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Abstract 
The demand for dependable and energy-efficient wireless 

communication systems has increased due to the quick spread of Internet 

of Things (IoT) devices. Devices can now harvest energy and decode 

information from the same radio frequency (RF) signals thanks to the 

promising paradigm known as Simultaneous Wireless Information and 

Power Transfer (SWIPT). The trade-off between optimizing harvested 

energy and guaranteeing reliable information decoding is frequently 

difficult for conventional signal demodulation and resource allocation 

techniques in SWIPT receivers, particularly when hardware non-

idealities, channel noise, and fading are present. 

This thesis investigates the use of machine learning (ML) techniques, 

specifically one-dimensional convolutional neural networks (1D-CNNs) 

and artificial neural networks (ANNs), to optimize energy harvesting and 

signal demodulation in hardware-based SWIPT systems. Using both 

single-antenna and multi-antenna SWIPT architectures, the study 

examines how machine learning (ML)-driven models can learn and infer 

the best practices for power splitting, modulation recognition, and 

demodulation under different channel conditions. Particular focus is 

placed on digital modulation schemes like Amplitude Shift Keying 

(ASK), Phase Shift Keying (PSK), and Quadrature Amplitude 

Modulation (QAM) and Analog Modulation (AM, FM),  

Outperforming conventional rule-based techniques, the suggested 

method overcomes the nonlinearities and uncertainties present in real-

world wireless environments by utilizing the data-driven adaptability of 

machine learning. The thesis also covers the practical aspects of applying 

machine learning models to data obtained from channel parameters and 

modulated signal parameters at various points in the process, making 

sure that edge devices can determine this information, and energy 

capture.  

In conclusion, this work provides a thorough framework for 

incorporating cutting-edge machine learning techniques into hardware-

based SWIPT receivers, opening the door for intelligent, high-

performance, and sustainable IoT networks that can run continuously 

while utilizing little energy to decode data and harvest energy for IoT 

devices.                 

               VIMLESH KUMAR                                       
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Chapter 1 
 

Introduction 

 

1.1 Background  

The 20th century marks a pivotal moment in the evolution of the Internet 

of Things (IoT), where billions of interconnected devices are seamlessly 

integrated into our daily lives. This unprecedented proliferation of IoT 

devices, ranging from smart sensors to wearable technologies, has 

brought about transformative opportunities for innovation and 

efficiency. However, the widespread adoption of these energy 

constrained wireless devices has also introduced significant challenges 

in sustainable power management and efficient information 

transmission. As the demand for IoT enabled solutions continues to 

grow, the fundamental limitations of battery capacity and the need for 

frequent recharging have emerged as critical bottlenecks, threatening the 

scalability and sustainability of IoT ecosystems. To address these 

challenges, researchers and engineers have turned to innovative 

technologies that can simultaneously enhance energy efficiency and 

improve data transmission capabilities[1]. Among these, Simultaneous 

Wireless Information and Power Transfer (SWIPT) has emerged as a 

groundbreaking solution. SWIPT enables wireless devices to harvest 

energy and decode information from the same radio frequency (RF) 

signal, offering a promising pathway to overcome the limitations of 

traditional power management systems. By integrating energy 

harvesting and data[2]. 

transmission into a single framework, SWIPT has the potential to 

revolutionize the way IoT devices operate, enabling sustainable and 

efficient communication networks. Despite its promise, the practical 

implementation of SWIPT systems faces significant hurdles. The 

hardware implementation of SWIPT, particularly in the context of signal 

demodulation, requires careful optimization to maximize both energy 

harvesting and information decoding capabilities. Traditional 

approaches to SWIPT often struggle to balance these dual objectives, 

leading to suboptimal performance in real-world applications. To 

overcome these limitations, this thesis explores the application of 

machine learning techniques to optimize SWIPT systems. By leveraging 
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the power of machine learning, this research aims to develop innovative 

solutions that can dynamically adapt to the changing conditions of IoT 

environments, ensuring efficient energy utilization and reliable data 

transmission.[11] 

1.2 History of wireless power transfer.  

Rapid experiments were conducted in the 18th,19th and 20th centuries 

to explore the application of electrical energy transmission in 

communication systems. Some of the major breakthroughs are discussed 

further ahead. In 1864, Maxwell proposed his theory of 

electromagnetism, which stated that light was one type of 

electromagnetic wave travelling at the speed of light. In 1888, Hertz 

successfully experimented with pulsed wireless power transfer, 

producing and detecting microwaves in the UHF region. Tesla’s tower 

and Brown’s rectenna were important breakthroughs that laid the way 

for contemporary wireless power transmission technologies, as 

discussed in the following subsections 

1.3 Motivation 

The exponential growth of IoT devices has created an urgent need for 

sustainable power supply mechanisms. Typically ignoring the energy 

requirements of receiving devices, traditional wireless communication 

systems are mostly meant to maximize information transfer. Although 

wireless power transfer (WPT) has shown great promise for remotely 

charging electronic devices, using separate systems for information and 

power transfer is intrinsically ineffective. By allowing the twin use of 

radio frequency (RF) signals for both data transmission and power 

delivery, SWIPT presents a sophisticated answer.[4] Uniting wireless 

transmission of information and power to make the best use of the RF 

spectrum and network infrastructure, SWIPT marks a paradigm change 

in wireless network architecture. This dual-purpose approach holds 

particular promise for energy-constrained IoT nodes that require both 

communication capabilities and a continuous power supply. By 

harvesting energy from the same electromagnetic waves used for 

communications, SWIPT systems can potentially enable perpetual 

operation of low-power devices without battery replacement[10] 

1.4 SWIPT Architecture and Challenges 

In conventional SWIPT systems, the receiver architecture typically 

adopts either time-switching or power-splitting approaches. Time-

switching lets the receiver al ternately use energy harvesting and 

information decoding. The received signal in power-splitting designs is 
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split into two streams, one of which is directed to energy harvesting 

circuits and the other to information decoding circuits. Each approach 

demonstrates a basic compromise between information rate and 

obtained energy.[5] Design of effective SWIPT receivers presents major 

technical challenges. While con currently extracting maximum power 

from the received signal, the receiver must precisely estimate the 

channel for efficient information decoding. Energy harvest ing concerns 

were not taken into account in conventional demodulation techniques 

including Maximum Likelihood (ML) detectors, Zero Forcing (ZF), and 

Minimum Mean Squared Error (MMSE). Furthermore complicating the 

receiver design are the nonlinear properties of practical energy 

harvesting circuits, which cause memory effects influencing 

information decoding performance as well as energy harvesting 

efficiency. Machine Learning for SWIPT Enhancement Modern 

developments in machine learn ing offer interesting chances to solve 

problems with SWIPT receiver design. Signal demodulating for 

physical layer wireless communications has shown amazing ability 

using deep learning methods. ML-based methods can learn complicated 

nonlinear relationships straight from data, unlike conventional 

demodulation techniques that depend on mathematical models with 

simplifying assumptions, so possibly providing more strong 

performance in practical channel conditions. Although ML could 

maximize the basic trade-off between information decoding and energy 

harvesting, its application to SWIPT systems is still mainly unexplored. 

