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Abstract

The rapid adoption of Electric Vehicles (EVs) in India, particularly electric two-wheelers
(E2Ws), has amplified the urgency for sustainable end-of-life (EOL) EV lithium-ion battery
(LIB) management. This thesis presents an integrated approach to forecasting LIB waste
generation from E2Ws and identifying suitable locations for establishing a LIB recycling
facility in Indore, India. A Seasonal Autoregressive Integrated Moving Average (SARIMA)
model was developed using 94 months of historical E2Ws sales data (2017—2024) sourced from
the VAHAN portal. The model demonstrated robust forecasting accuracy with an R? value of
0.70 and an MAPE of 10.8%, effectively capturing both seasonal and non-seasonal patterns in
EV adoption. Forecasts extended through 2030 were used to project future battery waste,
considering average battery capacities and a base-case specific energy of 210 Wh/kg. Battery
EOL contributions were assessed across three lifespan scenarios (4, 6, and 8 years), providing

scenario-based waste timelines that align with practical battery degradation behaviour.

In parallel, a GIS-based site suitability analysis was conducted using the Analytical Hierarchy
Process (AHP) combined with spatial datasets including land use, proximity to roads, water
bodies, industrial zones, slope, and elevation. The results identify optimal locations in the
Indore district for LIB recycling infrastructure development, ensuring environmental

compliance, logistical feasibility, and urban integration.

This research delivers a novel methodological framework tailored to Indian conditions for
linking EV market growth with battery waste forecasting and strategic infrastructure planning.
The outcomes support policymakers, industry stakeholders, and urban planners in anticipating
LIB waste flows, optimising recycling operations, and accelerating India's transition towards a

circular economy in the EV sector.

The integration of spatial and temporal analysis offers a practical tool for policymakers and
planners to align infrastructure development with projected battery waste volumes. This study
not only quantifies future waste but also provides actionable insights into regional

infrastructure planning, supporting India's sustainable EV transition.
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Chapter 1

Introduction

1 Introduction

Lithium-ion batteries (LIBs) have revolutionised the energy storage sector, making them an
essential component of modern technologies such as Electric Vehicles (EVs), consumer
electronics, and renewable energy systems. This acceptance has been made possible by the
increasing energy density, longer service life, and lower self-discharge rates of such secondary
batteries when compared to the traditional ones (Xu et al., 2021). Given current global efforts
to switch to sustainable energy sources, LIBs are expected to boom in demand in the coming
years. The report by the International Energy Agency (IEA) states that demand for EVs will
increase ten times in about eight years by 2030, exacerbating the use and waste of lithium

batteries (International Energy Agency (IEA), 2022).

Even though LIBs encourage the use of clean energy, which in turn helps to mitigate climate
change effects through the reduction of greenhouse gases, they become a threat to the
environment at the end of their useful life. Improper disposal carries the risk of leaching
dangerous chemicals into the surroundings, such as lithium, cobalt, and nickel, that poison land,
water, and biosystems (Ai et al., 2019). There is, therefore, a need to devise waste management
techniques that can contain such environmental hazards while enabling the recovery of

precious materials from waste.

The increase in demand for LIBs presents another significant challenge: the appropriate
disposal and recycling of spent batteries. In this regard, a study by X. Zhang et al., (2020) has
indicated that the volume of LIB waste produced is anticipated to surpass 2 billion metric
tonnes yearly around 2030 in the foreseeable future. This increase in the amount of battery
waste calls for accurate estimated future waste generation models. This is because forecasting
is fundamental in enabling various activities, including the planning of recycling plants by
governments and industries, the formulation of circular economy policies and strategies, as

well as sustainable battery usage policies.

The study has these aims in mind and focuses on three key aspects of LIB waste management:
forecasting the amount of waste to be produced, devising solutions for recycling applicable at
the local level, and finally, analysing the impact of batteries on the environment. Such

initiatives are essential in alleviating the negative effects of global warming and emerging
1



sustainable development issues. The drivers’ quick shift towards EVs may occur with lower
emissions of greenhouse gases yet poses a two-edged problem in that there is the quest for
more lithium, cobalt, nickel, and other finite mineral resources, alongside environmental
concerns due to poor management of LIBs at the end of their life. In providing the models to
predict waste and the site-specific strategies for waste recycling, this research aids in reducing

waste generation and the unnecessary exploitation of natural resources.

Such a framework is intended to facilitate the financing of the sustainable and circular economy
for EV batteries, which respond to some of the key United Nations Sustainable Development
Goals (SDGs), namely Responsible Consumption and Production (SDG 12) and Climate
Action (SDG 13). It underscores the importance of eco-friendly approaches that seek an
equilibrium between economic growth and environmental protection. This study seeks to make
recommendations that will help decision-makers, city managers, and business owners alleviate
the effects of LIB waste on the climate, deal with challenges to sustainable development, and

strengthen the ability of the EV ecosystem to cope with changes in the environment.

Most conventional approaches for waste management focus on the use of the straight-line
model or the extrapolation of past data and incorporate seasonal variations and irregular factors.
Regarding the generation of waste from LIBs, various temporal influences such as % society-
switching-to-EV-over-time, technological improvement and battery life span lead to variation
in its temporal structure. Hence, sophisticated forecasting techniques are necessary to tackle

these problems and make accurate predictions.

The global shift toward electric mobility has ushered in a new era of energy storage demands,
particularly in the form of LIBs. As EVs become increasingly prevalent, so too does the volume
of EOL LIBs require safe and sustainable disposal or recycling. This concern is especially
pertinent in the Indian context, where the market for E2Ws and four-wheelers is expanding

rapidly due to government incentives, technological advances, and environmental concerns.

In India alone, the EV market is projected to reach 10 million annual sales by 2030, with two-
wheelers comprising approximately 70% of the demand, according to a recent report by
(Electric Vehicles: Electric Vehicle Industry in India and Its Growth, 2025) India’s EV stock
exceeded 3 million units by the end of 2022 and is expected to grow exponentially. As the first
generation of LIB-powered EVs approaches the end of its operational life, the country faces a
looming wave of battery waste. By 2030. LIBs contain valuable but hazardous materials such

as lithium, cobalt, and nickel(Dob¢ et al., 2023). Improper disposal can lead to environmental

2



degradation and safety hazards (Boyden et al., 2016). while efficient recycling can support
resource recovery and circular economy goals. Given the scale of anticipated battery waste, it
is imperative to develop infrastructure for environmentally sound and economically viable
recycling. However, selecting an optimal site for a LIB recycling plant involves complex
considerations, including proximity to battery waste generation centres, environmental

sensitivity, land use compatibility, and infrastructural accessibility.

This thesis aims to perform a site suitability analysis for establishing a LIB recycling plant,
with a focus on spatial distribution and future forecasting of battery waste generated from EVs
and other consumer electronics. A multi-criteria decision-making (MCDM) approach
integrated with Geographic Information Systems (GIS) will be employed to evaluate spatial
variables such as Land Use Land Cover, road networks, Industrial Area, slope, and proximity
to surface water bodies. The analysis is supported by forecasting models to predict the quantity
and geographical origin of battery waste from EVs up to 2035. By integrating spatial analysis
with battery waste forecasting, this research contributes to both academic knowledge and

practical planning for sustainable e-waste management in India.



Chapter 2

Literature Review

2. Literature review

Recycling Technologies: The recycling of LIBs employs various techniques that could be
termed hydrometallurgical or pyrometallurgical. Liu et al., (2022) In their systematic review,
they stated that these techniques abandon the use of environmentally hazardous processes. The
authors delve into processes like selective leaching, which have been developed to optimise

the recovery of the metals present in spent batteries.

Economic and Environmental Benefits of Recycling: The cost-effectiveness of LIBs and
other battery recycling systems has been supported by the analysis by Ahmad et al. (2021). The
study researched the cost and pollution benefits that come with the production process, where
lithium, cobalt, nickel, and more metals are used in battery manufacture. The study also
established that recycling materials could cut down GHG emissions by approximately 60%

when compared to normal mining processes.

The Perspective of Circular Economy Consideration: Chenet al., (2023) suggest a circular
economy for LIB management while arguing that spent batteries and their components should
be recycled and reused as sources of raw materials, thereby saving the cost of resources and
decreasing the amount of waste production. Their assessments perceived that recycled

resources in thermal batteries could decrease virgin materials by a great amount.

Life Cycle Assessment (LCA) of LIB: Conducting life cycle assessments shall be the main
objective of evaluating the drawbacks of lithium batteries from production through use to final
disposal. Kuo et al., (2022) The research proposes LCA as a tool that can help manage the total
emissions for every stage of a battery’s lifecycle. Its manufacture and use constitute the need

for enhanced recycling practices in the batteries to avoid environmental destruction.

Site Suitability for Recycling Plants: The site for the placement of recycling plants is very
important in the quest to maximise the logistics and minimise the emissions associated with
transport. Wang et al., (2021) used GIS to evaluate the feasibility of city residents and the
location of EV sales for recycling plants of LIBs.

Regulatory Frameworks: Waste management policies must be implemented to assist and

promote the sustainable recycling of LIBs. In the work done by Lee et al. (2022), the existing

4



guidelines regarding the disposal and recycling of batteries are reviewed with strong support
for more robust measures to be imposed so that practices within the sector are environmentally

friendly.

Recycling Technology Developments: The development of technology in recovering
materials from batteries is key to achieving higher recovery rates at a lower cost. In the research
done by Y. Zhang et al., (2023) It was reported that biotechnological methods, such as
bioleaching and biotechnological hydrometallurgical circuits, are being developed for better

recovery of metals from waste and spent batteries.

Interference of the Environment through Ineffective Disposal: The inappropriate
management of LIB batteries can have dangerous repercussions on the environment, such as
introducing toxic elements to soil and water sources. In a paper published by Patel et al.,
(2022)The dangers brought by the dumping of waste in landfills are examined, and a call for

recycling efforts is made.

Prospective Trends in the Management of Secondary Li-ion Batteries: Markers of current
and future literature stress the rapid promotion of the development of management of waste
systems for LIBs, which is bound to increase alongside the adoption of EVs. Smith et al., (2023)
studied how advanced analytics and machine learning technologies can be incorporated into

LIB waste forecasts and decision-making processes.

Regional Characteristics of LIB Recycling: Because of regulations and economies, LIB
recycling is approached within each region. Johnson et al., (2022) used a bibliometric approach,
where they described those nations that are at the top in the adoption of EVs are also

constructing recycling facilities at a steep rate.

