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Abstract

The demand for dependable and energy-efficient wireless
communication systems has increased due to the quick spread of Internet
of Things (loT) devices. Devices can now harvest energy and decode
information from the same radio frequency (RF) signals thanks to the
promising paradigm known as Simultaneous Wireless Information and
Power Transfer (SWIPT). The trade-off between optimizing harvested
energy and guaranteeing reliable information decoding is frequently
difficult for conventional signal demodulation and resource allocation
techniques in SWIPT receivers, particularly when hardware non-
idealities, channel noise, and fading are present.

This thesis investigates the use of machine learning (ML) technigues,
specifically one-dimensional convolutional neural networks (1D-CNNSs)
and artificial neural networks (ANNS), to optimize energy harvesting and
signal demodulation in hardware-based SWIPT systems. Using both
single-antenna and multi-antenna SWIPT architectures, the study
examines how machine learning (ML)-driven models can learn and infer
the best practices for power splitting, modulation recognition, and
demodulation under different channel conditions. Particular focus is
placed on digital modulation schemes like Amplitude Shift Keying
(ASK), Phase Shift Keying (PSK), and Quadrature Amplitude
Modulation (QAM) and Analog Modulation (AM, FM),

Outperforming conventional rule-based techniques, the suggested
method overcomes the nonlinearities and uncertainties present in real-
world wireless environments by utilizing the data-driven adaptability of
machine learning. The thesis also covers the practical aspects of applying
machine learning models to data obtained from channel parameters and
modulated signal parameters at various points in the process, making
sure that edge devices can determine this information, and energy
capture.

In conclusion, this work provides a thorough framework for
incorporating cutting-edge machine learning techniques into hardware-
based SWIPT receivers, opening the door for intelligent, high-
performance, and sustainable loT networks that can run continuously
while utilizing little energy to decode data and harvest energy for loT
devices.

VIMLESH KUMAR






TABLE OF CONTENTS
ABSTRACT
LIST OF FIGURES

LIST OF TABLES
NOMENCLATURE
Chapter 1: Introduction ........................cooil 1
1.1Background..........coooniiniiii i 1
1.2 History of Wireless Power Transfer. ...................ooooeina. 2
L3 MOtIVALION. ...ttt 2
1.4 SWIPT Architecture and Challenges..................cccoeeeenenn. 2
1.5 Machine Learning for SWIPT Optimization........................ 3
1.6 Research Objectives and Contributions......................e...... 4
1.7 Organization of The ThesSiS.........oooiiiiiiiiie 4
Chapter 2: Literature Review..................cccevevennnn.. 5
2.1 Type of Communication..............c.ovvieiiiiiiiieieeeeieeee 5
2.1.1 Traditional Communication.............cccccoeieeniniininenen. 5
2.1.2 Adaptive Communication............cccoeveviiriiieniiiiiieenns 5
2.1.3 Cognitive Communication..............cocoeeiviiiiiiiiiieeenens. 5

Chapter 3: System model and problem formulation.....7

3.1 Single Antenna-Based SWIPT.......ccoiiiiiiiiieiiiiiiiiennnn. 7
3.1.1 Architecture and Operation...........c.ovviiiiiieiniiineenns 7
312 KBY POINt. ..ttt 7
3.1.3 Performance Considerations. .........c..ovveiveieeeineneennnn 7



3.2 Multiple Antenna-Based SWIPT.......cccoviiiiiiiiiine e, 8

3.2.1 Architecture and Operation..............ccovvveeeennnnn... 8
3.2.2KBY POINt. ..ottt 8
3.2.3 Performance Considerations..........cccovveeuneernnnnnn. 9
3.3 Comparative ANalysiS. ........cooveiiiiineeeeiiiineeeenns 9
3.4 Signal Types and Channel Effects..............coeeeiviennnn, 9
3.5Relevance to Applied ML ...........ooiiiiiiiiiiie e, 10

Chapter 4: System model and problem formulation.12

4.1 Proposed Machine Learning Approaches for Signal Demodulation.
4.1.1 INtrodUCtioN........o.ouitiii i 12
4.2 The Role of Machine Learning in Enhancing SWIPT and
Information Decoding ...........ccooiiiiiiiiiiii 12

4.2.1 Addressing Channel Complexity and Non-Idealities...... 12

4.2.2 Joint Optimization of Information and Power............... 12
4.2.3 Enabling Cognitive and Intelligent Communication....... 13
4.2.4 Empirical Performance Gains...............cooevivviniinin, 13
4.2.5 Scalability and Adaptability for I0T........................... 13
4.3 Non-linear regression Model. .................cociiii, 13
4.3.1 Artificial Neural Network (ANN): An Overview........... 14

4.3.2 Classification Model: Convolutional Neural Network (CNN).
4.3.2.1 Architecture and Functionality........................... 16
4.3.2.2 1D Convolutional Neural Networks (1D-CNN)

for Time Series ClasSifiCation. ...........uueeee e 17

Vi



Chapter 5: Experimental Setup for Real-Time Data

Monitoring. .............cooooiiiiiiiiii 19
5.1 Data GeNeration.........o.ouiniieiniie e 19
5.2 Modulation Techniques ............coooiiiiiiiiii e, 19
5.3 Environmental Effects Consideration..................cccoeveenenn. 19
5.4 Multi-Path Fading Consideration...............cooovviiiiiiinninnnnn, 19
5.5 Data Processing & Machine Learning-Based Demodulation...... 20

5.6 Practical Use-Cases of Nonlinear Energy Harvesting Models .....20

5.7 ML-Based Demodulation with Energy-Harvested Signals Data ........ 21
5.8 Evaluation of Model Performance on Unseen Signal Data ........ 21
Chapter 6: Results and Discussion/Analysis............... 22
6.1 Analysis of Performance Resultsfor AM.................cooveiieil. 22
6.2 Analysis of performance results for AM (Separate Antenna-Based
ATCNITECIUIR) i 22

6.2.1 Parameters Considered are............c.cooeviviiiiiniiininiannn 22

(0111 ) I PSPPI 23
6.2.3 Result ANalysSiS ........cooviiiiiiiii i 25
6.2.4 Testing the Saved model on Unseen Data (new modulated

MesSage SIgNal) ..o 25
6.2.5 CONCIUSION. ....ouenieii 26

6.3 Analysis of Performance Results for AM (Single Antenna-Based
ATCNITECIUIR) .ot e 27

6.3.1 Parameters Considered are. .........oooeeeeeeiiiiiiiiieaian, 27

6.3.2 Result for AM (Distance Between transmitter and receiver

8O e 29
6.3.3 Result Analysis........ccooviriiiiiii 31
6.3.4 CoNCIUSION. ... 31

6.4 Analysis of performance resultsfor FM .......................oe 31

vii



6.4.1 Parameters Considered Are..........cccooeveviiiiiiniiniinnnnn 31
6.4.2 Result for FM (Distance Between transmitter and

FECEIVEr 8 CIM) .., 32
6.4.3 CoNCIUSION. .. ..o 32

6.5 Analysis of the Performance Result for ASK (Separate Antenna

Based Architecture) ... 33
6.5.1 Parameters Considered are.............cocoevevivinineninenennnn. 33
6.5.2 Result of 4 - ASK. ..o 34
6.5.1.2 Result of 8 — ASK. ... 35
6.5.1.3 Result of 16 — ASK. ...t 36
6.5.3 ResUlt ANalysiS........c.oiiriiiiiiii e, 38

6.6 Analysis Of Performance Result for ASK (Single Antenna

Based Architecture) ...........coooiiiiiiii 38
6.6.1 Parameters Considered Are ..........cocveveieiiiiiiiiiiainnns 38
6.6.2 Result of 16 — ASK .. ..o 41
6.6.3 Result Analysis.........ccovviriiiiii 42

6.7 Analysis Of The Performance Result for PSK .........................
6.7.1 Parameters considered are ..........cc.cooveeuiiiiiiiiiiininn.. 43
6.7.2 Result of 4 —PSK ... o 43
6.7.3 Result AnalysiS.........ccoovviriiiiiii e 44

6.8 Analysis Of Performance Result for QAM ......................... 45
6.8.1 Parameters considered are .............cooveeeiiiiiiiinann.. 46
6.8.2 Result of 16-QAM ... 47
6.8.3 Result Analysis..........ccooviiiiiiii 49

Chapter 7: Conclusions and Scope for Future Work ...50

R = [ o 52



LIST OF FIGURES

3.1 a Single Antenna-based SWIPT...........cooiiiiiiiiiiiii. 7
3.2.a Separate Antenna-based Architecture.............................. 8
4.a Neuron 1earning ProCesS. ..... c.ooviueeriiriieiie e, 14
4.b Plot for Global minimum and local minimum..................... 16
4.C Neuron learning ProCeSS. .......ouereue ittt eieeeeeie e 17
6.2.a Separate Antenna-based Architecture............................. 22