ML algorithms could potentially learn optimal power splitting ratios that 

adapt to channel conditions, modulation schemes, and energy 

requirements. Furthermore, neural network-based demodulators could 

be designed to operate efficiently with the hardware constraints of 

energy-harvesting receivers.[11] 

1.5 Machine Learning for SWIPT 

Optimization 

Recent advances in machine learning present promising opportunities to 

address the challenges in SWIPT receiver design. Signal demodulating 

for physical layer wireless communications has shown amazing ability 

using deep learning methods. ML-based methods can learn complicated 

nonlinear relationships straight from data, unlike conventional 

demodulation techniques that depend on mathematical models with 

simplifying assumptions, so possibly providing more strong 

performance in practical channel conditions. Although ML could 

maximize the basic trade-off between information decoding and energy 

harvesting, its application to SWIPT systems is still mainly unexplored. 

ML algorithms could potentially learn optimal power splitting ratios that 
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adapt to channel conditions, modulation schemes, and energy 

requirements. Furthermore, neural network-based demodulators could 

be designed to operate efficiently with the hardware constraints of 

energy-harvesting receivers.[6] 

1.6 Research Objectives and Contributions 

This thesis aims to develop and evaluate novel machine learning 

approaches for signal demodulation in hardware-based SWIPT 

receivers. The primary objectives include: Investigate the fundamental 

limitations of traditional demodulation techniques in SWIPT systems, 

particularly with respect to the trade-off between information decoding 

performance and energy harvesting efficiency. Design and implement 

ML-based demodulation algorithms that can operate efficiently within 

the power constraints of energy-harvesting receivers. Develop adaptive 

power-splitting strategies that dynamically optimize the allocation of 

received signal power between information decoding and energy 

harvesting based on channel conditions and application requirements.[5]  

Analyze the performance gains of ML-based approaches compared with 

other ML based demodulation techniques across various modulation 

schemes, channel conditions. The outcomes of this research will 

contribute to the advancement of SWIPT technology for IoT 

applications by enabling more efficient utilization of received RF 

signals. By optimizing both information decoding and energy harvesting 

simultaneously, the proposed ML-based approaches could extend the 

operational lifetime of battery-powered devices, potentially enabling 

truly perpetual operation in certain scenarios. Furthermore, the hardware 

implementation insights gained from this work could inform the design 

of future integrated SWIPT receivers for mass-market IoT devices. 

1.7 Organization of the Thesis 

The remainder of this thesis is organized as follows: Chapter 2 provides 

a comprehensive literature review of SWIPT technologies, receiver 

architectures, and existing ML approaches for wireless communications. 

Chapter 3 details the system model and problem formulation. Chapter 4 

introduces the proposed ML-based demodulation algorithms and 

adaptive power-splitting strategies. Chapter 5 presents the hardware 

implementation and experimental setup. Chapter 6 analyzes the 

performance results and discusses the implications for practical SWIPT 

systems. Finally, Chapter 7 concludes the thesis and suggests directions 

for future research. 
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Chapter 2 

Literature Review 

It is important to look at the evolution of communication paradigms in 

order to fully understand the developments in communication systems 

that are relevant to SWIPT and IoT. Three key ideas are identified in the 

literature: Cognitive, Adaptive, and Conventional Communication 

2.1 Type of communication 

2.1.1 Traditional Communication 

Conventional communication systems function as stable but rigid 

systems and are distinguished by the application of set formulae. These 

systems are unable to adjust to shifting user needs or environmental 

conditions. Traditional instances include broadcast television and 

landlines, where the parameters and communication protocol are fixed 

regardless of outside influences.[25] Despite their predictability and 

dependability, these systems are not appropriate for dynamic or 

resource-constrained environments, like those found in Internet of 

Things deployments.[24] 

2.1.2 Adaptive Communication 

By permitting limited adaptation to changes in the environment, 

adaptive communication systems add a certain amount of flexibility. 

These systems have the ability to transition between a number of preset 

modes to maximize performance in a variety of scenarios. Wi-Fi 

networks with dynamic channel selection and mobile networks using 

adaptive modulation are two examples. While adaptive systems are 

somewhat more responsive to changes in the environment than 

traditional models, their flexibility is still limited by the preset set of 

modes and does not include intelligent decision-making or real-time 

learning.[25] 

2.1.3 Cognitive Communication 

The next phase of the change of communication paradigms is cognitive 

communication systems. These systems are intelligent decision-makers 

since they are meant to change depending on their surroundings by 

learning and comprehension. Cognitive communication uses artificial 

intelligence and machine learning to dynamically change 

communication parameters, maximize resource use, and handle 

unanticipated problems. This method is especially pertinent for smart 

IoT communication, in which devices have to effectively decode 
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messages and gather energy in real-time, changing with channel 

conditions and energy availability. A smart IoT-based system depends 

on an optimal mode of communication that lets energy be collected 

through the energy harvesting module and guarantees dependable 

message decoding at the same time. This sequence from conventional to 

cognitive communication emphasizes the need to include machine 

learning in hardware-based SWIPT systems. Cognitive communication 

lays the groundwork for next-generation, self-optimizing wireless 

networks by allowing IoT devices to intelligibly balance information 

decoding with energy harvesting.[25] 
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Chapter 3 

System Model & Problem Formulation 

3.1 Single Antenna-Based SWIPT 

 

Figure 3.1.a Single Antenna-based SWIPT 

3.1.1 Architecture and Operation 

Under the single antenna-based SWIPT system, one receiving antenna 

gathers the arriving RF signal. A power splitter next divides this signal 

into two streams. Information decoding uses a fraction (α) of the 

received power. The demodulator handles this section to retrieve the 

sent data meant for the Internet of Things. The remaining fraction (1 − 

α) is guided to the energy harvesting circuit, which transforms RF 

energy into usable electrical power for the device.[15] 

3.1.2 Key Point 

• Trade-off Between Decoding Quality and Energy Harvesting 

– The value of α determines the balance between high-

quality information decoding and harvested energy 

quantity. 

– Optimizing α ensures reliable communication while 

maintaining energy sustainability.  

• Application in IoT Devices 

– Ideal for resource-constrained IoT systems prioritizing        

hardware simplicity (e.g., single-antenna designs) 

– Minimizes hardware complexity while enabling 

simultaneous wireless information and power transfer 

(SWIPT). 

3.1.3 Performance Considerations 

• Instantaneous Power 

– Represents the immediate power available at a given 

moment. 
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– Susceptible to channel fading or interference, leading to 

variability.   

 

• Smoother Power 

– Achieved through signal processing (e.g., averaging) or 

buffering. 

– Provides a stable/averaged profile, enhancing energy 

harvesting consistency and device reliability. 

3.2 Multiple Antenna-Based SWIPT 

 

Fig. 3.2.a Separate Antenna-based Architecture 

3.2.1 Architecture and Operation 

 Separate antennas used in the multiple antenna-based SWIPT system 

serve various purposes.[21] 

• Energy Harvesting Antennas 

– Dedicated to capturing RF energy and converting it into 

electrical power. 

