were 

assigned the highest suitability score (5). These flat terrains are mostly concentrated in the 

central and northern parts of the Indore district. Conversely, areas with slopes greater than 20% 

were considered unsuitable (score 1) due to difficulties in construction and drainage. Overall, 

the majority of the study area exhibited gentle to moderate slopes, making it favourable for 

industrial development. 

 

Figure 23: Reclassified slope map of Indore district 
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5.11.2. Proximity to Major Roads 

The road network layer was extracted from OpenStreetMap and analysed based on proximity 

to major roads. The analysis revealed that areas within 250–750 meters from major roads 

received the highest suitability score (5), as they offer ease of transportation without being too 

close to cause environmental and safety concerns. Areas within <250 meters were assigned a 

low score (1) due to possible restrictions and safety issues related to proximity to road 

corridors. Most of the central and eastern parts of Indore showed high suitability in terms of 

road accessibility. 

 

Figure 24: Reclassified Road map of Indore district 
5.11.3 Proximity to Surface Water Bodies 

Surface water bodies were also mapped from OpenStreetMap data. Locations farther than 4000 

meters from water bodies were considered the most suitable, with a score of 5 to avoid potential 

contamination risks. Areas closer than 250 meters were given the lowest suitability score of 1. 
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The reclassified map showed that the north-western and some central zones of Indore district 

were far from surface water bodies and thus highly suitable for setting up a recycling plant. 

 

Figure 25: Reclassified surface water bodies map of Indore district 
5.11.4 Proximity to Rivers/Streams 

In addition to static water bodies, river and stream proximity were analysed separately due to 

their environmental sensitivity. A buffer of >4000 meters from rivers was assigned the highest 

suitability (score 5), while areas within 500 meters were considered unsuitable (score 1). The 

southern and western parts of the district had significant stretches of suitable land, while central 

zones near the Khan and Saraswati rivers were found to be unsuitable for industrial 

development. 
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Figure 26: Reclassified River map of Indore district 
5.11.5. Proximity to Industrial Areas 

Proximity to existing industrial areas is a major factor for selecting a site, as it facilitates access 

to utilities and reduces the burden on new infrastructure. Areas within 1000 meters of industrial 

zones were ranked as highly suitable (score 5). The map analysis showed clusters of high 

suitability around Pithampur Industrial Area and regions south of the urban core, indicating 

favourable zones for plant establishment. 
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Figure 27: Reclassified industrial area map 
 5.11.6 Land Use and Land Cover (LULC) 

LULC data is crucial in identifying locations with minimal environmental impact and legal 

restrictions. Areas categorised as barren or wasteland are more suitable for industrial 

development, while agricultural, forested, or residential zones are less favourable. In this study, 

LULC was derived from Esri Sentinel-2 satellite imagery, allowing for accurate classification 

of the land surface features within the Indore district. 

. 
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Figure 28: LULC 2024 map of Indore district 
5.11.7 AHP multicriteria matrix and pair-wise comparison 

The AHP approach can be used as a set of tools for deriving the weights of criteria. The AHP 

can deal with inconsistent judgments. The Pairwise Comparison Matrices involve comparing 

all the possible pairs of criteria in order to determine which of all the criteria is of a higher 

priority. To identify the potential sites for water conservation, site selection depends on the 

rating and the weights of each thematic layer. 

 

Table 13: Pairwise comparison matrix 

Column1 LULC Industrial 
Area 

Surface Water 
body 

River Road 
Network 

Slope 

LULC 1 1 4 5 6 8 
Industrial 
Area 

1 1 3 4 5 7 

Surface 
Water body 

0.25 0.33 1 2 4 5 

River 0.2 0.25 0.5 1 3 5 
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Road 
Network 

0.17 0.125 0.2 0.25 1 3 

Slope 0.13 0.142 0.2 0.20 0.33 1 
Sum 2.74 2.85 8.9 12.45 19.33 29 

 

Table 14: Standardised matrix 

STANDARDIZED MATRIX 
 

LUL
C 

Industria
l Area 

Surfac
e 
Water 
body 

River Road 
Networ
k 

Slope AVG. 
Weigh
t 

Lambd
a 

LULC 0.364
7 

0.3507 0.4494 0.401
6 

0.3103 0.275
9 

0.36 6.4540 

Industria
l Area 

0.364
7 

0.3507 0.3371 0.321
3 

0.2586 0.241
4 

0.31 6.3614 

Surface 
Water 
body 

0.091
2 

0.1169 0.1124 0.160
6 

0.2069 0.172
4 

0.14 6.2899 

River 0.072
9 

0.0877 0.0562 0.080
3 

0.1552 0.172
4 

0.10 6.0680 

Road 
Network 

0.060
8 

0.0438 0.0225 0.020
1 

0.0517 0.103
4 

0.05 5.8921 

Slope 0.045
6 

0.0501 0.0225 0.016
1 

0.0172 0.034
5 

0.03 6.0258 

Sum 1 1 1 1 1 1 Max 6.4540 
 

The final percentage weightage values of different layers are listed in a table prepared 

according to the AHP proposal, which reflects the number of criteria involved, as shown in 

Table 15 

Table 15: AHP model percentage weightage 

Sr No. Layer Weightage (%) 
1 LULC 36 
2 Industrial Area 31 
3 Surface Water body 14 
4 River 10 
5 Road Network 5 
6 Slope 3 
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5.12. LIB Recycling plant Suitability Analysis using Weighted Overlay 

A weighted overlay analysis was conducted using ArcGIS software to identify suitable sites 

for a LIB recycling plant in Indore district, Madhya Pradesh. Six criteria layers were 

considered: Land Use and Land Cover (LULC), proximity to industrial areas, distance from 

surface water bodies, river/stream buffer zones, road network, and slope. Weights were 

assigned to each layer using the Analytical Hierarchy Process (AHP), with LULC (36%) and 

proximity to industrial areas (31%) contributing the most. 

