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ABSTRACT 

 

This study examines changes in flood magnitude and timing across twelve stream gauging 

stations in the Narmada River Basin from 1972 to 2024. Flood events were identified using 

the Annual Maximum Series (AMS) and Peaks-Over-Threshold (POT) approaches. Flood 

frequency analysis employed best-fit probability distributions, with Weibull and Gamma 

selected for AMS based on the Akaike Information Criterion (AIC). Circular statistics were 

used to assess flood timing, while magnitudes were categorized into small, moderate, and 

large floods based on return periods. Notably, large floods were predominantly 

concentrated in the Sandia catchment under both AMS and POT approaches. Trend analysis 

using the Modified Mann-Kendall test revealed a significant decline in peak streamflow at 

most stations, particularly along the mainstem Narmada in the AMS dataset. The POT 

approach showed a shift toward delayed flood timing at Sandia, Mohgaon, and 

Garudeshwar. The mean flood timing across the basin typically occurred from early to mid-

August. Hydro-meteorological analysis of major flood events indicated that floods were 

driven by extreme precipitation, catchment wetness, or a combination of both. A 

catchment-based assessment of sensitivity to antecedent precipitation buildup (APB) 

revealed that flood magnitudes in upper and upper- mid reaches of catchments were notably 

correlated with APB. These findings highlight evolving flood dynamics in the Narmada 

basin and emphasize the need for incorporating catchment-scale processes and antecedent 

conditions into regional flood management strategies. 

 

 

Keywords: Flood frequency analysis, Annual Maximum Series, Peaks Over Threshold, 

Circular Statistics, Trend Analysis, Flood generation mechanisms, Narmada River Basin. 
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Chapter - 1 

INTRODUCTION 

1.1 Background of the Study 

Globally, floods present a significant challenge, causing widespread destruction and 

economic losses. In India, where 80% of annual rainfall occurs during the monsoon season, 

flooding during this period results in major loss of life and property (NDMA, 2008). 

Extreme rainfall events, particularly those originating from cyclonic depressions in the Bay 

of Bengal and the Arabian Sea, drive much of this devastation (Hunt and Fletcher, 2019). 

The Intergovernmental Panel on Climate Change (IPCC), in its Sixth Assessment Report 

(IPCC, 2021; Masson-Delmotte et al., 2021), predicts that both extreme and mean 

precipitation will likely intensify across Asia, especially in South Asia. Despite the overall 

decline of the southwest monsoon over the Indian subcontinent, Roxy et al. (2015) 

identified a threefold increase in extreme rainfall events across Central India from 1950 to 

2015. With greater climate variability and rising temperatures, flood frequencies and storm 

runoffs are expected to escalate, which in turn emphasizes the need for understanding 

trends and mechanisms behind the flood processes. 

At a global level, flood studies have provided insights into trends in streamflow and 

seasonality, including works by Petrow and Merz (2009), Mangini et al. (2018), and Do et 

al. (2019), who analyzed seasonal flood timings and shifts across various regions. These 

studies highlight the influence of both climatic changes and catchment characteristics on 

flood dynamics. Jain et al. (2017) analyzed trends in extreme flood events across prominent 

river basins in India, highlighting the influence of human activities such as urbanization 

and reservoir regulation on streamflow patterns. They found that there was either a decrease 

or no significant trend in flood magnitude at most sites. Similarly, Ganguli et al. (2022) 

explored trends in streamflow and studied mean flood timing in the Mahanadi River Basin 

using both annual maximum series (AMS) and peaks-over-threshold (POT) approaches. 

They found that decreasing trends in flood magnitude are predominant among most 

stations, while no apparent variations in the mean flooding date was observed using both 

approaches. Nanditha et al. (2022) investigated the mechanisms underlying flood 

generation in the Narmada River basin, enhancing the understanding of regional flood 

processes. They found that most of the rainfall in the basin occurs in July and August. In 
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contrast, high flows are observed during late August and September, hence emphasizing 

the importance of antecedent moisture conditions in propagating floods. Thus, 

understanding the flood generating mechanisms help in improving flood forecasting efforts 

for effective disaster management operations. 

1.2 Motivation and Importance of the Study 

Given the increasing incidence of extreme rainfall and flooding, there is a pressing 

need for localized and robust analysis of flood behavior in vulnerable river basins. Several 

studies, including those by Rajaguru et al. (1995), Kale et al. (1997), and Kathal (2018), 

emphasize that the Narmada River basin in central India is not only highly vulnerable to 

flooding but also one of the most flood-prone regions in the country. The historical records 

document several major flood events from the early 19th century. The highest recorded 

discharge of 69,400 cumecs occurred in 1970 at Garudeshwar (Kale et al., 2003). The 

recent severe flood years include 1973, 1984, 1990, 1994, 2013, 2020, and 2023, with 1994 

marking the most intense flooding year amongst these records (Mangukiya et al., 2022). 

The river’s passage through narrow gorges, combined with stable alluvium banks, often 

leads to increased depth during floods. These geological conditions, along with relatively 

high rainfall, contribute to the basin’s high flash flood magnitude index, making it 

susceptible to floods (Kale et al., 2002). 

In Madhya Pradesh, twenty-one districts fall within the Narmada Basin. According to 

a study by Pathak et al. (2021), approximately 76% of these districts are categorized as 

highly flood prone. In addition, the Bharuch and Narmada districts of Gujarat that fall 

within the Narmada River basin are also prone to recurrent floods (Bhargav et al., 2025). 