6.2.b Original Vs predicted values (first 1000 samples) [AM]....... 24
6.2.c Scatter plot of Actual vs Predicted Value[AM].................. 24
6.2.d Error Distributionf[AM].........ooiiii 24
6.2.e Original Vs Predicted values (first 2000 sample)

[Testing The Model].........coooiiiii e 25

6.2.f Scatter Plot of Actual vs Predicted Value [Testing the Model]..26

6.2.9 Error Distribution............c.oooiiiiiii e, 26
6.3.a Block Diagram of Single Antenna-based Architecture........... 27
6.3.b Plot of NL EH Model [Saturation].................cccoieiiinnns. 27
6.3.c Plot of NL EH Model, Amplitude distorted [Saturation]......... 27
6.3.d Plot of NL EH Model [Sigmoid Function]......................... 28

6.3.e Plot of NL EH Model, Amplitude proportional to

Received Modulated signal [Sigmoid Function]........................... 28



6.3.f Original Vs predicted values

(first 1000 samples)[SingleAntenna)................coooeiiiiininn.... 30
6.3.g Scatter plot of Actual vs Predicted Value........................ 30
6.3.h Error Distribution [AM] .. ..o, 30
6.5.a ASK SIgnal.........oooiiii 33
6.5.b Original Vs Predicted Signal[4-ASK]................ooiiinii. 34
6.5.c Error distribution[4-ASK].......ccoiii 34
6.5.d Original Vs Predicted Scattered value[4-ASK].................. 35
6.5.e Original Vs Predicted Signal[8-ASK].............cooiiiiiiiii 35
6.5.f Error distribution[8-ASK].........cccooiiii 36
6.5.g Original Vs Predicted Scattered value[8-ASK].................. 36
6.5.h Original Vs Predicted Signal[16-ASK].................oooeneal. 37
6.5.1 Error distribution[16-ASK].........ccooiiiiiii, 37
6.5.J Original Vs Predicted Scattered value[16-ASK]................. 37

6.6.a Single Antenna Based Architecture

[ASK][Single Antennabased]............ccoovviiiiiiiiiiiieieene, 38
6.6.b Plot of NL EH Model, Amplitude distorted [Saturation]....... 39
6.6.c Plot of NL EH Model [Sigmoid Function]........................ 39

6.6.d Plot of NL EH Model, Amplitude proportional to

received modulated signal [Sigmoid Function].......................... 40
6.6..e Original Vs Predicted Signal[ASK]..........ccooiiiiiiinn 41
6.6.F Error distribution[ASK].........oooiiii 41
6.6.g Original Vs Predicted Scattered value[ASK]..................... 42
6.7.a Original Vs Predicted Signal[4-PSK]..........coooiiiiiiiinn. 43
6.7.b Error distribution[4-PSK]........coiiiii 44
6.7.c Original Vs Predicted Scattered value[4-PSK].................... 44



6.8.a 16-QAM inanideal case.............oooeviiiiiiii 47
6.8.b 16-QAM in noisy & multipath fading.............................. 48

6.8.c 16-QAM with tuned parameters

LIST OF TABLES

Table 3.1: Comparison of Single vs. Multiple Antenna-Based

)£ (=] 1. 09

Table 6.2.a Comparison Table[AM][Separate Antenna]............ 23

Table 6.3.a Comparison table[AM][Single Antenna]............... 29
Table 6.4.a[FM].....oooi 32
Table. 6.5.a Comparison Table[4-ASK]............ooiviiiiiin.. 34
Table 6.5.b Comparison Table [8-ASK]...........ccoooiviiiiinl. 35
Table 6.5.c Comparison Table [16-ASK]..........cccooviiiiinini 36

Table. 6.6.a Comparison Table[ ASK][Single Antenna based]....41

Xi



Xii



List of Abbreviations

5G Fifth Generation Mobile Technology
AM Amplitude Modulation

ANN Artificial Neural Network

ASK Amplitude Shift Key

BS Base Station

CNN Convolution Neural Network

EH Energy Harvesters

FM Frequency Modulation

FSK Frequency Shift Key

ID Information Decoding

loT Internet of Things

LoS Line Of Sight

MAS Mean Absolute Error

MPT Maximum Power Transfer

MSE Mean Square Error

NL Non-Linear

NLEH Non-Linear Energy Harvesting

PS Power Splitting

PSK Phase Shift Key

QAM Quadrature Amplitude Modulation
RF Radio Frequency

RMS Root Mean Square

SNR Signal-to-Noise Ratio SPI

SWIPT Simultaneous Wireless Information and Power Transfer
TS Time Switching

Xiii



WCP Wireless Charging Pads
Wi-Fi Wireless Fidelity

WPT Wireless Power Transfer

Xiv



Chapter 1

Introduction

1.1 Background

The 20th century marks a pivotal moment in the evolution of the Internet
of Things (1oT), where billions of interconnected devices are seamlessly
integrated into our daily lives. This unprecedented proliferation of loT
devices, ranging from smart sensors to wearable technologies, has
brought about transformative opportunities for innovation and
efficiency. However, the widespread adoption of these energy
constrained wireless devices has also introduced significant challenges
in sustainable power management and efficient information
transmission. As the demand for 10T enabled solutions continues to
grow, the fundamental limitations of battery capacity and the need for
frequent recharging have emerged as critical bottlenecks, threatening the
scalability and sustainability of loT ecosystems. To address these
challenges, researchers and engineers have turned to innovative
technologies that can simultaneously enhance energy efficiency and
improve data transmission capabilities[1]. Among these, Simultaneous
Wireless Information and Power Transfer (SWIPT) has emerged as a
groundbreaking solution. SWIPT enables wireless devices to harvest
energy and decode information from the same radio frequency (RF)
signal, offering a promising pathway to overcome the limitations of
traditional power management systems. By integrating energy
harvesting and data[2].

transmission into a single framework, SWIPT has the potential to
revolutionize the way loT devices operate, enabling sustainable and
efficient communication networks. Despite its promise, the practical
implementation of SWIPT systems faces significant hurdles. The
hardware implementation of SWIPT, particularly in the context of signal
demodulation, requires careful optimization to maximize both energy
harvesting and information decoding capabilities. Traditional
approaches to SWIPT often struggle to balance these dual objectives,
leading to suboptimal performance in real-world applications. To
overcome these limitations, this thesis explores the application of
machine learning techniques to optimize SWIPT systems. By leveraging
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the power of machine learning, this research aims to develop innovative
solutions that can dynamically adapt to the changing conditions of 10T
environments, ensuring efficient energy utilization and reliable data
transmission.[11]

1.2 History of wireless power transfer.

Rapid experiments were conducted in the 18th,19th and 20th centuries
to explore the application of electrical energy transmission in
communication systems. Some of the major breakthroughs are discussed
further ahead. In 1864, Maxwell proposed his theory of
electromagnetism, which stated that light was one type of
electromagnetic wave travelling at the speed of light. In 1888, Hertz
successfully experimented with pulsed wireless power transfer,
producing and detecting microwaves in the UHF region. Tesla’s tower
and Brown’s rectenna were important breakthroughs that laid the way
for contemporary wireless power transmission technologies, as
discussed in the following subsections

1.3 Motivation

The exponential growth of 10T devices has created an urgent need for
sustainable power supply mechanisms. Typically ignoring the energy
requirements of receiving devices, traditional wireless communication
systems are mostly meant to maximize information transfer. Although
wireless power transfer (WPT) has shown great promise for remotely
charging electronic devices, using separate systems for information and
power transfer is intrinsically ineffective. By allowing the twin use of
radio frequency (RF) signals for both data transmission and power
delivery, SWIPT presents a sophisticated answer.[4] Uniting wireless
transmission of information and power to make the best use of the RF
spectrum and network infrastructure, SWIPT marks a paradigm change
in wireless network architecture. This dual-purpose approach holds
particular promise for energy-constrained 10T nodes that require both
communication capabilities and a continuous power supply. By
harvesting energy from the same electromagnetic waves used for
communications, SWIPT systems can potentially enable perpetual
operation of low-power devices without battery replacement[10]

1.4 SWIPT Architecture and Challenges

In conventional SWIPT systems, the receiver architecture typically
adopts either time-switching or power-splitting approaches. Time-
switching lets the receiver al ternately use energy harvesting and
information decoding. The received signal in power-splitting designs is



split into two streams, one of which is directed to energy harvesting
circuits and the other to information decoding circuits. Each approach
demonstrates a basic compromise between information rate and
obtained energy.[5] Design of effective SWIPT receivers presents major
technical challenges. While con currently extracting maximum power
from the received signal, the receiver must precisely estimate the
channel for efficient information decoding. Energy harvest ing concerns
were not taken into account in conventional demodulation techniques
including Maximum Likelihood (ML) detectors, Zero Forcing (ZF), and
Minimum Mean Squared Error (MMSE). Furthermore complicating the
receiver design are the nonlinear properties of practical energy
harvesting circuits, which cause memory effects influencing
information decoding performance as well as energy harvesting
efficiency. Machine Learning for SWIPT Enhancement Modern
developments in machine learn ing offer interesting chances to solve
problems with SWIPT receiver design. Signal demodulating for
physical layer wireless communications has shown amazing ability
using deep learning methods. ML-based methods can learn complicated
nonlinear relationships straight from data, unlike conventional
demodulation techniques that depend on mathematical models with
simplifying assumptions, so possibly providing more strong
performance in practical channel conditions. Although ML could
maximize the basic trade-off between information decoding and energy
harvesting, its application to SWIPT systems is still mainly unexplored.
ML algorithms could potentially learn optimal power splitting ratios that
adapt to channel conditions, modulation schemes, and energy
requirements. Furthermore, neural network-based demodulators could
be designed to operate efficiently with the hardware constraints of
energy-harvesting receivers.[11]