2.1 Critical review of literature:

Table 1: Summary of literature reviewed

Title Authors Source and | Key Aspects | Summary
Impact Factor

The Future of | Gaines, L. Sustainable Discusses Emphasises the
Automotive Materials and | global  LIB | importance of early
Recycling: Technologies recycling planning for LIB
Charting a (IF: 10.593) needs, recycling
Sustainable challenges, infrastructure and
Course (Gaines, and future | evaluates recycling
2014) strategies. technologies, such




as
hydrometallurgical
and
pyrometallurgical
methods.

Estimation of
EV Waste in the
Future and Its

Zhang, X., Li,
W., & Meng, F.

Journal of

Cleaner
Production (IF:

Forecasts
LIB
waste volumes

future

Estimates
LIB
exceed 2 million

global
waste to

Environmental 11.072) and examines | metric tons
Impact their annually by 2030
environmental | and emphasises the
implications. | role of forecasting
models in planning
waste management
strategies.
Time Series | Box, G. E. P., | Wiley Introduces Provides
Analysis: Jenkins, G. M., | Publications SARIMA and | theoretical
Forecasting and | & Reinsel, G. | (Impact: Highly | other time | foundations  and
Control (G. E. | C. Cited) series practical guidance
P. Box et al, forecasting for implementing
2016) models, with | SARIMA,
practical emphasising its
applications. | suitability for
seasonal and non-
stationary datasets.
Global EV | International 1IEA Report | Highlights Projects a tenfold
Outlook Energy Agency | (Non-Journal; global EV | increase in EV
2022(Executive | (IEA) Highly adoption adoption by 2030,
Summary — Referenced) trends and the | which will drive
Global EV corresponding | LIB demand and
Outlook 2022 — rise in LIB | waste, and
Analysis - IEA, demand and | underscores  the
2022.) waste. need for
forecasting tools to
prepare for this
shift.
Challenges and | Chen, R., Lu, | Nature Analyzes the | Explores barriers
Prospects of | Y, & Yan, Y. | Sustainability challenges in | such as  cost,
Recycling Li- (IF: 27.157) recycling technology, and
Ion Batteries LIBs and | policy and
presents a | emphasises the
framework for | importance of
integrating




a circular | forecasting  with
economy. recycling  system
design.
Time series | Navarro-Esbri | Resources, Demonstrates | Illustrates the
analysis  and | J, Conservation, the use of | reliability of
forecasting Diamadopoulos | and Recycling | SARIMA for | SARIMA in
techniques for | E, Ginestar D (IF:11.2) waste forecasting waste
municipal solid forecasting in | generation and
waste municipal provides insights
management. systems. into seasonal waste
(Navarro-Esbri patterns applicable
et al., 2002) to LIB  waste
forecasting.
Lithium Sun, L., Qi, Z., | Environmental | Analyses the | Concludes that
Recovery from | & Zhang, Y. Research economic and | lithium recovery is
Waste LIBs: An Letters environmental | essential for
Economic and (IF: 8.985) feasibility of | sustainable LIB
Environmental lithium waste management
Analysis recovery and presents cost-
processes. benefit analyses to
support recycling
initiatives.
Improved State- | Kim S, Lee P, | Journal of | Helps in | Highlights the
of-health Lee M, KimJ | Energy Storage | understanding | improved accuracy
prediction Na W (IF: 8.9) the forecasting | of SARIMA with
based on an methods machine learning
auto-regressive (SARIMA) models and
integrated model compares
moving average performance
with exogenous metrics like RMSE
variables model and MAPE.
in overcoming
battery
degradation-
dependent
internal
parameter
variation (Kim
et al., 2022)
Environmental | Wojciech Energy & | Explores the | Identifies risks
impacts, Mrozik, Environmental | environmental | such as
pollution ORCID Science hazards posed | groundwater
sources, and | Mohammad Ali | (IF: 39.714) by LIB waste | contamination and
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pathways of | Rajaeifar, and recycling | resource depletion
spent LIBs | Oliver inefficiencies. | and advocates for
(Mrozik et al., | Heidrichab and robust forecasting
2021) Paul models to guide
Christensenabc recycling and waste
management
policies.
Critical review | Lai X, Chen Q, | eTransportation | It gives the | This study provides
of life cycle | Tang X, Zhou | (IF:15) EVs waste an | an overview of the
assessment of | Y, Gao F, Guo environmental | framework,
LIBsforEVs:A | Y footprint, and | methods, and
lifespan Zheng Y its impact is | technical
perspective (Lai calculated at | challenges of life
et al., 2022) various cycle assessment
ecological (LCA),
levels by the | comprehensively
LCA approach | reviewing  them.

This leads to the
construction of a
cradle-to-cradle

LCA  framework
for LIBs, which
analyses  carbon
emissions  during

battery production
and recycling, as

well as  under
different  energy
mixes.

2.2. Objectives of the Study:

The present study aims to project LIB waste generation by employing the Seasonal
Autoregressive Integrated Moving Average (SARIMA) approach. The SARIMA model is
considered a powerful approach to forecasting time series data as it accommodates seasonality,
trend, and noise features of the series. Hence, it is ideal for time series data with periodic
fluctuations (Box et al., 2015). The authors of this research will, therefore, apply SARIMA to

available and historical data for the following purposes:



e To forecast monthly E2Ws sales in India using the SARIMAX time series model based
on historical sales data from 2017 to 2024, thereby identifying future market trends
through robust statistical modelling.

e To estimate the mass of lithium-ion batteries associated with the forecasted E2Ws sales,
using standardised assumptions on battery capacity and specific energy values relevant
to dominant battery chemistries (LFP and NMC).

e To project the quantity of EOL LIB waste expected to be generated from E2Ws up to
2030, under three different battery lifespan scenarios (4, 6, and 8 years), simulating

real-world battery performance degradation.

To conduct spatial site suitability analysis using GIS-based Multi-Criteria Decision Analysis
(MCDA) with Analytic Hierarchy Process (AHP), identifying optimal locations for LIB
recycling facilities in Indore district, Madhya Pradesh.

2.3. Scope of the Study:

It is anticipated that the results of this research will enrich the existing literature regarding the
potential solutions to handle battery waste. It is important to be able to estimate the volume of
LIB waste because:
e Infrastructure Planning: It should enable the designing and sizing of recycling and/or
treatment facilities within the existing ones in anticipation of waste generation.
e Policy Making: It can assist governments in regulating the proper disposal or recycling
of waste batteries.
e Economic Rationales: It can help increase the recovery of waste materials with primary
metals, thus lessening dependence on primary mining.
e Environmental Protection: Mitigating the adverse impacts of LIB waste on ecosystems
and public health.
In addition, utilizing the SARIMA approach in this context illustrates how advanced statistical
techniques can help overcome issues related to the environment. Machine learning models, for
example, are often constrained by overwhelming computational requirements and tedious data
preparation processes. SARIMA offers a time series analysis that is simple in application yet

effective in results, making it possible for more researchers and practitioners to employ it



2.4. Challenges

Although this study reveals an interesting application of SARIMA for LIBs waste
forecasting, there are several challenges. These include:

Limitations of Forecasting into the Future: Effective forecasting hinges on the availability
of historical data of sufficient quality, which in some areas may be lacking or incomplete.
Assumptions of Models: For instance, the SARIMA models are based on stationary time
series observations, which often necessitate the application of data transformation
techniques that may otherwise hinder the interpretation of results.

Change in Context: Technological progress, changes in policies, and economic growth
breed uncertainty along time series models as they do not account for such elements.
Notwithstanding these constraints, this study establishes a basic framework for LIB waste
forecasting, which is open to improvement with the addition of more predictors and more
sophisticated modelling techniques in the subsequent study.

Waste forecasts of LIBs are important in managing waste as well as making waste
management strategies effective, as it’s limited. Coupled with this, work done by Y. Zhang
et al., (2023) stresses predictive models that are required to envisage the amounts of LIB
waste at a given point in time, given the expected sales of EVs. The authors employed time
series analysis to predict amounts of LIB waste, illustrating this with the evidence that there

is a need for precise data in developing strategies for recycling.
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Chapter 3

Forecasting Lithium Battery Waste by Two-Wheeler EV's

3. Methodology
This study proposes a systematic, data-driven framework to forecast LIB waste arising from

E2Ws adoption in India. The methodology is structured into three interdependent phases: (i)
time series forecasting of EV sales, (ii) battery lifespan modelling, and (iii) quantification of
EOL LIB waste. Each phase is designed to integrate real-world assumptions and practical
constraints in order to produce reliable and policy-relevant waste estimates. A schematic

representation of the methodology is provided in Figure 1.

s N
Time Series Forecasting of EV Sales
J
( l R
Battery Lifespan Modelling
- J
( l D
Estimation of EOL BatteryWaste
N J
4 1 '
Temporal Battery waste projections under different Battery lifespan models

Figure 1: Methodology adopted in this study

3.1. Phase I: Time Series Forecasting of EV Sales:

Accurate forecasting of E2Ws sales is fundamental to estimating the future burden of LIB
waste. In this study, historical sales data were used to develop a time series forecasting model
based on Seasonal Autoregressive Integrated Moving Average (SARIMA), a widely adopted
statistical approach that captures both trend and seasonality in time dependent. This section
outlines the data acquisition, preprocessing procedures, model development, and validation

methodology adopted in Phase I.
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Figure 2: SARIMA model methodology
3.1.1. Data Collection

The main data source is the VAHAN portal (https://parivahan.gov.in/parivahan/) from the

Ministry of Road Transport and Highways, Government of India, which provides authentic

registered vehicle data. Monthly sales data of electric E2Ws in India were collected for the

12
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period ranging from January 2017 to October 2024. The data collected for this study include
the different classes of E2Ws, such as M-Cycle/Scooter, M-Cycle/Scooter-With Side Car,
Moped and Motorised Cycle (CC>25cc), as classified in the Vahan Portal. Further, the data
from these classes of two-wheelers have been aggregated and collectively referred to as E2Ws
for the purpose of forecasting future sales. For the visualisation of the sales data, the plot is

provided in Figure 3. Table 1 shows the units sold over the course of a year.

Electric 2-Wheeler Sales
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140000
120000
100000
80000
60000
40000
20000
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5/10/2016  9/22/2017 2/4/2019 6/18/2020 10/31/2021 3/15/2023 7/27/2024 12/9/2025
Month

Electic 2- Wheeler Sales unit

Figure 3: Monthly E2Ws sales plot

3.2 Data Preprocessing:

To process the data for time series modelling, Standard data processing procedures were
followed. First, the dataset was searched for missing values and outliers. . The data was then
dated-indexed and resampled to maintain a uniform monthly frequency. In this research, real-
life monthly sales figures of E2Ws available in India from January 2017 to October 2024 were
used. The data showed significant non-stationarity and seasonality, which were handled by
second-order differencing and seasonal decomposition. To identify potential anomalies within

the dataset, the Z-score method was applied.

