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                Abstract  

The evolution of imaging technologies—from Galileo’s telescope to modern 

high-speed cameras—has significantly advanced scientific exploration. While 

spatial resolution has traditionally been the focus, the ability to capture events 

at extremely short time scales, or temporal resolution, is equally crucial for 

observing ultrafast phenomena such as shockwaves, droplet dynamics, and 

plasma discharges. Traditional high-speed cameras, however, face limitations in 

frame rate, cost, and data volume. 

This thesis explores Compressed Imaging, a transformative approach that 

overcomes these limitations by capturing temporally encoded information in a 

single shot and reconstructing it computationally into high-speed video. We 

focus on Compressed Optical Shearing Ultrafast Photography (COSUP)—

a cost-effective and simple setup that leverages compressed sensing principles 

to achieve ultrafast imaging without requiring expensive or complex hardware. 

By developing and optimizing a COSUP-based imaging system, this work 

demonstrates the ability to record high-temporal-resolution videos of fast 

physical phenomena using a single frame. The methodology reduces 

experimental repetition and data overhead, offering a practical solution for high-

speed imaging in resource-constrained environments. The results underline 

COSUP’s potential as a powerful tool in scientific diagnostics, fluid dynamics, 

and other domains where capturing transient events is critical 
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Chapter 1: Introduction  

1.1 Historical Background and Motivation 

Imaging has been a cornerstone of scientific discovery for centuries. The 

journey began with Galileo’s telescope in the early 1600s, which revolutionized 

astronomy and provided humankind with its first glimpse of celestial bodies in 

detail. As technology evolved, the development of photographic techniques, X-

rays, electron microscopy, and digital imaging expanded our capacity to 

visualize the microscopic and the vast. 

Historically, the focus in imaging systems has been on enhancing spatial 

resolution—the ability to discern fine structural details in a scene. However, as 

scientific inquiry moved into domains involving rapid physical, chemical, and 

biological processes, temporal resolution—the ability to capture events 

occurring over extremely short time scales—became equally crucial. For 

example, processes such as laser-matter interactions, cavitation in fluids, or 

neural activity in the brain happen so rapidly that traditional imaging systems 

fail to resolve them meaningfully. 

Although high-speed cameras have bridged some of this gap by 

providing frame rates in the order of hundreds of thousands or even millions of 

frames per second (fps), they come with several drawbacks. These systems are 

often expensive, bulky, and generate large amounts of data that are difficult to 

store and process. More critically, they frequently require multiple experimental 

runs to capture different stages of a phenomenon—an approach that is not viable 

for non-repeatable or destructive events. 

This need for a more efficient and scalable imaging method laid the 

foundation for the adoption of Compressed Sensing (CS) in high-speed 

imaging. Emerging from advances in signal processing and optimization theory 

in the early 2000s, CS has enabled a new generation of imaging techniques that 

capture detailed dynamic information using a single frame, thereby overcoming 

many of the limitations of conventional systems. 
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1.2 Concept of Compressed Sensing 

Compressed sensing is based on the insight that most natural signals 

contain redundancies and are not entirely random or complex. For instance, a 

video of a falling object or a propagating wave can often be predicted using only 

a few parameters. CS takes advantage of this sparsity to reduce the number of 

measurements required to reconstruct a signal or image. 

In the context of high-speed imaging, CS enables the capture of ultrafast 

scenes in a single exposure, using an optical setup that encodes both spatial and 

temporal information into a single compressed frame. This frame is later 

decoded using powerful computational algorithms, which reconstruct the full 

sequence of frames that would have otherwise required high-speed continuous 

capture. 

This approach fundamentally shifts the burden from hardware (fast 

sensors, large memory buffers) to software (efficient algorithms, smart 

encoding), resulting in cheaper, faster, and more flexible imaging systems. 

1.3 Compressed Imaging: A Paradigm Shift 

Compressed imaging represents a breakthrough in the way dynamic 

scenes are recorded. Instead of acquiring individual frames sequentially like a 

traditional camera, it captures a coded projection of the entire temporal event in 

one go. This allows scientists to document a transient event—such as a spark, 

explosion, or biological impulse—in a single snapshot. 

This approach relies heavily on the synergy between: 

• Optical encoding (using masks or modulators to encode spatial and 

temporal information), 

• Photon detection (via standard or specialized sensors), and 

• Computational decoding (via optimization or learning-based 

reconstruction techniques). 

What makes compressed imaging so powerful is its flexibility. By 

changing the encoding scheme or reconstruction algorithm, one can tune the 
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system to suit various applications and constraints—whether it's maximizing 

frame rate, enhancing resolution, or minimizing noise. 

Two landmark systems in this domain are: 

• Single-Shot Compressed Ultrafast Photography (CUP) – known for 

ultra-high-speed capabilities. 

• Compressed Optical Shearing Ultrafast Photography (COSUP) – known 

for its simpler and more affordable setup. 

_______________________________________________________________ 

1.4 Single-Shot Compressed Ultrafast Photography (CUP) 

CUP is one of the most advanced forms of compressed imaging 

available today. It captures events at frame rates exceeding 1 billion fps, 

allowing researchers to observe phenomena that were once thought to be too 

fast to image. CUP systems integrate a streak camera, which transforms 

temporal variations into spatial displacements, along with a spatial light 

modulator (SLM) or digital micromirror device (DMD) that adds a unique 

encoding to the incoming light. 

As the encoded light enters the streak camera, it is deflected over time 

across a fluorescent screen, resulting in a 2D pattern that contains embedded 

information about the entire temporal sequence of the event. This pattern is then 

captured by a standard camera, and software is used to reconstruct the complete 

high-speed video. 

Despite its complexity, CUP has proven to be invaluable in cutting-edge 

applications such as: 

• Visualizing the propagation of light through various media, 

• Investigating plasma arcs and combustion events, 

• Observing fast biological responses like neuron firing or muscle 

contraction. 

The system is ideal for single-occurrence events that cannot be repeated, 

such as detonations, rare natural phenomena, or sensitive biological responses. 
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                                                                                        Fig1.1: Single Shot CUP  

1.5 Compressed Optical Shearing Ultrafast Photography (COSUP) 

COSUP offers a more accessible approach to compressed imaging 

without sacrificing much in performance. It uses a Galvano scanner—a device 

with a rapidly oscillating mirror—to shear the incoming light across the sensor 

during the exposure. As a result, each pixel on the sensor captures light from 

slightly different moments in time, effectively compressing a video sequence 

into a single frame. 

To aid in the decoding process, a binary mask generated by a DMD is 

used to encode additional spatial information into the image. This mask acts like 

a "barcode" that helps algorithms to unravel the temporal sequence during post-

processing. 

COSUP can achieve frame rates up to 1.5 million fps, which is ideal for 

capturing: 

• Fluid dynamics, such as droplet impacts and turbulence, 

• Micro-explosions in combustion engines, 

• Mechanical deformation under stress. 
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Unlike CUP, COSUP is more compact, cost-effective, and easier to 

integrate with existing microscopy or imaging setups, making it popular in 

research labs with limited resources. 

                     

                             Fig 1.2: COSUP set-up 

1.6 Comparison with Traditional High-Speed Cameras 

While traditional high-speed cameras have played a crucial role in 

scientific imaging, they have several limitations: 

• They are expensive and require specialized cooling and synchronization 

systems. 

• They often miss key moments due to limitations in buffer memory or 

trigger delays. 

• They demand repetitive testing to build a full picture of an event, which 

is impractical for non-repeatable experiments. 

In contrast, compressed imaging techniques like CUP and COSUP: 

• Capture all necessary data in a single frame, eliminating timing and 

buffering issues. 
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• Reduce the cost and complexity of the setup by using computational 

power to replace expensive hardware. 

• Enable high-throughput experiments, where time is critical and setup 

needs to be minimal. 

1.7 Applications in Science and Industry 

Compressed sensing-based imaging is already transforming a wide 

range of scientific and industrial applications: 

In Aerospace and Defence: 

• Visualizing shockwave interactions around supersonic projectiles. 

• Monitoring fuel combustion inside rocket and jet engines. 

• Analysing laser targeting systems and impact damage. 

In Biology and Medicine: 

• Capturing cellular dynamics such as mitosis or signal transduction. 

• Recording neural activity with millisecond resolution. 