The Narmada basin is predominantly covered by agricultural lands (56.90%), followed by 

forested areas (32.88%), wastelands (6.13%), and built-up zones (around 3%). Between 

2013 and 2019, approximately 8% of the cultivated area in the region was affected by 

floods. During August and September of 2019, intense rainfall led to the flooding of nearly 

two hundred villages (Pathak et al., 2021). In 2020, continuous heavy rains caused severe 

flooding, prompting the National and State Disaster Response Forces to evacuate 

approximately twenty-five thousand people. The financial impact of the 2020 floods was 

estimated at around forty-eight million US dollars (SDMA, 2020). The most recent 

flooding in the basin occurred in 2023, when the Highest Flood Level (HFL) was breached 

at 13 flood stations - 8 on the main river and 5 on its tributaries (see Table 1.1).  
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Table 1.1 Flood severity in the Narmada River basin during the September 2023 event 
(SANDRP, 2023) 

Site/River District Old HFL (m) New HFL (m) 

Abna at Khandwa/Narmada Khandwa 301.27  302.95  

Hathed at Misrod/Narmada Hoshangabad 297.35  297.80  

Kalimachak at Charuwa/Narmada Harda 286.20  287.00  

Datuni at Dudwas/Narmada Dewas 252.06  252.16  

Kaner at Mendhikheda/Narmada Khargone 214.81  217.70  

Charol at Barwah/Narmada Khargone 173.90 175.40  

Karam at Dahiwar/Narmada Dhar 166.93 169.66  

Mandleshwar/Narmada Khargone 157.29  158.40  

Bhamgarh/Chota Tawa Khandwa 270.68  275.25  

Beda at Satwadi (Gogawa)/Beda Khargone 205.52  205.70  

Maan at Gopalpura/Man Dhar 195.90  196.30  

Deb at Khajuri/Deb Barwani 180.10 181.38  

Barod at Thikri/Barod Barwani 165.55  168.33  
Note: HFL denotes high flood level. 

 
The severity of this event is evident from the displacement of around 9,500 people and 

the impact on several road and railway bridges. The hydrometeorological conditions 

leading to flooding in the Narmada Basin are multifaceted. Factors such as the Indian Ocean 

Dipole (IOD), and Atlantic Multidecadal Oscillation (AMO), and El Niño–Southern 

Oscillation (ENSO) have been identified as significant contributors to the variability in 

hydroclimatic extremes (Singh et al., 2023). Additionally, the construction of major 

reservoirs like Indira Sagar and Sardar Sarovar has influenced flood dynamics (Prajapati et 

al., 2025). Given these complexities, understanding the trends in flood magnitude and 

timing, as well as the underlying hydrometeorological drivers, is crucial for effective flood 

management in the basin. 

1.3 Objectives of the study 

The present study aims to accomplish the following objectives: 
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a) To identify the flood seasonality, using circular statistics, derived from annual 

maximum series (AMS) and peaks-over-threshold (POT) approaches. 

b) To analyze the trends in flood magnitude and timing, considering AMS and POT 

approaches.  

c) To estimate the flood magnitude for various return levels and characterize the flood 

behavior using AMS and POT approaches.  

d) To understand the prominent flood-generating mechanisms in the Narmada River 

basin by analyzing the most severe historical floods. 

1.4 Organization of the thesis 

Chapter 1 covers the Introduction section, which has four sub-sections, with the first sub-

section covering the background of the study, the second sub-section covering the 

motivation of the study, the third sub-section covering the objective of the study, and 

finally, the last section covering the organization of the thesis. 

Chapter 2 presents the literature review and methodological framework. It begins with a 

general introduction (Section 2.1), followed by a review of relevant literature (Section 2.2), 

identification of key research gaps (Section 2.3), and a detailed description of the methods 

and methodology adopted (Section 2.4). The chapter concludes with a summary (Section 

2.5). 

Chapter 3 describes the study area. It starts with a general overview (Section 3.1), defines 

the case study domain (Section 3.2), and discusses streamflow attributes and data length 

(Section 3.3). The chapter also covers the datasets used (Section 3.4), summarizes major 

historical floods in the Narmada River basin (Section 3.5), and ends with a concluding 

section (Section 3.6). 

Chapter 4 presents the results and discussion. After an introductory section (Section 4.1), 

it analyzes the timing of peak floods (Section 4.2), flood frequency and its characterization 

(Section 4.3), and trends in flood magnitude and timing (Section 4.4). This is followed by 

a hydro-meteorological analysis of selected flood events (Section 4.5) and a discussion on 

the role of catchment wetness in flood generation (Section 4.6). 

Chapter 5 concludes the thesis by summarizing the key findings (Section 5.1) and 

outlining the future scope of the study (Section 5.2). 
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Chapter - 2 

LITERATURE REVIEW AND METHODOLOGY 

2.1 General 

In this chapter, a structured review of relevant literature is presented, covering various 

aspects of hydrology and flood dynamics in the Narmada River basin. Existing studies have 

examined the geomorphological characteristics of the basin, the movement and origin of 

monsoonal storm systems, and the seasonal patterns of flood occurrence. Several works 

have focused on flood frequency analysis (FFA) and statistical assessments, while others 

have investigated the underlying mechanisms responsible for generating extreme flood 

events, including antecedent soil moisture and rainfall intensity. The chapter also outlines 

the methodological approaches commonly adopted in such studies, including statistical, 

hydrological, and event-based analyses. Finally, the specific methods employed in this 

research are detailed, with a focus on identifying dominant flood-generating mechanisms 

and assessing flood characteristics across the Narmada Basin. 

2.2 Literature Review 

Kale et al. (1994) highlighted the significant hydrological and geomorphic roles played by 

high-magnitude monsoonal floods in central India, particularly in the Narmada and Tapi 

River basins. These floods, recurrent during the monsoon season, are not only among 

India's most impactful natural disasters in terms of human vulnerability but are also highly 

effective in driving landscape evolution. Historical, modern, and palaeoflood evidence 

suggests that such extreme events are frequent and integral to the geomorphic functioning 

of these river systems. A notable example is the catastrophic flood in the Tapi River during 

July 1991, triggered by intense rainfall combined with a dam breach, which resulted in one 

of the highest unit discharges recorded in the region. Flood competence assessments show 

that the erosive and transport capacities of these rivers during major flood events rival those 

of the most powerful floods documented globally. The rivers also maintain detailed 

sedimentological and geomorphic records of palaeofloods, with archives extending over 

2,000 years in the Narmada and Tapi basins and up to 5,000 years in the Choral River. Most 

extreme flood events are linked to synoptic conditions involving Bay of Bengal 

depressions, indicating a consistent atmospheric control on flood genesis. The study 
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underscores the limitations of relying solely on instrumental records due to high spatial and 

temporal flood variability. Consequently, the authors advocate for the integration of 

geomorphic, sedimentologic, and palaeobotanic evidence into flood hazard assessments 

and water resource infrastructure planning in India to better capture the true magnitude and 

variability of flood risks. 