1.5 Machine Learning for SWIPT
Optimization

Recent advances in machine learning present promising opportunities to
address the challenges in SWIPT receiver design. Signal demodulating
for physical layer wireless communications has shown amazing ability
using deep learning methods. ML-based methods can learn complicated
nonlinear relationships straight from data, unlike conventional
demodulation techniques that depend on mathematical models with
simplifying assumptions, so possibly providing more strong
performance in practical channel conditions. Although ML could
maximize the basic trade-off between information decoding and energy
harvesting, its application to SWIPT systems is still mainly unexplored.
ML algorithms could potentially learn optimal power splitting ratios that
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adapt to channel conditions, modulation schemes, and energy
requirements. Furthermore, neural network-based demodulators could
be designed to operate efficiently with the hardware constraints of
energy-harvesting receivers.[6]

1.6 Research Objectives and Contributions

This thesis aims to develop and evaluate novel machine learning
approaches for signal demodulation in hardware-based SWIPT
receivers. The primary objectives include: Investigate the fundamental
limitations of traditional demodulation techniques in SWIPT systems,
particularly with respect to the trade-off between information decoding
performance and energy harvesting efficiency. Design and implement
ML-based demodulation algorithms that can operate efficiently within
the power constraints of energy-harvesting receivers. Develop adaptive
power-splitting strategies that dynamically optimize the allocation of
received signal power between information decoding and energy
harvesting based on channel conditions and application requirements.[5]

Analyze the performance gains of ML-based approaches compared with
other ML based demodulation techniques across various modulation
schemes, channel conditions. The outcomes of this research will
contribute to the advancement of SWIPT technology for IoT
applications by enabling more efficient utilization of received RF
signals. By optimizing both information decoding and energy harvesting
simultaneously, the proposed ML-based approaches could extend the
operational lifetime of battery-powered devices, potentially enabling
truly perpetual operation in certain scenarios. Furthermore, the hardware
implementation insights gained from this work could inform the design
of future integrated SWIPT receivers for mass-market 10T devices.

1.7 Organization of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 provides
a comprehensive literature review of SWIPT technologies, receiver
architectures, and existing ML approaches for wireless communications.
Chapter 3 details the system model and problem formulation. Chapter 4
introduces the proposed ML-based demodulation algorithms and
adaptive power-splitting strategies. Chapter 5 presents the hardware
implementation and experimental setup. Chapter 6 analyzes the
performance results and discusses the implications for practical SWIPT
systems. Finally, Chapter 7 concludes the thesis and suggests directions
for future research.



Chapter 2

Literature Review

It is important to look at the evolution of communication paradigms in
order to fully understand the developments in communication systems
that are relevant to SWIPT and IoT. Three key ideas are identified in the
literature: Cognitive, Adaptive, and Conventional Communication

2.1 Type of communication

2.1.1 Traditional Communication

Conventional communication systems function as stable but rigid
systems and are distinguished by the application of set formulae. These
systems are unable to adjust to shifting user needs or environmental
conditions. Traditional instances include broadcast television and
landlines, where the parameters and communication protocol are fixed
regardless of outside influences.[25] Despite their predictability and
dependability, these systems are not appropriate for dynamic or
resource-constrained environments, like those found in Internet of
Things deployments.[24]

2.1.2 Adaptive Communication

By permitting limited adaptation to changes in the environment,
adaptive communication systems add a certain amount of flexibility.
These systems have the ability to transition between a number of preset
modes to maximize performance in a variety of scenarios. Wi-Fi
networks with dynamic channel selection and mobile networks using
adaptive modulation are two examples. While adaptive systems are
somewhat more responsive to changes in the environment than
traditional models, their flexibility is still limited by the preset set of
modes and does not include intelligent decision-making or real-time
learning.[25]

2.1.3 Cognitive Communication

The next phase of the change of communication paradigms is cognitive
communication systems. These systems are intelligent decision-makers
since they are meant to change depending on their surroundings by
learning and comprehension. Cognitive communication uses artificial
intelligence and machine learning to dynamically change
communication parameters, maximize resource use, and handle
unanticipated problems. This method is especially pertinent for smart
IoT communication, in which devices have to effectively decode



messages and gather energy in real-time, changing with channel
conditions and energy availability. A smart loT-based system depends
on an optimal mode of communication that lets energy be collected
through the energy harvesting module and guarantees dependable
message decoding at the same time. This sequence from conventional to
cognitive communication emphasizes the need to include machine
learning in hardware-based SWIPT systems. Cognitive communication
lays the groundwork for next-generation, self-optimizing wireless
networks by allowing 10T devices to intelligibly balance information
decoding with energy harvesting.[25]



Chapter 3
System Model & Problem Formulation

3.1 Single Antenna-Based SWIPT

Energy Harvesting
(((.))) <’ D Energy Harvesting
‘ D Decoding Information

Figure 3.1.a Single Antenna-based SWIPT

3.1.1 Architecture and Operation

Under the single antenna-based SWIPT system, one receiving antenna
gathers the arriving RF signal. A power splitter next divides this signal
into two streams. Information decoding uses a fraction (o) of the
received power. The demodulator handles this section to retrieve the
sent data meant for the Internet of Things. The remaining fraction (1 —
a) is guided to the energy harvesting circuit, which transforms RF
energy into usable electrical power for the device.[15]

3.1.2 Key Point

e Trade-off Between Decoding Quality and Energy Harvesting
— The value of o determines the balance between high-
quality information decoding and harvested energy
quantity.
— Optimizing o ensures reliable communication while
maintaining energy sustainability.
e Application in 10T Devices
— Ideal for resource-constrained 10T systems prioritizing
hardware simplicity (e.g., single-antenna designs)
— Minimizes hardware complexity while enabling
simultaneous wireless information and power transfer
(SWIPT).

3.1.3 Performance Considerations

e Instantaneous Power
— Represents the immediate power available at a given
moment.



— Susceptible to channel fading or interference, leading to
variability.

e Smoother Power
— Achieved through signal processing (e.g., averaging) or
buffering.
— Provides a stable/averaged profile, enhancing energy
harvesting consistency and device reliability.

3.2 Multiple Antenna-Based SWIPT

Decoding

i
o) <0 s
( ‘D) < =

Energy Harvesting
a-1

Fig. 3.2.a Separate Antenna-based Architecture

3.2.1 Architecture and Operation

Separate antennas used in the multiple antenna-based SWIPT system
serve various purposes.[21]

e Energy Harvesting Antennas
— Dedicated to capturing RF energy and converting it into
electrical power.
— Focus: Maximizing energy efficiency and power output.
e Information Decoding Antennas
— Used exclusively for receiving and decoding data signals.
— Focus: Ensuring a high signal-to-noise ratio (SNR) for
reliable communication.

3.2.2 Key Point

e Separation of Functions
— Dedicated antennas enable independent optimization of
energy harvesting and information decoding.
— Improves overall system efficiency and performance by
minimizing cross-functional interference.
e Application
— Suitable for devices with sufficient size/cost budgets to
deploy multiple antennas (e.g., gateways, base stations).



— Ideal for advanced 10T nodes requiring simultaneous high-
rate communication and energy autonomy.

3.2.3 Performance Considerations

e Received Signal & Modulation
— Asstrong carrier wave is modulated with critical information
(e.g., PSK or QAM).
— Accurate demodulation ensures:
o Reliable data recovery.
o Optimal communication performance.
e Noise & Multipath-Faded Signal
— Challenges:
o Signal degradation due to wireless channel noise and
multipath fading
— Mitigation via spatial diversity:
o Deploy multiple antennas to exploit spatial diversity.

o Benefits:
= Enhanced information decoding (improved
SNR).

