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Abstract

The evolution of imaging technologies—from Galileo’s telescope to modern
high-speed cameras—has significantly advanced scientific exploration. While
spatial resolution has traditionally been the focus, the ability to capture events
at extremely short time scales, or temporal resolution, is equally crucial for
observing ultrafast phenomena such as shockwaves, droplet dynamics, and
plasma discharges. Traditional high-speed cameras, however, face limitations in

frame rate, cost, and data volume.

This thesis explores Compressed Imaging, a transformative approach that
overcomes these limitations by capturing temporally encoded information in a
single shot and reconstructing it computationally into high-speed video. We
focus on Compressed Optical Shearing Ultrafast Photography (COSUP)—
a cost-effective and simple setup that leverages compressed sensing principles

to achieve ultrafast imaging without requiring expensive or complex hardware.

By developing and optimizing a COSUP-based imaging system, this work
demonstrates the ability to record high-temporal-resolution videos of fast
physical phenomena using a single frame. The methodology reduces
experimental repetition and data overhead, offering a practical solution for high-
speed imaging in resource-constrained environments. The results underline
COSUP’s potential as a powerful tool in scientific diagnostics, fluid dynamics,

and other domains where capturing transient events is critical

Vi
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Chapter 1: Introduction

1.1 Historical Background and Motivation

Imaging has been a cornerstone of scientific discovery for centuries. The
journey began with Galileo’s telescope in the early 1600s, which revolutionized
astronomy and provided humankind with its first glimpse of celestial bodies in
detail. As technology evolved, the development of photographic techniques, X-
rays, electron microscopy, and digital imaging expanded our capacity to

visualize the microscopic and the vast.

Historically, the focus in imaging systems has been on enhancing spatial
resolution—the ability to discern fine structural details in a scene. However, as
scientific inquiry moved into domains involving rapid physical, chemical, and
biological processes, temporal resolution—the ability to capture events
occurring over extremely short time scales—became equally crucial. For
example, processes such as laser-matter interactions, cavitation in fluids, or
neural activity in the brain happen so rapidly that traditional imaging systems

fail to resolve them meaningfully.

Although high-speed cameras have bridged some of this gap by
providing frame rates in the order of hundreds of thousands or even millions of
frames per second (fps), they come with several drawbacks. These systems are
often expensive, bulky, and generate large amounts of data that are difficult to
store and process. More critically, they frequently require multiple experimental
runs to capture different stages of a phenomenon—an approach that is not viable

for non-repeatable or destructive events.

This need for a more efficient and scalable imaging method laid the
foundation for the adoption of Compressed Sensing (CS) in high-speed
imaging. Emerging from advances in signal processing and optimization theory
in the early 2000s, CS has enabled a new generation of imaging techniques that
capture detailed dynamic information using a single frame, thereby overcoming

many of the limitations of conventional systems.



1.2 Concept of Compressed Sensing

Compressed sensing is based on the insight that most natural signals
contain redundancies and are not entirely random or complex. For instance, a
video of a falling object or a propagating wave can often be predicted using only
a few parameters. CS takes advantage of this sparsity to reduce the number of

measurements required to reconstruct a signal or image.

In the context of high-speed imaging, CS enables the capture of ultrafast
scenes in a single exposure, using an optical setup that encodes both spatial and
temporal information into a single compressed frame. This frame is later
decoded using powerful computational algorithms, which reconstruct the full
sequence of frames that would have otherwise required high-speed continuous

capture.

This approach fundamentally shifts the burden from hardware (fast
sensors, large memory buffers) to software (efficient algorithms, smart

encoding), resulting in cheaper, faster, and more flexible imaging systems.
1.3 Compressed Imaging: A Paradigm Shift

Compressed imaging represents a breakthrough in the way dynamic
scenes are recorded. Instead of acquiring individual frames sequentially like a
traditional camera, it captures a coded projection of the entire temporal event in
one go. This allows scientists to document a transient event—such as a spark,

explosion, or biological impulse—in a single snapshot.
This approach relies heavily on the synergy between:

e Optical encoding (using masks or modulators to encode spatial and

temporal information),
e Photon detection (via standard or specialized sensors), and

e Computational decoding (via optimization or learning-based

reconstruction techniques).

What makes compressed imaging so powerful is its flexibility. By

changing the encoding scheme or reconstruction algorithm, one can tune the



system to suit various applications and constraints—whether it's maximizing

frame rate, enhancing resolution, or minimizing noise.
Two landmark systems in this domain are:

o Single-Shot Compressed Ultrafast Photography (CUP) — known for
ultra-high-speed capabilities.

e Compressed Optical Shearing Ultrafast Photography (COSUP) — known

for its simpler and more affordable setup.

1.4 Single-Shot Compressed Ultrafast Photography (CUP)

CUP is one of the most advanced forms of compressed imaging
available today. It captures events at frame rates exceeding 1 billion fps,
allowing researchers to observe phenomena that were once thought to be too
fast to image. CUP systems integrate a streak camera, which transforms
temporal variations into spatial displacements, along with a spatial light
modulator (SLM) or digital micromirror device (DMD) that adds a unique

encoding to the incoming light.

As the encoded light enters the streak camera, it is deflected over time
across a fluorescent screen, resulting in a 2D pattern that contains embedded
information about the entire temporal sequence of the event. This pattern is then
captured by a standard camera, and software is used to reconstruct the complete

high-speed video.

Despite its complexity, CUP has proven to be invaluable in cutting-edge

applications such as:
e Visualizing the propagation of light through various media,
o Investigating plasma arcs and combustion events,

e Observing fast biological responses like neuron firing or muscle

contraction.

The system is ideal for single-occurrence events that cannot be repeated,

such as detonations, rare natural phenomena, or sensitive biological responses.
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Figl.I: Single Shot CUP

1.5 Compressed Optical Shearing Ultrafast Photography (COSUP)

COSUP offers a more accessible approach to compressed imaging
without sacrificing much in performance. It uses a Galvano scanner—a device
with a rapidly oscillating mirror—to shear the incoming light across the sensor
during the exposure. As a result, each pixel on the sensor captures light from
slightly different moments in time, eftfectively compressing a video sequence

into a single frame.

To aid in the decoding process, a binary mask generated by a DMD is
used to encode additional spatial information into the image. This mask acts like
a "barcode" that helps algorithms to unravel the temporal sequence during post-

processing.

COSUP can achieve frame rates up to 1.5 million fps, which is ideal for

capturing:
e Fluid dynamics, such as droplet impacts and turbulence,
e Micro-explosions in combustion engines,

e Mechanical deformation under stress.



Unlike CUP, COSUP is more compact, cost-effective, and easier to
integrate with existing microscopy or imaging setups, making it popular in

research labs with limited resources.
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Fig 1.2: COSUP set-up

1.6 Comparison with Traditional High-Speed Cameras

While traditional high-speed cameras have played a crucial role in

scientific imaging, they have several limitations:

o They are expensive and require specialized cooling and synchronization

systems.

e They often miss key moments due to limitations in buffer memory or

trigger delays.

e They demand repetitive testing to build a full picture of an event, which

is impractical for non-repeatable experiments.
In contrast, compressed imaging techniques like CUP and COSUP:

o Capture all necessary data in a single frame, eliminating timing and

buffering issues.



e Reduce the cost and complexity of the setup by using computational

power to replace expensive hardware.

o Enable high-throughput experiments, where time is critical and setup

needs to be minimal.
1.7 Applications in Science and Industry

Compressed sensing-based imaging is already transforming a wide

range of scientific and industrial applications:
In Aerospace and Defence:
e Visualizing shockwave interactions around supersonic projectiles.
e Monitoring fuel combustion inside rocket and jet engines.
e Analysing laser targeting systems and impact damage.
In Biology and Medicine:
e Capturing cellular dynamics such as mitosis or signal transduction.
e Recording neural activity with millisecond resolution.
o Enabling real-time diagnostics for critical care scenarios.
In Material Science:
e Studying fracture propagation and structural failures in materials.
o Investigating phase changes under thermal or mechanical stress.
In Thermal and Spectral Imaging:

o Detecting rapid temperature changes in hot surfaces.

e Conducting chemical identification via hyperspectral analysis.



1.8 Emerging Trends and Future Directions

The field of compressed sensing in high-speed imaging is rapidly

evolving, with several exciting frontiers:
Deep Learning Integration:

New deep neural networks can learn to reconstruct high-speed
sequences more accurately and efficiently than traditional optimization
methods. These systems can even operate in real time, enabling live feedback

and control in industrial applications.
Meta surface-Based Optics:

Advanced flat optics, known as Meta surfaces, are being developed to
reduce the size and complexity of optical systems. These could replace bulky
lenses and mirrors with thin, tuneable surfaces, making compressed imaging

more portable and scalable.
3D and Holographic Imaging:

Efforts are underway to extend compressed sensing into three-
dimensional and volumetric domains. This would allow scientists to not only

record rapid events but also understand their spatial evolution over time.
Real-Time Monitoring:

The combination of fast reconstruction algorithms and low-latency
hardware may soon enable real-time compressed sensing for applications in

robotics, surveillance, and live diagnostics, where every millisecond counts.