Kale and Hire (2004) investigated the geomorphic effectiveness of various flow regimes 

in the monsoon-dominated and deeply incised Tapi River in central India. The study 

categorized flows into three types—low, moderate, and large floods—and assessed their 

geomorphic influence using parameters such as flood magnitude, frequency, stream power, 

sediment transport, and channel form adjustments. By analyzing multi-date cross-sections 

and constructing stream power profiles for large floods, the study revealed that the 

maintenance of the river’s bedrock and alluvial channel morphology is primarily governed 

by infrequent but high-magnitude floods. The incised nature of the channel enhances the 

effectiveness of large floods by decreasing the width–depth ratio and increasing both flow 

velocity and energy per unit area. In contrast, low and moderate flows, while more frequent, 

play a limited role in shaping channel morphology, being primarily responsible for 

suspended sediment transport. The findings emphasize that suspended sediment load alone 

is not an adequate measure of geomorphic effectiveness, particularly in monsoonal rivers 

where channel-shaping processes are dominated by episodic high-energy flood events. 

Kale (2008) provides a detailed quantitative assessment of the stream power dynamics and 

energy expenditure associated with monsoonal floods in the Narmada River over a 51-year 

period (1949–1999). Using daily discharge data and hydraulic geometry relationships at 

Garudeshwar, the study estimates daily specific stream power, and the total energy 

expended during monsoon seasons. The analysis identifies the highest flood event in 1970 

with a peak discharge of approximately 69,400 m³/s. Rivers like Narmada and Tapi flow 

through narrow gorges, and often during flooding, channels are seldom breached, which 

results in an increasing depth of inundation during flooding. This underscores the 

importance of understanding long-term hydro-geomorphic regimes in flood-prone 

monsoonal basins like the Narmada. 

Petrow and Merz (2009) analyzed flood seasonality and magnitude shifts across various 

basins in Germany. Their study revealed spatial clustering of flooding trends, with 

significant increases observed in the southern, western, and central regions. Importantly, 



7 
 

these trends were found to be scale-independent, suggesting that climate-driven factors are 

primarily responsible for the observed changes in flood behavior. 

Jain et al. (2017) analyzed trends in extreme flood events and rainfall in India from 1951 

to 2001. Their findings showed a decrease in the occurrence of small-magnitude floods but 

no significant trends in severe floods. Additionally, they observed a decrease in the number 

of rainy days and an increase in extreme precipitation events. However, these changes were 

not reflected in streamflow, possibly due to the construction of reservoirs. 

Mangini et al. (2018) focused on flood magnitude and frequency trends across Europe. 

They identified a spatial coherence in the observed trends and found that the AMS series 

exhibited more pronounced trends in flood magnitude compared to the POT series. 

Conversely, trends in flood frequency were more evident in the POT series than in the AMS 

series. This distinction highlights the need for using both approaches for comprehensive 

flood analysis. 

Berghuijs et al. (2019) emphasized the importance of identifying the mechanisms 

responsible for river flooding to enhance understanding of flood risk dynamics across 

different timeframes. Their study introduced a novel seasonality-based method to assess 

the contribution of key flood drivers—namely, snowmelt, high antecedent soil moisture, 

and extreme precipitation—at a continental scale. Utilizing a comprehensive dataset of 

annual maximum flow dates from thousands of catchments across Europe (spanning 1960 

to 2010), the analysis revealed that annual rainfall extremes were not the dominant cause 

of most floods. Instead, a significant proportion of flood events resulted from either 

snowmelt or the overlap of heavy precipitation with already saturated soil conditions. 

Notably, the contribution of these mechanisms has remained relatively stable over the past 

five decades. The study underscores the importance of recognizing multiple overlapping 

flood drivers and provides a valuable framework for future flood hazard assessments and 

mitigation strategies in a changing climate. 

Tarasova et al. (2019) conducted a comprehensive review of classification systems for 

river floods based on their causative mechanisms, recognizing that flood occurrence, 

duration, extent, and severity are governed by a multitude of complex processes. The study 

emphasizes the importance of categorizing flood events by their generating processes to 

enhance the reliability of flood frequency analysis and to improve the interpretation of long-

term changes in flood behaviour. The authors critically evaluated various existing 
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classification approaches applied to both instrumental and pre-instrumental flood records, 

noting the absence of a universally accepted framework. Current methodologies typically 

adopt one of three perspectives: hydroclimatic (focusing on large-scale atmospheric and 

circulation patterns), hydrological (emphasizing local precipitation and catchment 

antecedent conditions), and hydrograph-based (inferring causes from flood response 

characteristics). While each of these approaches contributes valuable insights, the study 

highlights a significant gap in the systematic evaluation of their robustness, especially 

regarding uncertainties in input data, indicators, and classification criteria. This limitation 

reduces the applicability of such methods across diverse geographic regions. The study 

advocated for more rigorous testing and the incorporation of additional indicators such as 

spatiotemporal patterns of precipitation, antecedent wetness, and routing effects to develop 

more reliable and transferable classification frameworks for flood events. 

Pathak et al. (2021) introduced a framework based on data envelopment analysis (DEA) 

for assessing flood vulnerability in river basins, with its application demonstrated through 

an analysis of twenty one districts within the Narmada River basin in central India. 

Indicators related to sensitivity and adaptive capacity were selected and integrated to 

construct a Flood Vulnerability Index (FVI). This technique was applied to examine 

operational efficiency and the nature of productivity relative to changes in input size, 

offering valuable insights for informed policymaking and flood risk management. 

Additionally, districts were grouped according to their vulnerability levels using cluster 

analysis. The findings indicated that more than three-fourths of the districts exhibited a 

high degree of flood vulnerability, primarily influenced by socio-economic conditions, 

geographical size, and the extent of available resources. 

Ganguli et al. (2022) examined trends in streamflow and flood timing in the Mahanadi 

River Basin using both AMS and POT approaches. Their study aimed to identify areas 

where significant changes in both flood magnitude and timing occurred. Notably, about 

one-third of the gauging stations showed increasing flood magnitudes alongside delayed 

flood timings, indicating compounded risks in certain regions. 