= Maximized energy harvesting (captured
power aggregation)

3.3 Comparative Analysis

Feature Single Antenna-Based Multiple Antenna-
Based
Hardware Complexity | Lower {(one antenna, power | Higher (multiple antennas,
splitter) circuits)
Power Allocation Split via power splitter (o) | Dedicated antennas for each

Tunction

Flexibility Limited by single signal | Greater flexibility, indepen-
path dent paths
Performance in Fading | More susceptible Can exploit diversity for ro-
bustness
Suitability Compact, low-cost loT de- | Advanced nodes, gateways,
vices base stations

Table 3.1: Comparison of Single vs. Multiple Antenna-Based Systems

3.4 Signal Types and Channel Effects

e Carrier and Modulated Signal
— Base frequency used for wireless transmission.
— Modulation: Encodes data (e.g., QAM, PSK) onto the
carrier wave.
— Demodulation:



= Critical for accurately recovering transmitted
information.
= Requires precise interpretation of the modulated
signal.
e Noisy Signal
— Sources:
= Thermal noise, interference, and environmental
disturbances.
— Impact:
=  Obscures transmitted data, reducing decoding
reliability.
= Degrades energy harvesting efficiency due to
signal corruption.
e Multipath-Faded Signal

— Causes:
= Reflections off surfaces create delayed signal
copies.
= Results in fading (signal strength variations) and
distortion.

— Mitigation Strategies:
= Spatial diversity using multiple antennas.
= Advanced signal processing (e.g., equalization,
beamforming).
= Machine learning (ML)-based approaches for
adaptive compensation.

3.5 Relevance to Applied ML

Machine learning can play a transformative role in both architectures by

e Dynamic Optimization of Power Splitting Ratio (a)
— Applies to single-antenna SWIPT systems.
— Machine learning (ML) dynamically adjusts a to balance
= Energy harvesting efficiency.
= Information decoding reliability.
— Enables real-time adaptation to changing channel
conditions.
e Adaptive Demodulation Strategies
— ML tailors demodulation to:
= Channel state (e.g., fading, interference).
= Noise characteristics (thermal, environmental).
— Benefits both single and multi-antenna systems.
— Example: Reinforcement learning for real-time
demodulator tuning.

10



e Enhanced Energy Harvesting Predictions & Resource
Allocation
— ML improves accuracy in:
= Predicting harvestable energy under dynamic
conditions.
= Allocating resources (e.g., power, bandwidth) in
complex environments.
— Critical for 10T deployments in urban or industrial
settings.
— Techniques: Time-series forecasting, deep reinforcement
learning.

By leveraging ML, SWIPT systems can achieve higher efficiency,
robustness, and adaptability requirements for next-generation loT
deployments.[26]
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Chapter 4

4.1 Proposed Machine Learning Approaches
for Signal Demodulation.

4.1.1 Introduction

Machine learning (ML) is a data-driven algorithm with artificial
intelligence that enables systems to automatically learn and improve
from experience by identifying statistical patterns in historical or real-
time data, rather than relying on explicitly programmed rules. This
adaptability makes ML especially powerful for complex, high-
dimensional, or noisy environments where traditional communication
algorithms may struggle to maintain performance.[24]

4.2 The Role of Machine Learning in
Enhancing SWIPT and Information
Decoding

4.2.1 Addressing Channel Complexity and Non-Idealities

In simultaneous wireless information and power transfer (SWIPT)
systems, the receiver must decode information from signals that are
often distorted by noise, multipath fading, hardware non-linearities, and
other unpredictable channel effects. Traditional demodulation
techniques, such as maximum likelihood or threshold-based methods,
typically require accurate channel modeling and prior knowledge of
channel state information (CSI). However, in practical scenarios-
especially in loT deployments-channel conditions can be highly
dynamic and difficult to model accurately.

ML-based demodulators, such as those using convolutional neural
networks (CNNs), deep belief networks (DBNs), or ensemble methods
like AdaBoost, excel in these environments because they are data-driven
and model-free. They can learn to extract relevant features and classify
modulation symbols directly from raw received signals, even when the
underlying channel is complex or poorly characterized. This reduces the
dependency on precise channel models and allows for robust
information decoding under real-world conditions[17]

4.2.2 Joint Optimization of Information and Power

SWIPT systems face a fundamental trade-off: allocating received signal
power between information decoding and energy harvesting. The
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optimal balance depends on instantaneous channel conditions, device
requirements, and application constraints. Machine learning can
dynamically optimize this power allocation by learning from data how
different allocation strategies affect both the achievable data rate and the
harvested energy34. For example, deep learning models can adaptively
tune the power splitting ratio or time-switching threshold to maximize
performance metrics such as sum-rate or energy efficiency in real
time34.

4.2.3 Enabling Cognitive and Intelligent Communication

Traditional and even adaptive communication systems operate with
fixed or manually selected modes. In contrast, ML enables cognitive
communication, where the system continuously learns from its
environment and autonomously adapts its demodulation strategies and
resource allocation decisions. This is particularly valuable in loT
networks, where devices must operate efficiently with minimal human
intervention and under varying energy and communication demands.

4.2.4 Empirical Performance Gains

Experimental studies and hardware prototypes have demonstrated that
ML-based demodulators can outperform traditional methods, especially
as channel conditions worsen or the modulation order increases. For
example, AdaBoost and DBN-based demodulators have shown higher
accuracy and robustness in real-world signal demodulation tasks, even
as transmission distance increases or signal-to-noise ratio (SNR)
decreases. This translates to more reliable information decoding and
improved energy harvesting in SWIPT-enabled loT devices.

4.2.5 Scalability and Adaptability for IoT

loT environments are characterized by large-scale, heterogeneous
networks with diverse device capabilities and deployment scenarios.
ML techniques can generalize across different devices, modulation
schemes, and channel conditions, making them well-suited for scalable
and adaptive SWIPT solutions in the 10T context.

4.3 Non-linear Egression Model.

Nonlinear regression is a statistical technique used to model the
relationship between a dependent variable and independent variables
when this relationship is defined by a nonlinear function. Unlike linear
regression, where the model assumes a straight-line (linear) relationship,
nonlinear regression can capture more complex, curved relationships
that cannot be adequately represented by a straight line.
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In nonlinear regression, the mean function that relates the variables
involves parameters in a nonlinear way, meaning that changes in the
parameters do not produce proportional changes in the output.
Examples include exponential, logarithmic, or logistic growth models.
The estimation of variables in nonlinear regression generally relies on
continuous numerical methods, such as the Newton-Raphson method or
generalized least squares, because closed-form solutions are rarely
available.

4.3.1 Artificial Neural Network (ANN): An Overview

Acrtificial Neural Networks (ANNSs) are computing models motivated by
the structure & function of neurological networks found in the human
brain. They consist of interconnected layers of simple processing units,
called neurons, that work collectively to solve complex tasks by learning
patterns from data.

Architecture and Learning

ANNs are generally set up into layers: an input layer, multiple hidden
layers, and an output layer of neurons. Each neuron gets inputs,
processes them employing an activation function, and passes the result
to the subsequent layer. The network learns by modifying the weights
of these links through a procedure called back propagation, which
continuously tries to minimizes the difference between the predicted and
actual outputs

Input Value 01 Row ID Study His-SleopHrsQuiz Exam

1 12 6 78 93% ¥ y C
XA
N M — ,
Input Value 02 \ /’n \
L )==0
i=1 Predicted Value 1

Input Value m v C=%(y-y)?

Xm 1 Actual Value @ Loss Calculation

Fig. 4.a Neuron learning process

How ANN Works

* Forward Propagation (Through weighted connections)

* Activation Function

* Loss Calculation

* Backpropagation (Adjusts the weights to minimize errors
using an optimizer)
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ReLU (Rectified Linear Unit) Activation Function
f(x) = max(0,x)
e Ifx>0, thenf(x) =x

e Ifx<O0, thenf(x) =0
Why Use ReLLU in ANN?

* Introduces non-linearity

* Computationally Efficient: Requires only a simple comparison
(faster than sigmoid/tanh).

* Prevents Vanishing Gradient Problem: Unlike sigmoid and
tanh, ReLU does not squash large values, allowing better
gradient flow during backpropagation.

*  Works Well in Deep Networks: Training deeper networks
without significant performance loss.

Why Optimiser?

* An optimizer is an algorithm that adjusts the model’s
weights to minimize the loss function during training.

« Adam is a powerful optimization algorithm that
combines the best features of two other optimizers:

* Momentum (which helps accelerate learning)

* RMSprop (which adapts the learning rate for each
parameter)

Adam Formula:
It maintains two Moving Averages

* First moment (Mean of gradients, m, ): It tracks the
average of past gradients

© my=pFimeq+ (1 —Bg:

* Second moment (Variance of gradients, v,): It tracks
the average of squared gradients to adjust the learning
rate.

* v = Poveg + (1 - .32)91.g

* Weight Update Rule:

© 6= 01 — (ﬁ) mg

where;
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g - gradient at time step ¢t .