Chapter 2: Literature Review

CoSUP is a very new technology, comes into picture since 2016 not much work

has been done in this, but some of the literature review is as follows:

1 ¢ A thesis by ‘Constanza Cendon Contreras’ gives the idea about Compressed

Optical Streaking Ultra High-Speed Photography, a technique that reduces both
high cost and high memory requirements in situ and delivers frame rates up to
400,000 fps after postprocessing is used for a variety of experiments, testing its
applicability for dynamic, fast-moving targets as well as fluorescent samples.
All the basic concepts and physics behind are given in this thesis. The
fundamentals like Image properties and transformations (Fourier Transform,
Wavelet Transform), Compressed Sensing, Optimization Algorithms, Image
reconstruction parameters are explained in this thesis. Idea about other
parameters like Optical setup (Optical shearing, Optical masking, Camera

Integration, Resolution, Mask optimization) is also there in the thesis.

High-speed imaging has emerged as a crucial tool across disciplines such as
physics, chemistry, biology, and engineering. Historically rooted in the need to
capture transient phenomena beyond human perceptibility, the field has evolved
from mechanical streak cameras to advanced ultrafast digital imaging platforms.
While early high-speed photography focused on increasing spatial resolution,
modern applications increasingly prioritize temporal resolution to capture
dynamic events unfolding on microsecond, nanosecond, or even femtosecond

timescales.

Recent advancements have introduced imaging systems capable of recording
tens of millions of frames per second (fps), essential for studying turbulence,
rapid biochemical reactions, and ultrafast light-matter interactions. However,
the cost, complexity, and memory requirements of such systems pose significant
limitations. The work under review proposes a cost-effective alternative using

compressed sensing principles—Compressed Optical Shearing Ultrafast



Photography (COSUP)—offering a middle ground between speed, resolution,
and affordability.

Foundations of Compressed Sensing and Optical Streaking

The theoretical backbone of COSUP lies in compressed sensing (CS), a
mathematical framework that allows signal reconstruction from a seemingly
insufficient number of samples. CS leverages the inherent sparsity of signals in
certain transform domains—commonly the Fourier or wavelet domains—to
reconstruct the original signal using optimization techniques. This principle
contradicts the classical Nyquist-Shannon sampling theorem, which states that
accurate signal reconstruction requires sampling at twice the highest frequency

present.

In the context of imaging, compressed sensing allows for the reconstruction of
high-resolution images or videos from under-sampled data, thereby reducing the
burden on data acquisition hardware and memory. A critical component of this
process is the application of mathematical transforms that concentrate signal
energy into a few significant coefficients. Fourier and wavelet transforms have
thus become standard tools in compressed imaging systems, each suited to
different types of signals. Wavelets offer the advantage of simultaneous spatial
and frequency localization, which is especially useful for transient and non-

periodic phenomena.

COSUP also incorporates optical shearing, a method of encoding temporal
information into spatial dimensions by redirecting the incident light beam via a
time-dependent optical element such as a rotating mirror or galvanometric
scanner. This enables the recording of fast transient events as spatial
displacements on a sensor, which can later be deconvoluted into individual

frames using CS algorithms.
Historical Developments in Ultrafast Imaging Technologies

The evolution of ultrafast imaging technologies has been marked by a series of
pivotal innovations. One of the most influential methods is Compressed
Ultrafast Photography (CUP), which integrates streak camera functionality with

compressed sensing algorithms to achieve frame rates exceeding 100 billion fps.
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CUP represents a leap forward in capturing dynamic 2D scenes, although its

reliance on costly and delicate streak cameras limits accessibility.

Alternative techniques have emerged to address CUP's limitations. Single-pixel
cameras, for instance, utilize digital micromirror devices (DMDs) and single
detectors to reconstruct images through CS, offering lower resolution but
significantly reducing hardware costs. Similarly, Frequency Recognition
Algorithm for Multiple Exposures (FRAME) and Light in Flight Holography
represent active detection techniques, requiring tailored light sources but

achieving exceptional temporal resolution.

COSUP distinguishes itself by adopting a passive detection strategy using a
galvanometer scanner in place of the streak camera. Although this substitution
results in lower temporal resolution—typically around 1.5 million fps—it
dramatically lowers system cost and complexity. Moreover, COSUP can be
integrated with other imaging modalities such as multispectral or fluorescence

imaging, further broadening its application range.
Computational Techniques and Reconstruction Algorithms

The reconstruction phase in COSUP employs the Two-Step Iterative
Shrinkage/Thresholding Algorithm (TwIST), which is particularly well-suited
for solving underdetermined linear systems with sparse constraints. TwIST
provides improved convergence and stability over basic iterative shrinkage
methods, especially in the presence of ill-conditioned system matrices or noisy
data. The algorithm minimizes a composite cost function balancing data fidelity
and sparsity-promoting regularization, typically using the {1-norm as a proxy

for sparsity.

In practical implementation, TWIST enables the recovery of frame sequences
from a single sheared image and a corresponding sampling mask. Despite
limitations in spatial fidelity for complex or fine-detailed targets, the algorithm
is robust enough to preserve the main structural components of the scene, as

confirmed by both qualitative inspection and quantitative SSIM analysis.

Challenges and Future Directions

11



While COSUP represents a promising step toward democratizing ultrafast
imaging, several challenges remain. Chief among them is the trade-off between
spatial resolution and sequence depth—enhancing one often compromises the
other. Additionally, current reconstruction methods struggle with multiple
temporally separated pulses or objects with fine peripheral features, indicating

a need for more adaptive or object-aware reconstruction algorithms.

Another challenge is the generalization of mask design. While some empirical
findings are provided, the optimal mask configuration likely depends on the
characteristics of the target scene. A potential solution lies in integrating
machine learning techniques to adaptively generate or select masks based on

scene context.

Future work may also explore the integration of COSUP with hyperspectral
imaging, digital holography, or 3D reconstruction frameworks. Given its
affordability and flexibility, COSUP could play a pivotal role in applications
where ultrafast imaging is desired but cost constraints preclude traditional
methods, including resource-limited biomedical research, educational

laboratories, and field diagnostics.

2 .Based on the tutorial titled "Tutorial on Compressed Ultrafast Photography"

by Lai, Marquez, and Liang, the literature review can be synthesized and

summarized as follows:
1. Emergence of Ultrafast Imaging Techniques

The exploration of ultrafast phenomena, which unfold over femtosecond to
microsecond timescales, is crucial in understanding biological, chemical, and
physical processes. Traditional imaging methods, like pump-probe techniques,
require repeated measurements and extensive scanning. However, many
transient phenomena—such as spontaneous neural activity or light scattering in
biological tissues—are nonrepeatable or difficult to reproduce, making these
conventional approaches impractical.

1£



To address this challenge, single-shot ultrafast optical imaging has emerged.
These methods capture entire dynamic scenes within a single exposure,
avoiding the need for repetitive experiments. Ultrafast imaging techniques fall

into two main categories:

e Active-illumination techniques: Use short optical probe pulses and

encode temporal information into spectral or spatial features.

o Passive-detection techniques: Rely solely on capturing photons emitted
or scattered from dynamic scenes without requiring external light

modulation.

While active methods offer femtosecond resolution and high sensitivity, they
fail to image self-luminescent scenes (e.g., photoluminescence or plasma
emission). Conversely, passive methods can overcome this but are often limited

by the slower response of electronic components compared to optical ones.
2. Compressed Ultrafast Photography (CUP)

Introduced in 2014 by Dr. Lihong V. Wang's lab, CUP is a game-changing
single-shot ultrafast imaging method that synergizes compressed sensing (CS)
and streak imaging. Unlike conventional streak cameras that suffer from limited
spatial information, CUP leverages the sparsity of the target scene to enable

spatiotemporal data acquisition and computational image reconstruction.

Sensor
- Lens 2
N .
W 4 Rgtatmg
_ mirror
Input signal
| r

Léns 1 i

Fig 2.1: Ultrafast imaging set-up
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The CUP system comprises:

Spatial encoding (via binary masks),

Temporal shearing (via deflection of photoelectrons),

Spatiotemporal integration (using a 2D sensor),

Followed by image reconstruction using advanced algorithms.

This approach enables CUP to surpass limitations of 1D high-speed sensors and
traditional CCDs. It maintains temporal continuity in recordings, supports both
active and passive modalities, and allows for large frame depths. Its
compatibility with scientific-grade CCD/CMOS sensors further enhances its

practicality.

Fig 2.2: Pseudo patterns

3. Technical Advancements and Variants

CUP has evolved rapidly, with enhancements in both hardware and

reconstruction algorithms:

e Multi-view CUP systems improve reconstruction fidelity by capturing

both time-sheared and time-unsheared views.

o Hardware flexibility: Spatial encoding can be achieved using DMDs,

LC-SLMs, printed masks, or photolithographic techniques.

e High light throughput: CUP collects spatiotemporal information in a

single exposure, unlike point or line scanning techniques.