Nanditha and Mishra (2022) investigated the dominant flood-generating mechanisms in 

Indian river basins under both current and projected climatic conditions. Recognizing the 

critical role of non-structural mitigation strategies, such as early warning systems, the study 

emphasized the need to understand the key drivers of flooding. Through a novel analytical 
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framework, the study explored the interplay between antecedent moisture and precipitation 

characteristics preceding high-flow events. The results revealed that multiday precipitation 

on already saturated soils is the leading cause of floods in both the observed record and 

future climate scenarios. Their analysis further indicated that in large river basins, sustained 

heavy rainfall over wet soils plays a more significant role than isolated extreme soil 

moisture events, whereas in smaller basins, intense short-duration rainfall remains the 

primary trigger. The study also projected an increase in the frequency of these dominant 

flood drivers under future warming scenarios, highlighting the growing vulnerability of 

agricultural areas and infrastructure to hydrological extremes in a changing climate. 

Mangukiya et al. (2022) conducted a study focusing on flood risk assessment in the lower 

Narmada basin, a region historically affected by multiple high-intensity flood events. The 

study applied statistical flood frequency analysis using Gumbel and Log-Pearson Type III 

distributions to estimate peak flood discharges for varying return periods. To visualize the 

extent of flood-prone areas, a hydrodynamic simulation was performed. The study found 

that the Log-Pearson Type III distribution was more effective in estimating floods for lower 

return periods, while Gumbel’s distribution showed better alignment for higher return 

periods. The flood inundation modelling revealed that the extent of high-risk flood zones 

expands with increasing return periods, whereas low-risk areas exhibit minimal change. 

Based on the findings, the authors concluded that the existing embankments along the 

Narmada River may not provide sufficient protection during major flood events. The flood 

hazard maps generated in the study were recommended as decision-support tools for local 

authorities and planners involved in flood risk management and mitigation efforts. 

Nanditha et al. (2022) explored flood generation mechanisms in the Narmada River basin, 

attributing late August to September high flows to extreme rainfall and heavy precipitation 

events. They identified the Arabian Sea as the primary moisture source for monsoonal 

rainfall in the basin. Interestingly, only 60% of extreme precipitation events led to high 

flood events, whereas 80% of high flood events were preceded by heavy precipitation. 

Bari et al. (2023) investigated flood seasonality and timing across Australian gauging 

stations using circular statistics. They also analyzed trends in flood timing with the Mann-

Kendall and the Theil-Sen slope tests. The study concluded that flood peaks in recent years 

have occured approximately 10–15 days later per decade compared to previous years, 

indicating a significant delay in flood seasonality. 
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Fang et al. (2024) investigated changes in flood characteristics across Europe by analyzing 

spatiotemporally connected flood events using observation-driven routed runoff 

simulations from the mesoscale Hydrologic Model over the past 70 years. Their study 

highlights an average 11.3% increase in flood extents across Europe, with notable regional 

variations. In northern Europe, this increase is driven by higher flood magnitudes due to 

increased precipitation and snowmelt, while in central Europe, it is attributed to a broader 

spatial extent of heavy precipitation. The study underscores the utility of combining long-

term simulations of runoff along with spatial and temporal flood detection algorithms to 

identify trends in flood drivers and their charachteristics. These findings emphasize the 

importance of incorporating changing flood extents into risk assessments, as they present 

significant challenges for flood control and water resource management. 

Fischer et al. (2024) examined the limitations of stationary flood frequency analysis by 

exploring how long-term climate variability and anthropogenic impacts alter flood-

generating mechanisms. Using a robust change-point test based on Gini’s mean difference, 

they detected significant shifts in flood types across Central Europe. Their findings indicate 

a marked increase in heavy-rainfall-induced floods and a decline in snowmelt-driven 

floods, particularly a reduction in winter floods, which are increasingly replaced by rainfall-

driven events. These changes impact flood quantiles, demonstrating that traditional models, 

which assume stationary conditions, fail to capture the evolving frequency and drivers of 

floods. This study emphasizes the importance of non-stationary approaches and type-based 

flood statistics to adapt flood frequency analysis to changing climatic and hydrological 

conditions. 

Chandel et al. (2025) explored the application of non-stationary flood frequency analysis 

in the Upper Narmada River basin using the Generalized Additive Models for Location, 

Scale, and Shape (GAMLSS) framework. This approach was adopted to address the 

limitations of traditional FFA methods, which assume stationary conditions and rely on 

predefined probability distributions. The study aimed to enhance flood risk assessment by 

incorporating non-stationary data and considering relevant covariates such as rainfall, 

temperature, and land use changes. Hydrological and meteorological datasets were 

analyzed, with statistical techniques including the Pettitt test for detecting change points 

and the modified Mann–Kendall test for trend analysis. The results revealed significant 

temporal shifts in the flood series, along with declining trends at all gauging stations. The 

performance of various probability distributions within the GAMLSS framework was 
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evaluated, showing that the log-normal distribution provided the best fit at most locations, 

while Weibull and Gamma distributions were preferable at others. This study demonstrates 

the effectiveness of GAMLSS in capturing complex, non-stationary behaviour in flood data 

and its potential for improving flood risk prediction in evolving hydrological systems. 

Parmar and Karmakar (2025) investigated the dominant hydro-meteorological factors 

responsible for flood generation across central and southern peninsular India, recognizing 

the evolving nature of flood timing and magnitude under both natural variability and 

anthropogenic climate change. By employing circular statistical methods, they analyzed 

231 watersheds and found that nearly 89% of them are primarily influenced by soil 

moisture and precipitation excess. Their findings suggest that in larger basins (greater than 

70,000 km²), antecedent soil moisture is the key driver of flood events, while in smaller 

basins (less than 16,000 km²), precipitation exerts a greater influence. Watersheds of 

similar size produced higher flood magnitudes when dominated by soil moisture, indicating 

a significant role of antecedent hydrological conditions. Furthermore, topographic wetness 

index (TWI) exhibited a contrasting influence on flood peaks: it positively impacted flows 

in soil moisture-dominated basins and negatively in precipitation-driven basins, 

underscoring the role of surface water retention and runoff dynamics. The study also 

highlighted that the relative influence of soil moisture diminishes with rising precipitation 

intensity, indicating a threshold beyond which precipitation becomes the dominant driver. 

These insights emphasize the importance of integrating key flood-generating descriptors 

into predictive models and suggest that flood hazard assessments should consider the 

dominant hydrological processes specific to each watershed, especially under the changing 

climate regime. 

