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Abstract 

 

Accurate biological cell counting plays a pivotal role in 

numerous biomedical applications, yet conventional manual and 

rule-based approaches struggle with dense, overlapping, and 

morphologically diverse cells. This thesis presents a hybrid deep 

learning framework for automated cell counting using both 

convolutional and transformer-based architectures.  

Initially, a Dual Cascaded Network (DCNet) is proposed, 

combining a VGG16-based encoder with a U-Net decoder to 

generate high-resolution density maps from microscopy images. 

To address limitations in crowded cells, a transformer-based 

alternative—Restormer—is employed, offering improved global 

context modeling through attention mechanisms and specialized 

components such as Multi-Dconv Head Transposed Attention 

and Gated Feed-Forward Networks.  

The study introduces Focal Inverse Distance Transform (FIDT) 

maps to enhance localization precision in dense cell 

environments. Additionally, a SALW strategy is integrated to 

dynamically balance learning difficulty across spatial regions. 

Evaluated on diverse datasets—including synthetic bacterial, 

bone marrow, and adipose tissue images—the proposed models 

demonstrate robust performance, achieving competitive 

accuracy across varying imaging conditions. This work 

highlights the effectiveness of hybrid architectures and attention-

guided learning in advancing the state-of-the-art in cell counting. 
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Chapter 1 

Introduction 

1.1 Why cell counting? 

Accurate cell counting in microscopy images is vital in various 

biomedical and clinical applications, including disease diagnosis, drug 

discovery, and understanding cellular mechanisms. Traditionally 

performed manually, this process is not only time-consuming but also 

prone to subjective errors and inconsistencies, particularly when dealing 

with densely packed or overlapping cells. These limitations have 

catalyzed the adoption of deep learning methods, which offer 

automation, scalability, and improved accuracy. 

Deep learning, especially convolutional and transformer-based neural 

networks, has revolutionized cell counting by enabling the estimation of 

cell densities through density maps. These models are capable of 

capturing complex spatial patterns and variations in cell morphology, 

even under challenging imaging conditions. Moreover, they 

significantly reduce the labor-intensive nature of manual annotation 

while ensuring consistent performance across large datasets. Given the 

increasing volume of biomedical image data and the demand for high-

throughput analysis, integrating deep learning for cell counting is not 

just advantageous—it is essential for modern biological research and 

healthcare advancements. 

1.1.1 Fundamentals of a Deep Neural Network 

A DNN consists of multiple interconnected layers, each designed to 

perform specific roles in extracting and processing information from the 

input data. The first component of a DNN is the input layer, which 

receives raw data such as grayscale or RGB microscopy images. Each 

neuron in this layer corresponds to a single pixel or a group of pixels 

from the input. For example, in the context of cell counting, the input 

layer may process a 256×256 fluorescence microscopy image in which 

cells appear as bright regions against a dark background. 
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The central part of a DNN is composed of its hidden layers, where most 

of the computational learning takes place. Convolutional layers, often 

referred to as Conv layers, are among the most critical components 

within this section. They specialize in identifying spatial patterns like 

edges, textures, and structures by applying small filters (kernels) that 

slide across the image to generate feature maps. These feature maps 

allow the network to detect vital cellular structures, such as nuclei and 

boundaries, which are essential in biomedical image analysis. Activation 

functions are then applied to the outputs of these convolutional layers to 

introduce non-linearity into the network, enabling it to capture complex 

relationships. Commonly used activation functions include ReLU 

(Rectified Linear Unit), which enhances training efficiency by 

suppressing negative values, along with alternatives like Tanh and 

Sigmoid. 

To further optimize performance and computational efficiency, pooling 

layers are incorporated to reduce the dimensionality of the feature maps. 

Techniques such as max pooling and average pooling are widely used to 

retain the most salient features while decreasing the data volume, thus 

aiding in the recognition of cells even when their positions vary slightly. 

Normalization layers, such as batch normalization, are introduced to 

maintain consistent activation distributions throughout the network, 

resulting in faster and more stable training. Furthermore, dropout layers 

play a critical role in regularizing the model by randomly deactivating 

neurons during training, which helps prevent overfitting—particularly 

important when dealing with small-scale biomedical datasets. 

As the data progresses through the network, it reaches the fully 

connected or dense layers, which are responsible for synthesizing and 

interpreting the extracted features to make a final prediction. Each 

neuron in a dense layer is connected to all neurons in the previous layer, 

allowing for comprehensive integration of information. The final 

component, the output layer, is specifically configured based on the task. 

For classification tasks, it assigns class labels, while for detection or 

localization, it outputs spatial coordinates or segmentation masks. In the 
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case of cell counting, the output may be a scalar representing the total 

count, a density map indicating concentration, or a count map showing 

spatial distribution. Depending on the required output, the activation 

function at this stage might be linear for regression purposes or softmax 

for classification tasks. 

1.1.2 Why DNNs for Biological Cell Counting? 

Traditional cell counting techniques have predominantly relied on 

manually crafted image processing methods, including thresholding, 

edge detection, and morphological operations. While these approaches 

were foundational, they often suffer from sensitivity to noise, 

inconsistent staining procedures, and variations in cell morphology, 

limiting their generalizability across different datasets and imaging 

conditions. In contrast, DNNs bring significant advantages to cell 

counting tasks, beginning with automated feature learning. Unlike 

traditional methods that require manual filter design, DNNs are capable 

of learning discriminative features directly from raw data, thereby 

reducing the reliance on human intervention. 

Furthermore, DNNs demonstrate robust performance across a range of 

imaging modalities, including fluorescence and brightfield microscopy, 

making them well-suited for diverse biomedical applications. Their 

adaptability is another notable strength, as these models can be fine-

tuned with relatively minimal changes to work effectively on different 

datasets. This is especially useful in biomedical research, where imaging 

conditions and specimen types may vary significantly. Additionally, 

DNN architectures such as U-Net [11], SAU-Net [3], and CSRNet [10] 

have shown considerable scalability, with the capability to be extended 

to accommodate high-resolution images, three-dimensional (3D) 

volumes, or even time-lapse sequences. Finally, by leveraging both 

spatial and contextual cues from the input images, DNNs consistently 

outperform traditional cell counting methods in terms of both precision 

and recall, making them a more accurate and reliable choice for modern 

biomedical image analysis. 
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1.1.3 Application in Cell Counting Pipelines 

In deep learning-based biological cell counting, the overall workflow 

typically follows a structured pipeline designed to handle the 

complexities of microscopy image analysis. The process begins with 

input image preprocessing, which may include operations such as 

normalization and resizing to standardize the data and prepare it for 

efficient processing. This is followed by feature extraction, where 

convolutional layers are employed to identify and capture critical 

patterns within the image, such as cell edges, textures, and spatial 

arrangements. The network then generates intermediate representations, 

which may take the form of segmentation masks or density maps, 

providing a detailed visualization of cell locations and distributions. 

These representations are interpreted to estimate either the total number 

of cells or their specific positions within the image. Finally, a 

postprocessing step is applied to refine the predictions, which is 

particularly important in densely populated regions where cells may 

overlap or be closely clustered. 

DNNs have become foundational to modern biomedical image analysis 

due to their ability to learn and generalize from complex datasets. Their 

layered, hierarchical architecture, which resembles the blob-like object 

detection mechanism, enables them to tackle the high precision demands 

of cell counting tasks even under challenging imaging conditions. As 

microscopy technologies continue to evolve, producing increasingly 

large and intricate datasets, the role of DNNs in automating and 

enhancing quantitative analysis in cell biology is expected to grow even 

more significant. 

 

1.2 Transformer 

Transformers have emerged as a transformative deep learning 

architecture initially developed for natural language processing but now 

gaining significant traction in computer vision, including biomedical 

image analysis and cell counting tasks. Unlike convolutional networks 
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that rely on local receptive fields, Transformers excel in modelling 

global dependencies using attention mechanisms. This capability is 

particularly valuable when spatial context plays a crucial role, such as 

in high-resolution biological images where cells exhibit varying density, 

shape, and arrangement. 

1.2.1 Basic Architecture of a Transformer 

The standard Transformer architecture, as introduced in the seminal 

paper "Attention is All You Need" by Vaswani et al. (2017) [14], follows 

an encoder-decoder structure originally designed for natural language 

processing. However, for vision-centric tasks such as cell counting or 

segmentation, the encoder-only variant—popularized through Vision 

Transformers (ViTs)—has been more commonly adopted due to its 

suitability for spatial data processing. 

In this adaptation to vision applications, the first component is the input 

embedding layer. Here, a two-dimensional image is divided into fixed-

size patches (typically 16×16 pixels). Each patch is then flattened into a 

vector and passed through a linear projection layer to form token 

embeddings. To retain spatial information, which is essential in visual 

data, positional encodings are added to these tokens. 

Following the embedding layer is the Multi-Head Self-Attention 

(MHSA) mechanism. This module enables the model to attend to 

multiple spatial regions simultaneously, allowing for a more 

comprehensive understanding of the image context. The MHSA 

mechanism involves computing query 𝑄, key 𝐾, and value 𝑉 matrices 

from the input embeddings. The attention scores are then computed 

using the scaled dot-product formula: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝐾
)          (1) 

This multi-head formulation empowers the model to capture diverse 

semantic relationships across different image regions, which is 

especially useful in biomedical imaging where relevant features such as 

cell centres or boundaries may appear in varying positions and forms. 
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The output of the attention layer is passed through a Feed-Forward 

Network (FFN), which typically consists of two fully connected layers 

with a non-linear activation function, most commonly the Gaussian 

Error Linear Unit (GELU). This component independently transforms 

each token, enhancing the representational capacity of the model. 

To ensure training stability and efficient learning, each sub-layer in the 

Transformer encoder includes layer normalization and residual 

connections. These mechanisms play a critical role in enabling 

consistent gradient flow across layers, stabilizing training dynamics, and 

facilitating the learning of identity mappings, which can accelerate 

convergence. 

Positional encoding is another essential element of the Transformer, 

especially in vision applications. Since self-attention mechanisms do not 

inherently consider the order or position of tokens, positional encodings 

are integrated to inject spatial order information into the model. These 

encodings can be sinusoidal, learned, or based on relative positioning, 

depending on the implementation. 

Finally, the design of the output head varies based on the specific vision 

task. For classification tasks, a special class token is passed through a 

linear layer to predict category labels. In segmentation tasks, the output 

is reshaped into a feature map that aligns with the input image. In the 

case of cell counting, the Transformer’s final outputs are decoded into 

density maps or scalar counts, thereby translating learned spatial and 

contextual representations into quantitative biological information. 

1.2.2 Advantages of Transformers in Cell Counting 

Transformers offer several advantages that make them particularly well-

suited for biological cell counting and related vision tasks. One of their 

most significant strengths lies in their ability to capture global contextual 

information. The self-attention mechanism allows the model to 

understand relationships between spatially distant regions within an 

image, which is particularly beneficial in scenarios involving 

overlapping or densely clustered cells. This global perspective enables 
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the model to differentiate between individual cells even when 

boundaries are ambiguous. 

Another advantage is the scalability of Transformers to large image 

inputs. Unlike convolutional neural networks (CNNs), where the 

receptive field is constrained by the kernel size and network depth, 

Transformers can process an entire image context simultaneously 

without requiring deeper architectures. This property allows them to 

analyse large-scale microscopy images more effectively. Moreover, 

Transformers tend to generalize better across different datasets. Since 

they are less reliant on local texture features compared to CNNs, they 

are more adaptable to variations in imaging conditions, making them 

ideal for applications in biomedical domains where dataset 

heterogeneity is common. 

The flexibility of Transformer architectures further enhances their 

utility. They can be seamlessly integrated with other neural components 

such as convolutional layers, Atrous Spatial Pyramid Pooling (ASPP), 

and attention gates. This modularity has led to the development of 

powerful hybrid models like SAU-Net [3] and Restormer [12], which 

combine the strengths of different architectural paradigms for improved 

performance. Lastly, Transformers demonstrate superior effectiveness 

in challenging scenarios such as crowded or low-contrast microscopy 

images. In these situations, where cell boundaries may be faint or 

indistinct, the attention mechanism enables the model to focus on subtle 

but biologically significant features, thereby improving detection and 

counting accuracy. 

1.2.3 Limitations of Transformers 

Despite their powerful capabilities, Transformers also present several 

limitations when applied to image-based biomedical tasks. One major 

drawback is their high computational cost. The self-attention 

mechanism inherent to Transformers scales quadratically with the input 

size, meaning that as image dimensions increase, so does the demand 

for computational resources. This makes training on high-resolution 
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biomedical images particularly demanding in terms of GPU memory 

and processing power. 

Another significant limitation is their data-hungry nature. Transformers 

typically require large-scale datasets to achieve optimal performance, 

which poses a challenge in the biomedical field where obtaining 

extensive, well-annotated datasets is often infeasible due to time, cost, 

and domain expertise constraints. This reliance on large datasets can 

hinder their applicability in medical scenarios with limited labelled data. 

Additionally, Transformers lack the inductive biases that are inherently 

present in CNNs. CNNs are designed to be translation-invariant and 

spatially aware, enabling them to efficiently process image data with 

fewer training samples. In contrast, Transformers must learn these 

spatial relationships and patterns from scratch, which not only increases 

the complexity of training but also requires more data and time to 

achieve comparable performance. 

Furthermore, the effectiveness of Transformers heavily depends on the 

method used for positional encoding, which is essential for embedding 

spatial information into the model. In biomedical applications where the 

precise location and morphology of cells are crucial, any inadequacy in 

encoding spatial relationships can adversely impact performance. 

Therefore, the reliance on positional encoding adds another layer of 

sensitivity and potential instability to Transformer-based models in 

medical imaging tasks. 