Value—Mean

The Z-score is computed as: Z = —
Standared Deviation

Data points with a Z-score exceeding +3 or falling below -3 were considered statistical outliers.
These pre-processing techniques were necessary to make the data conform to SARIMA

modelling assumptions and to improve the accuracy of forecasts
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Table 2: Electric two-wheeler monthly sales data

2018 199 171 518 524 698 1010 1297 1587 2382 2847 3633 3568
2019 2929 3493 6003 3547 1755 1814 1727 1645 1673 2241 3425 2057
2020 2373 2286 3063 Ol S84 1600 1632 2324 3367 2764 4214 4931
2021 5375 6961 P 6043 1430 5031 16004 17717 19608 22871 26845 28986
2022 32006 37874 00 56376 44669 47097 49990 55701 56612 81280 81560 67910
2023 67313 68601 0 69921 109383 47911 S6139 64311 65149 77208 94514 77873
2024 84762 85267 141328 66408 66103 55092 63576 88878 89037 138591

3.2.1. Exploratory Data Analysis (EDA):

From the visual inspection of the Monthly E2Ws sales dataset plot in Figure 3, sales figures
for electric E2Ws in India between January 2017 and October 2024 were inspected to
understand underlying patterns and trends. The pattern of E2Ws sales exhibits a distinct
exponential increase from the end of 2020. It is then a phase transition from a basically flat and
idle phase to an accelerating rise trend in volume sales. We can also observe the impact of
COVID-19 on the sales figures in April 2020, a sudden drop in sales; however, following that,
a visible upward trend began to emerge.

Moreover, the series exhibits large seasonal variations—periodic drops and spikes—pointing
towards a possible effect of seasonal or policy-related factors on consumer purchasing
behaviour. Some evident sudden spikes in sales also indicate the existence of external shocks,
e.g., policy shifts, subsidies such as FAME Phase I and FAME Phase 2 programs by the
Government of India and supply chain events(Electric Vehicles: Electric Vehicle Industry in
India and Its Growth, 2021.-b).

This preliminary analysis confirms that the data is non-stationary and contains both trend and

seasonal aspects. From this initial inspection and data pattern analysis, it helps to identify and
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select an appropriate time series model, thereby establishing the necessity of differencing and

seasonal modelling procedures like SARIMA for efficient forecasting.

3.2.2 Seasonality and trend analysis:

To detect seasonality and trend in time series data, both STL (seasonal-trend decomposition
using losses) and classical Decomposition techniques were used (Wen et al., 2019). These
methods allowed us to deconstruct the time series data into its core components- trend,
seasonality and residuals, facilitating a clear understanding of underlying patterns (Bandara et
al., 2025). From the STL decomposition, we can understand a robust, noise-resistant view of
seasonal behaviour, while the classical method validated its consistency across time. The
results from both decompositions provided strong evidence of a repeating annual pattern,
justifying the incorporation of seasonal components into the forecasting model. Based on these
insights, a Seasonal ARIMA (SARIMA) framework with a 12-month periodicity and seasonal

differencing (D=1) was selected for further modelling and evaluation.

3.2.3 Tests of Stationarity and Differencing

Before applying the SARIMA model for time series data one of the basic assumptions are
made, that is data should be stationary, and it is necessary in the series and should be tested for
stationarity to check the stationarity of the time series data the Augmented Dicky fuller test is
performed.

e Augmented Dickey-Fuller (ADF) test

Making time series data stationary is an important requirement for time series forecasting. This
ensures that the statistical properties (mean, variance, and autocorrelation) associated with the
data remain unchanged over time, allowing predictions to be accurate Manuca & Savit, (1996).
The Augmented Dickey-Fuller (ADF) test is performed to check for stationarity in the time
series data. A high p-value (> 0.05) indicates no stationarity, so data transformation is required.
Differentiation is the most common method of removing trends and seasonality from a time
series. The first differencing is calculating the difference between two consecutive data points.
It removes linear trends and partially stabilises the variance. If still present, for residual trends
or seasonality, second differencing can be applied, as this will stabilise variance further,
producing a zero-mean series. ADF tests are repeated at each stage to confirm the succeeding
stationary condition. Stationarity means the model captures stable relationships, which are
valid for predicting EV sales and the output of LIB waste generation. Proper preprocessing,

like differencing, improves the extent to which time series models can be relied on.
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The ADF test examines the presence of a unit root in the series by evaluating whether the null
hypothesis of non-stationarity can be rejected (Paparoditis & Politis, 2018). A low p-value
(typically less than 0.05) suggests the series is stationary, allowing model fitting without
additional differencing; otherwise, differencing is required to stabilise the mean. In SARIMA
modelling, the ADF test is typically applied before model specification to determine the order
of non-seasonal differencing (d) and, when used in conjunction with seasonal decomposition,
informs the need for seasonal differencing (D). The ADF test output includes the test statistic,
critical values, and p-value, and is implemented using statistical software such as Python's stats
model’s package. Identifying the correct level of differencing through the ADF test ensures the
time series meets the stationarity condition, improving the accuracy and reliability of

SARIMA-based forecasts.

3.2.4 SARIMA Model Overview:

The SARIMA model is a modified version of the ARIMA model with an added focus on
seasonality. It applies primarily to time series data that can be observed as having a definite
trend and a cyclical data pattern (seasonality). The SARIMA model is the Extended version of
ARIMA, first introduced by Box and Jenkins in 1970 as part of the broader Box-Jenkins
methodology for time series forecasting (G. Box, 2013). Their work laid the foundation for
modelling non-stationary seasonal data using autoregressive and moving average structures
and remains one of the most influential contributions to time series analysis.

SARIMA model structure

The following notation is used to express the elements of the SARIMA model:

p(BS)dp(B)(1 — B)4(1 — BS)Dy, = 0(B*)8,(B)e; Eql
Where,

Non-seasonal components:
@p(B): Non-seasonal autoregressive polynomial of order p.
(1-B)%: Non-seasonal differencing of order d.

04(B): Non-seasonal moving average polynomial of order q.

Seasonal components:
®p(BS): Seasonal autoregressive polynomial of order P.
(1—B5)P: Seasonal differencing of order D and seasonality s.

Oo(B%): Seasonal moving average polynomial of order Q.
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Other terms:
B: Backwards shift operator
s: Seasonality period.

€. White noise error term.
3.2.5 SARIMA Model Parameters and Their Identification

e Non-Seasonal Parameters (p, d, q):

Autoregressive order (p): the number of lag observations (previous values) included in the
model to forecast the current value. In other words, it explains how many past observations the
current value of the time series will be for the forecast. The value of p is established from the
behaviours of the Autocorrelation Function (ACF) and Partial Autocorrelation Function
(PACF) graphs.

Differencing order (d): This factor specifies how often the time series should be differenced
to achieve stationarity, that is, to eliminate trends or seasonal patterns in the data. Differencing
the data helps in mitigating seasonality and trends. It is typical to try d=1 first and see whether
one can get the series stationary using the ADF test.

Moving Average order (q): This parameter states the number of lagging forecast errors in
predicting future values. It denotes the lagged average of past forecast error (prediction value
minus actual value), which affects the current value. Like p, q is determined using ACF and
PACF plots.

e Seasonal Parameters (P, D, Q, s):

Seasonal Autoregressive Order (P): The contribution of past seasonal observations to the
current value of the time series is analysed in this seasonal lag and hence comes in a similar
order with the inclusion of p, but not as P. The degrees of P are assigned accordingly to the
calendar in the series under consideration.

Seasonal Differencing Order (D): It is often necessary to include seasonal differencing to
stabilise the time series. Suppose the data display seasonality without such a fixed nature (i.e.,
it shows an upward or downward trend, a seasonal repetition of patterns). In that case, this sort
of differencing can be performed to mitigate such seasonal variations in trends. The limit of
values for D usually varies from 0 to 1.

Seasonal Moving Average Order (Q): This is the total number of seasonal forecast error metrics
that were lagged and included in the model. It is almost identical to q, but concerning the

temporal aspect of the time series. This tail end of the hybrid equation combines previously
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measured season forecast errors, contributing instead of being a standalone measurement, as in
the non-seasonal case.

Seasonal Period (s): This is the time taken to complete one seasonal cycle and represents the
frequency at which the seasonality is repeatable in the data. To illustrate in year data, the
seasonal period might be s=1/2 if the data in question is monthly, such that one cycle takes 12

months. If the data in discussion is daily, then s=7, some might say that seasonality is in weeks.

3.2.6 Diagnostic Checking

Diagnostic checking is performed to evaluate the adequacy and validity of the model. These
checks are essential to ensure that the residuals, representing the portion of the data not
explained by the model, resemble white noise. This indicates that the model has effectively
captured the underlying structure of the time series.

Initially, the residuals were subjected to visual inspection using a histogram and the kernel
density estimation (KDE) plot to assess their distribution. Ideally, the residuals should follow
a normal distribution, evidenced by a bell-shaped and symmetric curve. This was further
supported by the Q-Q (quantile-quantile) plot, which compares the quantiles of a normal
distribution. A good fit is indicated when the residuals lie approximately 45-degree reference
line.

Secondly, the autocorrelation of residuals was evaluated using the Autocorrelation function
plot, also known as the correlogram. For a well-specified SARIMA model, the residuals should
not exhibit significant autocorrelation. In this study, the majority of the ACF spikes fell within
the 95% confidence interval, suggesting that the residuals, suggesting that the residuals are
largely uncorrelated.

In addition to the graphical methods, statistical tests were applied to reinforce the findings. The
Ljung-Box test was employed to examine whether the residuals are independently distributed.
Furthermore, the Jarque-Bera test was conducted to assess the normality of residuals. The
resulting p-values supported the assumption of normal distribution. Lastly, the results indicated
a relatively constant variance over time, supporting the model’s assumption of homoscedastic
errors.

Overall, these diagnostic checks confirm the adequacy of the SARIMA model by ensuring that
the residuals exhibit the characteristics of white noise, thereby validating the model’s suitability

for reliable forecasting
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3.2.7 Model Training and Validation

To evaluate the predictive performance of the SARIMA model, the available time series data
were divided into subsets: the training set and the testing set. The training set, consisting of the
initial portion of the dataset, was used to fit the SARIMA model and estimate its parameters.
The remaining data comprised the testing set, which was reserved for out-of-sample testing
validation. Model forecasts generated from the training data were compared against the actual
observed values in the testing set. This approach allows for the evaluation of the model's
generalisation ability and helps to avoid overfitting. Common accuracy matrices such as Mean
Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error
(MAPE), and R? were employed to quantify the forecasting performance. A lower value of
these matrices indicates better model accuracy. this validation step is crucial to ensure that the
selected model performs reliably when applied to future data. To perform the above approach,
the SARIMAX function from the statsmodels Python package was used using various
combinations of parameters, the optimal of which was selected based on the Evaluation matrix

results on the testing set.