B, and S, : decay rates (default: 0.9, 0.999)

(control the moving averages of past gradients)

a : learning rate (default: 0.001)

¢ : prevents division by zero >
GM - Global Minimum

LM - Local Minimum

Fig. 4.b Global minimum and local minimum
Why choose Adam optimiser?

e Faster Convergence — Uses momentum to speed up learning

Adaptive Learning Rate — Avoids manual tuning

Handles Noisy Data Better — Works well with large &
unstructured data

Good for Deep Learning — Efficient for CNNs, RNNs, ANN
tasks

Less Manual Tuning Needed — Works well with default
parameters

Strengths and Challenges

Acrtificial Neural Networks (ANNS) are very useful models capable of
learning complex functions and dynamics from data, making them well-
suited for tasks where explicit programming is impractical. However,
to achieve an optimal performance with ANNs needed adjusting of
parameters like the number of layers, neurons per layer, and learning
rates, all of which greatly influence the model's effectiveness. deep
neural networks are often viewed as "black boxes" due to their opaque
internal workings, prompting the advancement of explainable Al (XAl)
methods to enhance interpretability and trust.[26]

4.3.2 Classification Model: Convolutional Neural Network
(CNN).

A Convolutional Neural Network (CNN) is a specific kind of deep
learning model that does well at classification operations, particularly in
the field of image processing and computer vision. CNNs are developed
to consequently and adaptively learn structures of features from input
data, making them extremely efficient for understanding patterns and
objects within images.

4.3.2.1 Architecture and Functionality
CNNs consist of multiple layers:
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Convolutional Neural Network Layers:

These several layers utilize filters to the input data to collect specific
features such as borders, textures in particular, and shapes.

Pooling Layers: These reduce the spatial dimensions of the feature
maps, helping to make the representations more manageable and less
sensitive to small translations in the input.

Fully associated Layers: After several convolutional and pooling
operations, the high-level features are flattened and fed into fully
connected layers for final classification.

The network learns the optimal filter weights during training, allowing
it to distinguish between different classes based on learned features
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Fig. 4.c Neuron learning process

4.3.2.2 1D Convolutional Neural Networks (1D-CNN) for
Time Series Classification.

A Convolutional Neural Network (1D-CNN) is an architecture for deep
learning created especially to extract features and categorize sequential
data, such as communication waveforms, biomedical signals, or sensor
readings, in the context of 1D time series data. 1D-CNNs work with one-
dimensional input, which makes them ideal for time-dependent signals,
in contrast to conventional CNNs used for images (2D data).

How 1D-CNN Works with Time Series
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Convolutional Layers:1D convolutional filters capture local temporal
patterns and dependencies in the sequence by sliding along the time axis.
These filters have the ability to recognize patterns, peaks, or trends that
distinguish various data classes.

Pooling Layers: Pooling operations, like max pooling, help control
overfitting, make the network more resilient to slight temporal shifts,
and reduce the dimensionality of the feature maps.

Fully Connected Layers: The extracted features are flattened and sent
to fully connected layers, which carry out the final classification,
following a number of convolution and pooling operations.

Advantages of 1D-CNN for Time Series.

Automated Feature Extraction: 1D-CNNs eliminate the need for
human feature engineering by automatically extracting pertinent
features from unprocessed time series data.

Excellent Classification Accuracy: Research has demonstrated that
1D-CNNs are capable of achieving high accuracy on a range of time
series classification tasks, such as industrial monitoring and biomedical
signal analysis.

Efficiency on Edge Devices: 1D-CNNs are computationally efficient
and can be used for real-time inference on platforms with limited
resources, like 10T edge devices.

Recent Developments and Insights

Frequency Domain Analysis: New studies have looked at 1D-CNN
learning behavior from a frequency domain standpoint. They have found
that deeper networks occasionally pay less attention to low-frequency
components, which can affect classification accuracy. To solve this and
enhance performance with little computational overhead, regulatory
frameworks have been suggested.

Transfer Learning: ConvTimeNet and other pre-trained 1D-CNN
models can be optimized for new tasks, allowing for quick adaptation to
various time series classification issues with little labeled data.

Optimization Techniques: To further improve the efficiency and
accuracy of 1D-CNN architectures for particular applications,
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techniques like transfer learning and evolutionary algorithms have been
applied.
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Chapter 5

Experimental Setup for Real-Time Data
Monitoring.

STEPS TAKEN IN THE PROJECT:

5.1 Data Generation:

* Generate real-time data for the study by considering
various transmission scenarios.

5.2 Modulation Techniques:

* Apply Amplitude Modulation (AM) and Frequency
Modulation (FM) for analog communication. For digital
signal-based communication, use Amplitude Shift
Keying (ASK), Phase Shift Keying (PSK), and
Quadrature  Amplitude Modulation (QAM) on the
generated data to simulate real-world communication
signals.

5.3 Environmental Effects Consideration:

* Incorporate the effects of signal attenuation,
interference, and noise caused by environmental

factors.
d
. PL(dB) = PL, + 10nlogy, (d—) +X, (1)
0
*  Where,

* PL, : Reference Pathloss.

* n: Pathloss exponent (depend upon the
environment).

» d: Distance Difference.
* d,: Reference Distance

* X, : Shadow fading (Gaussian noise).

5.4 Multi-Path Fading Consideration:

* When signals take multiple routes to reach the receiver,
causing distortions and phase shifts.
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f(r) (ﬁ) exp <— (r”(.%)) I, (;—E), r=00 (2)

Where,
* 7r: Received Signal Amplitude

* o : scale parameter (related to the standard
deviation of multipath components)

* K : Rician K-factor (ratio of power in LOS
path to power in scattered paths)

* Iy(x) : Modified Bessel Function of the
First Kind, order 0 (LOS component's
contribution)

5.5 Data Processing & Machine Learning-Based
Demodulation:

* Use machine learning techniques to demodulate the
received signals. The data may be incomplete or not in a
standard format—sometimes normalized, or transformed
using mathematical operations to extract features that aid
in demodulation. In our case, we consider power in dB
(using a logarithmic function) and smoothed power
(using a filtering technique).

5.6 Practical Use-Cases of Nonlinear Energy Harvesting
Models:

 Apply the Nonlinear Energy Harvesting (EH)
mathematical model to the received modulated signals.

) By = : @
NLT o (1 + e—apy+ab ) @3)

4)
® = (1+e%)1

*  Where,
E' : Maximum energy.
a : Circuit's capacitor.
b : Diode turn-on

D Sigmoid function(circuit’s
characteristics)
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p : Transmitted Power.

y : Effective Channel Gain.

5.7 ML-Based Demodulation with Energy-Harvested
Signals Data:

Ensure that the Energy Harvesting (EH) module operates
in the sigmoid region to accurately model the nonlinear
charging behavior and prevent saturation.

Use machine learning to demodulate signals affected by
nonlinear energy harvesting effects.

Train and save the second standard model using this
dataset.

5.8 Evaluation of Model Performance on Unseen Signal

Data:

Introduce completely new, previously unseen signal data
to both models.

Input the unseen data into both the first and second
models to generate predictions (Single Antenna Based
and Separate Antenna Based Architecture).

A comparative analysis of the decoded data from this
model shows that it is performing well.
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Chapter 6
6.1 Analysis of Performance Results for AM

Amplitude modulation (AM) is a traditional communications technique
in which the instantaneous value of a modulating (information) signal is
used to adjust the amplitude of a carrier wave. In AM, the carrier's
amplitude encodes the data to be sent, while its frequency and phase stay
constant

How AM Works:

A lower-frequency information (modulating) signal is coupled with a
high-frequency carrier signal.

The shape of the original information signal is reflected in the varying
envelope of the resulting AM signal.

The original data from the modulated carrier is recovered at the receiver
using amplitude demodulation techniques.

6.2 Analysis of Performance Results for AM
(Separate Antenna-Based Architecture)

Energy Harvesting
(((.))) <’ D Energy Harvesting
‘ D Decoding Information

6.2.a Separate Antenna-based Architecture
6.2.1 Parameters considered are.

» The transmitter and receiver in this study were placed 8
cm apart.

* The communication channel took additive white
Gaussian noise (AWGN), multipath fading, and path loss
into account.
MATLAB was used to record and process all signal data.

» An Artificial Neural Network (ANN) was then trained
using the recorded data in order to decode signals
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6.2.2 Result for AM (Distance Between transmitter and
receiver 8 cm)

Model MAE MSE RMSE R2 RMSLE
Extra Trees Regressor 0.0024 0.0001 0.0074 0.9898 0.0065
Random Forest Regressor 0.0053 0.0001 0.0120 0.9733 0.0107
Decision Tree Regressor 0.0070 0.0003 0.0159 0.9502 0.0125
K Neighbors Regressor 0.0100  0.0004  0.0198  0.9277 0.0171
Extreme Gradient Boosting 0.0108 0.0004 0.0201 0.9249 0.0180
CatBoost Regressor 0.0112 0.0005 0.0222 0.9089 0.0202

Light Gradient Boosting Machine 0.0141 0.00o8 0.0274 0.8612 0.0250

Gradient Boosting Regressor 0.0317 0.0025 0.0502 0.5336 0.0462
AdaBoost Regressor 0.0504 0.0046 0.0681 0.1431 0.0594
Elastic Net 0.0539 0.0054 0.0736 -0.0010 0.0692
Lasso Regression 0.0539 0.0054 0.0736 -0.0010 0.0692
Lasso Least Angle Regression 0.0539 0.0054 0.0736 -0.0010 0.0692
Dummy Regressor 0.0539 0.0054 0.0736 -0.0010 0.0692
Ridge Regression 0.0540 0.0054 0.0736 -0.0012 0.0680
Least Angle Regression 0.0540 0.0054 0.0736 -0.0013 0.0679
Orthogonal Matching Pursuit 0.0540 0.0054 0.0736 -0.0013 0.0690
Linear Regressicn 0.0540 0.0054 0.0736 -0.0015 0.0679
Bayesian Ridge 0.0540 0.0054 0.0736 -0.0015 0.0686
Huber Regressor 0.05341 0.0055 0.0740 -0.0107 0.0628
Passive Aggressive Regressor 0.2230 0.1327 0.2527 -24.3634 0.1672

Table 6.2.a Comparison Table
For ANN MSE: 0.0007, MAE: 0.0022, R? : 0.9998

This analysis shows that the Deep learning Model - ANN is giving the
best result compared to all regression models.