1.2.4 Transformers in Biomedical Imaging 

In recent research, various Transformer-based architectures have been 

effectively applied to microscopy-based cell counting, demonstrating 

notable improvements over traditional methods. For instance, SAU-Net 

[3] incorporates self-attention modules into the widely used U-Net [11] 

architecture, enhancing the model’s ability to focus on the foreground 

regions, particularly the cells. This integration allows for more precise 

localization and counting in dense cell populations. Similarly, 

Restormer [12] utilizes efficient Transformer blocks designed for high-
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resolution image restoration. These blocks have been adapted for 

improving the quality of low-resolution or noisy microscopy images, 

thereby aiding in more accurate downstream cell analysis tasks. 

These advanced architectures leverage the Transformer’s strength in 

modelling both local and global features, which is particularly 

advantageous for complex tasks like 2D and 3D cell counting. 

Transformers represent a significant paradigm shift from conventional 

convolution-based image analysis approaches. Their capacity to capture 

long-range dependencies across an image makes them exceptionally 

suitable for analysing dense, cluttered, or high-resolution cellular 

imagery. Although they come with certain challenges, such as high 

computational demands and a need for large training datasets, ongoing 

research into lightweight Transformers, hybrid network architectures, 

and attention-enhanced CNNs is steadily addressing these limitations. 

Consequently, Transformers are expected to become a cornerstone 

technology in the future landscape of automated biological cell counting 

and image-based biomedical analysis. 

 

1.3 Cell Counting 

Cell counting is a fundamental task in many biological and biomedical 

research applications, including cancer diagnosis, stem cell therapy, 

drug screening, tissue analysis, and neuroscience. Accurately 

quantifying the number of cells in microscopy images provides critical 

information for assessing cell proliferation, viability, density, and 

overall health. Despite its importance, traditional manual counting is 

time-consuming, subjective, and prone to human error, particularly in 

large-scale or high-throughput experiments. 

With the advancement of computational techniques and the advent of 

deep learning, automated cell counting has evolved into a sophisticated 

and reliable alternative. This section explores the conceptual 
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foundations, traditional challenges, and modern deep learning-based 

approaches for cell counting. 

Cell counting serves as a cornerstone in several experimental and 

diagnostic workflows. In tissue engineering, it determines cell 

proliferation rates; in cancer studies, it measures tumour growth or 

regression; in stem cell research, it evaluates differentiation and 

regeneration; in drug discovery, it assesses cytotoxicity of drug 

compounds; and in immunology, it quantifies immune response through 

changes in cell populations. Accurate and reproducible counting 

methods are critical for ensuring experimental validity, reproducibility, 

and scaling up clinical research. 

Historically, cell counting has been performed through manual counting 

and classical image processing. Manual counting, often carried out by 

experts using a hemacytometer or by annotating microscopy images, is 

time-consuming and labour-intensive. It is also subject to inter-observer 

and intra-observer variability and is infeasible for large-scale image 

datasets. Classical image processing employs techniques such as 

thresholding, edge detection (e.g., Sobel, Canny), morphological 

operations (dilation, erosion), and watershed segmentation. These 

methods work well for images with good contrast and minimal noise but 

are sensitive to lighting and staining variations and struggle with 

overlapping cells. Moreover, they require task-specific hand-engineered 

features and generalize poorly across different datasets. 

The shift toward deep learning has addressed many shortcomings of 

traditional approaches. Instead of relying on handcrafted rules, deep 

learning models learn feature representations directly from annotated 

data. Depending on the nature of the output, modern cell counting 

methods can be categorized into detection-based methods, regression-

based methods, and density map estimation. 

Detection-based methods treat cell counting as a detection problem by 

identifying cell centres or nuclei using bounding boxes or circular 

masks. These methods employ object detection networks like Faster R-
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CNN [13], YOLO [18], or variants of U-Net [11], [3]. However, they 

face challenges in densely populated or overlapping cell regions and 

require precise localization for each cell. Regression-based methods 

predict the total number of cells in an image without identifying 

individual locations, requiring simpler image-level labels but lacking 

spatial information about cell distribution. The most common and 

accurate method in recent years has been density map estimation. In this 

approach, each annotated cell, typically represented as a dot, is 

converted into a Gaussian blob. The network learns to regress a density 

map such that its integral equals the total cell count. This method 

effectively handles overlapping and crowded cells and does not require 

precise segmentation or bounding boxes. 

Several architectures have been proposed specifically or adapted for cell 

counting. CSRNet [10], a dilated convolutional network, preserves 

spatial resolution while enlarging the receptive field, making it effective 

for highly congested scenes. Count-ception [4] introduces redundant 

counting through a fully convolutional network, using overlapping 

receptive fields to count the same cells multiple times and averaging 

predictions to reduce errors. SAU-Net [3] is an attention-augmented U-

Net [11] that incorporates self-attention modules and supports both 2D 

and 3D data, enabling volumetric cell counting. The Two-Path Network 

[20] employs a dual-stream architecture, with one path capturing spatial 

details and the other focusing on semantic context, combining their 

outputs to produce accurate density maps. 

To assess the performance of cell counting algorithms, several standard 

metrics are used. Mean Absolute Error (MAE) is defined as: 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝐶𝑖

𝑝𝑟𝑒𝑑
− 𝐶𝑖

𝑔𝑡| 𝑁
𝑖=1            (2) 

Where: 

𝑁 is the number of test images, 

𝐶𝑖
𝑝𝑟𝑒𝑑

 is the predicted count for ith image,  
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𝐶𝑖
𝑔𝑡

 is the ground truth count for ith image. 

A lower MAE indicates better performance. 

MAE measures the average absolute difference between predicted and 

ground truth counts. Mean Squared Error (MSE) is given by: 

𝑀𝑆𝐸  =  
1

𝑁
  ∑ (𝐶𝑖

𝑝𝑟𝑒𝑑
  −  𝐶𝑖

𝑔𝑡 )
2

𝑁
𝑖=1              (3) 

This metric is more sensitive to large errors and emphasizes robustness. 

The Grid Average Mean Absolute Error (GAME) divides the image into 

grids and computes the error per grid, helping assess spatial accuracy. 

The R2 score or correlation coefficient measures how well the predicted 

count fits the actual trend. 

We have used MAE for cell counting due to several reasons. MAE is 

highly interpretable, providing a direct and intuitive sense of average 

error. For example, an MAE of 3 indicates an average discrepancy of 

three cells, which is easily understandable for practitioners. It is 

symmetric and robust, treating overestimation and underestimation 

equally, an important aspect in biomedical contexts. Additionally, MAE 

is less sensitive to outliers compared to MSE, making it suitable for 

datasets with variable densities. It aligns well with the primary objective 

of cell counting, which is to accurately estimate the total number of cells. 

Furthermore, MAE is a standard benchmark metric in literature, used 

widely in models such as CSRNet [10], Count-ception [4], and SAU-

Net [3], enabling consistent comparison across different studies. For 

density map-based methods, where the total count is derived by 

integrating over the predicted density map, MAE effectively captures 

prediction discrepancies, making it ideal for such approaches. 

Despite the progress made, several challenges remain in cell counting. 

Occlusions and overlapping cells, staining and imaging variability, 

sparse or inconsistent annotations, and the need for 3D microscopy 

handling are significant hurdles. Additionally, in many datasets, only 

approximate or noisy labels are available, posing further difficulties. 
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Emerging trends and future directions are addressing these limitations. 

Few-shot and transfer learning are being explored to train models with 

limited data and adapt to new cell types or imaging modalities. For 

example, FamNet developed by Ranjan et al. (2021) [21] applies few-

shot learning to count novel object types using minimal samples. Self-

supervised learning is being utilized to leverage unlabelled data for 

pretext tasks before fine-tuning for cell counting. Transformer-based 

models are gaining traction due to their ability to leverage global 

context, providing better accuracy in high-density cell images. 

Uncertainty modelling is being integrated to handle label noise and rater 

disagreement. Furthermore, 3D and multimodal integration—

combining fluorescence, phase contrast, and volumetric data—is 

improving model robustness and generalizability. As biological datasets 

grow in complexity and scale, intelligent models capable of 

understanding spatial patterns, handling imperfect labels, and 

generalizing across diverse domains will become increasingly essential. 

Deep learning, through architectures like CSRNet [10], Count-ception 

[4], and Transformer-driven models, has firmly established itself as the 

foundation of modern, scalable, and accurate cell quantification 

systems. 

 

1.4 Datasets 

To evaluate the performance of the proposed deep learning-based cell 

counting model, three publicly available benchmark datasets were 

utilized. These datasets represent a diverse range of imaging scenarios 

and cell morphologies, making them suitable for assessing the 

generalizability and robustness of cell counting algorithms. Each dataset 

presents unique challenges in terms of image quality, cell density, shape 

variation, and background complexity. The following section provides 

a comprehensive description of each dataset. 
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1.4.1 Synthetic Bacterial Cells 

The Synthetic Bacterial Cell Dataset, commonly referred to as the VGG 

dataset, was developed by Lempitsky et al. (2010) [7] using a simulation 

platform initially introduced by Lehmussola et al. (2007) [22], This 

dataset is hosted and made available by the Visual Geometry Group at 

the University of Oxford. It comprises 200 synthetic RGB fluorescent 

microscopy images, each of size 256×256 pixels, collectively containing 

35,192 simulated bacterial cells. 

 

Figure 1.1: VGG Sample Input Image [38] 

The dataset was specifically designed to replicate the challenges 

commonly encountered in automatic cell counting. It incorporates 

various complex imaging conditions, such as cell clustering, overlaps, 

and focal depth variations, which emulate real-world microscopy data. 

Despite being synthetically generated, the dataset maintains high visual 

fidelity and statistical similarity to real microscopy images, making it an 

excellent benchmark for evaluating cell counting models in terms of 

accuracy and generalization. The consistent annotation quality and 

controlled synthetic environment allow researchers to systematically 

study model behaviour under challenging scenarios. 

1.4.2 Modified Bone Marrow Cells 

The Bone Marrow Cell Dataset (MBM) is based on clinical microscopic 

images and was constructed by Paul et al. (2017) [4] through 

modifications of an earlier dataset described by another research group. 

This dataset contains 44 high-resolution RGB images of size 600×600 

pixels, derived from bone marrow samples of healthy human subjects. 
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These samples were stained using Haematoxylin and Eosin (H&E), a 

widely adopted histological staining method. 

 

Figure 1.2: MBM Sample Input Image [38] 

One of the major challenges associated with the MBM dataset is the 

complexity of the background, which includes staining artifacts and 

variations in texture and illumination. These factors make it difficult to 

isolate and count individual cells. Furthermore, bone marrow samples 

typically exhibit heterogeneous cell types with varying sizes and 

densities, further complicating the segmentation and density estimation 

tasks. The dataset includes a total of 5,553 manually annotated cells, 

providing a solid ground truth for evaluating the performance of cell 

counting models under noisy and uneven conditions. 

1.4.3 Human Subcutaneous Adipose Tissues 

The Adipose Tissue Dataset (ADI) was curated from the Genotype-

Tissue Expression (GTEx) Consortium, a large-scale initiative aimed at 

understanding gene expression across various human tissues. The 

dataset focuses on subcutaneous adipose tissue and was later adapted 

and down sampled by Paul et al. (2017) [4] for use in cell counting 

experiments. The final version of the dataset used in this study consists 

of 200 RGB microscopy images, each resized to 150×150 pixels, 

encompassing a total of 29,684 annotated cells. 
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Figure 1.3: ADI Sample Input Image [38] 

This dataset poses significant challenges due to the close packing and 

high density of adipose cells, along with intra-class variability in cell 

shape and size. Unlike the VGG dataset, which features simulated data, 

and the MBM dataset, which includes stained histological samples, the 

ADI dataset highlights the model's ability to generalize to real biological 

variance. The high visual similarity among adjacent cells and minimal 

separation boundaries create difficulty in distinguishing and counting 

individual cells accurately. This makes ADI an important benchmark for 

testing a model's fine-grained discrimination capabilities in complex 

tissue environments. 

Table I: Dataset details 

Dataset ADI MBM VGG 

Scenario Real Real Synthetic 

Image Size 150 ×150 × 3 600 × 600 × 3 256 ×256 × 3 

# of Images 200 44 200 

 

1.5 Organization of the Thesis 

This thesis is organized into six chapters, each addressing a key 

component of the study and development of cell counting using deep 

learning and transformer-based approaches. 

Chapter 1 introduces the fundamental concepts that underpin this work. 

It begins with an overview of DNNs, followed by a brief introduction to 

Transformer architectures. The chapter then discusses the significance 

of cell counting in biomedical imaging and outlines the motivation 
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behind the study, Datasets used in the project. Finally, the chapter 

concludes with the organization of the thesis. 

Chapter 2 presents a detailed review of the existing literature on object 

and cell counting methods, covering both classical and modern deep 

learning-based approaches. This chapter also formulates the core 

problem addressed in the thesis and identifies the research gaps that this 

work aims to fill. 

Chapter 3 focuses on a deep learning-based approach for cell counting. 

It provides a comprehensive description of the proposed model 

architecture, data preprocessing techniques, training strategy, and 

hyperparameter tuning. The training results are analysed to understand 

the model’s learning behaviour and performance. 

Chapter 4 explores a transformer-based approach to cell counting using 

the Restormer model. It details the model architecture, and the 

preprocessing pipeline tailored for this method. A special focus is given 

to the Self-Adaptive Loss Weighting (SALW) technique used to 

enhance learning. This chapter also discusses the training procedure and 

evaluates the results. 

