LLM Based Approaches For Traffic
Prediction In Networks Traffic

M.Tech Thesis
by

Rahul Kushwah

DEPARTMENT OF ELECTRICAL
ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY
INDORE

May 2025

LLM Based Approaches For Traffic
Prediction In Networks Traffic

A THESIS

Submitted in partial fulfillment of the
requirements for the award of the degree
of

Master of Technology
by

Rahul Kushwah
2302102015

DEPARTMENT OF ELECTRICAL
ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY
INDORE

May 2025

' INDIAN INSTITUTE OF TECHNOLOGY INDORE

=5
i inc

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled LLMs Based
Approaches For Traffic Prediction In Networks Traffic. in the partial fulfillment of
the requirements for the award of the degree of Master of Technology and submitted in the
Department of Electrical Engineering, Indian Institute of Technology Indore, is an
authentic record of my own work carried out during the period from July 2024 to May 2025
under the supervision of Dr. Dibbendu Roy, Indian Institute of Technology Indore, India.

The matter presented in this thesis has not been submitted by me for the award of any

other degree of this or any other institute.

@z as

Signature of the Student with Date
(Rahul Kushwah)

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Signature of Thesis gl?)é?\!l%(g with Date
(Dr.Dibbendu Roy)

Rahul Kushwah has successfully given his/her M.Tech. Oral Examination held on 07 May 2025.

Listird~ b~ Saphasshis. Glok

Signature(s) of Supervisor(s) of M.Tech. thesis Convener, DPGC
Date: _27/5/25 Date: _ 90-05-2025

Dibbendu Roy
27/5/25

Dibbendu Roy
27/5/25

ACKNOWLEDGEMENTS

I would like to thank everyone who helped and supported me during my M.Tech

journey and the completion of this thesis.

First of all, I am very thankful to my respected guide, Dr. Dibbendu Roy for his
continuous guidance, support, and motivation throughout this research work. His expert
advice, valuable suggestions, and encouragement helped me at every stage of the thesis.
Whenever I had doubts or faced challenges, he was always there to help and guide me in

the right direction.

I also want to thank all the professors and staff members of the Electrical Engi-
neering Department, IIT Indore for their support and for providing me with quality
education during my M.Tech. Their teachings helped me gain knowledge and confidence
in my subject.

I am also very grateful to my classmates and friends who supported me during this
journey. They were always there for discussions, solving problems together, and sharing
experiences, which made this work more enjoyable and easier.

I would like to thank ITT Indore for providing excellent lab facilities, internet access,
software tools, and a peaceful research environment. These resources played an important

role in completing my experiments and simulations successfully.

Last but not least, I am deeply thankful to my family especially my parents for their
endless love, support, and belief in me. Their emotional strength and encouragement
helped me stay focused and motivated during tough times.

This thesis is the result of not just my efforts, but also the support and guidance of
all these wonderful people. I sincerely thank each one of them from the bottom of my

heart.

Rahul Kushwah

Masters of Technology

(Communication and Signal Processing)
Roll Number: 2302102015

IIT Indore

ABSTRACT

In modern communication networks, particularly within the context of 5G and be-
yond, network slicing has emerged as a key technique to support diverse services with
varying Quality of Service (QoS) requirements. Each slice is designed to meet the spe-
cific needs of applications such as video streaming, [oT, and ultra-reliable low-latency
communications, and must be provisioned with appropriate resources.

A major challenge in network slicing is the dynamic and unpredictable nature of
network traffic. As traffic is user-generated and varies over time, it cannot be directly
controlled by the network operator. This time-varying behavior makes static resource
allocation strategies inefficient, potentially leading to congestion, increased delay, or poor
resource utilization. Therefore, accurate traffic prediction is essential to enable proactive
and adaptive resource management.

This thesis investigates the application of deep learning techniques for traffic predic-
tion in network slicing scenarios. Specifically, Long Short-Term Memory (LSTM) and
Transformer-based models are explored due to their ability to capture long-term tempo-
ral dependencies in time-series data. The study is carried out using classical single-server
queuing models such as M/M/1, D/D/1, M/G/1, G/G/1, and G/M/1, which help in
understanding basic traffic behaviors in a controlled setting.

However, it is important to note that real-world traffic conditions are more complex.
At router and base station sites, traffic from multiple services is often multiplexed, result-
ing in aggregated arrival patterns that do not follow regular or idealized distributions.
These mixtures of heterogeneous traffic types make the arrival statistics highly irregular
and challenging to model using traditional analytical methods. In such scenarios, data-
driven approaches like deep learning provide a promising solution by learning complex
patterns directly from empirical traffic data.

The predicted traffic is then utilized to guide dynamic and intelligent resource allo-

cation, enhancing the adaptability and efficiency of the network slicing framework.

Contents

List of Figures iv
List of Tables vii
1 Introduction 1
1.1 Background 1
1.2 Motivationo 1
1.3 Problem Statement oL 2
1.4 Objectives 3
1.5 Scope of the Work 3
1.6 Significance of the Study oo 4
2 Literature Review 5
2.1 Advancements in Communication Technologies)
2.2 Large Language Models in Network Management 5)
2.3 Transformer-based Numerical Prediction in Network Traffic. 8
2.4 Integration of Queuing Theory Models 9
2.5 Limitations and Opportunities for Future Research 9
2.6 SUmMmary . o.o.o. .. 10
3 Methodology 11
3.1 Overview 11
3.2 Research Objectives. 11
3.3 Data Collection and Preprocessing 12
3.4 Transformer Model Architecture 12
3.5 Model Training and Validation 13

i

CONTENTS ii
3.6 Integration with Queuing Models 13
3.7 Evaluation Metrics oo 14
3.8 Implementation Tools and Environment 14
3.9 Summary ... 14

4 Model Implementation 16
4.1 Recurrent Neural Networks (RNN) 16
4.2 Long Short-Term Memory (LSTM) 17
4.3 Transformer Model 19

4.3.1 Self-Attention Mechanism 19
4.3.2 Multi-Head Attention L. 19
4.3.3 Positional Encoding 0000 20
4.4 Summary ... 21
4.5 Modified Transformer Model 21
4.5.1 Motivation Lo 21
4.5.2 Proposed Modifications to the Transformer Model 21
4.5.3 Significance of the Contribution 22
4.5.4 Comparison with Standard Transformer 24
4.5.5 Conclusion 24

5 Data Collection and Preprocessing 25
5.1 Introduction 25
5.2 Theoretical Background of Queueing Models 25

5.2.1 M/M/1 Queue (Exponential/Exponential/1) 26
5.2.2 D/D/1 Queue (Deterministic/Deterministic/1) 27
5.2.3 M/G/1 Queue (Markovian/General/1) 29
5.2.4 M/D/1 Queue (Markovian/Deterministic/1) 31
5.3 Network Metrics Captured 32
5.3.1 Arrival Time 32
5.3.2 Service Time 32
5.3.3 Latency 32
5.3.4 Jitter 32

CONTENTS iii

5.3.5 Queue Length 33

5.4 Data Preprocessing L 33
5.4.1 Handling Missing Values 33
5.4.2 Feature Normalization 34
5.4.3 Sequence Preparation 34
5.4.4 Train-Test Splitting 34

5.5 SUMMATY o v v e 35
6 Experimental Setup 36
6.1 Introduction 36
6.2 Hardware and Software Environment 36
6.2.1 Hardware Configuration 36
6.2.2 Software Tools 37

6.3 Dataset Generation and Configuration 38
6.3.1 Simulated Queueing Models L. 38
6.3.2 Dataset Structure Lo 38
6.3.3 Preprocessing Steps Lo 39

6.4 Model Configurations 39
6.4.1 LSTM Model Details 39

6.4.2 Modified Transformer Model for Time Series Forecasting in Net-

work Traffic 40

6.5 Training Setup L 42
6.6 Evaluation Metrics 43
6.7 Summary 44
7 Results And Analysis 46
7.1 Visualization of Results L. 46
7.1.1 D/D/1 Queue Model 46
7.1.2 M/G/1 Queue Model 48
7.1.3 M/D/1 Queue Model 49
7.1.4 Aggregator-Based Queueing Model 50
7.1.5 M/M/1 Queue Model 51

iii

CONTENTS

v

References

v

List of Figures

2.1

2.2
2.3

4.1
4.2
4.3
4.4

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Applications, mechanisms, and enabling techniques for domain-adapted
network LLM.
LLM Assisted End User Network Slice Intent Translation.
A hypothetical interaction between an end user and an intelligent LLM,

negotiating over a telemedicine service

Basic Recurrent Neural Network architecture
Structure of an LSTM with gates
Transformer architecture overview

Transformer architecture overview

Transformer Model Predictions vs Actual for D/D/1 Queue.
Transformer Model Predictions vs Actual for M/G/1 Queue
Transformer Model Predictions vs Actual for M/D/1 Queue
Transformer Model Predictions vs Actual for Aggregator Queue Model

LSTM Arrival Time Prediction for M/M/1 Queue
LSTM Latency Prediction for M/M/1 Queue
LSTM lJitter Prediction for M/M/1 Queue
Transformer Arrival Time Prediction for M/M/1 Queue

