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ABSTRACT

In modern communication networks, particularly within the context of 5G and be-

yond, network slicing has emerged as a key technique to support diverse services with

varying Quality of Service (QoS) requirements. Each slice is designed to meet the spe-

cific needs of applications such as video streaming, IoT, and ultra-reliable low-latency

communications, and must be provisioned with appropriate resources.

A major challenge in network slicing is the dynamic and unpredictable nature of

network tra”c. As tra”c is user-generated and varies over time, it cannot be directly

controlled by the network operator. This time-varying behavior makes static resource

allocation strategies ine”cient, potentially leading to congestion, increased delay, or poor

resource utilization. Therefore, accurate tra”c prediction is essential to enable proactive

and adaptive resource management.

This thesis investigates the application of deep learning techniques for tra”c predic-

tion in network slicing scenarios. Specifically, Long Short-Term Memory (LSTM) and

Transformer-based models are explored due to their ability to capture long-term tempo-

ral dependencies in time-series data. The study is carried out using classical single-server

queuing models such as M/M/1, D/D/1, M/G/1, G/G/1, and G/M/1, which help in

understanding basic tra”c behaviors in a controlled setting.

However, it is important to note that real-world tra”c conditions are more complex.

At router and base station sites, tra”c from multiple services is often multiplexed, result-

ing in aggregated arrival patterns that do not follow regular or idealized distributions.

These mixtures of heterogeneous tra”c types make the arrival statistics highly irregular

and challenging to model using traditional analytical methods. In such scenarios, data-

driven approaches like deep learning provide a promising solution by learning complex

patterns directly from empirical tra”c data.

The predicted tra”c is then utilized to guide dynamic and intelligent resource allo-

cation, enhancing the adaptability and e”ciency of the network slicing framework.
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Chapter 1

Introduction

1.1 Background

With the exponential growth of mobile devices, IoT systems, and internet connected

applications, modern communication networks face increasing pressure to deliver reliable,

highspeed data services [25] . The proliferation of multimedia content, cloud-based appli-

cations, and real-time services such as video conferencing and gaming necessitates precise

and e”cient tra”c management strategies. Technologies such as 5G and the forthcoming

6G networks introduce stringent requirements for low latency, high throughput, and ultra-

reliable communication. These include key use cases such as ultra-reliable low-latency

communication, massive machine type communication, and enhanced mobile broadband.

One of the most promising techniques to address these complex requirements is network

tra”c prediction. It enables operators to forecast future data load using historical tra”c

patterns, allowing them to dynamically allocate network resources, avoid congestion, and

optimize quality of service (QoS) [27] . E!ective tra”c prediction reduces packet loss,

improves bandwidth utilization, and supports proactive rather than reactive network

management.

1.2 Motivation

Predicting network tra”c is essential for keeping communication networks running

smoothly. When we can accurately forecast tra”c patterns, it becomes easier to manage

1



CHAPTER 1. INTRODUCTION 2

bandwidth, reduce delays, and provide users with a better overall experience. Traditional

methods like ARIMA, moving averages, and exponential smoothing have been used for

prediction, but they often fall short. These models struggle with the complex, non-linear

patterns and long-term trends that are common in real-world network tra”c. In recent

years, machine learning especially deep learning—has opened new doors. Models like

Long Short-Term Memory (LSTM) networks and Transformers have shown great success

in predicting time-series data [22, 13]. LSTM networks are built to understand sequences

and long term relationships, while Transformers use self attention to identify important

patterns over time [29]. By using these advanced models in network tra”c prediction,

we can make forecasts that are more accurate. This helps network providers act before

problems occur—like tra”c spikes—so they can better allocate resources. As a result,

the network becomes more e”cient, scalable, and reliable for everyone who uses it.

1.3 Problem Statement

Modern networks face increasing tra”c complexity due to varying data loads, hetero-

geneous devices, and dynamic user behavior [25]. Traditional forecasting methods often

fall short in capturing the stochastic and temporal characteristics of such data. Conse-

quently, there’s a need for sophisticated deep learning-based approaches that can learn

intricate patterns from time-series data and provide accurate forecasts.

This research aims to explore and compare two deep learning models—LSTM and

Transformer for network tra”c prediction using Python-based simulation. The study

focuses on evaluating model performance on aggregator of di!erent types of queueing

models (such as M/M/1, D/D/1, etc.) using synthetic and real tra”c datasets. It seeks

to identify the most e!ective approach for predicting key performance indicators such as

arrival time, service time, latency, and jitter.

2



CHAPTER 1. INTRODUCTION 3

1.4 Objectives

The primary objectives of this research are:

• To collect and preprocess network tra”c data representing aggregate various queue-

ing scenarios.

• To implement deep learning models, specifically LSTM and Transformer, for fore-

casting network metrics.

• To evaluate the models based on performance metrics such as Mean Absolute Error

(MAE), Root Mean Squared Error (RMSE), and R Squared (R2) score [36].

• To analyzed and compared the performance of LSTM and Transformer architec-

tures.

• To visualize and interpret the predicted trends for network tra”c parameters.

• To derive insights that could support more e”cient resource allocation strategies

in future communication systems.

1.5 Scope of the Work

This study is focused on software-based modeling and analysis of network tra”c

prediction. The scope is restricted to using Python for the development, training, and

evaluation of LSTM and Transformer models. Experiments are conducted using both

synthetic datasets based on queueing models and real-world datasets where applicable.

Key libraries are used include NumPy for numerical operation, Pandas for data ma-

nipulation, TensorFlow and Keras for deep learning, and Matplotlib/Seaborn for data

visualization. The research does not cover hardware implementation, integration with

live systems, or physical layer modeling. However, the outcomes provide a theoretical

and practical foundation for such future work.

3



CHAPTER 1. INTRODUCTION 4

1.6 Significance of the Study

This research contributes to the growing field of intelligent network management

by applying state of art deep learning techniques to the problem of tra”c prediction.

Accurate forecasting supports improved decision-making in network planning, including

dynamic resource provisioning, congestion avoidance, and service quality improvement.

Furthermore, the comparative analysis of LSTM and Transformer models o!ers in-

sights into their strengths and limitations in handling di!erent tra”c patterns. The

findings may inform the development of hybrid or ensemble models, adaptive systems,

and real-time predictive engines. As networks evolve toward 6G and beyond, such pre-

dictive capabilities will become increasingly vital.

