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Abstract

Accurate biological cell counting plays a pivotal role in
numerous biomedical applications, yet conventional manual and
rule-based approaches struggle with dense, overlapping, and
morphologically diverse cells. This thesis presents a hybrid deep
learning framework for automated cell counting using both
convolutional and transformer-based architectures.

Initially, a Dual Cascaded Network (DCNet) is proposed,
combining a VGG16-based encoder with a U-Net decoder to
generate high-resolution density maps from microscopy images.
To address limitations in crowded cells, a transformer-based
alternative—Restormer—is employed, offering improved global
context modeling through attention mechanisms and specialized
components such as Multi-Dconv Head Transposed Attention
and Gated Feed-Forward Networks.

The study introduces Focal Inverse Distance Transform (FIDT)
maps to enhance localization precision in dense cell
environments. Additionally, a SALW strategy is integrated to
dynamically balance learning difficulty across spatial regions.
Evaluated on diverse datasets—including synthetic bacterial,
bone marrow, and adipose tissue images—the proposed models
demonstrate robust performance, achieving competitive
accuracy across varying imaging conditions. This work
highlights the effectiveness of hybrid architectures and attention-

guided learning in advancing the state-of-the-art in cell counting.
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Chapter 1

Introduction

1.1 Why cell counting?

Accurate cell counting in microscopy images is vital in various
biomedical and clinical applications, including disease diagnosis, drug
discovery, and understanding cellular mechanisms. Traditionally
performed manually, this process is not only time-consuming but also
prone to subjective errors and inconsistencies, particularly when dealing
with densely packed or overlapping cells. These limitations have
catalyzed the adoption of deep learning methods, which offer

automation, scalability, and improved accuracy.

Deep learning, especially convolutional and transformer-based neural
networks, has revolutionized cell counting by enabling the estimation of
cell densities through density maps. These models are capable of
capturing complex spatial patterns and variations in cell morphology,
even under challenging imaging conditions. Moreover, they
significantly reduce the labor-intensive nature of manual annotation
while ensuring consistent performance across large datasets. Given the
increasing volume of biomedical image data and the demand for high-
throughput analysis, integrating deep learning for cell counting is not
just advantageous—it is essential for modern biological research and

healthcare advancements.

1.1.1 Fundamentals of a Deep Neural Network

A DNN consists of multiple interconnected layers, each designed to
perform specific roles in extracting and processing information from the
input data. The first component of a DNN is the input layer, which
receives raw data such as grayscale or RGB microscopy images. Each
neuron in this layer corresponds to a single pixel or a group of pixels
from the input. For example, in the context of cell counting, the input
layer may process a 256x256 fluorescence microscopy image in which

cells appear as bright regions against a dark background.
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The central part of a DNN is composed of its hidden layers, where most
of the computational learning takes place. Convolutional layers, often
referred to as Conv layers, are among the most critical components
within this section. They specialize in identifying spatial patterns like
edges, textures, and structures by applying small filters (kernels) that
slide across the image to generate feature maps. These feature maps
allow the network to detect vital cellular structures, such as nuclei and
boundaries, which are essential in biomedical image analysis. Activation
functions are then applied to the outputs of these convolutional layers to
introduce non-linearity into the network, enabling it to capture complex
relationships. Commonly used activation functions include RelLU
(Rectified Linear Unit), which enhances training efficiency by
suppressing negative values, along with alternatives like Tanh and

Sigmoid.

To further optimize performance and computational efficiency, pooling
layers are incorporated to reduce the dimensionality of the feature maps.
Techniques such as max pooling and average pooling are widely used to
retain the most salient features while decreasing the data volume, thus
aiding in the recognition of cells even when their positions vary slightly.
Normalization layers, such as batch normalization, are introduced to
maintain consistent activation distributions throughout the network,
resulting in faster and more stable training. Furthermore, dropout layers
play a critical role in regularizing the model by randomly deactivating
neurons during training, which helps prevent overfitting—particularly

important when dealing with small-scale biomedical datasets.

As the data progresses through the network, it reaches the fully
connected or dense layers, which are responsible for synthesizing and
interpreting the extracted features to make a final prediction. Each
neuron in a dense layer is connected to all neurons in the previous layer,
allowing for comprehensive integration of information. The final
component, the output layer, is specifically configured based on the task.
For classification tasks, it assigns class labels, while for detection or

localization, it outputs spatial coordinates or segmentation masks. In the
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case of cell counting, the output may be a scalar representing the total
count, a density map indicating concentration, or a count map showing
spatial distribution. Depending on the required output, the activation
function at this stage might be linear for regression purposes or softmax
for classification tasks.

1.1.2 Why DNNs for Biological Cell Counting?

Traditional cell counting techniques have predominantly relied on
manually crafted image processing methods, including thresholding,
edge detection, and morphological operations. While these approaches
were foundational, they often suffer from sensitivity to noise,
inconsistent staining procedures, and variations in cell morphology,
limiting their generalizability across different datasets and imaging
conditions. In contrast, DNNs bring significant advantages to cell
counting tasks, beginning with automated feature learning. Unlike
traditional methods that require manual filter design, DNNs are capable
of learning discriminative features directly from raw data, thereby

reducing the reliance on human intervention.

Furthermore, DNNs demonstrate robust performance across a range of
imaging modalities, including fluorescence and brightfield microscopy,
making them well-suited for diverse biomedical applications. Their
adaptability is another notable strength, as these models can be fine-
tuned with relatively minimal changes to work effectively on different
datasets. This is especially useful in biomedical research, where imaging
conditions and specimen types may vary significantly. Additionally,
DNN architectures such as U-Net [11], SAU-Net [3], and CSRNet [10]
have shown considerable scalability, with the capability to be extended
to accommodate high-resolution images, three-dimensional (3D)
volumes, or even time-lapse sequences. Finally, by leveraging both
spatial and contextual cues from the input images, DNNs consistently
outperform traditional cell counting methods in terms of both precision
and recall, making them a more accurate and reliable choice for modern

biomedical image analysis.



1.1.3 Application in Cell Counting Pipelines

In deep learning-based biological cell counting, the overall workflow
typically follows a structured pipeline designed to handle the
complexities of microscopy image analysis. The process begins with
input image preprocessing, which may include operations such as
normalization and resizing to standardize the data and prepare it for
efficient processing. This is followed by feature extraction, where
convolutional layers are employed to identify and capture critical
patterns within the image, such as cell edges, textures, and spatial
arrangements. The network then generates intermediate representations,
which may take the form of segmentation masks or density maps,
providing a detailed visualization of cell locations and distributions.
These representations are interpreted to estimate either the total number
of cells or their specific positions within the image. Finally, a
postprocessing step is applied to refine the predictions, which is
particularly important in densely populated regions where cells may

overlap or be closely clustered.

DNNs have become foundational to modern biomedical image analysis
due to their ability to learn and generalize from complex datasets. Their
layered, hierarchical architecture, which resembles the blob-like object
detection mechanism, enables them to tackle the high precision demands
of cell counting tasks even under challenging imaging conditions. As
microscopy technologies continue to evolve, producing increasingly
large and intricate datasets, the role of DNNs in automating and
enhancing quantitative analysis in cell biology is expected to grow even

more significant.

1.2 Transformer

Transformers have emerged as a transformative deep learning
architecture initially developed for natural language processing but now
gaining significant traction in computer vision, including biomedical

image analysis and cell counting tasks. Unlike convolutional networks



that rely on local receptive fields, Transformers excel in modelling
global dependencies using attention mechanisms. This capability is
particularly valuable when spatial context plays a crucial role, such as
in high-resolution biological images where cells exhibit varying density,
shape, and arrangement.

1.2.1 Basic Architecture of a Transformer

The standard Transformer architecture, as introduced in the seminal
paper "Attention is All You Need" by Vaswani et al. (2017) [14], follows
an encoder-decoder structure originally designed for natural language
processing. However, for vision-centric tasks such as cell counting or
segmentation, the encoder-only variant—popularized through Vision
Transformers (ViTs)—has been more commonly adopted due to its

suitability for spatial data processing.

In this adaptation to vision applications, the first component is the input
embedding layer. Here, a two-dimensional image is divided into fixed-
size patches (typically 16x16 pixels). Each patch is then flattened into a
vector and passed through a linear projection layer to form token
embeddings. To retain spatial information, which is essential in visual

data, positional encodings are added to these tokens.

Following the embedding layer is the Multi-Head Self-Attention
(MHSA) mechanism. This module enables the model to attend to
multiple spatial regions simultaneously, allowing for a more
comprehensive understanding of the image context. The MHSA
mechanism involves computing query Q, key K, and value V matrices
from the input embeddings. The attention scores are then computed

using the scaled dot-product formula:

Attention (Q,K,V) = softmax (%) (1)

This multi-head formulation empowers the model to capture diverse
semantic relationships across different image regions, which is
especially useful in biomedical imaging where relevant features such as

cell centres or boundaries may appear in varying positions and forms.
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The output of the attention layer is passed through a Feed-Forward
Network (FFN), which typically consists of two fully connected layers
with a non-linear activation function, most commonly the Gaussian
Error Linear Unit (GELU). This component independently transforms
each token, enhancing the representational capacity of the model.

To ensure training stability and efficient learning, each sub-layer in the
Transformer encoder includes layer normalization and residual
connections. These mechanisms play a critical role in enabling
consistent gradient flow across layers, stabilizing training dynamics, and
facilitating the learning of identity mappings, which can accelerate

convergence.

Positional encoding is another essential element of the Transformer,
especially in vision applications. Since self-attention mechanisms do not
inherently consider the order or position of tokens, positional encodings
are integrated to inject spatial order information into the model. These
encodings can be sinusoidal, learned, or based on relative positioning,

depending on the implementation.

Finally, the design of the output head varies based on the specific vision
task. For classification tasks, a special class token is passed through a
linear layer to predict category labels. In segmentation tasks, the output
is reshaped into a feature map that aligns with the input image. In the
case of cell counting, the Transformer’s final outputs are decoded into
density maps or scalar counts, thereby translating learned spatial and

contextual representations into quantitative biological information.

1.2.2 Advantages of Transformers in Cell Counting

Transformers offer several advantages that make them particularly well-
suited for biological cell counting and related vision tasks. One of their
most significant strengths lies in their ability to capture global contextual
information. The self-attention mechanism allows the model to
understand relationships between spatially distant regions within an
image, which is particularly beneficial in scenarios involving

overlapping or densely clustered cells. This global perspective enables
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the model to differentiate between individual cells even when

boundaries are ambiguous.

Another advantage is the scalability of Transformers to large image
inputs. Unlike convolutional neural networks (CNNSs), where the
receptive field is constrained by the kernel size and network depth,
Transformers can process an entire image context simultaneously
without requiring deeper architectures. This property allows them to
analyse large-scale microscopy images more effectively. Moreover,
Transformers tend to generalize better across different datasets. Since
they are less reliant on local texture features compared to CNNs, they
are more adaptable to variations in imaging conditions, making them
ideal for applications in biomedical domains where dataset

heterogeneity is common.

The flexibility of Transformer architectures further enhances their
utility. They can be seamlessly integrated with other neural components
such as convolutional layers, Atrous Spatial Pyramid Pooling (ASPP),
and attention gates. This modularity has led to the development of
powerful hybrid models like SAU-Net [3] and Restormer [12], which
combine the strengths of different architectural paradigms for improved
performance. Lastly, Transformers demonstrate superior effectiveness
in challenging scenarios such as crowded or low-contrast microscopy
images. In these situations, where cell boundaries may be faint or
indistinct, the attention mechanism enables the model to focus on subtle
but biologically significant features, thereby improving detection and

counting accuracy.