Transformer Latency Prediction for M/M/1 Queue

7.10 Transformer Jitter Prediction for M/M/1 Queue

7.11 Transformer Model Training and Validation Loss over Epochs

List of Tables

4.1

7.1

7.2

Comparison between Standard and Modified Transformer

Performance Comparison of Queueing Models Using Various
Evaluation Metrics for Transformer Model
Performance Metrics for Transformer, LSTM, and Neural Re-

gression Modelso

vil

24

Chapter 1

Introduction

1.1 Background

With the exponential growth of mobile devices, 0T systems, and internet connected
applications, modern communication networks face increasing pressure to deliver reliable,
highspeed data services [25] . The proliferation of multimedia content, cloud-based appli-
cations, and real-time services such as video conferencing and gaming necessitates precise
and efficient traffic management strategies. Technologies such as 5G and the forthcoming
6G networks introduce stringent requirements for low latency, high throughput, and ultra-
reliable communication. These include key use cases such as ultra-reliable low-latency
communication, massive machine type communication, and enhanced mobile broadband.
One of the most promising techniques to address these complex requirements is network
traffic prediction. It enables operators to forecast future data load using historical traffic
patterns, allowing them to dynamically allocate network resources, avoid congestion, and
optimize quality of service (QoS) [27] . Effective traffic prediction reduces packet loss,
improves bandwidth utilization, and supports proactive rather than reactive network

management.
1.2 Motivation

Predicting network traffic is essential for keeping communication networks running

smoothly. When we can accurately forecast traffic patterns, it becomes easier to manage

CHAPTER 1. INTRODUCTION 2

bandwidth, reduce delays, and provide users with a better overall experience. Traditional
methods like ARIMA, moving averages, and exponential smoothing have been used for
prediction, but they often fall short. These models struggle with the complex, non-linear
patterns and long-term trends that are common in real-world network traffic. In recent
years, machine learning especially deep learning—has opened new doors. Models like
Long Short-Term Memory (LSTM) networks and Transformers have shown great success
in predicting time-series data [22, 13]. LSTM networks are built to understand sequences
and long term relationships, while Transformers use self attention to identify important
patterns over time [29]. By using these advanced models in network traffic prediction,
we can make forecasts that are more accurate. This helps network providers act before
problems occur—Ilike traffic spikes—so they can better allocate resources. As a result,

the network becomes more efficient, scalable, and reliable for everyone who uses it.

1.3 Problem Statement

Modern networks face increasing traffic complexity due to varying data loads, hetero-
geneous devices, and dynamic user behavior [25]. Traditional forecasting methods often
fall short in capturing the stochastic and temporal characteristics of such data. Conse-
quently, there’s a need for sophisticated deep learning-based approaches that can learn

intricate patterns from time-series data and provide accurate forecasts.

This research aims to explore and compare two deep learning models—LSTM and
Transformer for network traffic prediction using Python-based simulation. The study
focuses on evaluating model performance on aggregator of different types of queueing
models (such as M/M/1, D/D/1, etc.) using synthetic and real traffic datasets. It seeks
to identify the most effective approach for predicting key performance indicators such as

arrival time, service time, latency, and jitter.

CHAPTER 1. INTRODUCTION 3

1.4 Objectives

The primary objectives of this research are:

To collect and preprocess network traffic data representing aggregate various queue-

ing scenarios.

e To implement deep learning models, specifically LSTM and Transformer, for fore-

casting network metrics.

e To evaluate the models based on performance metrics such as Mean Absolute Error

(MAE), Root Mean Squared Error (RMSE), and R Squared (R?) score [36].

e To analyzed and compared the performance of LSTM and Transformer architec-

tures.
e To visualize and interpret the predicted trends for network traffic parameters.

e To derive insights that could support more efficient resource allocation strategies

in future communication systems.

1.5 Scope of the Work

This study is focused on software-based modeling and analysis of network traffic
prediction. The scope is restricted to using Python for the development, training, and
evaluation of LSTM and Transformer models. Experiments are conducted using both
synthetic datasets based on queueing models and real-world datasets where applicable.

Key libraries are used include NumPy for numerical operation, Pandas for data ma-
nipulation, TensorFlow and Keras for deep learning, and Matplotlib/Seaborn for data
visualization. The research does not cover hardware implementation, integration with
live systems, or physical layer modeling. However, the outcomes provide a theoretical

and practical foundation for such future work.

3

CHAPTER 1. INTRODUCTION 4

1.6 Significance of the Study

This research contributes to the growing field of intelligent network management
by applying state of art deep learning techniques to the problem of traffic prediction.
Accurate forecasting supports improved decision-making in network planning, including
dynamic resource provisioning, congestion avoidance, and service quality improvement.

Furthermore, the comparative analysis of LSTM and Transformer models offers in-
sights into their strengths and limitations in handling different traffic patterns. The
findings may inform the development of hybrid or ensemble models, adaptive systems,
and real-time predictive engines. As networks evolve toward 6G and beyond, such pre-

dictive capabilities will become increasingly vital.

Chapter 2

Literature Review

2.1 Advancements in Communication Technologies

The rapid evolution of communication technologies, especially the transition from
5G to 6G, has intensified research efforts focused on enhancing the efficiency of network
traffic prediction, resource allocation, and network slicing orchestration. As the demands
of modern applications grow more complex, the networking community has turned to
artificial intelligence (AI) for innovative solutions. Among the most promising approaches
are those based on Large Language Models (LLM) and Transformer-based architectures
[13, 14], which bring powerful capabilities in natural language understanding and deep

representation learning to the real of networking.

2.2 Large Language Models in Network Manage-

ment

ChatNet: LLM for Automated Network Intelligence (Huang et al., 2023)
Huang et al. presented ChatNet, a pioneering framework designed to bridge the gap
between human intent and network operations through the use of LLM [11]. This model
leverages techniques such as prompt engineering and parameter-efficient finetuning to

adapt general-purpose LLMs to the specific linguistic and operational demands of net-

5

CHAPTER 2. LITERATURE REVIEW

working environments. ChatNet is built on the concept of embodied intelligence, where
LLMs are not only capable of understanding language but also of interfacing with net-
work tools such as solvers, analyzers, and visualization platforms [16]. This framework
allows for the execution of complex tasks like capacity planning, fault diagnosis, and
security enforcement by interpreting natural language queries and mapping them to net-
work actions. Despite its strengths, ChatNet remains predominantly focused on semantic
transformation and tool orchestration, lacking the infrastructure for predictive modeling
based on time-series traffic data, which is vital for proactive resource allocation in dy-

namic network environments.

(a) LLM applications for vertical network fields

(c) Domain-adapted

Inference [~ LLMs for networking
.' ----------------- - LI st b f'""""""""""""I
:@Prompts b ®Prompts ¥ @Prompts & ®Prompts : :
] / ot _ [I : .
| Givemeanetwork capacity | | Applicationx hasalotof | ! Thereisanew Ciscodevice | | Capture traffic of mirror port P, i ! Q |
i planning scheme, lujafﬁc 1} Ppacketloss, pleasecheck 1 1 with brand serial number... | ! use Wireshark to parse packet | [... Y. ________ H
| matrixis ... constraints " the network status and 11 Please configure itto access | ! protocol, issue firewall policies | e Plug-and-play
| are... minimize the costs ... " output a diagnostic report... i1 the SDN controller | | toprevent malicious attacks | AP; +°$ tool kits
] ' ' ['
' ! W [1
:@ Results ; ;@ Results i @ Results |1 @ Results Prompt engineerings
1 ! ' | o ———
i Sure, I'dbehappytohelp! ! | Thelink L,onswitchS;is | | According to the device . i OK! First, the caplured traffic | 1+ Zero shot N
! The following is the scheme 1+ ! intemrupted. May | migrate x Y manual... the configuration ! 1 is... After parse ... Finally, | ChaiNet ! 3 :
' 156 56 E I tothe backup path? ''1 commands are </>... done! ! E the policies are generated ... ! 4+ Fow snat !
Rt s B ' e [[' 1+ CoT, RAG)
A" 2 G H ! 2
EREF C g m o o | |] S22
}o1oet gwet e st | ¢ M o » i Policy i
v V- | X 5 i " ' Finetuning with massive
| m ' s T - - | Manual Commands Config | ! & —g : network knowledge
! o 2 Backup path 1 1 P Parser/Tools H Thousands GPU hrs
] .] . . . i N ' .
+ Network design 1 Network diagnosis i i Network Configuration: i Network Security ... @ a e
------------------- ’ #ha
Domain- *
Mechanism adapted LLMs PyTinstie
Frozen 4
== - sesssT : i (-EO-S)- — weijght matrix w:éeﬂ'l‘s “
I I goo I 7 "
et A N\ e\ hersd Muli-Head Attention] €= X' -Wo‘/(/
LayerL] N M 1) 4 K=x!.wh// Trillons tokens @
] A.... \ : A B \ A | QKV;inear v=xt-wl of Intemet data
Layer1 (I \ | 1) Attention(Q,K, V) = 10° - 105 GPU hrs
T v 9 .
T A 4ARR X L \‘ 4 LayerNorm s nmax(ﬂ)v Pretrained ©OpenAl % Googe A
Embeddings ! | think the network status s good | X! Vi, LLMs M | LaMA
lm e e e L ' Input -

Figure 2.1: Applications, mechanisms, and enabling techniques for domain-adapted net-

work LLM.

[11]

Multi-Agent LLM Framework for Network Slicing Orchestration (Dandoush

et al., 2024)

In their work, Dandoush et al. advanced the conversation by integrating LLMs into a

6

CHAPTER 2. LITERATURE REVIEW 7

multi-agent system for the orchestration and management of network slicing [12]. This
framework envisions a decentralized model where multiple LLM agents operate within
different network domains (e.g., access, core, cloud) and collaborate to interpret user
intents, allocate resources, and monitor slice performance. FEach agent is capable of
translating high-level user goals into detailed slice configurations using standard descrip-
tors and orchestrating actions based on abstracted views of the infrastructure [15]. One
of the significant contributions of this work is its approach to translating qualitative
user inputs into quantifiable service parameters and using these to automate end-to-end
slice lifecycle management. However, while the system excels in adaptability and intent
interpretation, it does not explicitly incorporate predictive analytics or numerical fore-
casting mechanisms needed to anticipate traffic loads or optimize resource provisioning

dynamically [17].