The forward model of CUP mathematically describes how a 3D scene (X, y, t)
is projected into 2D snapshots. Image reconstruction solves an inverse problem
using optimization frameworks like:

14



o Two-step iterative shrinkage/thresholding (TwIST),
o Total Variation (TV) regularization,
e Alternating Direction Method of Multipliers (ADMM),

e Plug-and-Play (PnP) ADMM, which allows integrating off-the-shelf

denoisers.
Moreover, deep learning has significantly advanced CUP reconstruction:

e Models such as D-HAN (Deep High-dimensional Adaptive Network)
integrate physical modelling with convolutional neural networks

(CNNs),

e These networks can be trained end-to-end and achieve high-quality

video reconstruction from compressed measurements,

e They also allow for data-driven encoding mask optimization.

3.Literature review based on the thesis titled “Single-shot real-time

compressed ultrahigh-speed imaging enabled by a snapshot-to-video

autoencoder (SMART-COSUP).”

High-speed imaging plays a critical role in capturing transient physical
phenomena that occur at micro- to nanosecond timescales. Applications span
from ultrafast biological dynamics to explosive chemical reactions and laser-
material interactions. Traditional high-speed imaging systems rely on hardware-
based solutions such as streak cameras or ultra-high frame rate CMOS sensors.
However, these systems face trade-offs in resolution, cost, and data throughput.
To address these limitations, recent research has shifted toward computational
imaging methods, particularly those based on compressed sensing (CS) and

deep learning.

15



Background: Compressed Ultrafast Photography

Compressed Ultrafast Photography (CUP), first proposed by Gao et al. in 2014,
combines a coded aperture, temporal shearing, and compressed sensing to
capture dynamic scenes in a single 2D snapshot. CUP uses a streak camera to
encode the temporal dimension spatially, achieving frame rates exceeding 100
billion fps. However, the high cost and limited accessibility of streak cameras

limit CUP’s widespread adoption.

To overcome this, Compressed Optical-Streaking Ultrafast Photography
(COSUP) was developed. COSUP adapts the CUP concept to more accessible
hardware, such as CMOS cameras, by employing spatial encoding and temporal
shearing via a galvanometer scanner. Despite its simplicity and affordability,

COSUP faces two significant challenges:

1. Long reconstruction times due to iterative algorithms (e.g., TwWIST,

ADMM).

2. Variable reconstruction quality highly dependent on sparsity

assumptions and system calibration.
3. Traditional Reconstruction Algorithms
3.1 Analytical-Modelling-Based Techniques

These techniques rely on mathematical models of the imaging system and prior

knowledge of the signal structure. Commonly used algorithms include:

e TwIST (Two-step Iterative Shrinkage/Thresholding) — Solves the

inverse problem with sparsity priors.

e ADMM (Alternating Direction Method of Multipliers) — Decomposes

the problem for parallel computation.

e PnP-ADMM with BM3D Denoising — Enhances ADMM with plug-and-
play denoising.

Despite their mathematical elegance, these methods:
e Require many iterations (tens to hundreds).

e Are not suitable for real-time applications (=16 Hz).

10



e Need careful tuning of hyperparameters and prior selection.
3.2 Machine-Learning-Based Techniques

Recent efforts utilize data-driven models to learn mappings from snapshots to

videos:

e Multilayer Perceptrons (MLPs) — High parameter count, poor
scalability.

o U-Net — Better spatial feature extraction but suffers from:
o Temporal incoherence.
o Dimensional mismatches requiring pseudo-inverse operations.
o Spatial patching, which breaks scene continuity.

These methods demonstrate faster inference but often lack generalization and

reconstruction fidelity in complex dynamic scenes.

4. Advancements: Snapshot-to-Video Autoencoder (S2V-AE)

To address the limitations of both analytic and early deep learning models, the
authors propose a Snapshot-to-Video Autoencoder (S2V-AE). This deep neural
network learns to directly reconstruct a temporal data cube (x,y,t)(X, y, t)(X,y,t)

from a single 2D snapshot (x,y)(X, y)(X,y).
4.1 Architecture
Figure 1: Schematic of S2V-AE

e Encoder: 5 convolutional layers — Bi-directional LSTM — Fully

connected layers — Temporal latent vectors.

e Generator: 7 transposed convolutional layers — Each latent vector

generates one frame.
This architecture separates spatial and temporal learning tasks:
e The encoder captures temporal dynamics from spatial patterns.

o The generator ensures spatial consistency via GAN-based training.

17



4.2 Training Strategy
The S2V-AE training is twofold:

1. Train the generator with GANSs using multiple discriminators for diverse

frame synthesis.

2. Train the encoder to match real data using MSE loss against frames

generated by the fixed generator.
This staged training:

e Avoids mode collapse (via multiple discriminators with random

projections).

e Ensures temporal coherence (via Bi-LSTM)

18



Chapter 3: Methodology

1. Image Compression:

Image Basis
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Fig 3.1: Flowchart of Image Compression
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In many real-world applications, especially in signal and image processing,

efficient representation and compression of data is critical. One powerful

approach involves leveraging the sparsity of signals in the frequency domain,
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particularly through the Fourier Transform. The illustration above captures a
simplified pipeline for compressing and reconstructing an image using the

principles of Fourier domain sparsity.

Step 1: Transformation to Frequency Domain

The process begins with a high-resolution, densely sampled original image. This
image is typically rich in visual detail, making it data-heavy. To reduce its
storage and computational footprint, the image is transformed from the spatial
domain into the frequency domain using the Fourier Transform. This
transformation represents the image in terms of its sinusoidal components—

essentially decomposing it into various frequency contributions.

Step 2: Observation of Sparsity

Upon transformation, the image is now represented as a matrix of Fourier
coefficients, which quantify the amplitude of specific frequency components
present in the image. Interestingly, in most natural images, the energy of the
signal is concentrated in a small number of low-frequency components, while
the majority of the higher-frequency coefficients are either very small or
negligible. This phenomenon is known as sparsity—the signal has very few

significant components in the transformed domain.

Step 3: Truncation and Data Reduction

Recognizing this sparsity allows for a significant reduction in data. The image
can be compressed by truncating the Fourier coefficient matrix—retaining only
the central region which contains the most significant 5% of the coefficients.
This region corresponds to the low-frequency components which hold most of
the visual information in the image. The remaining 95%, which mostly contains

noise or insignificant detail, is discarded.

This reduced dataset is referred to as the sparse representation of the image.

Despite keeping only a small portion of the coefficients, this sparse image still
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retains the core information needed to reconstruct a recognizable version of the

original.

Step 4: Reconstruction with Inverse Fourier Transform

To visualize or use the image again in the spatial domain, an Inverse Fourier
Transform is applied to the sparse frequency data. This results in a compressed
version of the original image. Though it may be slightly degraded due to the
data loss from truncation, it still provides a high-fidelity representation that is

visually very close to the original.

This process effectively filters out redundant or unnecessary data, preserving
only the most informative components. The result is a much lighter version of
the original image, suitable for storage or transmission, with minimal impact on

quality.

3.2 Why Images are compressible?

* Let we have a 20*20 B&W Image.

* Total combination possible= 2" (20*20) =2"400

* Total possible images=2"400

* Total number of nucleons in the known universe=10"80
* Here, (27400)> (10780), means bigger than the universe.

* Now think of a Megapixel Image of millions of coloured pixels and

having the choice of brightness and saturation of every pixel.
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This gives the idea
that millions of
the pixels in the

natural image

formation are

redundant and
that’s why images
are compressible.

The natural images do not lie
in the corner, they are
randomly scattered in the
pixel space.

Fig 3.3: Pixel Space

Natural image space consists of all types of images that we can experience in
our whole life from each camera angle. It can be anything, a pen, a coffee cup,

a human face, anything. It is a very huge space.

This gives the
idea that
millions of the
pixels in the
natural image
formation are
redundant and
that's why
images are
compressible.

Pixel Space(we can’t even imagine experiencing)

Natural Image
Space(we
experience)

The natural images do not

lie in the corner, they are

randomly scattered in the
pixel space.

Fig 3.4: Natural Image Space

Natura image space live inside of pixel space. Natural images occupy a

miniscule, tiny fraction of a tiny corner of this possible pixel space.

This gives the idea that millions of pixels in the natural image formation are

redundant and that’s why images are compressible.
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Very fast phenomenon

Create a
sheared image

Noisy/Blurred Image

(Compressed) snapshot

Fig 3.5: Flowchart showing image compression.

1. Introduction to Image Complexity

Images, at a fundamental level, are arrays of pixel values. Even a small black-
and-white image with limited resolution holds an astronomical number of
possible combinations. Consider a simple 20%20 black-and-white (binary)
image. Each pixel has two possible states (black or white), resulting in:

Total combinations — 220720} — 9400

This number 2 raised to the 400th power is staggeringly large. For perspective,
the estimated number of nucleons (protons and neutrons) in the entire known
universe is about 10" {80}, a figure vastly smaller than 27{400}. This
comparison illustrates how large the theoretical space of all possible images is,

even for small resolutions.