1.2.3 Limitations of Transformers

Despite their powerful capabilities, Transformers also present several
limitations when applied to image-based biomedical tasks. One major
drawback is their high computational cost. The self-attention
mechanism inherent to Transformers scales quadratically with the input
size, meaning that as image dimensions increase, so does the demand

for computational resources. This makes training on high-resolution



biomedical images particularly demanding in terms of GPU memory

and processing power.

Another significant limitation is their data-hungry nature. Transformers
typically require large-scale datasets to achieve optimal performance,
which poses a challenge in the biomedical field where obtaining
extensive, well-annotated datasets is often infeasible due to time, cost,
and domain expertise constraints. This reliance on large datasets can
hinder their applicability in medical scenarios with limited labelled data.

Additionally, Transformers lack the inductive biases that are inherently
present in CNNs. CNNs are designed to be translation-invariant and
spatially aware, enabling them to efficiently process image data with
fewer training samples. In contrast, Transformers must learn these
spatial relationships and patterns from scratch, which not only increases
the complexity of training but also requires more data and time to

achieve comparable performance.

Furthermore, the effectiveness of Transformers heavily depends on the
method used for positional encoding, which is essential for embedding
spatial information into the model. In biomedical applications where the
precise location and morphology of cells are crucial, any inadequacy in
encoding spatial relationships can adversely impact performance.
Therefore, the reliance on positional encoding adds another layer of
sensitivity and potential instability to Transformer-based models in

medical imaging tasks.

1.2.4 Transformers in Biomedical Imaging

In recent research, various Transformer-based architectures have been
effectively applied to microscopy-based cell counting, demonstrating
notable improvements over traditional methods. For instance, SAU-Net
[3] incorporates self-attention modules into the widely used U-Net [11]
architecture, enhancing the model’s ability to focus on the foreground
regions, particularly the cells. This integration allows for more precise
localization and counting in dense cell populations. Similarly,

Restormer [12] utilizes efficient Transformer blocks designed for high-
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resolution image restoration. These blocks have been adapted for
improving the quality of low-resolution or noisy microscopy images,
thereby aiding in more accurate downstream cell analysis tasks.

These advanced architectures leverage the Transformer’s strength in
modelling both local and global features, which is particularly
advantageous for complex tasks like 2D and 3D cell counting.
Transformers represent a significant paradigm shift from conventional
convolution-based image analysis approaches. Their capacity to capture
long-range dependencies across an image makes them exceptionally
suitable for analysing dense, cluttered, or high-resolution cellular
imagery. Although they come with certain challenges, such as high
computational demands and a need for large training datasets, ongoing
research into lightweight Transformers, hybrid network architectures,
and attention-enhanced CNNs is steadily addressing these limitations.
Consequently, Transformers are expected to become a cornerstone
technology in the future landscape of automated biological cell counting

and image-based biomedical analysis.

1.3 Cell Counting

Cell counting is a fundamental task in many biological and biomedical
research applications, including cancer diagnosis, stem cell therapy,
drug screening, tissue analysis, and neuroscience. Accurately
quantifying the number of cells in microscopy images provides critical
information for assessing cell proliferation, viability, density, and
overall health. Despite its importance, traditional manual counting is
time-consuming, subjective, and prone to human error, particularly in

large-scale or high-throughput experiments.

With the advancement of computational techniques and the advent of
deep learning, automated cell counting has evolved into a sophisticated

and reliable alternative. This section explores the conceptual



foundations, traditional challenges, and modern deep learning-based
approaches for cell counting.

Cell counting serves as a cornerstone in several experimental and
diagnostic workflows. In tissue engineering, it determines cell
proliferation rates; in cancer studies, it measures tumour growth or
regression; in stem cell research, it evaluates differentiation and
regeneration; in drug discovery, it assesses cytotoxicity of drug
compounds; and in immunology, it quantifies immune response through
changes in cell populations. Accurate and reproducible counting
methods are critical for ensuring experimental validity, reproducibility,

and scaling up clinical research.

Historically, cell counting has been performed through manual counting
and classical image processing. Manual counting, often carried out by
experts using a hemacytometer or by annotating microscopy images, is
time-consuming and labour-intensive. It is also subject to inter-observer
and intra-observer variability and is infeasible for large-scale image
datasets. Classical image processing employs techniques such as
thresholding, edge detection (e.g., Sobel, Canny), morphological
operations (dilation, erosion), and watershed segmentation. These
methods work well for images with good contrast and minimal noise but
are sensitive to lighting and staining variations and struggle with
overlapping cells. Moreover, they require task-specific hand-engineered

features and generalize poorly across different datasets.

The shift toward deep learning has addressed many shortcomings of
traditional approaches. Instead of relying on handcrafted rules, deep
learning models learn feature representations directly from annotated
data. Depending on the nature of the output, modern cell counting
methods can be categorized into detection-based methods, regression-

based methods, and density map estimation.

Detection-based methods treat cell counting as a detection problem by
identifying cell centres or nuclei using bounding boxes or circular

masks. These methods employ object detection networks like Faster R-
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CNN [13], YOLO [18], or variants of U-Net [11], [3]. However, they
face challenges in densely populated or overlapping cell regions and
require precise localization for each cell. Regression-based methods
predict the total number of cells in an image without identifying
individual locations, requiring simpler image-level labels but lacking
spatial information about cell distribution. The most common and
accurate method in recent years has been density map estimation. In this
approach, each annotated cell, typically represented as a dot, is
converted into a Gaussian blob. The network learns to regress a density
map such that its integral equals the total cell count. This method
effectively handles overlapping and crowded cells and does not require

precise segmentation or bounding boxes.

Several architectures have been proposed specifically or adapted for cell
counting. CSRNet [10], a dilated convolutional network, preserves
spatial resolution while enlarging the receptive field, making it effective
for highly congested scenes. Count-ception [4] introduces redundant
counting through a fully convolutional network, using overlapping
receptive fields to count the same cells multiple times and averaging
predictions to reduce errors. SAU-Net [3] is an attention-augmented U-
Net [11] that incorporates self-attention modules and supports both 2D
and 3D data, enabling volumetric cell counting. The Two-Path Network
[20] employs a dual-stream architecture, with one path capturing spatial
details and the other focusing on semantic context, combining their

outputs to produce accurate density maps.

To assess the performance of cell counting algorithms, several standard

metrics are used. Mean Absolute Error (MAE) is defined as:
MAE =3I, | — '] 2)
Where:
N is the number of test images,

cP™*% is the predicted count for i image,
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2" is the ground truth count for i image.
A lower MAE indicates better performance.

MAE measures the average absolute difference between predicted and
ground truth counts. Mean Squared Error (MSE) is given by:

2
MSE = % Z?=1(Cipred - Cigt) ©)

This metric is more sensitive to large errors and emphasizes robustness.
The Grid Average Mean Absolute Error (GAME) divides the image into
grids and computes the error per grid, helping assess spatial accuracy.
The R? score or correlation coefficient measures how well the predicted
count fits the actual trend.

We have used MAE for cell counting due to several reasons. MAE is
highly interpretable, providing a direct and intuitive sense of average
error. For example, an MAE of 3 indicates an average discrepancy of
three cells, which is easily understandable for practitioners. It is
symmetric and robust, treating overestimation and underestimation
equally, an important aspect in biomedical contexts. Additionally, MAE
is less sensitive to outliers compared to MSE, making it suitable for
datasets with variable densities. It aligns well with the primary objective
of cell counting, which is to accurately estimate the total number of cells.
Furthermore, MAE is a standard benchmark metric in literature, used
widely in models such as CSRNet [10], Count-ception [4], and SAU-
Net [3], enabling consistent comparison across different studies. For
density map-based methods, where the total count is derived by
integrating over the predicted density map, MAE effectively captures

prediction discrepancies, making it ideal for such approaches.

Despite the progress made, several challenges remain in cell counting.
Occlusions and overlapping cells, staining and imaging variability,
sparse or inconsistent annotations, and the need for 3D microscopy
handling are significant hurdles. Additionally, in many datasets, only

approximate or noisy labels are available, posing further difficulties.
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Emerging trends and future directions are addressing these limitations.
Few-shot and transfer learning are being explored to train models with
limited data and adapt to new cell types or imaging modalities. For
example, FamNet developed by Ranjan et al. (2021) [21] applies few-
shot learning to count novel object types using minimal samples. Self-
supervised learning is being utilized to leverage unlabelled data for
pretext tasks before fine-tuning for cell counting. Transformer-based
models are gaining traction due to their ability to leverage global
context, providing better accuracy in high-density cell images.
Uncertainty modelling is being integrated to handle label noise and rater
disagreement. Furthermore, 3D and multimodal integration—
combining fluorescence, phase contrast, and volumetric data—is
improving model robustness and generalizability. As biological datasets
grow in complexity and scale, intelligent models capable of
understanding spatial patterns, handling imperfect labels, and
generalizing across diverse domains will become increasingly essential.
Deep learning, through architectures like CSRNet [10], Count-ception
[4], and Transformer-driven models, has firmly established itself as the
foundation of modern, scalable, and accurate cell quantification

systems.

1.4 Datasets

To evaluate the performance of the proposed deep learning-based cell
counting model, three publicly available benchmark datasets were
utilized. These datasets represent a diverse range of imaging scenarios
and cell morphologies, making them suitable for assessing the
generalizability and robustness of cell counting algorithms. Each dataset
presents unique challenges in terms of image quality, cell density, shape
variation, and background complexity. The following section provides

a comprehensive description of each dataset.
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1.4.1 Synthetic Bacterial Cells

The Synthetic Bacterial Cell Dataset, commonly referred to as the VGG
dataset, was developed by Lempitsky et al. (2010) [7] using a simulation
platform initially introduced by Lehmussola et al. (2007) [22], This
dataset is hosted and made available by the Visual Geometry Group at
the University of Oxford. It comprises 200 synthetic RGB fluorescent
microscopy images, each of size 256x256 pixels, collectively containing
35,192 simulated bacterial cells.

Figure 1.1: VGG Sample Input Image [38]

The dataset was specifically designed to replicate the challenges
commonly encountered in automatic cell counting. It incorporates
various complex imaging conditions, such as cell clustering, overlaps,
and focal depth variations, which emulate real-world microscopy data.
Despite being synthetically generated, the dataset maintains high visual
fidelity and statistical similarity to real microscopy images, making it an
excellent benchmark for evaluating cell counting models in terms of
accuracy and generalization. The consistent annotation quality and
controlled synthetic environment allow researchers to systematically

study model behaviour under challenging scenarios.

1.4.2 Modified Bone Marrow Cells

The Bone Marrow Cell Dataset (MBM) is based on clinical microscopic
images and was constructed by Paul et al. (2017) [4] through
modifications of an earlier dataset described by another research group.
This dataset contains 44 high-resolution RGB images of size 600x600

pixels, derived from bone marrow samples of healthy human subjects.
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These samples were stained using Haematoxylin and Eosin (H&E), a
widely adopted histological staining method.

Figure 1.2: MBM Sample Input Image [38]

One of the major challenges associated with the MBM dataset is the
complexity of the background, which includes staining artifacts and
variations in texture and illumination. These factors make it difficult to
isolate and count individual cells. Furthermore, bone marrow samples
typically exhibit heterogeneous cell types with varying sizes and
densities, further complicating the segmentation and density estimation
tasks. The dataset includes a total of 5,553 manually annotated cells,
providing a solid ground truth for evaluating the performance of cell

counting models under noisy and uneven conditions.