é ET To ensure you have access to such high-
hm performance services, I'll help you find the
[+ ¢ o] [Action “HI, | want to use a telemedicine service that right network slice.
requires high-quality video calls, fast
connectivity, and strong security for sensitive First, we need to choose an internet service
medical data.” provider (ISP) that supports 5G networks and

6 network slicing technology for telemedicine. |
% will recommend a fow options based on your
aD location and preferences.
g 2
e e T e e N s &

=l S"“’"

I R T

Figure 2.2: LLM Assisted End User Network Slice Intent Translation.
[12]

CHAPTER 2. LITERATURE REVIEW 8

o “Hi, | want to use a telemedicine service that o "I think | prefer Provider 1 based on the features
requires high-quality video calls, fast they offer.”
w mmﬂ and strong security for SERSIENG w
e “Great! We will now guide you through the
subscription process for the selected ISP and ‘
To ensure you have access to such high-performance package. Please provide your tm
services, I'll help you find the right network slice. personal information to sign up, such as aD

[Information Required).
First, we need to choose an internet service provider
(ISP) that supports 5G networks and network slicing [] l *Alright, I've provided my details.” I
technology for telemedicine. | will recommend a few
options based on your location and preferences. w “Thank you! Let me work with your ISP provider

o
and Telemedicin r to get you activated
w “Sure, please guide me through this process.” I ENRRt0 §ot you sctivets

“Great! Let's start by selecting an appropriate ISP. You
can either choose from the following
recommendations, or | can help you find more options
if needed: [Recommended ISPs)"

Beie-

“Activated. You can now access Care me App to
use your service. I'm here if you need any further
assistance!”

Brie- fje-

Befe-

“I see two providers listed that seem reliable. Can you
help me compare their plans and features?*

=)o

"Of course! Here are the details for each provider,
along with their respective packages and pricing:

LLM Assisted User Intent Translation &
On-Demand Slice Provisioning Use case

Bee-

1. [Provider 1): [Plans/Features)
2. [Provider 2): [Plans/Features)"

Figure 2.3: A hypothetical interaction between an end user and an intelligent LLM,

negotiating over a telemedicine service

[12]

2.3 Transformer-based Numerical Prediction in Net-

work Traffic

This thesis offers a contrasting yet complementary perspective by focusing on pre-
dictive modeling of network traffic using Transformers adapted specifically for numerical
input. Unlike traditional applications of Transformers in text processing [13], the model
introduced in this thesis employs specialized embeddings for numeric features, normal-
ization techniques for stability, and learnable positional encodings to handle time-series
data. The architecture is streamlined to an encoder-only design to enhance efficiency
and is tailored for continuous, multi-step forecasting. This enables the system to antic-
ipate network demands in advance, thereby supporting more intelligent and responsive
resource allocation strategies. These predictive capabilities form a core differentiation

from existing LLM-based frameworks, which largely focus on interpretative and proce-

8

CHAPTER 2. LITERATURE REVIEW 9

dural automation.

2.4 Integration of Queuing Theory Models

To ground its predictions in operational reality, this research integrates well-
established queuing theory models such as M/M/1, M/G/1, M/D/1, and D/D/1. These
models provide a robust theoretical framework for understanding service dynamics and
congestion within network slices. Prior studies such as [18] highlight the effectiveness of
combining Al with theoretical models for adaptive network resource management. By
combining these classical methods with predictions from a deep learning-based Trans-
former model, this research ensures that decisions about resource allocation are not only
based on forecasts but also on proven mathematical understanding. This dual approach
strengthens the system’s ability to make smart, efficient choices in real-world network

environments.

2.5 Limitations and Opportunities for Future Re-

search

While this thesis significantly advances the predictive modeling of network traffic
and introduces strong theoretical underpinnings, it does not yet include features such as
natural language processing for user interaction or distributed agent-based coordination.
These capabilities, as demonstrated by Huang et al. [11] and Dandoush et al. [12], could
enhance the user-friendliness and scalability of the system.

Limitations in Related Work and How This Thesis Addresses Them:

e ChatNet (Huang et al.) lacks predictive modeling capabilities: The focus is on
semantic interpretation and operational tooling, without provisions for numerical

traffic forecasting. In contrast, this thesis implements Transformer-based numerical

9

CHAPTER 2. LITERATURE REVIEW 10

prediction [13], enabling proactive resource planning.

e ChatNet does not handle numerical time-series data: This thesis incorporates ad-
vanced handling of numerical inputs through normalization and embedding strate-

gies, which are absent in ChatNet.

e Multi-Agent LLM Framework (Dandoush et al.) does not include traffic forecasting:
The emphasis is on user intent interpretation and orchestration across domains.
This thesis provides a complementary capability by introducing predictive analytics

into the management cycle [17].

e Both papers lack integration with theoretical performance models: This thesis fills
the gap by incorporating queuing theory [18] to guide and validate resource alloca-

tion strategies.

Future work could focus on integrating natural language interfaces and agent-based
coordination mechanisms with the predictive engine to form a comprehensive, intelligent

network management solution.

2.6 Summary

In conclusion, this thesis fills a crucial gap in the literature by shifting the focus from
interpretative automation to predictive accuracy in network management. Through its
use of adapted Transformer models [13] and queuing theory integration [18], it presents
a powerful tool for dynamic resource allocation in network slicing. When the capabili-
ties of ChatNet [11] and the multi-agent framework proposed by Dandoush et al.[12], it
becomes clear that combining predictive modeling with intuitive interfaces and decen-
tralized orchestration could yield the next generation of intelligent network management

systems.

10

Chapter 3

Methodology

3.1 Overview

This chapter presents the methodological framework employed in this thesis, which
integrates machine learning-based traffic forecasting with classical queuing theory to
address the dynamic challenges in network resource allocation. The primary goal is
to leverage the strengths of Transformer models [13], adapted for numerical time-series
data [19], to anticipate network load conditions and make informed resource management
decisions within network slicing environments. The methodology is structured around
data preparation, model design, training procedures, and performance evaluation [20],

providing a comprehensive blueprint for the implementation of the proposed solution.

3.2 Research Objectives

This research aims to achieve the following goals:
e Build a Transformer-based prediction model that is specifically designed to work

with numerical data from network traffic [21].

e Compare how well this model performs against more traditional methods like LSTM

[22] and simple neural networks [23].

e Use the predictions from the model together with queuing theory models (M/M/1,

11

CHAPTER 3. METHODOLOGY 12

M/G/1, D/D/1, and M/D/1) [24] to help plan and manage network resources in
real time.

e Measure how accurate and useful the system is, including how well it uses resources
and maintains service quality [25].

e Demonstrate how this integrated system can support intelligent decision-making in

future 5G/6G network environments [26].

3.3 Data Collection and Preprocessing

The dataset used in this research comprises historical network traffic records, includ-
ing parameters such as bandwidth usage, packet rates, and service requests [27]. These
records are typically collected at regular intervals, forming a time-series dataset.

Data preprocessing involves the following steps:

e Data Cleaning: Removal of outliers, handling of missing values, and filtering of
irrelevant data points [28].

e Normalization: Application of min-max scaling or standardization to ensure fea-
ture values are within a consistent range and to stabilize training [29].

e Time Encoding: Incorporation of temporal context using learnable positional

embeddings [13], which allows the model to understand sequence ordering and

temporal dependencies.

3.4 Transformer Model Architecture

The core of the forecasting system is an encoder-only Transformer architecture

adapted for numerical data [19]. Key components include:

e Numerical Embedding Layer: Converts continuous numerical features into vec-

tor representations suitable for input into the Transformer [30].

12

CHAPTER 3. METHODOLOGY 13

e Multi-Head Attention: Enables the model to attend to different positions in the

sequence simultaneously, capturing complex temporal relationships [13].

e Feedforward Network: Applies non-linear transformations to the attention out-

puts, enhancing model expressiveness [20].

e Positional Encoding: Uses learnable embeddings to represent the position of

each time step, ensuring the model understands sequence order [13].

3.5 Model Training and Validation

The Transformer model is trained using supervised learning, where historical data

sequences are mapped to future values [31]. Key training aspects include:

e Loss Function: Mean Squared Error (MSE) is used to penalize the difference

between predicted and actual values [23].

e Data Split: The dataset is divided into training (70), validation (15), and test

(15) sets using chronological splitting to maintain temporal integrity [32].

e Hyperparameter Optimization: Grid search or random search is used to find

optimal values for learning rate, number of layers, and attention heads [33].

3.6 Integration with Queuing Models

Predicted traffic patterns are fed into multiple queuing models to evaluate and manage

network load. The models used in this thesis include:

e M/M/1 Model: Assumes both arrival and service times follow exponential dis-

tributions. Useful for systems with memoryless behavior [24].

e M/G/1 Model: Assumes exponentially distributed arrivals with general service

time distributions, providing flexibility for varied service characteristics [34].
13

CHAPTER 3. METHODOLOGY 14

e D/D/1 Model: Assumes deterministic arrival and service times. Ideal for ana-

lyzing systems with highly predictable traffic patterns [35].

e M/D/1 Model: Combines exponential arrivals with deterministic service times,

reflecting situations where service mechanisms are uniform but arrivals are random

[24].

3.7 Evaluation Metrics

The proposed system is evaluated using the following metrics:

e Prediction Metrics: Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), and R-squared (R?) [36].

e Queuing Metrics: Average wait time, server utilization, and queue length [34].

e Comparative Analysis: Model performance is benchmarked against LSTM and

neural regression to validate improvements [22, 23].

3.8 Implementation Tools and Environment

The implementation is carried out using Python, leveraging libraries such as PyTorch
or TensorFlow for deep learning [37, 38], and SciPy or custom scripts for queuing model
simulation [39]. Experiments are conducted on GPU-enabled machines to accelerate

training.

3.9 Summary

This methodology integrates state-of-the-art deep learning techniques with classical
queuing theory to build an intelligent, predictive framework for network slicing manage-

ment. It addresses existing limitations in current research by offering both predictive

14

CHAPTER 3. METHODOLOGY 15

insight and theoretical rigor, enabling more responsive and efficient network resource

allocation [25].