However, despite this theoretical immensity, only a tiny fraction of these
possible images actually occurs in the natural world. This observation leads to
one of the most profound insights in image processing: real-world images are
not randomly distributed throughout this enormous pixel space—they are highly

structured and sparse in nature.
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2. The Concept of Natural Image Space

The total set of all possible images forms what we can call the Pixel Space. This
space encompasses every potential arrangement of pixel values for a given
resolution and color depth. But in reality, natural images—those we capture with
cameras or observe with the naked eye—occupy only a very small subset of this

massive pixel space.

The graphic representation in the image above captures this idea effectively. The
pixel space is depicted as a large area containing every possible image
configuration. Within this space lies a concentrated and irregular region: the
Natural Image Space. This region is not in the corners or aligned neatly; rather,
it is randomly and sparsely distributed across the pixel space. This signifies that
natural images do not follow uniform randomness but instead emerge from
complex, structured generative processes (such as physical constraints, lighting,

perspective, and object coherence).

3. Redundancy in Natural Images

Most natural images contain large areas with similar or predictable pixel values.
This spatial correlation between neighbouring pixels implies that not all pixel
values carry unique information. For instance, in a photograph of the sky, large
portions of the image may have nearly the same shade of blue. Likewise, edges,
gradients, and textures follow regular patterns that can be approximated by

mathematical models or learned features.

This redundancy is a core reason why images are compressible. The apparent
complexity (e.g., megapixels of data) is deceptive, because much of this data is
repetitive or predictable. It is not the pixel values themselves that matter, but the

patterns and relationships between them.

In terms of information theory, the entropy of natural images is much lower than

that of random images. Random images would explore a wider variety of pixel
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configurations with no correlation, resulting in high entropy. But natural images

follow specific distributions, reducing the actual information content per pixel.

4. Compressibility and its Implications

Because natural images reside on a low-dimensional manifold within the high-
dimensional pixel space, they can be encoded with fewer bits without significant
loss of visual quality. This is the theoretical basis for image compression

algorithms like JPEG, PNG, and modern deep learning-based codecs.
These algorithms exploit redundancy by:

e Transforming the image into a more compact domain (e.g., Discrete

Cosine Transform in JPEG)
e Quantizing or removing less significant components
o Using statistical models to encode the remaining data efficiently

The insight from the figure is crucial: we do not need to encode all pixel
configurations—only those that lie within the natural image manifold. The rest

of the pixel space is effectively irrelevant for practical applications.

This has profound implications not only for compression but also for image
generation, super-resolution, denoising, and inpainting. By learning the
manifold of natural images using data-driven approaches (like autoencoders or
GANs), we can recover or generate plausible images even with limited

information.

5. From Pixel Space to Learning-Based Representations

Modern machine learning techniques, especially deep neural networks, attempt
to learn the structure of natural images in latent space. Autoencoders, for
example, map high-dimensional image data into a lower-dimensional latent

representation and reconstruct the original image from this compressed code.

This approach assumes that the set of natural images is manifold-structured—
meaning it can be embedded in a lower-dimensional space without significant
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loss of information. As such, tasks like image classification or reconstruction
are not conducted across the entire pixel space, but over this reduced and

meaningful subspace.

The understanding that natural images are not uniformly distributed—but
clustered and sparse within pixel space—has been foundational in the

development of:

e Compressed sensing: acquiring fewer measurements than traditional
sampling methods, then reconstructing signals/images using prior

knowledge about their sparsity.

o Image priors: constraints or learned patterns about what valid images

should look like.

e Generative modelling: producing realistic images from compact latent

codes (as in GANs or VAEs).

3.3 What is Sparsity? (Help in storing less data):

[ sis Sparse (mostly zero
entries)

DFT

S
Universal transform basis (it could
be wavelet transform, Fourier
transform, or any other transform,
which could efficiently represent our
data(X) in terms of sparse(S).

Image or
Signal

contains mostly zero elements

Converting the data (X) into sparse(S) helps in storing very less data as it
X=y*S

Fig 3.6: Sparsity Vector

In the domain of signal and image processing, efficient data representation is a
fundamental goal. Natural signals and images, though seemingly complex, often
contain patterns and redundancies that can be exploited for more compact

representation. One of the most powerful concepts enabling this compact
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representation is sparsity, especially when leveraged through appropriate

transform domains such as Fourier or wavelet transforms.

Transform-Domain Sparsity

Any signal or image, denoted by X, can often be represented in another domain
using a mathematical transform. This operation aims to uncover a latent
structure within the data—specifically, a domain in which most of the
information can be captured by only a few non-zero coefficients.

Mathematically, this is expressed as:

Here:
e X is the original signal or image (usually in spatial or time domain),

e W is the transform basis (e.g., Discrete Fourier Transform, Wavelet

Transform),
o S is the sparse representation of the signal in the transform domain.

In this representation, the majority of the elements in S are zero or negligibly
small. This sparsity is what allows us to store or transmit the signal more
efficiently. The transformation reorganizes the signal’s energy into fewer
significant coefficients, while the rest can be discarded or highly compressed

without significant loss of information.

Role of Universal Transform Bases

A universal transform basis is a pre-defined mathematical framework that
enables signals to be decomposed into simpler building blocks. Common

choices include:

e Fourier Transform: Captures global frequency components, ideal for

periodic or smooth signals.
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Wavelet Transform: Captures both frequency and spatial information,
suitable for analysing transient or localized features like edges in

images.

Cosine Transform (used in JPEG): Efficient for image compression by

capturing low-frequency components that dominate visual perception.

The essence of choosing an appropriate transform lies in how efficiently it

compresses the information from X into a sparse S. For many natural signals, a

small subset of basic functions in these transforms is sufficient to approximate

the original signal to a high degree of accuracy.

Advantages of Sparse Representations

The sparse model provides multiple benefits in practice:

1.

3.

Data Compression: Storing only the significant non-zero coefficients in

S drastically reduces storage requirements.

Efficient Processing: Algorithms operating on sparse data are typically

faster, as fewer elements are involved in computation.

Noise Robustness: Sparse representations help in denoising, as random

noise tends not to align well with the sparse structure.

Compressed Sensing: In applications where data acquisition is
expensive or slow (e.g., medical imaging, ultrafast photography),

sparsity enables the recovery of full signals from a few measurements.

The illustration emphasizes that sparsity is a property not of the raw signal X

but of its representation in the transform domain V. Once a sparse representation

S is obtained, the original data can be reconstructed by applying the inverse

transform.
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3.4 Compressed Sensing:

Noisy/Blurred Image

(Compressed) snapshot

Post-process to
extract images

High Fidelity

images

Fig 3.7: Flow chart showing compressed sensing.

* Earlier what we do is:

We take a high-dimensional imagel1 Fourier transforms it so that most of the
coefficients become zero(] we truncate it, so that we get a sparse vector that
mostlty contains the zero coefficients[| Now when we take inverse Fourier

transform we get the exact image as before with essential features restored.

* Now the question arises:

1. Why should | take a high-dimensional image as after doing the above
procedure | only left with only 5 % of the information and with the help of that
| get the actual image itself?

2. Can't | infer the non-zero coefficients of the image which after being
inverse Fourier transform gives me the actual image?

Compressed Sensing:

The real idea behind compressed sensing is that, we are going to take very
less measurements instead of high-resolution measurements, using those
measurements we are trying to infer non-zero coefficients(i.e, sparse vector)
using that sparse vector after taking inverse Fourier transform we will get the

actual image which is pretty good.

Measured very few
measurements
(sheared image)

Infer non-zero coefficients
(Sparse vector)

Pretty good image
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In traditional signal acquisition systems, capturing high-resolution images or
signals typically requires many measurements. These measurements must
satisty the Nyquist-Shannon sampling theorem, which dictates that the sampling
rate must be at least twice the highest frequency present in the signal to
accurately reconstruct it. However, this results in substantial data volumes,
leading to increased costs in terms of storage, processing time, and transmission
bandwidth. Compressed sensing (CS) challenges this conventional paradigm by
suggesting that we can recover signals and images from significantly fewer
samples than previously believed necessary—provided the signal has certain

properties like sparsity.

The diagram provided encapsulates the core idea of compressed sensing:
acquiring fewer measurements and reconstructing the original signal through
inference of sparse coefficients. Instead of recording a high-dimensional signal
in full, CS captures a few linear projections and uses mathematical techniques

to reconstruct the original data.