1.4.3 Human Subcutaneous Adipose Tissues

The Adipose Tissue Dataset (ADI) was curated from the Genotype-
Tissue Expression (GTEX) Consortium, a large-scale initiative aimed at
understanding gene expression across various human tissues. The
dataset focuses on subcutaneous adipose tissue and was later adapted
and down sampled by Paul et al. (2017) [4] for use in cell counting
experiments. The final version of the dataset used in this study consists
of 200 RGB microscopy images, each resized to 150x150 pixels,

encompassing a total of 29,684 annotated cells.
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Figure 1.3: ADI Sample Input Image [38]

This dataset poses significant challenges due to the close packing and
high density of adipose cells, along with intra-class variability in cell
shape and size. Unlike the VGG dataset, which features simulated data,
and the MBM dataset, which includes stained histological samples, the
ADI dataset highlights the model's ability to generalize to real biological
variance. The high visual similarity among adjacent cells and minimal
separation boundaries create difficulty in distinguishing and counting
individual cells accurately. This makes ADI an important benchmark for
testing a model's fine-grained discrimination capabilities in complex

tissue environments.

Table |: Dataset details

Dataset ADI MBM VGG
Scenario Real Real Synthetic
Image Size | 150 x150 x 3 | 600 x 600 x 3 | 256 x256 x 3

# of Images 200 44 200

1.5 Organization of the Thesis
This thesis is organized into six chapters, each addressing a key
component of the study and development of cell counting using deep

learning and transformer-based approaches.

Chapter 1 introduces the fundamental concepts that underpin this work.
It begins with an overview of DNNs, followed by a brief introduction to
Transformer architectures. The chapter then discusses the significance

of cell counting in biomedical imaging and outlines the motivation
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behind the study, Datasets used in the project. Finally, the chapter
concludes with the organization of the thesis.

Chapter 2 presents a detailed review of the existing literature on object
and cell counting methods, covering both classical and modern deep
learning-based approaches. This chapter also formulates the core
problem addressed in the thesis and identifies the research gaps that this

work aims to fill.

Chapter 3 focuses on a deep learning-based approach for cell counting.
It provides a comprehensive description of the proposed model
architecture, data preprocessing techniques, training strategy, and
hyperparameter tuning. The training results are analysed to understand

the model’s learning behaviour and performance.

Chapter 4 explores a transformer-based approach to cell counting using
the Restormer model. It details the model architecture, and the
preprocessing pipeline tailored for this method. A special focus is given
to the Self-Adaptive Loss Weighting (SALW) technique used to
enhance learning. This chapter also discusses the training procedure and

evaluates the results.

Chapter 5 consolidates the results from both the deep learning and
transformer-based approaches. A comparative analysis is carried out to
assess their performance across various datasets and evaluation metrics.
This chapter offers insights into the strengths and limitations of each

method.

Chapter 6 concludes the thesis by summarizing the key findings and
contributions. It also highlights the potential directions for future work,
including suggestions for improving model accuracy and generalization,

and expanding the approach to other biomedical applications.

The thesis is followed by appendices (if any) that provide supplementary
material and technical details and concludes with a comprehensive list

of references that support the research conducted in this work.
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Chapter 2

Literature Review and Problem

Formulation

This section explores recent developments in cell counting methods with
help of CNNs and includes a brief discussion on transformer-based

approaches.

2.1 Detection based Counting

Detection-based counting methods, such as [7], [23], [20] identify and
quantify objects by localizing their centroids or bounding boxes within
an image. Traditional techniques relied on handcrafted features and
thresholding, but deep learning has significantly improved accuracy.
Early approaches combined feature extraction with machine learning
models like SVMs and Random Forests developed by Lempitsky et al.
(2010) [7], introduced a density map-based method that estimated object
positions rather than detecting them directly, later refined by Arteta et
al. (2016) [24] using structured learning. However, these methods

struggled with occlusions and variations in object appearance.

CNN-based architecture like [25], [18], and [26] improved object
localization but faced challenges in dense environments. Rodriguez-
Vazquez et al. (2016) [19] addressed this using adversarial training,
while [23] developed a deeply supervised CNN (C-FCRN) with
auxiliary networks for feature refinement. Xie et al. (2018) [8] enhanced
generalization with deep regression models that analyzed spatial

relationships

To tackle occlusion-related challenges, researchers explored FCNs and
attention mechanisms. Count-ception [4] introduced by [11], which used
multiple receptive fields to improve localization, while [17] developed
an uncertainty-aware detection model leveraging multi-rater

annotations. Falk et al. (2019) [16] demonstrated the effectiveness of U-
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Net [11] based segmentation-driven counting. Other studies integrated
segmentation with detection for improved accuracy— Cheng et al.
(2022) [27] used a spatially relaxed CNN to reduce density map noise.

Hybrid models combining detection and density estimation also
emerged. Jiang et al. (2021) [20] proposed a two-path network that
extracted spatial details and contextual information before merging them
for density estimation. Xue et al. (2016) [28] combined deep regression
networks with detection pipelines to enhance accuracy under occlusions.
Recent advancements include context-aware detection models and
iterative refinement strategies. Guo et al. (2021) [3] extended U-Net [11]
with a self-attention mechanism for improved microscopy image
localization, while Paulauskaite-Taraseviciene et al. (2019) [9] validated
Mask R-CNN [13] for detecting overlapping objects. Despite progress,
detection-based methods still struggle with occlusions, low contrast, and
irregular object shapes. Future research is exploring transformer-based
models Vaswani et al. (2017) [14] and self-supervised learning for better
adaptability. Multi-modal fusion approaches are also under
investigation, with Zhang et al. (2022) [5] demonstrating the potential

of vision transformers for counting tasks.

2.2 Cell Counting by Regression

Regression-based counting methods estimate object counts by mapping
input features directly to numerical values, eliminating explicit object
detection. This approach is particularly effective for high-density,
occluded, and irregularly distributed objects. Early methods relied on
handcrafted features with linear regression models, but deep learning
significantly improved accuracy. Lempitsky et al. (2010) [7] introduced
a density map-based approach using dot-annotated images, while
Fiaschi et al. (2012) [29] refined it with structured regression for
cluttered environments. Arteta et al. (2014) [24] further enhanced
accuracy by incorporating spatial constraints into density maps. With

deep learning, CNNs became central to regression-based counting. Xie
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et al. (2018) [8] proposed a fully convolutional regression network
(FCRN) to estimate density maps directly, while Cohen et al. (2017) [4]
introduced Count-ception, leveraging multiple receptive fields to reduce
localization errors. He et al. (2021) [23] developed C-FCRN, integrating
auxiliary CNNs for feature refinement. Liu and Yang (2017) [30]
explored multi-scale CNNs to handle varying object sizes, and Wang et
al. (2020) [6] improved generalization with an attention-based multi-
scale regression network. Hybrid models have further advanced this
approach. Cheng et al. (2022) [27] used a spatially relaxed CNN with
Gaussian kernels to reduce density map noise. Walach and Wolf (2016)
[31] introduced a deeply supervised network with iterative feedback for
refined density estimates. Sindagi et al. (2019) [32] proposed a context-
aware regression framework utilizing global and local contextual
features for improved density map refinement. Interactive learning has
further refined regression-based models. Liu et al. (2023) [30]
developed an adaptive density map generator that dynamically adjusted
annotations during training. Xue et al. (2016) [28] incorporated
feedback mechanisms for iterative prediction refinement, while Zou et
al. (2021) [33] introduced uncertainty estimation for better
interpretability.

Recent advancements focus on attention mechanisms and improved
feature extraction. Guo et al. (2021) [3] extended U-Net [11] with self-
attention modules for better density estimation. Optimization techniques
and loss function improvements have also enhanced handling of high-
density distributions. Future directions include multi-scale learning and
transformer-based models for improved adaptability and accuracy in

regression-based counting.

2.3 Transformer based Counting
Transformer-based models have significantly improved cell counting in
biomedical imaging by effectively handling dense and overlapping

objects. Unlike CNNSs, they utilize self-attention to capture long-range
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dependencies, ensuring robust performance in microscopy images.
Their global context modeling enhances accuracy, especially in varied
cell distributions. Zhang et al. (2022) [5] developed a vision
transformer-based framework that excelled across different cell
densities. Cheng et al. (2022) [27] combined transformers with CNNs,
achieving state-of-the-art results. Guo et al. (2021) [3] integrated self-
attention into U-Net [11], improving segmentation and density
estimation. Additionally, Restormer, a transformer model optimized for
image restoration, employs a patch-based technique to efficiently
process biomedical images, enhancing precision in cell counting tasks.
Transformers also improve computational efficiency by processing
entire images in parallel, making them ideal for high-resolution medical
analysis. However, their high resource demand limits real-time
applications. Future efforts should focus on lightweight architecture and
self-supervised learning to enhance adaptability, particularly in
scenarios with limited labeled data. By offering superior accuracy and
scalability, transformers are set to revolutionize biomedical image

analysis, enabling more precise and automated cell counting solutions.

2.4 Problem Formulation

To address the critical limitations observed in current methods, the

research aims to solve the following condensed challenges:

1. Design a model that accurately counts cells under varying

densities and morphological complexities.

2. Ensure robustness against occlusions, overlapping instances, and

low-contrast imaging conditions.

3. Achieve computational efficiency suitable for processing high-

resolution microscopy images.

This thesis proposes a hybrid deep learning framework that combines

convolutional and transformer-based architectures, aiming to extract
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multi-scale spatial features, leverage global context via attention
mechanisms, and produce precise density maps for robust and scalable

cell counting in biomedical images.
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Chapter 3

Deep Learning Based Cell Counting

3.1 Data Preprocessing

3.1.1 Focal Inverse Distance Transform Map

In traditional cell counting approaches based on density estimation,
Gaussian-based ground truth maps are commonly employed. While this
method effectively captures spatial cell distributions in moderately
dense images, it suffers from overlapping distributions and diminished
localization accuracy in highly clustered regions. To address this
limitation, the Focal Inverse Distance Transform (FIDT) map described
by Liang et al. (2022) [34] has been introduced as a more precise
alternative for annotating cell centroids, particularly in cases of dense

and overlapping cell structures.

3.1.2 Limitations of Gaussian Maps
Gaussian maps represent each cell as a localized 2D Gaussian kernel
centred at its centroid. For a given point (x;,y;) the Gaussian density

map D(x,y) is computed as:

N
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Where:

e N is the total number of annotated cell centers,
e o is the standard deviation controlling the spread of the kernel.

Although effective in sparse scenes, this method poses two main issues

in dense scenarios:

1. Kernel Overlap: When cells are closely packed, the Gaussian
kernels tend to overlap significantly, leading to imprecise

localization and skewed density representations.
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2. Lack of Spatial Contrast: The uniform spread of Gaussians
reduces gradient strength around centroids, making it harder for
the network to learn sharp and confident peak responses.

3.1.3 Concept and Formulation of FIDT Maps

The FIDT map redefines the way cell centroids are encoded by
leveraging inverse distance transforms with an adaptive focal
mechanism. It emphasizes the pixel-wise distance to the nearest ground
truth centroid and assigns higher values to pixels close to the cell centre,
creating sharper and more distinguishable peaks compared to Gaussian

maps.