• Enabling real-time diagnostics for critical care scenarios. 

In Material Science: 

• Studying fracture propagation and structural failures in materials. 

• Investigating phase changes under thermal or mechanical stress. 

In Thermal and Spectral Imaging: 

• Detecting rapid temperature changes in hot surfaces. 

• Conducting chemical identification via hyperspectral analysis. 
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1.8 Emerging Trends and Future Directions 

The field of compressed sensing in high-speed imaging is rapidly 

evolving, with several exciting frontiers: 

Deep Learning Integration: 

New deep neural networks can learn to reconstruct high-speed 

sequences more accurately and efficiently than traditional optimization 

methods. These systems can even operate in real time, enabling live feedback 

and control in industrial applications. 

Meta surface-Based Optics: 

Advanced flat optics, known as Meta surfaces, are being developed to 

reduce the size and complexity of optical systems. These could replace bulky 

lenses and mirrors with thin, tuneable surfaces, making compressed imaging 

more portable and scalable. 

3D and Holographic Imaging: 

Efforts are underway to extend compressed sensing into three-

dimensional and volumetric domains. This would allow scientists to not only 

record rapid events but also understand their spatial evolution over time. 

Real-Time Monitoring: 

The combination of fast reconstruction algorithms and low-latency 

hardware may soon enable real-time compressed sensing for applications in 

robotics, surveillance, and live diagnostics, where every millisecond counts. 
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Chapter 2: Literature Review 

CoSUP is a very new technology, comes into picture since 2016 not much work 

has been done in this, but some of the literature review is as follows: 

1.A thesis by ‘Constanza Cendon Contreras’ gives the idea about Compressed 

Optical Streaking Ultra High-Speed Photography, a technique that reduces both 

high cost and high memory requirements in situ and delivers frame rates up to 

400,000 fps after postprocessing is used for a variety of experiments, testing its 

applicability for dynamic, fast-moving targets as well as fluorescent samples. 

All the basic concepts and physics behind are given in this thesis. The 

fundamentals like Image properties and transformations (Fourier Transform, 

Wavelet Transform), Compressed Sensing, Optimization Algorithms, Image 

reconstruction parameters are explained in this thesis. Idea about other 

parameters like Optical setup (Optical shearing, Optical masking, Camera 

Integration, Resolution, Mask optimization) is also there in the thesis. 

High-speed imaging has emerged as a crucial tool across disciplines such as 

physics, chemistry, biology, and engineering. Historically rooted in the need to 

capture transient phenomena beyond human perceptibility, the field has evolved 

from mechanical streak cameras to advanced ultrafast digital imaging platforms. 

While early high-speed photography focused on increasing spatial resolution, 

modern applications increasingly prioritize temporal resolution to capture 

dynamic events unfolding on microsecond, nanosecond, or even femtosecond 

timescales. 

Recent advancements have introduced imaging systems capable of recording 

tens of millions of frames per second (fps), essential for studying turbulence, 

rapid biochemical reactions, and ultrafast light-matter interactions. However, 

the cost, complexity, and memory requirements of such systems pose significant 

limitations. The work under review proposes a cost-effective alternative using 

compressed sensing principles—Compressed Optical Shearing Ultrafast 
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Photography (COSUP)—offering a middle ground between speed, resolution, 

and affordability. 

Foundations of Compressed Sensing and Optical Streaking 

The theoretical backbone of COSUP lies in compressed sensing (CS), a 

mathematical framework that allows signal reconstruction from a seemingly 

insufficient number of samples. CS leverages the inherent sparsity of signals in 

certain transform domains—commonly the Fourier or wavelet domains—to 

reconstruct the original signal using optimization techniques. This principle 

contradicts the classical Nyquist-Shannon sampling theorem, which states that 

accurate signal reconstruction requires sampling at twice the highest frequency 

present. 

In the context of imaging, compressed sensing allows for the reconstruction of 

high-resolution images or videos from under-sampled data, thereby reducing the 

burden on data acquisition hardware and memory. A critical component of this 

process is the application of mathematical transforms that concentrate signal 

energy into a few significant coefficients. Fourier and wavelet transforms have 

thus become standard tools in compressed imaging systems, each suited to 

different types of signals. Wavelets offer the advantage of simultaneous spatial 

and frequency localization, which is especially useful for transient and non-

periodic phenomena. 

COSUP also incorporates optical shearing, a method of encoding temporal 

information into spatial dimensions by redirecting the incident light beam via a 

time-dependent optical element such as a rotating mirror or galvanometric 

scanner. This enables the recording of fast transient events as spatial 

displacements on a sensor, which can later be deconvoluted into individual 

frames using CS algorithms. 

Historical Developments in Ultrafast Imaging Technologies 

The evolution of ultrafast imaging technologies has been marked by a series of 

pivotal innovations. One of the most influential methods is Compressed 

Ultrafast Photography (CUP), which integrates streak camera functionality with 

compressed sensing algorithms to achieve frame rates exceeding 100 billion fps. 
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CUP represents a leap forward in capturing dynamic 2D scenes, although its 

reliance on costly and delicate streak cameras limits accessibility. 

Alternative techniques have emerged to address CUP's limitations. Single-pixel 

cameras, for instance, utilize digital micromirror devices (DMDs) and single 

detectors to reconstruct images through CS, offering lower resolution but 

significantly reducing hardware costs. Similarly, Frequency Recognition 

Algorithm for Multiple Exposures (FRAME) and Light in Flight Holography 

represent active detection techniques, requiring tailored light sources but 

achieving exceptional temporal resolution. 

COSUP distinguishes itself by adopting a passive detection strategy using a 

galvanometer scanner in place of the streak camera. Although this substitution 

results in lower temporal resolution—typically around 1.5 million fps—it 

dramatically lowers system cost and complexity. Moreover, COSUP can be 

integrated with other imaging modalities such as multispectral or fluorescence 

imaging, further broadening its application range. 

Computational Techniques and Reconstruction Algorithms 

The reconstruction phase in COSUP employs the Two-Step Iterative 

Shrinkage/Thresholding Algorithm (TwIST), which is particularly well-suited 

for solving underdetermined linear systems with sparse constraints. TwIST 

provides improved convergence and stability over basic iterative shrinkage 

methods, especially in the presence of ill-conditioned system matrices or noisy 

data. The algorithm minimizes a composite cost function balancing data fidelity 

and sparsity-promoting regularization, typically using the ℓ1-norm as a proxy 

for sparsity. 

In practical implementation, TwIST enables the recovery of frame sequences 

from a single sheared image and a corresponding sampling mask. Despite 

limitations in spatial fidelity for complex or fine-detailed targets, the algorithm 

is robust enough to preserve the main structural components of the scene, as 

confirmed by both qualitative inspection and quantitative SSIM analysis. 

Challenges and Future Directions 
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While COSUP represents a promising step toward democratizing ultrafast 

imaging, several challenges remain. Chief among them is the trade-off between 

spatial resolution and sequence depth—enhancing one often compromises the 

other. Additionally, current reconstruction methods struggle with multiple 

temporally separated pulses or objects with fine peripheral features, indicating 

a need for more adaptive or object-aware reconstruction algorithms. 

Another challenge is the generalization of mask design. While some empirical 

findings are provided, the optimal mask configuration likely depends on the 

characteristics of the target scene. A potential solution lies in integrating 

machine learning techniques to adaptively generate or select masks based on 

scene context. 

Future work may also explore the integration of COSUP with hyperspectral 

imaging, digital holography, or 3D reconstruction frameworks. Given its 

affordability and flexibility, COSUP could play a pivotal role in applications 

where ultrafast imaging is desired but cost constraints preclude traditional 

methods, including resource-limited biomedical research, educational 

laboratories, and field diagnostics. 

 

 

2.Based on the tutorial titled "Tutorial on Compressed Ultrafast Photography" 

by Lai, Marquez, and Liang, the literature review can be synthesized and 

summarized as follows: 

1. Emergence of Ultrafast Imaging Techniques 

The exploration of ultrafast phenomena, which unfold over femtosecond to 

microsecond timescales, is crucial in understanding biological, chemical, and 

physical processes. Traditional imaging methods, like pump-probe techniques, 

require repeated measurements and extensive scanning. However, many 

transient phenomena—such as spontaneous neural activity or light scattering in 

biological tissues—are nonrepeatable or difficult to reproduce, making these 

conventional approaches impractical. 
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To address this challenge, single-shot ultrafast optical imaging has emerged. 