4



Chapter 2

Literature Review

2.1 Advancements in Communication Technologies

The rapid evolution of communication technologies, especially the transition from

5G to 6G, has intensified research e!orts focused on enhancing the e”ciency of network

tra”c prediction, resource allocation, and network slicing orchestration. As the demands

of modern applications grow more complex, the networking community has turned to

artificial intelligence (AI) for innovative solutions. Among the most promising approaches

are those based on Large Language Models (LLM) and Transformer-based architectures

[13, 14], which bring powerful capabilities in natural language understanding and deep

representation learning to the real of networking.

2.2 Large Language Models in Network Manage-

ment

ChatNet: LLM for Automated Network Intelligence (Huang et al., 2023)

Huang et al. presented ChatNet, a pioneering framework designed to bridge the gap

between human intent and network operations through the use of LLM [11]. This model

leverages techniques such as prompt engineering and parameter-e”cient finetuning to

adapt general-purpose LLMs to the specific linguistic and operational demands of net-

5
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working environments. ChatNet is built on the concept of embodied intelligence, where

LLMs are not only capable of understanding language but also of interfacing with net-

work tools such as solvers, analyzers, and visualization platforms [16]. This framework

allows for the execution of complex tasks like capacity planning, fault diagnosis, and

security enforcement by interpreting natural language queries and mapping them to net-

work actions. Despite its strengths, ChatNet remains predominantly focused on semantic

transformation and tool orchestration, lacking the infrastructure for predictive modeling

based on time-series tra”c data, which is vital for proactive resource allocation in dy-

namic network environments.

Figure 2.1: Applications, mechanisms, and enabling techniques for domain-adapted net-

work LLM.

[11]

Multi-Agent LLM Framework for Network Slicing Orchestration (Dandoush

et al., 2024)

In their work, Dandoush et al. advanced the conversation by integrating LLMs into a

6
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multi-agent system for the orchestration and management of network slicing [12]. This

framework envisions a decentralized model where multiple LLM agents operate within

di!erent network domains (e.g., access, core, cloud) and collaborate to interpret user

intents, allocate resources, and monitor slice performance. Each agent is capable of

translating high-level user goals into detailed slice configurations using standard descrip-

tors and orchestrating actions based on abstracted views of the infrastructure [15]. One

of the significant contributions of this work is its approach to translating qualitative

user inputs into quantifiable service parameters and using these to automate end-to-end

slice lifecycle management. However, while the system excels in adaptability and intent

interpretation, it does not explicitly incorporate predictive analytics or numerical fore-

casting mechanisms needed to anticipate tra”c loads or optimize resource provisioning

dynamically [17].

Figure 2.2: LLM Assisted End User Network Slice Intent Translation.

[12]

7



CHAPTER 2. LITERATURE REVIEW 8

Figure 2.3: A hypothetical interaction between an end user and an intelligent LLM,

negotiating over a telemedicine service

[12]

2.3 Transformer-based Numerical Prediction in Net-

work Tra!c

This thesis o!ers a contrasting yet complementary perspective by focusing on pre-

dictive modeling of network tra”c using Transformers adapted specifically for numerical

input. Unlike traditional applications of Transformers in text processing [13], the model

introduced in this thesis employs specialized embeddings for numeric features, normal-

ization techniques for stability, and learnable positional encodings to handle time-series

data. The architecture is streamlined to an encoder-only design to enhance e”ciency

and is tailored for continuous, multi-step forecasting. This enables the system to antic-

ipate network demands in advance, thereby supporting more intelligent and responsive

resource allocation strategies. These predictive capabilities form a core di!erentiation

from existing LLM-based frameworks, which largely focus on interpretative and proce-

8
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dural automation.

2.4 Integration of Queuing Theory Models

To ground its predictions in operational reality, this research integrates well-

established queuing theory models such as M/M/1, M/G/1, M/D/1, and D/D/1. These

models provide a robust theoretical framework for understanding service dynamics and

congestion within network slices. Prior studies such as [18] highlight the e!ectiveness of

combining AI with theoretical models for adaptive network resource management. By

combining these classical methods with predictions from a deep learning-based Trans-

former model, this research ensures that decisions about resource allocation are not only

based on forecasts but also on proven mathematical understanding. This dual approach

strengthens the system’s ability to make smart, e”cient choices in real-world network

environments.

2.5 Limitations and Opportunities for Future Re-

search

While this thesis significantly advances the predictive modeling of network tra”c

and introduces strong theoretical underpinnings, it does not yet include features such as

natural language processing for user interaction or distributed agent-based coordination.

These capabilities, as demonstrated by Huang et al. [11] and Dandoush et al. [12], could

enhance the user-friendliness and scalability of the system.

Limitations in Related Work and How This Thesis Addresses Them:

• ChatNet (Huang et al.) lacks predictive modeling capabilities: The focus is on

semantic interpretation and operational tooling, without provisions for numerical

tra”c forecasting. In contrast, this thesis implements Transformer-based numerical

9
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prediction [13], enabling proactive resource planning.

• ChatNet does not handle numerical time-series data: This thesis incorporates ad-

vanced handling of numerical inputs through normalization and embedding strate-

gies, which are absent in ChatNet.

• Multi-Agent LLM Framework (Dandoush et al.) does not include tra”c forecasting:

The emphasis is on user intent interpretation and orchestration across domains.

This thesis provides a complementary capability by introducing predictive analytics

into the management cycle [17].

• Both papers lack integration with theoretical performance models: This thesis fills

the gap by incorporating queuing theory [18] to guide and validate resource alloca-

tion strategies.

Future work could focus on integrating natural language interfaces and agent-based

coordination mechanisms with the predictive engine to form a comprehensive, intelligent

network management solution.

2.6 Summary

In conclusion, this thesis fills a crucial gap in the literature by shifting the focus from

interpretative automation to predictive accuracy in network management. Through its

use of adapted Transformer models [13] and queuing theory integration [18], it presents

a powerful tool for dynamic resource allocation in network slicing. When the capabili-

ties of ChatNet [11] and the multi-agent framework proposed by Dandoush et al.[12], it

becomes clear that combining predictive modeling with intuitive interfaces and decen-

tralized orchestration could yield the next generation of intelligent network management

systems.

10



Chapter 3

Methodology

3.1 Overview

This chapter presents the methodological framework employed in this thesis, which

integrates machine learning-based tra”c forecasting with classical queuing theory to

address the dynamic challenges in network resource allocation. The primary goal is

to leverage the strengths of Transformer models [13], adapted for numerical time-series

data [19], to anticipate network load conditions and make informed resource management

decisions within network slicing environments. The methodology is structured around

data preparation, model design, training procedures, and performance evaluation [20],

providing a comprehensive blueprint for the implementation of the proposed solution.