Let 2 denote the spatial domain of the image and let P = (x;, y,)N,
represent the set of ground truth cell centroids. For each pixel p € 2, its

distance to the closest point in P is:

dp) = min_|lp=Caydll, G

Then, the FIDT map M(p) is defined using a focal inverse transform:

1 Y
Mo = (Go71)  ©
Where:

o d(p) isthe Euclidean distance from pixel p to the nearest ground

truth centroid,

e y > 0isahyperparameter called the focal factor, which controls

the steepness and focus of the response around the centroid.

b ? o
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SN - X
Figure3.1: Input ADI Figure 3.2: Dot Figure 3.3: FIDT Map
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This formulation guarantees that the closer a pixel is to a cell centre, the
higher its response in the map. Unlike Gaussian maps, which rely on a
fixed spread (o), the FIDT map dynamically adapts based on pixel-level
distances, leading to more robust and distinct peaks.

3.1.4 Mathematical Intuition Behind FIDT

The key innovation of FIDT lies in how it integrates the focal
principle—originally proposed in Focal Loss for handling class
imbalance—into spatial representation. The exponent y in the FIDT
equation plays a similar role by emphasizing hard (close-to-centre)
pixels and down-weighting easier (distant) ones. This introduces spatial
adaptivity and sharpens the local maxima corresponding to cell

centroids, thereby making learning more effective.
As y increases:

e The value of M(p) decreases rapidly for pixels farther from the

centroid,

e The map becomes more concentrated around the centroid,

improving spatial discrimination.

3.1.4 Advantages of FIDT

The use of Focal Inverse Distance Transform (FIDT) maps, as opposed
to traditional Gaussian-based maps, offers several key advantages in
dense cell counting scenarios. One of the primary benefits is sharper
localization, as FIDT maps produce well-defined, focused peaks
precisely at cell centres. This characteristic enhances the model’s
capability to differentiate between closely packed cells (as shown in
Figure 3.5), which is particularly important in crowded microscopy
images. Additionally, the inverse distance-based formulation of FIDT
inherently reduces overlap between adjacent cell representations. Unlike
Gaussian maps, which spread density over a larger area and may cause
interference (as shown in Figure 3.4), FIDT maps maintain clearer

boundaries between neighbouring cells.
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Another significant advantage of FIDT is its parameter robustness.
Traditional Gaussian density maps require manual tuning of the kernel
width parameter (o), which can vary significantly depending on the
dataset. In contrast, FIDT maps eliminate this requirement by defining
the spatial profile purely based on distance, simplifying the target
generation process and enhancing generalizability across different
imaging conditions. Moreover, the sharp gradients produced near the
centroids in FIDT maps offer a stronger and more informative learning
signal for the model. This leads to faster and more stable convergence
during training, ultimately improving the accuracy and efficiency of cell

counting systems.

Figure 3.4 illustrates a Gaussian density map, a widely used approach
for cell counting where each annotated cell centre is blurred using a
Gaussian kernel. This method smooths the spatial distribution and
allows for straightforward integration to estimate total cell count.
However, as shown in Figure 3.4, the overlapping Gaussian blobs in
high-density regions can lead to ambiguity, making it difficult to

accurately localize individual cells.

In contrast, Figure 3.5 presents the FIDT map, which encodes spatial
information more distinctly by incorporating inverse distance
transforms. This results in sharper, non-overlapping peaks even in
crowded scenes. As evident in Figure 3.5, FIDT maps preserve spatial

resolution and better highlight individual cell centres.

26



Visualization Example

Figure 3.4: Gaussian Map Figure 3.5: FIDT Map

3.1.5 Data Augmentation Strategy

To enhance the robustness and generalizability of the deep learning
model, a systematic data augmentation pipeline was applied during the
preprocessing stage. The goal of this augmentation was to artificially
increase the diversity of the training samples without collecting
additional data, which is particularly valuable in biomedical imaging

where annotated samples are often limited.

For each original image, three rotation operations were performed at
angles of 90°, 180° and 270° effectively simulating different
orientations of cells that may naturally occur during microscopic slide
preparation.  Additionally, horizontal and vertical flipping
transformations were applied to generate mirror-image variants of the
input. To further extend variability, the same three rotation operations
(90°, 180°, and 270°) were also applied to each of the horizontally and
vertically flipped versions of the image. As a result, a single input image
yielded a total of nine augmented variants — three rotations of the
original, three rotations of the horizontally flipped image, and three

rotations of the vertically flipped image.

This approach not only increased the size of the dataset significantly but
also encouraged the model to learn rotation- and flip-invariant features,
which is critical for consistent performance across diverse imaging
conditions. The augmentation process was carefully designed to ensure

that the ground truth annotations (such as cell coordinates or density
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maps) were adjusted accordingly, maintaining alignment with the

transformed images.

3.2 Model Architecture

In the early phase of this research, a hybrid deep learning framework
was implemented to address the challenges inherent in automated cell
counting from microscopy images. The proposed architecture integrates
a pretrained VGG16 model as the backbone for feature extraction,
followed by a cascaded U-Net [11] structure to perform pixel-level
prediction through fine-tuned spatial localization. This composite
approach was specifically tailored to leverage the generalization ability
of pretrained convolutional networks along with the precise
segmentation capabilities of encoder-decoder-based architectures,
thereby improving the accuracy and robustness of the cell counting task.

3.2.1 VGG16 Feature Extractor

The model begins with a feature extraction block based on VGG16, a
convolutional neural network originally introduced by Simonyan et al.
(2014) [35]. VGG16 is widely recognized for its simplicity, depth, and
effectiveness in learning hierarchical features from image data. It
consists of 13 convolutional layers followed by 3 fully connected layers
(not used in this case), with all convolutional operations using small 3x3
filters and ReLU activations. In the proposed cell counting framework,
the convolutional blocks of VGG16 are used up to the final
convolutional layer, excluding the classification head. This allows the
model to extract rich semantic representations of cellular structures such
as membranes, nuclei, and cytoplasmic regions. These representations
serve as a high-level abstraction of the raw input, facilitating more

efficient learning during subsequent processing stages.

Using pretrained VGG16 weights, originally learned on the ImageNet
[1], [26] dataset, provides a strong initialization, especially beneficial

when training data is limited. This technique, known as transfer
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learning, helps accelerate convergence and reduces the risk of
overfitting, while ensuring that lower-level features such as edges and

textures are effectively captured from the start.

3.2.2 Cascaded U-Net Architecture

Following the VGG16 backbone, the model incorporates a U-Net-based
encoder-decoder pipeline to reconstruct high-resolution density maps
from the abstracted feature maps. U-Net [11], introduced by
Ronneberger et al. (2015) [11], was designed specifically for biomedical
image segmentation and has since become a cornerstone model in
medical imaging tasks due to its strong performance in localization and
segmentation. The hallmark of U-Net [11] is its symmetrical structure,
consisting of a contracting path (encoder) and an expansive path

(decoder), connected through skip connections.

In the encoder path, a series of convolutional layers combined with
down sampling operations (e.g., max pooling) progressively reduce the
spatial dimensions while increasing the depth of the feature maps,
allowing the network to encode semantic information over increasingly
larger receptive fields. The decoder path then up samples these feature
maps using transpose convolutions (also called up-convolutions) and
refines them through additional convolutional operations. Importantly,
skip connections link each encoder block with its corresponding decoder
block, facilitating the reuse of spatially precise features that may

otherwise be lost during down sampling.

This design is particularly advantageous for cell counting, as it ensures
the network maintains fine-grained localization information necessary
for distinguishing individual cells in high-density or overlapping
regions. Additionally, the decoder blocks in this model are configured
to generate smooth density maps, enabling accurate estimation of the

number and distribution of cells across the image.

3.2.3 Dual Cascaded Network
The uniqueness of this implementation lies in the cascaded U-Net [11]

structure, which includes multiple depth and concatenation operations
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to refine and merge features from different stages of the network. This
design introduces multiple paths for feature flow, allowing the model to
learn both global and local context more effectively. Intermediate
outputs from early convolutional stages and later encoding stages are
concatenated at various points in the decoding process, enriching the
model’s capacity to discriminate between overlapping or

morphologically diverse cells.

Furthermore, the architecture (see Figure 3.6) includes additional layers
for transposed convolutions, dropout (for regularization), and batch
normalization (to stabilize training). These enhancements contribute to

the network’s ability to generalize well on unseen data.

$300]q paurenaid 9T-OOA

UNet blocks
A

Figure 3.6: Dual Cascaded Network
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3.2.4 Key Benefits of the Proposed Model

Despite its limitations in performance, the proposed cascaded VGG16-
U-Net model [11] provides several foundational advantages that justify
its inclusion in the early stages of this study. One of the key strengths of
this architecture lies in its ability to leverage pretrained VGG16 weights,
enabling efficient transfer learning. This significantly reduces training
time and facilitates faster convergence, particularly when working with
limited training data—a common constraint in biomedical imaging.
Additionally, the U-Net structure [11], with its characteristic skip
connections, plays a critical role in preserving spatial information. This
architectural feature ensures that important spatial characteristics, such
as cell boundaries and morphological details, are retained throughout the

network, which is vital for accurate cell detection.

Furthermore, the model supports end-to-end density map estimation,
allowing it to predict continuous-valued density maps directly from
input images. This capability is especially beneficial in scenarios where
detailed individual cell annotations are unavailable or impractical to
obtain. By predicting density maps rather than discrete cell locations,
the model can still produce accurate count estimations while
circumventing the need for exhaustive manual labelling. These features
make the VGG16-U-Net model a valuable baseline for exploring more

advanced architectures in the context of automated cell counting.

3.3 Model Training and Hyperparameter Tuning

In the training phase of the proposed deep learning model for cell
counting, a range of key hyperparameters were systematically adjusted
to optimize predictive performance. The model was trained using
supervised learning, where each input image was associated with a
corresponding ground truth density map. The experiments focused on
the impact of different values of batch size, loss functions, learning rate,
and the number of skip connections used in the cascaded DCNet

architecture.
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Batch size, which determines the number of samples processed before
model parameters are updated, was varied across a set of values
including 20, 30, 32, 40, 45, and 50. This helped analyse the trade-off
between computational efficiency and convergence behaviour. While
smaller batch sizes allowed for more granular updates to the model
weights, they also increased training time. In contrast, larger batch sizes
offered faster iterations but sometimes led to suboptimal convergence

due to noisier gradient estimates.

In addition, multiple loss functions were explored, including Mean
Absolute Error (MAE), Mean Squared Error (MSE), and Huber Loss.
MAE penalizes all errors equally and is less sensitive to outliers,
whereas MSE penalizes larger errors more heavily, making it suitable
for emphasizing high-deviation predictions. Huber Loss serves as a
compromise between the two by behaving like MSE near the minimum
and like MAE for outliers, making it a balanced choice in cases where

data may contain noise or inconsistencies.

Another crucial factor in the optimization process was the learning rate,
which controls the size of updates to the model’s weights during
training. Different learning rates were tested to determine an optimal
setting that ensured stable convergence without overshooting the
minimum of the loss function. Smaller learning rates led to smoother
convergence but required more training epochs, while larger values
accelerated convergence at the risk of instability or divergence. By
carefully tuning this parameter, the model achieved a more balanced and

controlled learning trajectory.

Finally, architectural tuning involved modifying the number of skip
connections in the DCNet model. These skip connections are
instrumental in preserving spatial and contextual information from
earlier layers of the network. By varying the number and placement of
these connections, it was possible to assess their influence on the
model’s ability to reconstruct detailed density maps, particularly in the

presence of overlapping or densely packed cells.
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Overall, this systematic hyperparameter tuning process helped identify
configurations that, while not optimal in all scenarios, contributed to a
more stable and interpretable training procedure, laying the groundwork

for further refinements in future model iterations.