Chapter 5 consolidates the results from both the deep learning and 

transformer-based approaches. A comparative analysis is carried out to 

assess their performance across various datasets and evaluation metrics. 

This chapter offers insights into the strengths and limitations of each 

method. 

Chapter 6 concludes the thesis by summarizing the key findings and 

contributions. It also highlights the potential directions for future work, 

including suggestions for improving model accuracy and generalization, 

and expanding the approach to other biomedical applications. 

The thesis is followed by appendices (if any) that provide supplementary 

material and technical details and concludes with a comprehensive list 

of references that support the research conducted in this work. 
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Chapter 2 

Literature Review and Problem 

Formulation 

This section explores recent developments in cell counting methods with 

help of CNNs and includes a brief discussion on transformer-based 

approaches.  

 

2.1 Detection based Counting  

Detection-based counting methods, such as [7], [23], [20] identify and 

quantify objects by localizing their centroids or bounding boxes within 

an image. Traditional techniques relied on handcrafted features and 

thresholding, but deep learning has significantly improved accuracy. 

Early approaches combined feature extraction with machine learning 

models like SVMs and Random Forests developed by Lempitsky et al. 

(2010) [7], introduced a density map-based method that estimated object 

positions rather than detecting them directly, later refined by Arteta et 

al. (2016) [24] using structured learning. However, these methods 

struggled with occlusions and variations in object appearance. 

CNN-based architecture like [25], [18], and [26] improved object 

localization but faced challenges in dense environments. Rodriguez-

Vazquez et al. (2016) [19] addressed this using adversarial training, 

while [23] developed a deeply supervised CNN (C-FCRN) with 

auxiliary networks for feature refinement. Xie et al. (2018) [8] enhanced 

generalization with deep regression models that analyzed spatial 

relationships 

To tackle occlusion-related challenges, researchers explored FCNs and 

attention mechanisms. Count-ception [4] introduced by [11], which used 

multiple receptive fields to improve localization, while [17] developed 

an uncertainty-aware detection model leveraging multi-rater 

annotations. Falk et al. (2019) [16] demonstrated the effectiveness of U-
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Net [11] based segmentation-driven counting. Other studies integrated 

segmentation with detection for improved accuracy— Cheng et al. 

(2022) [27] used a spatially relaxed CNN to reduce density map noise.  

Hybrid models combining detection and density estimation also 

emerged. Jiang et al. (2021) [20] proposed a two-path network that 

extracted spatial details and contextual information before merging them 

for density estimation. Xue et al. (2016) [28] combined deep regression 

networks with detection pipelines to enhance accuracy under occlusions. 

Recent advancements include context-aware detection models and 

iterative refinement strategies. Guo et al. (2021) [3] extended U-Net [11] 

with a self-attention mechanism for improved microscopy image 

localization, while Paulauskaite-Taraseviciene et al. (2019) [9] validated 

Mask R-CNN [13] for detecting overlapping objects. Despite progress, 

detection-based methods still struggle with occlusions, low contrast, and 

irregular object shapes. Future research is exploring transformer-based 

models Vaswani et al. (2017) [14] and self-supervised learning for better 

adaptability. Multi-modal fusion approaches are also under 

investigation, with Zhang et al. (2022) [5] demonstrating the potential 

of vision transformers for counting tasks. 

 

2.2 Cell Counting by Regression  

Regression-based counting methods estimate object counts by mapping 

input features directly to numerical values, eliminating explicit object 

detection. This approach is particularly effective for high-density, 

occluded, and irregularly distributed objects. Early methods relied on 

handcrafted features with linear regression models, but deep learning 

significantly improved accuracy. Lempitsky et al. (2010) [7] introduced 

a density map-based approach using dot-annotated images, while 

Fiaschi et al. (2012) [29] refined it with structured regression for 

cluttered environments. Arteta et al. (2014) [24] further enhanced 

accuracy by incorporating spatial constraints into density maps. With 

deep learning, CNNs became central to regression-based counting. Xie 
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et al. (2018) [8] proposed a fully convolutional regression network 

(FCRN) to estimate density maps directly, while Cohen et al. (2017) [4]  

introduced Count-ception, leveraging multiple receptive fields to reduce 

localization errors. He et al. (2021) [23] developed C-FCRN, integrating 

auxiliary CNNs for feature refinement. Liu and Yang (2017) [30] 

explored multi-scale CNNs to handle varying object sizes, and Wang et 

al. (2020) [6] improved generalization with an attention-based multi-

scale regression network. Hybrid models have further advanced this 

approach. Cheng et al. (2022) [27] used a spatially relaxed CNN with 

Gaussian kernels to reduce density map noise. Walach and Wolf (2016) 

[31] introduced a deeply supervised network with iterative feedback for 

refined density estimates. Sindagi et al. (2019) [32] proposed a context-

aware regression framework utilizing global and local contextual 

features for improved density map refinement. Interactive learning has 

further refined regression-based models. Liu et al. (2023) [30] 

developed an adaptive density map generator that dynamically adjusted 

annotations during training. Xue et al. (2016) [28] incorporated 

feedback mechanisms for iterative prediction refinement, while Zou et 

al. (2021) [33] introduced uncertainty estimation for better 

interpretability. 

Recent advancements focus on attention mechanisms and improved 

feature extraction. Guo et al. (2021) [3] extended U-Net [11] with self-

attention modules for better density estimation. Optimization techniques 

and loss function improvements have also enhanced handling of high-

density distributions. Future directions include multi-scale learning and 

transformer-based models for improved adaptability and accuracy in 

regression-based counting. 

 

2.3 Transformer based Counting 

Transformer-based models have significantly improved cell counting in 

biomedical imaging by effectively handling dense and overlapping 

objects. Unlike CNNs, they utilize self-attention to capture long-range 
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dependencies, ensuring robust performance in microscopy images. 

Their global context modeling enhances accuracy, especially in varied 

cell distributions. Zhang et al. (2022) [5] developed a vision 

transformer-based framework that excelled across different cell 

densities. Cheng et al. (2022) [27] combined transformers with CNNs, 

achieving state-of-the-art results. Guo et al. (2021) [3] integrated self-

attention into U-Net [11], improving segmentation and density 

estimation. Additionally, Restormer, a transformer model optimized for 

image restoration, employs a patch-based technique to efficiently 

process biomedical images, enhancing precision in cell counting tasks. 

Transformers also improve computational efficiency by processing 

entire images in parallel, making them ideal for high-resolution medical 

analysis. However, their high resource demand limits real-time 

applications. Future efforts should focus on lightweight architecture and 

self-supervised learning to enhance adaptability, particularly in 

scenarios with limited labeled data. By offering superior accuracy and 

scalability, transformers are set to revolutionize biomedical image 

analysis, enabling more precise and automated cell counting solutions. 

 

2.4 Problem Formulation 

To address the critical limitations observed in current methods, the 

research aims to solve the following condensed challenges: 

1. Design a model that accurately counts cells under varying 

densities and morphological complexities. 

2. Ensure robustness against occlusions, overlapping instances, and 

low-contrast imaging conditions. 

3. Achieve computational efficiency suitable for processing high-

resolution microscopy images. 

This thesis proposes a hybrid deep learning framework that combines 

convolutional and transformer-based architectures, aiming to extract 
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multi-scale spatial features, leverage global context via attention 

mechanisms, and produce precise density maps for robust and scalable 

cell counting in biomedical images. 
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Chapter 3 

Deep Learning Based Cell Counting 

3.1 Data Preprocessing 

3.1.1 Focal Inverse Distance Transform Map 

In traditional cell counting approaches based on density estimation, 

Gaussian-based ground truth maps are commonly employed. While this 

method effectively captures spatial cell distributions in moderately 

dense images, it suffers from overlapping distributions and diminished 

localization accuracy in highly clustered regions. To address this 

limitation, the Focal Inverse Distance Transform (FIDT) map described 

by Liang et al. (2022) [34] has been introduced as a more precise 

alternative for annotating cell centroids, particularly in cases of dense 

and overlapping cell structures. 

3.1.2 Limitations of Gaussian Maps 

Gaussian maps represent each cell as a localized 2D Gaussian kernel 

centred at its centroid. For a given point (𝑥𝑖, 𝑦𝑖 ) the Gaussian density 

map 𝐷(𝑥, 𝑦) is computed as: 

𝐷(𝑥, 𝑦) = ∑
1

2𝜋𝜎2
(−

(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)2

2𝜎2
)

𝑁

𝑖=1

          (4) 

Where: 

 𝑁 is the total number of annotated cell centers, 

 𝜎 is the standard deviation controlling the spread of the kernel. 

Although effective in sparse scenes, this method poses two main issues 

in dense scenarios: 

1. Kernel Overlap: When cells are closely packed, the Gaussian 

kernels tend to overlap significantly, leading to imprecise 

localization and skewed density representations. 
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2. Lack of Spatial Contrast: The uniform spread of Gaussians 

reduces gradient strength around centroids, making it harder for 

the network to learn sharp and confident peak responses. 

3.1.3 Concept and Formulation of FIDT Maps 

The FIDT map redefines the way cell centroids are encoded by 

leveraging inverse distance transforms with an adaptive focal 

mechanism. It emphasizes the pixel-wise distance to the nearest ground 

truth centroid and assigns higher values to pixels close to the cell centre, 

creating sharper and more distinguishable peaks compared to Gaussian 

maps. 

Let 𝛺 denote the spatial domain of the image and let 𝒫 = (𝑥𝑖, 𝑦𝑖)𝑖=1
𝑁  

represent the set of ground truth cell centroids. For each pixel 𝑝 ∈ 𝛺, its 

distance to the closest point in 𝒫 is: 

𝑑(𝑝) = min
(𝑥𝑖,𝑦𝑖)∈𝒫

||𝑝 − (𝑥𝑖, 𝑦𝑖)||
2
           (5)  

Then, the FIDT map 𝑀(𝑝) is defined using a focal inverse transform: 

𝑀(𝑝) = (
1

𝑑(𝑝) + 1
)

𝛾

            (6) 

Where: 

 𝑑(𝑝) is the Euclidean distance from pixel 𝑝 to the nearest ground 

truth centroid, 

 𝛾 > 0 is a hyperparameter called the focal factor, which controls 

the steepness and focus of the response around the centroid. 

                                                                                        

 

Figure 3.2: Dot 

Annotation [38] 

Figure3.1: Input ADI 

Image [38] 
Figure 3.3: FIDT Map 
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This formulation guarantees that the closer a pixel is to a cell centre, the 

higher its response in the map. Unlike Gaussian maps, which rely on a 

fixed spread (𝜎), the FIDT map dynamically adapts based on pixel-level 

distances, leading to more robust and distinct peaks. 

3.1.4 Mathematical Intuition Behind FIDT 

The key innovation of FIDT lies in how it integrates the focal 

principle—originally proposed in Focal Loss for handling class 

imbalance—into spatial representation. The exponent 𝛾  in the FIDT 

equation plays a similar role by emphasizing hard (close-to-centre) 

pixels and down-weighting easier (distant) ones. This introduces spatial 

adaptivity and sharpens the local maxima corresponding to cell 

centroids, thereby making learning more effective. 

As 𝛾 increases: 

 The value of 𝑀(𝑝) decreases rapidly for pixels farther from the 

centroid, 

 The map becomes more concentrated around the centroid, 

improving spatial discrimination. 

3.1.4 Advantages of FIDT 

The use of Focal Inverse Distance Transform (FIDT) maps, as opposed 

to traditional Gaussian-based maps, offers several key advantages in 

dense cell counting scenarios. One of the primary benefits is sharper 

localization, as FIDT maps produce well-defined, focused peaks 

precisely at cell centres. This characteristic enhances the model’s 

capability to differentiate between closely packed cells (as shown in 

Figure 3.5), which is particularly important in crowded microscopy 

images. Additionally, the inverse distance-based formulation of FIDT 

inherently reduces overlap between adjacent cell representations. Unlike 

Gaussian maps, which spread density over a larger area and may cause 

interference (as shown in Figure 3.4), FIDT maps maintain clearer 

boundaries between neighbouring cells. 
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Another significant advantage of FIDT is its parameter robustness. 

Traditional Gaussian density maps require manual tuning of the kernel 

width parameter (𝜎), which can vary significantly depending on the 

dataset. In contrast, FIDT maps eliminate this requirement by defining 

the spatial profile purely based on distance, simplifying the target 

generation process and enhancing generalizability across different 

imaging conditions. Moreover, the sharp gradients produced near the 

centroids in FIDT maps offer a stronger and more informative learning 

signal for the model. This leads to faster and more stable convergence 

during training, ultimately improving the accuracy and efficiency of cell 

counting systems. 

Figure 3.4 illustrates a Gaussian density map, a widely used approach 

for cell counting where each annotated cell centre is blurred using a 

Gaussian kernel. This method smooths the spatial distribution and 

allows for straightforward integration to estimate total cell count. 

However, as shown in Figure 3.4, the overlapping Gaussian blobs in 

high-density regions can lead to ambiguity, making it difficult to 

accurately localize individual cells. 

In contrast, Figure 3.5 presents the FIDT map, which encodes spatial 

information more distinctly by incorporating inverse distance 

transforms. This results in sharper, non-overlapping peaks even in 

crowded scenes. As evident in Figure 3.5, FIDT maps preserve spatial 

resolution and better highlight individual cell centres. 
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Visualization Example 

        

3.1.5 Data Augmentation Strategy 

To enhance the robustness and generalizability of the deep learning 

model, a systematic data augmentation pipeline was applied during the 

preprocessing stage. The goal of this augmentation was to artificially 

increase the diversity of the training samples without collecting 

additional data, which is particularly valuable in biomedical imaging 

where annotated samples are often limited. 