3.2 Research Objectives

This research aims to achieve the following goals:

• Build a Transformer-based prediction model that is specifically designed to work

with numerical data from network tra”c [21].

• Compare how well this model performs against more traditional methods like LSTM

[22] and simple neural networks [23].

• Use the predictions from the model together with queuing theory models (M/M/1,

11



CHAPTER 3. METHODOLOGY 12

M/G/1, D/D/1, and M/D/1) [24] to help plan and manage network resources in

real time.

• Measure how accurate and useful the system is, including how well it uses resources

and maintains service quality [25].

• Demonstrate how this integrated system can support intelligent decision-making in

future 5G/6G network environments [26].

3.3 Data Collection and Preprocessing

The dataset used in this research comprises historical network tra”c records, includ-

ing parameters such as bandwidth usage, packet rates, and service requests [27]. These

records are typically collected at regular intervals, forming a time-series dataset.

Data preprocessing involves the following steps:

• Data Cleaning: Removal of outliers, handling of missing values, and filtering of

irrelevant data points [28].

• Normalization: Application of min-max scaling or standardization to ensure fea-

ture values are within a consistent range and to stabilize training [29].

• Time Encoding: Incorporation of temporal context using learnable positional

embeddings [13], which allows the model to understand sequence ordering and

temporal dependencies.

3.4 Transformer Model Architecture

The core of the forecasting system is an encoder-only Transformer architecture

adapted for numerical data [19]. Key components include:

• Numerical Embedding Layer: Converts continuous numerical features into vec-

tor representations suitable for input into the Transformer [30].

12
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• Multi-Head Attention: Enables the model to attend to di!erent positions in the

sequence simultaneously, capturing complex temporal relationships [13].

• Feedforward Network: Applies non-linear transformations to the attention out-

puts, enhancing model expressiveness [20].

• Positional Encoding: Uses learnable embeddings to represent the position of

each time step, ensuring the model understands sequence order [13].

3.5 Model Training and Validation

The Transformer model is trained using supervised learning, where historical data

sequences are mapped to future values [31]. Key training aspects include:

• Loss Function: Mean Squared Error (MSE) is used to penalize the di!erence

between predicted and actual values [23].

• Data Split: The dataset is divided into training (70), validation (15), and test

(15) sets using chronological splitting to maintain temporal integrity [32].

• Hyperparameter Optimization: Grid search or random search is used to find

optimal values for learning rate, number of layers, and attention heads [33].

3.6 Integration with Queuing Models

Predicted tra”c patterns are fed into multiple queuing models to evaluate and manage

network load. The models used in this thesis include:

• M/M/1 Model: Assumes both arrival and service times follow exponential dis-

tributions. Useful for systems with memoryless behavior [24].

• M/G/1 Model: Assumes exponentially distributed arrivals with general service

time distributions, providing flexibility for varied service characteristics [34].

13
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• D/D/1 Model: Assumes deterministic arrival and service times. Ideal for ana-

lyzing systems with highly predictable tra”c patterns [35].

• M/D/1 Model: Combines exponential arrivals with deterministic service times,

reflecting situations where service mechanisms are uniform but arrivals are random

[24].

3.7 Evaluation Metrics

The proposed system is evaluated using the following metrics:

• Prediction Metrics: Root Mean Squared Error (RMSE), Mean Absolute Error

(MAE), and R-squared (R2) [36].

• Queuing Metrics: Average wait time, server utilization, and queue length [34].

• Comparative Analysis: Model performance is benchmarked against LSTM and

neural regression to validate improvements [22, 23].

3.8 Implementation Tools and Environment

The implementation is carried out using Python, leveraging libraries such as PyTorch

or TensorFlow for deep learning [37, 38], and SciPy or custom scripts for queuing model

simulation [39]. Experiments are conducted on GPU-enabled machines to accelerate

training.

3.9 Summary

This methodology integrates state-of-the-art deep learning techniques with classical

queuing theory to build an intelligent, predictive framework for network slicing manage-

ment. It addresses existing limitations in current research by o!ering both predictive

14



CHAPTER 3. METHODOLOGY 15

insight and theoretical rigor, enabling more responsive and e”cient network resource

allocation [25].

15



Chapter 4

Model Implementation

4.1 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) are a class of neural networks designed to model

sequential data by maintaining a hidden state that captures information from previous

time steps [22]. This property makes RNNs suitable for time-series and sequence predic-

tion tasks.

At each time step t, the hidden state ht is updated based on the current input xt and

the previous hidden state ht→1:

ht = ωh(Wxhxt +Whhht→1 + bh) (4.1)

whereWxh andWhh are weight matrices, bh is the bias vector, and ωh is the activation

function (usually tanh or ReLU).

The output yt is computed as:

yt = ωy(Whyht + by) (4.2)

Here, Why and by are weights and bias for the output layer, and ωy is an activation

function.

Limitations:

16
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• Traditional RNNs su!er from the vanishing and exploding gradient problems [22],

which hinder their ability to learn long-term dependencies in sequences.

• Due to their limited memory, RNNs often forget information from earlier time steps

in long sequences.

• LSTM and Transformer models are better suited for capturing long-term depen-

dencies through memory cells and attention mechanisms, respectively [13].

• Transformers support parallel processing across all time steps, which significantly

speeds up training compared to RNNs [13].

.

Figure 4.1: Basic Recurrent Neural Network architecture

4.2 Long Short-Term Memory (LSTM)

LSTM networks are a special type of RNN designed to overcome the vanishing gra-

dient problem by introducing memory cells and gating mechanisms that control the flow

of information [22].
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An LSTM cell has three main gates: input gate it, forget gate ft, and output gate ot.

The cell state is denoted as ct.

The equations governing LSTM at time step t are:

ft = ω(Wf · [ht→1,xt] + bf ) (4.3)

it = ω(Wi · [ht→1,xt] + bi) (4.4)

c̃t = tanh(Wc · [ht→1,xt] + bc) (4.5)

ct = ft → ct→1 + it → c̃t (4.6)

ot = ω(Wo · [ht→1,xt] + bo) (4.7)

ht = ot → tanh(ct) (4.8)

where: - ω is the sigmoid activation function, - → denotes element-wise multiplication,

- Wf ,Wi,Wc,Wo are weight matrices, - bf ,bi,bc,bo are biases.

Figure 4.2: Structure of an LSTM with gates
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4.3 Transformer Model

Transformers rely on self-attention mechanisms to model dependencies between in-

put elements regardless of their distance in the sequence, allowing better parallelization

compared to RNNs [13].