– Focus: Maximizing energy efficiency and power output.  

• Information Decoding Antennas 

– Used exclusively for receiving and decoding data signals. 

– Focus: Ensuring a high signal-to-noise ratio (SNR) for 

reliable communication. 

3.2.2 Key Point 

• Separation of Functions 

– Dedicated antennas enable independent optimization of 

energy harvesting and information decoding. 

– Improves overall system efficiency and performance by 

minimizing cross-functional interference. 

• Application 

– Suitable for devices with sufficient size/cost budgets to 

deploy multiple antennas (e.g., gateways, base stations). 
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– Ideal for advanced IoT nodes requiring simultaneous high-

rate communication and energy autonomy. 

3.2.3 Performance Considerations 

• Received Signal & Modulation 

– A strong carrier wave is modulated with critical information 

(e.g., PSK or QAM). 

– Accurate demodulation ensures:  

o  Reliable data recovery.   

o Optimal communication performance. 

• Noise & Multipath-Faded Signal 

– Challenges:  

o Signal degradation due to wireless channel noise and 

multipath fading 

– Mitigation via spatial diversity:  

o Deploy multiple antennas to exploit spatial diversity. 

o Benefits:  

▪ Enhanced information decoding (improved 

SNR).  

▪ Maximized energy harvesting (captured 

power aggregation) 

3.3 Comparative Analysis 

 

Table 3.1: Comparison of Single vs. Multiple Antenna-Based Systems 

3.4 Signal Types and Channel Effects 

• Carrier and Modulated Signal 

– Base frequency used for wireless transmission. 

– Modulation: Encodes data (e.g., QAM, PSK) onto the 

carrier wave. 

– Demodulation:  
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▪ Critical for accurately recovering transmitted 

information.  

▪ Requires precise interpretation of the modulated 

signal. 

• Noisy Signal 

– Sources:  

▪ Thermal noise, interference, and environmental 

disturbances. 

– Impact:  

▪ Obscures transmitted data, reducing decoding 

reliability. 

▪ Degrades energy harvesting efficiency due to 

signal corruption. 

• Multipath-Faded Signal 

– Causes:  

▪ Reflections off surfaces create delayed signal 

copies.  

▪ Results in fading (signal strength variations) and 

distortion. 

– Mitigation Strategies:  

▪ Spatial diversity using multiple antennas.  

▪  Advanced signal processing (e.g., equalization, 

beamforming).  

▪ Machine learning (ML)-based approaches for 

adaptive compensation. 

3.5 Relevance to Applied ML 

Machine learning can play a transformative role in both architectures by 

• Dynamic Optimization of Power Splitting Ratio (α) 

– Applies to single-antenna SWIPT systems. 

– Machine learning (ML) dynamically adjusts α to balance 

▪ Energy harvesting efficiency. 

▪ Information decoding reliability. 

– Enables real-time adaptation to changing channel 

conditions. 

• Adaptive Demodulation Strategies 

– ML tailors demodulation to: 

▪ Channel state (e.g., fading, interference). 

▪ Noise characteristics (thermal, environmental). 

– Benefits both single and multi-antenna systems. 

– Example: Reinforcement learning for real-time 

demodulator tuning. 
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• Enhanced Energy Harvesting Predictions & Resource 

Allocation 

– ML improves accuracy in:  

▪ Predicting harvestable energy under dynamic 

conditions.  

▪ Allocating resources (e.g., power, bandwidth) in 

complex environments. 

– Critical for IoT deployments in urban or industrial 

settings. 

– Techniques: Time-series forecasting, deep reinforcement 

learning. 

By leveraging ML, SWIPT systems can achieve higher efficiency, 

robustness, and adaptability requirements for next-generation IoT 

deployments.[26] 
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Chapter 4 

4.1 Proposed Machine Learning Approaches 

for Signal Demodulation. 

4.1.1 Introduction 

Machine learning (ML) is a data-driven algorithm with artificial 

intelligence that enables systems to automatically learn and improve 

from experience by identifying statistical patterns in historical or real-

time data, rather than relying on explicitly programmed rules. This 

adaptability makes ML especially powerful for complex, high-

dimensional, or noisy environments where traditional communication 

algorithms may struggle to maintain performance.[24] 

4.2 The Role of Machine Learning in 

Enhancing SWIPT and Information 

Decoding 

4.2.1 Addressing Channel Complexity and Non-Idealities 

In simultaneous wireless information and power transfer (SWIPT) 

systems, the receiver must decode information from signals that are 

often distorted by noise, multipath fading, hardware non-linearities, and 

other unpredictable channel effects. Traditional demodulation 

techniques, such as maximum likelihood or threshold-based methods, 

typically require accurate channel modeling and prior knowledge of 

channel state information (CSI). However, in practical scenarios-

especially in IoT deployments-channel conditions can be highly 

dynamic and difficult to model accurately.  

 

ML-based demodulators, such as those using convolutional neural 

networks (CNNs), deep belief networks (DBNs), or ensemble methods 

like AdaBoost, excel in these environments because they are data-driven 

and model-free. They can learn to extract relevant features and classify 

modulation symbols directly from raw received signals, even when the 

underlying channel is complex or poorly characterized. This reduces the 

dependency on precise channel models and allows for robust 

information decoding under real-world conditions[17] 

4.2.2 Joint Optimization of Information and Power 

SWIPT systems face a fundamental trade-off: allocating received signal 

power between information decoding and energy harvesting.  The 
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optimal balance depends on instantaneous channel conditions, device 

requirements, and application constraints.  Machine learning can 

dynamically optimize this power allocation by learning from data how 

different allocation strategies affect both the achievable data rate and the 

harvested energy34.  For example, deep learning models can adaptively 

tune the power splitting ratio or time-switching threshold to maximize 

performance metrics such as sum-rate or energy efficiency in real 

time34. 

4.2.3 Enabling Cognitive and Intelligent Communication 

Traditional and even adaptive communication systems operate with 

fixed or manually selected modes. In contrast, ML enables cognitive 

communication, where the system continuously learns from its 

environment and autonomously adapts its demodulation strategies and 

resource allocation decisions. This is particularly valuable in IoT 

networks, where devices must operate efficiently with minimal human 

intervention and under varying energy and communication demands. 

4.2.4 Empirical Performance Gains 

Experimental studies and hardware prototypes have demonstrated that 

ML-based demodulators can outperform traditional methods, especially 

as channel conditions worsen or the modulation order increases. For 

example, AdaBoost and DBN-based demodulators have shown higher 

accuracy and robustness in real-world signal demodulation tasks, even 

as transmission distance increases or signal-to-noise ratio (SNR) 

decreases. This translates to more reliable information decoding and 

improved energy harvesting in SWIPT-enabled IoT devices. 

4.2.5 Scalability and Adaptability for IoT 

IoT environments are characterized by large-scale, heterogeneous 

networks with diverse device capabilities and deployment scenarios.  