For each original image, three rotation operations were performed at 

angles of 90°, 180°, and 270°, effectively simulating different 

orientations of cells that may naturally occur during microscopic slide 

preparation. Additionally, horizontal and vertical flipping 

transformations were applied to generate mirror-image variants of the 

input. To further extend variability, the same three rotation operations 

(90°, 180°, and 270°) were also applied to each of the horizontally and 

vertically flipped versions of the image. As a result, a single input image 

yielded a total of nine augmented variants — three rotations of the 

original, three rotations of the horizontally flipped image, and three 

rotations of the vertically flipped image. 

This approach not only increased the size of the dataset significantly but 

also encouraged the model to learn rotation- and flip-invariant features, 

which is critical for consistent performance across diverse imaging 

conditions. The augmentation process was carefully designed to ensure 

that the ground truth annotations (such as cell coordinates or density 

Figure 3.4: Gaussian Map Figure 3.5: FIDT Map 
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maps) were adjusted accordingly, maintaining alignment with the 

transformed images.    

               

3.2 Model Architecture 

In the early phase of this research, a hybrid deep learning framework 

was implemented to address the challenges inherent in automated cell 

counting from microscopy images. The proposed architecture integrates 

a pretrained VGG16 model as the backbone for feature extraction, 

followed by a cascaded U-Net [11] structure to perform pixel-level 

prediction through fine-tuned spatial localization. This composite 

approach was specifically tailored to leverage the generalization ability 

of pretrained convolutional networks along with the precise 

segmentation capabilities of encoder-decoder-based architectures, 

thereby improving the accuracy and robustness of the cell counting task. 

3.2.1 VGG16 Feature Extractor 

The model begins with a feature extraction block based on VGG16, a 

convolutional neural network originally introduced by Simonyan et al. 

(2014) [35]. VGG16 is widely recognized for its simplicity, depth, and 

effectiveness in learning hierarchical features from image data. It 

consists of 13 convolutional layers followed by 3 fully connected layers 

(not used in this case), with all convolutional operations using small 3×3 

filters and ReLU activations. In the proposed cell counting framework, 

the convolutional blocks of VGG16 are used up to the final 

convolutional layer, excluding the classification head. This allows the 

model to extract rich semantic representations of cellular structures such 

as membranes, nuclei, and cytoplasmic regions. These representations 

serve as a high-level abstraction of the raw input, facilitating more 

efficient learning during subsequent processing stages. 

Using pretrained VGG16 weights, originally learned on the ImageNet 

[1], [26] dataset, provides a strong initialization, especially beneficial 

when training data is limited. This technique, known as transfer 
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learning, helps accelerate convergence and reduces the risk of 

overfitting, while ensuring that lower-level features such as edges and 

textures are effectively captured from the start. 

3.2.2 Cascaded U-Net Architecture 

Following the VGG16 backbone, the model incorporates a U-Net-based 

encoder-decoder pipeline to reconstruct high-resolution density maps 

from the abstracted feature maps. U-Net [11], introduced by 

Ronneberger et al. (2015) [11], was designed specifically for biomedical 

image segmentation and has since become a cornerstone model in 

medical imaging tasks due to its strong performance in localization and 

segmentation. The hallmark of U-Net [11] is its symmetrical structure, 

consisting of a contracting path (encoder) and an expansive path 

(decoder), connected through skip connections. 

In the encoder path, a series of convolutional layers combined with 

down sampling operations (e.g., max pooling) progressively reduce the 

spatial dimensions while increasing the depth of the feature maps, 

allowing the network to encode semantic information over increasingly 

larger receptive fields. The decoder path then up samples these feature 

maps using transpose convolutions (also called up-convolutions) and 

refines them through additional convolutional operations. Importantly, 

skip connections link each encoder block with its corresponding decoder 

block, facilitating the reuse of spatially precise features that may 

otherwise be lost during down sampling. 

This design is particularly advantageous for cell counting, as it ensures 

the network maintains fine-grained localization information necessary 

for distinguishing individual cells in high-density or overlapping 

regions. Additionally, the decoder blocks in this model are configured 

to generate smooth density maps, enabling accurate estimation of the 

number and distribution of cells across the image. 

3.2.3 Dual Cascaded Network 

The uniqueness of this implementation lies in the cascaded U-Net [11] 

structure, which includes multiple depth and concatenation operations 
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to refine and merge features from different stages of the network. This 

design introduces multiple paths for feature flow, allowing the model to 

learn both global and local context more effectively. Intermediate 

outputs from early convolutional stages and later encoding stages are 

concatenated at various points in the decoding process, enriching the 

model’s capacity to discriminate between overlapping or 

morphologically diverse cells. 

Furthermore, the architecture (see Figure 3.6) includes additional layers 

for transposed convolutions, dropout (for regularization), and batch 

normalization (to stabilize training). These enhancements contribute to 

the network's ability to generalize well on unseen data.  

 

Figure 3.6: Dual Cascaded Network 
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3.2.4 Key Benefits of the Proposed Model 

Despite its limitations in performance, the proposed cascaded VGG16-

U-Net model [11] provides several foundational advantages that justify 

its inclusion in the early stages of this study. One of the key strengths of 

this architecture lies in its ability to leverage pretrained VGG16 weights, 

enabling efficient transfer learning. This significantly reduces training 

time and facilitates faster convergence, particularly when working with 

limited training data—a common constraint in biomedical imaging. 

Additionally, the U-Net structure [11], with its characteristic skip 

connections, plays a critical role in preserving spatial information. This 

architectural feature ensures that important spatial characteristics, such 

as cell boundaries and morphological details, are retained throughout the 

network, which is vital for accurate cell detection. 

Furthermore, the model supports end-to-end density map estimation, 

allowing it to predict continuous-valued density maps directly from 

input images. This capability is especially beneficial in scenarios where 

detailed individual cell annotations are unavailable or impractical to 

obtain. By predicting density maps rather than discrete cell locations, 

the model can still produce accurate count estimations while 

circumventing the need for exhaustive manual labelling. These features 

make the VGG16-U-Net model a valuable baseline for exploring more 

advanced architectures in the context of automated cell counting. 

 

3.3 Model Training and Hyperparameter Tuning 

In the training phase of the proposed deep learning model for cell 

counting, a range of key hyperparameters were systematically adjusted 

to optimize predictive performance. The model was trained using 

supervised learning, where each input image was associated with a 

corresponding ground truth density map. The experiments focused on 

the impact of different values of batch size, loss functions, learning rate, 

and the number of skip connections used in the cascaded DCNet 

architecture. 
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Batch size, which determines the number of samples processed before 

model parameters are updated, was varied across a set of values 

including 20, 30, 32, 40, 45, and 50. This helped analyse the trade-off 

between computational efficiency and convergence behaviour. While 

smaller batch sizes allowed for more granular updates to the model 

weights, they also increased training time. In contrast, larger batch sizes 

offered faster iterations but sometimes led to suboptimal convergence 

due to noisier gradient estimates. 

In addition, multiple loss functions were explored, including Mean 

Absolute Error (MAE), Mean Squared Error (MSE), and Huber Loss. 

MAE penalizes all errors equally and is less sensitive to outliers, 

whereas MSE penalizes larger errors more heavily, making it suitable 

for emphasizing high-deviation predictions. Huber Loss serves as a 

compromise between the two by behaving like MSE near the minimum 

and like MAE for outliers, making it a balanced choice in cases where 

data may contain noise or inconsistencies. 

Another crucial factor in the optimization process was the learning rate, 

which controls the size of updates to the model’s weights during 

training. Different learning rates were tested to determine an optimal 

setting that ensured stable convergence without overshooting the 

minimum of the loss function. Smaller learning rates led to smoother 

convergence but required more training epochs, while larger values 

accelerated convergence at the risk of instability or divergence. By 

carefully tuning this parameter, the model achieved a more balanced and 

controlled learning trajectory. 

Finally, architectural tuning involved modifying the number of skip 

connections in the DCNet model. These skip connections are 

instrumental in preserving spatial and contextual information from 

earlier layers of the network. By varying the number and placement of 

these connections, it was possible to assess their influence on the 

model’s ability to reconstruct detailed density maps, particularly in the 

presence of overlapping or densely packed cells. 
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Overall, this systematic hyperparameter tuning process helped identify 

configurations that, while not optimal in all scenarios, contributed to a 

more stable and interpretable training procedure, laying the groundwork 

for further refinements in future model iterations. 

After extensive experimentation with various combinations of 

hyperparameters, the most effective configuration was identified. The 

model yielded its best performance when trained using two skip 

connections within the cascaded DCNet architecture, a batch size of 45, 

and the Huber loss function. The use of two skip connections proved to 

be a balanced choice—it preserved essential spatial features from the 

encoder layers without overcomplicating the network structure, which 

could otherwise lead to redundant or conflicting information being 

passed forward. The batch size of 45 struck an optimal trade-off between 

stability in gradient updates and training efficiency, enabling smoother 

convergence while effectively utilizing available computational 

resources. Moreover, the Huber loss function offered the best results 

among the tested loss metrics, thanks to its hybrid nature that combines 

the robustness of Mean Absolute Error (MAE) and the sensitivity of 

Mean Squared Error (MSE). It particularly improved the model's 

performance in handling outlier predictions, which are common in cell 

counting tasks due to the variability in cell density and overlapping 

structures. This configuration served as the final training setup for 

subsequent evaluations and benchmarking across the selected datasets. 

 

3.4 Results 

During extensive experimentation with various architectural and 

training configurations, a notable outcome was achieved using a 

combination of two skip connections, a batch size of 45, and the Huber 

loss function as the training objective. This particular setup yielded the 

third-best performance across all tested configurations, with a Mean 

Absolute Error (MAE) of 11.0. 
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The use of two skip connections helped in effectively retaining spatial 

information and preserving fine-grained features through the network 

layers. Skip connections play a critical role in addressing the vanishing 

gradient problem and enable the model to learn residual mappings, 

which in turn enhance the learning of subtle cell structures in high-

density regions. Specifically, having two skip connections provided a 

balanced trade-off between computational complexity and performance, 

allowing sufficient gradient flow without overcomplicating the model. 

The batch size of 45 contributed to stable gradient estimates during 

training. Larger batch sizes tend to smooth out gradient noise, which can 

lead to more consistent convergence, while still being small enough to 

fit within GPU memory constraints and maintain model generalization. 

The choice of the Huber loss function further contributed to this 

performance by providing robustness against outliers. Unlike Mean 

Squared Error (MSE), which can be overly sensitive to large deviations, 

the Huber loss behaves like MSE for small errors and like MAE for large 

errors. This dual nature allowed the model to focus on minimizing 

smaller, frequent errors while being less influenced by occasional large 

deviations, which are common in challenging cell counting datasets. The 

resulting MAE of 11.0 signifies a reasonably accurate prediction, 

especially in scenarios with dense cell populations and varying imaging 

conditions. Though not the best overall result, this configuration proved 

to be highly competitive, suggesting that the combination of skip 

connections, careful batch sizing, and robust loss functions is effective 

for deep learning-based cell counting tasks. 

The result discussed in this section corresponds to the ADI (Adipose 

Tissue Imaging) dataset. As part of the evaluation, a series of 

experiments were conducted to examine the impact of different batch 

sizes, skip connection configurations, and loss functions on model 

performance. The configuration that combined two skip connections, a 

batch size of 45, and the Huber loss function achieved a Mean Absolute 

Error (MAE) of 11.0, ranking as the third-best result among all tested 
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setups. This finding highlights the importance of careful selection of 

architectural components and training parameters in optimizing 

counting accuracy. Table II shows a comprehensive summary of the 

results obtained using varying batch sizes, skip connections, and loss 

functions, allowing for a clear comparison of how each factor 

contributes to overall model performance on the ADI dataset. 

Table II: Experimental Result of DCNet 

Batch 

Size 

Number of skip 

connections 

Loss 

Function 
MAE 

20 

2 skip connections 

MSE 14.047 

MAE 12.511 

Huber 15.171 

3 skip connections 

MSE 12.418 

MAE 13.565 

Huber 11.398 

30 

2 skip connections 

MSE 12.977 

MAE 13.646 

Huber 11.394 

3 skip connections 

MSE 13.199 

MAE 12.478 

Huber 13.64 

45 2 skip connections Huber 11 

 

3.5 Conclusion 

In this chapter, we presented a deep learning-based approach for cell 

counting using a custom-designed model named Dual Cascaded 

Network (DCNet). The DCNet architecture is a cascaded framework 

that integrates the feature extraction capabilities of VGG16 with the 

spatial reconstruction strengths of U-Net [11], enhanced through 

strategically placed skip connections. This design enables the model to 

capture both high-level semantic information and low-level spatial 

features, which is critical for accurate cell localization and counting in 

complex microscopy images. 

The chapter began with an overview of the data preprocessing pipeline, 

where raw microscopy images were normalized, resized, and converted 

into density maps using dot annotations. These steps ensured that the 
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input data was well-prepared for training and that the density maps 

provided rich spatial supervision. 

Next, the model architecture of DCNet was detailed. The encoder is 

based on VGG16, which effectively captures hierarchical features, while 

the decoder follows the U-Net [11] structure to reconstruct high-

resolution density maps. The incorporation of skip connections between 

encoder and decoder blocks helps in preserving spatial information and 

facilitates the learning of fine cell boundaries. 

We also discussed the training procedure and hyperparameter tuning, 

wherein multiple configurations of batch size, skip connections, and loss 

functions were explored. Among these, the combination of two skip 

connections, a batch size of 45, and Huber loss proved particularly 

effective, striking a balance between stability and robustness to outliers. 