Throwing away the

unnecessary
. - . . Fourier coefficients
High Fidelity Representation | Inverse Fourier Transform Sparse Image L
7. A only containing the
of Original Image (very less data image)

coefficients which

_I/ } actually contribute

to the image.
Sparse

(Mostly Zero Entries)

Fig 3.8: Compressed Sensing

Principle of Sparsity

At the heart of compressed sensing lies the assumption of sparsity. Sparsity
refers to the idea that many signals or images, though they may appear complex
in the spatial or time domain, are simple in some transform domain. For
instance, a natural image might appear intricate in pixel space but could have
only a few non-zero coefficients in the Fourier or wavelet domain. In
mathematical terms, if a signal X of length N can be represented in a transform

basis W as:

X=Y.S
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where S is a sparse vector (i.e., most of its entries are zero or nearly zero), then
X is said to be sparse in the basis W. The compressed sensing framework

exploits this sparsity to recover X from far fewer measurements than N.
Measurement and Inference

The traditional approach involves measuring all entries of the signal and then
applying compression techniques to remove redundant information.
Compressed sensing flips this model by measuring the signal in a compressed
form to begin with. In the diagram, the "sheared image" refers to this
compressed measurement. Rather than acquiring the full-resolution image, a

few measurements are taken directly in a transformed or encoded format.
These limited measurements are represented as:
Y=C.X=C.W.S

Here, C is a sensing matrix that projects the original signal onto a lower-
dimensional space. Because we do not directly observe s, our task becomes one
of inferring it. This is an underdetermined system—fewer equations than
unknowns—but thanks to the sparsity of S, we can use optimization techniques

such as L1-norm minimization (Basis Pursuit) to accurately recover S.

Measured very few

measurements
(sheared image) \

Pretty good image

Infer non-zero coefficients
(Sparse vector)

Fig 3.9: Principle of Sparsity
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Signal Reconstruction

Once we estimate the sparse vector S, we apply an inverse transformation (e.g.,
inverse Fourier transform as denoted by F* {-1} in the diagram) to recover the

original signal:
X=¥.S

Surprisingly, this reconstruction is often nearly identical to what we would have
obtained using full-resolution data. This capability opens the door to efficient

data acquisition systems that are faster, cheaper, and more scalable.

The final step shown in the diagram “Pretty good image” emphasizes that while
we may not always achieve perfect fidelity, the reconstructed image retains most
of the essential information. For many applications, such as medical imaging,
astronomy, or high-speed photography, this level of reconstruction is more than

adequate.

Compressed Sensing Mathematical formula:

Universal transform
Basis

Sparse
Coefficient
vector

Measurement
Subsample matrix
of Random (Pulling
pixels of X Random
Pixels)

L |

Original Image X

Fig 3.10: CS Mathematical Formula

Compressed Sensing (CS) is a powerful framework that leverages sparsity in
signals to reconstruct them from a reduced number of measurements,
significantly below the Nyquist rate. This concept is particularly useful in
applications like image acquisition, where capturing every pixel may be
expensive or time-consuming. The diagram provided illustrates the architecture

of compressed sensing applied to imaging, specifically how sparse signal
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reconstruction is achieved through a combination of sampling, transformation,

and optimization.
1. Subsampling and Measurement Matrix

The original image, denoted as X, is assumed to be high-dimensional, such as a
full-resolution image. Rather than capturing all the pixel values, compressed
sensing techniques operate on a subsampled version of the image. This
subsampling is depicted as vector Y, which represents a collection of randomly

selected pixels from the image X.

To achieve this, a measurement matrix C is employed. This matrix essentially
acts as a selector that "pulls" or extracts random pixel values from the original
image. These selected values form the measurement vector Y. This process
allows for a significant reduction in the number of samples required, without
sacrificing the ability to reconstruct the original image, provided that certain

conditions are met.
2. Universal Transform Basis

While the image X may not be sparse in its raw pixel form, it is often sparse in
some transform domain. For instance, many natural images are sparse when
transformed into the wavelet or discrete cosine domain. This transformation is
achieved through a universal transform basis, denoted by the matrix . When
the image is represented in this domain, it can be expressed as a linear
combination of a few significant components, resulting in a sparse coefficient

vector S.

The relationship between the original image and its sparse representation is

given by:

X=¥.S
Here, ¥ is the transformation matrix, and S contains the sparse coefficients.
3. Measurement Model

Combining the measurement process and the transform domain, the overall

model of compressed sensing becomes:
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Y=C.WY.S

This equation indicates that the subsampled measurements Y are obtained by
first transforming the sparse coefficients S into the image domain using ¥ and
then applying the measurement matrix C to extract a subset of pixel values.
Since both C and W are known, the objective becomes to recover S from Y, even
though the number of observations is significantly fewer than the

dimensionality of the image.
Reconstruction of Sparse Signals

The core challenge in compressed sensing is the accurate reconstruction of the
original image X, or equivalently, the sparse coefficient vector S, from the
limited measurements Y. Since this system is underdetermined (fewer equations
than unknowns), traditional linear algebraic methods are insufficient. Instead,
are employed, leveraging the assumption that S contains very few non-zero

entries.

3.5 Concept Of TWIST Algorithm:

Understanding the Underdetermined Inverse Problem in Compressed Sensing

Compressed sensing introduces a paradigm shift in data acquisition by enabling
accurate signal reconstruction from far fewer measurements than traditional
methods. A key challenge in this framework is solving what is known as an
underdetermined inverse problem. This problem arises because we are trying to
recover a high-dimensional signal or image from a limited number of

measurements. The mathematical formulation is generally written as:
Y=C.¥.S
Where:

e Y is the measurement vector, containing a limited set of observations

(randomly selected pixels in the context of imaging).
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e (C is the measurement matrix, which defines how and which pixels from

the original image are sampled.

e YV is the transform basis, such as Fourier or wavelet basis, in which the

signal or image is sparse.
o Sis the sparse coefficient vector, which we aim to recover.

In this scenario, the goal is to find the sparse vector S, which when transformed
back using ¥, and sampled via matrix C, matches the observed vector Y. The
issue is that since Y contains only a small number of entries compared to the
size of S, the system is underdetermined meaning there are more unknowns than

equations. This naturally leads to an infinite number of potential solutions.

Sparsity and the Quest for the Best Solution

The underdetermined nature of the problem necessitates an additional constraint
to isolate a unique solution. This is where the concept of sparsity comes into
play. Sparsity assumes that the true signal S contains very few non-zero entries
when represented in a proper basis. In other words, most elements in S are zero

or negligible, and only a few carry the actual information.

Given this assumption, among the infinite possible vectors SSS that could
satisfy the equation Y=C.¥.S, we are interested in finding the sparsest one—the
vector with the fewest non-zero elements. This idea can be expressed

mathematically as an optimization problem:
min ||S||g subjectto Y =CU¥S

Where |ISII0 counts the number of non-zero elements in S. However, solving
this exact formulation is computationally infeasible as it is a combinatorial
problem. As a practical alternative, the problem is relaxed into the convex

optimization form:

min ||S|; subjectto Y =CU¥S
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Here, |IS]l: denotes the sum of the absolute values of the elements in S, which
can be efficiently solved and often leads to the same result as the original sparse

solution under certain conditions.

This approach leads to the identification of the sparsest solution that explains
the measurement a solution that likely corresponds to the actual image features

or signal characteristics in the transform domain.

Solving the Inverse Problem with TwIST Algorithm

To address the above optimization problem, several algorithms have been
developed, among which the TwIST algorithm (Two-step Iterative
Shrinkage/Thresholding) is particularly effective. TWIST is designed to handle
large-scale, sparse inverse problems efficiently and is well-suited for image

processing tasks.

The key idea behind TwIST is to iteratively refine the estimate of the sparse
vector S by combining the current and previous estimates in a specific way,
improving convergence speed and robustness over traditional methods like
ISTA (Iterative Shrinkage-Thresholding Algorithm). TWIST uses the following

iterative update rule:

S+ — (1 — )S*D 4 o - Shrink (5{’“1 +8- Vf(sf“))

Where:
o Shrink is a soft-thresholding function that promotes sparsity.
o Vfrepresents the gradient of the data fidelity term.
e o and Pare parameters controlling convergence and stability.

TwlIST is advantageous because it not only accelerates the recovery process but
also stabilizes the reconstruction in the presence of noise or partial observations.
It effectively balances the trade-off between fidelity to the observed

measurements Yand the sparsity of the solution S.
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In summary, the underdetermined inverse problem in compressed sensing is
addressed through a combination of mathematical modeling, sparsity
assumptions, and optimization techniques. The TwIST algorithm serves as a
practical and powerful tool to recover high-quality reconstructions from
minimal and incomplete data, making it a cornerstone in modern signal and

image processing.

3.6 Compressed sensing: conditions when it works:

1. ‘C’ to be incoherent w.r.t ‘y’, rows of ‘C’ should be orthogonal to

columns of “y’.

2. There should be randomness associated with matrix ‘C’. Incoherency is

generally achieved by randomness.

3. The sparse vector S is said to be K-Sparse if it contains exactly k non-
zero entries in it. To find out a Sparse vector S which is K-Sparse we

need to take measurements more than K.