2.3 Research Gap 

While several studies have investigated individual aspects of flooding, such as flood 

frequency analysis (Bhagat, 2017; Pandey et al., 2017; Goel and Ray, 2019; Mangukiya et 

al., 2022), trends in flood magnitude (Petrow  and Merz, 2009; Pandey and Khare, 2018; 

Waikhom et al., 2023), but there remains a notable lack of comprehensive and integrated 

flood assessments that bring together multiple flood-generating mechanisms and spatio-

temporal trends in flood magnitude and timing. Additionally, although trend analyses on 

flood magnitudes have been conducted for the Narmada basin, studies specifically 

addressing trends in flood timing remain scarce or virtually absent. This gap limits our 
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understanding of temporal shifts in flood occurrence, which is essential for developing 

effective early warning systems and adaptive flood management strategies. To address 

these limitations, the present study offers a holistic flood assessment by integrating analysis 

of trends in flood magnitude and timing, and event-based hydrometeorological 

characteristics of major floods. Additionally, it provides an in-depth investigation of the 

various rainfall conditions, such as short-duration intense storms and prolonged multiday 

precipitation (antecedent precipitation build-up), and the role of catchment wetness leading 

to catastrophic flooding in the basin. This comprehensive approach aims to improve the 

understanding of flood-generating mechanisms, thereby supporting more effective flood 

forecasting and risk management in the Narmada River basin. 

2.4 Methods and Methodology 

The stepwise methodology adopted for our current study is given in Figure 2.1.  

2.4.1 Extracting Flood Series 

Flood events in rainfed rivers in India are typically characterized by the maximum 

streamflow during the southwest monsoon (i.e., June to September). Two primary methods 

for analyzing flood events are the (a) annual maximum series (AMS) and (b) peaks-over-

threshold (POT). The AMS series has been widely used in flood analysis but has significant 

limitations. It captures only the single highest flow event each year, failing to account for 

subsequent large floods if multiple events occur in the same year. This omission can prevent 

accurate representation of the flood regime’s complexity (Burn et al., 2016). Another 

drawback of the AMS series is the inclusion of lower flow values during years of reduced 

annual discharge, which may not necessarily result in floods and could skew the results 

while analyzing extreme values (Zadeh et al., 2019). In contrast, the POT series provides 

deeper insights into the statistical properties of flood events. By selecting multiple peak 

discharge events each year, the POT approach better utilizes available data, allowing for a 

more comprehensive understanding of the flood regime. However, a key challenge in 

implementing the POT method is choosing an appropriate threshold for event selection 

(Burn et al., 2016). We employed an automatic procedure for identifying the POT series 

using the SFE_IFC (GitHub - Zhang-Qin-0925/SFE_IFC-Toolbox) toolbox (Zhang et al., 

2021) available in MATLAB®. This toolbox facilitates the selection of an optimal 

threshold and the identification of flood events. The POT series is generally assumed to 

follow a Generalized Pareto Distribution (Cunnane, 1979), with the toolbox automatically 

https://github.com/Zhang-Qin-0925/SFE_IFC-Toolbox
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selecting the most appropriate threshold based on a goodness-of-fit test. Additionally, the 

independence criteria, as recommended by the United States Water Resources Council, are 

addressed within this procedure. Further details on the methodology can be found in Zhang 

et al. (2021). From both methods, we extracted the peak flood magnitude and their timing. 

2.4.2 Circular Statistics 

To analyze the persistence of flood timing, we employed circular (or directional) 

statistics, a method commonly used to define both the persistence and timing of flood 

events (Mardia, 1972). This approach has been applied in various hydrological studies to 

understand flood seasonality and trends (Burn et al., 2016; Cunderlik et al., 2004). By 

representing individual flood dates as directional variables, we can calculate a directional 

mean to identify the central tendency of flood timing over the study period. First, each flood 

date is expressed in Julian date (𝐽𝐷𝑖) format and then converted into an angular value (𝜆𝑖) 

in radians using the expression (Laaha and Blöschl, 2006) given below: 

                            𝜆𝑖 = 𝐽𝐷𝑖
2𝜋
𝑙(𝑦𝑟)

                                                                     (2.1) 

where, 𝑖 shows peak discharge events, 𝐽𝐷𝑖 and 𝑞𝑖 indicates the 𝑖𝑡ℎ Julian day and the 

discharge corresponding to that day, respectively; 𝑙(𝑦𝑟) denotes the number of days in a 

calendar/water year. For 𝑛 number of floods, we can calculate the mean event angle (𝜆‾)  

from these equations:     

                           𝑥‾ = ∑  𝑛
𝑖=1  𝑞𝑖cos 𝜆𝑖
∑  𝑛
𝑖=1  𝑞𝑖

; 𝑦‾ = ∑  𝑛
𝑖=1  𝑞𝑖sin 𝜆𝑖
∑  𝑛
𝑖=1  𝑞𝑖

                                                                  (2.2)     

                           𝜆‾ =

{
  
 

  
 tan

−1 (𝑦‾
𝑥‾
) ,  if 𝑥‾ > 0 and 𝑦‾ > 0

180 − tan−1 (𝑦‾
𝑥‾
) ,  if 𝑥‾ < 0 and 𝑦‾ > 0

180 + tan−1 (𝑦‾
𝑦‾
) ,  if 𝑥‾ < 0 and 𝑦‾ < 0

360 − tan−1 (𝑦
𝑥
) ,  if 𝑥‾ > 0 and 𝑦‾ < 0

                                          (2.3) 

 

The mean flooding date (𝛿) then can be determined by: 

                           𝛿 = 𝜆‾ × (𝑙(𝑦𝑟)
2𝜋
)                                                                        (2.4)                                         

2.4.3 Flood Frequency Analysis and Flood Categorization 

In this section, we performed flood frequency analysis across all gauging stations in 

the Narmada River basin by identifying the best-fit statistical distribution for each station. 

The analysis involved fitting multiple distributions to the data and selecting the best model 
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for the AMS approach using the Akaike Information Criterion (AIC), which balances 

model complexity with goodness of fit. For this, the fitmethis toolbox (fitmethis - File 

Exchange - MATLAB Central) was used in MATLAB. Based on the average and median 

AIC rankings, we found out the best fit distributions for the AMS series. The Generalized 

Pareto Distribution (GPD) was pre-selected for the POT series (Cunnane, 1979; Mazas, 

2019) due to the automatic threshold selection based on goodness-of-fit tests, as described 

earlier. Once the best-fit models were determined, FFA curves were plotted for every 

gauging station, and then return periods for the highest flood events were calculated, 

providing a quantitative measure of flood risk across the basin. 