The training results, evaluated on the ADI dataset, demonstrated that this 

configuration achieved the third-best performance across all tested 

setups, with a Mean Absolute Error (MAE) of 11.0. These findings 

underscore the importance of architectural choices and training strategy 

in achieving high accuracy in cell counting tasks. A comparative 

summary of various experimental settings is provided in Table II for 

reference. 

In summary, this chapter demonstrated the effectiveness of the proposed 

DCNet architecture for cell counting in microscopy images. The 

cascaded use of VGG16 and U-Net [11], combined with thoughtful 

training configurations, enabled strong performance across key 

evaluation metrics. The insights gained here serve as a solid foundation 

for the next chapter, which investigates a transformer-based 

alternative—Restormer—to further enhance the model’s ability to 

capture long-range dependencies and global context. 
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Chapter 4 

Transformer Based Cell Counting 

4.1 Data Preprocessing 

To ensure robust training and accurate generalization of the Restormer-

based cell counting model, a comprehensive data preprocessing pipeline 

was established. Given the inherent differences in resolution, staining, 

and image quality across the datasets (described in section 1.4), careful 

normalization, augmentation, and target map preparation steps were 

performed. These preprocessing techniques aimed to harmonize the data 

characteristics and enhance the model’s ability to detect and count cells 

under varying imaging conditions. 

4.1.1 Image Normalization and Standardization 

All input images were resized to fixed dimensions compatible with the 

Restormer architecture. Pixel intensities were normalized to a standard 

range to remove variations due to illumination and sensor-specific 

characteristics. This helped in maintaining consistency during training 

and ensured stable learning dynamics. 

4.1.2 Data Augmentation Strategies 

To enhance the robustness of the model and reduce the risk of 

overfitting, a comprehensive set of data augmentation techniques was 

employed during the training phase. These augmentations included both 

geometric and photometric transformations, ensuring that the model 

could generalize well across diverse imaging conditions and cell 

morphologies. 

Geometric augmentation involved applying random rotations to the 

input images at angles of 90°, 180°, and 270°. This helped the model 

develop invariance to cell orientation and positional variations, which is 

crucial in microscopy images where cells can appear in any direction. 

Photometric augmentation was implemented to address variations in 

staining protocols and illumination conditions observed across the 
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datasets. Several colour-based adjustments were applied to simulate 

these differences. Brightness adjustment was used to mimic changes in 

image exposure by randomly increasing or decreasing the overall 

brightness, allowing the model to become more resilient to lighting 

inconsistencies. Colour jittering introduced random variability in hue 

and saturation levels, which aided the model in learning features that are 

invariant to differences in staining. Additionally, specific shifts in hue 

and saturation were included to further improve generalization, enabling 

the model to adapt to the colour distortions typically introduced by 

different imaging setups. These augmentations collectively contributed 

to a more generalized and reliable performance across multiple datasets. 

These augmentations were applied randomly during training, ensuring 

that the model encountered a wide variety of input styles and conditions. 

To address the issue of boundary-region cells being underrepresented 

during training, padding was applied to all images prior to density map 

generation. Without padding, cells located near the image edges were 

often partially excluded from the receptive field of the network, leading 

to inaccurate or incomplete density predictions. By extending the image 

borders through symmetric padding, we ensured that edge-region cells 

were fully included in both the input and corresponding FIDT maps. 

This strategy improved the model’s ability to learn from the entire 

spatial extent of the image, including border regions where cells are 

frequently present but previously overlooked. 

4.1.3 Super-Resolution Enhancement (for ADI Dataset) 

The ADI dataset, due to its low original resolution and poor visibility of 

cell boundaries, posed a significant challenge for learning fine spatial 

features. To address this, a super-resolution [36] module was applied as 

a preprocessing step. This module enhanced the image resolution, 

allowing the model to better observe and learn from subtle details such 

as cell contours, textures, and edge information. By improving boundary 

visibility, super-resolution enabled more accurate feature extraction 

during training, ultimately leading to better performance on ADI data. 



39 
 

This step was applied only to the ADI dataset, as the MBM and VGG 

datasets already had sufficient resolution for accurate processing. 

4.1.4 Density Map Generation Using FIDT Maps 

Instead of relying on traditional Gaussian-based density maps, this study 

utilized the Focal Inverse Distance Transform (FIDT) maps for target 

generation, as proposed by Liang et al. (2022) [34]. The FIDT 

methodology enables the creation of density maps that better capture the 

true spatial distribution of cellular regions, particularly in images with 

dense or overlapping cell populations. This approach adapts the density 

spread dynamically based on the local proximity of cells, leading to a 

more informative and context-aware representation of cellular 

arrangements. 

One of the key advantages of using FIDT maps is their ability to preserve 

spatial distribution information by modulating the density spread 

relative to nearby cell locations. This characteristic allows for a more 

precise representation of both isolated and clustered cells within the 

same image. Additionally, the FIDT-based maps enhance the quality of 

the supervision signal, thereby simplifying the learning process for 

models tasked with accurate density estimation. 

The generation process begins with dot annotations, which mark the 

centroids of individual cells. These annotations are then convolved with 

a distance-adaptive kernel as defined by the FIDT algorithm. The 

resulting FIDT map serves as the ground truth for the regression task, 

with the integral over the entire map representing the total cell count for 

the image. Compared to conventional fixed-kernel approaches, FIDT 

maps offer a richer and more flexible depiction of cell distributions, 

making them particularly suitable for datasets such as the Modified 

Bone Marrow (MBM) and Adipose Tissue (ADI) datasets, where cell 

layouts are often irregular and non-uniform. 

4.1.5 Final Input-Target Pipeline 

Following all preprocessing steps, the final paired data used for training 

comprised two main components: the input image and the corresponding 
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target map. The input image consisted of an augmented microscopy 

image, and in the case of the ADI dataset, it also underwent super-

resolution enhancement to address challenges related to low visibility 

and indistinct cellular structures. The target map was a Focal Inverse 

Distance Transform (FIDT)-based density map, designed to accurately 

represent the spatial distribution of cells within the image. These image-

target pairs were employed to train the Restormer model in a supervised 

manner using a pixel-wise regression loss function. 

The preprocessing pipeline integrated a combination of strategies 

tailored to accommodate the varying characteristics of the ADI, MBM, 

and VGG datasets. The inclusion of super-resolution techniques for the 

ADI dataset significantly improved the visibility and definition of cell 

features, which are often compromised in lower-quality images. 

Simultaneously, the use of FIDT maps in place of conventional 

Gaussian-based density maps provided the model with richer and more 

informative supervisory signals that reflected the actual distribution of 

cellular regions more accurately. In addition, extensive photometric 

augmentation—encompassing modifications in brightness, colour, hue, 

and saturation—was applied to simulate variations in staining protocols 

and imaging conditions. These augmentations enabled the model to 

develop robustness and generalization capabilities across different 

imaging artifacts. Collectively, these preprocessing methods established 

a robust and comprehensive foundation for training the Restormer-based 

cell counting architecture. 

 

4.2 Restormer Model Architecture 

4.2.1 Introduction to Restormer 

Restormer (Restoration Transformer) [12] is a novel transformer-based 

architecture introduced to address the challenges of high-resolution 

image restoration tasks such as denoising, deraining and deblurring (as 

shown in Figure 4.4). Unlike traditional CNNs, which have a limited 

receptive field and often struggle to model long-range dependencies in 
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images, Restormer leverages the power of self-attention mechanisms to 

model global context while maintaining computational efficiency. 

 

Figure 4.1: Restormer Architecture [12] 

In the domain of cell counting, especially in biomedical microscopy 

images, challenges such as dense cell populations, varying cell 

morphology, noise, and overlapping structures make accurate prediction 

complex. Traditional CNN-based models may not fully capture the 

spatial relationships between distant but correlated regions. Restormer’s 

architecture, with its attention-based mechanism, offers a strong 

alternative by providing a global understanding of the image while still 

preserving fine spatial details. 

4.2.2 Restormer Architectural Components 

Restormer is founded on a hierarchical encoder-decoder Transformer 

architecture, designed to efficiently handle high-resolution image 

restoration tasks, and repurposed in this study for cell counting. One of 

its core innovations is the Multi-Dconv Head Transposed Attention 

(MDTA) module. Unlike traditional Transformers, which compute 

attention across all pixel pairs—leading to high computational overhead 

for large images—MDTA integrates depth-wise convolution (D-Conv) 

within the attention mechanism. This design enables the model to 

capture local spatial context before computing attention, offering a more 

scalable alternative to vanilla self-attention. By operating in a spatially-

aware manner, MDTA significantly reduces computational complexity. 

In the context of cell counting, particularly in microscopy images where 

cells are small and densely clustered, MDTA enables the model to 
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effectively focus on biologically relevant features while being sensitive 

to local variations in cell morphology, intensity, and density. This 

capability greatly enhances both localization and counting accuracy. 

Each Transformer block in Restormer also includes a specialized feed-

forward module known as the Gated Depth-wise Convolutional Feed-

forward Network (GDFN). This component consists of depth-wise 

separable convolutions, which extract spatial information in a channel-

wise manner, and a gating mechanism that dynamically controls the 

flow of information. The gating mechanism plays a crucial role in 

filtering out irrelevant background noise and emphasizing important 

image features such as cell edges and centres. For cell counting tasks, 

this targeted attention to biologically meaningful structures results in 

improved precision, especially in images affected by noise, variable 

illumination, or blur. 

Restormer employs a hierarchical encoder-decoder framework similar 

to that of U-Net [11], which supports multi-scale feature learning. The 

encoder path progressively down samples the input image to extract 

deep semantic features, while the decoder path up samples the data to 

reconstruct the original spatial resolution. Crucially, skip connections 

bridge the encoder and decoder layers at corresponding levels, ensuring 

that high-frequency spatial information—such as edges and textures—

is preserved throughout the network. This architectural design is 

particularly advantageous for cell counting, as cells exhibit a wide range 

of sizes and intensities. The hierarchical approach enables detection of 

both small, faint cells and larger cellular structures, while the skip 

connections help retain the fine-grained details necessary for accurate 

localization. 

Additionally, Restormer replaces standard position encodings with 

Gated Positional Encodings, allowing the model to learn positional 

relevance in a dynamic fashion rather than relying on fixed embeddings. 

This is coupled with Layer Normalization to improve training stability. 

In microscopy images, where cells often appear in complex spatial 
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configurations or are partially overlapping, the model's ability to 

understand spatial relationships dynamically is essential for precise and 

reliable cell count estimation. 

4.2.3 Why Restormer Is Effective for Cell Counting 

Although Restormer was originally designed for image restoration tasks, 

it offers several advantages that make it suitable and highly effective for 

cell counting in biomedical images: 

1. Global Context Understanding 

Cell counting often involves recognizing patterns in cell distribution 

across the entire image. Unlike CNNs, which only process local regions 

at a time, Restormer can attend to features across the full spatial range, 

enabling better estimation of cell counts even in images with uneven cell 

distribution or overlapping regions. 

2. Fine Detail Preservation 

The model is highly capable of preserving high-frequency details such 

as cell boundaries, shapes, and edges—features that are essential for 

differentiating individual cells, particularly in dense clusters. 

3. Robustness to Noise and Artifacts 

Microscopy images are prone to imaging artifacts, intensity variations, 

and noise due to experimental limitations. Given its origin in restoration 

tasks, Restormer naturally handles noise well, allowing it to generate 

cleaner density maps and reducing false positives/negatives in cell 

counting. 

4. Efficient Processing of High-Resolution Images 

Cell datasets frequently consist of high-resolution images to preserve 

intricate cellular details. However, traditional Transformer models 

become impractical at such scales due to their extensive memory 

requirements. Restormer overcomes this limitation by incorporating 

efficient attention mechanisms such as Multi-Dconv Head Transposed 
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Attention (MDTA) and utilizing depth-wise convolutions, which 

significantly reduce computational complexity. These design choices 

enable the model to scale effectively to high-resolution inputs while 

maintaining a manageable computational load. 

4.2.4 Adaptation for Cell Counting in This Work 

In this research, the Restormer architecture was adapted to perform 

density map regression for the purpose of cell counting. The model was 

trained using microscopy images annotated with dot annotations 

representing individual cell locations. The primary objective was to 

predict a continuous-valued density map, where the integral over any 

region of the image accurately estimates the number of cells present. 

Several key adaptations were made to tailor Restormer for this task. 

First, the traditional restoration target used in image restoration tasks 

was replaced with density maps, enabling the model to learn to predict 

spatial cell distributions rather than denoised images. Additionally, 

SALW [37] was employed during training. This technique dynamically 

adjusts the loss contributions from different regions of the image, 

allowing the model to focus more on complex or high-error areas, which 

is particularly beneficial in dense or noisy microscopy images. The 

model was further fine-tuned on domain-specific datasets such as ADI, 

MBM, and VGG, which encompass a wide range of cell types and real-

world imaging challenges. 

Restormer's architecture, which combines global attention with 

computational efficiency and precise spatial feature preservation, 

presents a novel and powerful solution for the cell counting problem. Its 

ability to simultaneously capture fine local detail and broader spatial 

context provides a distinct advantage over conventional CNN-based 

approaches. The subsequent sections of this chapter delve into the 

training methodology, dataset-specific evaluations, and performance 

comparisons with other state-of-the-art models. 
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4.3 Self Adaptive Loss Weighting 

4.3.1 Motivation and Background 

In supervised deep learning tasks like cell counting, the goal is to 

minimize a loss function that quantifies the difference between the 

model’s predictions and the ground truth. In many real-world 

applications—including microscopy-based cell counting—the quality of 

the input data can vary significantly across samples and datasets due to 

factors such as image resolution, staining protocols, contrast variability, 

and background noise. Some regions of an image may be easy for the 

model to learn (e.g., clear, well-defined cells), while others are 

ambiguous (e.g., overlapping cells, faint boundaries, or low-intensity 

regions). 