ML techniques can generalize across different devices, modulation 

schemes, and channel conditions, making them well-suited for scalable 

and adaptive SWIPT solutions in the IoT context. 

4.3 Non-linear Egression Model.  

Nonlinear regression is a statistical technique used to model the 

relationship between a dependent variable and independent variables 

when this relationship is defined by a nonlinear function.   Unlike linear 

regression, where the model assumes a straight-line (linear) relationship, 

nonlinear regression can capture more complex, curved relationships 

that cannot be adequately represented by a straight line.   
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Fig. 4.a Neuron learning process  

How ANN Works 

• Forward Propagation (Through weighted connections) 

• Activation Function  

• Loss Calculation  

• Backpropagation (Adjusts the weights to minimize errors 

using an optimizer) 

 

In nonlinear regression, the mean function that relates the variables 

involves parameters in a nonlinear way, meaning that changes in the 

parameters do not produce proportional changes in the output.   

Examples include exponential, logarithmic, or logistic growth models.   

The estimation of variables in nonlinear regression generally relies on 

continuous numerical methods, such as the Newton-Raphson method or 

generalized least squares, because closed-form solutions are rarely 

available. 

4.3.1 Artificial Neural Network (ANN): An Overview 

Artificial Neural Networks (ANNs) are computing models motivated by 

the structure & function of neurological networks found in the human 

brain. They consist of interconnected layers of simple processing units, 

called neurons, that work collectively to solve complex tasks by learning 

patterns from data. 

Architecture and Learning 

ANNs are generally set up into layers: an input layer, multiple hidden 

layers, and an output layer of neurons.  Each neuron gets inputs, 

processes them employing an activation function, and passes the result 

to the subsequent layer.  The network learns by modifying the weights 

of these links through a procedure called back propagation, which 

continuously tries to minimizes the difference between the predicted and 

actual outputs 

 

 

 

 

 

 

 

 

 

 

 

Input Value 01 

Input Value m 

Input Value 02 

Predicted Value 

Actual Value Loss Calculation 
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Why Use ReLU in ANN? 

• Introduces non-linearity 

• Computationally Efficient: Requires only a simple comparison 

(faster than sigmoid/tanh). 

• Prevents Vanishing Gradient Problem: Unlike sigmoid and 

tanh, ReLU does not squash large values, allowing better 

gradient flow during backpropagation. 

• Works Well in Deep Networks:  Training deeper networks 

without significant performance loss. 

  

 

 

 

 

 

 

 

Why Optimiser?  

• An optimizer is an algorithm that adjusts the model’s 

weights to minimize the loss function during training.  

• Adam is a powerful optimization algorithm that 

combines the best features of two other optimizers: 

• Momentum (which helps accelerate learning) 

• RMSprop (which adapts the learning rate for each 

parameter) 

Adam Formula: 

 It maintains two Moving Averages  

• First moment (Mean of gradients, 𝒎𝒕 ): It tracks the 

average of past gradients    

• 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 
 

• Second moment (Variance of gradients, 𝒗𝒕): It tracks 

the average of squared gradients to adjust the learning 

rate. 

• 𝑣𝑡 =  𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 

• Weight Update Rule: 

•  𝜃t =  𝜃𝑡−1 − (
𝛼

𝑣𝑡
0.5+ 𝜉

)𝑚𝑡 

 

where: 

ReLU (Rectified Linear Unit) Activation Function 

𝑓(𝑥) = max(0, 𝑥) 

• If 𝑥 > 0,  𝑡ℎ𝑒𝑛 𝑓(𝑥) = 𝑥 

• If 𝑥 < 0,  𝑡ℎ𝑒𝑛 𝑓(𝑥) = 0 
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Fig. 4.b Global minimum and local minimum  

𝑔𝑡 : gradient at time step  𝑡   . 

𝛽1 and 𝛽2 : decay rates (default: 0.9, 0.999) 

 (control the moving averages of past gradients) 

α : learning rate (default: 0.001) 

ξ  : prevents division by zero 

 

Why choose Adam optimiser? 

• Faster Convergence – Uses momentum to speed up learning 

• Adaptive Learning Rate – Avoids manual tuning 

• Handles Noisy Data Better – Works well with large & 

unstructured data 

• Good for Deep Learning – Efficient for CNNs, RNNs, ANN 

tasks 

• Less Manual Tuning Needed – Works well with default 

parameters 

Strengths and Challenges 

Artificial Neural Networks (ANNs) are very useful models capable of 

learning complex functions and dynamics from data, making them well-

suited for tasks where explicit programming is impractical.  However, 

to achieve an optimal performance with ANNs needed adjusting of 

parameters like the number of layers, neurons per layer, and learning 

rates, all of which greatly influence the model's effectiveness. deep 

neural networks are often viewed as "black boxes" due to their opaque 

internal workings, prompting the advancement of explainable AI (XAI) 

methods to enhance interpretability and trust.[26] 

4.3.2 Classification Model: Convolutional Neural Network 

(CNN). 

A Convolutional Neural Network (CNN) is a specific kind of deep 

learning model that does well at classification operations, particularly in 

the field of image processing and computer vision. CNNs are developed 

to consequently and adaptively learn structures of features from input 

data, making them extremely efficient for understanding patterns and 

objects within images. 

4.3.2.1 Architecture and Functionality 

CNNs consist of multiple layers:  
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Fig. 4.c Neuron learning process  

Convolutional Neural Network Layers: 

These several layers utilize filters to the input data to collect specific 

features such as borders, textures in particular, and shapes.  

 

Pooling Layers: These reduce the spatial dimensions of the feature 

maps, helping to make the representations more manageable and less 

sensitive to small translations in the input.  

 

Fully associated Layers: After several convolutional and pooling 

operations, the high-level features are flattened and fed into fully 

connected layers for final classification.  

 

The network learns the optimal filter weights during training, allowing 

it to distinguish between different classes based on learned features 

 

 

 

 

 

 

 

 

 

4.3.2.2 1D Convolutional Neural Networks (1D-CNN) for 

Time Series Classification. 

A Convolutional Neural Network (1D-CNN) is an architecture for deep 

learning created especially to extract features and categorize sequential 

data, such as communication waveforms, biomedical signals, or sensor 

readings, in the context of 1D time series data. 1D-CNNs work with one-

dimensional input, which makes them ideal for time-dependent signals, 

in contrast to conventional CNNs used for images (2D data). 

How 1D-CNN Works with Time Series 
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Convolutional Layers:1D convolutional filters capture local temporal 

patterns and dependencies in the sequence by sliding along the time axis. 

These filters have the ability to recognize patterns, peaks, or trends that 

distinguish various data classes.  

 

Pooling Layers: Pooling operations, like max pooling, help control 

overfitting, make the network more resilient to slight temporal shifts, 

and reduce the dimensionality of the feature maps. 

 

Fully Connected Layers: The extracted features are flattened and sent 

to fully connected layers, which carry out the final classification, 

following a number of convolution and pooling operations. 

Advantages of 1D-CNN for Time Series. 