3.2.8 Metrics for Model Evaluation

1. Root Mean Square Error (RMSE):
Measures the square root of the average squared differences between predicted and actual

values.

Formula: RMSE = \/%Z?:l(% —y)?

Interpretation: Smaller values indicate better performance. RMSE is sensitive to outliers

because of the squared term.

2. Mean Absolute Percentage Error (MAPE):

Measures the average percentage error between actual and predicted values.

100 «p

Formula: MAPE MAE = i=1Yi — Yol

n

Interpretation: MAPE values below 10% are considered excellent, 10-20% good, and above

30% indicate poor performance(Montafio Moreno et al., 2013).

3. Mean Absolute Error (MAE):

Measures the average magnitude of the errors without considering their direction.
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Formula: MAE =% e1lyi = ol

Interpretation: MAE is less sensitive to outliers compared to RMSE.

4. Coefficient of Determination (R?):
Measures how much of the variance in the actual data is explained by the model.

Y i (ViYoo)
Formula: R?= 1 — S5 =
2 l'=1(yi_37)2
Interpretation: R? values range from 0 to 1, where higher values indicate a better fit. Negative

values indicate the model performs worse than a simple mean or mode.

3.3 Phase II: Battery Lifespan Modelling

Battery lifespan modelling is critical for accurately estimating the volume/mass of the battery
that will retire after serving a particular time. Battery lifespan refers to a lithium-ion cell's
operational duration, typically measured by its cycle or calendar life (Jaguemont et al., 2016).
Cycle life denotes the total number of complete charging and discharging processes the battery
can sustain before its performance drops below an acceptable threshold(Z. Zhang et al., 2022)
and the timeline of lithium-ion batteries (LIBs) reaching EOL, which forms the basis for waste
forecasting and circular economy planning. The estimation of the LIB life span is crucial. The
exact life span of a LIB estimation is challenging due to the influence of multiple factors that
impact the life span of EV batteries, such as temperature, charge-discharge cycle, user

behaviour and Overcharge and Over-discharge (X. Zhang et al., 2021).

In this study, the battery lifespan refers to the operational period during which a battery retains
acceptable performance in its primary application—E2Ws—before degrading to the point of
replacement. In practical life, lithium-ion batteries used in EVs are retired after use, reaching
80% of their nominal capacity (J. Zhang et al., 2024). Previously, some studies have assumed
a calendar life of the lithium-ion battery, which is used to power EVs, ranging between 8 and
10 years (Englberger et al., 2019; Maisel et al., 2023; Yang et al., 2024). Additionally, Ai et al.
(2019) compiled findings from multiple sources, reporting LIBs' lifespans varying from as low
as 3 years to as high as 16 years. Depending on operational and environmental conditions.
Based on these prior works, many researchers adopt a maximum functional lifespan of 10 years
as a standard assumption for EV Battery performance. This study employs a time-lag-based
deterministic model wherein each battery is assumed to be retired after a predefined lifespan.

On the safer side, to maintain a conservative and realistic estimate, we assume a battery life
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span that typically ranges from 4 to 8 years, depending on usage intensity, ambient temperature,

charging behaviour, and battery chemistry employed.

According to the Global EV Outlook reports IEA, 2023 most commonly used lithium-ion
chemistries in EV drives are Lithium Iron Phosphate (LFP) and Nickel Manganese Cobalt
Oxide (NMC), which dominate the market due to their energy density stability and
performance, which translates into a lifespan of 4—8 years under real-world conditions. Based
on literature and market practice, this study models three lifespan scenarios: short (4 years),
base (6 years), and long (8 years), assuming 100% LIB penetration in E2Ws. The number of
batteries reaching EOL in a given year is estimated by shifting the SARIMA-forecasted E2Ws

sales forward by the assumed lifespan.

The following formula gives the battery retirement count for year t:

n
Eol, = Z (Sepy @ (1 - Rl-)) Eq. 2
1=1

Where:
EoL;: Number of batteries reaching EOL in year t
St-1;> Number of E2Ws sold in the year ¢ — L;

Li: Assumed lifespan of the battery (years)
Ri: Second-life or reuse rate (fraction of batteries not contributing to immediate waste)
n: Number of lifespan scenarios considered (e.g., 3 for 4, 5, 8 years)

e This model assumes each vehicle sold in year t—L; will result in one LIB reaching EOL in
year t, adjusted for any reuse rate R. If reuse is excluded (i.e. R=0), the formula simplifies
to EoL=S¢.L.

e The output of this phase is a timeline of retired battery quantities (units/year), which
directly feeds into the waste quantification phase, where the total battery mass (kg) and
energy capacity (kWh) are estimated.

e The retirement year for each cohort of sold vehicles was determined as:

e Retirement Year=Sales Year + Battery Lifespan

21



3.4 Phase III: Estimating End-of-Life Battery waste from the sales of Electric E2Ws
Vehicles.

3.4.1. Formulation of Battery waste:

Total Energy Used in Month m of Year t: The total energy required for the EVs sold in
month m of year t is:

Ent = Sme X C

E;n ¢ Is that the month's total energy consumption in kWh?

Battery Waste Generated in Month m of Year t: The total weight of LIB waste generated

in month m of year t is:

(Emit xC)
Wm,t = —@r— Eq. 3
sE(%g)
12
Where (W;oeq)annual = W or Z:lz_ Wmyt Eq. 4
: :n_l sE(%g) -
Where:

o W = the total potential battery waste (in kg) for month m of year t.
o  Wiotal = Total battery waste (kg) over n months

o Sm= Forecasted and past sales for month m of year t

o C = Battery capacity per EV (kWh)

o SE = Specific energy of battery (Wh/kg)

o T =Number of years
3.4.2. Average battery Capacity(C) Estimation:

The estimation of the average battery capacity required for E2Ws in this study is based on data
presented in the ICCT (International Council on Clean Transportation) Working Paper (Gode
et al., 2021). This report offers comprehensive insights into the battery capacity of various
E2Ws models in the Indian market. By referencing the net battery capacities of E2Vs and
utility/multi-purpose vehicles, ranging from 0.3 kWh in entry-level models to 9.7 kWh in
premium variants, | derived average capacity and vehicle categories. This value serves as a
representative and realistic benchmark for modelling battery demand and evaluating future

requirements in India’s dynamic and rapidly expanding electric mobility sector.
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Figure 4: Battery capacity of different types of E2Ws sold in India
3.4.3 Battery Specific Energy (Wh/kg)

Common LIB Chemistries in EVs: Lithium-ion batteries (LIBS) are the dominant energy
storage technology in EVs due to their high energy density, long cycle life, and decreasing

costs. Among the various LIB chemistries, the following are most widely used in modern EVs:

e Nickel Manganese Cobalt Oxide (NMC): Known for its balanced energy density,
power output, and thermal stability. Variants like NMC622 and NMC811 are widely
used by manufacturers such as BMW and Hyundai (Tallman et al., 2021).

e Nickel Cobalt Aluminium Oxide (NCA): Offers higher energy density compared to
NMC and is commonly used in Tesla vehicles. However, it is less thermally stable than
LFP.

e Lithium Iron Phosphate (LFP): Provides excellent thermal stability and long cycle
life at a lower cost, though with lower specific energy. It is increasingly adopted in EVs

targeting affordability and safety, such as those from Tata Motors and BYD.
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The mass of LIB waste from the EOL EVs was estimated through the reverse-calculation
approach based on rated battery capacity and cell-level specific energy density. Through the
estimation of cell mass entering the waste stream, which is critical for assessing recycling
potential and planning infrastructure. Current commercial lithium-ion cells using nickel
manganese cobalt (NMC) and nickel cobalt aluminium (NCA) technologies demonstrate
specific energy levels ranging from 220 to 260 Wh/kg. In contrast, lithium iron phosphate
(LFP) cells typically have specific energy values between 150 and 160 Wh/kg. The specific
energy and energy density of these batteries have more than doubled compared to the original
designs, which had a specific energy of just 120 Wh/kg (Frith et al., 2023). Similarly, Schmuch
et al., (2018) reported specific energy NMC 622/811 cells with 230-250 Wh/kg, and LFP
chemistry around 160 Wh/kg. These values are further supported by Liao et al., (2024) which
show energy densities of 200 Wh/kg for cylindrical NCA cells and around 163 Wh/kg for LFP

prismatic cells.

In this study, a foundation assumption established a base case scenario with specific energy of
210 Wh/kg; which serve as the cornerstone for all subsequent battery mass calculation This
representative average was derived by taking the midpoint between lower bound of 160 Wh/kg
and the upper bound 260 Wh/kg, taking into account the two most widely LIB chemistries,
LFP and NMC. IT is important to note that this specific energy estimate applies strictly to the
cell mass only, excluding other battery pack components. All the estimations concerning
battery cell mass throughout this study are based on this benchmark case scenario. This
methodological approach is critical not only for accurately modelling battery material flow
analysis (MFA) but also for projecting future recycling volumes. It also aids in informing
infrastructure planning and development for battery retirement management after they have
completed their life cycle services. By anchoring the analysis to standardised and representative
energy density, the study ensures consistency, relevance, and scalability in assessing material

and energy flows across the LIB value chain.
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Chapter 4

Site Suitability Analysis for the LIB Recycling Plant for Indore City
4.1 Study Area:

This Study focuses on the part of Indore city located in the Indore district of Madhya Pradesh,
India, which falls under the geographical coordinates of nearly 22° 43° N latitude and 76° 42'E
longitude and 1805 feet above MSL (mean sea level)(Goyal, 2011). It lies on the Malwa Plateau
and is linked by national highways, railways, and air transport, making it the ideal logistics and
industrial hub of central India (Kumar et al., 2007), (Verma & Bhonde, 2014). Indore has been
ranked as the cleanest city in India for the sixth consecutive year under the Swachh Survekshan

mission from 2017 to 2023, marking strong urban management and civic participation.

Indore's climate is considered to be semi-arid, with hot summers, monsoon season from June
to September, and cool, dry winters (Kawadia & Tiwari, 2017). This sort of climatic condition
is generally quite appropriate for industrial operations, including the handling and processing

of LIB waste, which is susceptible to extreme environmental changes.

Indore has logistics and environmental planning advantages for setting up a LIB recycling plant
site. The city has several industrial areas, such as the Sanwer Industrial Area, Pithampur
Industrial Area, and, lastly, the emerging Super Corridor, in addition to these potential zones
for industrial development, all plus the existing utility networks. Added to this are the
advantages of the major EV markets' proximity and pre-existing solid waste infrastructure,
which include the Indore Integrated Solid Waste Management Plant, besides growing Clean

Energy initiatives' ecosystem to solidify the case for the study.