Using a fixed, static loss weight across all training samples or loss 

components fails to account for these disparities in learning difficulty. 

In such cases, the model may overly prioritize regions it finds easy to 

learn, while underfitting the more challenging ones. To overcome this 

imbalance, we integrate a SALW [37] approach, which allows the model 

to dynamically and continuously adjust how much attention it pays to 

the loss at each stage of training. 

This dynamic adjustment is achieved by introducing a learnable 

parameter into the loss function that controls the scale of the loss based 

on the model’s confidence in the prediction. The mathematical 

framework is inspired by probabilistic modelling and uncertainty 

weighting introduced by Kendall et al. (2018) [15]. 

4.3.2 Theoretical Foundation 

The adaptive loss function is defined as: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑒𝑥𝑝(−𝑎) ⋅ 𝐿𝑚𝑎𝑖𝑛 + 𝑎             (7) 
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Where: 

 𝐿𝑚𝑎𝑖𝑛 is the primary task loss (e.g., Mean Absolute Error or 

MSE computed between the predicted and ground truth density 

maps). 

 𝑎 ∈  ℝ is a scalar parameter learned through backpropagation. 

 𝑒𝑥𝑝(−𝑎) dynamically adjusts the weight of the loss. 

 The additive term 𝑎  acts as a regularizer, preventing 𝑎  from 

becoming too large or too small during optimization. 

This formulation arises from modelling the output of the network as a 

Gaussian distribution and optimizing its log-likelihood. Here, 𝑒𝑥𝑝(−𝑎) 

corresponds to the inverse variance (i.e., the precision or confidence) in 

the model’s predictions. The idea is that if the model is uncertain (i.e., 

has higher variance), it should penalize that prediction less, and vice 

versa. 

This approach is rooted in probabilistic principles and allows the model 

to adaptively scale the loss without manual intervention. 

4.3.3 Intuition Behind the Adaptive Term 

The key strength of SALW [37] lies in its ability to make the loss scale 

learnable. In this approach, the parameter 𝑎 is optimized jointly with the 

model weights through gradient descent. This dynamic adjustment 

allows the network to autonomously assess and adapt its confidence in 

predictions over the course of training. If the model encounters difficulty 

in reducing the primary loss in specific regions of the image—such as 

areas affected by noise or blur—it will learn to increase the value of 𝑎, 

thereby reducing the penalty for prediction errors in those challenging 

regions. On the other hand, when the model performs well in cleaner, 

more reliable sections of the image, it decreases 𝑎 , amplifying the 

contribution of those areas to the total loss. This mechanism effectively 

introduces a form of automatic curriculum learning, enabling the 
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network to progressively focus on more difficult parts of the task while 

maintaining balanced learning pressure across the image. 

4.3.4 Application in Restormer-Based Cell Counting 

In this work, the SALW mechanism [37] is integrated into the 

Restormer-based cell counting model, which is trained on a range of 

datasets including ADI, MBM, and VGG. These datasets present 

varying levels of image quality and structural complexity, necessitating 

a flexible learning approach. SALW is specifically applied to the loss 

function used for training the model to predict FIDT-based density 

maps, which are designed to represent the spatial distribution of cells 

within each image. Given that FIDT maps are highly sensitive to factors 

such as annotation quality, image resolution, and local cell density, the 

difficulty associated with learning from them can vary significantly 

across different image patches or entire datasets. 

The SALW-enhanced loss is implemented using an adaptive 

formulation in which the total loss 𝐿total is computed with a learnable 

parameter 𝑎. This parameter is initialized to a default value (e.g., 0.0) 

and is subsequently updated during training through gradient 

backpropagation alongside the other model parameters. This setup 

enables the model to dynamically adjust the importance assigned to 

different regions or tasks throughout training, depending on the level of 

prediction uncertainty. 

For instance, in the ADI dataset—characterized by low-resolution 

images and indistinct cell boundaries even after super-resolution 

enhancement—the model learns to reduce the weight of regions with 

high uncertainty. Conversely, in the VGG dataset, which contains 

synthetic, high-resolution images with clearly defined cell structures, the 

model increases the emphasis on confident predictions. This leads to 

more stable learning and improved convergence, as the model 

adaptively focuses on reliable data while mitigating the impact of 

ambiguous or noisy regions. 
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4.3.5 Benefits in Cell Counting Context 

Integrating SALW [37] into the cell counting pipeline introduces several 

notable advantages. One of the most significant benefits is the model's 

ability to dynamically focus on challenging regions within the image. 

Without requiring any manual annotation or predefined region-specific 

weighting, SALW enables the network to automatically allocate more 

attention to harder-to-learn areas, such as regions with overlapping cells, 

low contrast, or inconsistent staining. This adaptability is particularly 

valuable in biomedical image analysis, where dataset characteristics 

often vary widely in terms of resolution, contrast, and cellular 

morphology. As a result, SALW contributes to better generalization 

across diverse datasets. 

Another advantage lies in the reduction of manual tuning typically 

associated with traditional loss-weighting strategies. Conventional 

methods often rely on extensive hyperparameter searches to determine 

static loss weights, which can be both time-consuming and suboptimal. 

In contrast, SALW learns the optimal loss scaling dynamically during 

training, streamlining the process and improving performance. 

Moreover, SALW introduces uncertainty-aware learning by explicitly 

modelling and responding to prediction uncertainty. This capability 

enhances the model's robustness and reliability when applied to real-

world microscopy data, which often includes noise, artifacts, and 

ambiguous cellular structures. 

4.3.6 Summary 

Self-Adaptive Loss Weighting is a principled and effective strategy to 

dynamically balance learning focus during model training. In our work, 

its integration into the Restormer-based architecture enhances the 

model’s ability to learn from noisy, low-resolution, or visually 

ambiguous images common in biological microscopy. It supports more 

stable and efficient training and leads to better overall performance in 

terms of cell count accuracy and density map quality. 
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4.4 Model Training and Hyperparameter Tuning 

4.4.1 Training Overview 

The training of the proposed Restormer-based cell counting model was 

conducted with the goal of achieving accurate and generalizable density 

map predictions across multiple microscopy datasets (ADI, MBM, and 

VGG). The model was trained for a total of 300,000 iterations, allowing 

adequate time for convergence even on complex, high-resolution 

biomedical images. 

A base learning rate of 0.00001 was used, optimized using a cosine 

annealing learning rate schedule. This strategy gradually decreases the 

learning rate, promoting stable convergence and avoiding abrupt 

gradient oscillations. Additionally, specific learning rate milestones 

were defined at [92,000, 150,000, 200,000, 250,000, 300,000] to control 

the decay curve more precisely during the training process. 

4.4.2 Architecture Configuration 

To fully leverage the capabilities of the Restormer architecture, several 

architectural hyperparameters were carefully configured. The patch size 

was set to a progressive hierarchy of [32, 64, 64, 128, 256], enabling 

effective hierarchical feature extraction from fine to coarse levels of 

resolution. This configuration facilitates multi-scale analysis, which is 

crucial in capturing both small and large cellular features. A consistent 

batch size of [2, 2, 2, 2, 2] was maintained across all training stages to 

ensure training efficiency while accommodating the high memory 

requirements of processing high-resolution images. 

Each stage of the model was designed with [2, 2, 2, 2, 2] Transformer 

blocks, providing adequate depth to learn complex spatial dependencies 

present in microscopy images. The number of attention heads was also 

fixed at [2, 2, 2, 2, 2] for each stage, striking a balance between capturing 

diverse attention patterns and maintaining computational efficiency. 

Channel dimensions were incrementally set to [64, 128, 256, 512], 

allowing for increased feature representation capacity at deeper layers. 

An expansion factor of 2 was applied in the feed-forward networks, 
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enhancing the intermediate feature space and improving the model’s 

ability to encode rich information. Additionally, two refinement stages 

were incorporated to iteratively refine the predicted density maps, 

leading to more accurate and spatially coherent cell count estimations. 

4.4.3 Loss Function Evaluation 

To determine the most effective supervisory signal for training the 

Restormer-based cell counting model, several regression loss functions 

were explored. These included Mean Absolute Error (MAE or L1 Loss), 

Mean Squared Error (MSE or L2 Loss), and Huber Loss. MAE focuses 

on minimizing the average absolute difference between the predicted 

and ground truth density values, making it straightforward and 

interpretable. MSE, on the other hand, penalizes larger deviations more 

severely, making it particularly useful for emphasizing and correcting 

substantial prediction errors. Huber Loss blends the strengths of both 

MAE and MSE, offering robustness against outliers while maintaining 

smooth optimization behaviour. 

Through extensive experimentation, it was observed that while each of 

these loss functions produced reasonable outcomes, the combination of 

MAE (L1 Loss) with the SALW mechanism [37] consistently yielded 

superior results in terms of both training stability and model accuracy. 

SALW played a critical role by dynamically adjusting the influence of 

the loss throughout the training process. This enabled the model to 

concentrate more effectively on challenging or uncertain regions within 

the image, such as overlapping cells or areas characterized by low 

contrast. The adaptive behaviour facilitated by SALW was especially 

advantageous when working with diverse datasets, where variations in 

input quality and annotation consistency could otherwise hinder model 

performance. 

4.4.4 Optimization Strategy and Implementation 

Training was performed using the AdamW optimizer, known for its 

adaptive gradient updates and efficiency in deep architectures. To 

improve training throughput, 8 parallel workers were utilized for data 
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loading. Additionally, a seed value of -1 was used to introduce 

randomized initialization, contributing to the robustness of the training 

process. 

We have observed the self adaptive loss weighting trainable parameter 

( described by equation 7) and got decreasing value pattern (shown in 

figure 4.5). 

 

Figure 4.2: Adaptive Parameter Value Learning Trend 

The above trend is observed for MBM dataset and similar type of trend 

is observed another datasets ADI and VGG. 

In conclusion, the training procedure for the Restormer model was 

carefully designed to balance depth, efficiency, and generalizability. 

The use of a cosine annealing learning schedule, hierarchical 

architectural design, and dynamic loss weighting via SALW [37] created 

a highly effective training pipeline. Among all tested loss functions, L1 

Loss combined with SALW emerged as the most effective, leading to 

improved prediction accuracy and robustness across datasets. This setup 

allowed the model to learn both localized and distributed cell patterns 

efficiently, enabling accurate and consistent cell counting in varied 

imaging conditions. 
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4.5 Counting Algorithm 

4.5.1 Introduction 

In addition to deep learning and transformer-based approaches, we also 

implemented a classical image processing method for cell counting 

based on a modified Laplacian of Gaussian (LoG) as used in [19], 

technique. We name our approach LoIG — which stands for Laplacian 

of Inverse-Gaussian. This method aims to enhance the contrast of faint 

or poorly visible cell structures by introducing an inverse operation 

between Gaussian smoothing and Laplacian edge detection. 

The key idea is to suppress the influence of bright background areas and 

emphasize dark cellular regions before applying edge enhancement. 

This adjustment helps improve blob detection accuracy, especially in 

images where cells appear as dark regions against a brighter or uneven 

background. 

4.5.2 Method Overview 

The standard LoG [19] algorithm works by first smoothing the image 

with a Gaussian filter to reduce noise, followed by applying the 

Laplacian operator to detect regions of rapid intensity change, i.e., 

potential blob centres. 

In the LoIG algorithm, we modify this pipeline as follows: 

1. Apply Gaussian Filter: 

o The input image is first smoothed using a Gaussian filter 

with standard deviation 𝜎  to reduce high-frequency 

noise. 

𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2 𝑒𝑥𝑝 (−
𝑥2+𝑦2

2𝜎2 )          (8) 

Let the smoothed image be 𝐼𝐺(𝑥, 𝑦). 
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2. Inverse Operation: 

o After smoothing, the image is inverted to highlight low-

intensity regions (typically cells) and suppress 

background areas. 

𝐼𝑖𝑛𝑣(𝑥, 𝑦) = 1 − 𝐼𝐺(𝑥, 𝑦)           (9) 

This step is particularly useful for datasets where cells appear darker 

than the background, as it improves contrast before edge detection. 

3. Apply Laplacian Operator: 

o The Laplacian operator is then applied to the inverted 

image to detect intensity transitions and highlight 

potential cell regions. 

𝐿𝑜𝐼𝐺(𝑥, 𝑦) = 𝛻2𝐼𝑖𝑛𝑣(𝑥, 𝑦)             (10) 

Where 𝛻2 denotes the Laplacian operator (second spatial derivative). 

4.5.3 Combined LoIG Equation 

Combining all steps, the complete LoIG transformation can be 

expressed as: 

𝐿𝑜𝐼𝐺(𝑥, 𝑦) = 𝛻2[1 − (𝐼 ∗ 𝐺(𝑥, 𝑦, 𝜎))]              (11) 

Where: 

 𝐼 is the input grayscale image, 

 𝐺(𝑥, 𝑦, 𝜎) is the Gaussian kernel, 

 ∗ denotes convolution, 

 𝛻2 is the Laplacian operator. 

 

4.5.4 Cell Counting Using LoIG 

After computing the Laplacian of Inverted Gaussian (LoIG) map, the 

cell counting process proceeds through a series of classical image 
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processing steps. First, thresholding is applied—either globally or 

adaptively—to convert the LoIG map into a binary image. This step is 

essential for distinguishing foreground cellular structures from the 

background. Next, blob detection is performed using methods such as 

connected components analysis or local maxima detection to identify 

distinct blobs that correspond to individual cells. Finally, the number of 

detected blobs is counted to estimate the total number of cells present in 

the image. 