No. of measurements(P):

P=K: K log(n/K)

Original dimensions o
vector high resolution image

X

A constant related to C and
Y (incoherent or coherent)

Fig 3.11: Condition of working

In compressed sensing, a key question is: sow many measurements are needed
to accurately reconstruct a signal or image from its compressed form? The

formula:
P=K1 K log(n/K)

provides a theoretical guideline to answer this. Here, P represents the minimum

number of measurements required for accurate recovery. This equation is
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derived from foundational results in information theory and sparsity-driven

signal reconstruction. Let's break down each component and their significance.

o K: This denotes the sparsity level of the signal or image in a given basis
Y. A signal is said to be K-sparse if only Kof its coefficients are
significantly non-zero when represented in a proper transform domain
(e.g., Fourier, wavelet). The smaller the K, the fewer measurements are

needed.

o n: This represents the total number of elements or pixels in the high-
resolution signal or image X. It reflects the ambient dimension, i.e., the

size of the original uncompressed data.

e log(n/K): This term arises from probabilistic bounds on recovering
sparse signals. It adjusts the number of required measurements
depending on how large the original data is compared to the number of
non-zero components. The logarithmic dependence ensures that the

number of required samples grows slowly as the resolution increases.

o Ki1: This is a constant that depends on the relationship between the
measurement matrix C and the sparsifying basis V. Specifically, it is
influenced by how coherent or incoherent these two matrices are.
Incoherence is a desirable property—it ensures that the measurements
are spread out in a way that captures different aspects of the signal,
which helps in accurate reconstruction. A lower coherence results in a

smaller K1, thus reducing the number of required samples.

3.7 Restricted Isometric Property in Image Processing:

In the field of image processing, the ability to recover high-quality images from
limited, corrupted, or noisy data is of paramount importance. Traditional
approaches often require large amounts of data, but modern techniques like
compressed sensing have revolutionized this by enabling the recovery of images
from significantly fewer measurements. A core theoretical tool that underpins
these advances is the Restricted Isometry Property (RIP). Originally introduced

within the framework of compressed sensing, RIP provides the mathematical

38



foundation to ensure accurate reconstruction of sparse signals, including natural
images, under certain conditions. This document explores the concept of RIP,
its mathematical formulation, significance in image processing, and its

applications in various image reconstruction tasks.

Compressed sensing (CS) is a technique that enables the acquisition and
recovery of sparse signals from far fewer samples than traditionally required. It
hinges on two main principles: sparsity and incoherence. RIP is critical because
it guarantees that all subsets of columns taken from the sensing matrix behave
almost like an orthonormal system. This orthonormal-like behavior is necessary
to ensure that different sparse signals map to sufficiently different measurement

vectors, thus avoiding ambiguity in reconstruction.
In image processing, RIP has significant implications for tasks such as:

o Image reconstruction: When reconstructing images from under-sampled
data (e.g., in MRI), RIP ensures that the transformation matrix retains

the critical features of sparse image representations.

o Denoising: In scenarios where images are corrupted by noise, algorithms

relying on sparsity and RIP can effectively isolate and remove noise.

o Inpainting: Missing parts of an image can be recovered accurately using
RIP-compliant methods, assuming the known parts of the image form a

sparse representation.

Several reconstruction algorithms leverage RIP to ensure robust and accurate
image recovery. One notable example 1is the Two-step Iterative
Shrinkage/Thresholding (TwIST) algorithm, which is particularly effective for
large-scale sparse reconstruction problems. These algorithms generally operate
under the assumption that the measurement matrix satisfies the RIP condition,
thereby ensuring that the optimization problem they solve has a unique and

stable solution.

In practical applications, although checking RIP for a given matrix is

computationally infeasible, it is well-established that certain types of random
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matrices (e.g., Gaussian or Bernoulli) satisfy the RIP with high probability when
the number of measurements is sufficient. This insight guides the design of

sensing systems in hardware implementations.
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3.8 MATLAB code:

CUP Reconstruction:

close all;
clear;

clc;

taus = (5:0.85:5);

num = size(taus,2);

for 1 = 1:num
tau = taus(i);

frames = 208;

PTRN = double(imresize(imread( patternl.tiff'),08.25));
pattern = 1;
if size(PTRN, 3) > 2
PTRN = sum(PTRN, 3);
end
bkg = mean{mean(mean(PTRN(1:16,1:18))));
PTRN = max(PTRN - bkg, @);
PTRN = circshift(PTRN, [+280 +8]);

KP = zeros{size(PTRN, 1), size(PTRN, 2), frames);
for ff = 1:frames
KP(:,:,ff) = circshift(PTRN, [(ff-1) @]);
end
clear PTRN;
KP = norml{KP);

sim = double{imresize(imread( shearedraccon.tif"), [256, 256]));
if size(sim, 3) > 2
sim = sum(sim, 3);
end
bg = mean(mean(sim(1:58, 1:58)));
sim = sim - bg;
sim(sim < 8) = 8;

sim = norml(sim);
maxiterations = 58;

piter = 8;
tolA = le-8;
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A = @(x) Rfuntwisti(x, KP);

AT = @(x) RTfuntwist(x, KP);

Psi = @(x, th) denoising(x, th, piter);
Phi = @(x) TWnorm3(x);

[cube, base, x_debias, obj, times, debias_start, mse_twist] = ...
TwISTmod(sim, A, tau, 'AT', AT, 'Psi’, Psi, ‘Phi’, Phi,
"Initialization”, 2, "Monotone®, 1,

"StopCriterion’, 1, "MaxIterA’, maxiterations,

"ToleranceA®, tolA, 'Debias’, @, "Verbose', 1);

for ii = 1:frames
im = cube(:,:,ii) - base;
im(im < 8.01) = @;
imagesc(im, [le-3 8.1]);
axis('image');
colormap(hot);
axis off;
pause(8.1);
F(ii) = getframe;

end

movie(F, 3, 5);

x = zeros(size(cube));
for ii = 1:frames
x(:,:,1ii) = max(@, cube(:,:,ii) - base);
x(:,:,1i) = circshift(x(:,:,ii), [-(ii-1) @]);
end
x = max(0, x - 8.9);

x = x .f max(x(:));

str = strcat('processed file kushagra M', num2str(pattern)};
save([str, ".mat"], "x");

end

This MATLAB script performs image reconstruction using the TwIST (Two-
step Iterative Shrinkage/Thresholding) algorithm over a range of regularization
parameters. It is designed to process a sheared image using a predefined

calibration pattern and output both visual results and processed data.
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Initialization and Loop Structure

The program initializes a list of regularization values (taus) and loops over each
value to test its impact on reconstruction performance. Within each iteration, the

algorithm is executed independently using the current tau.
Pattern and Sheared Image Preprocessing

A calibration pattern image (patternl.tiff) is read, resized, and converted to
grayscale if necessary. Background subtraction is performed using the mean of
the top-left region, and a vertical shift is applied to align the pattern with the
sheared image. A 3D matrix (KP) is generated by vertically shifting the pattern

across a sequence of frames to simulate movement.

The sheared image (shearedraccon.tif) is similarly resized, converted to
grayscale if needed, and normalized after background subtraction. These
preprocessing steps enhance contrast and ensure numerical consistency for the

TwIST algorithm.
TwIST Algorithm Configuration

The forward model (A) and its transpose (AT) are defined as function handles
using external helper functions. Total variation denoising and regularization
functions (Psi and Phi) are also configured. The algorithm is then executed via
TwISTmod, which returns a reconstructed 3D image cube, baseline image, and

performance metrics.
Visualization and Post-processing

The reconstructed frames are visualized sequentially using MATLAB’s image
display functions, with colormap adjustments and timing control for animation.
Each frame is stored to form a video preview. In the post-processing stage, the
baseline is subtracted from each frame, and non-negative normalization is

applied. The result is then realigned using reverse vertical shifts.

Finally, the processed 3D dataset is saved to a .mat file with a unique identifier.
This format allows future analysis or re-visualization of the denoised and

reconstructed image sequence.
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CUP Post Processing:

clear; clc; close all;
taus = (5:0.85:5);
num = size(taus, 2);
for i = 1l:num
tau = taus(i);
filename = 'processed_file kushagra M';
pattern = 1;
str = strcat(filename, num2str(pattern));

frames = 200;

[data, map] = importdata(strcat(str, '.mat'));

img@ = data;

clear data;

extl = double(imresize(imread(“referenceM.tif"™), [256,256]));
[nR, nC, nF] = size(img@);

pix = 12; bin = 48; Mag = ©.1; scanRange = 188;

dt = scanRange / 256;