These methods capture entire dynamic scenes within a single exposure, 

avoiding the need for repetitive experiments. Ultrafast imaging techniques fall 

into two main categories: 

• Active-illumination techniques: Use short optical probe pulses and 

encode temporal information into spectral or spatial features. 

• Passive-detection techniques: Rely solely on capturing photons emitted 

or scattered from dynamic scenes without requiring external light 

modulation. 

While active methods offer femtosecond resolution and high sensitivity, they 

fail to image self-luminescent scenes (e.g., photoluminescence or plasma 

emission). Conversely, passive methods can overcome this but are often limited 

by the slower response of electronic components compared to optical ones. 

2. Compressed Ultrafast Photography (CUP) 

Introduced in 2014 by Dr. Lihong V. Wang's lab, CUP is a game-changing 

single-shot ultrafast imaging method that synergizes compressed sensing (CS) 

and streak imaging. Unlike conventional streak cameras that suffer from limited 

spatial information, CUP leverages the sparsity of the target scene to enable 

spatiotemporal data acquisition and computational image reconstruction. 

 

                         

                                                            Fig 2.1: Ultrafast imaging set-up 
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The CUP system comprises: 

• Spatial encoding (via binary masks), 

• Temporal shearing (via deflection of photoelectrons), 

• Spatiotemporal integration (using a 2D sensor), 

• Followed by image reconstruction using advanced algorithms. 

This approach enables CUP to surpass limitations of 1D high-speed sensors and 

traditional CCDs. It maintains temporal continuity in recordings, supports both 

active and passive modalities, and allows for large frame depths. Its 

compatibility with scientific-grade CCD/CMOS sensors further enhances its 

practicality. 

    

                                Fig 2.2: Pseudo patterns 

3. Technical Advancements and Variants 

CUP has evolved rapidly, with enhancements in both hardware and 

reconstruction algorithms: 

• Multi-view CUP systems improve reconstruction fidelity by capturing 

both time-sheared and time-unsheared views. 

• Hardware flexibility: Spatial encoding can be achieved using DMDs, 

LC-SLMs, printed masks, or photolithographic techniques. 

• High light throughput: CUP collects spatiotemporal information in a 

single exposure, unlike point or line scanning techniques. 

The forward model of CUP mathematically describes how a 3D scene (x, y, t) 

is projected into 2D snapshots. Image reconstruction solves an inverse problem 

using optimization frameworks like: 
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• Two-step iterative shrinkage/thresholding (TwIST), 

• Total Variation (TV) regularization, 

• Alternating Direction Method of Multipliers (ADMM), 

• Plug-and-Play (PnP) ADMM, which allows integrating off-the-shelf 

denoisers. 

Moreover, deep learning has significantly advanced CUP reconstruction: 

• Models such as D-HAN (Deep High-dimensional Adaptive Network) 

integrate physical modelling with convolutional neural networks 

(CNNs), 

• These networks can be trained end-to-end and achieve high-quality 

video reconstruction from compressed measurements, 

• They also allow for data-driven encoding mask optimization. 

 

 

3.Literature review based on the thesis titled “Single-shot real-time 

compressed ultrahigh-speed imaging enabled by a snapshot-to-video 

autoencoder (SMART-COSUP).”  

High-speed imaging plays a critical role in capturing transient physical 

phenomena that occur at micro- to nanosecond timescales. Applications span 

from ultrafast biological dynamics to explosive chemical reactions and laser-

material interactions. Traditional high-speed imaging systems rely on hardware-

based solutions such as streak cameras or ultra-high frame rate CMOS sensors. 

However, these systems face trade-offs in resolution, cost, and data throughput. 

To address these limitations, recent research has shifted toward computational 

imaging methods, particularly those based on compressed sensing (CS) and 

deep learning. 
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Background: Compressed Ultrafast Photography 

Compressed Ultrafast Photography (CUP), first proposed by Gao et al. in 2014, 

combines a coded aperture, temporal shearing, and compressed sensing to 

capture dynamic scenes in a single 2D snapshot. CUP uses a streak camera to 

encode the temporal dimension spatially, achieving frame rates exceeding 100 

billion fps. However, the high cost and limited accessibility of streak cameras 

limit CUP’s widespread adoption. 

To overcome this, Compressed Optical-Streaking Ultrafast Photography 

(COSUP) was developed. COSUP adapts the CUP concept to more accessible 

hardware, such as CMOS cameras, by employing spatial encoding and temporal 

shearing via a galvanometer scanner. Despite its simplicity and affordability, 

COSUP faces two significant challenges: 

1. Long reconstruction times due to iterative algorithms (e.g., TwIST, 

ADMM). 

2. Variable reconstruction quality highly dependent on sparsity 

assumptions and system calibration. 

3. Traditional Reconstruction Algorithms 

3.1 Analytical-Modelling-Based Techniques 

These techniques rely on mathematical models of the imaging system and prior 

knowledge of the signal structure. Commonly used algorithms include: 

• TwIST (Two-step Iterative Shrinkage/Thresholding) – Solves the 

inverse problem with sparsity priors. 

• ADMM (Alternating Direction Method of Multipliers) – Decomposes 

the problem for parallel computation. 

• PnP-ADMM with BM3D Denoising – Enhances ADMM with plug-and-

play denoising. 

Despite their mathematical elegance, these methods: 

• Require many iterations (tens to hundreds). 

• Are not suitable for real-time applications (≥16 Hz). 
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• Need careful tuning of hyperparameters and prior selection. 

3.2 Machine-Learning-Based Techniques 

Recent efforts utilize data-driven models to learn mappings from snapshots to 

videos: 

• Multilayer Perceptrons (MLPs) – High parameter count, poor 

scalability. 

• U-Net – Better spatial feature extraction but suffers from: 

o Temporal incoherence. 

o Dimensional mismatches requiring pseudo-inverse operations. 

o Spatial patching, which breaks scene continuity. 

These methods demonstrate faster inference but often lack generalization and 

reconstruction fidelity in complex dynamic scenes. 

 

4. Advancements: Snapshot-to-Video Autoencoder (S2V-AE) 

To address the limitations of both analytic and early deep learning models, the 

authors propose a Snapshot-to-Video Autoencoder (S2V-AE). This deep neural 

network learns to directly reconstruct a temporal data cube (x,y,t)(x, y, t)(x,y,t) 

from a single 2D snapshot (x,y)(x, y)(x,y). 

4.1 Architecture 

Figure 1: Schematic of S2V-AE 

• Encoder: 5 convolutional layers → Bi-directional LSTM → Fully 

connected layers → Temporal latent vectors. 

• Generator: 7 transposed convolutional layers → Each latent vector 

generates one frame. 

This architecture separates spatial and temporal learning tasks: 

• The encoder captures temporal dynamics from spatial patterns. 

• The generator ensures spatial consistency via GAN-based training. 
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4.2 Training Strategy 

The S2V-AE training is twofold: 

1. Train the generator with GANs using multiple discriminators for diverse 

frame synthesis. 

2. Train the encoder to match real data using MSE loss against frames 

generated by the fixed generator. 

This staged training: 

• Avoids mode collapse (via multiple discriminators with random 

projections). 

• Ensures temporal coherence (via Bi-LSTM) 
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Chapter 3: Methodology  

  

 

                                         Fig 3.1: Flowchart of Image Compression 

 

 

 

                                   Fig 3.2: Physics of Image Compression 

 

In many real-world applications, especially in signal and image processing, 

efficient representation and compression of data is critical. One powerful 

approach involves leveraging the sparsity of signals in the frequency domain, 
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particularly through the Fourier Transform. The illustration above captures a 

simplified pipeline for compressing and reconstructing an image using the 

principles of Fourier domain sparsity. 

 

Step 1: Transformation to Frequency Domain 

The process begins with a high-resolution, densely sampled original image. This 

image is typically rich in visual detail, making it data-heavy. To reduce its 

storage and computational footprint, the image is transformed from the spatial 

domain into the frequency domain using the Fourier Transform. This 

transformation represents the image in terms of its sinusoidal components—

essentially decomposing it into various frequency contributions. 