Automated Feature Extraction: 1D-CNNs eliminate the need for 

human feature engineering by automatically extracting pertinent 

features from unprocessed time series data.  

 

Excellent Classification Accuracy: Research has demonstrated that 

1D-CNNs are capable of achieving high accuracy on a range of time 

series classification tasks, such as industrial monitoring and biomedical 

signal analysis.  

 

Efficiency on Edge Devices: 1D-CNNs are computationally efficient 

and can be used for real-time inference on platforms with limited 

resources, like IoT edge devices. 

Recent Developments and Insights 

Frequency Domain Analysis: New studies have looked at 1D-CNN 

learning behavior from a frequency domain standpoint. They have found 

that deeper networks occasionally pay less attention to low-frequency 

components, which can affect classification accuracy. To solve this and 

enhance performance with little computational overhead, regulatory 

frameworks have been suggested. 

Transfer Learning: ConvTimeNet and other pre-trained 1D-CNN 

models can be optimized for new tasks, allowing for quick adaptation to 

various time series classification issues with little labeled data. 

Optimization Techniques: To further improve the efficiency and 

accuracy of 1D-CNN architectures for particular applications, 
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techniques like transfer learning and evolutionary algorithms have been 

applied. 
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Chapter 5 

Experimental Setup for Real-Time Data 

Monitoring. 

 STEPS TAKEN IN THE PROJECT: 

5.1 Data Generation:  

• Generate real-time data for the study by considering 

various transmission scenarios. 

5.2 Modulation Techniques: 

• Apply Amplitude Modulation (AM) and Frequency 

Modulation (FM) for analog communication. For digital 

signal-based communication, use Amplitude Shift 

Keying (ASK), Phase Shift Keying (PSK), and 

Quadrature Amplitude Modulation (QAM) on the 

generated data to simulate real-world communication 

signals.   

5.3 Environmental Effects Consideration:  

• Incorporate the effects of signal attenuation, 

interference, and noise caused by environmental 

factors.   

•  𝑃𝐿(𝑑𝐵) = 𝑃𝐿0 + 10𝑛𝑙𝑜𝑔10 (
𝑑

𝑑0
) + 𝑋𝜎              (1) 

• Where, 

• 𝑃𝐿𝑜 : Reference Pathloss. 

• 𝑛 : Pathloss exponent (depend upon the 

environment). 

• 𝑑 : Distance Difference.  

• 𝑑0:  Reference Distance  

• 𝑋𝜎 : Shadow fading (Gaussian noise). 

5.4 Multi-Path Fading Consideration:  

• When signals take multiple routes to reach the receiver, 

causing distortions and phase shifts.  
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(3) 

(4) 

𝑓(𝑟) (
𝑟

𝜎2
) exp(−(𝑟2𝐾.

𝜎2

2𝜎2
)) Io (

rK

𝜎2
) ,   𝑟 ≥ 00   (2) 

Where, 

• 𝑟:   Received Signal Amplitude 

• 𝜎 :  scale parameter (related to the standard 

deviation of multipath components) 

• 𝐾 : Rician K-factor (ratio of power in LOS 

path to power in scattered paths) 

• Io(𝑥) : Modified Bessel Function of the 

First Kind, order 0 (LOS component's 

contribution) 

5.5 Data Processing & Machine Learning-Based 

Demodulation:   

• Use machine learning techniques to demodulate the 

received signals. The data may be incomplete or not in a 

standard format—sometimes normalized, or transformed 

using mathematical operations to extract features that aid 

in demodulation. In our case, we consider power in dB 

(using a logarithmic function) and smoothed power 

(using a filtering technique).   

5.6 Practical Use-Cases of Nonlinear Energy Harvesting 

Models: 

• Apply the Nonlinear Energy Harvesting (EH) 

mathematical model to the received modulated signals.   

•  

 

 

• Where, 

𝐸′  : Maximum energy. 

a    : Circuit's capacitor. 

b    : Diode turn-on 

Φ   : Sigmoid function(circuit’s 

characteristics) 

𝐸𝑁𝐿
ℎ =

𝐸′

1 − 𝛷
(

1

1 + 𝑒−apy+𝑎𝑏
− 𝛷), 

Φ = (1 + 𝑒𝑎𝑏)−1 
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p    : Transmitted Power. 

y     : Effective Channel Gain. 

 

 

5.7 ML-Based Demodulation with Energy-Harvested 

Signals Data:  

• Ensure that the Energy Harvesting (EH) module operates 

in the sigmoid region to accurately model the nonlinear 

charging behavior and prevent saturation. 

• Use machine learning to demodulate signals affected by 

nonlinear energy harvesting effects. 

• Train and save the second standard model using this 

dataset. 

5.8 Evaluation of Model Performance on Unseen Signal 

Data:   

• Introduce completely new, previously unseen signal data 

to both models. 

• Input the unseen data into both the first and second 

models to generate predictions (Single Antenna Based 

and Separate Antenna Based Architecture). 

• A comparative analysis of the decoded data from this 

model shows that it is performing well. 

.   

 

 

 

 

 

 



23 

 

6.2.a Separate Antenna-based Architecture 

Chapter 6 

6.1 Analysis of Performance Results for AM 

Amplitude modulation (AM) is a traditional communications technique 

in which the instantaneous value of a modulating (information) signal is 

used to adjust the amplitude of a carrier wave. In AM, the carrier's 

amplitude encodes the data to be sent, while its frequency and phase stay 

constant  

How AM Works: 

A lower-frequency information (modulating) signal is coupled with a 

high-frequency carrier signal.  

 

The shape of the original information signal is reflected in the varying 

envelope of the resulting AM signal.  

 

The original data from the modulated carrier is recovered at the receiver 

using amplitude demodulation techniques. 

 

6.2 Analysis of Performance Results for AM 

(Separate Antenna-Based Architecture) 

 

6.2.1 Parameters considered are. 

• The transmitter and receiver in this study were placed 8 

cm apart.  

• The communication channel took additive white 

Gaussian noise (AWGN), multipath fading, and path loss 

into account.  

MATLAB was used to record and process all signal data.  

• An Artificial Neural Network (ANN) was then trained 

using the recorded data in order to decode signals 



24 

 

6.2.2 Result for AM (Distance Between transmitter and 

receiver 8 cm) 

 

 

                            Table 6.2.a Comparison Table  

For ANN   MSE: 0.0007, MAE: 0.0022, 𝑹𝟐 : 0.9998  

This analysis shows that the Deep learning Model - ANN is giving the 

best result compared to all regression models.  

 

The response of the ANN Model is mentioned below.  
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                                             ANN Model 

 

 

  

 

 

Fig.6.2.b Original Vs predicted values (first 1000 sample) 

Fig.6.2.c Scatter plot of Actual vs Predicted Value 

Fig.6.2.d Error Distribution 
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ANN -- MSE: 0.0007, MAE: 0.0022, 𝑹𝟐 : 0.9998 

6.2.3 Result Analysis  

The transmitter and receiver in this study were placed 8 cm apart.  

The communication channel took additive white Gaussian noise 

(AWGN), multipath fading, and path loss into account.  