4.3.1 Self-Attention Mechanism

Given an input sequence represented by matrix X, the self-attention mechanism com-

putes three matrices : Query Q, Key K, and Value V as [13]:

Q = XWQ, K = XWK , V = XWV (4.9)

where WQ,WK ,WV are learned parameter matrices.

The scaled dot-product attention is computed as:

Attention(Q,K,V) = softmax

(
QK↑
↑
dk

)
V (4.10)

where dk is the dimension of the key vectors, used for scaling.

4.3.2 Multi-Head Attention

To allow the model to attend to information from di!erent representation subspaces,

multi-head attention concatenates several self-attention outputs [13]:

MultiHead(Q,K,V) = Concat(head1, ..., headh)W
O (4.11)

where each head is:

headi = Attention(QWQ

i
,KWK

i
,VWV

i
) (4.12)
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4.3.3 Positional Encoding

Since Transformers have no recurrence, positional information is added to the input

embeddings [13]:

PE(pos,2i) = sin
( pos

100002i/dmodel

)
, PE(pos,2i+1) = cos

( pos

100002i/dmodel

)
(4.13)

where pos is the position and i is the dimension.

Figure 4.3: Transformer architecture overview

[13]
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4.4 Summary

In this chapter, we described the key deep learning models used for network tra”c

prediction: RNN, LSTM, and Transformer. The limitations of vanilla RNNs motivated

the use of LSTM networks with gating mechanisms. Further, the Transformer architec-

ture leverages self-attention for capturing long-range dependencies e”ciently [13]. These

models were implemented using Python frameworks in our experiments [37, 38].

4.5 Modified Transformer Model

The core contribution of this thesis is the successful adaptation of the Transformer

model originally designed for natural language processing (NLP) tasks with textual input

to forecast numerical time series data in the context of network slicing in 5G/6G networks.

This required several architectural modifications to enable the Transformer to handle the

structure and dynamics of time series input, which is fundamentally di!erent from text

based input.

4.5.1 Motivation

The Transformer model has shown excellent performance in modeling long-range de-

pendencies in NLP tasks. However, its standard architecture assumes tokenized text

sequences as input, which is not directly suitable for time-dependent numerical data like

network tra”c measurements. To leverage the strength of the Transformer for time series

forecasting, this thesis introduces a series of modifications to the original model.

4.5.2 Proposed Modifications to the Transformer Model

1. Input Representation:

• Replaced word embeddings with embeddings designed for numerical time series

features.
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• Applied normalization techniques such as Min-Max Scaling and Standardiza-

tion to stabilize training.

2. Positional Encoding:

• Replaced fixed sinusoidal positional encodings with learnable positional em-

beddings.

• This allows the model to learn the temporal structure of the data more flexibly.

3. Architecture Simplification:

• Removed the decoder component of the original Transformer.

• Used only the encoder for direct regression tasks, which simplifies the model

and reduces computational cost.

4. Output Layer:

• Replaced the classification layer (used in NLP) with a regression output layer.

• Enabled the model to produce continuous-valued outputs for multi-step fore-

casting.

4.5.3 Significance of the Contribution

These modifications enable the Transformer to process and forecast network tra”c

patterns e!ectively. Unlike traditional recurrent models such as LSTM and GRU, the

modified Transformer captures long-range dependencies more e”ciently and provides

improved forecasting accuracy for dynamic network slicing scenarios.
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Input Time Series Data(x1, x2, . . . , xt)

Min-Max Scaling / Standardization

Numerical Feature Embeddings

Learnable Positional Embeddings

Add & Normalize

Transformer Encoder(Multi-Head Attention + Feed Forward)

Regression Head

Multi-step OutputContinuous Predictions(ŷ1, ŷ2, . . . , ŷT )

Figure 4.4: Transformer architecture overview
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4.5.4 Comparison with Standard Transformer

Table 4.1: Comparison between Standard and Modified Transformer

Aspect Standard Transformer Modified Transformer

Input Type Word Embeddings (Text) Numerical Feature Embeddings

Positional Encoding Fixed Sinusoidal Learnable Positional Embeddings

Architecture Encoder + Decoder Encoder Only

Output Type Token Probabilities Continuous Numerical Values

Application Domain NLP Tasks Time Series Forecasting in Network Tra”c

4.5.5 Conclusion

The successful adaptation of the Transformer model for numerical time series fore-

casting represents a contribution to the field of deep learning for network slicing. It

demonstrates that with appropriate modifications, attention-based architectures can out-

perform traditional sequence models in tasks involving complex temporal patterns.
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Chapter 5

Data Collection and Preprocessing

5.1 Introduction

Network prediction tasks rely heavily on high-quality time-series data that accurately

reflects real-world communication behavior [27]. This chapter describes the theoretical

background of queueing models used to simulate such network behavior and the prepro-

cessing steps performed to prepare the data for LSTM and Transformer-based prediction

models [22, 13].

We simulate five classical queueing models: M/M/1, D/D/1, M/G/1, and M/D/1

[24]. These models help generate synthetic data representing network metrics such as

arrival time, service time, latency, and jitter. After simulation, the dataset is normalized

and organized into input-output sequences suitable for model training.

5.2 Theoretical Background of Queueing Models

Queueing theory studies the behavior of queues systems where entities (e.g., data

packets) wait for service. Each model is defined by its arrival and service time distribution

[34]. The general format of queueing notation is A/B/1, where:

• A: Arrival time distribution

• S: Service time distribution
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• 1: Number of servers

5.2.1 M/M/1 Queue (Exponential/Exponential/1)

The M/M/1 queueing model is one of the fundamental models in queueing theory,

known for its simplicity and analytical tractability [24, 34]. It represents a system where

both arrivals and service times are governed by memoryless (Markovian) processes.

• Arrival Process: Customers or data packets arrive according to a Poisson process

with an average rate of ε arrivals per unit time.

• Service Process: Each service time is exponentially distributed with an average

service rate of µ customers per unit time.

• Number of Servers: A single server processes incoming requests in the order

they arrive (First-Come, First-Served).

Assumptions:

• The queue has an infinite capacity, so no arrivals are lost.

• The arrival and service processes are independent.

• The system is stable only if ε < µ, ensuring the queue does not grow indefinitely.

Performance Metrics:

• Utilization Factor (Tra!c Intensity):

ϑ =
ε

µ

This indicates the fraction of time the server is busy. Stability requires ϑ < 1.

• Average Number of Packets in System (L):

L =
ϑ

1↓ ϑ
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Represents the expected total number of customers in the system (waiting + being

served).

• Average Time in System (W):

W =
1

µ↓ ε

The average time a customer spends in the system, including both queueing and

service time.