 

Step 2: Observation of Sparsity 

Upon transformation, the image is now represented as a matrix of Fourier 

coefficients, which quantify the amplitude of specific frequency components 

present in the image. Interestingly, in most natural images, the energy of the 

signal is concentrated in a small number of low-frequency components, while 

the majority of the higher-frequency coefficients are either very small or 

negligible. This phenomenon is known as sparsity—the signal has very few 

significant components in the transformed domain. 

 

Step 3: Truncation and Data Reduction 

Recognizing this sparsity allows for a significant reduction in data. The image 

can be compressed by truncating the Fourier coefficient matrix—retaining only 

the central region which contains the most significant 5% of the coefficients. 

This region corresponds to the low-frequency components which hold most of 

the visual information in the image. The remaining 95%, which mostly contains 

noise or insignificant detail, is discarded. 

This reduced dataset is referred to as the sparse representation of the image. 

Despite keeping only a small portion of the coefficients, this sparse image still 
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retains the core information needed to reconstruct a recognizable version of the 

original. 

 

Step 4: Reconstruction with Inverse Fourier Transform 

To visualize or use the image again in the spatial domain, an Inverse Fourier 

Transform is applied to the sparse frequency data. This results in a compressed 

version of the original image. Though it may be slightly degraded due to the 

data loss from truncation, it still provides a high-fidelity representation that is 

visually very close to the original. 

This process effectively filters out redundant or unnecessary data, preserving 

only the most informative components. The result is a much lighter version of 

the original image, suitable for storage or transmission, with minimal impact on 

quality. 

3.2 Why Images are compressible? 

• Let we have a 20*20 B&W Image. 

• Total combination possible= 2^ (20*20) =2^400 

• Total possible images=2^400 

• Total number of nucleons in the known universe=10^80 

• Here, (2^400)> (10^80), means bigger than the universe. 

• Now think of a Megapixel Image of millions of coloured pixels and 

having the choice of brightness and saturation of every pixel. 
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                                    Fig 3.3: Pixel Space 

 

Natural image space consists of all types of images that we can experience in 

our whole life from each camera angle. It can be anything, a pen, a coffee cup, 

a human face, anything. It is a very huge space. 

         

 

                                                           Fig 3.4: Natural Image Space 

 

Natura image space live inside of pixel space. Natural images occupy a 

miniscule, tiny fraction of a tiny corner of this possible pixel space. 

This gives the idea that millions of pixels in the natural image formation are 

redundant and that’s why images are compressible. 
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                                           Fig 3.5: Flowchart showing image compression. 

 

1. Introduction to Image Complexity 

Images, at a fundamental level, are arrays of pixel values. Even a small black-

and-white image with limited resolution holds an astronomical number of 

possible combinations. Consider a simple 20×20 black-and-white (binary) 

image. Each pixel has two possible states (black or white), resulting in:   

                                     

This number 2 raised to the 400th power is staggeringly large. For perspective, 

the estimated number of nucleons (protons and neutrons) in the entire known 

universe is about 10^ {80}, a figure vastly smaller than 2^{400}. This 

comparison illustrates how large the theoretical space of all possible images is, 

even for small resolutions. 

However, despite this theoretical immensity, only a tiny fraction of these 

possible images actually occurs in the natural world. This observation leads to 

one of the most profound insights in image processing: real-world images are 

not randomly distributed throughout this enormous pixel space—they are highly 

structured and sparse in nature. 
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2. The Concept of Natural Image Space 

The total set of all possible images forms what we can call the Pixel Space. This 

space encompasses every potential arrangement of pixel values for a given 

resolution and color depth. But in reality, natural images—those we capture with 

cameras or observe with the naked eye—occupy only a very small subset of this 

massive pixel space. 

The graphic representation in the image above captures this idea effectively. The 

pixel space is depicted as a large area containing every possible image 

configuration. Within this space lies a concentrated and irregular region: the 

Natural Image Space. This region is not in the corners or aligned neatly; rather, 

it is randomly and sparsely distributed across the pixel space. This signifies that 

natural images do not follow uniform randomness but instead emerge from 

complex, structured generative processes (such as physical constraints, lighting, 

perspective, and object coherence). 

 

3. Redundancy in Natural Images 

Most natural images contain large areas with similar or predictable pixel values. 

This spatial correlation between neighbouring pixels implies that not all pixel 

values carry unique information. For instance, in a photograph of the sky, large 

portions of the image may have nearly the same shade of blue. Likewise, edges, 

gradients, and textures follow regular patterns that can be approximated by 

mathematical models or learned features. 

This redundancy is a core reason why images are compressible. The apparent 

complexity (e.g., megapixels of data) is deceptive, because much of this data is 

repetitive or predictable. It is not the pixel values themselves that matter, but the 

patterns and relationships between them. 

In terms of information theory, the entropy of natural images is much lower than 

that of random images. Random images would explore a wider variety of pixel 
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configurations with no correlation, resulting in high entropy. But natural images 

follow specific distributions, reducing the actual information content per pixel. 

 

4. Compressibility and its Implications 

Because natural images reside on a low-dimensional manifold within the high-

dimensional pixel space, they can be encoded with fewer bits without significant 

loss of visual quality. This is the theoretical basis for image compression 

algorithms like JPEG, PNG, and modern deep learning-based codecs. 

These algorithms exploit redundancy by: 

• Transforming the image into a more compact domain (e.g., Discrete 

Cosine Transform in JPEG) 

• Quantizing or removing less significant components 

• Using statistical models to encode the remaining data efficiently 

The insight from the figure is crucial: we do not need to encode all pixel 

configurations—only those that lie within the natural image manifold. The rest 

of the pixel space is effectively irrelevant for practical applications. 

This has profound implications not only for compression but also for image 

generation, super-resolution, denoising, and inpainting. By learning the 

manifold of natural images using data-driven approaches (like autoencoders or 

GANs), we can recover or generate plausible images even with limited 

information. 

 

5. From Pixel Space to Learning-Based Representations 

Modern machine learning techniques, especially deep neural networks, attempt 

to learn the structure of natural images in latent space. Autoencoders, for 

example, map high-dimensional image data into a lower-dimensional latent 

representation and reconstruct the original image from this compressed code. 

This approach assumes that the set of natural images is manifold-structured—

meaning it can be embedded in a lower-dimensional space without significant 
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loss of information. As such, tasks like image classification or reconstruction 

are not conducted across the entire pixel space, but over this reduced and 

meaningful subspace. 

The understanding that natural images are not uniformly distributed—but 

clustered and sparse within pixel space—has been foundational in the 

development of: 

• Compressed sensing: acquiring fewer measurements than traditional 

sampling methods, then reconstructing signals/images using prior 

knowledge about their sparsity. 

• Image priors: constraints or learned patterns about what valid images 

should look like. 

• Generative modelling: producing realistic images from compact latent 

codes (as in GANs or VAEs). 

 

3.3 What is Sparsity? (Help in storing less data): 

         

                                                   Fig 3.6: Sparsity Vector 

 

In the domain of signal and image processing, efficient data representation is a 

fundamental goal. Natural signals and images, though seemingly complex, often 

contain patterns and redundancies that can be exploited for more compact 

representation. One of the most powerful concepts enabling this compact 
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representation is sparsity, especially when leveraged through appropriate 

transform domains such as Fourier or wavelet transforms. 

 

Transform-Domain Sparsity 

Any signal or image, denoted by X, can often be represented in another domain 

using a mathematical transform. This operation aims to uncover a latent 

structure within the data—specifically, a domain in which most of the 

information can be captured by only a few non-zero coefficients. 

Mathematically, this is expressed as: 

                                                                    X=Ψ⋅S  

Here: 

• X is the original signal or image (usually in spatial or time domain), 

• Ψ is the transform basis (e.g., Discrete Fourier Transform, Wavelet 

Transform), 

• S is the sparse representation of the signal in the transform domain. 

In this representation, the majority of the elements in S are zero or negligibly 

small. This sparsity is what allows us to store or transmit the signal more 

efficiently. The transformation reorganizes the signal’s energy into fewer 

significant coefficients, while the rest can be discarded or highly compressed 

without significant loss of information. 