This study brings in the site suitability analysis concerning a wide variety of geospatial and
environmental parameters using the GIS-based multi-criteria decision analysis (MCDA)
framework. The factors under consideration include land use/land cover, proximity to
transportation networks, distance from residential zones, groundwater sensitivity, and slope.
Satellite imagery, municipal land use maps, and field verification were used to create spatial
data for these layers. The model used is a weighted overlay to identify those optimal locations

for Indore's urban and peri-urban areas where recycling plants could be located.
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A base map of Indore has been prepared using GIS software (QGIS/ArcGIS), which delineates
study boundaries and thematic layers used for spatial analysis (Figure 5). It supports the
geospatial approach to evidence-based decision-making in sustainable infrastructure planning

for the emerging EV ecosystem.
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Figure 5: Study area map for the LIB recycling plant
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4.2. Methodology:

LULC, DEM, Roads, Water bodies
Population, Industrial zones, Environmental constraints

Step 1:
Data Collection

Step 2: o o o o o
Data Preprocessing Reprojection, Clipping, Filtering & Rasterization (if needed)
Step 3:

Criteria Selection & Weight
Assignment

Define criteria (e.g., proximity to roads, slope)
Apply AHP/MCDA for weight assignment

Buffer Analysis: Set exclusion zones (water, residential areas)

Slope Analysis: Extract terrain slope from DEM

Reclassification: Convert layers into a common suitability scale (1-5)
Weighted Overlay: Combine all factors based on assigned weights

Step 4:
GIS Spatial Analysis

Step S:
Final Site Selection

Identify high-suitability zones
Extract top locations for potential site selection

Step 6:
Validation & Verification

Field verification, Google Earth cross-check
Regulatory compliance check

Step 7:
Map Generation &
Reporting

Final site suitability map
Export as PDF/PNG for decision-making

Figure 6: Flow chart for site suitability analysis

4.2.1. Data Collection:

The study is conducted in Indore, Madhya Pradesh, a rapidly growing urban centre with
increasing EVs adoption and lithium-operated battery consumer Electronics. The present study
utilised a range of spatial and non-spatial datasets to conduct a site suitability analysis for the
establishment of a LIB recycling plant in Indore district, Madhya Pradesh, India. The
administrative boundary shapefile for Indore district was obtained from the Survey of India,
which provided the geographic extent for the study area and served as a base layer for spatial

analysis.
The following datasets were collected, which include Primary as well as secondary sources:

Table 3: Inventory of spatial data layers and corresponding data sources

SI No. Spatial Layers (GIS format) Data Source

India, Madhya Pradesh and Indore District .
1 . Survey of India

Shape File
) Land Use/Land Cover (LULC) map (10M Esri Sentinel-2

resolution)
3 Road network Open Street Map
4 River Open Street Map
5 Slope and elevation (DEM) https://earthexplorer.usgs.gov
6 Industrial Area Open Street Map

) Landsat and Sentinel using Google

7 Surface Water Bodies Earth Engine and OpenStreetMap
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https://earthexplorer.usgs.gov/

The Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) provides
near-global elevation coverage between 60°N and 60°S, including the entire Indore district in
Madhya Pradesh, India. The DEM tiles, available in 5° x 5° extents and referenced to the
WGS84 geographic coordinate system, were mosaicked to create a seamless elevation surface

for the study area. Using the Spatial Analyst tools in ArcGIS software, a slope map was derived

from the DEM.
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Figure 7: SRTM DEM map of Indore district

SRTM data were collected during NASA’s 11-day STS-99 mission in February 2000 by a
specially modified radar system onboard the Space Shuttle Endeavour. This system was based
on the earlier Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR)
technology. The SRTM DEM, with a spatial resolution of 30 meters (1 arc-second), was utilised
in this study, which served as essential input parameters in the Analytical Hierarchy Process
(AHP)-based site suitability analysis for identifying optimal locations for LIB recycling in the

Indore district.

Land use and land cover (LULC) information was extracted at 10m resolution for the year 2024

from Esri Sentinel-2 imagery, which offers high-resolution satellite data suitable for classifying
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built-up areas, vegetation, barren land, and other surface types. This LULC data provided
insights into existing land utilisation and helped in identifying potential sites with minimal

environmental disruption.

Additional thematic layers—including roads, rivers, and industrial areas—were sourced from
OpenStreetMap (OSM) and processed using QGIS. These layers were used to assess the
proximity of candidate sites to essential infrastructure such as transportation networks and
existing industrial zones, as well as to evaluate potential environmental constraints related to

water bodies.

4.2.2. Software Used:

Quantum GIS 3.36- QGIS is a robust, free, and open-source desktop Geographic Information
System (GIS) application that provides users with comprehensive tools for viewing, editing,
and analysing geospatial data. It supports a wide range of data formats and allows for extensive
customization through plugins. QGIS is compatible with multiple operating systems, including
Windows, macOS, and Linux, making it accessible to a diverse user base.

ArcGIS - The ESRI Software Company developed this software, which is not free. ArcGIS
Desktop is a comprehensive desktop GIS software suite that enables users to create maps,
conduct spatial analysis, and manage data. All layers are defined using this software.

Google Earth Engine (GEE) — GEE is a cloud-based platform used in this study for processing
and analysing satellite imagery. It provides access to a large repository of geospatial datasets,

such as Landsat and Sentinel, and supports fast, large-scale analysis through cloud computing.

4.2.3. Criteria Selection for Site Suitability

The selection of appropriate criteria is a critical step in the site suitability analysis for industrial
infrastructure, particularly for environmentally sensitive facilities such as LIB recycling plants.
In this study, six spatial criteria were identified based on their relevance to environmental,
technical, and logistical feasibility. These criteria were selected through a review of existing
literature, expert knowledge, and alignment with regulatory and planning guidelines. The
selected layers include Land Use and Land Cover (LULC), proximity to industrial areas,
surface water bodies, road networks, and slope, each of which plays a significant role in
determining the suitability of a site. The Analytical Hierarchy Process (AHP) was employed to
assign relative weights to these criteria and integrate them into a comprehensive multi-criteria

decision-making framework.
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The following six criteria were selected for AHP-GIS analysis in Table 4.

Table 4: Criteria-based Thematic Layers Selection

Criterion Justification

Settlements (LULC) To reduce health/safety risks
Proximity to roads and rail For transportation/logistics

Land use compatibility (industrial zones) Legal and operational feasibility
Distance from water bodies To prevent water pollution
Slope/elevation Site engineering feasibility

River To ensure environmental protection

4.2.4. Analytical Hierarchy Process (AHP)

The Analytic Hierarchy Process (AHP) is one of the multi-criteria decision-making methods
that was originally developed by Prof. Thomas L. Saaty(R. W. Saaty, 1987). The procedure of
AHP can be divided into three parts, which include identifying a hierarchy of objectives,
criteria and alternatives; pairwise comparison of criteria; and integration with the results from
pairwise comparison as relative importance over all levels of the hierarchy. This method is used
to determine the percentage importance of the parameters used in the identification of suitable
sites for. The integration of AHP with GIS gives an efficient and user-friendly way for solving
complex problems, as it is a combination of decision-making support methods and tools with
powerful capabilities of mass data computation, visualisation, and mapping(Chandio et al.,
2013). The implementation of AHP can be summarized as following procedure: definition of
objective; identification of criteria; data collection and preprocess; digitization of criteria and
convert all data into vector data; classification of raster datasets; creation of preference matrix;
determination of criteria weights according to calculation based on preference matrix; weighted
summation of criteria raster datasets as result(Kaya et al., 2022),(Ifg, 2017.). The AHP
procedure involves performing the comparison of pairs of parameters within a set of reciprocal
matrices in comparing pairs of factors(T. L. Saaty, 2005). The AHP scale of relative importance
is used on a scale of 1 to 9(T. L. Saaty, 2014), as shown in Table No. 5. Based on a literature
review of previous studies, specific conditions of Land Suitability analysis, 6 criteria
considered as main factors are chosen for this study, including: Topographic conditions (Slope),

Industrial Area, LULC, RIVER, Road Network, and Surface Water Bodies.
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Table 5: Hierarchy structuring based on importance scale

VALUE SIGNIFICANCE

1 Equal importance

Moderate importance of one over the other

Strong importance

Very strong importance

O Q| | W

Extremely strong importance

The pairwise comparison matrix for criteria, denoted by C, is structured as follows:

1 aqz a3 we i
[1/aq, 1 A3 .. Q|
C — | : . . .

: 1 :
| : F1 |
l1/Cl1n 1/azn 1/az, 1 J
where ajj represents the relative importance of criterion i compared to criterion j.
The matrix is reciprocal, meaning aj; = 1/aji

e Criteria Selection Description:

Table 6: Classification and suitability scale

Reclassification Suitability scale
Distance from major roads <250 m 1
250-750 m 5
750-1500 m 4
1500 -2000 m 3
>2000 m 2
Surface water Body <250 m 1
250-500 m 2
500-1000 m 3
1000-4000 m 4
>4000 m 5
River/streams 0-500 m 1
500-1000 m 2
1000-2000 m 3
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2000-4000 m
>4000 m
Slope 0-5 (%)

5-10 (%)
10-15 (%)
15-20 (%)
>20 (%) 1
Industrial Area <1000 m
1000-2000 m
2000-4000 m
4000-6000 m
>6000 m 1

N| W | | |

N W &~ W

e Calculation of the Weights of Each Criterion
To calculate the weight of each criterion, perform the following steps:

1. Calculate the Eigenvector of the Comparison Matrix: Solve the following equation:
C-W=2Anax W Eq.5

where:
e W is the vector of criteria weights (which we need to determine),
®  Anax 18 the principal eigenvalue of the matrix (which indicates the consistency of the

pairwise comparisons).

2. Normalise the Eigenvector: Normalise the vector W by dividing each entry by the sum of

all entries:
Wi
n

Z i=1 Wl

where W; is the normalised weight for criterion 1.

3. Consistency Check: The Consistency Ratio (CR) checks how consistent the pairwise

comparisons are. If the CR exceeds 0.1, the comparisons should be revised.
cl
CR = E Eq. 7

where:
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e CI (Consistency Index) is calculated as: CI = A—mnafxl_n
¢ RI (Random Index) is a value that depends on the size of the matrix. For an (n x n)
matrix, the typical values of RI are found in a predefined table.

e [fCR > 0.1, you should revise the pairwise comparisons.