• Average Time in Queue (W˙q):

Wq =
ε

µ(µ↓ ε)
=

ϑ

µ↓ ε

The expected waiting time before service begins.

• Average Number of Packets in Queue (L˙q):

Lq = εWq =
ε2

µ(µ↓ ε)

The average number of customers waiting in line (excluding the one being served).

Use Cases:

• Modeling customer service desks or call centers with random arrival and service

times.

• Useful in networking to analyze bu!er behavior in routers and switches under ran-

dom packet arrival.

5.2.2 D/D/1 Queue (Deterministic/Deterministic/1)

The D/D/1 queue is a basic and idealized model in queueing theory. It represents

a system where both the inter-arrival times and service times are strictly deterministic

and occur at constant, fixed intervals [35].
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• Arrival Process: Jobs or packets arrive exactly every 1
ω
units of time, where ε is

the fixed arrival rate.

• Service Process: Each job requires a fixed service time of 1
µ
, where µ is the

constant service rate.

• Number of Servers: A single server handles incoming jobs on a First-Come,

First-Served (FCFS) basis.

Key Features:

• There is no randomness in the system.

• Since both arrivals and service times are perfectly regular, the behavior of the queue

is highly predictable.

Performance Characteristics:

• Utilization:

ϑ =
ε

µ

Indicates how busy the server is. For a stable system, ϑ ↔ 1. If ϑ > 1, the queue

will grow without bound.

• Queue Behavior:

– If ε < µ, the server will have idle time between jobs.

– If ε = µ, the system reaches a balanced state with no queue buildup.

– If ε > µ, jobs accumulate and the queue length increases linearly.

• Waiting Time: In the stable case, when ε ↔ µ, jobs do not wait in the queue

because each arrives just in time to be served. Thus:

Wq = 0, W =
1

µ
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• Queue Length: In the stable condition, the queue length remains zero or bounded

by one depending on the arrival-service timing alignment.

Applications:

• Systems with highly predictable tra”c, such as industrial automation or real-time

control systems.

• Used for benchmarking other queueing models due to its ideal and noise-free be-

havior.

5.2.3 M/G/1 Queue (Markovian/General/1)

The M/G/1 queue is a fundamental single-server queueing model where the arrival

process is stochastic (Poisson), but the service times follow a general (arbitrary) distribu-

tion. It provides a more realistic representation of many real-world systems where service

times are not necessarily exponential [24, 34].

• Arrival Process: Poisson process with arrival rate ε (exponentially distributed

inter-arrival times).

• Service Process: General distribution with mean service time E[S] and variance

Var(S).

• Number of Servers: One server (single-server system).

Key Characteristics:

• The arrival pattern is memoryless, but the service time can follow any distribution

(e.g., uniform, normal, or heavy-tailed).

• The model is useful for analyzing systems with irregular service durations such as

file transfers, machine repairs, or processing times.
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• System behavior is captured using the Pollaczek–Khinchine (P-K) formula, which

provides expressions for performance metrics.

Important Metrics:

• Tra!c Intensity (Utilization):

ϑ = ε · E[S]

For the system to be stable, ϑ < 1.

• Average Number of Packets in System:

L = ϑ+
ε2 · Var(S)
2(1↓ ϑ)

• Average Waiting Time in Queue:

Wq =
ε · Var(S)
2(1↓ ϑ)

• Average Time in System (Waiting + Service):

W = Wq + E[S]

• Average Queue Length:

Lq = ε ·Wq

Explanation:

• The variance of the service time plays a critical role in system performance.

• Higher variability in service times (higher Var(S)) leads to longer waiting times

and larger
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5.2.4 M/D/1 Queue (Markovian/Deterministic/1)

– Arrival Process: Follows a Poisson distribution with exponential inter-

arrival times (memoryless property).

– Service Process: Each job or packet has a fixed (deterministic) service time.

– Number of Servers: A single server is available to serve incoming requests.

In this queueing model, variability is introduced only by the arrival process, as

service times are constant. This makes the analysis simpler than in more general

models [35].

The average waiting time in the queue Wq for the M/D/1 system is given by:

Wq =
ϑ2

2µ(1↓ ϑ)

Where:

– ϑ = ε/µ is the tra”c intensity.

– ε: Mean arrival rate.

– µ: Mean service rate, which is the inverse of the constant service time.

Key Features:

– The deterministic nature of service time reduces variability in system behavior.

– As compared to M/M/1, the M/D/1 model yields shorter average waiting

times because there is no randomness in service.

– Useful for systems where processing time is known and consistent, such as

embedded systems or scheduled tasks in computing.
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5.3 Network Metrics Captured

During the simulation of tra”c and queuing models, various performance metrics

were recorded at each time step. These metrics provide insight into the system’s

behavior and are essential for evaluating model performance [25].

5.3.1 Arrival Time

The arrival time refers to the exact moment when a packet or data unit enters the

queueing system. This metric helps in calculating inter-arrival times and tracking

system load over time.

5.3.2 Service Time

Service time is the duration taken by the server to process a packet. It depends on

the server’s speed and the complexity or size of the incoming request. The value is

often drawn from a predefined distribution (e.g., constant, exponential, or general).

5.3.3 Latency

Latency represents the total delay experienced by a packet from the moment it

arrives until it exits the system after being serviced. It is computed as:

Latency = Waiting Time + Service Time

High latency may indicate congestion or limited server capacity and is a critical

metric in evaluating Quality of Service (QoS).

5.3.4 Jitter

Jitter quantifies the variation in latency between consecutive packets. In real-time

systems such as voice or video communication, low jitter is crucial. It is defined as:

32



CHAPTER 5. DATA COLLECTION AND PREPROCESSING 33

Jittert =
∣∣Latency

t
↓ Latency

t→1

∣∣

Higher jitter values indicate inconsistency in system response time, which can de-

grade the performance of time-sensitive applications.

5.3.5 Queue Length

This metric measures the number of packets waiting in the queue at any given time

step. It reflects the current load on the system and helps in identifying periods of

congestion. A consistently long queue may suggest under-provisioned resources or

ine”cient scheduling.

5.4 Data Preprocessing

To ensure that the collected simulation data is suitable for training deep learning

models, several preprocessing steps were applied.

5.4.1 Handling Missing Values

Although simulations are controlled, some generated datasets may contain missing

or undefined values due to abrupt termination or simulation errors. These gaps

were handled using [28]:

– Forward Fill: Propagates the last valid observation forward.

– Interpolation: Estimates missing values using trends in neighboring data

points.