 

Role of Universal Transform Bases 

A universal transform basis is a pre-defined mathematical framework that 

enables signals to be decomposed into simpler building blocks. Common 

choices include: 

• Fourier Transform: Captures global frequency components, ideal for 

periodic or smooth signals. 
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• Wavelet Transform: Captures both frequency and spatial information, 

suitable for analysing transient or localized features like edges in 

images. 

• Cosine Transform (used in JPEG): Efficient for image compression by 

capturing low-frequency components that dominate visual perception. 

The essence of choosing an appropriate transform lies in how efficiently it 

compresses the information from X into a sparse S. For many natural signals, a 

small subset of basic functions in these transforms is sufficient to approximate 

the original signal to a high degree of accuracy. 

Advantages of Sparse Representations 

The sparse model provides multiple benefits in practice: 

1. Data Compression: Storing only the significant non-zero coefficients in 

S drastically reduces storage requirements. 

2. Efficient Processing: Algorithms operating on sparse data are typically 

faster, as fewer elements are involved in computation. 

3. Noise Robustness: Sparse representations help in denoising, as random 

noise tends not to align well with the sparse structure. 

4. Compressed Sensing: In applications where data acquisition is 

expensive or slow (e.g., medical imaging, ultrafast photography), 

sparsity enables the recovery of full signals from a few measurements. 

The illustration emphasizes that sparsity is a property not of the raw signal X 

but of its representation in the transform domain Ψ. Once a sparse representation 

S is obtained, the original data can be reconstructed by applying the inverse 

transform. 
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3.4 Compressed Sensing: 

                                

                    Fig 3.7: Flow chart showing compressed sensing.     
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In traditional signal acquisition systems, capturing high-resolution images or 

signals typically requires many measurements. These measurements must 

satisfy the Nyquist-Shannon sampling theorem, which dictates that the sampling 

rate must be at least twice the highest frequency present in the signal to 

accurately reconstruct it. However, this results in substantial data volumes, 

leading to increased costs in terms of storage, processing time, and transmission 

bandwidth. Compressed sensing (CS) challenges this conventional paradigm by 

suggesting that we can recover signals and images from significantly fewer 

samples than previously believed necessary—provided the signal has certain 

properties like sparsity. 

The diagram provided encapsulates the core idea of compressed sensing: 

acquiring fewer measurements and reconstructing the original signal through 

inference of sparse coefficients. Instead of recording a high-dimensional signal 

in full, CS captures a few linear projections and uses mathematical techniques 

to reconstruct the original data.   

      

                                 Fig 3.8: Compressed Sensing 

 

Principle of Sparsity 

At the heart of compressed sensing lies the assumption of sparsity. Sparsity 

refers to the idea that many signals or images, though they may appear complex 

in the spatial or time domain, are simple in some transform domain. For 

instance, a natural image might appear intricate in pixel space but could have 

only a few non-zero coefficients in the Fourier or wavelet domain. In 

mathematical terms, if a signal X of length N can be represented in a transform 

basis Ψ as: 

X=Ψ.S 
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where S is a sparse vector (i.e., most of its entries are zero or nearly zero), then 

X is said to be sparse in the basis Ψ. The compressed sensing framework 

exploits this sparsity to recover X from far fewer measurements than N. 

Measurement and Inference 

The traditional approach involves measuring all entries of the signal and then 

applying compression techniques to remove redundant information. 

Compressed sensing flips this model by measuring the signal in a compressed 

form to begin with. In the diagram, the "sheared image" refers to this 

compressed measurement. Rather than acquiring the full-resolution image, a 

few measurements are taken directly in a transformed or encoded format. 

These limited measurements are represented as: 

Y=C.X=C.Ψ.S  

Here, C is a sensing matrix that projects the original signal onto a lower-

dimensional space. Because we do not directly observe s, our task becomes one 

of inferring it. This is an underdetermined system—fewer equations than 

unknowns—but thanks to the sparsity of S, we can use optimization techniques 

such as L1-norm minimization (Basis Pursuit) to accurately recover S. 

        

 

                                                   Fig 3.9: Principle of Sparsity 
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Signal Reconstruction 

Once we estimate the sparse vector S, we apply an inverse transformation (e.g., 

inverse Fourier transform as denoted by F^ {-1} in the diagram) to recover the 

original signal: 

X=Ψ.S  

Surprisingly, this reconstruction is often nearly identical to what we would have 

obtained using full-resolution data. This capability opens the door to efficient 

data acquisition systems that are faster, cheaper, and more scalable. 

The final step shown in the diagram “Pretty good image” emphasizes that while 

we may not always achieve perfect fidelity, the reconstructed image retains most 

of the essential information. For many applications, such as medical imaging, 

astronomy, or high-speed photography, this level of reconstruction is more than 

adequate. 

             

Compressed Sensing Mathematical formula: 

                 

                             Fig 3.10: CS Mathematical Formula 

Compressed Sensing (CS) is a powerful framework that leverages sparsity in 

signals to reconstruct them from a reduced number of measurements, 

significantly below the Nyquist rate. This concept is particularly useful in 

applications like image acquisition, where capturing every pixel may be 

expensive or time-consuming. The diagram provided illustrates the architecture 

of compressed sensing applied to imaging, specifically how sparse signal 
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reconstruction is achieved through a combination of sampling, transformation, 

and optimization. 

1. Subsampling and Measurement Matrix 

The original image, denoted as X, is assumed to be high-dimensional, such as a 

full-resolution image. Rather than capturing all the pixel values, compressed 

sensing techniques operate on a subsampled version of the image. This 

subsampling is depicted as vector Y, which represents a collection of randomly 

selected pixels from the image X. 

To achieve this, a measurement matrix C is employed. This matrix essentially 

acts as a selector that "pulls" or extracts random pixel values from the original 

image. These selected values form the measurement vector Y. This process 

allows for a significant reduction in the number of samples required, without 

sacrificing the ability to reconstruct the original image, provided that certain 

conditions are met. 

2. Universal Transform Basis 

While the image X may not be sparse in its raw pixel form, it is often sparse in 

some transform domain. For instance, many natural images are sparse when 

transformed into the wavelet or discrete cosine domain. This transformation is 

achieved through a universal transform basis, denoted by the matrix Ψ. When 

the image is represented in this domain, it can be expressed as a linear 

combination of a few significant components, resulting in a sparse coefficient 

vector S. 

The relationship between the original image and its sparse representation is 

given by: 

                                             X=Ψ.S 

Here, Ψ is the transformation matrix, and S contains the sparse coefficients. 

3. Measurement Model 

Combining the measurement process and the transform domain, the overall 

model of compressed sensing becomes: 
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                                             Y=C.Ψ.S  

This equation indicates that the subsampled measurements Y are obtained by 

first transforming the sparse coefficients S into the image domain using Ψ and 

then applying the measurement matrix C to extract a subset of pixel values. 

Since both C and Ψ are known, the objective becomes to recover S from Y, even 

though the number of observations is significantly fewer than the 

dimensionality of the image. 

Reconstruction of Sparse Signals 

The core challenge in compressed sensing is the accurate reconstruction of the 

original image X, or equivalently, the sparse coefficient vector S, from the 

limited measurements Y. Since this system is underdetermined (fewer equations 

than unknowns), traditional linear algebraic methods are insufficient. Instead, 

are employed, leveraging the assumption that S contains very few non-zero 

entries. 

 

 

3.5 Concept Of TwIST Algorithm: 

Understanding the Underdetermined Inverse Problem in Compressed Sensing 

Compressed sensing introduces a paradigm shift in data acquisition by enabling 

accurate signal reconstruction from far fewer measurements than traditional 

methods. A key challenge in this framework is solving what is known as an 

underdetermined inverse problem. This problem arises because we are trying to 

recover a high-dimensional signal or image from a limited number of 

measurements. The mathematical formulation is generally written as: 

                                              Y=C.Ψ.S  

Where: 

• Y is the measurement vector, containing a limited set of observations 

(randomly selected pixels in the context of imaging). 
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• C is the measurement matrix, which defines how and which pixels from 

the original image are sampled. 

• Ψ is the transform basis, such as Fourier or wavelet basis, in which the 

signal or image is sparse. 

• S is the sparse coefficient vector, which we aim to recover. 

In this scenario, the goal is to find the sparse vector S, which when transformed 

back using Ψ, and sampled via matrix C, matches the observed vector Y. The 

issue is that since Y contains only a small number of entries compared to the 

size of S, the system is underdetermined meaning there are more unknowns than 

equations. This naturally leads to an infinite number of potential solutions. 