 

 

Figure 2.1 Methodology adopted in the present study 

 

Following this, we categorized the flood magnitudes derived from the AMS and POT 

series into small, moderate, and large floods based on their return periods (𝑇). For the AMS 

series, the floods with 𝑇𝐴𝑀𝑆 ≤ 2.33 years are classified as small floods, 2.33 < 𝑇𝐴𝑀𝑆 < 6.93 

years as moderate floods, and 𝑇𝐴𝑀𝑆 ≥ 6.93 years as large floods, as proposed by Kale and 

Hire (2004). The return period differs between the AMS and POT models: In the POT 

model, 𝑇POT  represents the average interval between the high-flow events that surpass a 

threshold value 𝑄. 𝑇AMS represents the average interval between years that contains a flood 

https://www.mathworks.com/matlabcentral/fileexchange/40167-fitmethis
https://www.mathworks.com/matlabcentral/fileexchange/40167-fitmethis
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with a flow of at least 𝑄. The relationship between the AMS and POT return periods is 

defined using the following equation (Langbein, 1949): 

                                    𝑇AMS = (1 − exp (−
1

𝑇POT
))

−1

                                          (2.5) 

Based on this equation, we established revised thresholds for flood categorization in 

the POT series. For the POT series, the floods with 𝑇𝑃𝑂𝑇 ≤ 1.78 years are classified as small 

floods, 1.78 < 𝑇𝑃𝑂𝑇 < 6.42 years as moderate floods, and 𝑇𝑃𝑂𝑇 ≥ 6.42 years as large floods. 

2.4.4 Trends in Flood Magnitude and Timing 

Trends in flood magnitude and timing are assessed using the non-parametric Modified 

Mann-Kendall (MMK) test, which is then used for evaluation of trends in both the AMS 

and POT series. The MMK test is an extension of the traditional Mann-Kendall (MK) test 

designed to account for autocorrelation within time series data, making it particularly 

suitable for hydrological studies (Hamed and Rao, 1998). The MMK test is usually 

implemented for detecting a monotonic trend in a climatological or hydrological time 

series. The null hypothesis (𝐻0) states that the time series has no trend, whereas the 

alternative hypothesis (𝐻1) describes presence of monotonic trend in the time series. 

Consider a time series Xt, t = 1, 2,..., n, wherein, each data point is systematically compared 

with all following observations value Xt+1 forming in a new sequence from which the test 

statistic 𝑆 is computed, as originally described by Mann (1945) and Kendall (1975): 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘)
𝑛

𝑗=𝑘+1

𝑛−1

𝑘=1

                                                       (2.6) 

where, 𝑠𝑔𝑛(𝑥)  =  0 if 𝑥 =  0, =  −1 if 𝑥 <  0, and = +1 if 𝑥 >  0. The test statistic 𝑆 can 

be assumed to follow an approximately normal distribution when 𝑛  18. Unser this 

condition, its mean and variance are defined as follows: 

𝐸(𝑆) = 0          and                                                                                     

𝑉𝑎𝑟(𝑆) =
𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑖(𝑡𝑖 − 1)(2𝑡𝑖 + 5)𝑚

𝑖=1

18
        (2.7) 

where, 𝑛 and 𝑚 are the number of data and ties, respectively. Each tie represents a set of 

similar subsequent data in a time series and the data count in each of them is t. The test 

statistic Z, is computed as: 
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𝑍 = 

𝑆 − 1
√𝑉𝑎𝑟(𝑆)

                           , 𝑖𝑓 𝑆 > 0                                               

       0                                      , 𝑖𝑓 𝑆 = 0                                       (2.8)
𝑆 + 1

√𝑉𝑎𝑟(𝑆)
                            , 𝑖𝑓 𝑆 < 0                                                  

 

 

According to Hamed and Rao (1998), the presence of serial correlation in a time series 

does not affect the limiting normal distribution of the MK test statistic 𝑆, nor its expected 

value. However, it does alter the variance. To account for this, they proposed correction 

factors that adjust the variance of 𝑆 by considering only the uncorrelated portion of the 

series. Positive serial correlation leads to an increase in the variance, while negative 

correlation causes a decrease. Consequently, a modified approach—referred to as the 

Modified Mann-Kendall (MMK) test—was introduced. The modified variance 𝑉𝑎𝑟(𝑆) ∗ 

for computing the MMK test statistic (𝑍) is given by: 

𝑉𝑎𝑟 (𝑆)∗ = 𝐶𝐹 ×  𝑉𝑎𝑟 (𝑆)                                                               (2.9) 

where CF is the correction factor, which is given as: 

𝐶𝐹 = 1 +
2

𝑛(𝑛 − 1)(𝑛 − 2)
∑(𝑛 − 𝑘) (𝑛 − 𝑘 − 1) × (𝑛 − 𝑘 −
𝑛−1

𝑘=1

2)𝑟𝑘𝑅     (2.10) 

where, 𝑟𝑘𝑅 = ranks of data, and n = total length of the time series.  

 

Table 2.1 Classification of trends based on MMK test statistic 

MMK Z values Trend nature 

𝑍 ≤ −1.96 Significant Decreasing (SD) 

𝑍 ≥ 1.96 Significant Increasing (SI) 

𝑍 = 0 No Trend (NT) 

−1.96 < 𝑍 < 0 Decreasing Trend (D) 

0 < 𝑍 < 1.96 Increasing Trend (I) 

 

The null hypothesis of this test is rejected if the value of |𝑍|  1.96 at a 5% significance 

level. If the value of Z is positive (negative), it would indicate the presence of an increasing 

(decreasing) trend in the time series. In this study, a significance level of 5% (𝛼 = 0.05) is 

used to determine critical values for hypothesis testing. For a two-tailed test, this resulted 

in critical 𝑍 scores of approximately ±1.96. The 𝑍 scores are calculated for each station 
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based on the MMK test to ascertain whether the null hypothesis of no trend is accepted or 

rejected. The following thresholds are applied to define trends in flood magnitude based on 

the calculated 𝑍 scores (see Table 2.1). 