These techniques help maintain continuity in the time series without introducing

bias.
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5.4.2 Feature Normalization

Normalization is essential to scale all numerical features to a common range, typi-

cally [0, 1], which helps improve training stability and convergence speed. Min-max

scaling was applied as follows:

xnormalized =
x↓ xmin

xmax ↓ xmin

This ensures that large-scale features do not dominate smaller ones during model

training.

5.4.3 Sequence Preparation

Since LSTM and Transformer models operate on sequential data, the time-series

metrics were transformed into a supervised learning format using a sliding window

technique. This involved:

– Input Sequence: A window of length n capturing values from time t to

t+ n↓ 1.

– Target Value: The immediate next value at time t + n, which the model is

trained to predict.

This method allows the model to learn temporal dependencies and trends across

the dataset.

5.4.4 Train-Test Splitting

To evaluate model performance reliably, the dataset was divided as follows:

– Training Set: 80% of the dataset used to learn model parameters [32].
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– Testing Set: 20% of the dataset used for evaluating generalization on unseen

data.

Importantly, shu#ing was avoided to preserve the chronological order of events,

which is vital in time-series prediction tasks.

5.5 Summary

In this chapter, we detailed the essential queueing metrics captured during simu-

lation, such as arrival time, service time, latency, jitter, and queue length. These

metrics provide a comprehensive view of system behavior under di!erent tra”c con-

ditions. We also described how the raw data was preprocessed to make it suitable

for training deep learning models. This included missing value handling, feature

scaling, temporal sequence generation, and careful dataset partitioning. The result-

ing structured dataset enables the e!ective application of LSTM and Transformer

models in predicting network tra”c and assessing queuing performance in dynamic

network slicing environments.
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Chapter 6

Experimental Setup

6.1 Introduction

This chapter provides a detailed explanation of the experimental environment used

for evaluating the proposed network prediction models. The chapter outlines the

hardware and software platforms, simulation techniques, model architectures, hy-

perparameters used in training, and the metrics used to assess prediction perfor-

mance. The goal is to ensure reproducibility and clarity of the conducted experi-

ments.

6.2 Hardware and Software Environment

6.2.1 Hardware Configuration

All simulations, model training, and evaluations were conducted on a personal

computing system equipped to handle moderate machine learning workloads. The

configuration of the hardware setup is as follows:

– Processor: Intel Core i7-11800H with 8 cores and 16 threads, operating at a

base frequency of 2.30 GHz.

– Memory (RAM): 16 GB DDR4, o!ering su”cient capacity for in-memory

computations during training and data preprocessing.
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– Graphics Processing Unit (GPU): NVIDIA GeForce GTX 1660 Ti with

6 GB of dedicated VRAM, enabling hardware acceleration for deep learning

tasks.

– Storage: 512 GB NVMe SSD, providing high-speed data read/write opera-

tions to improve dataset loading and model checkpointing e”ciency.

6.2.2 Software Tools

The entire implementation pipeline, from data generation to model training and

evaluation, was developed using Python 3.10. Various open-source libraries were

employed for specific tasks throughout the project [39, 38, 37]:

– NumPy: Used for numerical operations such as array manipulation, mathe-

matical computations, and random number generation.

– Pandas: Utilized for structured data processing, including data cleaning,

transformation, and tabular representation.

– Matplotlib & Seaborn: Applied for generating detailed plots and visual-

izations to analyze trends in queue metrics and model predictions.

– Scikit-learn: Employed for data preprocessing steps like normalization and

for computing evaluation metrics such as RMSE and MAE.

– TensorFlow & Keras: Used for implementing and training the LSTM-based

models, taking advantage of built-in layers and optimizers.

– PyTorch: Adopted for the Transformer model implementation, o!ering a

flexible and dynamic computation graph suitable for experimentation.

– Google Colab & Visual Studio Code: Served as the main development

environments for writing, debugging, and running code.
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6.3 Dataset Generation and Configuration

6.3.1 Simulated Queueing Models

The dataset was synthetically generated through the simulation of five widely stud-

ied queueing models: M/M/1, D/D/1, M/G/1 and M/D/1. Each model represents

a di!erent configuration of arrival and service time distributions, simulating a va-

riety of real-world tra”c scenarios. These simulations were implemented using

Python scripts and involved tracking various network performance metrics over

time [24, 34].

For each run of the simulation, packets were generated based on the arrival dis-

tribution, and their service times were assigned according to the specific model.

The system then recorded key performance indicators including waiting time in the

queue, total latency, and packet-to-packet jitter.

6.3.2 Dataset Structure

The final dataset used for training and evaluation had the following properties:

– Features Captured: Arrival Time, Service Time, Waiting Time, Latency,

and Jitter.

– Total Samples: 50,000 time steps were simulated, providing a diverse and

statistically meaningful set of data points.

– Sequence Length: Each input sample consisted of a sequence of 10 consec-

utive time steps (i.e., past 10 observations).

– Prediction Objective: The target variable was the corresponding value of

a selected metric at the next (11th) time step.

– Train-Test Division: 80% of the data was allocated for training, and the

remaining 20% was used for testing.
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6.3.3 Preprocessing Steps

Before model training, the dataset underwent several preprocessing steps to ensure

consistency, numerical stability, and compatibility with sequential learning archi-

tectures:

– Handling Missing Values: Although rare in simulation-generated data,

any missing entries were addressed using forward-fill or linear interpolation

methods to maintain sequence continuity [28].

– Normalization: All features were scaled using min-max normalization to

bring values into the [0, 1] range, reducing the risk of gradient explosion or

vanishing during training [29].

– Sequence Construction: A sliding window of size 10 was applied across the

time series to form overlapping input sequences, with the 11th step used as

the prediction target [31].

– Temporal Integrity: The data was kept in its natural order without shuf-

fling, to preserve time dependencies essential for sequence-based models like

LSTM and Transformer.

6.4 Model Configurations

6.4.1 LSTM Model Details

A deep learning model based on the Long Short-Term Memory (LSTM) architec-

ture was designed to predict future values of queueing metrics based on historical

sequences [22]. The model architecture is described below:

– Input Layer: Accepts input tensors of shape (10, 5), where 10 is the time

window and 5 is the number of features.
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– LSTM Layer: A single LSTM layer with 64 memory units and tanh activa-

tion was used to capture temporal patterns and dependencies.

– Dropout Layer: A dropout rate of 0.2 was applied after the LSTM layer to

mitigate overfitting by randomly disabling neurons during training.

– Dense Layer: A fully connected layer with 32 units and ReLU activation

was included to transform the extracted temporal features.