 

 

Sparsity and the Quest for the Best Solution 

The underdetermined nature of the problem necessitates an additional constraint 

to isolate a unique solution. This is where the concept of sparsity comes into 

play. Sparsity assumes that the true signal S contains very few non-zero entries 

when represented in a proper basis. In other words, most elements in S are zero 

or negligible, and only a few carry the actual information. 

Given this assumption, among the infinite possible vectors SSS that could 

satisfy the equation Y=C.Ψ.S, we are interested in finding the sparsest one—the 

vector with the fewest non-zero elements. This idea can be expressed 

mathematically as an optimization problem:  

                                          

Where ∥S∥0 counts the number of non-zero elements in S. However, solving 

this exact formulation is computationally infeasible as it is a combinatorial 

problem. As a practical alternative, the problem is relaxed into the convex 

optimization form:  
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Here, ∥S∥1 denotes the sum of the absolute values of the elements in S, which 

can be efficiently solved and often leads to the same result as the original sparse 

solution under certain conditions. 

This approach leads to the identification of the sparsest solution that explains 

the measurement a solution that likely corresponds to the actual image features 

or signal characteristics in the transform domain. 

 

Solving the Inverse Problem with TwIST Algorithm 

To address the above optimization problem, several algorithms have been 

developed, among which the TwIST algorithm (Two-step Iterative 

Shrinkage/Thresholding) is particularly effective. TwIST is designed to handle 

large-scale, sparse inverse problems efficiently and is well-suited for image 

processing tasks. 

The key idea behind TwIST is to iteratively refine the estimate of the sparse 

vector S by combining the current and previous estimates in a specific way, 

improving convergence speed and robustness over traditional methods like 

ISTA (Iterative Shrinkage-Thresholding Algorithm). TwIST uses the following 

iterative update rule:                 

  

Where: 

• Shrink is a soft-thresholding function that promotes sparsity. 

• ∇f represents the gradient of the data fidelity term. 

• α and βare parameters controlling convergence and stability. 

TwIST is advantageous because it not only accelerates the recovery process but 

also stabilizes the reconstruction in the presence of noise or partial observations. 

It effectively balances the trade-off between fidelity to the observed 

measurements Yand the sparsity of the solution S. 
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In summary, the underdetermined inverse problem in compressed sensing is 

addressed through a combination of mathematical modeling, sparsity 

assumptions, and optimization techniques. The TwIST algorithm serves as a 

practical and powerful tool to recover high-quality reconstructions from 

minimal and incomplete data, making it a cornerstone in modern signal and 

image processing. 

3.6 Compressed sensing: conditions when it works: 

1. ‘C’ to be incoherent w.r.t ‘ψ’, rows of ‘C’ should be orthogonal to 

columns of ‘ψ’. 

2. There should be randomness associated with matrix ‘C’. Incoherency is 

generally achieved by randomness. 

3. The sparse vector S is said to be K-Sparse if it contains exactly k non-

zero entries in it. To find out a Sparse vector S which is K-Sparse we 

need to take measurements more than K.  

 

        No. of measurements(P):            

              

 

                                    Fig 3.11: Condition of working 

 

In compressed sensing, a key question is: how many measurements are needed 

to accurately reconstruct a signal or image from its compressed form? The 

formula: 

                                                          P=K1 K log(n/K)  

provides a theoretical guideline to answer this. Here, P represents the minimum 

number of measurements required for accurate recovery. This equation is 
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derived from foundational results in information theory and sparsity-driven 

signal reconstruction. Let's break down each component and their significance. 

• K: This denotes the sparsity level of the signal or image in a given basis 

Ψ. A signal is said to be K-sparse if only Kof its coefficients are 

significantly non-zero when represented in a proper transform domain 

(e.g., Fourier, wavelet). The smaller the K, the fewer measurements are 

needed. 

• n: This represents the total number of elements or pixels in the high-

resolution signal or image X. It reflects the ambient dimension, i.e., the 

size of the original uncompressed data. 

• log(n/K): This term arises from probabilistic bounds on recovering 

sparse signals. It adjusts the number of required measurements 

depending on how large the original data is compared to the number of 

non-zero components. The logarithmic dependence ensures that the 

number of required samples grows slowly as the resolution increases. 

• K1: This is a constant that depends on the relationship between the 

measurement matrix C and the sparsifying basis Ψ. Specifically, it is 

influenced by how coherent or incoherent these two matrices are. 

Incoherence is a desirable property—it ensures that the measurements 

are spread out in a way that captures different aspects of the signal, 

which helps in accurate reconstruction. A lower coherence results in a 

smaller K1, thus reducing the number of required samples. 

 

3.7 Restricted Isometric Property in Image Processing: 

In the field of image processing, the ability to recover high-quality images from 

limited, corrupted, or noisy data is of paramount importance. Traditional 

approaches often require large amounts of data, but modern techniques like 

compressed sensing have revolutionized this by enabling the recovery of images 

from significantly fewer measurements. A core theoretical tool that underpins 

these advances is the Restricted Isometry Property (RIP). Originally introduced 

within the framework of compressed sensing, RIP provides the mathematical 
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foundation to ensure accurate reconstruction of sparse signals, including natural 

images, under certain conditions. This document explores the concept of RIP, 

its mathematical formulation, significance in image processing, and its 

applications in various image reconstruction tasks. 

Compressed sensing (CS) is a technique that enables the acquisition and 

recovery of sparse signals from far fewer samples than traditionally required. It 

hinges on two main principles: sparsity and incoherence. RIP is critical because 

it guarantees that all subsets of columns taken from the sensing matrix behave 

almost like an orthonormal system. This orthonormal-like behavior is necessary 

to ensure that different sparse signals map to sufficiently different measurement 

vectors, thus avoiding ambiguity in reconstruction. 

In image processing, RIP has significant implications for tasks such as: 

• Image reconstruction: When reconstructing images from under-sampled 

data (e.g., in MRI), RIP ensures that the transformation matrix retains 

the critical features of sparse image representations. 

• Denoising: In scenarios where images are corrupted by noise, algorithms 

relying on sparsity and RIP can effectively isolate and remove noise. 

• Inpainting: Missing parts of an image can be recovered accurately using 

RIP-compliant methods, assuming the known parts of the image form a 

sparse representation. 

 

Several reconstruction algorithms leverage RIP to ensure robust and accurate 

image recovery. One notable example is the Two-step Iterative 

Shrinkage/Thresholding (TwIST) algorithm, which is particularly effective for 

large-scale sparse reconstruction problems. These algorithms generally operate 

under the assumption that the measurement matrix satisfies the RIP condition, 

thereby ensuring that the optimization problem they solve has a unique and 

stable solution. 

In practical applications, although checking RIP for a given matrix is 

computationally infeasible, it is well-established that certain types of random 
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matrices (e.g., Gaussian or Bernoulli) satisfy the RIP with high probability when 

the number of measurements is sufficient. This insight guides the design of 

sensing systems in hardware implementations. 
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3.8 MATLAB code: 

CUP Reconstruction: 
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This MATLAB script performs image reconstruction using the TwIST (Two-

step Iterative Shrinkage/Thresholding) algorithm over a range of regularization 

parameters. It is designed to process a sheared image using a predefined 

calibration pattern and output both visual results and processed data. 

 

 



 

43 
 

Initialization and Loop Structure 

The program initializes a list of regularization values (taus) and loops over each 

value to test its impact on reconstruction performance. Within each iteration, the 

algorithm is executed independently using the current tau. 

Pattern and Sheared Image Preprocessing 

A calibration pattern image (pattern1.tiff) is read, resized, and converted to 

grayscale if necessary. Background subtraction is performed using the mean of 

the top-left region, and a vertical shift is applied to align the pattern with the 

sheared image. A 3D matrix (KP) is generated by vertically shifting the pattern 

across a sequence of frames to simulate movement. 

The sheared image (shearedraccon.tif) is similarly resized, converted to 

grayscale if needed, and normalized after background subtraction. These 

preprocessing steps enhance contrast and ensure numerical consistency for the 

TwIST algorithm. 