MATLAB was used to record and process all signal data.  

An Artificial Neural Network (ANN) was then trained using the 

recorded data in order to decode signals.  

The model performed exceptionally well in decoding information from 

the modulated signals, as evidenced by its Mean Squared Error (MSE) 

is about 0.0007 and Mean Absolute Error (MAE) of approx 0.0022.  

The trained model was stored for later inference to guarantee reusability. 

This makes it possible to apply the model to modulated signal data that 

has never been seen before, enabling batch or real-time decoding in later 

tests. 

6.2.4 Testing the saved model on unseen data (new 

modulated message signal) 

 
Fig.6.2.e Original Vs predicted values (first 1000 sample) 
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ANN --MSE: 0.0272, MAE: 0.0731, 𝑹𝟐 : 0.5645 

• I have also used the trained model to obtain a sample of 

the newly decoded message signal, which is audible. This 

demonstrates that the model is operating as planned and 

successfully decoding the modulated signals. 

6.2.5 Conclusion  

From this observation, we can conclude that we can decode the original 

message signal using a regression model, and an ANN will give the best 

result compared to all regression models.  

Also, in the next step, we save this model and then pass a new modulated 

signal data (which is completely unseen for this model). And we are able 

to decode the original message signal for the 2nd modulated signal data 

Fig.6.2.f Scatter plot of Actual vs Predicted Value 

Fig.6.2.g Error Distribution 
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Fig 6.3.a Single Antenna-based Architecture 

sets using the saved model (which is trained on the 1st modulated signal 

data). Which confirms that our model is able to adopt the real-time 

environment parameter. 

6.3 Analysis of Performance Results for AM 

(Single Antenna-Based Architecture) 

 

6.3.1 Parameters considered are. 

I have suggested using a capacitor inside the energy harvester circuit 

module to store the harvested energy because I am using a single antenna 

for both information decoding and energy harvesting. A capacitor is 

known to store electrical energy as an electric field. Consequently, a 

change in the electric field, which is directly proportional to the received 

power, results from any variation in the energy stored in the capacitor. 

The original signal may be decoded using this variation. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.3.b 

Fig.6.3.c 
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As shown in the above figure- 

Figures 6.3.b & figure 6.3.c represent the situation when 100% received 

power is transferred directly to the energy harvesting Module (single 

antenna-based Architecture). For the Energy harvesting Module, I use 

Non nonlinear sigmoid function-based Mathematical module, which has 

similar behaviour to the Physical Energy harvesting Module.  

The findings show that the energy harvesting module's capacitor has 

reached its saturation point as a result of the high-power level. This 

presents a problem when trying to decode the original message signal, 

even though it is beneficial from the standpoint of energy harvesting.  

The information in Amplitude Modulation (AM) is encoded in the 

carrier wave's amplitude. Accurate message recovery is hampered by 

any distortion in the received power since it directly affects the signal's 

amplitude. Saturation restricts the range of received power because 

power is directly proportional to amplitude, which makes it challenging 

to reliably extract the original message signal. 

Fig.6.3.e 

Fig.6.3.d 
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Figures 6.3.d & 6.3.e represent the situation when 0.1% received power 

is transferred to the energy harvesting Module. As we can observe that 

in this scenario a liner (sigmoid) graph which show the linear relation 

between received energy and harvested power.  

Now we can apply non-linear regression Algorithms to decode this 

information.  

6.3.2 Result for AM (Distance Between transmitter and 

receiver 8cm) 

 

Table 6.3.a Comparison table 
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Fig.6.3.f  Original Vs predicted values (first 1000 sample) 

ANN Model Result 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 6.13, 6.14 & 6.15 are the plots of information decoding on the 

basis of energy capture by the Energy Harvested Module.  

MSE: 0.0010, MAE: 0.0142, 𝑹𝟐: 0.9441 

This matrix value shows the error level, which is minimum.  

Fig.6.3.g Scatter plot of Actual vs Predicted Value 

Fig.6.3.h Error Distribution 
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6.3.3 Result Analysis 

The transmitter and receiver in this study were placed 8 cm apart.  

The communication channel took additive white Gaussian noise 

(AWGN), multipath fading, and path loss into account.  

MATLAB was used to record and process all signal data.  

An Artificial Neural Network (ANN) was then trained using the 

recorded data in order to decode signals.  

The model performed exceptionally well in decoding information from 

the modulated signals, as evidenced by its Mean Squared Error (MSE) 

of 0.0010 and Mean Absolute Error (MAE) of 0.0142.  

The trained model was stored for later inference to guarantee reusability. 

This makes it possible to apply the model to modulated signal data that 

has never been seen before, enabling batch or real-time decoding in later 

tests. 

6.3.4 Conclusion  

From this observation, we can conclude that we can decode the original 

message signal using a regression model, and an ANN will give the best 

result compared to all regression models.  

6.4 Analysis of Performance Results for FM 

FM (frequency modulation) is an Analog signal modulation concept in 

which the message signal is encoded in frequency of carrier signal.  

6.4.1 Parameters considered are 

• The transmitter and receiver in this study were placed 8 

cm apart.  

• The communication channel took additive white 

Gaussian noise (AWGN), multipath fading, and path loss 

into account.  

MATLAB was used to record and process all signal data.  

• An Artificial Neural Network (ANN) was then trained 

using the recorded data in order to decode signals 
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6.4.2 Result for FM (Distance Between transmitter and 

receiver 8 cm) 

 

Table 6.4.a 

6.4.3 Conclusion  

From the above table, it is clear that Decision Tree Regression and K 

Neighbours Regression models giving best result (less error)  
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6.5 Analysis of performance result for ASK 

(Separate Antenna Based Architecture) 

In digital modulation, Amplitude Shift Keying (ASK) is a modulation 

technique that modifies a carrier signal's amplitude according to the 

digital data being sent. The carrier is present for a binary "1" and absent 

(or at a lower amplitude) for a binary "0" in its most basic form, known 

as binary ASK. More generally, M-ary ASK represents multiple bits per 

symbol using multiple amplitude levels. 

 

Fig. 6.5.a ASK signal  

6.5.1 Parameters considered are 

• The transmitter and receiver in this study were placed 10 

cm apart.  

• The communication channel took additive white 

Gaussian noise (AWGN), multipath fading, and path loss 

into account.  

• MATLAB was used to record and process all signal data.  

• Compare with the best regression models. 

• An Artificial Neural Network (ANN) was then trained 

using the recorded data in order to decode signals 

because it performs best among all. 
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6.5.2 Result of 4 - ASK. 

 

Table. 6.5.a Comparison  Table 

 

Fig. 6.5.b  Original Vs Predicted Signal 

 

Fig. 6.5.c Error distribution 
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Fig. 6.5.d Original Vs Predicted Scattered value 

6.5.1.2 Result of 8 – ASK. 

 

Table 6.5.b 

 

Fig. 6.5.e Original Vs Predicted Signal 
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Fig. 6.5.f  Error distribution 

 

Fig. 6.5.g Original Vs Predicted Scattered value 

6.5.1.3 Result of 16 – ASK. 

 

Table 6.2 
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Fig. 6.5.h Original Vs Predicted Signal 

 

Fig. 6.5.i Error distribution 

 

Fig. 6.5.j Original Vs Predicted Scattered value 
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6.5.3 Result Analysis  

The transmitter and receiver in this study were placed 10 cm apart.  