4. Pairwise Comparisons for Each Land Parcel

Next, perform pairwise comparisons for each land parcel (site). For each site and criterion,
compare how suitable the site is in terms of the selected criterion. For example, if you're
comparing two sites based on soil quality, evaluate how well each site supports the desired soil

type.

Construct a comparison matrix for each site:

|' 1 aSlzte ai?lte ailte‘l
n
|1/am 1 e . az,fl
C= : : 1 : :
| ; :1 |
ll/aSlte 1/aSlte 1/aSlte 1 J

Calculate the Land Suitability Score

For each site, multiply the normalised weights of the criteria by the values in the comparison
matrix. The final score for each site is the weighted sum of the scores for all criteria.

where:

_\n site
Ssite = D=1 Wi * a;j Eq. 8

Ssite 18 the suitability score for a particular site,

w; is the weight of criterion i,

site -
ij

Rank the Sites

a;; ° 1s the relative importance of site j under criterion 1.

After calculating the suitability scores for all sites, rank them from the most suitable to the least
suitable. The site with the highest score is the most suitable for the proposed activity.

Ranked Sites = {Sgite 1, Ssite 20 Ssite 39 wv wee -ee , Ssite n}

The site with the highest score is the most suitable for the land use.

Using the AHP methodology in land suitability analysis allows for a systematic and consistent
approach to evaluate and prioritize land parcels based on multiple criteria. By using pairwise
comparisons, eigenvalue calculations, and a final suitability score, this methodology helps

decision-makers identify the most appropriate land for their intended purpose, considering both
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quantitative and qualitative factors. Check the consistency ratio (CR) to ensure valid
comparisons (CR < 0.1 acceptable). Weights are integrated into the GIS model for weighted

overlay.

4.3. GIS-Based Weighted Overlay Analysis

Reclassify all raster layers (criteria) into standardised suitability scales (e.g., 1-5). Apply the
AHP-derived weights to each layer using the Raster Calculator tool. Generate a final suitability
map showing areas classified as: Highly Suitable, Suitable, Moderately Suitable, Low Suitable,
and Not Unsuitable, overlay constraint layers (e.g., protected zones, water bodies) to mask out

restricted areas(How Weighted Overlay Works—ArcGIS Pro | Documentation).
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Spatial Analysis Weighted overlay

!

Final Suitability Map for the Potential Location of Lithium Battery Recycling Plant

A

Figure 8: AHP integrated suitability analysis methodology
4.4. Validation

Final site options are shortlisted from highly suitable zones. Cross-verification is done using
ground data, regulatory constraints, and logistic feasibility. Recommendations are supported
with a multi-criteria ranking table comparing top locations. Awareness has been brought
regarding this requirement of planned battery recycling facilities, a regulation framework, and
sustainable solutions for handling waste in countries that are moving toward addressing the

environmental challenges that EV adoption has created.

34



Chapter 5

5. Results and Discussion
5.1. Outlier Detection

The result of the Z score is given in Figure 3. It serves as a valuable tool for anomalies. It’s

worth noting that, in this time series data, the z-score statistical test did not reveal anomalies.

Time Series Data with Anomalies

140000 { —— sales
® Anomalies
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Sales
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04

2019 2020 2021 2022 2023 2024 2025
Date

Figure 9: Data plot with anomalies
5.2. Seasonality and trend:
1. Trend

Upward Trend:

There is a clear exponential increase in sales starting around mid-2021, with steep growth
afterwards. Early Flat Period. From 2016 to mid-2020, the sales remained low and flat,

suggesting minimal market penetration or adoption in the early years.
2. Seasonality

There appears to be repeating peaks and dips in the recent years (2022—-2025), especially in the
last quarters of each year. This suggests potential seasonal behaviour, likely influenced by
Government incentives or policy rollouts. Festive buying seasons (e.g., Diwali in India), End-

of-year inventory clearance.
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Figure 10: Seasonality and trend analysis plots

5.3. Stationarity check and differencing

Sales data from EVs is subjected to an Augmented Dickey-Fuller (ADF) test to check the
stationarity. The EV sales data used in this study represent a non-stationary monthly time series.
The result shows that the original time series data was non-stationary with test statistics 1.218
and a p-value of 0.95, which is higher than all critical values at the 1%, 5%, and 10% levels.
After applying second differencing, the series remains non-stationary, with a p-value of 0.5877,
still higher than 0.05 still exceeding the threshold for rejecting null hypothesis of a unit root
however after second differencing, the test statistics sharply decreased to -6.873 with a highly
p-value of 0.0000001 well below all critical values (1%: -3.551; 5%: -2.914; 10%: -2.955).
This confirms that the time series became stationary after second differencing, justifying the
use of d=2 in the SARIMA model configuration. In achieving stationarity, all the test statistics
are presented in the table, No.2. The second differencing gives a mean and a stable variance. it

is adopted for further study.

Table 7: Stationarity statistics

Critical | Critical | Critical | Stationarity
Differencing | Test
p-value Value Value Value Conclusion

1%) (5%) (10%)

Level Statistic
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Original Data | 1.218 0.996 -3.544 -2.91 -2.593 Non-

stationary
After  First | -1.388 5877 -3.551 -2.914 -2.595 Non-
Differencing stationary
After Second | -6.873 0.0000001 | -3.551 -2.914 -2.955 Stationary
Differencing

5.4.Model Identification and Parameter Estimation
5.4.1. Model Identification Using ACF and PACF:

After performing second differencing, the data were found to be stationary. The test statistics
are presented in Table 2, indicating that the d value is 2 for second-order differencing. The
ACF and PACEF plots help to determine the parameters for the SARIMA model. In the ACF
plot, Figure 5, significant lags were observed up to approximately lag 30. This suggests the
presence of a moving average (MA) process, at lag 1, 3, and 4, showed a clear spike beyond
the 95% confidence bound, which signifies a strong correlation at these lags, indicating the
order q could be 1,3 and 4. The PACF plot, Figure 6, shows clear spikes at lags 1 and 3,

followed by a sharp cutoff, suggesting an autoregressive (AR) process with order p values 1

and 3.
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Figure 11: ACF Plot of the Second time differenced of the original sales data
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Figure 12: PACF plot of the second time differenced of the original sales data

In order to identify the seasonal parameters, the annual seasonality exhibited by the monthly
E2Ws sales series, season differencing at the shift of the time series of 12 months of the original
series was performed. The Autocorrelation Function (ACF) of the differenced series showed
sharp spikes at lags 1 and 4, thereafter declining gradually. It is a sign of a strong seasonal
moving average (MA) component. So, from the ACF of the seasonal component, we can take
the moving average parameter Q, which can be taken in between 1 and 4 to build the SARIMA
model. At the same time, the Partial Autocorrelation Function (PACF) plot of the seasonal
component showed significant spikes at lags 1 and 2 beyond the 95% confidence interval. At
these lags, good autocorrelation in the PACF plot Figure 6 after lag 2 became fainter. So, to
build the SARIMA model, we can start with the seasonal Autoregressive parameters 1 and 2.
To empirically evaluate this, multiple SARIMA models were tested with varying values of
non-seasonal moving average parameter g, autoregression parameter p. and Seasonal MA
Parameter Q, seasonal AR parameter P. The non-seasonal parameter (3, 2, 3) and seasonal
parameter (2, 1, 3, 12) demonstrated superior performance across key forecasting metrics,
including a lower MAPE, MAE and a reasonably high score R?, in these observations, which
are consistent with identifying SARIMA parameters for a dataset showing trends and

seasonality.
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Figure 13: ACF and PACEF plot of the seasonal component of the time series data

5.4.2. Model Parameter Estimation and Fitting:

Based on the analysis of the seasonal and non-seasonal ACF and PACF plots, a range of
SARIMA model specifications was evaluated. The best-fitting model was identified through
iterative testing using model selection criteria: Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), and Hannan-Quinn Information Criterion (HQIC). The SARIMA
(3,2,3) (2,1,3) [12] model demonstrated optimal performance with the lowest values across all
criteria: AIC = 873.094, BIC = 893.360, and HQIC = 880.422. The model also achieved a log-
likelihood of —424.547, indicating a good balance between model fit and complexity.

Table 8 summarises the key statistics: This model effectively captures both the non-seasonal
and annual seasonal dynamics in the monthly sales time series data from January 2017 to

October 2024 (n = 94 observations).

Table 8: Evaluation matrices

Log-Likelihood -424.547
AIC 873.094
BIC 893.360
HQIC 880.422

5.5. Model Validation: Training and Testing

To evaluate the predictive performance of the selected SARIMAX (3,2,3) (2,1,3,12) model, the

dataset comprising 94 monthly observations from January 2017 to October 2024 was
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partitioned into training and testing sets. The first 77 observations (January 2017 to May 2023)
were used to train the model, while the remaining observations (August 2023 to October 2024)

were reserved for testing and validation purposes.

SARIMA Model Predictions

140000 1 —— Training Data
Actual Sales

—— Predicted Sales
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2017 2018 2019 2020 2021 2022 2023 2024 2025

Figure 14: Plot of the fitted SARIMA model over training and testing

The model was trained on the training dataset using the maximum likelihood estimation
approach. After fitting, one-step-ahead dynamic forecasts were generated for the test set, and
the forecasted values were compared with the actual sales data to assess predictive accuracy.
The model's performance was evaluated using standard statistical metrics, including Mean
Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), and the coefficient of determination (R?).

The results yielded a MAPE of 10.93%, indicating a relatively low average percentage
deviation between predicted and actual values. The RMSE was 13897.8, and the MAE was
9499.81, suggesting a reasonable error magnitude. Furthermore, the model achieved an R?
score of 0.678, which confirms that a substantial proportion of the variance in E2Ws sales is
explained by the fitted model. These metrics demonstrate that the SARIMAX model offers
robust forecasting capability and generalises well to unseen data. The validated model was then

used for full-sample forecasting and diagnostic analysis.
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Table 9: Standard statistical matrix

MAPE 10.93%
R? 0.678

MAE 9499.81
RMSE 13897.8

5.6. Evaluation matrices

Reasonable Accuracy (MAPE 10.93%): With a Mean Absolute Percentage Error of 10.93%,
the model achieves a commendable level of accuracy, indicating that it reliably captures trends

and seasonality in the data, which can be used to make long-term forecasts.

Explained Variance (R? 0.678): The R? value of 0.678 shows that the model explains a
significant 0.678% of the variance in the data, providing valuable insights into the underlying

patterns and trends.

Trend and Seasonality Capture: The model successfully identifies and predicts the increasing
trend in battery waste over time, making it a reliable tool for long-term planning and

infrastructure development.

The model demonstrates strong predictive capabilities with reliable accuracy and practical
trend analysis. These results underscore its utility in supporting sustainable waste management

strategies and decision-making for the growing two-wheeler EV market.