15

Chapter 4

Model Implementation

4.1 Recurrent Neural Networks (RINN)

Recurrent Neural Networks (RNN) are a class of neural networks designed to model
sequential data by maintaining a hidden state that captures information from previous
time steps [22]. This property makes RNNs suitable for time-series and sequence predic-
tion tasks.

At each time step ¢, the hidden state h; is updated based on the current input x; and

the previous hidden state h;_q:

hy = 0,(Wanxe + Wipyhy 1 + by) (4.1)

where W, and Wy, are weight matrices, by, is the bias vector, and oy, is the activation
function (usually tanh or ReLU).

The output y,; is computed as:

Yy = Uy(Whyht + by) (42)

Here, Wy, and b, are weights and bias for the output layer, and o, is an activation

function.

Limitations:

16

CHAPTER 4. MODEL IMPLEMENTATION 17

e Traditional RNNs suffer from the vanishing and exploding gradient problems [22],

which hinder their ability to learn long-term dependencies in sequences.

e Due to their limited memory, RNNs often forget information from earlier time steps

in long sequences.

e LSTM and Transformer models are better suited for capturing long-term depen-

dencies through memory cells and attention mechanisms, respectively [13].

e Transformers support parallel processing across all time steps, which significantly

speeds up training compared to RNNs [13].

Figure 4.1: Basic Recurrent Neural Network architecture

4.2 Long Short-Term Memory (LSTM)

LSTM networks are a special type of RNN designed to overcome the vanishing gra-
dient problem by introducing memory cells and gating mechanisms that control the flow

of information [22].

17

CHAPTER 4. MODEL IMPLEMENTATION 18

An LSTM cell has three main gates: input gate i;, forget gate f;, and output gate oy.

The cell state is denoted as c;.

The equations governing LSTM at time step ¢ are:

fi = o(Wy - [hy_1,x¢] + by) (4.3)
iy = 0(W; - [he1,x] + by) (4.4)
¢; = tanh(W, - [hy_1,x,] + b,) (4.5)
c,=f0c;+1,OC¢ (4.6)
o, = (W, - [hy_1,%x¢] + by,) (4.7)
h; = o; ® tanh(c;) (4.8)

where: - o is the sigmoid activation function, - ® denotes element-wise multiplication,

- W5 W, W, W, are weight matrices, - by, b;, b., b, are biases.

\ 4
0

Ci- }&\

Figure 4.2: Structure of an LSTM with gates

18

CHAPTER 4. MODEL IMPLEMENTATION 19

4.3 Transformer Model

Transformers rely on self-attention mechanisms to model dependencies between in-
put elements regardless of their distance in the sequence, allowing better parallelization

compared to RNNs [13].

4.3.1 Self-Attention Mechanism

Given an input sequence represented by matrix X, the self-attention mechanism com-

putes three matrices : Query Q, Key K, and Value V as [13]:

Q=XW? K=XWI VvV=XWY (4.9)

where W@ WX WV are learned parameter matrices.

The scaled dot-product attention is computed as:

Attention(Q, K, V) = softma (QKT) A% (4.10)
ntion(Q, K, V) = softmax :
Vg

where d is the dimension of the key vectors, used for scaling.

4.3.2 Multi-Head Attention

To allow the model to attend to information from different representation subspaces,

multi-head attention concatenates several self-attention outputs [13]:

MultiHead(Q, K, V) = Concat(head,, ..., head,)W (4.11)

where each head is:

head; = Attention(QW?, KWX VW) (4.12)

)

19

CHAPTER 4. MODEL IMPLEMENTATION 20

4.3.3 Positional Encoding

Since Transformers have no recurrence, positional information is added to the input
embeddings [13]:

pOS

P Epos i) = sin (m

pos
) , PE(pos2iq1) = 08 (m) (4.13)

where pos is the position and i is the dimension.

Output
Probabilities
A

Softmax |

A
[Linear]

I\
([Add&Norm J&)

‘ Feed
f Forward

(9[Add&Nom T A
[Fecd] (" Add&Norm)]
[e’ |

1
Forward Multi-Head

Attention
9[Add&Norm] A A
[Mult-Head] F—J\——

Attention [Add&Norm &

\L AN N) Masked
» Multi-Head
Positional Attention
Encoding 9
\ r_Ap A
Input \ -
Embedding Positional
,r 9_® Encoding
\
Input Output
Embedding
Output
(shifted right)

Figure 4.3: Transformer architecture overview

[13]

20

CHAPTER 4. MODEL IMPLEMENTATION 21

4.4 Summary

In this chapter, we described the key deep learning models used for network traffic
prediction: RNN, LSTM, and Transformer. The limitations of vanilla RNNs motivated
the use of LSTM networks with gating mechanisms. Further, the Transformer architec-
ture leverages self-attention for capturing long-range dependencies efficiently [13]. These

models were implemented using Python frameworks in our experiments [37, 38].

4.5 Modified Transformer Model

The core contribution of this thesis is the successful adaptation of the Transformer
model originally designed for natural language processing (NLP) tasks with textual input
to forecast numerical time series data in the context of network slicing in 5G/6G networks.
This required several architectural modifications to enable the Transformer to handle the
structure and dynamics of time series input, which is fundamentally different from text

based input.

4.5.1 Motivation

The Transformer model has shown excellent performance in modeling long-range de-
pendencies in NLP tasks. However, its standard architecture assumes tokenized text
sequences as input, which is not directly suitable for time-dependent numerical data like
network traffic measurements. To leverage the strength of the Transformer for time series

forecasting, this thesis introduces a series of modifications to the original model.

4.5.2 Proposed Modifications to the Transformer Model

1. Input Representation:
e Replaced word embeddings with embeddings designed for numerical time series

features.

21

CHAPTER 4. MODEL IMPLEMENTATION 22

e Applied normalization techniques such as Min-Max Scaling and Standardiza-

tion to stabilize training.

2. Positional Encoding:

e Replaced fixed sinusoidal positional encodings with learnable positional em-

beddings.

e This allows the model to learn the temporal structure of the data more flexibly.

3. Architecture Simplification:
e Removed the decoder component of the original Transformer.

e Used only the encoder for direct regression tasks, which simplifies the model

and reduces computational cost.

4. Output Layer:

e Replaced the classification layer (used in NLP) with a regression output layer.

e Enabled the model to produce continuous-valued outputs for multi-step fore-

casting.

4.5.3 Significance of the Contribution

These modifications enable the Transformer to process and forecast network traffic
patterns effectively. Unlike traditional recurrent models such as LSTM and GRU, the
modified Transformer captures long-range dependencies more efficiently and provides

improved forecasting accuracy for dynamic network slicing scenarios.

22

CHAPTER 4. MODEL IMPLEMENTATION 23

Input Time Series Data(x1,x2, ..., T¢)

A 4

‘ Min-Max Scaling / Standardization

A 4

‘ Numerical Feature Embeddings

v

Learnable Positional Embeddings

A 4

‘ Add & Normalize |

v

‘ Transformer Encoder(Multi-Head Attention + Feed Forward) |

v

‘ Regression Head |

v

‘ Multi-step OutputContinuous Predictions(g1, ¥z, - - ., Y1)

Figure 4.4: Transformer architecture overview

23

CHAPTER 4. MODEL IMPLEMENTATION 24

4.5.4 Comparison with Standard Transformer

Table 4.1: Comparison between Standard and Modified Transformer

Aspect Standard Transformer Modified Transformer

Input Type Word Embeddings (Text) Numerical Feature Embeddings
Positional Encoding Fixed Sinusoidal Learnable Positional Embeddings
Architecture Encoder + Decoder Encoder Only

Output Type Token Probabilities Continuous Numerical Values
Application Domain NLP Tasks Time Series Forecasting in Network Traffic

4.5.5 Conclusion

The successful adaptation of the Transformer model for numerical time series fore-
casting represents a contribution to the field of deep learning for network slicing. It
demonstrates that with appropriate modifications, attention-based architectures can out-

perform traditional sequence models in tasks involving complex temporal patterns.

24

Chapter 5

Data Collection and Preprocessing

5.1 Introduction

Network prediction tasks rely heavily on high-quality time-series data that accurately
reflects real-world communication behavior [27]. This chapter describes the theoretical
background of queueing models used to simulate such network behavior and the prepro-
cessing steps performed to prepare the data for LSTM and Transformer-based prediction
models [22, 13].

We simulate five classical queueing models: M/M/1, D/D/1, M/G/1, and M/D/1
[24]. These models help generate synthetic data representing network metrics such as
arrival time, service time, latency, and jitter. After simulation, the dataset is normalized

and organized into input-output sequences suitable for model training.

5.2 Theoretical Background of Queueing Models

Queueing theory studies the behavior of queues systems where entities (e.g., data
packets) wait for service. Each model is defined by its arrival and service time distribution

[34]. The general format of queueing notation is A/B/1, where:

e A: Arrival time distribution

e S: Service time distribution

25

CHAPTER 5. DATA COLLECTION AND PREPROCESSING 26

e 1: Number of servers

5.2.1 M/M/1 Queue (Exponential/Exponential /1)

The M/M/1 queueing model is one of the fundamental models in queueing theory,
known for its simplicity and analytical tractability [24, 34]. It represents a system where

both arrivals and service times are governed by memoryless (Markovian) processes.

e Arrival Process: Customers or data packets arrive according to a Poisson process

with an average rate of \ arrivals per unit time.

e Service Process: Each service time is exponentially distributed with an average

service rate of p customers per unit time.

e Number of Servers: A single server processes incoming requests in the order

they arrive (First-Come, First-Served).

Assumptions:

e The queue has an infinite capacity, so no arrivals are lost.
e The arrival and service processes are independent.

e The system is stable only if A < p, ensuring the queue does not grow indefinitely.