The communication channel took additive white Gaussian noise 

(AWGN), multipath fading, and path loss into account.  

MATLAB was used to record and process all signal data.  

An Artificial Neural Network (ANN) was then trained using the 

recorded data in order to decode signals.  

The model performed exceptionally well in decoding information from 

the modulated signals, as evidenced by its Mean Squared Error (MSE) 

of 0.0015 and Mean Absolute Error (MAE) of 0.0328.  

The trained model was stored for later inference to guarantee reusability. 

This makes it possible to apply the model to modulated signal data that 

has never been seen before, enabling batch or real-time decoding in later 

tests. 

6.6 Analysis of performance result for ASK 

(Single Antenna Based Architecture) 

 

Fig. 6.6.a Single Antenna Based Architecture 

A digital modulation technique, Amplitude Shift Keying (ASK) 

modifies a carrier signal's amplitude according to the digital data being 

sent. The carrier is present for a binary "1" and absent (or at a lower 

amplitude) for a binary "0" in its most basic form, known as binary ASK. 

More generally, M-ary ASK represents multiple bits per symbol using 

multiple amplitude levels. 

6.6.1 Parameters considered are 

I have suggested using a capacitor inside the energy harvester circuit 

module to store the harvested energy because I am using a single antenna 

for both information decoding and energy harvesting. A capacitor is 

known to store electrical energy as an electric field. Consequently, a 

change in the electric field, which is directly proportional to the received 
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power, results from any variation in the energy stored in the capacitor. 

The original signal may be decoded using this variation. 

 

Fig. 6.6.b 

Fig. 10.a Behaviour of EH Model (consider 100% Power) 

 

Fig. 6.6.c 

Fig. 6.6.c Behavior of EH Model (consider 0.1% Power) 
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Fig. 6.6.d 

Fig. 66.d This graph shows the Energy stored in the capacitor 

proportional to the  power received(Modulated signal Power)  

 

As shown in the above figure- 

Figures 6.6.b & figure 6.6.c represent the situation when 100% received 

power is transferred directly to the energy harvesting Module (single 

antenna-based Architecture). For the Energy harvesting Module, I use 

Non nonlinear sigmoid function-based Mathematical module, which has 

similar behaviour to the Physical Energy harvesting Module.  

The findings show that the energy harvesting module's capacitor has 

reached its saturation point as a result of the high-power level. This 

presents a problem when trying to decode the original message signal, 

even though it is beneficial from the standpoint of energy harvesting.  

The information in Amplitude Modulation (AM) is encoded in the 

carrier wave's amplitude. Accurate message recovery is hampered by 

any distortion in the received power since it directly affects the signal's 

amplitude. Saturation restricts the range of received power because 

power is directly proportional to amplitude, which makes it challenging 

to reliably extract the original message signal. 

Figures 6.6.d represent the situation when 0.1% received power is 

transferred to the energy harvesting Module. As we can observe that in 

this scenario a liner (sigmoid) graph which show the linear relation 

between received energy and harvested power.  

Now we can apply non-linear regression Algorithms to decode this 

information.  
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6.6.2 Result of 16 – ASK   

 

Table. 6.6.a 

 

 

Fig. 6.6..e Original Vs Predicted Signal 

 

Fig. 6.6.f Error distribution 
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Fig. 6.6.g Original Vs Predicted Scattered value 

6.6.3 Result Analysis 

  The transmitter and receiver in this study were placed 10 cm apart.  

The communication channel took additive white Gaussian noise 

(AWGN), multipath fading, and path loss into account.  

MATLAB was used to record and process all signal data.  

An Artificial Neural Network (ANN) was then trained using the 

recorded data in order to decode signals.  

The model performed exceptionally well in decoding information from 

the modulated signals, as evidenced by its Mean Squared Error (MSE) 

of 0.0319 and Mean Absolute Error (MAE) of 0.1302.  

The trained model was stored for later inference to guarantee reusability. 

This makes it possible to apply the model to modulated signal data that 

has never been seen before, enabling batch or real-time decoding in later 

tests. 

6.7 Analysis of  performance result for PSK 

A digital modulation technique called phase shift keying (PSK) modifies 

a carrier signal's phase to match the digital data that needs to be sent. 

PSK effectively encodes data for transmission over communication 

channels because each distinct phase corresponds to a distinct symbol or 

set of bits. 

PSK types 

• Binary PSK (BPSK): Represents binary 0 and 1 using two phases 

(0° and 180°). 

• Quadrature PSK (QPSK) doubles the data rate over BPSK by 

encoding two bits per symbol using four phases (0°, 90°, 180°, 

and 270°). 
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• More bits per symbol are possible with M-ary PSK (M-PSK), 

which extends the idea to M distinct phases (e.g., 8PSK, 16PSK). 

Principle of Operation 

• Groups of bits (symbols) make up the digital data stream. 

• Every symbol corresponds to a distinct carrier wave phase. 

• The transmitted data is recovered at the receiver by measuring 

the incoming signal's phase. 

6.7.1 Parameters considered are 

• The transmitter and receiver in this study were placed 10 

cm apart.  

• The communication channel took additive white 

Gaussian noise (AWGN), multipath fading, and path loss 

into account.  

• MATLAB was used to record and process all signal data.  

• Compare with the best regression models. 

• An Artificial Neural Network (ANN) was then trained 

using the recorded data in order to decode signals 

because it performs best among all. 

6.7.2 Result of 4 – PSK  

ANN -- MSE: 0.0152, MAE: 0.0943, R^2: 0.7378 

 

Fig. 6.7.a Original Vs Predicted Signal 
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Fig. 6.7.b Error distribution 

 

 

Fig. 6.7.c Original Vs Predicted Scattered value 

6.7.3 Result Analysis 

 The transmitter and receiver in this study were placed 10 cm apart.  

The communication channel took additive white Gaussian noise 

(AWGN), multipath fading, and path loss into account.  

MATLAB was used to record and process all signal data.  

An Artificial Neural Network (ANN) was then trained using the 

recorded data in order to decode signals.  

The model performed exceptionally well in decoding information from 

the modulated signals, as evidenced by its Mean Squared Error (MSE) 

of about 0.0152 and Mean Absolute Error (MAE) of approx 0.0943.  
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This trained model is stored for later inference to guarantee reusability. 

This makes it possible to apply the model to modulated signal data that 

has never been seen before, enabling batch or real-time decoding in later 

tests. 

6.8 Analysis of performance result for QAM 

Quadrature Amplitude Modulation (QAM) is a special type of digital 

modulation technique that conveys data by modulating a carrier signal's 

amplitude and phase. QAM achieves this by combining two carrier 

waves that have a phase of difference of 90 degrees (in quadrature), 

allowing the transmission of multiple bits per symbol and thus 

significantly increasing data rates. 