The response of the ANN Model is mentioned below.
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ANN -- MSE: 0.0007, MAE: 0.0022, R? : 0.9998

6.2.3 Result Analysis

The transmitter and receiver in this study were placed 8 cm apart.
The communication channel took additive white Gaussian noise
(AWGN), multipath fading, and path loss into account.
MATLAB was used to record and process all signal data.
An Artificial Neural Network (ANN) was then trained using the
recorded data in order to decode signals.
The model performed exceptionally well in decoding information from
the modulated signals, as evidenced by its Mean Squared Error (MSE)
is about 0.0007 and Mean Absolute Error (MAE) of approx 0.0022.
The trained model was stored for later inference to guarantee reusability.
This makes it possible to apply the model to modulated signal data that
has never been seen before, enabling batch or real-time decoding in later
tests.

6.2.4 Testing the saved model on unseen data (new
modulated message signal)

Actual vs Predicted Values (First 10000 Samples)
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=== Actual values

0.6 1

0.4 4

Audio Signal Value
o
o
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Fig.6.2.e Original Vs predicted values (first 1000 sample)
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ANN --MSE: 0.0272, MAE: 0.0731, R? : 0.5645
» | have also used the trained model to obtain a sample of
the newly decoded message signal, which is audible. This
demonstrates that the model is operating as planned and
successfully decoding the modulated signals.

6.2.5 Conclusion

From this observation, we can conclude that we can decode the original
message signal using a regression model, and an ANN will give the best
result compared to all regression models.

Also, in the next step, we save this model and then pass a new modulated
signal data (which is completely unseen for this model). And we are able
to decode the original message signal for the 2" modulated signal data
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sets using the saved model (which is trained on the 1% modulated signal
data). Which confirms that our model is able to adopt the real-time
environment parameter.

6.3 Analysis of Performance Results for AM
(Single Antenna-Based Architecture)

a
— Decoding

0
(((i») < E | |

F1g 6.3.a Single Antenna-based Architecture

6.3.1 Parameters considered are.

| have suggested using a capacitor inside the energy harvester circuit
module to store the harvested energy because | am using a single antenna
for both information decoding and energy harvesting. A capacitor is
known to store electrical energy as an electric field. Consequently, a
change in the electric field, which is directly proportional to the received
power, results from any variation in the energy stored in the capacitor.
The original signal may be decoded using this variation.
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As shown in the above figure-

Figures 6.3.b & figure 6.3.c represent the situation when 100% received
power is transferred directly to the energy harvesting Module (single
antenna-based Architecture). For the Energy harvesting Module, I use
Non nonlinear sigmoid function-based Mathematical module, which has
similar behaviour to the Physical Energy harvesting Module.

The findings show that the energy harvesting module's capacitor has
reached its saturation point as a result of the high-power level. This
presents a problem when trying to decode the original message signal,
even though it is beneficial from the standpoint of energy harvesting.

The information in Amplitude Modulation (AM) is encoded in the
carrier wave's amplitude. Accurate message recovery is hampered by
any distortion in the received power since it directly affects the signal's
amplitude. Saturation restricts the range of received power because
power is directly proportional to amplitude, which makes it challenging
to reliably extract the original message signal.
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Figures 6.3.d & 6.3.e represent the situation when 0.1% received power
is transferred to the energy harvesting Module. As we can observe that
in this scenario a liner (sigmoid) graph which show the linear relation
between received energy and harvested power.

Now we can apply non-linear regression Algorithms to decode this
information.

6.3.2 Result for AM (Distance Between transmitter and
receiver 8cm)

Model MAE MSE RMSE R2 RMSLE
CatBoost Regressor 0.0068  0.0004 0.0194  0.9706 0.0154
Extreme Gradient Boosting 0.0089 0.0005 0.0218 0.9629 0.0171

Light Gradient Boosting Machine 0.0115 0.0008 0.0276 0.9404 0.0219

K Neighbors Regressar 0.0050 0.0008 0.0277 0.9402 0.0187
Extra Trees Regressor 0.0066 0.0008 0.0291 0.9341 0.0183
Random Forest Regressor 0.0058 0.0009 0.0291 0.9339 0.0191
Decision Tree Regressor 0.0063 0.0013 0.0353 0.9025 0.0220
Gradient Boosting Regressor 0.0339 0.0032 0.0567 0.7497 0.0481
AdaBoost Regressor 0.0716 0.0092 0.0058 0.2858 0.0726
Linear Regression 0.0721 0.0097 0.0983 0.2473 0.0735
Bayesian Ridge 0.0721 0.0097 0.0083 0.2475 0.0735
Least Angle Regression 0.0724 0.0097 0.0985 0.2442 0.0738
Ridge Regression 0.0752 0.0103 0.1016 0.1957 0.0755
Huber Regressor 0.0748 0.0103 0.1017 0.1951 0.0769
Orthogonal Matching Pursuit 0.0817 0.0128 0.1133 0.0006 0.1010
Lasso Regression 0.0817 0.0128 0.1133 -0.0001 0.1019
Elastic Net 0.0817 0.0128 0.1133 -0.0001 0.1019
Lasso Least Angle Regression 0.0817 0.0128 0.1133 -0.0001 0.1019
Dummy Regressor 0.0817 0.0128 0.1133 -0.0001 0.10719
Passive Aggressive Regressor 0.2206 0.4626 0.6288 -35.0106 0.2706

Table 6.3.a Comparison table
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ANN Model Result
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Figures 6.13, 6.14 & 6.15 are the plots of information decoding on the
basis of energy capture by the Energy Harvested Module.

MSE: 0.0010, MAE: 0.0142, R%: 0.9441

This matrix value shows the error level, which is minimum.
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6.3.3 Result Analysis

The transmitter and receiver in this study were placed 8 cm apart.
The communication channel took additive white Gaussian noise
(AWGN), multipath fading, and path loss into account.
MATLAB was used to record and process all signal data.
An Artificial Neural Network (ANN) was then trained using the
recorded data in order to decode signals.
The model performed exceptionally well in decoding information from
the modulated signals, as evidenced by its Mean Squared Error (MSE)
of 0.0010 and Mean Absolute Error (MAE) of 0.0142.
The trained model was stored for later inference to guarantee reusability.
This makes it possible to apply the model to modulated signal data that
has never been seen before, enabling batch or real-time decoding in later
tests.

6.3.4 Conclusion

From this observation, we can conclude that we can decode the original
message signal using a regression model, and an ANN will give the best
result compared to all regression models.

6.4 Analysis of Performance Results for FM

FM (frequency modulation) is an Analog signal modulation concept in
which the message signal is encoded in frequency of carrier signal.

6.4.1 Parameters considered are

» The transmitter and receiver in this study were placed 8
cm apart.

* The communication channel took additive white
Gaussian noise (AWGN), multipath fading, and path loss
into account.
MATLAB was used to record and process all signal data.

» An Artificial Neural Network (ANN) was then trained
using the recorded data in order to decode signals
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6.4.2 Result for FM (Distance Between transmitter and
receiver 8 cm)

Model MAE MSE RMSE R2 RMSLE
Decision Tree Regressor 0.0003 0.0000 0.0013 1.0000 0.0008
K Meighbors Regressor 0.0010 0.0000 0.0023 0.9999 0.0019
Linear Regression 0.1823 0.0581 0.241 -0.0000 0.2008
Lasso Regression 0.1823 0.0581 0.241 -0.0000 0.2008
Ridge Regression 0.1823 0.0581 0.241 -0.0000 0.2008
Elastic Met 0.1823 0.0581 0.241 -0.0000 0.2008
Least Angle Regression 0.1823 0.0581 0.241 -0.0000 0.2008
Lasso Least Angle Regression 0.1823 0.0581 0.241 -0.0000 0.2008
Orthogonal Matching Pursuit 0.1823 0.0581 0.2411 -0.0000 0.2008
Bayesian Ridge 0.1823 0.0581 0.241 -0.0000 0.2008
Huber Regressor 0.1822 0.0581 0.241 -0.0005 0.1990
Passive Aggressive Regressor 0.4264 0.3392 0.5201 -4.8370 0.2691
Table 6.4.a

6.4.3 Conclusion

From the above table, it is clear that Decision Tree Regression and K
Neighbours Regression models giving best result (less error)
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6.5 Analysis of performance result for ASK

(Separate Antenna Based Architecture)

In digital modulation, Amplitude Shift Keying (ASK) is a modulation
technique that modifies a carrier signal's amplitude according to the
digital data being sent. The carrier is present for a binary "1" and absent
(or at a lower amplitude) for a binary "0" in its most basic form, known
as binary ASK. More generally, M-ary ASK represents multiple bits per
symbol using multiple amplitude levels.