Performance Metrics:
e Utilization Factor (Traffic Intensity):
A
p=-
14
This indicates the fraction of time the server is busy. Stability requires p < 1.

e Average Number of Packets in System (L):

CHAPTER 5. DATA COLLECTION AND PREPROCESSING 27

Represents the expected total number of customers in the system (waiting + being

served).

e Average Time in System (W):

The average time a customer spends in the system, including both queueing and

service time.

e Average Time in Queue (W'q):

A P
W: p—
Toplp =) p—A

The expected waiting time before service begins.

e Average Number of Packets in Queue (L’'q):

/\2

Ly=A\W, = ———
! Toulp =)

The average number of customers waiting in line (excluding the one being served).

Use Cases:

e Modeling customer service desks or call centers with random arrival and service

times.

e Useful in networking to analyze buffer behavior in routers and switches under ran-

dom packet arrival.

5.2.2 D/D/1 Queue (Deterministic/Deterministic/1)

The D/D/1 queue is a basic and idealized model in queueing theory. It represents
a system where both the inter-arrival times and service times are strictly deterministic

and occur at constant, fixed intervals [35].

27

CHAPTER 5. DATA COLLECTION AND PREPROCESSING 28

e Arrival Process: Jobs or packets arrive exactly every % units of time, where \ is

the fixed arrival rate.

e Service Process: Each job requires a fixed service time of l%, where p is the

constant service rate.

e Number of Servers: A single server handles incoming jobs on a First-Come,

First-Served (FCFES) basis.

Key Features:

e There is no randomness in the system.

e Since both arrivals and service times are perfectly regular, the behavior of the queue

is highly predictable.

Performance Characteristics:

e Utilization:

pP=—
Ju

Indicates how busy the server is. For a stable system, p < 1. If p > 1, the queue

will grow without bound.
e Queue Behavior:

— If A < p, the server will have idle time between jobs.
— If A = p, the system reaches a balanced state with no queue buildup.
— If A > p, jobs accumulate and the queue length increases linearly.

e Waiting Time: In the stable case, when A < p, jobs do not wait in the queue

because each arrives just in time to be served. Thus:

CHAPTER 5. DATA COLLECTION AND PREPROCESSING 29

e Queue Length: In the stable condition, the queue length remains zero or bounded
by one depending on the arrival-service timing alignment.
Applications:

e Systems with highly predictable traffic, such as industrial automation or real-time

control systems.
e Used for benchmarking other queueing models due to its ideal and noise-free be-

havior.

5.2.3 M/G/1 Queue (Markovian/General/1)

The M/G/1 queue is a fundamental single-server queueing model where the arrival
process is stochastic (Poisson), but the service times follow a general (arbitrary) distribu-
tion. It provides a more realistic representation of many real-world systems where service

times are not necessarily exponential [24, 34].

e Arrival Process: Poisson process with arrival rate A\ (exponentially distributed

inter-arrival times).

e Service Process: General distribution with mean service time E[S] and variance

Var(95).

e Number of Servers: One server (single-server system).

Key Characteristics:

e The arrival pattern is memoryless, but the service time can follow any distribution

(e.g., uniform, normal, or heavy-tailed).

e The model is useful for analyzing systems with irregular service durations such as

file transfers, machine repairs, or processing times.

29

CHAPTER 5. DATA COLLECTION AND PREPROCESSING 30

e System behavior is captured using the Pollaczek—Khinchine (P-K) formula, which

provides expressions for performance metrics.

Important Metrics:

e Traffic Intensity (Utilization):

p=AX-E[S]

For the system to be stable, p < 1.

Average Number of Packets in System:

2 .
L—p+ A? - Var(S)
2(1=p)
e Average Waiting Time in Queue:
A - Var(S)
W, = ———"7—
To2(1-p)

Average Time in System (Waiting + Service):

W =W, + E[S]

Average Queue Length:

Ly=X\-W,

Explanation:

e The variance of the service time plays a critical role in system performance.

e Higher variability in service times (higher Var(S)) leads to longer waiting times

and larger

30

CHAPTER 5. DATA COLLECTION AND PREPROCESSING 31

5.2.4 M/D/1 Queue (Markovian/Deterministic/1)
— Arrival Process: Follows a Poisson distribution with exponential inter-
arrival times (memoryless property).
— Service Process: Each job or packet has a fixed (deterministic) service time.

— Number of Servers: A single server is available to serve incoming requests.

In this queueing model, variability is introduced only by the arrival process, as
service times are constant. This makes the analysis simpler than in more general

models [35].

The average waiting time in the queue W, for the M/D/1 system is given by:

Where:

— p = A/p is the traffic intensity.
— \: Mean arrival rate.

— p: Mean service rate, which is the inverse of the constant service time.

Key Features:

— The deterministic nature of service time reduces variability in system behavior.

— As compared to M/M/1, the M/D/1 model yields shorter average waiting

times because there is no randomness in service.

— Useful for systems where processing time is known and consistent, such as

embedded systems or scheduled tasks in computing.

31

CHAPTER 5. DATA COLLECTION AND PREPROCESSING 32

5.3 Network Metrics Captured

During the simulation of traffic and queuing models, various performance metrics
were recorded at each time step. These metrics provide insight into the system’s

behavior and are essential for evaluating model performance [25].

5.3.1 Arrival Time

The arrival time refers to the exact moment when a packet or data unit enters the
queueing system. This metric helps in calculating inter-arrival times and tracking

system load over time.

5.3.2 Service Time

Service time is the duration taken by the server to process a packet. It depends on
the server’s speed and the complexity or size of the incoming request. The value is

often drawn from a predefined distribution (e.g., constant, exponential, or general).

5.3.3 Latency

Latency represents the total delay experienced by a packet from the moment it

arrives until it exits the system after being serviced. It is computed as:

Latency = Waiting Time + Service Time

High latency may indicate congestion or limited server capacity and is a critical

metric in evaluating Quality of Service (QoS).

5.3.4 Jitter

Jitter quantifies the variation in latency between consecutive packets. In real-time

systems such as voice or video communication, low jitter is crucial. It is defined as:

32

CHAPTER 5. DATA COLLECTION AND PREPROCESSING 33

Jitter, = |Latency, — Latency,_;

Higher jitter values indicate inconsistency in system response time, which can de-

grade the performance of time-sensitive applications.

5.3.5 Queue Length

This metric measures the number of packets waiting in the queue at any given time
step. It reflects the current load on the system and helps in identifying periods of
congestion. A consistently long queue may suggest under-provisioned resources or

inefficient scheduling.

5.4 Data Preprocessing

To ensure that the collected simulation data is suitable for training deep learning

models, several preprocessing steps were applied.

5.4.1 Handling Missing Values

Although simulations are controlled, some generated datasets may contain missing
or undefined values due to abrupt termination or simulation errors. These gaps

were handled using [28]:

— Forward Fill: Propagates the last valid observation forward.

— Interpolation: Estimates missing values using trends in neighboring data

points.

These techniques help maintain continuity in the time series without introducing

bias.

33

CHAPTER 5. DATA COLLECTION AND PREPROCESSING 34

5.4.2 Feature Normalization

Normalization is essential to scale all numerical features to a common range, typi-
cally [0, 1], which helps improve training stability and convergence speed. Min-max

scaling was applied as follows:

o L — Tmin
Tnormalized =
Tmax — Tmin

This ensures that large-scale features do not dominate smaller ones during model

training.

5.4.3 Sequence Preparation

Since LSTM and Transformer models operate on sequential data, the time-series
metrics were transformed into a supervised learning format using a sliding window

technique. This involved:

— Input Sequence: A window of length n capturing values from time ¢ to

t+n—1.

— Target Value: The immediate next value at time ¢ + n, which the model is

trained to predict.

This method allows the model to learn temporal dependencies and trends across

the dataset.

5.4.4 Train-Test Splitting

To evaluate model performance reliably, the dataset was divided as follows:

— Training Set: 80% of the dataset used to learn model parameters [32].

34

CHAPTER 5. DATA COLLECTION AND PREPROCESSING 35

— Testing Set: 20% of the dataset used for evaluating generalization on unseen

data.

Importantly, shuffling was avoided to preserve the chronological order of events,

which is vital in time-series prediction tasks.

5.5 Summary

In this chapter, we detailed the essential queueing metrics captured during simu-
lation, such as arrival time, service time, latency, jitter, and queue length. These
metrics provide a comprehensive view of system behavior under different traffic con-
ditions. We also described how the raw data was preprocessed to make it suitable
for training deep learning models. This included missing value handling, feature
scaling, temporal sequence generation, and careful dataset partitioning. The result-
ing structured dataset enables the effective application of LSTM and Transformer
models in predicting network traffic and assessing queuing performance in dynamic

network slicing environments.

35

Chapter 6

Experimental Setup

6.1 Introduction

This chapter provides a detailed explanation of the experimental environment used
for evaluating the proposed network prediction models. The chapter outlines the
hardware and software platforms, simulation techniques, model architectures, hy-
perparameters used in training, and the metrics used to assess prediction perfor-
mance. The goal is to ensure reproducibility and clarity of the conducted experi-

ments.

6.2 Hardware and Software Environment

6.2.1 Hardware Configuration

All simulations, model training, and evaluations were conducted on a personal
computing system equipped to handle moderate machine learning workloads. The

configuration of the hardware setup is as follows:

— Processor: Intel Core i7-11800H with 8 cores and 16 threads, operating at a

base frequency of 2.30 GHz.

— Memory (RAM): 16 GB DDRA4, offering sufficient capacity for in-memory

computations during training and data preprocessing.

36

CHAPTER 6. EXPERIMENTAL SETUP 37

— Graphics Processing Unit (GPU): NVIDIA GeForce GTX 1660 Ti with
6 GB of dedicated VRAM, enabling hardware acceleration for deep learning

tasks.