The model's robustness was assessed using a 77-month training and 17-month testing, which
is approximately an 80-20 split, ensuring validation of unseen data. Although SARIMA
provided valuable insights into the time series patterns, the exponential sales growth hints at
the potential for improvement by integrating models designed for rapid trend escalation.
Further, this SARIMA model is fitted and used for forecasting the monthly sales till 2030.
Based on this forecast, further, the potential battery waste is calculated till 2030

5.7. Model Diagnostics

The diagnostic evaluation of the fitted SARIMA (3,2,3) (2,1,3) [12] model demonstrates that
the residuals generally satisfy the assumptions of randomness and normality. The Ljung—Box
Q-test at lag 1 yields a test statistic of 0.74 (p = 0.39), indicating no significant autocorrelation
and suggesting that the residuals behave like white noise. The Jarque—Bera test confirms the
normality of residuals (JB = 0.30, p = 0.86), with a skewness of —0.20 and kurtosis of 2.83,
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indicating a nearly symmetric distribution. As illustrated in Figure 15, the standardised
residuals oscillate randomly around zero without discernible patterns, while the histogram and
kernel density estimate closely approximate a normal distribution. The normal Q—Q plot shows
that most residuals lie along the 45-degree line, with only slight deviations at the tails,
reinforcing the normality assumption. Furthermore, the correlogram of residuals shows all
autocorrelation values within the 95% confidence interval, reaffirming the absence of residual
autocorrelation. However, the model reveals some evidence of heteroskedasticity (H=4.13, p
= 0.02), suggesting that the variance of the residuals may vary over time. Although this does
not critically impair the model’s predictive accuracy, it may influence the width and reliability
of forecast intervals. Overall, the residual diagnostics (Figure 15) support the adequacy of the

SARIMA model in capturing the underlying structure of the time series data for reliable

forecasting.
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Figure 15: Model diagnostic plot
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5.8. Forecasting future sales using the optimised SARIMA model:

After successfully finalising the SARIMA model, which demonstrated satisfactory accuracy in
its predictions, we will leverage this model to project future sales figures from November 2024
through December 2030. This forecasting will provide valuable insights into expected sales
trends over the coming years. Notably, the forecast indicates a significant increase in sales of
E2Ws vehicles, demonstrating an upward trend throughout the forecast period. The projected
monthly sales figures increase from approximately 120,747 units in November 2024 to 341,345
units by December 2030, representing nearly a tripling of monthly demand over the forecast
horizon. These upward trends reflect the anticipated expansion of the India EV market, driven
by policy incentives, cost reduction and rising Environmental awareness. Table 12, showing
the monthly E2Ws Sales forecasts from the SARIMA model, is provided, along with another
table displaying the annual sales forecasts over six years, highlighting projected trends and
expected growth. To further illustrate the data, the monthly sales forecasts produced by the

model are visually represented in Figures 10 and 11.
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Figure 16: SARIMA model forecasted and past data plot
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SARIMA Model Forecasted Sales
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Figure 17: Forecasted monthly sales till 2030

5.9. Estimation of Potential EV Waste

The forecasted E2Ws sales data were further utilised to estimate the potential LIB waste that
will accumulate as a result of increased adoption. This estimation was grounded in a base case
scenario where the average specific energy of battery cells was assumed to be 210 Wh/kg,
derived as the mean of the representative range (160 Wh/kg to 260 Wh/kg) commonly observed
in lithium iron phosphate (LFP) and nickel manganese cobalt (NMC) chemistries. Furthermore,
the average battery capacity per E2Ws was set at 2.025 kWh, as referenced from industry-
based benchmarks and reports such as the ICCT Working Paper (Gode et al., 2021).

By combining these parameters, the estimated battery mass per unit was calculated and applied
to the SARIMA-forecasted sales figures to compute monthly and annual projections of LIB
waste. The waste estimation considers only the cell mass of the battery, which is directly linked

to material recovery and recycling system design.

The results indicate a substantial and accelerating increase in battery waste. In 2025, the total
estimated potential battery waste corresponding to forecasted E2Ws Sales is approximately
17.17 million kilograms, which nearly doubles to 37.02 million kilograms by 2030. Monthly
projections reveal a consistent upward trend, with peaks in months exhibiting strong sales, such
as March and October. This exponential growth reflects the cumulative impact of widespread

E2Ws adoption and aligns with the battery replacement cycles reaching end-of-life.

Figure 18 offers insights into the Estimated Potential Future LIB waste corresponding to

forecasted E2Ws, providing a clear graphical overview of the anticipated sales patterns over
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time. Along with the monthly potential battery waste from E2Ws Sales, the annual potential
waste is also calculated from the monthly Sales Data for both historical sales and Forecasted
Sales The results are visualized in Figure 19 and Figure 20, while Table 10 presents the
potential battery waste corresponding E2Ws from past sales data and table 11 illustrates future

potential waste from forecasted data

Monthly Forecasted 2-Wheeler Electric Vehicle
Sales and Corresponding Potentential Future
battery waste
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Figure 18: Monthly forecasted sales and corresponding battery mass waste potential
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Figure 19: Projected LIB waste generation from past sales data
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Figure 20: Forecasted sales and corresponding potential LIB waste
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Table 10:

Estimated annual waste in Kg from past sales

Year 2017 2018 2019 2020 2021 2022 2023 2024
Annua | 13596.4 | 179636. | 31155 | 28185 | 163359 | 645233 | 856686 | 1072153
1 3 8 1 1 6 5 9 6
Waste
in Kg
Table 11: Estimated projected annual waste from forecasted EV Sales
Year 2025 2026 2027 2028 2029 2030
Annually
forecasted
potential 17172434 | 18691656 | 22757866 | 27163475 | 31916459 | 37018331
waste in
Kg
Table 12: Estimated future EVs waste from forecasted Two-Wheeler sales
Estimated
Estimated Potential
Potential Future Future
Sarima EVswaste from Sarima EVswaste
Month Forecasted Forecasted Month Forecasted from
Sales Electric Two- Sales3 Forecasted
Wheler Vehicle Electric Two-
in Kg Wheler
Vehicle in Kg
30-11-2024 120747 1164346.1 31-01-2028 | 215665 2079626.8
31-12-2024 112074 1080713.6 29-02-2028 219028 2112055.7
31-01-2025 113262 1092169.3 31-03-2028 ' 242957 2342799.6
28-02-2025 116139 1119911.8 30-04-2028 | 225925 2178562.5
31-03-2025 138648 1336962.9 31-05-2028 218938 2111187.9
30-04-2025 | 122350 1179803.6 30-06-2028 219090 2112653.6
31-05-2025 114661 1105659.6 31-07-2028 229277 2210885.4
30-06-2025 114305 1102226.8 31-08-2028 | 232621 2243131.1
31-07-2025 123386 1189793.6 30-09-2028 236692 2282387.1
31-08-2025 | 126228 1217198.6 31-10-2028 | 261163 2518357.5
30-09-2025 | 129433 1248103.9 30-11-2028 262182 2528183.6
31-10-2025 | 152702 1472483.6 31-12-2028 | 253415 2443644.6
30-11-2025 153124 1476552.9 31-01-2029 255362 2462419.3
31-12-2025 143786 1386507.9 28-02-2029 258975 2497258.9
31-01-2026 @ 145045 1398648.2 31-03-2029 283159 2730461.8
28-02-2026 147973 1426882.5 30-04-2029 266370 2568567.9
31-03-2026 ' 171250 1651339.3 31-05-2029 | 259633 2503603.9
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30-04-2026 154032 1485308.6 30-06-2029 | 260036 2507490
31-05-2026 146547 1413131.8 31-07-2029 | 270477 2608171.1
30-06-2026 146244 1410210 31-08-2029 274070 2642817.9
31-07-2026 155859 1502926.1 30-09-2029 278394 2684513.6
31-08-2026 158750 1530803.6 31-10-2029 | 303119 2922933.2
30-09-2026 162296 1564997.1 30-11-2029 H 304388 2935170
31-10-2026 186181 1795316.8 31-12-2029 | 295872 2853051.4
30-11-2026 186727 1800581.8 31-01-2030 298070 2874246.4
31-12-2026 177490 1711510.7 28-02-2030 | 301934 2911506.4
31-01-2027 178947 1725560.4 31-03-2030 326371 3147148.9
28-02-2027 | 182070 1755675 30-04-2030 309831 2987656.1
31-03-2027 205723 1983757.5 31-05-2030 | 303346 2925122.1
30-04-2027 188491 1817591.8 30-06-2030 304000 2931428.6
31-05-2027 181253 1747796.8 31-07-2030 314692 3034530
30-06-2027 181161 1746909.6 31-08-2030 | 318537 3071606.8
31-07-2027 191086 1842615 30-09-2030 # 323112 3115722.9
31-08-2027 194186 1872507.9 31-10-2030 348090 3356582.1
30-09-2027 198002 1909305 30-11-2030 349610 3371239.3
31-10-2027 222209 2142729.6 31-12-2030 341345 3291541.1
30-11-2027 222980 2150164.3

31-12-2027 213967 2063253.2

5.10. Scenario-Based Analysis of Battery Lifespan and Waste Contribution

To enhance the robustness of battery waste estimation, this study incorporated realistic battery
degradation patterns by modelling three different lifespan scenarios. As lithium-ion batteries
typically retire once their usable capacity drops below 80% of the original, the effective EOL
contribution was recalculated under three lifespan assumptions: a low-performing scenario (4
years), a base-case scenario (6 years), and an optimistic scenario (8 years). For each scenario,
the projected battery waste from E2Ws sales was shifted forward in time to reflect the actual

year when the battery is likely to reach its end of service.

This scenario-based temporal adjustment resulted in significantly different annual waste
contributions over the forecast horizon. For instance, under the 4-year scenario, waste volumes
rise earlier, peaking sooner due to quicker battery turnover. In contrast, the 8-year scenario
delays peak waste generation, extending the material load into the 2030s. The base case (6
years) provides a balanced estimate aligned with industry standards. Figure 20 presents a
comparative visualisation of annual battery waste contributions across the three scenarios,

offering a dynamic and forward-looking view of waste emergence patterns. These insights are
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critical for aligning infrastructure deployment, recycling capacity planning, and policy

implementation with actual battery retirement timelines.

Effective Battery waste contribution from the 2-wheeler
EV after end life of after serving 6 year
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Figure 21: Effective battery waste contribution in the base case scenario of a 6-year
battery life span
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Figure 22: Waste contribution after the end of life of lithium-ion batteries in all three
scenarios
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5.11. Site Suitability Result

This section presents the reclassification results of each spatial criterion used in the site
suitability analysis. The reclassified raster layers represent the spatial distribution of suitability
classes on a scale of 1 (least suitable) to 5 (most suitable)(Akther et al., 2019). These individual
suitability layers form the basis for the multi-criteria decision-making process using the AHP

model.