After extensive experimentation with various combinations of
hyperparameters, the most effective configuration was identified. The
model yielded its best performance when trained using two skip
connections within the cascaded DCNet architecture, a batch size of 45,
and the Huber loss function. The use of two skip connections proved to
be a balanced choice—it preserved essential spatial features from the
encoder layers without overcomplicating the network structure, which
could otherwise lead to redundant or conflicting information being
passed forward. The batch size of 45 struck an optimal trade-off between
stability in gradient updates and training efficiency, enabling smoother
convergence while effectively utilizing available computational
resources. Moreover, the Huber loss function offered the best results
among the tested loss metrics, thanks to its hybrid nature that combines
the robustness of Mean Absolute Error (MAE) and the sensitivity of
Mean Squared Error (MSE). It particularly improved the model's
performance in handling outlier predictions, which are common in cell
counting tasks due to the variability in cell density and overlapping
structures. This configuration served as the final training setup for

subsequent evaluations and benchmarking across the selected datasets.

3.4 Results

During extensive experimentation with various architectural and
training configurations, a notable outcome was achieved using a
combination of two skip connections, a batch size of 45, and the Huber
loss function as the training objective. This particular setup yielded the
third-best performance across all tested configurations, with a Mean
Absolute Error (MAE) of 11.0.
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The use of two skip connections helped in effectively retaining spatial
information and preserving fine-grained features through the network
layers. Skip connections play a critical role in addressing the vanishing
gradient problem and enable the model to learn residual mappings,
which in turn enhance the learning of subtle cell structures in high-
density regions. Specifically, having two skip connections provided a
balanced trade-off between computational complexity and performance,

allowing sufficient gradient flow without overcomplicating the model.

The batch size of 45 contributed to stable gradient estimates during
training. Larger batch sizes tend to smooth out gradient noise, which can
lead to more consistent convergence, while still being small enough to

fit within GPU memory constraints and maintain model generalization.

The choice of the Huber loss function further contributed to this
performance by providing robustness against outliers. Unlike Mean
Squared Error (MSE), which can be overly sensitive to large deviations,
the Huber loss behaves like MSE for small errors and like MAE for large
errors. This dual nature allowed the model to focus on minimizing
smaller, frequent errors while being less influenced by occasional large
deviations, which are common in challenging cell counting datasets. The
resulting MAE of 11.0 signifies a reasonably accurate prediction,
especially in scenarios with dense cell populations and varying imaging
conditions. Though not the best overall result, this configuration proved
to be highly competitive, suggesting that the combination of skip
connections, careful batch sizing, and robust loss functions is effective

for deep learning-based cell counting tasks.

The result discussed in this section corresponds to the ADI (Adipose
Tissue Imaging) dataset. As part of the evaluation, a series of
experiments were conducted to examine the impact of different batch
sizes, skip connection configurations, and loss functions on model
performance. The configuration that combined two skip connections, a
batch size of 45, and the Huber loss function achieved a Mean Absolute
Error (MAE) of 11.0, ranking as the third-best result among all tested
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setups. This finding highlights the importance of careful selection of
architectural components and training parameters in optimizing
counting accuracy. Table Il shows a comprehensive summary of the
results obtained using varying batch sizes, skip connections, and loss
functions, allowing for a clear comparison of how each factor

contributes to overall model performance on the ADI dataset.

Table II: Experimental Result of DCNet

Batch Number of skip Loss MAE
Size connections Function

MSE 14.047

2 skip connections MAE 12.511

20 Huber 15.171

MSE 12.418
3 skip connections MAE 13.565
Huber 11.398
MSE 12.977

2 skip connections MAE 13.646
30 Huber 11.394
MSE 13.199
3 skip connections MAE 12.478
Huber 13.64
45 2 skip connections Huber 11

3.5 Conclusion

In this chapter, we presented a deep learning-based approach for cell
counting using a custom-designed model named Dual Cascaded
Network (DCNet). The DCNet architecture is a cascaded framework
that integrates the feature extraction capabilities of VGG16 with the
spatial reconstruction strengths of U-Net [11], enhanced through
strategically placed skip connections. This design enables the model to
capture both high-level semantic information and low-level spatial
features, which is critical for accurate cell localization and counting in

complex microscopy images.

The chapter began with an overview of the data preprocessing pipeling,
where raw microscopy images were normalized, resized, and converted

into density maps using dot annotations. These steps ensured that the
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input data was well-prepared for training and that the density maps
provided rich spatial supervision.

Next, the model architecture of DCNet was detailed. The encoder is
based on VGG16, which effectively captures hierarchical features, while
the decoder follows the U-Net [11] structure to reconstruct high-
resolution density maps. The incorporation of skip connections between
encoder and decoder blocks helps in preserving spatial information and
facilitates the learning of fine cell boundaries.

We also discussed the training procedure and hyperparameter tuning,
wherein multiple configurations of batch size, skip connections, and loss
functions were explored. Among these, the combination of two skip
connections, a batch size of 45, and Huber loss proved particularly
effective, striking a balance between stability and robustness to outliers.

The training results, evaluated onthe ADI dataset, demonstrated that this
configuration achieved the third-best performance across all tested
setups, with a Mean Absolute Error (MAE) of 11.0. These findings
underscore the importance of architectural choices and training strategy
in achieving high accuracy in cell counting tasks. A comparative
summary of various experimental settings is provided in Table Il for

reference.

In summary, this chapter demonstrated the effectiveness of the proposed
DCNet architecture for cell counting in microscopy images. The
cascaded use of VGG16 and U-Net [11], combined with thoughtful
training configurations, enabled strong performance across key
evaluation metrics. The insights gained here serve as a solid foundation
for the next chapter, which investigates a transformer-based
alternative—Restormer—to further enhance the model’s ability to

capture long-range dependencies and global context.
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Chapter 4

Transformer Based Cell Counting

4.1 Data Preprocessing

To ensure robust training and accurate generalization of the Restormer-
based cell counting model, a comprehensive data preprocessing pipeline
was established. Given the inherent differences in resolution, staining,
and image quality across the datasets (described in section 1.4), careful
normalization, augmentation, and target map preparation steps were
performed. These preprocessing techniques aimed to harmonize the data
characteristics and enhance the model’s ability to detect and count cells

under varying imaging conditions.

4.1.1 Image Normalization and Standardization

All input images were resized to fixed dimensions compatible with the
Restormer architecture. Pixel intensities were normalized to a standard
range to remove variations due to illumination and sensor-specific
characteristics. This helped in maintaining consistency during training

and ensured stable learning dynamics.

4.1.2 Data Augmentation Strategies

To enhance the robustness of the model and reduce the risk of
overfitting, a comprehensive set of data augmentation techniques was
employed during the training phase. These augmentations included both
geometric and photometric transformations, ensuring that the model
could generalize well across diverse imaging conditions and cell

morphologies.

Geometric augmentation involved applying random rotations to the
input images at angles of 90°, 180°, and 270°. This helped the model
develop invariance to cell orientation and positional variations, which is

crucial in microscopy images where cells can appear in any direction.

Photometric augmentation was implemented to address variations in

staining protocols and illumination conditions observed across the
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datasets. Several colour-based adjustments were applied to simulate
these differences. Brightness adjustment was used to mimic changes in
image exposure by randomly increasing or decreasing the overall
brightness, allowing the model to become more resilient to lighting
inconsistencies. Colour jittering introduced random variability in hue
and saturation levels, which aided the model in learning features that are
invariant to differences in staining. Additionally, specific shifts in hue
and saturation were included to further improve generalization, enabling
the model to adapt to the colour distortions typically introduced by
different imaging setups. These augmentations collectively contributed
to a more generalized and reliable performance across multiple datasets.

These augmentations were applied randomly during training, ensuring

that the model encountered a wide variety of input styles and conditions.

To address the issue of boundary-region cells being underrepresented
during training, padding was applied to all images prior to density map
generation. Without padding, cells located near the image edges were
often partially excluded from the receptive field of the network, leading
to inaccurate or incomplete density predictions. By extending the image
borders through symmetric padding, we ensured that edge-region cells
were fully included in both the input and corresponding FIDT maps.
This strategy improved the model’s ability to learn from the entire
spatial extent of the image, including border regions where cells are

frequently present but previously overlooked.

4.1.3 Super-Resolution Enhancement (for ADI Dataset)

The ADI dataset, due to its low original resolution and poor visibility of
cell boundaries, posed a significant challenge for learning fine spatial
features. To address this, a super-resolution [36] module was applied as
a preprocessing step. This module enhanced the image resolution,
allowing the model to better observe and learn from subtle details such
as cell contours, textures, and edge information. By improving boundary
visibility, super-resolution enabled more accurate feature extraction

during training, ultimately leading to better performance on ADI data.
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This step was applied only to the ADI dataset, as the MBM and VGG
datasets already had sufficient resolution for accurate processing.

4.1.4 Density Map Generation Using FIDT Maps

Instead of relying on traditional Gaussian-based density maps, this study
utilized the Focal Inverse Distance Transform (FIDT) maps for target
generation, as proposed by Liang et al. (2022) [34]. The FIDT
methodology enables the creation of density maps that better capture the
true spatial distribution of cellular regions, particularly in images with
dense or overlapping cell populations. This approach adapts the density
spread dynamically based on the local proximity of cells, leading to a
more informative and context-aware representation of cellular

arrangements.

One of the key advantages of using FIDT maps is their ability to preserve
spatial distribution information by modulating the density spread
relative to nearby cell locations. This characteristic allows for a more
precise representation of both isolated and clustered cells within the
same image. Additionally, the FIDT-based maps enhance the quality of
the supervision signal, thereby simplifying the learning process for

models tasked with accurate density estimation.

The generation process begins with dot annotations, which mark the
centroids of individual cells. These annotations are then convolved with
a distance-adaptive kernel as defined by the FIDT algorithm. The
resulting FIDT map serves as the ground truth for the regression task,
with the integral over the entire map representing the total cell count for
the image. Compared to conventional fixed-kernel approaches, FIDT
maps offer a richer and more flexible depiction of cell distributions,
making them particularly suitable for datasets such as the Modified
Bone Marrow (MBM) and Adipose Tissue (ADI) datasets, where cell

layouts are often irregular and non-uniform.

4.1.5 Final Input-Target Pipeline
Following all preprocessing steps, the final paired data used for training

comprised two main components: the input image and the corresponding
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target map. The input image consisted of an augmented microscopy
image, and in the case of the ADI dataset, it also underwent super-
resolution enhancement to address challenges related to low visibility
and indistinct cellular structures. The target map was a Focal Inverse
Distance Transform (FIDT)-based density map, designed to accurately
represent the spatial distribution of cells within the image. These image-
target pairs were employed to train the Restormer model in a supervised

manner using a pixel-wise regression loss function.

The preprocessing pipeline integrated a combination of strategies
tailored to accommodate the varying characteristics of the ADI, MBM,
and VGG datasets. The inclusion of super-resolution techniques for the
ADI dataset significantly improved the visibility and definition of cell
features, which are often compromised in lower-quality images.
Simultaneously, the use of FIDT maps in place of conventional
Gaussian-based density maps provided the model with richer and more
informative supervisory signals that reflected the actual distribution of
cellular regions more accurately. In addition, extensive photometric
augmentation—encompassing modifications in brightness, colour, hue,
and saturation—was applied to simulate variations in staining protocols
and imaging conditions. These augmentations enabled the model to
develop robustness and generalization capabilities across different
imaging artifacts. Collectively, these preprocessing methods established
a robust and comprehensive foundation for training the Restormer-based

cell counting architecture.