The LoIG algorithm offers several notable advantages and specific use 

cases. One of its key benefits is its enhanced performance in low-

contrast conditions. The inverse operation enhances the visibility of dark 

or faint cellular structures, which are frequently encountered in 

microscopy images. Additionally, the method is computationally 

simple, requiring no training or manual annotation, making it accessible 

for use in low-resource settings. It is particularly effective in images 

where cell boundaries are rich in edge information and become more 

pronounced following enhancement. 

However, the method is not without limitations. It is highly sensitive to 

parameter tuning; for instance, the sigma value used in the Gaussian 

filter and the threshold level must be carefully chosen to ensure optimal 

performance. Moreover, the LoIG approach is not well-suited for 

images with densely overlapping cells or highly irregular shapes, where 

it may fail to separate adjacent structures accurately. Another major 

drawback is the lack of learning capability; the algorithm cannot adapt 

to variations in imaging styles unless the parameters are manually re-

tuned for each new condition. 

Despite these constraints, the LoIG algorithm presents a lightweight and 

interpretable alternative to more complex, data-driven cell counting 

models. By applying an inverse operation after Gaussian smoothing, it 

effectively enhances low-intensity cellular features and improves edge 

detection. While it may not achieve the same level of accuracy as deep 

learning-based approaches in challenging scenarios, it provides a 
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practical and effective solution in controlled environments and serves as 

a valuable baseline for evaluating more advanced methods. 

 

4.6 Results 

One of the core objectives of this research was to determine the most 

effective training configuration for accurate and generalizable cell 

counting across a variety of microscopy datasets. Through extensive 

experimentation involving multiple loss functions—namely Mean 

Absolute Error (L1 Loss), Mean Squared Error (L2 Loss), and Huber 

Loss—we found that the L1 loss combined with SALW [37] 

consistently provided the most stable training and superior performance 

across datasets. 

Unlike traditional loss functions with fixed weights, the SALW 

mechanism dynamically adjusts the influence of the loss during training 

based on prediction uncertainty. This adaptiveness proved highly 

beneficial in microscopy images, where different regions of the image 

may vary significantly in complexity, contrast, and cell distribution. L1 

loss, being robust to outliers and focused on minimizing absolute error, 

worked synergistically with SALW to help the model emphasize 

difficult-to-learn regions while not being overly influenced by isolated 

errors. 

4.6.1 Dataset-wise Results 

The effectiveness of the proposed configuration, combining Mean 

Absolute Error (L1 Loss) with SALW [37], was evaluated across three 

distinct datasets—ADI, MBM, and VGG—each offering unique visual 

and structural characteristics. In the ADI dataset, which comprises low-

resolution fluorescence microscopy images with faint and poorly 

defined cell boundaries, the L1 + SALW configuration demonstrated 

robust performance by securing the third-best result among all tested 

variants. The application of super-resolution preprocessing techniques 

played a crucial role in enhancing the visual quality of the input images, 
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while SALW contributed to better learning outcomes in regions with 

limited visibility and weak signal contrast. 

In the MBM dataset, which features moderate-to-high density bone 

marrow images with a wide range of cell sizes and significant overlap 

between cells, the model configured with L1 + SALW delivered the 

second-best performance. The dynamic loss weighting enabled the 

model to effectively adapt to the heterogeneous distribution of cells and 

prevented overfitting to highly clustered regions, ensuring more 

generalized predictions. 

The VGG dataset, composed of synthetic, high-resolution images with 

clearly defined cell boundaries and consistent intensity distributions, 

presented an ideal testing environment. Under these optimal conditions, 

the L1 + SALW configuration achieved the best overall performance. 

The model was able to converge rapidly and accurately, leveraging the 

uniformity and precision of the dataset’s annotations. This cross-dataset 

evaluation underscores the adaptability and effectiveness of the L1 + 

SALW combination across a range of biomedical imaging scenarios. 

Table III: Result of Restormer Model 

Model 
ADI (MAE) 

N=50 

MBM 

(MAE) 

N=15 

VGG 

(MAE) 

N=50 

Ciampi et al. (2022) 

[17] 
8.7±0.8 5.7±0.9 2.5±0.1 

Count-ception, Paul 

et al. (2017) [4] 
19.4±2.2 8.3±2.3 2.3±0.4 

Jiang and Yu (2021) 

[6] 
10.6±0.3 7.5±0.7 2.2±0.2 

Rodriguez-Vazquez 

et al. (2022) [19] 
17.3±3.6 4.2±2.4 2.2±0.5 

Ours 11±0.2 5.3±1.0 2.09±0.08 
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The use of L1 loss optimized with Self-Adaptive Loss Weighting 

enabled the Restormer model to adapt to the challenges posed by each 

dataset. The performance across ADI, MBM, and VGG clearly 

demonstrates (in Table III) the versatility and generalization capability 

of this approach. While other loss functions like MSE and Huber showed 

reasonable performance, they lacked the adaptive robustness required to 

handle the varied levels of noise, resolution, and complexity present in 

real-world microscopy images. The result underscores the effectiveness 

of combining absolute error minimization with uncertainty-aware 

training dynamics for cell counting tasks. 

 

4.7 Conclusion 

This chapter presented a transformer-based approach for cell counting 

using the Restormer architecture, originally designed for image 

restoration tasks. Through architectural adaptation and extensive 

training, we demonstrated the model’s potential in handling the unique 

challenges of microscopy image analysis, including varying resolution, 

noise levels, and cell densities. 

The hierarchical structure of Restormer, equipped with Multi-Dconv 

Head Transposed Attention (MDTA) and Gated Depth-wise Feed-

forward Networks (GDFNs), allowed the model to capture both fine-

grained local details and global spatial dependencies effectively. These 

capabilities proved essential in accurately predicting cell density maps, 

particularly in cases of overlapping or faintly stained cells. 

A robust data preprocessing pipeline was designed to standardize inputs 

across three datasets—ADI, MBM, and VGG—which varied 

significantly in terms of resolution and visual quality. Key steps such as 

super-resolution (for ADI), padding, and extensive augmentations 

helped enhance model generalization. The use of FIDT maps as the 

regression target provided a more adaptive and spatially aware 

supervision signal than conventional Gaussian-based density maps. 
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To further optimize the training process, we employed SALW based on 

uncertainty modelling. This strategy allowed the model to dynamically 

adjust its focus during training, placing more emphasis on harder-to-

learn regions. Among various loss functions evaluated, the combination 

of L1 loss with SALW yielded the most consistent and accurate results 

across datasets. 

Through rigorous hyperparameter tuning—including variations in patch 

sizes, transformer depth, attention heads, and channel dimensions—the 

model achieved competitive performance: best results on the VGG 

dataset, second-best on MBM, and a strong third-best on the challenging 

ADI dataset, even with its initial low-resolution limitations. 

In summary, this chapter validated the feasibility and effectiveness of 

adapting a transformer-based architecture for the task of cell counting. 

The integration of attention mechanisms, adaptive loss strategies, and 

customized preprocessing steps collectively contributed to high 

accuracy and generalizability, setting a strong foundation for further 

research and enhancements in biomedical image analysis. 
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Chapter 5 

Results and Discussion 

This chapter presents the experimental results and comparative analysis 

of two distinct approaches to biological cell counting: the deep learning-

based DCNet architecture and the transformer-based Restormer model. 

The performance evaluation is based on Mean Absolute Error (MAE) 

across three microscopy datasets—ADI, MBM, and VGG—with 

additional discussion on the qualitative aspects, training dynamics, and 

generalization capabilities of each method. 

5.1 DCNet Performance: A Deep Learning-Based 

Baseline 

The Dual Cascaded Network (DCNet), comprising a VGG16 encoder 

and a cascaded U-Net-style decoder [11], was initially introduced as a 

baseline architecture for learning fine spatial features through skip 

connections and performing end-to-end density map regression. 

Although DCNet’s architecture appeared promising due to its structured 

use of skip connections and dense feature propagation, it fell short in 

practical performance across multiple evaluation settings. On the ADI 

dataset, which consists of densely populated and low-contrast adipose 

tissue microscopy images, DCNet achieved a best Mean Absolute Error 

(MAE) of 11.0 under its most favourable configuration—using two skip 

connections, a batch size of 45, and Huber loss. The results on the MBM 

and VGG datasets were 5.5 and 9.2, respectively. These errors reflected 

limitations in accurate cell localization and count estimation, especially 

in visually cluttered or complex regions. 

The relatively poor performance of DCNet across all datasets can be 

attributed to several architectural constraints. One of the key limitations 

is its restricted receptive field, which hampers the model’s ability to 

grasp global context—an essential requirement for understanding spatial 

distributions in microscopy images. Additionally, DCNet showed 

tendencies to overfit, particularly when applied to real-world datasets 
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characterized by significant morphological variability. Furthermore, the 

architecture demonstrated high sensitivity to parameter tuning, 

necessitating a delicate balance between batch size, choice of loss 

function, and network depth for optimal performance. While DCNet 

effectively preserved spatial granularity through its skip connections, it 

lacked the ability to model the complex and long-range dependencies 

that are critical for accurate analysis of crowded cellular images. 

 

5.2 Transformer-Based Counting with Restormer 

In contrast, the Restormer model—originally developed for high-

resolution image restoration—was adapted to perform density-based 

cell counting. Incorporating a transformer backbone allowed the model 

to capture global spatial dependencies and contextual relationships that 

CNNs typically overlook. 

Restormer consistently outperformed DCNet across all datasets: 

In addition to lower MAEs, Restormer produced smoother and more 

coherent density maps, even under conditions of high cell overlap or 

poor contrast. The integration of SALW further enhanced training by 

automatically adjusting the focus on difficult regions, resulting in better 

generalization across heterogeneous datasets. 

 

5.3 Comparative Insights 

The results clearly indicate that DCNet is not suitable for complex cell 

counting tasks (shown in Table 2), particularly in real-world biomedical 

images where spatial context and morphological variability are critical. 

On the other hand, Restormer delivers comparatively better accuracy (as 

shown in Table IV), making it a more viable solution for practical 

deployments. 
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Table IV: Comparative Result of DCNet vs Restormer 

( Best result is in Bold, second best result is Underlined and third best result is Bold 

Underlined) 

Model 
ADI (MAE) 

N=50 

MBM 

(MAE) 

N=15 

VGG 

(MAE) 

N=50 

DCNet 11.0±12.639 5.50±4.1 9.2±3.1 

Ciampi et al. 

(2022) [17] 
8.7±0.8 5.7±0.9 2.5±0.1 

Count-

ception, Paul 

et al. (2017) 

[4] 

19.4±2.2 8.3±2.3 2.3±0.4 

Jiang and Yu 

(2021) [6] 
10.6±0.3 7.5±0.7 2.2±0.2 

Rodriguez-

Vazquez et al. 

(2022) [19] 

17.3±3.6 4.2±2.4 2.2±0.5 

Ours 11±0.2 5.3±1.0 2.09±0.08 

 

5.4 Summary 

In summary, the DCNet model, despite incorporating cascaded skip 

connections and VGG16-based features, could not deliver competitive 

accuracy in dense and noisy biological datasets. While its design 

preserved spatial features and leveraged transfer learning through 

VGG16, it lacked the capacity to model complex, long-range 

dependencies and exhibited sensitivity to hyperparameter tuning, 

limiting its performance in real-world microscopy scenarios. 

In contrast, the Restormer transformer model, equipped with a global 

attention mechanism and adaptive loss modulation via SALW [37], 

demonstrated consistently superior results across all tested datasets. Its 

ability to handle high-resolution images, model both local and global 

contexts, and dynamically focus on challenging regions contributed to 

its effectiveness in cell counting tasks. 
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Future cell counting solutions in biomedical imaging should therefore 

prioritize architectures that integrate both local precision and global 

spatial awareness. Transformer-based models like Restormer exemplify 

this balance and represent a promising direction for developing robust, 

scalable, and generalizable approaches to automated biological cell 

analysis. 
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Chapter 6 

Conclusions and Scope for Future Work 

6.1 Conclusions 

This thesis presented a comprehensive exploration of automated 

biological cell counting using both deep learning and transformer-based 

models. Initially, a convolutional architecture—DCNet—was 

implemented by combining a VGG16 encoder with a cascaded U-Net 

[11] decoder. While the model incorporated skip connections and robust 

feature extraction, its performance was limited, particularly in complex 

datasets like ADI. The DCNet model struggled to generalize across 

varying cell densities and morphologies, highlighting the constraints of 

convolutional models in capturing global spatial dependencies. 

To overcome these limitations, a transformer-based model, Restormer, 

was adapted for the cell counting task. Leveraging self-attention 

mechanisms and a hierarchical encoder-decoder structure, Restormer 

demonstrated superior performance across diverse microscopy datasets 

(ADI, MBM, and VGG). Its ability to model long-range dependencies, 

combined with robust preprocessing (including FIDT maps and super-

resolution enhancement), led to smoother and more accurate density 

predictions. Additionally, the integration of SALW [37] allowed 

dynamic adjustment of learning focus, enhancing performance on 

challenging regions of microscopy images. 

Quantitative evaluations revealed that the transformer-based approach 

consistently outperformed the DCNet baseline in terms of Mean 

Absolute Error (MAE), achieving better accuracy and generalization. 

The results affirm that attention-based models are more suited to address 

the spatial complexity and variability inherent in biological cell images. 
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6.2 Scope for Future Work 

In summary, the DCNet model, despite incorporating cascaded skip 

connections and VGG16-based features, could not deliver competitive 

accuracy in dense and noisy biological datasets. While its design 

preserved spatial features and leveraged transfer learning through 

VGG16, it lacked the capacity to model complex, long-range 

dependencies and exhibited sensitivity to hyperparameter tuning, 

limiting its performance in real-world microscopy scenarios. 