TwIST Algorithm Configuration 

The forward model (A) and its transpose (AT) are defined as function handles 

using external helper functions. Total variation denoising and regularization 

functions (Psi and Phi) are also configured. The algorithm is then executed via 

TwISTmod, which returns a reconstructed 3D image cube, baseline image, and 

performance metrics. 

Visualization and Post-processing 

The reconstructed frames are visualized sequentially using MATLAB’s image 

display functions, with colormap adjustments and timing control for animation. 

Each frame is stored to form a video preview. In the post-processing stage, the 

baseline is subtracted from each frame, and non-negative normalization is 

applied. The result is then realigned using reverse vertical shifts. 

Finally, the processed 3D dataset is saved to a .mat file with a unique identifier. 

This format allows future analysis or re-visualization of the denoised and 

reconstructed image sequence. 
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CUP Post Processing: 
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This MATLAB script performs post-processing on 3D image data loaded from 

a .mat file, applies spatial and temporal adjustments, and generates visual 
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outputs and a video. The process starts by loading volumetric image data and a 

reference image, followed by setting essential parameters such as pixel size, 

binning factor, magnification, cropping ranges, and time increments. 

First, the script removes background noise by subtracting the average intensity 

of a small corner region and normalizes the image intensity. It crops the spatial 

region of interest based on predefined coordinates and normalizes each frame 

by subtracting the last frame to reduce baseline effects. The script also flips each 

frame vertically and applies a frame-dependent vertical shift correction to 

compensate for misalignments. 

Next, an external reference image undergoes normalization, cropping, rotation, 

and blurring using a Gaussian filter, enhancing its spatial features. This 

processed reference image is multiplied element-wise with every frame in the 

main image stack to improve signal contrast, followed by final normalization 

and background subtraction. 

The code recalculates spatial coordinates considering binning and magnification 

and generates corresponding temporal coordinates based on the adjusted time 

per frame. The processed image stack, reference image, and coordinate arrays 

are saved into a .mat file. 

For visualization, the script creates a grayscale plot of the reference image with 

scale annotations and saves it. It then iterates through the first 150 frames of the 

processed 3D data, displaying each frame with a heat colormap and saving each 

as a TIFF image. Finally, it compiles these frames into an AVI video file with a 

specified frame rate, allowing easy review of the temporal sequence. 
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3.9 DATA COLLECTION: 

 

                                                    Fig 3.12: Data Collection 

 

The phenomenon of droplet bursting represents a rapid physical process with 

dynamic fluid motion and surface tension interactions that occur over 

microsecond to nanosecond timescales. Capturing such events requires an 

advanced imaging setup capable of extremely high temporal resolution. 

Traditional high-speed cameras are often inadequate due to their frame rate 

limitations or the sheer volume of data generated in short time intervals. 

The provided visual outlines a process where high-speed imaging, aided by 

compressed ultrafast photography (CUP), is employed to observe and analyze 

the bursting of a droplet. In this specific case, a high-speed imaging system 

captures three critical frames in sequence, revealing the evolution of the droplet 

over a few milliseconds. This process allows for an in-depth study of fluid 

dynamics, shockwave propagation, and material response. 

 

Sheared and Reference Images in CUP 

Two core elements are highlighted in the recorded video section of the image: 

the sheared image and the reference image. 

• Sheared Image: This represents a temporally encoded version of the 

dynamic scene. The shearing process, typically induced by a fast 
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galvanometric scanner or an equivalent optical system, shifts the image 

along one spatial axis in direct proportion to time. As a result, each line 

in the image corresponds to a different temporal moment, effectively 

compressing a sequence of subframes into a single image. This 

technique enables visualization of rapid motion in a single snapshot. 

• Reference Image: Captured without any temporal modulation, this 

image provides a static view of the droplet just before or after the event. 

It serves as a spatial anchor during the reconstruction process, ensuring 

that the recovered frames align correctly with the physical geometry of 

the object or scene being studied. 

The sheared and reference images work together to enable a full reconstruction 

of the dynamic process, overcoming the limitations of conventional frame-by-

frame capture. 

Time Resolution and Compressed Imaging 

A key advantage of this system is its ultra-high temporal resolution, achieved 

through compressed imaging. As visualized in the schematic labeled "Time 

Resolution," the sheared image captures approximately 500 subframes 

compressed into one single frame. The actual time resolution can reach the scale 

of 2 nanoseconds per subframe, which is orders of magnitude faster than 

standard high-speed cameras. 

In the process: 

• The DMD modulates the incoming light using a binary pattern. 

• The galvo scanner moves the image on the camera sensor during the 

exposure, mapping temporal changes onto spatial shifts. 

• The camera collects this sheared and modulated signal in one shot. 

During reconstruction, algorithms like TwIST (Two-Step Iterative Shrinkage 

Thresholding) are used to recover the temporal sequence from the encoded 

image. This approach provides an efficient way to study fast processes like 

droplet bursting with minimal loss of temporal detail. 
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                                                    Fig 3.13: Optical Set-up 

  

       

                                    Fig 3.14: Mask & without Mask data collection 

This setup is designed to capture ultrafast dynamic events by encoding both 

spatial and temporal information into a single image. It relies on carefully 

synchronized optical and electronic components to achieve extremely high time 

resolution. Here's a step-by-step explanation of how each part works: 

 

1. Laser Source (Illumination) 

At the far left of the setup, a laser or light source provides the necessary 

illumination. This is typically a pulsed laser, offering brief but intense flashes 

of light, which are ideal for freezing motion during fast dynamic events such as 
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droplet bursting. The wavelength and pulse duration of the laser are chosen 

based on the experimental needs. 

2. Collimating and Focusing Optics (Lenses L1–L4) 

• L1 and L2: These lenses form a collimating and focusing system that 

directs the laser beam through the optical path with minimal divergence. 

They ensure the beam is appropriately aligned and shaped for interaction 

with the modulation devices. 

• L3: This lens focuses the modulated light onto the camera sensor, but 

before reaching the sensor, the light passes through other key 

components. 

• L4: Positioned after the galvo scanner, this lens helps collect the sheared 

image and focuses it precisely onto the camera's sensor. 

Each lens is positioned to maintain beam quality and to match the system’s focal 

requirements at different stages of the path. 

3. Digital Micromirror Device (DMD) 

The DMD plays a crucial role in spatial encoding. It contains an array of 

microscopic mirrors that can rapidly tilt to modulate incoming light based on a 

pre-programmed binary pattern. This pattern encodes spatial information onto 

the light, which is essential for later decoding during image reconstruction. 

The DMD helps introduce structured light modulation into the system, which 

acts like a fingerprint on the image, allowing the post-processing algorithm to 

distinguish and reconstruct temporal frames from a single sheared image. 

 

 

4. Galvanometric (Galvo) Scanner 

The Galvo scanner consists of a fast-rotating mirror controlled by a voltage 

signal. As the mirror moves, it introduces a continuous deflection to the light 

beam. This creates a temporal shear in the captured image—each row (or 

column) of the image corresponds to a slightly different moment in time. 
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The galvo scanner is synchronized with the rest of the system to translate the 

time-domain event into a spatial distortion. This shear encodes temporal 

progression into a single camera exposure. 

 

5. Synchronization Electronics (Function and Pulse Generators) 

These components control the timing of all key devices in the setup: 

• The function generator sends signals to the galvo scanner, DMD, and 

potentially to the laser, ensuring everything operates in precise timing. 

• The pulse generator triggers the camera and the laser pulses at exact 

intervals, enabling perfect synchronization between illumination and 

capture. 

Together, these generators act like the brain of the system, coordinating all 

activities down to the nanosecond. 

6. Camera and Data Acquisition System 

The camera, placed at the output end, captures the sheared and modulated light 

as a single image. This image contains embedded spatial and temporal 

information. Although the camera itself captures just one frame, the encoded 

data inside this frame allows for reconstruction of hundreds of subframes using 

computational algorithms. 

A connected computer system collects the image data and processes it using 

algorithms such as TwIST (Two-Step Iterative Shrinkage/Thresholding). This 

post-processing step reconstructs the time-resolved video from the compressed 

data captured by the system. 
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CHAPTER 4: Results 

             

                                       Fig 4.1 Things Needed 

 

          

                                        Fig 4.2 Pictorial View 

The image outlines three key inputs necessary for CUP reconstruction: 

1. Sheared Image – This is the primary data obtained from the CUP camera. 

It contains a temporally encoded version of the scene, where each row 

of the image corresponds to a different time slice due to the shearing 

process applied during capture. 
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2. Pattern – A known, fixed modulation pattern is imposed on the incoming 

light signal, typically using a digital micromirror device (DMD) or 

spatial light modulator (SLM). This pattern is essential for unmixing the 

temporally encoded data. 