4.2 Restormer Model Architecture

4.2.1 Introduction to Restormer

Restormer (Restoration Transformer) [12] is a novel transformer-based
architecture introduced to address the challenges of high-resolution
image restoration tasks such as denoising, deraining and deblurring (as
shown in Figure 4.4). Unlike traditional CNNs, which have a limited

receptive field and often struggle to model long-range dependencies in
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images, Restormer leverages the power of self-attention mechanisms to

model global context while maintaining computational efficiency.
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Figure 4.1: Restormer Architecture [12]

In the domain of cell counting, especially in biomedical microscopy
images, challenges such as dense cell populations, varying cell
morphology, noise, and overlapping structures make accurate prediction
complex. Traditional CNN-based models may not fully capture the
spatial relationships between distant but correlated regions. Restormer’s
architecture, with its attention-based mechanism, offers a strong
alternative by providing a global understanding of the image while still

preserving fine spatial details.

4.2.2 Restormer Architectural Components

Restormer is founded on a hierarchical encoder-decoder Transformer
architecture, designed to efficiently handle high-resolution image
restoration tasks, and repurposed in this study for cell counting. One of
its core innovations is the Multi-Dconv Head Transposed Attention
(MDTA) module. Unlike traditional Transformers, which compute
attention across all pixel pairs—Ileading to high computational overhead
for large images—MDTA integrates depth-wise convolution (D-Conv)
within the attention mechanism. This design enables the model to
capture local spatial context before computing attention, offering a more
scalable alternative to vanilla self-attention. By operating in a spatially-
aware manner, MDTA significantly reduces computational complexity.
In the context of cell counting, particularly in microscopy images where

cells are small and densely clustered, MDTA enables the model to
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effectively focus on biologically relevant features while being sensitive
to local variations in cell morphology, intensity, and density. This
capability greatly enhances both localization and counting accuracy.

Each Transformer block in Restormer also includes a specialized feed-
forward module known as the Gated Depth-wise Convolutional Feed-
forward Network (GDFN). This component consists of depth-wise
separable convolutions, which extract spatial information in a channel-
wise manner, and a gating mechanism that dynamically controls the
flow of information. The gating mechanism plays a crucial role in
filtering out irrelevant background noise and emphasizing important
image features such as cell edges and centres. For cell counting tasks,
this targeted attention to biologically meaningful structures results in
improved precision, especially in images affected by noise, variable

illumination, or blur.

Restormer employs a hierarchical encoder-decoder framework similar
to that of U-Net [11], which supports multi-scale feature learning. The
encoder path progressively down samples the input image to extract
deep semantic features, while the decoder path up samples the data to
reconstruct the original spatial resolution. Crucially, skip connections
bridge the encoder and decoder layers at corresponding levels, ensuring
that high-frequency spatial information—such as edges and textures—
is preserved throughout the network. This architectural design is
particularly advantageous for cell counting, as cells exhibit a wide range
of sizes and intensities. The hierarchical approach enables detection of
both small, faint cells and larger cellular structures, while the skip
connections help retain the fine-grained details necessary for accurate

localization.

Additionally, Restormer replaces standard position encodings with
Gated Positional Encodings, allowing the model to learn positional
relevance in a dynamic fashion rather than relying on fixed embeddings.
This is coupled with Layer Normalization to improve training stability.

In microscopy images, where cells often appear in complex spatial
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configurations or are partially overlapping, the model's ability to
understand spatial relationships dynamically is essential for precise and

reliable cell count estimation.

4.2.3 Why Restormer Is Effective for Cell Counting
Although Restormer was originally designed for image restoration tasks,
it offers several advantages that make it suitable and highly effective for

cell counting in biomedical images:
1. Global Context Understanding

Cell counting often involves recognizing patterns in cell distribution
across the entire image. Unlike CNNs, which only process local regions
at a time, Restormer can attend to features across the full spatial range,
enabling better estimation of cell counts even in images with uneven cell

distribution or overlapping regions.
2. Fine Detail Preservation

The model is highly capable of preserving high-frequency details such
as cell boundaries, shapes, and edges—features that are essential for

differentiating individual cells, particularly in dense clusters.
3. Robustness to Noise and Artifacts

Microscopy images are prone to imaging artifacts, intensity variations,
and noise due to experimental limitations. Given its origin in restoration
tasks, Restormer naturally handles noise well, allowing it to generate
cleaner density maps and reducing false positives/negatives in cell

counting.
4. Efficient Processing of High-Resolution Images

Cell datasets frequently consist of high-resolution images to preserve
intricate cellular details. However, traditional Transformer models
become impractical at such scales due to their extensive memory
requirements. Restormer overcomes this limitation by incorporating

efficient attention mechanisms such as Multi-Dconv Head Transposed
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Attention (MDTA) and utilizing depth-wise convolutions, which
significantly reduce computational complexity. These design choices
enable the model to scale effectively to high-resolution inputs while

maintaining a manageable computational load.

4.2.4 Adaptation for Cell Counting in This Work

In this research, the Restormer architecture was adapted to perform
density map regression for the purpose of cell counting. The model was
trained using microscopy images annotated with dot annotations
representing individual cell locations. The primary objective was to
predict a continuous-valued density map, where the integral over any
region of the image accurately estimates the number of cells present.

Several key adaptations were made to tailor Restormer for this task.
First, the traditional restoration target used in image restoration tasks
was replaced with density maps, enabling the model to learn to predict
spatial cell distributions rather than denoised images. Additionally,
SALW [37] was employed during training. This technique dynamically
adjusts the loss contributions from different regions of the image,
allowing the model to focus more on complex or high-error areas, which
is particularly beneficial in dense or noisy microscopy images. The
model was further fine-tuned on domain-specific datasets such as ADI,
MBM, and VGG, which encompass a wide range of cell types and real-

world imaging challenges.

Restormer's architecture, which combines global attention with
computational efficiency and precise spatial feature preservation,
presents a novel and powerful solution for the cell counting problem. Its
ability to simultaneously capture fine local detail and broader spatial
context provides a distinct advantage over conventional CNN-based
approaches. The subsequent sections of this chapter delve into the
training methodology, dataset-specific evaluations, and performance

comparisons with other state-of-the-art models.
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4.3 Self Adaptive Loss Weighting

4.3.1 Motivation and Background

In supervised deep learning tasks like cell counting, the goal is to
minimize a loss function that quantifies the difference between the
model’s predictions and the ground truth. In many real-world
applications—including microscopy-based cell counting—the quality of
the input data can vary significantly across samples and datasets due to
factors such as image resolution, staining protocols, contrast variability,
and background noise. Some regions of an image may be easy for the
model to learn (e.g., clear, well-defined cells), while others are
ambiguous (e.g., overlapping cells, faint boundaries, or low-intensity

regions).

Using a fixed, static loss weight across all training samples or loss
components fails to account for these disparities in learning difficulty.
In such cases, the model may overly prioritize regions it finds easy to
learn, while underfitting the more challenging ones. To overcome this
imbalance, we integrate a SALW [37] approach, which allows the model
to dynamically and continuously adjust how much attention it pays to

the loss at each stage of training.

This dynamic adjustment is achieved by introducing a learnable
parameter into the loss function that controls the scale of the loss based
on the model’s confidence in the prediction. The mathematical
framework is inspired by probabilistic modelling and uncertainty
weighting introduced by Kendall et al. (2018) [15].

4.3.2 Theoretical Foundation

The adaptive loss function is defined as:

Ltotar = exp(_a) *Lipgin + @ (7)
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Where:

e Lpain IS the primary task loss (e.g., Mean Absolute Error or
MSE computed between the predicted and ground truth density

maps).
e a € Risascalar parameter learned through backpropagation.
o exp(—a) dynamically adjusts the weight of the loss.

e The additive term a acts as a regularizer, preventing a from

becoming too large or too small during optimization.

This formulation arises from modelling the output of the network as a
Gaussian distribution and optimizing its log-likelihood. Here, exp(—a)
corresponds to the inverse variance (i.e., the precision or confidence) in
the model’s predictions. The idea is that if the model is uncertain (i.e.,
has higher variance), it should penalize that prediction less, and vice

Vversa.

This approach is rooted in probabilistic principles and allows the model

to adaptively scale the loss without manual intervention.

4.3.3 Intuition Behind the Adaptive Term

The key strength of SALW [37] lies in its ability to make the loss scale
learnable. In this approach, the parameter a is optimized jointly with the
model weights through gradient descent. This dynamic adjustment
allows the network to autonomously assess and adapt its confidence in
predictions over the course of training. If the model encounters difficulty
in reducing the primary loss in specific regions of the image—such as
areas affected by noise or blur—it will learn to increase the value of a,
thereby reducing the penalty for prediction errors in those challenging
regions. On the other hand, when the model performs well in cleaner,
more reliable sections of the image, it decreases a, amplifying the
contribution of those areas to the total loss. This mechanism effectively

introduces a form of automatic curriculum learning, enabling the
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network to progressively focus on more difficult parts of the task while

maintaining balanced learning pressure across the image.

4.3.4 Application in Restormer-Based Cell Counting

In this work, the SALW mechanism [37] is integrated into the
Restormer-based cell counting model, which is trained on a range of
datasets including ADI, MBM, and VGG. These datasets present
varying levels of image quality and structural complexity, necessitating
a flexible learning approach. SALW is specifically applied to the loss
function used for training the model to predict FIDT-based density
maps, which are designed to represent the spatial distribution of cells
within each image. Given that FIDT maps are highly sensitive to factors
such as annotation quality, image resolution, and local cell density, the
difficulty associated with learning from them can vary significantly
across different image patches or entire datasets.

The SALW-enhanced loss is implemented using an adaptive
formulation in which the total loss L., IS computed with a learnable
parameter a. This parameter is initialized to a default value (e.g., 0.0)
and is subsequently updated during training through gradient
backpropagation alongside the other model parameters. This setup
enables the model to dynamically adjust the importance assigned to
different regions or tasks throughout training, depending on the level of

prediction uncertainty.

For instance, in the ADI dataset—characterized by low-resolution
images and indistinct cell boundaries even after super-resolution
enhancement—the model learns to reduce the weight of regions with
high uncertainty. Conversely, in the VGG dataset, which contains
synthetic, high-resolution images with clearly defined cell structures, the
model increases the emphasis on confident predictions. This leads to
more stable learning and improved convergence, as the model
adaptively focuses on reliable data while mitigating the impact of

ambiguous or noisy regions.

47



4.3.5 Benefits in Cell Counting Context

Integrating SALW [37] into the cell counting pipeline introduces several
notable advantages. One of the most significant benefits is the model's
ability to dynamically focus on challenging regions within the image.
Without requiring any manual annotation or predefined region-specific
weighting, SALW enables the network to automatically allocate more
attention to harder-to-learn areas, such as regions with overlapping cells,
low contrast, or inconsistent staining. This adaptability is particularly
valuable in biomedical image analysis, where dataset characteristics
often vary widely in terms of resolution, contrast, and cellular
morphology. As a result, SALW contributes to better generalization

across diverse datasets.