— Storage: 512 GB NVMe SSD, providing high-speed data read/write opera-

tions to improve dataset loading and model checkpointing efficiency.

6.2.2 Software Tools

The entire implementation pipeline, from data generation to model training and
evaluation, was developed using Python 3.10. Various open-source libraries were

employed for specific tasks throughout the project [39, 38, 37]:

— NumPy: Used for numerical operations such as array manipulation, mathe-

matical computations, and random number generation.

— Pandas: Utilized for structured data processing, including data cleaning,

transformation, and tabular representation.

— Matplotlib & Seaborn: Applied for generating detailed plots and visual-

izations to analyze trends in queue metrics and model predictions.

— Scikit-learn: Employed for data preprocessing steps like normalization and

for computing evaluation metrics such as RMSE and MAE.

— TensorFlow & Keras: Used for implementing and training the LSTM-based

models, taking advantage of built-in layers and optimizers.

— PyTorch: Adopted for the Transformer model implementation, offering a

flexible and dynamic computation graph suitable for experimentation.

— Google Colab & Visual Studio Code: Served as the main development

environments for writing, debugging, and running code.

37

CHAPTER 6. EXPERIMENTAL SETUP 38

6.3 Dataset Generation and Configuration

6.3.1 Simulated Queueing Models

The dataset was synthetically generated through the simulation of five widely stud-
ied queueing models: M/M/1, D/D/1, M/G/1 and M/D/1. Each model represents
a different configuration of arrival and service time distributions, simulating a va-
riety of real-world traffic scenarios. These simulations were implemented using
Python scripts and involved tracking various network performance metrics over

time [24, 34].

For each run of the simulation, packets were generated based on the arrival dis-
tribution, and their service times were assigned according to the specific model.
The system then recorded key performance indicators including waiting time in the

queue, total latency, and packet-to-packet jitter.

6.3.2 Dataset Structure

The final dataset used for training and evaluation had the following properties:

— Features Captured: Arrival Time, Service Time, Waiting Time, Latency,

and Jitter.

— Total Samples: 50,000 time steps were simulated, providing a diverse and

statistically meaningful set of data points.

— Sequence Length: Each input sample consisted of a sequence of 10 consec-

utive time steps (i.e., past 10 observations).

— Prediction Objective: The target variable was the corresponding value of

a selected metric at the next (11th) time step.

— Train-Test Division: 80% of the data was allocated for training, and the

remaining 20% was used for testing.

38

CHAPTER 6. EXPERIMENTAL SETUP 39

6.3.3 Preprocessing Steps

Before model training, the dataset underwent several preprocessing steps to ensure
consistency, numerical stability, and compatibility with sequential learning archi-

tectures:

— Handling Missing Values: Although rare in simulation-generated data,
any missing entries were addressed using forward-fill or linear interpolation
methods to maintain sequence continuity [28].

— Normalization: All features were scaled using min-max normalization to
bring values into the [0, 1] range, reducing the risk of gradient explosion or
vanishing during training [29].

— Sequence Construction: A sliding window of size 10 was applied across the
time series to form overlapping input sequences, with the 11th step used as
the prediction target [31].

— Temporal Integrity: The data was kept in its natural order without shuf-

fling, to preserve time dependencies essential for sequence-based models like

LSTM and Transformer.

6.4 Model Configurations

6.4.1 LSTM Model Details

A deep learning model based on the Long Short-Term Memory (LSTM) architec-
ture was designed to predict future values of queueing metrics based on historical

sequences [22]. The model architecture is described below:

— Input Layer: Accepts input tensors of shape (10, 5), where 10 is the time

window and 5 is the number of features.

39

CHAPTER 6. EXPERIMENTAL SETUP 40

— LSTM Layer: A single LSTM layer with 64 memory units and tanh activa-

tion was used to capture temporal patterns and dependencies.

Dropout Layer: A dropout rate of 0.2 was applied after the LSTM layer to

mitigate overfitting by randomly disabling neurons during training.

— Dense Layer: A fully connected layer with 32 units and ReLLU activation

was included to transform the extracted temporal features.

Output Layer: A single neuron with linear activation was used to predict

the target value (e.g., future latency or jitter).

This configuration provides a balance between model complexity and performance,
making it suitable for medium-sized datasets like the one used in this study. The
model was compiled using the Adam optimizer and Mean Squared Error (MSE) as

the loss function.

6.4.2 Modified Transformer Model for Time Series Fore-

casting in Network Traffic

To effectively apply the Transformer architecture for time series forecasting in a
network slicing context, several modifications were made to adapt it for handling

numerical data and direct regression tasks [13].

Input Representation (Handling Numerical Data)

Unlike the traditional Transformer, which uses word embeddings for text input, our
model processes multivariate numerical time series data. Each input vector at a
time step includes normalized values of five features: Arrival Time, Service Time,
Waiting Time, Latency, and Jitter. To bring the input values within a comparable

range and stabilize training, Min-Max Scaling or Standardization was applied. Each

40

CHAPTER 6. EXPERIMENTAL SETUP 41

5-dimensional vector is projected into a 64-dimensional embedding space using a

linear transformation layer.

Positional Encoding (Incorporating Temporal Order)

Transformers do not have a built-in mechanism for representing the sequence order.
To encode temporal information, we used learnable positional embeddings rather
than the traditional fixed sinusoidal encodings. These learnable embeddings allow
the model to adapt positional patterns specific to network traffic data over time,

improving prediction performance.

Architecture Adjustments

Instead of using the full encoder-decoder architecture, we implemented only the
encoder component. This is sufficient for time series regression, as the task in-
volves predicting future values based on past observations rather than generating

sequences or translations. The encoder stack includes:

— Two Transformer encoder layers

— Four multi-head self-attention mechanisms per layer

Residual connections and layer normalization

— Position-wise feedforward networks with 128 hidden units and ReLLU activation

Output Layer for Multi-Step Regression

The encoded sequence is reduced via pooling (e.g., mean pooling across time steps),
producing a fixed-size context vector. This is passed through a fully connected
dense layer followed by a linear output layer that predicts a continuous numerical
value. For multi-step forecasting, the model can be extended to output multiple

values simultaneously or be used in an autoregressive fashion.

41

CHAPTER 6. EXPERIMENTAL SETUP 42

Model Performance and Advantages

The modified Transformer demonstrated superior performance compared to the
LSTM model in capturing long-range dependencies within network slicing scenarios.

Key benefits included:

— Parallel processing of sequence data, leading to faster training times
— Better handling of temporal variability and irregular traffic patterns
— Improved accuracy in long-term forecasting due to global attention mecha-

nisms

These enhancements make the Transformer particularly effective for dynamic net-
work resource prediction, which is critical in modern 5G and 6G network slicing

environments.

6.5 Training Setup

To train the proposed LSTM and Transformer-based forecasting models, a con-
sistent and optimized training configuration was used to ensure fair comparison
and reliable convergence. The key parameters for the training process are outlined

below:

— Optimizer: The Adam optimizer was used due to its adaptive learning rate
capabilities and efficient handling of sparse gradients [?]. It combines the

benefits of both AdaGrad and RMSProp.

— Loss Function: Mean Squared Error (MSE) was selected as the primary loss
function, suitable for continuous regression tasks where minimizing prediction

error is essential.

— Batch Size: A mini-batch size of 64 was chosen to strike a balance between

training speed and convergence stability.

42

CHAPTER 6. EXPERIMENTAL SETUP 43

— Epochs: Each model was trained for a maximum of 300 epochs, which was

sufficient to allow convergence for both LSTM and Transformer architectures.

— Learning Rate: The initial learning rate was set to 0.001. This value was
empirically chosen to ensure smooth optimization without overshooting min-

ima.

— Early Stopping: To prevent overfitting, early stopping was enabled with a
patience parameter of 10 epochs. Training was halted if the validation loss

did not improve for 10 consecutive epochs.

This training setup was consistent across all experiments, ensuring that any ob-
served differences in model performance were due to model architecture rather

than differing hyperparameters.

6.6 Evaluation Metrics

To assess the forecasting accuracy and performance of the models, multiple error
metrics were employed. These metrics provide a comprehensive view of prediction

quality from different perspectives [36]:

— Mean Squared Error (MSE): Measures the average of the squared differ-
ences between predicted and actual values. It is sensitive to large errors.

1 n
MSE:— i—AiQ
=D (=)

=1

— Mean Absolute Error (MAE): Computes the average absolute difference

between the predicted and true values. It treats all errors equally.

1 n
MAE:— i—AZ'
n;:l!y Uil

43

CHAPTER 6. EXPERIMENTAL SETUP 44

— Root Mean Squared Error (RMSE): The square root of MSE, which
restores the error unit to the original scale of the data. It penalizes larger

€Irors more severely.

RMSE = vMSE

— Coefficient of Determination (R? Score): Indicates how well the model
explains the variability of the target values. An R? value close to 1 indicates
strong predictive performance.

~)2

21 Z(?Jz - ?/z)
W=l e

These metrics were calculated on the test dataset after training and were used to

evaluate both single-step and multi-step forecasting performance.

6.7 Summary

This chapter presented a detailed overview of the experimental setup used in this
research work. It began with the hardware and software environment, highlighting
the tools and computational resources employed. Then, it described the simulation-
based dataset generation process using various queuing models such as M/M/1,
D/D/1, M/G/1, M/D/1. Key features such as arrival time, latency, service time,
and jitter were extracted and preprocessed using normalization and sequence for-

matting techniques.

The chapter also elaborated on the architectural configurations of the LSTM and
Transformer models [22, 13]. Specific adaptations were made to the Transformer
to make it suitable for time series regression. Furthermore, the training setup was
carefully designed with standardized hyperparameters and regularization strategies

such as early stopping.