3. Reference Image – This static image of the scene, captured without any 

temporal encoding, provides spatial context. It helps in aligning and 

calibrating the reconstruction output to the actual physical layout of the 

scene. 

Together, these three inputs form the core dataset required to reconstruct a high-

fidelity video from a single CUP frame. 

 

1. CUP Reconstruction Program 

This program focuses on recovering the video frames from the sheared image 

using an iterative computational algorithm. The core method employed is the 

Two-Step Iterative Shrinkage/Thresholding (TwIST) algorithm, which is known 

for its efficiency in solving inverse problems such as image reconstruction. 

TwIST works by iteratively refining an estimate of the true image sequence 

based on the input sheared image and the known modulation pattern. 

The main tasks performed by this program include: 

• Preprocessing the sheared image and pattern to prepare them for 

reconstruction. 

• Setting up the measurement matrix based on the pattern and shearing 

geometry. 

• Iteratively applying the TwIST algorithm to solve the inverse problem. 

• Outputting a reconstructed video volume where each slice represents a 

different time step. 

2. Post-Processing Program 

Once the frames are reconstructed, this second MATLAB program handles their 

visualization, enhancement, and export. This includes: 
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• Extracting individual frames from the video volume. 

• Aligning the reconstructed video with the reference image for spatial 

correction. 

• Normalizing and enhancing the frames for better visual quality. 

• Optionally saving the output as a video or image sequence for analysis 

and presentation. 

4.1 RESULTS FOR DROPLET IMAGE: 

     

                                              Fig 4.3: Results for Droplet Image 

 

The image illustrates a computational imaging process where a sheared image, 

combined with a known coded pattern, is used to reconstruct temporal frames 

from a high-speed event. The top row shows the original sheared image, the 

binary-coded pattern used for encoding, and a green-tinted reference image 

containing a clear object (a droplet). The bottom two rows present the extracted 

frames over time, rendered in red with visible timestamps, showing the 

progressive movement or appearance of the object. This setup demonstrates 

how temporal information can be recovered from a spatially sheared input using 

structured illumination or coding techniques. 
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                             Fig 4.4: Extracted Images of Droplet 

 

4.2 RESULTS FOR RACCON IMAGE: 

          

                                       Fig 4.5: Results for Raccoon Image 

 

This image set demonstrates a compressed ultrafast imaging technique where a 

temporally sheared scene is encoded using a known binary pattern to enable 

frame-by-frame reconstruction. The top row shows the essential components: a 

sheared image capturing overlapping temporal slices, a random or pseudo-

random pattern used for encoding temporal information, and a reference image 

for comparison. The bottom row presents the reconstructed frames, where 

motion and structural changes over time are visualized in red, showing dynamic 

content unfolding within the encoded exposure. This technique enables high-

speed event capture beyond traditional camera frame rates by exploiting spatial-

temporal encoding and computational reconstruction. 
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The bottom row shows a sequence of reconstructed frames that capture the 

motion of a raccoon image moving downward over time. In each consecutive 

frame, the raccoon’s face appears slightly lower than in the previous one, 

illustrating its vertical movement. The gradual shift in position across the frames 

represents different time instances, effectively showing a time-lapse of the 

raccoon’s descent. This progression demonstrates how the temporal information 

encoded in the sheared image has been successfully decoded to reveal the 

dynamic motion of the subject. 

 

4.3 RESULTS FOR SHAPE M: 

      

                                                Fig 4.6: Results for Shape M image 

 

The displayed figure presents a sequence from a computational imaging setup 

used to recover fast temporal events. The top row includes a sheared image, a 

random encoding pattern, and a reference image showing the letter "M". The 

sheared image captures multiple temporal instances compressed into a single 

frame, while the binary pattern is used for temporal encoding. The bottom row 

reveals the extracted images reconstructed from the sheared input. These frames 

show the "M" character moving vertically upward over time, becoming clearer 

and more centered with each step. This illustrates how the encoded temporal 

information is successfully decoded, enabling visualization of high-speed 

vertical motion across different time slices. 
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The sequence of extracted images in the bottom row clearly captures the vertical 

motion of the letter "M" over time. At the beginning of the sequence, the "M" 

appears at the lower part of the frame, partially visible and dim, indicating the 

starting position of the motion. As time progresses through the frames, the "M" 

moves upward steadily, becoming more centered, distinct, and fully visible. 

This upward displacement reflects a smooth vertical translation, suggesting the 

object is moving continuously in the upward direction during the exposure 

period. The bright red background shifting along with the letter enhances the 

sense of motion, while the pattern-based decoding ensures the temporal order 

of this motion is preserved. This set effectively demonstrates how dynamic 

scenes can be captured and reconstructed from a single sheared image using 

temporal coding techniques. 
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CONCLUSION: 

 

This thesis presents a comprehensive study and implementation of Compressed 

Optical Shearing Ultrafast Photography (COSUP), offering an efficient and 

cost-effective solution for capturing ultrafast dynamic events. Through 

theoretical analysis, optical setup design, algorithmic development, and 

experimental validation, the work successfully demonstrates how a single 

temporally sheared image, modulated with a known spatial pattern, can be 

computationally decoded to reconstruct high-speed video sequences. The 

system effectively captures phenomena like droplet bursting and object 

motion—traditionally requiring expensive high-speed cameras—using 

affordable hardware and compressed sensing principles. 

The integration of the TwIST algorithm played a crucial role in enabling 

accurate frame recovery from underdetermined measurements, validating the 

robustness of sparse reconstruction methods in practical applications. The 

vertical motion observed in experiments—such as the downward movement of 

a raccoon image or the upward displacement of the letter “M”—underscores the 

technique’s temporal fidelity and ability to resolve dynamic motion sequences 

with clarity. 

Moreover, the system offers significant advantages over traditional high-speed 

imaging: reduced hardware complexity, minimal data storage, and one-shot 

capture capability for non-repeatable events. These strengths position COSUP 

as a promising alternative for ultrafast imaging needs in fluid dynamics, 

combustion research, biomedical diagnostics, and other time-critical domains. 

The findings lay the groundwork for further research in integrating deep 

learning for faster reconstruction and exploring applications in 3D or 

hyperspectral ultrafast imaging, thereby expanding the impact of compressed 

sensing in scientific visualization 
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FUTURE SCOPE 

 

The work presented in this thesis lays a strong foundation for further exploration 

and development in the field of compressed ultrafast imaging, particularly with 

the COSUP (Compressed Optical Shearing Ultrafast Photography) technique. 

Several promising directions can enhance both the capabilities and practical 

deployment of this technology. One major avenue is the integration of deep 

learning algorithms for real-time reconstruction. Traditional iterative methods 

like TwIST, while effective, are computationally intensive. Deep neural 

networks trained on representative datasets can drastically reduce 

reconstruction time, enabling real-time feedback for live experiments or 

diagnostics. 

Another key area is the optimization of mask patterns used during encoding. 

Currently, random or pseudo-random binary patterns are used, but adaptive or 

learning-based mask generation could significantly improve reconstruction 

quality, especially for scenes with complex dynamics. Research into scene-

aware or object-aware encoding could make the system more intelligent and 

robust under varied experimental conditions. 

Hardware-wise, the COSUP system could be extended to support multi-modal 

imaging, such as combining ultrafast temporal resolution with spectral or depth 

information, thereby making it suitable for advanced applications like chemical 

plume analysis, tissue diagnostics, or turbulence visualization in 3D. 

Furthermore, miniaturization of the setup using meta-surfaces or integrated 

optics could lead to portable ultrafast cameras suitable for use in field conditions 

or compact laboratory environments. 

Finally, COSUP holds potential in non-traditional domains such as biomedical 

imaging, materials testing, aerospace diagnostics, and autonomous navigation, 

where high-speed events must be captured accurately without bulky or 

expensive hardware. By refining the system for robustness, speed, and 

integration, this research can significantly contribute to democratizing ultrafast 

imaging across academia, industry, and even consumer technologies. 
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