How QAM Works 

• Two carriers, one in-phase (I) and one quadrature (Q), are 

independently amplitude-modulated with digital data. 

• The two modulated signals are summed to form the QAM signal. 

• Each unique combination of amplitudes (and thus points in the 

I-Q plane) represents a different symbol, allowing QAM to 

encode multiple bits per symbol (e.g., 16-QAM, 64-QAM, 256-

QAM). 

Types of QAM 

• M-ary QAM: The “M” refers to the number of symbols in the 

constellation (e.g., 16-QAM uses 16 points, encoding 4 bits per 

symbol). 

• Higher-order QAM (e.g., 64-QAM, 256-QAM) increases data 

rates but requires better signal quality (higher SNR) to maintain 

reliability. 

Advantages 

• High Spectral Efficiency: QAM enables the transmission of 

more data within the same bandwidth compared to simpler 

modulation schemes like ASK or PSK. 

• Flexibility: The modulation order (M) can be adapted based on 

the balancing throughput, channel conditions, and robustness. 

Performance Considerations 
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• Noise Sensitivity: As the number of constellation points 

increases, the symbols are closer together, making higher-order 

QAM more susceptible to noise and errors. 

• Channel Requirements: QAM is best suited for channels with 

high SNR and minimal distortion. In fading or noisy 

environments, lower-order QAM or adaptive modulation may be 

preferred. 

Applications 

• QAM is foundational in modern communication systems, 

including: 

• Digital television and cable modems 

• Wi-Fi (IEEE 802.11), WiMAX (IEEE 802.16), and 

cellular networks (3G, 4G, 5G) 

• Broadband data transmission and optical 

communications 

d. OFDM-based systems for high data rate wireless and 

wired communications 

Recent Developments 

• Research continues on optimizing QAM for challenging 

environments (e.g., fading channels, massive MIMO systems). 

• Ultra-dense QAM constellations (e.g., 4,294,967,296-QAM) are 

being explored for quantum and ultra-high-speed optical 

communications. 

• Novel variants like Golden Angle Modulation aim to reduce the 

shaping loss and approach the Shannon capacity limit. 

6.8.1 Parameters considered are 

Previously, I employed an Artificial Neural Network (ANN) model 

based on linear regression to decode the original message signal from a 

Digital modulated signal. While effective for amplitude-based signal 

reconstruction, this approach has limitations when considering the 

geometric distribution of symbols in a constellation diagram(QAM). In 

practical scenarios, the received signal is affected by thermal noise, 

multipath fading, and the Doppler effect, which distort the constellation 

diagram and make it difficult to distinguish the original symbol points. 
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To address this, a classification-based model is more suitable, as it can 

categorize the received modulated signals into discrete symbol classes, 

even in the presence of such distortions. Therefore, I have adopted a 1D 

Convolutional Neural Network (1D-CNN) for this task. The 1D-CNN 

model learns spatial patterns in the received signal and is capable of 

accurately classifying the distorted constellation points, enabling more 

reliable decoding of the original message. 

 

6.8.2 Result of 16–QAM 

 

Fig. 6.8.a 16-QAM in an ideal case 

Test accuracy: 99.9% 
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Fig. 6.8.b 16-QAM in noisy & multipath fading  

Test accuracy: 49.55% 

 

Fig. 6.8.c 16-QAM with tuned parameters 

Test accuracy: 90.69% 
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6.8.3 Result Analysis 

The results obtained from both regression-based and classification-

based deep learning approaches demonstrate promising outcomes in 

decoding modulated signals under realistic wireless conditions. The 

Artificial Neural Network (ANN) regression model, indicating high 

accuracy in reconstructing the original message signal.  

However, when noise, multipath fading, and the Doppler effect distorted 

the constellation diagram, the limitations of a regression-based model 

became apparent. In such scenarios, the use of a 1D Convolutional 

Neural Network (1D-CNN) for classification proved more effective. 

The model successfully categorized distorted 16-QAM symbols, 

preserving the integrity of the signal’s symbol structure even under 

channel impairments. 

Analysis of Figures: 

fig. 6.8(a) 

• Under ideal circumstances—that is, without noise, without 

multipath fading, and without Doppler frequency effect—fig. 

6.8(a) shows a comparison table of the transmitted, received, and 

predicted symbols. In this case, accurate decoding is indicated 

by the close match between the received and expected signals to 

the transmitted ones. 

fig. 6.8(b) 

• When all real-world channel impairments are taken into 

account—including noise, fading, and the Doppler effect—Fig. 

6.8(b) shows the comparison table. As seen, the received signal 

is rather distorted, which makes it challenging to identify the 

original sent symbols. This results in poor prediction 

performance.  

fig. 6.8(c) 

• Fig. 6.8(c) illustrates a scenario where we have tuned the system 

parameters by neglecting the Doppler effect and minimizing the 

impact of fading.  This assumption is valid as the distance 

between the transmitter and receiver is only 10 cm, making such 

effects negligible.  As a result, the predicted symbols closely 

approximate the original transmitted ones, with only minimal 

error. 
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Chapter 7 

Concludes the thesis and suggests 

directions for future research. 

The works as presented in chapters 3 and 4 both proposed a system 

model and problem formulation, and ML-based signal 

demodulation/decoding. In the System model, I have considered two 

approaches, that is single antenna-based approach and the separate 

antenna-based approach for SWIPT.  

For both of this Architecture, I considered multiple features of the 

modulated signal, some of which are directly generated in MATLAB by 

considering the Rician distributed channel with a pathloss model and 

additive white Gaussian noise, and some features are extracted by data 

processing with Python, and these features are like, received 

instantaneous power at the receiver, smoother power after pre-

processing the signal and power form Non-linear energy harvesting 

Module. 

For a separate antenna-based architecture, I have considered all the 

extracted features except the non-linear energy harvesting power, 

smoother power, and received instantaneous powers. then apply ML on 

Analog Modulated signal (AM, FM) and Digital Modulated signal 

(ASK, PSK, FSK, QAM) with quantization level 4, 8, 16. Also, I 

consider the distance between the transmitter and the receiver to be 8cm, 

10cm, 15cm and 20cm. in the thesis, I am considering only a distance of 

8cm as suggested by the professor. I also use multiple ML models to 

train the data and compare them, and observe that ANN, CNN are giving 

the best result, so all the results/plots are based on ANN/CNN  

For a single antenna-based architecture, I have considered only those 

features that are related to power, so that I can decode the message signal 

on the basis of a nonlinear energy-harvesting mathematical module. For 

this, I use ANN and compare the accuracy with other models. 

Also, I save this trained model to my local laptop and pass a new 

modulated message signal dataset to this module, which is completely 

unseen for the model. And observe that I am able to get the 

demodulated/decoded original message signal. 

Future Scope 
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1. All these datasets are MATLAB-based, but we can apply a 

USRP-based dataset to train this Model,  which will further 

prove that the ML-based approach is data data-driven approach 

and works well with real-time data. 
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