44

CHAPTER 6. EXPERIMENTAL SETUP 45

Finally, appropriate evaluation metrics such as MSE, MAE, RMSE, and R? were
defined to quantitatively measure the forecasting accuracy of the models. This
well-structured foundation sets the stage for the result analysis and interpretation

discussed in the following chapter.

45

Chapter 7

Results And Analysis

7.1 Visualization of Results

This section provides visual insights into the prediction quality of the deep learning
models across different queueing systems. Each model exhibits unique arrival and
service patterns, and the following figures demonstrate how well the models learn

and predict these patterns [31].

7.1.1 D/D/1 Queue Model

The D/D/1 model represents a fully deterministic queue where both arrival and
service times are constant. It’s the simplest system, often used as a theoretical

benchmark.

Key Features:

— The model accurately learns fixed intervals in both arrivals and service.

— Small deviations may appear due to limited floating-point precision or training

noise.

— The latency remains constant, showing the Transformer’s effectiveness in mod-

eling deterministic queuing systems.

46

CHAPTER 7. RESULTS AND ANALYSIS 47

5000 -

o
o
=g
=4

Arrival Time

4970

Service Time
=]
=
=]

0.38 1

0,42 -

Latency Time
o o
P e
£=3 —

o
¥
o

0.38 1

Conclusion: The D/D/1 queue allows the Transformer model to demonstrate its
learning consistency. Although the system lacks variability, the model successfully
aligns with the fixed patterns, validating its reliability for modeling deterministic

traffic flows .

Arrival Time of Customers (D/D/1 Queue)

o
(=]
[==3
<

~&~ Original Train data -
-~ Original Testing data
=== Predicted

-

T T T

99;10 9950 9960 9970 9980 9990 10000
Customer Index

Service Time of Customers (D/D/1 Queue)

~~ Original Train data
-~ Original Testing data
~-== Predicted (Constant)

0400000000000 000000 0 00 0 0 0 0 0 0 0 0 - 0 0 0 0 0 - 0 0 0 0 0 0 0 0 - 00 - - 0 0 0 0 0 0 00

T T T

9940 9950 9960 9970 %980 %990 10000
Customer Index

Latency of Customers (D/D/1 Queue)

-8~ Original Train data
~~ Original Testing data
=== Predicted output

000000000000 000 0 0 0 0 0 0 0 - 0 - - 0 0 0 0 0 0 00

T T T

9940 9950 9960 %970 %80 %90 10000
Customer Index

Figure 7.1: Transformer Model Predictions vs Actual for D/D/1 Queue

As shown in Figure 7.1, Transformer models achieve high accuracy, reflecting the

model’s ease of learning in deterministic settings.

47

CHAPTER 7. RESULTS AND ANALYSIS 48

wn
=3
=3
=}

Arrival Time
==
o
o
(=1

4980 1

Service Time
o
=

0.2 1

Latency Time
~o

1 =0~ Original Testing data
| === Predicted

4 =~ Original Train data

N
N

7.1.2 M/G/1 Queue Model

The M/G/1 model assumes a Markovian (Poisson) arrival process and a general ser-
vice time distribution. It introduces service time variability while keeping arrivals

random but memoryless.

Key Features:
— The Transformer captures the randomness in arrival patterns (Poisson-like) .

— It effectively approximates the general service time distribution.

— Predicted latency values closely follow actual values, showing the model’s ca-

pacity to learn complex queuing behavior.

Arrival Time of Customers (M/G/1 Queue)

~4~ Original Train data

T 1

9940 9950 9960 9970 9980 9990 10000
Customer Index

Service Time of Customers (M/G/1 Queue)

A

~4~ Original Testing data

-=- Predicted
9940 9950 9960 9970 9980 9990 10000
Customer Index
Latency of Customers (M/G/1 Queue)

=4~ Original Train data
~4~ Original Testing data
=== Predicted output

9940 9950 9960 9970 9980 9990 10000

Customer Index

Figure 7.2: Transformer Model Predictions vs Actual for M/G/1 Queue

48

CHAPTER 7. RESULTS AND ANALYSIS 49

4970 4

Arrival Time
£
<o
o
o

4950 4

0.42 4

Service Time
= o o
w 4 &
o o -
s N

S

w

(==}
L

Latency Time
~N
o

b
wn

—
w
M

| g
o
L

Figure 7.2 shows how the models capture stochastic variations in service, with

Transformer often performing slightly better on sudden service-time bursts.

7.1.3 M/D/1 Queue Model

The M/D/1 queue combines a Poisson arrival process with fixed service times. It

blends randomness in arrivals with simplicity in service scheduling.

Arrival Time of Customers (M/D/1 Queue)

—&— Original Train data i
8~ Original Testing data
-=-=- Predicted

9940 9950 9960 9970 9980 9990 10000
Customer Index

Service Time of Customers (M/D/1 Queue)

&~ Original Train data
—e— Original Testing data
=== Predicted (Constant)

0000000000000 000000000 0000000000ttt 000ttt tttttttt ettt teee

9940 9950 9960 9970 9980 9990 10000
Customer Index

Latency of Customers (M/D/1 Queue)

—&— Original Train data
&~ Original Testing data
=== Predicted output

9940 9950 9960 9970 9980 9990 10000
Customer Index

Figure 7.3: Transformer Model Predictions vs Actual for M/D/1 Queue

In Figure 7.3, prediction tracks are mostly smooth, with slight deviation during
peak arrival fluctuations. This hybrid nature tests the model’s generalization ca-
pability.

49

CHAPTER 7. RESULTS AND ANALYSIS 50

7.1.4 Aggregator-Based Queueing Model

The Aggregator model represents the summation or combination of multiple traffic
sources and queue models. It reflects real-world traffic with high burstiness and

non-linear patterns [27].

Key Features:

— Combines multiple arrival /service patterns.
— Captures aggregate traffic behavior from several sources.

— High variability and complex dependencies.

Arrival Time
S40 =&~ Original Train Data 4
~o~ Original Test Data o
qE) 8230 4 === Predicted
E
g 8220 1
S
< 82101
8200 1
9940 9950 9960 9970 9980 9990 10000
Customer Index
Service Time
4 —&— Original Train Data
o —o~ Original Test Data
E 3 ==~ Predicted
=
[AN
R
2
&
1 -
0- T T T T T T T
9940 9950 9960 9970 9980 9990 10000
Customer Index
Latency
‘ =&~ Original Train Data
o | Original Test Data
E 3 === Predicted
r—
> N
22 >
3
©
- 14
0.
9940 9950 9960 9970 9980 9990 10000

Customer Index

Figure 7.4: Transformer Model Predictions vs Actual for Aggregator Queue Model

50

CHAPTER 7. RESULTS AND ANALYSIS 51

As shown in Figure 7.4, this queue type introduces significant prediction challenges.
The Transformer model better handles these patterns due to its attention mecha-

nism’s capability to model complex dependencies.

7.1.5 M/M/1 Queue Model
The M/M/1 queue is a classical single-server queueing model where:

— Both LSTM and Transformer models capture randomness in arrival and ser-

vice times.

— The Transformer slightly outperforms LSTM in arrival and service time accu-

racy.

— Latency prediction is consistent in both models, showing strong learning of

queue behavior.

LSTM Model Results

Sequence Number

Arrival Time Prediction

42 A

a1

40 -

39 4

38

37 A

Result Arrival Time

—&— Observed Data (Last 20) P
—®— Predicted Data (Next 10))

180 185 190 195 200 205
value Time In sec

Figure 7.5: LSTM Arrival Time Prediction for M/M/1 Queue

o1

CHAPTER 7. RESULTS AND ANALYSIS

Values in Time (sec)

Values in Time (sec)

Latency Prediction

0.35 4

0.30

0.25 1

0.20 A

0.05 A

0.00 A

Result Latency

—®— Observed Data (Last 20) ?
—®— Predicted Data (Next 10) X\

180 185 190 195 200 205
Sequence Number

Figure 7.6: LSTM Latency Prediction for M/M/1 Queue

Jitter Prediction

0.25 4

0.20

0.10

0.05 A

0.00 4

—0.05 A

Result Jitter

~@~ Observed Data (Last 20)
@ Predicted Data (Next 10)

200 205

180 185 190 195
Sequence Number

Figure 7.7: LSTM Jitter Prediction for M/M/1 Queue

Transformer Model Results

Arrival Time Prediction

52

CHAPTER 7. RESULTS AND ANALYSIS

Arrival Time

—&— Obscrvad Data (L ast 30)
aq - "® Predicted Data (Next 10) o
R &
/I N7
AN .’ ¥
I' L
42 /
'

. &
b
w
=
@ -
¥ 10
=
s
o
=
2

Ju

Jo

1/0 1/5 140 1us 150 195 200 205

Sequence Number

Figure 7.8: Transformer Arrival Time Prediction for M/M/1 Queue

Latency Prediction

Result Latancy

—&— Ohsorved Data (Last 30}

0.25 1 ® - Predicted Data (Next 10)
0.20 1
8
c 0.15 4
[
i
2 .
% 0.0 - o TN
- v ¢ W
0.05 1 v ,)
'S
.00 1
100 195 180 155 200 20>

Sequente Number

Figure 7.9: Transformer Latency Prediction for M/M/1 Queue

Jitter Prediction

CHAPTER 7. RESULTS AND ANALYSIS 54

Jitter

0.25 - @~ Observed Data (Last 20)
& Predicted Data (Next 10)

0.20 -
w 015 4
o
L™
w ©
fg
3 010 p

o - /
“ q -
0.05 1 g
- »
° *
0.00 ‘
5
T)) '))
180 183 180 193 200 205
Sequence Numbear
Figure 7.10: Transformer Jitter Prediction for M/M/1 Queue
Analysis

From the plots above, we observe that both LSTM and Transformer models are
capable of learning M/M/1 traffic patterns. However, the Transformer generally offers
smoother predictions and captures sudden variations (e.g., bursty arrivals or jitter) more

accurately. LSTM occasionally lags in response to abrupt changes in queue dynamics.