– Output Layer: A single neuron with linear activation was used to predict

the target value (e.g., future latency or jitter).

This configuration provides a balance between model complexity and performance,

making it suitable for medium-sized datasets like the one used in this study. The

model was compiled using the Adam optimizer and Mean Squared Error (MSE) as

the loss function.

6.4.2 Modified Transformer Model for Time Series Fore-

casting in Network Tra!c

To e!ectively apply the Transformer architecture for time series forecasting in a

network slicing context, several modifications were made to adapt it for handling

numerical data and direct regression tasks [13].

Input Representation (Handling Numerical Data)

Unlike the traditional Transformer, which uses word embeddings for text input, our

model processes multivariate numerical time series data. Each input vector at a

time step includes normalized values of five features: Arrival Time, Service Time,

Waiting Time, Latency, and Jitter. To bring the input values within a comparable

range and stabilize training, Min-Max Scaling or Standardization was applied. Each
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5-dimensional vector is projected into a 64-dimensional embedding space using a

linear transformation layer.

Positional Encoding (Incorporating Temporal Order)

Transformers do not have a built-in mechanism for representing the sequence order.

To encode temporal information, we used learnable positional embeddings rather

than the traditional fixed sinusoidal encodings. These learnable embeddings allow

the model to adapt positional patterns specific to network tra”c data over time,

improving prediction performance.

Architecture Adjustments

Instead of using the full encoder-decoder architecture, we implemented only the

encoder component. This is su”cient for time series regression, as the task in-

volves predicting future values based on past observations rather than generating

sequences or translations. The encoder stack includes:

– Two Transformer encoder layers

– Four multi-head self-attention mechanisms per layer

– Residual connections and layer normalization

– Position-wise feedforward networks with 128 hidden units and ReLU activation

Output Layer for Multi-Step Regression

The encoded sequence is reduced via pooling (e.g., mean pooling across time steps),

producing a fixed-size context vector. This is passed through a fully connected

dense layer followed by a linear output layer that predicts a continuous numerical

value. For multi-step forecasting, the model can be extended to output multiple

values simultaneously or be used in an autoregressive fashion.
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Model Performance and Advantages

The modified Transformer demonstrated superior performance compared to the

LSTMmodel in capturing long-range dependencies within network slicing scenarios.

Key benefits included:

– Parallel processing of sequence data, leading to faster training times

– Better handling of temporal variability and irregular tra”c patterns

– Improved accuracy in long-term forecasting due to global attention mecha-

nisms

These enhancements make the Transformer particularly e!ective for dynamic net-

work resource prediction, which is critical in modern 5G and 6G network slicing

environments.

6.5 Training Setup

To train the proposed LSTM and Transformer-based forecasting models, a con-

sistent and optimized training configuration was used to ensure fair comparison

and reliable convergence. The key parameters for the training process are outlined

below:

– Optimizer: The Adam optimizer was used due to its adaptive learning rate

capabilities and e”cient handling of sparse gradients [?]. It combines the

benefits of both AdaGrad and RMSProp.

– Loss Function: Mean Squared Error (MSE) was selected as the primary loss

function, suitable for continuous regression tasks where minimizing prediction

error is essential.

– Batch Size: A mini-batch size of 64 was chosen to strike a balance between

training speed and convergence stability.
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– Epochs: Each model was trained for a maximum of 300 epochs, which was

su”cient to allow convergence for both LSTM and Transformer architectures.

– Learning Rate: The initial learning rate was set to 0.001. This value was

empirically chosen to ensure smooth optimization without overshooting min-

ima.

– Early Stopping: To prevent overfitting, early stopping was enabled with a

patience parameter of 10 epochs. Training was halted if the validation loss

did not improve for 10 consecutive epochs.

This training setup was consistent across all experiments, ensuring that any ob-

served di!erences in model performance were due to model architecture rather

than di!ering hyperparameters.

6.6 Evaluation Metrics

To assess the forecasting accuracy and performance of the models, multiple error

metrics were employed. These metrics provide a comprehensive view of prediction

quality from di!erent perspectives [36]:

– Mean Squared Error (MSE): Measures the average of the squared di!er-

ences between predicted and actual values. It is sensitive to large errors.

MSE =
1

n

n∑

i=1

(yi ↓ ŷi)
2

– Mean Absolute Error (MAE): Computes the average absolute di!erence

between the predicted and true values. It treats all errors equally.

MAE =
1

n

n∑

i=1

|yi ↓ ŷi|
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– Root Mean Squared Error (RMSE): The square root of MSE, which

restores the error unit to the original scale of the data. It penalizes larger

errors more severely.

RMSE =
↑
MSE

– Coe!cient of Determination (R2 Score): Indicates how well the model

explains the variability of the target values. An R2 value close to 1 indicates

strong predictive performance.

R2 = 1↓
∑

(yi ↓ ŷi)2∑
(yi ↓ ȳ)2

These metrics were calculated on the test dataset after training and were used to

evaluate both single-step and multi-step forecasting performance.

6.7 Summary

This chapter presented a detailed overview of the experimental setup used in this

research work. It began with the hardware and software environment, highlighting

the tools and computational resources employed. Then, it described the simulation-

based dataset generation process using various queuing models such as M/M/1,

D/D/1, M/G/1, M/D/1. Key features such as arrival time, latency, service time,

and jitter were extracted and preprocessed using normalization and sequence for-

matting techniques.

The chapter also elaborated on the architectural configurations of the LSTM and

Transformer models [22, 13]. Specific adaptations were made to the Transformer

to make it suitable for time series regression. Furthermore, the training setup was

carefully designed with standardized hyperparameters and regularization strategies

such as early stopping.
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Finally, appropriate evaluation metrics such as MSE, MAE, RMSE, and R2 were

defined to quantitatively measure the forecasting accuracy of the models. This

well-structured foundation sets the stage for the result analysis and interpretation

discussed in the following chapter.
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Results And Analysis

7.1 Visualization of Results

This section provides visual insights into the prediction quality of the deep learning

models across di!erent queueing systems. Each model exhibits unique arrival and

service patterns, and the following figures demonstrate how well the models learn

and predict these patterns [31].

7.1.1 D/D/1 Queue Model

The D/D/1 model represents a fully deterministic queue where both arrival and

service times are constant. It’s the simplest system, often used as a theoretical

benchmark.

Key Features:

– The model accurately learns fixed intervals in both arrivals and service.

– Small deviations may appear due to limited floating-point precision or training

noise.