(1e-9 / le-12) * dt;

cropBoxX = [1 256];

cropBoxY = [1 256];

dt

cropBoxT [1 frames];

videoFrameRate = 38;
cm_hot = colormap(hot);
close all;

cm_hot(1l, :) = [@ @ @];

bkg = mean{mean(mean(img@(1:10, 1:18, :))));
img® = max(img® - bkg, 8);
img® = img® ./ max(img®(:));

imgl = zeros{(cropBoxY(2) - cropBoxY(1l) + 1), (cropBoxX(2) - cropBoxX(1l) + 1), nF);
for ff = 1:nF
imgl(:,:,ff) = img@(cropBoxY(1l):cropBoxY(2), cropBoxX{1l):cropBoxX(2), ff);
end
for ff = 1:nF
imgl(:,:,ff)

max{(@, imgl(:,:,ff) - imgl(:,:,nF));
end
imgl = imgl(:,:,max(1l, round(cropBoxT(1})):min(nF, round(cropBoxT(2))));
nT = round{cropBoxT(2)) - round(cropBoxT(1));
for ff = 1:nF
imgl(:,:,ff) = flipud(imgl(:,:,ff));

end
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shiftPerFrame = 1;
for ff = 1:nF
imgl(:,:,ff) = circshift(imgl(:,:,ff), [round{(ff-1)*shiftPerFrame) 8]);

end

extl = max{extI - mean(mean(extI(1:18, 1:18})), 8);

extI = circshift(extI, [10 -18]);

extl = extI{cropBoxY(1l):cropBox¥(2), cropBoxX(1):cropBoxX(2));
extI = extI ./ max(extI(:));

extI = rot9@(extI, 2);

x = 1:256; y = 1:256;
[xx, yy] = meshgrid(x, y);
h = exp(-({xx-128).72)/(2"2)) .* exp(-((yy-128)."2)/(2"2});

extI = conv2(extI, h, "same’);

img2 = imgl;
for ff = 1:{cropBoxT(2) - cropBoxT(1) + 1)
img2(:,:,ff) = img2(:,:,ff) .* (extI. 1);

end

img2 = img2 ./ max(img2(:));
extI = max(@, extIl - 8.85);
extI = extI ./ max(extI(:));
img2 = max(@, img2 - 8.85);
img2 = img2 ./ max(img2(:));

sizePerPix = pix * bin / Mag;

sizePerPix = (le-6 / 1le-3) * sizePerPix;

dT = dt * bin;

[nRR, nCC, nFF] = size(imgl);

X = (-round({nCC/2):nCC-round({nCC/2)-1) .* sizePerPix;
Y = (-round(nRR/2):nRR-round(nRR/2)-1) .* sizePerPix;
[XX, YY] = meshgrid(X, Y);

T = (@:nFF-1) .* dT;

save( ' postProcessedData.mat’, "img2", ‘extI’, X', 'Y', 'T');

f = figure(l);
imagesc(X, Y, max(®, extI));
colormap(gray); axis off; axis image; clim([@ 1]);

hold on;

quiver(4, -10, 5, 8, 'ShowArrowHead', 'off', 'LineWidth', 2, "Color', 'white’);
text(4.5, -9, '5 mml’, ‘Color’, ‘white', "FontSize', 14);
hold on;

end

This MATLAB script performs post-processing on 3D image data loaded from

a .mat file, applies spatial and temporal adjustments, and generates visual
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outputs and a video. The process starts by loading volumetric image data and a
reference image, followed by setting essential parameters such as pixel size,

binning factor, magnification, cropping ranges, and time increments.

First, the script removes background noise by subtracting the average intensity
of a small corner region and normalizes the image intensity. It crops the spatial
region of interest based on predefined coordinates and normalizes each frame
by subtracting the last frame to reduce baseline effects. The script also flips each
frame vertically and applies a frame-dependent vertical shift correction to

compensate for misalignments.

Next, an external reference image undergoes normalization, cropping, rotation,
and blurring using a Gaussian filter, enhancing its spatial features. This
processed reference image is multiplied element-wise with every frame in the
main image stack to improve signal contrast, followed by final normalization

and background subtraction.

The code recalculates spatial coordinates considering binning and magnification
and generates corresponding temporal coordinates based on the adjusted time
per frame. The processed image stack, reference image, and coordinate arrays

are saved into a .mat file.

For visualization, the script creates a grayscale plot of the reference image with
scale annotations and saves it. It then iterates through the first 150 frames of the
processed 3D data, displaying each frame with a heat colormap and saving each
as a TIFF image. Finally, it compiles these frames into an AVI video file with a

specified frame rate, allowing easy review of the temporal sequence.
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3.9 DATA COLLECTION:

Droplet Bursting (Data Collection):

First frame Second frame Third frame
Three consecutive frames captured by high-speed camera.

f 1frame
) . - Time period —
= f Y=t} g L ; sh )
! : eared image
L Loy, W Frames Gaptured by Camera @ g
‘v 1 frame (e.g. 1 ps)
oo v = [ v soosubames > - Reference image
— LU = K Dl
e Compressed Imaging
Optical set-up Time Resolution Recorded Video

Fig 3.12: Data Collection

The phenomenon of droplet bursting represents a rapid physical process with
dynamic fluid motion and surface tension interactions that occur over
microsecond to nanosecond timescales. Capturing such events requires an
advanced imaging setup capable of extremely high temporal resolution.
Traditional high-speed cameras are often inadequate due to their frame rate

limitations or the sheer volume of data generated in short time intervals.

The provided visual outlines a process where high-speed imaging, aided by
compressed ultrafast photography (CUP), is employed to observe and analyze
the bursting of a droplet. In this specific case, a high-speed imaging system
captures three critical frames in sequence, revealing the evolution of the droplet
over a few milliseconds. This process allows for an in-depth study of fluid

dynamics, shockwave propagation, and material response.

Sheared and Reference Images in CUP

Two core elements are highlighted in the recorded video section of the image:

the sheared image and the reference image.

e Sheared Image: This represents a temporally encoded version of the

dynamic scene. The shearing process, typically induced by a fast
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galvanometric scanner or an equivalent optical system, shifts the image
along one spatial axis in direct proportion to time. As a result, each line
in the image corresponds to a different temporal moment, effectively
compressing a sequence of subframes into a single image. This

technique enables visualization of rapid motion in a single snapshot.

e Reference Image: Captured without any temporal modulation, this
image provides a static view of the droplet just before or after the event.
It serves as a spatial anchor during the reconstruction process, ensuring
that the recovered frames align correctly with the physical geometry of

the object or scene being studied.

The sheared and reference images work together to enable a full reconstruction
of the dynamic process, overcoming the limitations of conventional frame-by-

frame capture.
Time Resolution and Compressed Imaging

A key advantage of this system is its ultra-high temporal resolution, achieved
through compressed imaging. As visualized in the schematic labeled "Time
Resolution," the sheared image captures approximately 500 subframes
compressed into one single frame. The actual time resolution can reach the scale
of 2 nanoseconds per subframe, which is orders of magnitude faster than

standard high-speed cameras.
In the process:
e The DMD modulates the incoming light using a binary pattern.

e The galvo scanner moves the image on the camera sensor during the

exposure, mapping temporal changes onto spatial shifts.
e The camera collects this sheared and modulated signal in one shot.

During reconstruction, algorithms like TWIST (Two-Step Iterative Shrinkage
Thresholding) are used to recover the temporal sequence from the encoded
image. This approach provides an efficient way to study fast processes like

droplet bursting with minimal loss of temporal detail.
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Fig 3.13: Optical Set-up
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Mask setup Reference Image With Mask Sheared image with Mask
Fig 3.14: Mask & without Mask data collection

This setup is designed to capture ultrafast dynamic events by encoding both
spatial and temporal information into a single image. It relies on carefully
synchronized optical and electronic components to achieve extremely high time

resolution. Here's a step-by-step explanation of how each part works:

1. Laser Source (Illumination)

At the far left of the setup, a laser or light source provides the necessary
illumination. This is typically a pulsed laser, offering brief but intense flashes

of light, which are ideal for freezing motion during fast dynamic events such as
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droplet bursting. The wavelength and pulse duration of the laser are chosen

based on the experimental needs.
2. Collimating and Focusing Optics (Lenses L1-1L4)

e L1 and L2: These lenses form a collimating and focusing system that
directs the laser beam through the optical path with minimal divergence.
They ensure the beam is appropriately aligned and shaped for interaction

with the modulation devices.

e L3: This lens focuses the modulated light onto the camera sensor, but
before reaching the sensor, the light passes through other key

components.

e L4: Positioned after the galvo scanner, this lens helps collect the sheared

image and focuses it precisely onto the camera's sensor.

Each lens is positioned to maintain beam quality and to match the system’s focal

requirements at different stages of the path.
3. Digital Micromirror Device (DMD)

The DMD plays a crucial role in spatial encoding. It contains an array of
microscopic mirrors that can rapidly tilt to modulate incoming light based on a
pre-programmed binary pattern. This pattern encodes spatial information onto

the light, which is essential for later decoding during image reconstruction.

The DMD helps introduce structured light modulation into the system, which
acts like a fingerprint on the image, allowing the post-processing algorithm to

distinguish and reconstruct temporal frames from a single sheared image.

4. Galvanometric (Galvo) Scanner

The Galvo scanner consists of a fast-rotating mirror controlled by a voltage
signal. As the mirror moves, it introduces a continuous deflection to the light
beam. This creates a temporal shear in the captured image—each row (or

column) of the image corresponds to a slightly different moment in time.
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The galvo scanner is synchronized with the rest of the system to translate the
time-domain event into a spatial distortion. This shear encodes temporal

progression into a single camera exposure.

5. Synchronization Electronics (Function and Pulse Generators)
These components control the timing of all key devices in the setup:

e The function generator sends signals to the galvo scanner, DMD, and

potentially to the laser, ensuring everything operates in precise timing.

o The pulse generator triggers the camera and the laser pulses at exact
intervals, enabling perfect synchronization between illumination and

capture.