Each layer was reclassified into a common suitability scale (1–5), and integrated using the 

weighted overlay tool. The resulting suitability map (Figure 29) categorises the district into six 

classes: Restricted, Not Suitable, Low Suitable, Moderate Suitable, Suitable, and Most 

Suitable. 

 

Figure 29: Land suitability map for EV recycling plant 
The map reveals that areas with high to very high suitability are primarily concentrated in the 

western and southern parts of the district, particularly near Pithampur and existing industrial 

zones. These zones exhibit optimal land use, gentle slopes, sufficient distance from water 

bodies, and good road connectivity. In contrast, central and northeastern regions are dominated 
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by restricted or unsuitable areas due to high proximity to water bodies, dense urban settlements, 

or steep slopes. This spatial analysis provides a strategic decision-support framework for 

policymakers to identify environmentally and logistically appropriate sites for future recycling 

infrastructure. 
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Chapter 6 

Conclusion 

The transition to electric mobility in India, particularly in the two-wheeler segment, presents a 

promising pathway toward decarbonised transportation. However, this shift also introduces 

complex environmental and infrastructural challenges, particularly regarding the lifecycle 

management of lithium-ion batteries (LIBs). This study holistically addresses this issue by 

forecasting E2Ws sales, estimating future LIB waste, and identifying suitable locations for 

recycling infrastructure within the Indore district. 

A Seasonal Autoregressive Integrated Moving Average (SARIMA) model, specifically 

SARIMA (3,2,3) (2,1,3) [12], was developed to forecast monthly E2Ws sales from November 

2024 to December 2030. The model was validated through an 80-20 train-test split, achieving 

strong performance metrics: a MAPE of 10.93%, RMSE of 13,897.8, and R² of 0.678. 

Diagnostic checks confirmed the adequacy of the model, with residuals exhibiting white noise 

characteristics and no significant autocorrelation. Forecast results indicate a consistent upward 

trend in E2Ws adoption, with monthly sales expected to grow from approximately 120,000 

units in late 2024 to over 340,000 units by the end of 2030. 

Using these forecasts and industry-standard assumptions—specifically, a specific energy of 

210 Wh/kg and an average battery capacity of 2.025 kWh per E2Ws—the study estimates a 

substantial rise in LIB waste generation. Annual battery waste is projected to grow from 17.17 

million kg in 2025 to 37.02 million kg by 2030, marking a more than twofold increase in just 

five years. Combined with historical data (2017–2024), the trend reveals three distinct phases: 

early adoption (minimal waste), rapid expansion (2021–2024), and sustained high-volume 

waste generation post-2025. This underscores the urgent need to develop EOL battery 

management frameworks and material recovery systems. 

To tackle the spatial aspect of this new challenge, a site suitability assessment was done through 

multi-criteria GIS-based approaches to determine the best locations for the setting up of a 

battery recycling plant in Indore district, Madhya Pradesh. The study included the major 

influencing factors like proximity to urban areas, road and rail connectivity, population density, 

industrial areas, and environmentally sensitive areas. The outcomes identified a number of 

high-potential areas on the peripheries of Indore city, well located to serve both existing and 
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future flows of waste efficiently. The sites provide logistical benefits and environmental and 

land-use compliance opportunities for sustainable infrastructure development. 

Through the combination of temporal prediction and spatial suitability analysis, this study 

provides an integrated framework for predicting and planning for the environmental impact of 

India's EVs revolution. This enables proactive policy development, industrial investment 

planning, and local implementation of battery recycling infrastructure. The results offer timely 

advice to national and regional stakeholders such as policymakers, urban planners, battery 

manufacturers, and waste management agencies. 

Finally, this research adds significantly to the growing literature on circular economy strategies 

in electric mobility. By projecting future waste for batteries and determining where 

infrastructure must be established, it fills the data-driven planning-sustainable action gap, 

buttressing the significance of forward-looking strategies in the development of India's green 

transport future. 

 

Future Scope 

While this thesis offers a comprehensive approach to LIB waste forecasting and recycling site 

identification, several future research opportunities exist to expand and deepen the insights: 

1. Incorporating Other EV Segments: Future studies could include electric three-wheelers, 

passenger vehicles, and public transport EVs to provide a more holistic estimation of 

national battery waste loads. 

2. Integration of Battery Second-Life Use: Exploring second-life applications (e.g., 

stationary energy storage) before recycling would refine waste timelines and help optimise 

resource recovery strategies. 

3. Dynamic Lifespan and Degradation Models: Integrating battery health data and real-

world usage patterns could replace fixed-lifespan assumptions with more accurate, 

dynamic degradation curves. 

4. Policy Simulation and Demand Scenarios: Incorporating various government incentive 

policies or technology diffusion scenarios could help forecast under different future 

adoption pathways. 

5. Real-time GIS Dashboard for Stakeholders: A future extension could involve 

developing an interactive GIS-based decision-support tool for regulators and industries to 

visualise forecasted waste and infrastructure demand in real time. 
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