Training and Validation Loss Analysis

To evaluate the learning behavior of the deep learning models during training, both
the training loss and validation loss were recorded across epochs. These loss values
provide insights into how well the model generalizes to unseen data. A well-trained
model is expected to show a decreasing trend in both losses, with the validation loss

eventually stabilizing or slightly increasing due to minor overfitting.

The figure below illustrates the loss curves:

o4

CHAPTER 7. RESULTS AND ANALYSIS 55

Training and Validation Loss Over Epochs

0.6 —— Training Loss
—— Validation Loss

Loss
o)
w

|

o 50 100 150 200 250 300 350 400
Epochs

Figure 7.11: Transformer Model Training and Validation Loss over Epochs

Interpretation:

e The training loss consistently decreases, indicating that the model is effectively

learning patterns in the data.

e The validation loss follows a similar trend in the initial epochs, confirming that the

model generalizes well.

e A small gap between training and validation loss is acceptable and expected, espe-

cially in time-series tasks involving queue dynamics.

Summary

The M/M/1 model shows that deep learning can effectively model stochastic queues.
Arrival time, latency, and jitter are predicted accurately with both models. The Trans-

former outperforms slightly in terms of adaptability and consistency.

55

CHAPTER 7. RESULTS AND ANALYSIS 56

Table 7.1: Performance Comparison of Queueing Models Using Various Eval-

uation Metrics for Transformer Model

Model MSE | MAD | MAPE | R? Score | RMSE
D/D/1 0.176 | 0.214 1.87% 0.8889 0.4195
M/G/1 0.153 | 0.264 2.01% 0.8612 0.3912
M/D/1 0218 | 0.374 | 2.97% | 0.7589 | 0.4289
Router/Aggregator | 0.184 | 0.294 | 2.69% 0.8589 0.3289

These metrics were computed for four different queueing scenarios: D/D/1, M/G/1,
M/D/1, and a real-world Router/Aggregator trace. As shown in Table 7.1, the D/D/1
model achieved the highest R? score, indicating highly predictable behavior due to its
deterministic nature. In contrast, the M/D/1 model had higher errors, suggesting the dif-
ficulty of capturing fixed service patterns amid random arrivals. The Router/Aggregator
setup, derived from actual network traces, showed competitive performance, validating

the practical applicability of the proposed prediction framework.

Table 7.2: Performance Metrics for Transformer, LSTM, and Neural Regres-

sion Models

Model MSE | MAD | MAPE | R? Score | RMSE
Transformer 0.45 0.12 0.95% 0.91 0.212
LSTM 1.20 0.25 2.10% 0.76 0.435
Simple Neural Regression | 7.50 0.92 8.80% 0.21 0.450

Model-wise Performance Comparison

To identify the most suitable deep learning architecture for queueing behavior predic-
tion, three models were evaluated: Transformer, LSTM, and Simple Neural Regression.
Each model was trained on the same dataset, and their performance was measured using

standard evaluation metrics including MSE, MAD, MAPE, R? score, and RMSE.

56

CHAPTER 7. RESULTS AND ANALYSIS 57

The results, as summarized in Table 7.2, show that the Transformer model signif-
icantly outperforms both LSTM and Neural Regression. It achieved the lowest MSE
(0.45) and highest R? score (0.91), indicating high prediction accuracy and strong gen-
eralization. LSTM showed moderate performance with acceptable error levels, while the
Simple Neural Regression model lagged behind, with the highest error values across all
metrics. These findings confirm the Transformer’s effectiveness in modeling temporal

dependencies and handling variable patterns in queueing systems.

57

Bibliography

[1] A. Dandoush, V. Priya, M. Uddin, and U. Khalil, “Large Language Models meet
Network Slicing Management and Orchestration,” TechRxiv Preprint, 2024. doi:

10.36227/techrxiv.171173194.46729464/v1.

[2] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computa-

tion, vol. 9, no. 8, pp. 1735-1780, 1997.

[3] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion Convolutional Recurrent Neural

Network: Data-Driven Traffic Forecasting,” ICLR, 2018.

[4] J. Feng et al., “Deep Learning Based Traffic Prediction and Its Application on
Resource Allocation in Wireless Networks,” IEEFE Trans. Veh. Technol., vol. 68, no.

3, pp. 28072817, 2019.

[5] Y. Zhang and Y. Zheng, “Traffic Prediction with Transformer and Graph Attention

Networks,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 51465155, 2020.

[6] Y. Cheng, Q. Sun, and B. Zhang, “Network Traffic Prediction Based on LSTM and

Attention Mechanism,” IFEE Access, vol. 9, pp. 107180-107192, 2021.

[7] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network Slicing in 5G:

Survey and Challenges,” IEEE Commun. Mayg., vol. 55, no. 5, pp. 94-100, 2017.

58

BIBLIOGRAPHY 29

8]

[11]

[12]

[14]

Y. Huang, Y. Zhang, Y. Zhang, Z. Guo, H. Wang, J. Zhang, and K. Chen, Large Lan-
guage Models for Networking: Applications, Enabling Techniques, and Challenges.

arXiv preprint arXiv:2311.17474, 2023.

M. Dandoush, R. Ferrus, O. Sallent, J. Pérez-Romero, and P. Legg, Large Lan-
guage Models Meet Network Slicing Management and Orchestration. arXiv preprint

arXiv:2403.13721, 2024.

Kammoun, I., Ajmi, I., Tabbane, N. (2019). Proactive Network Slices Management
Using Fuzzy Logic and SVR. In 2019 International Conference on Wireless Networks

and Mobile Communications (WINCOM).

Huang, K., He, Z., Li, X., Liu, L., Guo, Y., Zhang, H., ... & Liu, J. (2023). Large Lan-
guage Models for Networking: Applications, Enabling Techniques, and Challenges.

arXiv preprint arXiv:2311.17474.

Dandoush, H., Gomes, F., Zardini, A., De Cola, T., Kassler, A., & Bernal, M.
(2024). Large Language Models Meet Network Slicing Management and Orchestra-

tion. arXiv preprint arXiv:2403.13721.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.; ...
& Polosukhin, 1. (2017). Attention is all you need. Advances in neural information

processing systems, 30.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of

NAACL-HLT.

Bariah, L., Rajatheva, N., Ylianttila, M., & Latva-aho, M. (2023). Large Language

Models for Telecom: The Next Big Thing?. IEEE Communications Magazine.

59

BIBLIOGRAPHY 60

[16]

[17]

[19]

[22]

[23]

[24]

[25]

Chen, J., Liu, Y., Zhang, Y., & Xu, K. (2023). NetGPT: A Native-AI Network

Architecture. arXiv preprint arXiv:2306.09130.

Miao, Y., Ding, N., Zhu, C., & Fu, J. (2023). An Empirical Study of NetOps Capa-

bility of Pre-trained LLMs. arXiv preprint arXiv:2305.17680. |

Kammoun, I., Ajmi, I., Tabbane, N. (2019). Proactive Network Slices Management
Using Fuzzy Logic and SVR. In 2019 International Conference on Wireless Networks

and Mobile Communications (WINCOM).

S. Li et al., “Enhancing the locality and breaking the memory bottleneck of Trans-
former on time series forecasting,” Advances in Neural Information Processing Sys-

tems, vol. 32, 2019.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016.

H. Wu et al., “Deep Transformer models for time series forecasting: The influenza

prevalence case,” arXiv preprint arXiv:2001.08317, 2020.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,

vol. 9, no. 8, pp. 1735-1780, 1997.

C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

L. Kleinrock, Queueing Systems, Volume 1: Theory, Wiley-Interscience, 1975.

E. Hossain and M. S. Hasan, “Toward 5G: A survey on 5G network architecture and
emerging technologies,” IEEE Communications Surveys & Tutorials*, vol. 19, no. 3,

pp. 1658-1686, 2019.

Q. Li et al., “Intelligent 5G: When cellular networks meet artificial intelligence,”

IEEE Wireless Communications, vol. 27, no. 5, pp. 76-83, 2020.

60

BIBLIOGRAPHY 61

[27]

[28]

[29]

[31]

[32]

[33]

[34]

[36]

Z. Yang et al., “A survey of deep learning techniques for mobile traffic forecasting,”

IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1674-1693, 2017.

S. Garcia, J. Luengo, and F. Herrera, Data Preprocessing in Data Mining, Springer,

2016.

J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, Elsevier,

2011.

Q. Wen et al., “Transformers in Time Series: A Survey,” arXiv preprint

arXiv:2202.07125*, 2022.

J. Brownlee, Deep Learning for Time Series Forecasting, Machine Learning Mastery,

2018.

C. Bergmeir and J. M. Benitez, “On the use of cross-validation for time series pre-

dictor evaluation,” Information Sciences, vol. 191, pp. 192-213, 2012.

J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,”

Journal of Machine Learning Research, vol. 13, pp. 281-305, 2012.

M. Harchol-Balter, Performance Modeling and Design of Computer Systems: Queue-

ing Theory in Action, Cambridge University Press, 2013.

G. Bolch et al., Queueing Networks and Markov Chains: Modeling and Performance

Evaluation with Computer Science Applications, Wiley, 2006.

C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE)
over the root mean square error (RMSE) in assessing average model performance,”

Climate Research, vol. 30, no. 1, pp. 79-82, 2005.

A. Paszke et al., “PyTorch: An imperative style, high-performance deep learning

library,” Advances in Neural Information Processing Systems, vol. 32, 2019.

61

BIBLIOGRAPHY 62

[38] M. Abadi et al., “TensorFlow: A system for large-scale machine learning,” OSDI,

vol. 16, pp. 265-283, 2016.

[39] P. Virtanen et al., “SciPy 1.0: Fundamental algorithms for scientific computing in

Python,” Nature Methods, vol. 17, pp. 261-272, 2020.

62