Binary input ! ' ' ' ; ' i e
sequence signal '

Carrier signal

ASK output signal

Fig. 6.5.a ASK signal

6.5.1 Parameters considered are

» The transmitter and receiver in this study were placed 10
cm apart.

* The communication channel took additive white
Gaussian noise (AWGN), multipath fading, and path loss
into account.

«  MATLAB was used to record and process all signal data.

» Compare with the best regression models.

« An Artificial Neural Network (ANN) was then trained
using the recorded data in order to decode signals
because it performs best among all.
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6.5.2 Result of 4 - ASK.

Audio Signal Value

Frequency

Model MAE MSE RMSE R2
ANN 0.1098 0.0151 0.6720
XGBoost 01099 0.0151 0.1382 0.6715
Light Gradient Boosting Machine 0.1095 0.0152 0.1385 0.6701
Gradient Boosting Regressor 0.1107 0.0205 0.1433 0.6466
K Neighbors Regressor 0.1182 0.0226 0.1502 06119
Decision Tree Regressor 0.1210 0.0246 0.1568 0.5770
Table. 6.5.a Comparison Table
Actual vs Predicted Values (First 1000 Samples)
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0.75 :
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Fig. 6.5.b Original Vs Predicted Signal
Error Distribution
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Fig. 6.5.c Error distribution
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Scatter Plot of Actual vs Predicted Values

1.00 1 @ Predictions (R™~2: 0.67)
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Fig. 6.5.d Original Vs Predicted Scattered value
6.5.1.2 Result of 8 — ASK.
Madel MAE MSE RMSE R2
ANN [ 0.0660 0.0061 0.8959
K Meighbors Regressor 0.0701 0.0071 0.0845 0.8770
Decision Tree Regressor 0.0757 0.0087 0.0931 0.B507
Linear Regression 0.1823 0.0581 0.2411 -0.0000
Lasso Regression 0.1823 0.0581 0.2411 -0.0000
Ridge Regression 0.1823 0.0581 0.2411 -0.0000
Elastic Net 0.0660 0.0061 0.B959
Table 6.5.b

Actual vs Predicted Values (First 1000 Samples)
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Fig. 6.5.e Original Vs Predicted Signal
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Error Distribution
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6.5.1.3 Result of 16 — ASK.
Model MAE MSE RMSE |R2
ANN 0.0328 0.0015 0.9748
CatBoost Regressor 0.0660 0.0063 0.0733 |0.8724
Extreme Gradient Boosting 0.0661 0.0064 0.0797 0.8710
Light Gradient Boosting Machine | 0.0668 0.0066 0.0813 0.8660
K Neighbors Regressor 0.0692 0.0070 0.0837 |0.8579
Decision Tree Regressor 0.0746 0.0084 0.0919 | 0.8287
Gradient Boosting Regressor 0.0751 0.0115 0.1070 0.7676
AdaBoost Regressor 01311 0.0318 0.1784 0.3539
Table 6.2
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Audio Signal Value
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Actual vs Predicted Values (First 1000 Samples)
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6.5.3 Result Analysis

The transmitter and receiver in this study were placed 10 cm apart.
The communication channel took additive white Gaussian noise
(AWGN), multipath fading, and path loss into account.
MATLAB was used to record and process all signal data.
An Atrtificial Neural Network (ANN) was then trained using the
recorded data in order to decode signals.
The model performed exceptionally well in decoding information from
the modulated signals, as evidenced by its Mean Squared Error (MSE)
of 0.0015 and Mean Absolute Error (MAE) of 0.0328.
The trained model was stored for later inference to guarantee reusability.
This makes it possible to apply the model to modulated signal data that
has never been seen before, enabling batch or real-time decoding in later
tests.

6.6 Analysis of performance result for ASK
(Single Antenna Based Architecture)

o

D __ ’—p Decoding

a-1

Fig. 6.6.a Single Antenna Based Architecture

A digital modulation technique, Amplitude Shift Keying (ASK)
modifies a carrier signal's amplitude according to the digital data being
sent. The carrier is present for a binary "1" and absent (or at a lower
amplitude) for a binary "0" in its most basic form, known as binary ASK.
More generally, M-ary ASK represents multiple bits per symbol using
multiple amplitude levels.

6.6.1 Parameters considered are

| have suggested using a capacitor inside the energy harvester circuit
module to store the harvested energy because | am using a single antenna
for both information decoding and energy harvesting. A capacitor is
known to store electrical energy as an electric field. Consequently, a
change in the electric field, which is directly proportional to the received
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power, results from any variation in the energy stored in the capacitor.
The original signal may be decoded using this variation.

Nonlinear Energy Harvesting

0.0025 -

0.0020 4

0.0015 4

0.0010 4

Harvested Energy (E_NL) [J]

0.0005 +

0.0000 —— Nonlinear Energy Harvesting

T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Received Power (P_b) [W]

Fig. 6.6.b
Fig. 10.a Behaviour of EH Model (consider 100% Power)

Nonlinear Energy Harvesting

—— Nonlinear Energy Harvesting

0.0025 A

o
[=]
o
]
o

0.0015

0.0010

Harvested Energy (E_NL) [J]

0.0005

0.0000 A

T T T T T T T
0.000 0.001 0.002 0.003 0.004 0.005 0.006
Received Power (P_b) [W]

Fig. 6.6.c

Fig. 6.6.c Behavior of EH Model (consider 0.1% Power)
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instantaneousPower vs Energy Harvested Values (First 100000 Samples)

— instantaneousPower

0.0016 -
—— Nonlinear EH Energy

0.0014 -

0.0012 4
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0.0008
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0.0004

Power and Energy Harvested in Joules

0.0002

0.0000

T T T T T T
0 20000 40000 60000 80000 100000
Sample Index

Fig. 6.6.d

Fig. 66.d This graph shows the Energy stored in the capacitor
proportional to the power received(Modulated signal Power)

As shown in the above figure-

Figures 6.6.b & figure 6.6.c represent the situation when 100% received
power is transferred directly to the energy harvesting Module (single
antenna-based Architecture). For the Energy harvesting Module, | use
Non nonlinear sigmoid function-based Mathematical module, which has
similar behaviour to the Physical Energy harvesting Module.

The findings show that the energy harvesting module's capacitor has
reached its saturation point as a result of the high-power level. This
presents a problem when trying to decode the original message signal,
even though it is beneficial from the standpoint of energy harvesting.

The information in Amplitude Modulation (AM) is encoded in the
carrier wave's amplitude. Accurate message recovery is hampered by
any distortion in the received power since it directly affects the signal's
amplitude. Saturation restricts the range of received power because
power is directly proportional to amplitude, which makes it challenging
to reliably extract the original message signal.

Figures 6.6.d represent the situation when 0.1% received power is
transferred to the energy harvesting Module. As we can observe that in
this scenario a liner (sigmoid) graph which show the linear relation
between received energy and harvested power.

Now we can apply non-linear regression Algorithms to decode this
information.
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6.6.2 Result of 16 — ASK

Model MAE MSE

RMSE

R2
Decision Tree Regressor 0.0566 0.07104 0.1022 0.8204
K Neighbors Regressor 0.0592 | 0.0115 0.1073 0.8019
Linear Regression 0.1492 0.0383 0.1958 0.3405
Ridge Regression 0.1492 0.0383 0.1958 0.3405
Bayesian Ridge 0.1492 0.0383 0.1958 0.3405
Least Angle Regression 0.1491 0.0384 0.1960 0.3387
ANN 0.1302 0.0319 0.4519
Table. 6.6.a

Actual vs Predicted Values (First 1000 Samples)
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Scatter Plot of Actual vs Predicted Values
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6.6.3 Result Analysis

The transmitter and receiver in this study were placed 10 cm apart.
The communication channel took additive white Gaussian noise
(AWGN), multipath fading, and path loss into account.
MATLAB was used to record and process all signal data.
An Atrtificial Neural Network (ANN) was then trained using the
recorded data in order to decode signals.
The model performed exceptionally well in decoding information from
the modulated signals, as evidenced by its Mean Squared Error (MSE)
of 0.0319 and Mean Absolute Error (MAE) of 0.1302.
The trained model was stored for later inference to guarantee reusability.
This makes it possible to apply the model to modulated signal data that
has never been seen before, enabling batch or real-time decoding in later
tests.

6.7 Analysis of performance result for PSK

A digital modulation technique called phase shift keying (PSK) modifies
a carrier signal's phase to match the digital data that needs to be sent.
PSK effectively encodes data for transmission over communication
channels because each distinct phase corresponds to a distinct symbol or
set of bits.