– The latency remains constant, showing the Transformer’s e!ectiveness in mod-

eling deterministic queuing systems.
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Conclusion: The D/D/1 queue allows the Transformer model to demonstrate its

learning consistency. Although the system lacks variability, the model successfully

aligns with the fixed patterns, validating its reliability for modeling deterministic

tra”c flows .

Figure 7.1: Transformer Model Predictions vs Actual for D/D/1 Queue

As shown in Figure 7.1, Transformer models achieve high accuracy, reflecting the

model’s ease of learning in deterministic settings.
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7.1.2 M/G/1 Queue Model

The M/G/1 model assumes a Markovian (Poisson) arrival process and a general ser-

vice time distribution. It introduces service time variability while keeping arrivals

random but memoryless.

Key Features:

– The Transformer captures the randomness in arrival patterns (Poisson-like) .

– It e!ectively approximates the general service time distribution.

– Predicted latency values closely follow actual values, showing the model’s ca-

pacity to learn complex queuing behavior.

Figure 7.2: Transformer Model Predictions vs Actual for M/G/1 Queue
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Figure 7.2 shows how the models capture stochastic variations in service, with

Transformer often performing slightly better on sudden service-time bursts.

7.1.3 M/D/1 Queue Model

The M/D/1 queue combines a Poisson arrival process with fixed service times. It

blends randomness in arrivals with simplicity in service scheduling.

Figure 7.3: Transformer Model Predictions vs Actual for M/D/1 Queue

In Figure 7.3, prediction tracks are mostly smooth, with slight deviation during

peak arrival fluctuations. This hybrid nature tests the model’s generalization ca-

pability.
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7.1.4 Aggregator-Based Queueing Model

The Aggregator model represents the summation or combination of multiple tra”c

sources and queue models. It reflects real-world tra”c with high burstiness and

non-linear patterns [27].

Key Features:

– Combines multiple arrival/service patterns.

– Captures aggregate tra”c behavior from several sources.

– High variability and complex dependencies.

Figure 7.4: Transformer Model Predictions vs Actual for Aggregator Queue Model
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As shown in Figure 7.4, this queue type introduces significant prediction challenges.

The Transformer model better handles these patterns due to its attention mecha-

nism’s capability to model complex dependencies.

7.1.5 M/M/1 Queue Model

The M/M/1 queue is a classical single-server queueing model where:

– Both LSTM and Transformer models capture randomness in arrival and ser-

vice times.

– The Transformer slightly outperforms LSTM in arrival and service time accu-

racy.

– Latency prediction is consistent in both models, showing strong learning of

queue behavior.

LSTM Model Results

Arrival Time Prediction

Figure 7.5: LSTM Arrival Time Prediction for M/M/1 Queue
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Latency Prediction

Figure 7.6: LSTM Latency Prediction for M/M/1 Queue

Jitter Prediction

Figure 7.7: LSTM Jitter Prediction for M/M/1 Queue

Transformer Model Results

Arrival Time Prediction
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Figure 7.8: Transformer Arrival Time Prediction for M/M/1 Queue

Latency Prediction

Figure 7.9: Transformer Latency Prediction for M/M/1 Queue

Jitter Prediction
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Figure 7.10: Transformer Jitter Prediction for M/M/1 Queue

Analysis

From the plots above, we observe that both LSTM and Transformer models are

capable of learning M/M/1 tra”c patterns. However, the Transformer generally o!ers

smoother predictions and captures sudden variations (e.g., bursty arrivals or jitter) more

accurately. LSTM occasionally lags in response to abrupt changes in queue dynamics.

Training and Validation Loss Analysis

To evaluate the learning behavior of the deep learning models during training, both

the training loss and validation loss were recorded across epochs. These loss values

provide insights into how well the model generalizes to unseen data. A well-trained

model is expected to show a decreasing trend in both losses, with the validation loss

eventually stabilizing or slightly increasing due to minor overfitting.

The figure below illustrates the loss curves:
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Figure 7.11: Transformer Model Training and Validation Loss over Epochs

Interpretation:

• The training loss consistently decreases, indicating that the model is e!ectively

learning patterns in the data.

• The validation loss follows a similar trend in the initial epochs, confirming that the

model generalizes well.

• A small gap between training and validation loss is acceptable and expected, espe-

cially in time-series tasks involving queue dynamics.

Summary

The M/M/1 model shows that deep learning can e!ectively model stochastic queues.

Arrival time, latency, and jitter are predicted accurately with both models. The Trans-

former outperforms slightly in terms of adaptability and consistency.
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Table 7.1: Performance Comparison of Queueing Models Using Various Eval-

uation Metrics for Transformer Model

Model MSE MAD MAPE R2 Score RMSE

D/D/1 0.176 0.214 1.87% 0.8889 0.4195

M/G/1 0.153 0.264 2.01% 0.8612 0.3912

M/D/1 0.218 0.374 2.97% 0.7589 0.4289

Router/Aggregator 0.184 0.294 2.69% 0.8589 0.3289

These metrics were computed for four di!erent queueing scenarios: D/D/1, M/G/1,

M/D/1, and a real-world Router/Aggregator trace. As shown in Table 7.1, the D/D/1

model achieved the highest R2 score, indicating highly predictable behavior due to its

deterministic nature. In contrast, the M/D/1 model had higher errors, suggesting the dif-

ficulty of capturing fixed service patterns amid random arrivals. The Router/Aggregator

setup, derived from actual network traces, showed competitive performance, validating

the practical applicability of the proposed prediction framework.

Table 7.2: Performance Metrics for Transformer, LSTM, and Neural Regres-

sion Models

Model MSE MAD MAPE R2 Score RMSE

Transformer 0.45 0.12 0.95% 0.91 0.212

LSTM 1.20 0.25 2.10% 0.76 0.435

Simple Neural Regression 7.50 0.92 8.80% 0.21 0.450

Model-wise Performance Comparison

To identify the most suitable deep learning architecture for queueing behavior predic-

tion, three models were evaluated: Transformer, LSTM, and Simple Neural Regression.

Each model was trained on the same dataset, and their performance was measured using

standard evaluation metrics including MSE, MAD, MAPE, R² score, and RMSE.
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The results, as summarized in Table 7.2, show that the Transformer model signif-

icantly outperforms both LSTM and Neural Regression. It achieved the lowest MSE

(0.45) and highest R² score (0.91), indicating high prediction accuracy and strong gen-

eralization. LSTM showed moderate performance with acceptable error levels, while the

Simple Neural Regression model lagged behind, with the highest error values across all

metrics. These findings confirm the Transformer’s e!ectiveness in modeling temporal

dependencies and handling variable patterns in queueing systems.
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