Another advantage lies in the reduction of manual tuning typically
associated with traditional loss-weighting strategies. Conventional
methods often rely on extensive hyperparameter searches to determine
static loss weights, which can be both time-consuming and suboptimal.
In contrast, SALW learns the optimal loss scaling dynamically during
training, streamlining the process and improving performance.
Moreover, SALW introduces uncertainty-aware learning by explicitly
modelling and responding to prediction uncertainty. This capability
enhances the model's robustness and reliability when applied to real-
world microscopy data, which often includes noise, artifacts, and

ambiguous cellular structures.

4.3.6 Summary

Self-Adaptive Loss Weighting is a principled and effective strategy to
dynamically balance learning focus during model training. In our work,
its integration into the Restormer-based architecture enhances the
model’s ability to learn from noisy, low-resolution, or visually
ambiguous images common in biological microscopy. It supports more
stable and efficient training and leads to better overall performance in

terms of cell count accuracy and density map quality.
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4.4 Model Training and Hyperparameter Tuning

4.4.1 Training Overview

The training of the proposed Restormer-based cell counting model was
conducted with the goal of achieving accurate and generalizable density
map predictions across multiple microscopy datasets (ADI, MBM, and
VVGG). The model was trained for a total of 300,000 iterations, allowing
adequate time for convergence even on complex, high-resolution

biomedical images.

A base learning rate of 0.00001 was used, optimized using a cosine
annealing learning rate schedule. This strategy gradually decreases the
learning rate, promoting stable convergence and avoiding abrupt
gradient oscillations. Additionally, specific learning rate milestones
were defined at [92,000, 150,000, 200,000, 250,000, 300,000] to control

the decay curve more precisely during the training process.

4.4.2 Architecture Configuration

To fully leverage the capabilities of the Restormer architecture, several
architectural hyperparameters were carefully configured. The patch size
was set to a progressive hierarchy of [32, 64, 64, 128, 256], enabling
effective hierarchical feature extraction from fine to coarse levels of
resolution. This configuration facilitates multi-scale analysis, which is
crucial in capturing both small and large cellular features. A consistent
batch size of [2, 2, 2, 2, 2] was maintained across all training stages to
ensure training efficiency while accommodating the high memory

requirements of processing high-resolution images.

Each stage of the model was designed with [2, 2, 2, 2, 2] Transformer
blocks, providing adequate depth to learn complex spatial dependencies
present in microscopy images. The number of attention heads was also
fixed at [2, 2, 2, 2, 2] for each stage, striking a balance between capturing
diverse attention patterns and maintaining computational efficiency.
Channel dimensions were incrementally set to [64, 128, 256, 512],
allowing for increased feature representation capacity at deeper layers.

An expansion factor of 2 was applied in the feed-forward networks,
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enhancing the intermediate feature space and improving the model’s
ability to encode rich information. Additionally, two refinement stages
were incorporated to iteratively refine the predicted density maps,

leading to more accurate and spatially coherent cell count estimations.

4.4.3 Loss Function Evaluation

To determine the most effective supervisory signal for training the
Restormer-based cell counting model, several regression loss functions
were explored. These included Mean Absolute Error (MAE or L1 Loss),
Mean Squared Error (MSE or L2 Loss), and Huber Loss. MAE focuses
on minimizing the average absolute difference between the predicted
and ground truth density values, making it straightforward and
interpretable. MSE, on the other hand, penalizes larger deviations more
severely, making it particularly useful for emphasizing and correcting
substantial prediction errors. Huber Loss blends the strengths of both
MAE and MSE, offering robustness against outliers while maintaining

smooth optimization behaviour.

Through extensive experimentation, it was observed that while each of
these loss functions produced reasonable outcomes, the combination of
MAE (L1 Loss) with the SALW mechanism [37] consistently yielded
superior results in terms of both training stability and model accuracy.
SALW played a critical role by dynamically adjusting the influence of
the loss throughout the training process. This enabled the model to
concentrate more effectively on challenging or uncertain regions within
the image, such as overlapping cells or areas characterized by low
contrast. The adaptive behaviour facilitated by SALW was especially
advantageous when working with diverse datasets, where variations in
input quality and annotation consistency could otherwise hinder model

performance.

4.4.4 Optimization Strategy and Implementation
Training was performed using the AdamW optimizer, known for its
adaptive gradient updates and efficiency in deep architectures. To

improve training throughput, 8 parallel workers were utilized for data
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loading. Additionally, a seed value of -1 was used to introduce
randomized initialization, contributing to the robustness of the training
process.

We have observed the self adaptive loss weighting trainable parameter
( described by equation 7) and got decreasing value pattern (shown in
figure 4.5).

Epochs vs Adaptive Coefficient Value (Cell Dataset (MBM))

‘-\ Exp1
Ay Exp2
A Exp3
or \'-\ Expd
M, — Exp5
"\ Exp6&
Exp7
At \ Exp8& | |
s Expo
\_ Expi0
5 \'\.
o 2 N
=
-3
oy
-5 + L + L +
o 50 100 150 200 250 300

Epochs

Figure 4.2: Adaptive Parameter Value Learning Trend

The above trend is observed for MBM dataset and similar type of trend
is observed another datasets ADI and VGG.

In conclusion, the training procedure for the Restormer model was
carefully designed to balance depth, efficiency, and generalizability.
The use of a cosine annealing learning schedule, hierarchical
architectural design, and dynamic loss weighting via SALW [37] created
a highly effective training pipeline. Among all tested loss functions, L1
Loss combined with SALW emerged as the most effective, leading to
improved prediction accuracy and robustness across datasets. This setup
allowed the model to learn both localized and distributed cell patterns
efficiently, enabling accurate and consistent cell counting in varied

imaging conditions.
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4.5 Counting Algorithm

4.5.1 Introduction

In addition to deep learning and transformer-based approaches, we also
implemented a classical image processing method for cell counting
based on a modified Laplacian of Gaussian (LoG) as used in [19],
technique. We name our approach LolG — which stands for Laplacian
of Inverse-Gaussian. This method aims to enhance the contrast of faint
or poorly visible cell structures by introducing an inverse operation

between Gaussian smoothing and Laplacian edge detection.

The key idea is to suppress the influence of bright background areas and
emphasize dark cellular regions before applying edge enhancement.
This adjustment helps improve blob detection accuracy, especially in
images where cells appear as dark regions against a brighter or uneven

background.

4.5.2 Method Overview

The standard LoG [19] algorithm works by first smoothing the image
with a Gaussian filter to reduce noise, followed by applying the
Laplacian operator to detect regions of rapid intensity change, i.e.,

potential blob centres.
In the LolG algorithm, we modify this pipeline as follows:
1. Apply Gaussian Filter:

o The input image is first smoothed using a Gaussian filter
with standard deviation o to reduce high-frequency

noise.

G(x,y,0) = : exp(—x2+y2) (8)

2mo? 202

Let the smoothed image be I;(x,y).
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2. Inverse Operation:

o After smoothing, the image is inverted to highlight low-
intensity regions (typically cells) and suppress
background areas.

Iinv(ny) =1- IG(ny) (9)

This step is particularly useful for datasets where cells appear darker
than the background, as it improves contrast before edge detection.

3. Apply Laplacian Operator:

o The Laplacian operator is then applied to the inverted
image to detect intensity transitions and highlight

potential cell regions.
LolG(x,y) = V?1;,,(x,y) (10)
Where 72 denotes the Laplacian operator (second spatial derivative).

4.5.3 Combined LolG Equation
Combining all steps, the complete LolG transformation can be

expressed as:
LolG(x,y) = V2[1— (I * G(x,y,0))]| (11)

Where:

I is the input grayscale image,

G(x,y, o) is the Gaussian kernel,

* denotes convolution,

V2 is the Laplacian operator.

4.5.4 Cell Counting Using LolG
After computing the Laplacian of Inverted Gaussian (LolG) map, the

cell counting process proceeds through a series of classical image

53



processing steps. First, thresholding is applied—either globally or
adaptively—to convert the LolG map into a binary image. This step is
essential for distinguishing foreground cellular structures from the
background. Next, blob detection is performed using methods such as
connected components analysis or local maxima detection to identify
distinct blobs that correspond to individual cells. Finally, the number of
detected blobs is counted to estimate the total number of cells present in

the image.

The LolG algorithm offers several notable advantages and specific use
cases. One of its key benefits is its enhanced performance in low-
contrast conditions. The inverse operation enhances the visibility of dark
or faint cellular structures, which are frequently encountered in
microscopy images. Additionally, the method is computationally
simple, requiring no training or manual annotation, making it accessible
for use in low-resource settings. It is particularly effective in images
where cell boundaries are rich in edge information and become more

pronounced following enhancement.

However, the method is not without limitations. It is highly sensitive to
parameter tuning; for instance, the sigma value used in the Gaussian
filter and the threshold level must be carefully chosen to ensure optimal
performance. Moreover, the LolG approach is not well-suited for
images with densely overlapping cells or highly irregular shapes, where
it may fail to separate adjacent structures accurately. Another major
drawback is the lack of learning capability; the algorithm cannot adapt
to variations in imaging styles unless the parameters are manually re-

tuned for each new condition.

Despite these constraints, the LolG algorithm presents a lightweight and
interpretable alternative to more complex, data-driven cell counting
models. By applying an inverse operation after Gaussian smoothing, it
effectively enhances low-intensity cellular features and improves edge
detection. While it may not achieve the same level of accuracy as deep

learning-based approaches in challenging scenarios, it provides a
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practical and effective solution in controlled environments and serves as

a valuable baseline for evaluating more advanced methods.

4.6 Results

One of the core objectives of this research was to determine the most
effective training configuration for accurate and generalizable cell
counting across a variety of microscopy datasets. Through extensive
experimentation involving multiple loss functions—namely Mean
Absolute Error (L1 Loss), Mean Squared Error (L2 Loss), and Huber
Loss—we found that the L1 loss combined with SALW [37]
consistently provided the most stable training and superior performance

across datasets.

Unlike traditional loss functions with fixed weights, the SALW
mechanism dynamically adjusts the influence of the loss during training
based on prediction uncertainty. This adaptiveness proved highly
beneficial in microscopy images, where different regions of the image
may vary significantly in complexity, contrast, and cell distribution. L1
loss, being robust to outliers and focused on minimizing absolute error,
worked synergistically with SALW to help the model emphasize
difficult-to-learn regions while not being overly influenced by isolated

errors.

4.6.1 Dataset-wise Results

The effectiveness of the proposed configuration, combining Mean
Absolute Error (L1 Loss) with SALW [37], was evaluated across three
distinct datasets—ADI, MBM, and VGG—each offering unique visual
and structural characteristics. In the ADI dataset, which comprises low-
resolution fluorescence microscopy images with faint and poorly
defined cell boundaries, the L1 + SALW configuration demonstrated
robust performance by securing the third-best result among all tested
variants. The application of super-resolution preprocessing techniques

played a crucial role in enhancing the visual quality of the input images,

55



while SALW contributed to better learning outcomes in regions with

limited visibility and weak signal contrast.

In the MBM dataset, which features moderate-to-high density bone
marrow images with a wide range of cell sizes and significant overlap
between cells, the model configured with L1 + SALW delivered the
second-best performance. The dynamic loss weighting enabled the
model to effectively adapt to the heterogeneous distribution of cells and
prevented overfitting to highly clustered regions, ensuring more

generalized predictions.

The VGG dataset, composed of synthetic, high-resolution images with
clearly defined cell boundaries and consistent intensity distributions,
presented an ideal testing environment. Under these optimal conditions,
the L1 + SALW configuration achieved the best overall performance.
The model was able to converge rapidly and accurately, leveraging the
uniformity and precision of the dataset’s annotations. This cross-dataset
evaluation underscores the adaptability and effectiveness of the L1 +

SALW combination across a range of biomedical imaging scenarios.