PSK types

e Binary PSK (BPSK): Represents binary 0 and 1 using two phases
(0° and 180°).

e Quadrature PSK (QPSK) doubles the data rate over BPSK by
encoding two bits per symbol using four phases (0°, 90°, 180°,
and 270°).
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e More bits per symbol are possible with M-ary PSK (M-PSK),
which extends the idea to M distinct phases (e.g., 8PSK, 16PSK).

Principle of Operation

e Groups of bits (symbols) make up the digital data stream.

e Every symbol corresponds to a distinct carrier wave phase.

e The transmitted data is recovered at the receiver by measuring
the incoming signal's phase.

6.7.1 Parameters considered are

» The transmitter and receiver in this study were placed 10
cm apart.

* The communication channel took additive white
Gaussian noise (AWGN), multipath fading, and path loss
into account.

MATLAB was used to record and process all signal data.

» Compare with the best regression models.

» An Artificial Neural Network (ANN) was then trained
using the recorded data in order to decode signals
because it performs best among all.

6.7.2 Result of 4 — PSK
ANN -- MSE: 0.0152, MAE: 0.0943, R"2: 0.7378

Actual vs Predicted Values (First 500 Samples)
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Fig. 6.7.a Original Vs Predicted Signal
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6.7.3 Result Analysis

The transmitter and receiver in this study were placed 10 cm apart.
The communication channel took additive white Gaussian noise
(AWGN), multipath fading, and path loss into account.
MATLAB was used to record and process all signal data.
An Atrtificial Neural Network (ANN) was then trained using the
recorded data in order to decode signals.
The model performed exceptionally well in decoding information from
the modulated signals, as evidenced by its Mean Squared Error (MSE)
of about 0.0152 and Mean Absolute Error (MAE) of approx 0.0943.
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This trained model is stored for later inference to guarantee reusability.
This makes it possible to apply the model to modulated signal data that
has never been seen before, enabling batch or real-time decoding in later
tests.

6.8 Analysis of performance result for QAM

Quadrature Amplitude Modulation (QAM) is a special type of digital
modulation technique that conveys data by modulating a carrier signal's
amplitude and phase. QAM achieves this by combining two carrier
waves that have a phase of difference of 90 degrees (in quadrature),
allowing the transmission of multiple bits per symbol and thus
significantly increasing data rates.

How QAM Works

e Two carriers, one in-phase (I) and one quadrature (Q), are
independently amplitude-modulated with digital data.

e The two modulated signals are summed to form the QAM signal.

« Each unique combination of amplitudes (and thus points in the
I-Q plane) represents a different symbol, allowing QAM to
encode multiple bits per symbol (e.g., 16-QAM, 64-QAM, 256-
QAM).

Types of QAM

e Me-ary QAM: The “M” refers to the number of symbols in the
constellation (e.g., 16-QAM uses 16 points, encoding 4 bits per
symbol).

e Higher-order QAM (e.g., 64-QAM, 256-QAM) increases data
rates but requires better signal quality (higher SNR) to maintain
reliability.

Advantages

e High Spectral Efficiency: QAM enables the transmission of
more data within the same bandwidth compared to simpler
modulation schemes like ASK or PSK.

o Flexibility: The modulation order (M) can be adapted based on
the balancing throughput, channel conditions, and robustness.

Performance Considerations
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Noise Sensitivity: As the number of constellation points
increases, the symbols are closer together, making higher-order
QAM more susceptible to noise and errors.

Channel Requirements: QAM is best suited for channels with
high SNR and minimal distortion. In fading or noisy
environments, lower-order QAM or adaptive modulation may be
preferred.

Applications

QAM is foundational in modern communication systems,
including:

« Digital television and cable modems

« Wi-Fi (IEEE 802.11), WiMAX (IEEE 802.16), and
cellular networks (3G, 4G, 5G)

e Broadband data  transmission and optical
communications

d. OFDM-based systems for high data rate wireless and
wired communications

Recent Developments

Research continues on optimizing QAM for challenging
environments (e.g., fading channels, massive MIMO systems).

Ultra-dense QAM constellations (e.g., 4,294,967,296-QAM) are
being explored for quantum and ultra-high-speed optical
communications.

Novel variants like Golden Angle Modulation aim to reduce the
shaping loss and approach the Shannon capacity limit.

6.8.1 Parameters considered are

Previously, | employed an Artificial Neural Network (ANN) model
based on linear regression to decode the original message signal from a
Digital modulated signal. While effective for amplitude-based signal
reconstruction, this approach has limitations when considering the
geometric distribution of symbols in a constellation diagram(QAM). In
practical scenarios, the received signal is affected by thermal noise,
multipath fading, and the Doppler effect, which distort the constellation
diagram and make it difficult to distinguish the original symbol points.
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To address this, a classification-based model is more suitable, as it can
categorize the received modulated signals into discrete symbol classes,
even in the presence of such distortions. Therefore, | have adopted a 1D
Convolutional Neural Network (1D-CNN) for this task. The 1D-CNN
model learns spatial patterns in the received signal and is capable of
accurately classifying the distorted constellation points, enabling more
reliable decoding of the original message.

6.8.2 Result of 16-QAM

16-QAM Constellation Diagram

Quadrature (Q)

T T
-1.0 -0.5 0.0 0.5 1.0
In-phase (I}

Fig. 6.8.a 16-QAM in an ideal case

Test accuracy: 99.9%
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16-QAM Constellation Diagram
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Fig. 6.8.c 16-QAM with tuned parameters

Test accuracy: 90.69%
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6.8.3 Result Analysis

The results obtained from both regression-based and classification-
based deep learning approaches demonstrate promising outcomes in
decoding modulated signals under realistic wireless conditions. The
Artificial Neural Network (ANN) regression model, indicating high
accuracy in reconstructing the original message signal.

However, when noise, multipath fading, and the Doppler effect distorted
the constellation diagram, the limitations of a regression-based model
became apparent. In such scenarios, the use of a 1D Convolutional
Neural Network (1D-CNN) for classification proved more effective.
The model successfully categorized distorted 16-QAM symbols,
preserving the integrity of the signal’s symbol structure even under
channel impairments.

Analysis of Figures:
fig. 6.8(a)

e Under ideal circumstances—that is, without noise, without
multipath fading, and without Doppler frequency effect—fig.
6.8(a) shows a comparison table of the transmitted, received, and
predicted symbols. In this case, accurate decoding is indicated
by the close match between the received and expected signals to
the transmitted ones.

fig. 6.8(b)

e When all real-world channel impairments are taken into
account—including noise, fading, and the Doppler effect—Fig.
6.8(b) shows the comparison table. As seen, the received signal
is rather distorted, which makes it challenging to identify the
original sent symbols. This results in poor prediction
performance.

fig. 6.8(c)

e Fig. 6.8(c) illustrates a scenario where we have tuned the system
parameters by neglecting the Doppler effect and minimizing the
impact of fading. This assumption is valid as the distance
between the transmitter and receiver is only 10 cm, making such
effects negligible. As a result, the predicted symbols closely
approximate the original transmitted ones, with only minimal
error.
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Chapter 7

Concludes the thesis and suggests
directions for future research.

The works as presented in chapters 3 and 4 both proposed a system
model and problem formulation, and ML-based signal
demodulation/decoding. In the System model, 1 have considered two
approaches, that is single antenna-based approach and the separate
antenna-based approach for SWIPT.

For both of this Architecture, |1 considered multiple features of the
modulated signal, some of which are directly generated in MATLAB by
considering the Rician distributed channel with a pathloss model and
additive white Gaussian noise, and some features are extracted by data
processing with Python, and these features are like, received
instantaneous power at the receiver, smoother power after pre-
processing the signal and power form Non-linear energy harvesting
Module.

For a separate antenna-based architecture, | have considered all the
extracted features except the non-linear energy harvesting power,
smoother power, and received instantaneous powers. then apply ML on
Analog Modulated signal (AM, FM) and Digital Modulated signal
(ASK, PSK, FSK, QAM) with quantization level 4, 8, 16. Also, |
consider the distance between the transmitter and the receiver to be 8cm,
10cm, 15cm and 20cm. in the thesis, | am considering only a distance of
8cm as suggested by the professor. | also use multiple ML models to
train the data and compare them, and observe that ANN, CNN are giving
the best result, so all the results/plots are based on ANN/CNN

For a single antenna-based architecture, | have considered only those
features that are related to power, so that | can decode the message signal
on the basis of a nonlinear energy-harvesting mathematical module. For
this, I use ANN and compare the accuracy with other models.

Also, | save this trained model to my local laptop and pass a new
modulated message signal dataset to this module, which is completely
unseen for the model. And observe that | am able to get the
demodulated/decoded original message signal.

Future Scope
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1. All these datasets are MATLAB-based, but we can apply a
USRP-based dataset to train this Model, which will further
prove that the ML-based approach is data data-driven approach
and works well with real-time data.
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