2.4.5 Event-based Hydro-meteorological Analysis 

In this analysis, some of the highest flood events in the Narmada basin, were identified 

based on the flood categorization. We carefully selected the flood events that occurred 

before and after the commissioning of Indira Sagar dam, which is the largest dam in the 

basin. For each event, we determined the peak flood timing (𝑡) and analyzed rainfall 

patterns leading up to the flood. Using the areal average rainfall, we generated spatial 

rainfall maps for the basin, applying inverse distance weighted (IDW) interpolation in 

MATLAB for the period (𝑡 − 2) to (𝑡 + 1). IDW estimates rainfall at an unknown location 

using a weighted average of nearby observations, given by: 

 𝑍(𝑥) = ∑  𝑛
𝑖=1  𝑤𝑖𝑍𝑖
∑  𝑛
𝑖=1  𝑤𝑖

                                                                  (2.11) 

where, 𝑍(𝑥) is the interpolated value at location 𝑥, 𝑍𝑖 represents known values at 

neighboring points, and 𝑤𝑖 is the weight assigned to each point, calculated as: 

  𝑤𝑖 =
1
𝑑𝑖
𝑝                                                         (2.12) 

where, 𝑑𝑖 is the distance between the known point and the interpolation location, and 𝑝 is 

the power parameter that controls the influence of distant points. In our analysis, we have 

taken 𝑝 = 2. Additionally, we plotted hydrographs for stations experiencing peak flood 

conditions to examine the relationship between rainfall intensity and resulting streamflow. 

2.4.6 Role of Antecedent Precipitation Buildup (APB) 

In this analysis, the top forty POT flood events were selected for each catchment and 

their dates of occurrence were identified. For each event, we computed the Antecedent 

Precipitation Buildup (APB) by summing daily precipitation over a 30-day window 

preceding the peak timing event (𝑡). For a given lag 𝑘, APB was defined as the cumulative 

precipitation from the 𝑘-th lag day (relative to the event date) to the 30th lag day: 

APB𝑘 = ∑  30
𝑖=𝑘 𝑃𝑖                                                 (2.13) 

where, 𝑃𝑖 is the precipitation on the 𝑖-th lag day. Here, 𝑘 ranges from 0 to 30, with 𝑘 = 0 

representing the day of the flood event and 𝑘 = 30 the 30th day prior. To examine the role 

of antecedent rainfall in flood generation, Spearman’s rank correlation was used to assess 
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the relationship between streamflow and APB for each lag 𝑘, based on the top forty POT 

flood events in each catchment.  

2.4.7 Spearman’s rho Correlation 

Spearman’s rho, as introduced by Lehmann (1975), is a non-parametric statistic 

designed to measure the strength and direction of a monotonic relationship between two 

variables by working with their ranked data rather than their raw values. This method relies 

on the assumption that the observations are independent and identically distributed. The 

test evaluates the null hypothesis (𝐻0) that no trend exists over time, against the alternative 

hypothesis (𝐻1) which asserts the presence of a monotonic increasing or decreasing trend. 

The test statistic 𝑟𝑆𝑅and standardized statistic 𝑡𝑠are defined as: 

𝑟𝑆𝑅 = 1 −
6∑ (𝐷𝑖 − 𝑖)2𝑛

𝑖=1

𝑛(𝑛2 − 1)
                                                             (2.14) 

𝑡𝑠 = 𝑟𝑆𝑅√
𝑛 − 2
1 − 𝑟𝑆𝑅2

                                                                             (2.15) 

In the context of these equations, 𝐷𝑖 refers to the rank corresponding to the 𝑖th  data 

point, where 𝑖 denotes its position in chronological order, and 𝑛 represents the total number 

of observations within the time series. The test statistic 𝑡𝑠 is evaluated using the Student's 

t-distribution with 𝑛 − 2 degrees of freedom. A positive value of 𝑡𝑠 suggests a rising trend 

over time, while a negative value implies a downward trend. To determine statistical 

significance at the 5% level (𝛼 = 0.05), the calculated value of |𝑡𝑠| is compared against 

the critical value 𝑡(𝑛−2,1−𝛼/2). If this condition is met, the null hypothesis (𝐻0)-which 

assumes no trend-is rejected, indicating that the time series exhibits a meaningful trend. 

2.5 Closure 

This literature review highlights key findings from past studies and identifies gaps in 

the comprehensive understanding of flood-generating mechanisms across the basin. 

Building on this foundation, the subsequent sections describe the methodology adopted in 

this research to address these gaps and provide a detailed analysis of flood dynamics in the 

Narmada River basin. This approach aims to contribute valuable insights for improved 

flood hazard assessment and management in the region. 
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Chapter - 3 

STUDY AREA 

3.1. General 

This chapter provides an overview of the Narmada River basin, the focus area of this 

study. It begins with a general description of the basin’s geographic, climatic, and 

hydrological characteristics that influence its flood regime. The chapter then details the 

selection of hydrological stations used for streamflow analysis, including their locations 

and significance within the basin. Following this, the sources and nature of the streamflow 

and rainfall data sets utilized in the study are described, emphasizing data quality and 

temporal coverage. Finally, a historical account of major flood events in the Narmada basin 

is presented, summarizing the chronology and impacts of significant floods that have 

shaped the region’s flood hazard profile. 

3.2. Case Study Domain 

The Narmada River basin (see Figure 3.1) encompasses an area of 98796 km² 

(Subramanya and Sharma, 2024). The name "Narmada" is derived from Sanskrit, 

signifying the harbinger of joy, and it represents one of central India’s most prominent 

rivers. The river originates in the Amarkantak hills of Madhya Pradesh and flows westward 

into the Gulf of Khambhat in the Arabian Sea. As the largest west-flowing river in India, 

the Narmada River is often referred to as the lifeline of Madhya Pradesh and Gujarat. The 

basin encompasses the steep northern slopes of the Satpura Range and the southern slopes 

of the Vindhya Range. It is fed by forty-one tributaries that converge into the main river 

from these ranges (Jain et al., 2007). The basin has an elongated shape, extending 234 km 

from north to south and 953 km from east to west. The eastern region of the basin receives 

more rainfall, which progressively decreases toward the west, with the basin’s average 

annual rainfall amounting to 1120 mm (Nandhita et al., 2022). The river passes constantly 

through restrained rocky gorges and rapids before expanding into meandering alluvial 

reaches (Rajaguru et al., 1995a, b). Stretching approximately 1312 km in length, the 

Narmada is the fourth longest river confined entirely within Indian territory and is 

recognized as a natural divide between northern and southern India. 
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Figure 3.1 Overview of the Narmada River basin, featuring the locations of stream gauging 
stations. 