Table 111: Result of Restormer Model

ADI (MAE)
N=50
SRl et Al @022y | ooy 57+40.9 | 2.5+0.1
[17]
Count-ception, Paul
et al. (2017) [4] 19.442.2 8.3+2.3 2.3x0.4
et a”d[e\]( u(2021) | 10 640.3 75407 | 2.2+0.2
Rodriguez-Vazquez
et al. (2022) [19] 17.3+3.6 4.2+2 .4 2.2+0.5
Ours 11+0.2 5.3#1.0 2.09+0.08
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The use of L1 loss optimized with Self-Adaptive Loss Weighting
enabled the Restormer model to adapt to the challenges posed by each
dataset. The performance across ADI, MBM, and VGG clearly
demonstrates (in Table I11) the versatility and generalization capability
of this approach. While other loss functions like MSE and Huber showed
reasonable performance, they lacked the adaptive robustness required to
handle the varied levels of noise, resolution, and complexity present in
real-world microscopy images. The result underscores the effectiveness
of combining absolute error minimization with uncertainty-aware

training dynamics for cell counting tasks.

4.7 Conclusion

This chapter presented a transformer-based approach for cell counting
using the Restormer architecture, originally designed for image
restoration tasks. Through architectural adaptation and extensive
training, we demonstrated the model’s potential in handling the unique
challenges of microscopy image analysis, including varying resolution,

noise levels, and cell densities.

The hierarchical structure of Restormer, equipped with Multi-Dconv
Head Transposed Attention (MDTA) and Gated Depth-wise Feed-
forward Networks (GDFNSs), allowed the model to capture both fine-
grained local details and global spatial dependencies effectively. These
capabilities proved essential in accurately predicting cell density maps,

particularly in cases of overlapping or faintly stained cells.

A robust data preprocessing pipeline was designed to standardize inputs
across three datasets—ADI, MBM, and VGG—which varied
significantly in terms of resolution and visual quality. Key steps such as
super-resolution (for ADI), padding, and extensive augmentations
helped enhance model generalization. The use of FIDT maps as the
regression target provided a more adaptive and spatially aware

supervision signal than conventional Gaussian-based density maps.
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To further optimize the training process, we employed SALW based on
uncertainty modelling. This strategy allowed the model to dynamically
adjust its focus during training, placing more emphasis on harder-to-
learn regions. Among various loss functions evaluated, the combination
of L1 loss with SALW vyielded the most consistent and accurate results
across datasets.

Through rigorous hyperparameter tuning—including variations in patch
sizes, transformer depth, attention heads, and channel dimensions—the
model achieved competitive performance: best results on the VGG
dataset, second-best on MBM, and a strong third-best on the challenging

ADI dataset, even with its initial low-resolution limitations.

In summary, this chapter validated the feasibility and effectiveness of
adapting a transformer-based architecture for the task of cell counting.
The integration of attention mechanisms, adaptive loss strategies, and
customized preprocessing steps collectively contributed to high
accuracy and generalizability, setting a strong foundation for further

research and enhancements in biomedical image analysis.
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Chapter 5

Results and Discussion

This chapter presents the experimental results and comparative analysis
of two distinct approaches to biological cell counting: the deep learning-
based DCNet architecture and the transformer-based Restormer model.
The performance evaluation is based on Mean Absolute Error (MAE)
across three microscopy datasets—ADI, MBM, and VGG—with
additional discussion on the qualitative aspects, training dynamics, and
generalization capabilities of each method.

5.1 DCNet Performance: A Deep Learning-Based

Baseline

The Dual Cascaded Network (DCNet), comprising a VGG16 encoder
and a cascaded U-Net-style decoder [11], was initially introduced as a
baseline architecture for learning fine spatial features through skip
connections and performing end-to-end density map regression.
Although DCNet’s architecture appeared promising due to its structured
use of skip connections and dense feature propagation, it fell short in
practical performance across multiple evaluation settings. On the ADI
dataset, which consists of densely populated and low-contrast adipose
tissue microscopy images, DCNet achieved a best Mean Absolute Error
(MAE) of 11.0 under its most favourable configuration—using two skip
connections, a batch size of 45, and Huber loss. The results on the MBM
and VGG datasets were 5.5 and 9.2, respectively. These errors reflected
limitations in accurate cell localization and count estimation, especially

in visually cluttered or complex regions.

The relatively poor performance of DCNet across all datasets can be
attributed to several architectural constraints. One of the key limitations
is its restricted receptive field, which hampers the model’s ability to
grasp global context—an essential requirement for understanding spatial
distributions in microscopy images. Additionally, DCNet showed

tendencies to overfit, particularly when applied to real-world datasets
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characterized by significant morphological variability. Furthermore, the
architecture demonstrated high sensitivity to parameter tuning,
necessitating a delicate balance between batch size, choice of loss
function, and network depth for optimal performance. While DCNet
effectively preserved spatial granularity through its skip connections, it
lacked the ability to model the complex and long-range dependencies
that are critical for accurate analysis of crowded cellular images.

5.2 Transformer-Based Counting with Restormer

In contrast, the Restormer model—originally developed for high-
resolution image restoration—was adapted to perform density-based
cell counting. Incorporating a transformer backbone allowed the model
to capture global spatial dependencies and contextual relationships that
CNNs s typically overlook.

Restormer consistently outperformed DCNet across all datasets:

In addition to lower MAEs, Restormer produced smoother and more
coherent density maps, even under conditions of high cell overlap or
poor contrast. The integration of SALW further enhanced training by
automatically adjusting the focus on difficult regions, resulting in better

generalization across heterogeneous datasets.

5.3 Comparative Insights

The results clearly indicate that DCNet is not suitable for complex cell
counting tasks (shown in Table 2), particularly in real-world biomedical
images where spatial context and morphological variability are critical.
On the other hand, Restormer delivers comparatively better accuracy (as
shown in Table 1V), making it a more viable solution for practical

deployments.
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Table IV: Comparative Result of DCNet vs Restormer

( Best result is in Bold, second best result is Underlined and third best result is Bold

Underlined)
MBM VGG
Model ADI'\I(_'\S"(ﬁE) (MAE) | (MAE)
- N=15 N=50
DCNet 11.0+12.639 5.50+4.1 9.2+3.1
Ciampi et al. 8.740.8 57409  25:0.1
(2022) [17] T —= e
Count-
ception, Paul
et al. (2017) 19.442.2 8.3+2.3 2.3+0.4
[4]
Jiang and Yu
(2021) [6] 10.6£0.3 7.540.7 2.240.2
Rodriguez-
Vazquez et al. 17.3+£3.6 4.242.4 2.2+0.5
(2022) [19]
Ours 11+0.2 5.3+1.0 2.09+0.08

5.4 Summary

In summary, the DCNet model, despite incorporating cascaded skip
connections and VGG16-based features, could not deliver competitive
accuracy in dense and noisy biological datasets. While its design
preserved spatial features and leveraged transfer learning through
VGG16, it lacked the capacity to model complex, long-range
dependencies and exhibited sensitivity to hyperparameter tuning,

limiting its performance in real-world microscopy scenarios.

In contrast, the Restormer transformer model, equipped with a global
attention mechanism and adaptive loss modulation via SALW [37],
demonstrated consistently superior results across all tested datasets. Its
ability to handle high-resolution images, model both local and global
contexts, and dynamically focus on challenging regions contributed to

its effectiveness in cell counting tasks.
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Future cell counting solutions in biomedical imaging should therefore
prioritize architectures that integrate both local precision and global
spatial awareness. Transformer-based models like Restormer exemplify
this balance and represent a promising direction for developing robust,
scalable, and generalizable approaches to automated biological cell

analysis.
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Chapter 6

Conclusions and Scope for Future Work

6.1 Conclusions

This thesis presented a comprehensive exploration of automated
biological cell counting using both deep learning and transformer-based
models. Initially, a convolutional architecture—DCNet—was
implemented by combining a VGG16 encoder with a cascaded U-Net
[11] decoder. While the model incorporated skip connections and robust
feature extraction, its performance was limited, particularly in complex
datasets like ADI. The DCNet model struggled to generalize across
varying cell densities and morphologies, highlighting the constraints of

convolutional models in capturing global spatial dependencies.

To overcome these limitations, a transformer-based model, Restormer,
was adapted for the cell counting task. Leveraging self-attention
mechanisms and a hierarchical encoder-decoder structure, Restormer
demonstrated superior performance across diverse microscopy datasets
(ADI, MBM, and VGGQG). Its ability to model long-range dependencies,
combined with robust preprocessing (including FIDT maps and super-
resolution enhancement), led to smoother and more accurate density
predictions. Additionally, the integration of SALW [37] allowed
dynamic adjustment of learning focus, enhancing performance on

challenging regions of microscopy images.

Quantitative evaluations revealed that the transformer-based approach
consistently outperformed the DCNet baseline in terms of Mean
Absolute Error (MAE), achieving better accuracy and generalization.
The results affirm that attention-based models are more suited to address

the spatial complexity and variability inherent in biological cell images.
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6.2 Scope for Future Work

In summary, the DCNet model, despite incorporating cascaded skip
connections and VGG16-based features, could not deliver competitive
accuracy in dense and noisy biological datasets. While its design
preserved spatial features and leveraged transfer learning through
VGG16, it lacked the capacity to model complex, long-range
dependencies and exhibited sensitivity to hyperparameter tuning,

limiting its performance in real-world microscopy scenarios.

In contrast, the Restormer transformer model, equipped with a global
attention mechanism and adaptive loss modulation via SALW [37],
demonstrated consistently superior results across all tested datasets. Its
ability to handle high-resolution images, model both local and global
contexts, and dynamically focus on challenging regions contributed to

its effectiveness in cell counting tasks.

Future cell counting solutions in biomedical imaging should therefore
prioritize architectures that integrate both local precision and global
spatial awareness. Transformer-based models like Restormer exemplify
this balance and represent a promising direction for developing robust,
scalable, and generalizable approaches to automated biological cell

analysis.

Despite the encouraging results, several avenues remain open for further
investigation and enhancement. One key area is the development of
lightweight Transformer architectures. Although Transformer models
are highly accurate, they are often computationally intensive. Future
research could focus on exploring efficient variants or hybrid CNN-
Transformer models that reduce inference time and memory usage,

making them more suitable for real-time clinical applications.

Another promising direction is the integration of self-supervised and
few-shot learning methods. Given the scarcity of annotated biomedical
data, these techniques could allow models to pre-train on unlabelled data

and then adapt with minimal supervision to different imaging conditions
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or novel cell types. This would significantly broaden the applicability of
cell counting models in varied laboratory and clinical settings.

Additionally, incorporating uncertainty estimation into cell counting
models could enhance both the interpretability and the reliability of
predictions, particularly in clinical environments where decision-
making heavily depends on the confidence of the automated systems.
This would help users better understand and trust the model’s outputs.

Moreover, current models are typically focused solely on cell counting.
A valuable extension would be to integrate cell counting with other
downstream biomedical tasks such as cell classification, tracking, or
segmentation. This would help build a comprehensive and unified
pipeline for cellular analysis, streamlining workflows in biomedical

research and diagnostics.

Finally, enhancing cross-domain generalization remains a critical
challenge. Testing models on completely unseen tissue types or staining
protocols would provide valuable insights into their robustness and
could drive the development of domain-agnostic cell counting systems,

further improving their real-world utility and scalability.
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