5.11.1. Slope

The slope map was derived from the SRTM DEM and reclassified into five suitability classes.
Areas with a slope of 0-5%, which are ideal for construction and industrial infrastructure, were
assigned the highest suitability score (5). These flat terrains are mostly concentrated in the
central and northern parts of the Indore district. Conversely, areas with slopes greater than 20%
were considered unsuitable (score 1) due to difficulties in construction and drainage. Overall,
the majority of the study area exhibited gentle to moderate slopes, making it favourable for

industrial development.
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Figure 23: Reclassified slope map of Indore district
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5.11.2. Proximity to Major Roads

The road network layer was extracted from OpenStreetMap and analysed based on proximity
to major roads. The analysis revealed that areas within 250-750 meters from major roads
received the highest suitability score (5), as they offer ease of transportation without being too
close to cause environmental and safety concerns. Areas within <250 meters were assigned a
low score (1) due to possible restrictions and safety issues related to proximity to road
corridors. Most of the central and eastern parts of Indore showed high suitability in terms of

road accessibility.
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Figure 24: Reclassified Road map of Indore district

5.11.3 Proximity to Surface Water Bodies

Surface water bodies were also mapped from OpenStreetMap data. Locations farther than 4000
meters from water bodies were considered the most suitable, with a score of 5 to avoid potential

contamination risks. Areas closer than 250 meters were given the lowest suitability score of 1.
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The reclassified map showed that the north-western and some central zones of Indore district

were far from surface water bodies and thus highly suitable for setting up a recycling plant.
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Figure 25: Reclassified surface water bodies map of Indore district

5.11.4 Proximity to Rivers/Streams

In addition to static water bodies, river and stream proximity were analysed separately due to
their environmental sensitivity. A buffer of >4000 meters from rivers was assigned the highest
suitability (score 5), while areas within 500 meters were considered unsuitable (score 1). The
southern and western parts of the district had significant stretches of suitable land, while central
zones near the Khan and Saraswati rivers were found to be unsuitable for industrial

development.
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Figure 26: Reclassified River map of Indore district

5.11.5. Proximity to Industrial Areas

Proximity to existing industrial areas is a major factor for selecting a site, as it facilitates access
to utilities and reduces the burden on new infrastructure. Areas within 1000 meters of industrial
zones were ranked as highly suitable (score 5). The map analysis showed clusters of high
suitability around Pithampur Industrial Area and regions south of the urban core, indicating

favourable zones for plant establishment.
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Figure 27: Reclassified industrial area map

5.11.6 Land Use and Land Cover (LULC)

LULC data is crucial in identifying locations with minimal environmental impact and legal
restrictions. Areas categorised as barren or wasteland are more suitable for industrial
development, while agricultural, forested, or residential zones are less favourable. In this study,
LULC was derived from Esri Sentinel-2 satellite imagery, allowing for accurate classification

of the land surface features within the Indore district.
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Figure 28: LULC 2024 map of Indore district

5.11.7 AHP multicriteria matrix and pair-wise comparison

The AHP approach can be used as a set of tools for deriving the weights of criteria. The AHP
can deal with inconsistent judgments. The Pairwise Comparison Matrices involve comparing
all the possible pairs of criteria in order to determine which of all the criteria is of a higher
priority. To identify the potential sites for water conservation, site selection depends on the

rating and the weights of each thematic layer.

Table 13: Pairwise comparison matrix

Columnl LULC Industrial Surface Water | River | Road Slope
Area body Network

LULC 1 1 4 5 6 8

Industrial 1 1 3 4 5 7

Area

Surface 0.25 0.33 1 2 4 5

Water body

River 0.2 0.25 0.5 1 3 5
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Road 0.17 0.125 0.2 0.25 1 3
Network

Slope 0.13 0.142 0.2 0.20 ]0.33 1
Sum 2.74 2.85 8.9 12.45 1 19.33 29

Table 14: Standardised matrix

STANDARDIZED MATRIX
LUL | Industria | Surfac | River | Road Slope | AVG. | Lambd
C 1 Area e Networ Weigh | a
Water k t
body
LULC 0.364 | 0.3507 0.4494 | 0.401 |0.3103 0.275 ]0.36 6.4540
7 6 9
Industria | 0.364 | 0.3507 0.3371 |0.321 | 0.2586 0.241 | 0.31 6.3614
1 Area 7 3 4
Surface |[0.091 | 0.1169 0.1124 | 0.160 | 0.2069 0.172 | 0.14 6.2899
Water 2 6 4
body
River 0.072 | 0.0877 0.0562 | 0.080 | 0.1552 0.172 | 0.10 6.0680
9 3 4
Road 0.060 | 0.0438 0.0225 |0.020 | 0.0517 0.103 | 0.05 5.8921
Network | 8 1 4
Slope 0.045 | 0.0501 0.0225 |0.016 | 0.0172 0.034 | 0.03 6.0258
6 1 5
Sum 1 1 1 1 1 1 Max 6.4540

The final percentage weightage values of different layers are listed in a table prepared
according to the AHP proposal, which reflects the number of criteria involved, as shown in

Table 15

Table 15: AHP model percentage weightage

St No. Layer Weightage (%)
1 LULC 36

2 Industrial Area 31

3 Surface Water body 14

4 River 10

5 Road Network 5

6 Slope 3
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5.12. LIB Recycling plant Suitability Analysis using Weighted Overlay

A weighted overlay analysis was conducted using ArcGIS software to identify suitable sites
for a LIB recycling plant in Indore district, Madhya Pradesh. Six criteria layers were
considered: Land Use and Land Cover (LULC), proximity to industrial areas, distance from
surface water bodies, river/stream buffer zones, road network, and slope. Weights were
assigned to each layer using the Analytical Hierarchy Process (AHP), with LULC (36%) and

proximity to industrial areas (31%) contributing the most.

Each layer was reclassified into a common suitability scale (1-5), and integrated using the
weighted overlay tool. The resulting suitability map (Figure 29) categorises the district into six

classes: Restricted, Not Suitable, Low Suitable, Moderate Suitable, Suitable, and Most

Suitable.
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Figure 29: Land suitability map for EV recycling plant

The map reveals that areas with high to very high suitability are primarily concentrated in the
western and southern parts of the district, particularly near Pithampur and existing industrial
zones. These zones exhibit optimal land use, gentle slopes, sufficient distance from water

bodies, and good road connectivity. In contrast, central and northeastern regions are dominated
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by restricted or unsuitable areas due to high proximity to water bodies, dense urban settlements,
or steep slopes. This spatial analysis provides a strategic decision-support framework for

policymakers to identify environmentally and logistically appropriate sites for future recycling

infrastructure.
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Chapter 6

Conclusion

The transition to electric mobility in India, particularly in the two-wheeler segment, presents a
promising pathway toward decarbonised transportation. However, this shift also introduces
complex environmental and infrastructural challenges, particularly regarding the lifecycle
management of lithium-ion batteries (LIBs). This study holistically addresses this issue by
forecasting E2Ws sales, estimating future LIB waste, and identifying suitable locations for

recycling infrastructure within the Indore district.

A Seasonal Autoregressive Integrated Moving Average (SARIMA) model, specifically
SARIMA (3,2,3) (2,1,3) [12], was developed to forecast monthly E2Ws sales from November
2024 to December 2030. The model was validated through an 80-20 train-test split, achieving
strong performance metrics: a MAPE of 10.93%, RMSE of 13,897.8, and R? of 0.678.
Diagnostic checks confirmed the adequacy of the model, with residuals exhibiting white noise
characteristics and no significant autocorrelation. Forecast results indicate a consistent upward
trend in E2Ws adoption, with monthly sales expected to grow from approximately 120,000
units in late 2024 to over 340,000 units by the end of 2030.

Using these forecasts and industry-standard assumptions—specifically, a specific energy of
210 Wh/kg and an average battery capacity of 2.025 kWh per E2Ws—the study estimates a
substantial rise in LIB waste generation. Annual battery waste is projected to grow from 17.17
million kg in 2025 to 37.02 million kg by 2030, marking a more than twofold increase in just
five years. Combined with historical data (2017-2024), the trend reveals three distinct phases:
early adoption (minimal waste), rapid expansion (2021-2024), and sustained high-volume
waste generation post-2025. This underscores the urgent need to develop EOL battery

management frameworks and material recovery systems.

To tackle the spatial aspect of this new challenge, a site suitability assessment was done through
multi-criteria GIS-based approaches to determine the best locations for the setting up of a
battery recycling plant in Indore district, Madhya Pradesh. The study included the major
influencing factors like proximity to urban areas, road and rail connectivity, population density,
industrial areas, and environmentally sensitive areas. The outcomes identified a number of
high-potential areas on the peripheries of Indore city, well located to serve both existing and
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future flows of waste efficiently. The sites provide logistical benefits and environmental and
land-use compliance opportunities for sustainable infrastructure development.

Through the combination of temporal prediction and spatial suitability analysis, this study
provides an integrated framework for predicting and planning for the environmental impact of
India's EVs revolution. This enables proactive policy development, industrial investment
planning, and local implementation of battery recycling infrastructure. The results offer timely
advice to national and regional stakeholders such as policymakers, urban planners, battery
manufacturers, and waste management agencies.

Finally, this research adds significantly to the growing literature on circular economy strategies
in electric mobility. By projecting future waste for batteries and determining where
infrastructure must be established, it fills the data-driven planning-sustainable action gap,
buttressing the significance of forward-looking strategies in the development of India's green

transport future.

Future Scope

While this thesis offers a comprehensive approach to LIB waste forecasting and recycling site

identification, several future research opportunities exist to expand and deepen the insights:

1. Incorporating Other EV Segments: Future studies could include electric three-wheelers,
passenger vehicles, and public transport EVs to provide a more holistic estimation of
national battery waste loads.

2. Integration of Battery Second-Life Use: Exploring second-life applications (e.g.,
stationary energy storage) before recycling would refine waste timelines and help optimise
resource recovery strategies.

3. Dynamic Lifespan and Degradation Models: Integrating battery health data and real-
world usage patterns could replace fixed-lifespan assumptions with more accurate,
dynamic degradation curves.

4. Policy Simulation and Demand Scenarios: Incorporating various government incentive
policies or technology diffusion scenarios could help forecast under different future
adoption pathways.

5. Real-time GIS Dashboard for Stakeholders: A future extension could involve
developing an interactive GIS-based decision-support tool for regulators and industries to

visualise forecasted waste and infrastructure demand in real time.
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