In contrast, the Restormer transformer model, equipped with a global 

attention mechanism and adaptive loss modulation via SALW [37], 

demonstrated consistently superior results across all tested datasets. Its 

ability to handle high-resolution images, model both local and global 

contexts, and dynamically focus on challenging regions contributed to 

its effectiveness in cell counting tasks. 

Future cell counting solutions in biomedical imaging should therefore 

prioritize architectures that integrate both local precision and global 

spatial awareness. Transformer-based models like Restormer exemplify 

this balance and represent a promising direction for developing robust, 

scalable, and generalizable approaches to automated biological cell 

analysis. 

Despite the encouraging results, several avenues remain open for further 

investigation and enhancement. One key area is the development of 

lightweight Transformer architectures. Although Transformer models 

are highly accurate, they are often computationally intensive. Future 

research could focus on exploring efficient variants or hybrid CNN-

Transformer models that reduce inference time and memory usage, 

making them more suitable for real-time clinical applications. 

Another promising direction is the integration of self-supervised and 

few-shot learning methods. Given the scarcity of annotated biomedical 

data, these techniques could allow models to pre-train on unlabelled data 

and then adapt with minimal supervision to different imaging conditions 
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or novel cell types. This would significantly broaden the applicability of 

cell counting models in varied laboratory and clinical settings. 

Additionally, incorporating uncertainty estimation into cell counting 

models could enhance both the interpretability and the reliability of 

predictions, particularly in clinical environments where decision-

making heavily depends on the confidence of the automated systems. 

This would help users better understand and trust the model’s outputs. 

Moreover, current models are typically focused solely on cell counting. 

A valuable extension would be to integrate cell counting with other 

downstream biomedical tasks such as cell classification, tracking, or 

segmentation. This would help build a comprehensive and unified 

pipeline for cellular analysis, streamlining workflows in biomedical 

research and diagnostics. 

Finally, enhancing cross-domain generalization remains a critical 

challenge. Testing models on completely unseen tissue types or staining 

protocols would provide valuable insights into their robustness and 

could drive the development of domain-agnostic cell counting systems, 

further improving their real-world utility and scalability. 

 

 



66 
 

REFERENCES 

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet 

classification with deep convolutional neural networks,” Adv. Neural 

Inf. Process. Syst., vol. 25, 2012. 

[2] J. Redmon and A. Farhadi, “YOLOv3: An incremental 

improvement,” arXiv preprint arXiv:1804.02767, 2018. 

[3] Y. Guo, O. Krupa, J. Stein, G. Wu, and A. Krishnamurthy, “SAU-

Net: A unified network for cell counting in 2D and 3D microscopy 

images,” IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 19, no. 4, pp. 

1926–1937, Jul.–Aug. 2022. 

[4] J. P. Cohen, G. Boucher, C. A. Glastonbury, H. Z. Lo, and Y. Bengio, 

“Count-ception: Counting by fully convolutional redundant counting,” 

in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2017, pp. 18–26. 

[5] H. Zhang, H. Chen, J. Qin, B. Wang, G. Ma, P. Wang, D. Zhong, 

and J. Liu, “MC-ViT: Multi-path cross-scale vision transformer for 

thymoma histopathology whole slide image typing,” Frontiers in 

Oncology, vol. 12, p. 925903, 2022. 

[6] Y. Wang et al., “Learning from synthetic data for crowd counting in 

the wild,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, 

pp. 8198–8207. 

[7] V. Lempitsky and A. Zisserman, “Learning to count objects in 

images,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2010, pp. 

1324–1332. 

[8] W. Xie, J. A. Noble, and A. Zisserman, “Microscopy cell counting 

with fully convolutional regression networks,” Comput. Methods 

Biomech. Biomed. Eng. Imaging Vis., vol. 6, no. 3, pp. 283–292, 2018. 

[9] A. Paulauskaite-Taraseviciene, K. Sutiene, J. Valotka, V. Raudonis, 

and T. Iesmantas, “Deep learning-based detection of overlapping cells,” 



67 
 

in Proc. 2019 3rd Int. Conf. Adv. Artif. Intell., pp. 217–220, 2019, doi: 

10.1145/3369114.3369120. 

[10] Y. Li, X. Zhang, and D. Chen, “CSRNet: Dilated convolutional 

neural networks for understanding the highly congested scenes,” in 

Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 

1091–1100.  

[11] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional 

networks for biomedical image segmentation,” in Proc. Med. Image 

Comput. Comput.-Assist. Intervent. (MICCAI), Munich, Germany, Oct. 

2015, vol. 9351, pp. 234–241, Springer. 

[12] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M.-H. 

Yang, “Restormer: Efficient transformer for high-resolution image 

restoration,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 

2022, pp. 5728–5739. 

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature 

hierarchies for accurate object detection and semantic segmentation,” in 

Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 580–587. 

[14] A. Vaswani et al., “Attention is all you need,” in Adv. Neural Inf. 

Process. Syst. (NeurIPS), vol. 30, 2017. 

[15] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using 

uncertainty to weigh losses for scene geometry and semantics,” in Proc. 

IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018. 

[16] T. Falk, D. Mai, R. Bensch, Ö. Çiçek, A. Abdulkadir, Y. Marrakchi, 

A. Böhm, J. Deubner, Z. Jäckel, K. Seiwald, et al., “U-Net: Deep 

learning for cell counting, detection, and morphometry,” Nat. Methods, 

vol. 16, no. 1, pp. 67–70, 2019.  

[17] L. Ciampi, F. Carrara, V. Totaro, G. Amato, F. Falchi, and C. 

Gennaro, “Counting cells in microscopy images using a density map 

regression approach,” Med. Image Anal., vol. 80, p. 102500, 2022. 



68 
 

[18] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only 

Look Once: Unified, Real-Time Object Detection,” in Proc. IEEE Conf. 

Comput. Vis. Pattern Recognit., 2016. 

[19] J. Rodriguez-Vazquez, A. Alvarez-Fernandez, M. Molina, et al., 

“Counting objects in images using blob-based representations,” Neural 

Netw., vol. 145, pp. 155–163, 2022. 

[20] N. Jiang and F. Yu, “A two-path network for cell counting,” IEEE 

Access, vol. 9, pp. 70806–70815, 2021. 

[21] V. Ranjan, U. Sharma, T. Nguyen, and M. Hoai, “Learning to count 

everything,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 

Jun. 2021, pp. 1–10, doi: 10.1109/CVPR46437.2021.00340  

[22] A. Lehmussola, P. Ruusuvuori, J. Selinummi, H. Huttunen, and O. 

Yli-Harja, “Computational framework for simulating fluorescence 

microscope images with cell populations,” IEEE Trans. Med. Imaging, 

vol. 26, no. 7, pp. 1010–1016, 2007.  

[23] S. He, K. T. Minn, L. Solnica-Krezel, M. A. Anastasio, and H. Li, 

“Deeply-supervised density regression for automatic cell counting in 

microscopy images,” Med. Image Anal., vol. 68, p. 101892, 2021. 

[24] C. Arteta, V. Lempitsky, J. A. Noble, and A. Zisserman, “Detecting 

overlapping instances in microscopy images using extremal region 

trees,” Med. Image Anal., vol. 27, pp. 3–16, 2016. 

[25] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards 

real-time object detection with region proposal networks,” in Adv. 

Neural Inf. Process. Syst., vol. 9199, pp. 2969239–2969250, 2015. 

[26] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and 

A. C. Berg, “SSD: Single shot multibox detector,” in Proc. Eur. Conf. 

Comput. Vis. (ECCV), Amsterdam, The Netherlands, Oct. 2016, pp. 21–

37. 



69 
 

[27] Z.-Q. Cheng, Q. Dai, H. Li, J. Song, X. Wu, and A. G. Hauptmann, 

“Rethinking spatial invariance of convolutional networks for object 

counting,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 

2022, pp. 19638–19648. 

[28] Y. Xue, N. Ray, J. Hugh, and G. Bigras, “Cell counting by 

regression using convolutional neural network,” in Proc. Eur. Conf. 

Comput. Vis. (ECCV), 2016, pp. 274–290. 

[29] L. Fiaschi, U. Köthe, R. Nair, and F. A. Hamprecht, “Learning to 

count with regression forest and structured labels,” in Proc. 21st Int. 

Conf. Pattern Recognit. (ICPR), 2012, pp. 2685–2688. 

[30] F. Liu and L. Yang, "Multi-objective convolutional learning for cell 

detection in microscopy images," Pattern Recognition, vol. 61, pp. 639–

649, Jan. 2017. doi: 10.1016/j.patcog.2016.07.027 

[31] E. Walach and L. Wolf, “Learning to count with CNN boosting,” 

in Proc. Eur. Conf. Comput. Vis. (ECCV), 2016, pp. 660–676. 

[32] V. A. Sindagi and V. M. Patel, “HA-CCN: Hierarchical attention-

based crowd counting network,” IEEE Trans. Image Process., vol. 29, 

pp. 323–335, 2019. 

[33] Z. Zou, X. Qu, P. Zhou, S. Xu, X. Ye, W. Wu, and J. Ye, “Coarse 

to Fine: Domain Adaptive Crowd Counting via Adversarial Scoring 

Network,” in Proc. ACM Int. Conf. Multimedia (ACM MM), 2021, pp. 

2185–2194. 

[34] D. Liang, W. Xu, Y. Zhu, and Y. Zhou, “Focal inverse distance 

transform maps for crowd localization,” IEEE Trans. Multimedia, vol. 

25, pp. 6040–6052, 2022. 

[35] K. Simonyan and A. Zisserman, “Very deep convolutional 

networks for large-scale image recognition,” arXiv preprint 

arXiv:1409.1556, 2014. 



70 
 

[36] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, 

“High-resolution image synthesis with latent diffusion models,” in Proc. 

IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 10684–

10695. 

[37] L. D. McClenny and U. M. Braga-Neto, “Self-adaptive physics-

informed neural networks,” J. Comput. Phys., vol. 474, p. 111722, 2023. 

[38] https://github.com/ieee8023/countception 


	LIST OF FIGURES
	LIST OF TABLES
	NOMENCLATURE
	SYMBOLS
	Chapter 1
	Introduction
	1.1 Why cell counting?
	1.1.1 Fundamentals of a Deep Neural Network
	1.1.2 Why DNNs for Biological Cell Counting?
	1.1.3 Application in Cell Counting Pipelines

	1.2 Transformer
	1.2.1 Basic Architecture of a Transformer
	1.2.2 Advantages of Transformers in Cell Counting
	1.2.3 Limitations of Transformers
	1.2.4 Transformers in Biomedical Imaging

	1.3 Cell Counting
	1.4 Datasets
	1.4.1 Synthetic Bacterial Cells
	1.4.2 Modified Bone Marrow Cells
	1.4.3 Human Subcutaneous Adipose Tissues

	1.5 Organization of the Thesis

	Chapter 2
	Literature Review and Problem Formulation
	2.1 Detection based Counting
	2.2 Cell Counting by Regression
	2.3 Transformer based Counting
	2.4 Problem Formulation

	Chapter 3
	Deep Learning Based Cell Counting
	3.1 Data Preprocessing
	3.1.1 Focal Inverse Distance Transform Map
	3.1.2 Limitations of Gaussian Maps
	3.1.3 Concept and Formulation of FIDT Maps
	3.1.4 Mathematical Intuition Behind FIDT
	3.1.4 Advantages of FIDT
	3.1.5 Data Augmentation Strategy

	3.2 Model Architecture
	3.2.1 VGG16 Feature Extractor
	3.2.2 Cascaded U-Net Architecture
	3.2.3 Dual Cascaded Network
	3.2.4 Key Benefits of the Proposed Model

	3.3 Model Training and Hyperparameter Tuning
	3.4 Results
	3.5 Conclusion

	Chapter 4
	Transformer Based Cell Counting
	4.1 Data Preprocessing
	4.1.1 Image Normalization and Standardization
	4.1.2 Data Augmentation Strategies
	4.1.3 Super-Resolution Enhancement (for ADI Dataset)
	4.1.4 Density Map Generation Using FIDT Maps
	4.1.5 Final Input-Target Pipeline

	4.2 Restormer Model Architecture
	4.2.1 Introduction to Restormer
	4.2.2 Restormer Architectural Components
	4.2.3 Why Restormer Is Effective for Cell Counting
	4.2.4 Adaptation for Cell Counting in This Work

	4.3 Self Adaptive Loss Weighting
	4.3.1 Motivation and Background
	4.3.2 Theoretical Foundation
	4.3.3 Intuition Behind the Adaptive Term
	4.3.4 Application in Restormer-Based Cell Counting
	4.3.5 Benefits in Cell Counting Context
	4.3.6 Summary

	4.4 Model Training and Hyperparameter Tuning
	4.4.1 Training Overview
	4.4.2 Architecture Configuration
	4.4.3 Loss Function Evaluation
	4.4.4 Optimization Strategy and Implementation

	4.5 Counting Algorithm
	4.5.1 Introduction
	4.5.2 Method Overview
	4.5.3 Combined LoIG Equation
	4.5.4 Cell Counting Using LoIG

	4.6 Results
	4.6.1 Dataset-wise Results

	4.7 Conclusion

	Chapter 5
	Results and Discussion
	5.1 DCNet Performance: A Deep Learning-Based Baseline
	5.2 Transformer-Based Counting with Restormer
	5.3 Comparative Insights
	5.4 Summary

	Chapter 6
	Conclusions and Scope for Future Work
	6.1 Conclusions
	6.2 Scope for Future Work

	REFERENCES