Together, these generators act like the brain of the system, coordinating all

activities down to the nanosecond.
6. Camera and Data Acquisition System

The camera, placed at the output end, captures the sheared and modulated light
as a single image. This image contains embedded spatial and temporal
information. Although the camera itself captures just one frame, the encoded
data inside this frame allows for reconstruction of hundreds of subframes using

computational algorithms.

A connected computer system collects the image data and processes it using
algorithms such as TwWIST (Two-Step Iterative Shrinkage/Thresholding). This
post-processing step reconstructs the time-resolved video from the compressed

data captured by the system.
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CHAPTER 4: Results

We need three things:

Sheared Reference
Pattern .
Image Image

We have two MATLAB programs, The first is for
CUP reconstruction, which runs the twist
algorithm, and the second is the Post
Processing Program, which extracts the
frames.

Fig 4.1 Things Needed

Sheared Reference
1 Pattern .
mage image

Fig 4.2 Pictorial View

The image outlines three key inputs necessary for CUP reconstruction:

1. Sheared Image — This is the primary data obtained from the CUP camera.
It contains a temporally encoded version of the scene, where each row
of the image corresponds to a different time slice due to the shearing

process applied during capture.
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2. Pattern — A known, fixed modulation pattern is imposed on the incoming
light signal, typically using a digital micromirror device (DMD) or
spatial light modulator (SLM). This pattern is essential for unmixing the

temporally encoded data.

3. Reference Image — This static image of the scene, captured without any
temporal encoding, provides spatial context. It helps in aligning and
calibrating the reconstruction output to the actual physical layout of the

scene.

Together, these three inputs form the core dataset required to reconstruct a high-

fidelity video from a single CUP frame.

1. CUP Reconstruction Program

This program focuses on recovering the video frames from the sheared image
using an iterative computational algorithm. The core method employed is the
Two-Step Iterative Shrinkage/Thresholding (TwIST) algorithm, which is known
for its efficiency in solving inverse problems such as image reconstruction.
TwIST works by iteratively refining an estimate of the true image sequence

based on the input sheared image and the known modulation pattern.
The main tasks performed by this program include:

o Preprocessing the sheared image and pattern to prepare them for

reconstruction.

o Setting up the measurement matrix based on the pattern and shearing

geometry.
o [teratively applying the TwIST algorithm to solve the inverse problem.

e Outputting a reconstructed video volume where each slice represents a

different time step.
2. Post-Processing Program

Once the frames are reconstructed, this second MATLAB program handles their

visualization, enhancement, and export. This includes:
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o Extracting individual frames from the video volume.

e Aligning the reconstructed video with the reference image for spatial

correction.
e Normalizing and enhancing the frames for better visual quality.

e Optionally saving the output as a video or image sequence for analysis

and presentation.

4.1 RESULTS FOR DROPLET IMAGE:

Sheared Image Pattern Reference Image

Extracted Images

Fig 4.3: Results for Droplet Image

The image illustrates a computational imaging process where a sheared image,
combined with a known coded pattern, is used to reconstruct temporal frames
from a high-speed event. The top row shows the original sheared image, the
binary-coded pattern used for encoding, and a green-tinted reference image
containing a clear object (a droplet). The bottom two rows present the extracted
frames over time, rendered in red with visible timestamps, showing the
progressive movement or appearance of the object. This setup demonstrates
how temporal information can be recovered from a spatially sheared input using

structured illumination or coding techniques.
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Expected number of extracted images = ~400

These processed images are for 50% scaling
hence the low resolution compared to
original reference image.

Fig 4.4: Extracted Images of Droplet

4.2 RESULTS FOR RACCON IMAGE:

Sheared Image Pattern Reference Image

Extracted Images

Fig 4.5: Results for Raccoon Image

This image set demonstrates a compressed ultrafast imaging technique where a
temporally sheared scene is encoded using a known binary pattern to enable
frame-by-frame reconstruction. The top row shows the essential components: a
sheared image capturing overlapping temporal slices, a random or pseudo-
random pattern used for encoding temporal information, and a reference image
for comparison. The bottom row presents the reconstructed frames, where
motion and structural changes over time are visualized in red, showing dynamic
content unfolding within the encoded exposure. This technique enables high-
speed event capture beyond traditional camera frame rates by exploiting spatial-

temporal encoding and computational reconstruction.
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The bottom row shows a sequence of reconstructed frames that capture the
motion of a raccoon image moving downward over time. In each consecutive
frame, the raccoon’s face appears slightly lower than in the previous one,
illustrating its vertical movement. The gradual shift in position across the frames
represents different time instances, effectively showing a time-lapse of the
raccoon’s descent. This progression demonstrates how the temporal information
encoded in the sheared image has been successfully decoded to reveal the

dynamic motion of the subject.

4.3 RESULTS FOR SHAPE M:
'dmagc Pattern Reference image

Extracted Images

Fig 4.6: Results for Shape M image

The displayed figure presents a sequence from a computational imaging setup
used to recover fast temporal events. The top row includes a sheared image, a
random encoding pattern, and a reference image showing the letter "M". The
sheared image captures multiple temporal instances compressed into a single
frame, while the binary pattern is used for temporal encoding. The bottom row
reveals the extracted images reconstructed from the sheared input. These frames
show the "M" character moving vertically upward over time, becoming clearer
and more centered with each step. This illustrates how the encoded temporal
information is successfully decoded, enabling visualization of high-speed

vertical motion across different time slices.
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The sequence of extracted images in the bottom row clearly captures the vertical
motion of the letter "M" over time. At the beginning of the sequence, the "M"
appears at the lower part of the frame, partially visible and dim, indicating the
starting position of the motion. As time progresses through the frames, the "M"
moves upward steadily, becoming more centered, distinct, and fully visible.
This upward displacement reflects a smooth vertical translation, suggesting the
object is moving continuously in the upward direction during the exposure
period. The bright red background shifting along with the letter enhances the
sense of motion, while the pattern-based decoding ensures the temporal order
of this motion is preserved. This set effectively demonstrates how dynamic
scenes can be captured and reconstructed from a single sheared image using

temporal coding techniques.
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CONCLUSION:

This thesis presents a comprehensive study and implementation of Compressed
Optical Shearing Ultrafast Photography (COSUP), offering an efficient and
cost-effective solution for capturing ultrafast dynamic events. Through
theoretical analysis, optical setup design, algorithmic development, and
experimental validation, the work successfully demonstrates how a single
temporally sheared image, modulated with a known spatial pattern, can be
computationally decoded to reconstruct high-speed video sequences. The
system effectively captures phenomena like droplet bursting and object
motion—traditionally requiring expensive high-speed cameras—using

affordable hardware and compressed sensing principles.

The integration of the TwIST algorithm played a crucial role in enabling
accurate frame recovery from underdetermined measurements, validating the
robustness of sparse reconstruction methods in practical applications. The
vertical motion observed in experiments—such as the downward movement of
a raccoon image or the upward displacement of the letter “M”—underscores the
technique’s temporal fidelity and ability to resolve dynamic motion sequences

with clarity.

Moreover, the system offers significant advantages over traditional high-speed
imaging: reduced hardware complexity, minimal data storage, and one-shot
capture capability for non-repeatable events. These strengths position COSUP
as a promising alternative for ultrafast imaging needs in fluid dynamics,
combustion research, biomedical diagnostics, and other time-critical domains.
The findings lay the groundwork for further research in integrating deep
learning for faster reconstruction and exploring applications in 3D or
hyperspectral ultrafast imaging, thereby expanding the impact of compressed

sensing in scientific visualization
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FUTURE SCOPE

The work presented in this thesis lays a strong foundation for further exploration
and development in the field of compressed ultrafast imaging, particularly with
the COSUP (Compressed Optical Shearing Ultrafast Photography) technique.
Several promising directions can enhance both the capabilities and practical
deployment of this technology. One major avenue is the integration of deep
learning algorithms for real-time reconstruction. Traditional iterative methods
like TwIST, while effective, are computationally intensive. Deep neural
networks trained on representative datasets can drastically reduce
reconstruction time, enabling real-time feedback for live experiments or

diagnostics.

Another key area is the optimization of mask patterns used during encoding.
Currently, random or pseudo-random binary patterns are used, but adaptive or
learning-based mask generation could significantly improve reconstruction
quality, especially for scenes with complex dynamics. Research into scene-
aware or object-aware encoding could make the system more intelligent and

robust under varied experimental conditions.

Hardware-wise, the COSUP system could be extended to support multi-modal
imaging, such as combining ultrafast temporal resolution with spectral or depth
information, thereby making it suitable for advanced applications like chemical
plume analysis, tissue diagnostics, or turbulence visualization in 3D.
Furthermore, miniaturization of the setup using meta-surfaces or integrated
optics could lead to portable ultrafast cameras suitable for use in field conditions

or compact laboratory environments.

Finally, COSUP holds potential in non-traditional domains such as biomedical
imaging, materials testing, aerospace diagnostics, and autonomous navigation,
where high-speed events must be captured accurately without bulky or
expensive hardware. By refining the system for robustness, speed, and
integration, this research can significantly contribute to democratizing ultrafast

imaging across academia, industry, and even consumer technologies.
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