3.3. Streamflow Data Attributes 

For this study, we utilized data from twelve stream gauging stations across the 

Narmada River Basin, consisting of seven stations located along the main river and five 

situated on its tributaries. The dataset length and the geographical details of these stations 

are provided in Table 3.1. Daily streamflow data used in this study were obtained from the 

India-WRIS web portal (https://indiawris.gov.in/wris/#/RiverMonitoring) and the Bhopal 

and Surat offices of the Central Water Commission (CWC), India. The dataset comprises 

measurements from twelve stream gauging stations located within the Narmada River 

basin. Only stations with continuous data availability for over thirty years were considered 

for analysis, ensuring long-term reliability. All data underwent rigorous quality control 

procedures. The streamflow records were reformatted into a water year cycle, defined from 

June 1st to May 31st. Missing values, limited to a maximum of two consecutive days, were 

interpolated using a moving average method to maintain data continuity. The gridded 

rainfall data were sourced from the India Meteorological Department (IMD), Pune 

https://indiawris.gov.in/wris/#/RiverMonitoring
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(https://imdpune.gov.in/), at a spatial resolution of 0.25° × 0.25°. The dataset, available in 

gridded format, was extracted and subset for the Narmada River basin to support hydro-

meteorological analysis. 

 

Table 3.1 Attributes of the stream gauging stations analyzed in the study 

Stream gauging 
station 

River/ 
Stream 

Latitude 
(N) 

Longitude 
(E) 

Data length 
Start 
year 

End 
year 

Barmanghat Narmada 23.03 79.01 1972 2024 
Belkhedi Sher 23.12 79.40 1977 2024 

Chhidgaon Ganjal 22.33 76.97 1978 2024 
Gadarwara Shakkar 22.92 78.78 1977 2024 

Garudeshwar Narmada 21.89 73.65 1978 2023 
Handia Narmada 22.49 77.00 1977 2024 

Hoshangabad Narmada 22.75 77.73 1973 2024 
Kogaon Kundi 22.25 76.00 1978 2024 

Mandleshwar Narmada 22.16 75.66 1972 2024 
Manot Narmada 22.73 80.50 1978 2024 

Mohgaon Burhner 22.76 80.63 1978 2024 
Sandia Narmada 22.91 78.35 1978 2024 

3.4 Historical Floods in Narmada 

The Narmada basin has a long history of major floods, with evidence dating back 5,000 

years in the Choral River (Kale et al., 2003). Most floods were caused by Bay of Bengal 

depressions. The basin is heavily monsoon dominated, receiving nearly 90% of its annual 

rainfall between June and October, with about 60% concentrated in July and August alone 

(Narmada Basin Report, CWC 2014). This strong monsoonal influence governs the basin’s 

hydrology and plays a key role in generating floods and shaping streamflow patterns. 

Historical records from 1818 to 1984 document several severe events. As shown in the 

Figure 3.2, flood frequency was especially high between 1950 and 1990. Flood records for 

the basin can be seen in Table 2.2. 

 

Table 3.2 Major historical floods in Narmada basin during 1818-2023 (Kale et al., 2003) 

Period Flood years 
Early Records 1818, 1823, 1832, 1854, 1855, 1868, 1878, 1891, 1893, 1894, 

1895, 1898, 1905, 1907, 1923, 1926, 1937, 1944, 1945 
Mid-20th Century 1961, 1968, 1970, 1984 
Recent Years 1994, 1999, 2006, 2009, 2013, 2016, 2020, 2023 

 

https://imdpune.gov.in/
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Figure 3.2 Chronology of floods in the Narmada basin (Kale et al., 2003) 

3.6 Closure 

This chapter provides the essential background and data framework necessary for the 

analysis that follows. Understanding the basin’s physical setting, data availability, and 

flood history is critical for contextualizing the study results and interpreting the 

hydrological patterns observed. The detailed description of study sites and data sources lays 

the groundwork for the subsequent statistical analysis of floods. 
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Chapter - 4 

RESULTS AND DISCUSSIONS 

4.1. General 

This chapter presents the key findings of the study through a detailed analysis of flood 

characteristics in the Narmada basin. It begins with an examination of flood seasonality 

using circular statistics to determine the flood timing at various hydrological stations. 

Following this, flood frequency analysis is conducted to identify the best-fit statistical 

distributions and to estimate return periods of observed peak flows. The floods are then 

classified into small, moderate, and large categories, which enables further investigation 

into trends in flood magnitude and timing across the basin. The chapter concludes with a 

hydro-meteorological analysis of selected flood events, employing both event-based and 

catchment-scale approaches to elucidate the dominant flood-generating mechanisms. 

4.2. Timing of Peak Floods 

Circular statistics are used to determine the timing of peak floods in the Narmada River 

basin. Figures 4.1 and 4.2 display the directional statistics of floods using the AMS and 

POT approaches for stations on the mainstream Narmada and on the tributaries (including 

Manot), respectively. In Figures 4.1 and 4.2, the periphery of the circle is a measure of the 

timing of floods, and the radial lines represent flood magnitudes. Using the AMS approach, 

a total of 585 flood events have been analyzed across all stations. Of these, 2.12% occurred 

in June, 20.51% in July, 47.69% in August, and 28.38% in September, and 0.68% in 

October. Similarly, for the POT series, 1231 flood events have been recorded, with 4.22% 

occurring in June, 21.45% in July, 46.63% in August, 25.35% in September, 2.27% in 

October, and 0.08% in November. One peculiar thing to notice in these plots is that the 

highest flood events ever recorded at the stations on the mainstream Narmada River have 

occurred post-15th August (see Figure 4.1). In contrast, the tributaries exhibit significant 

variation in their highest recorded flood events, which typically occur between mid-July 

and late September (see Figure 4.2).  

 

The mean flooding date is then calculated using circular statistics, for all twelve 

stations (see Table 4.1). In Table 4.1, the range is expressed as the difference between the 
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latest Julian day and the earliest Julian day of flood occurrences for a given station across 

all events. The results show that the mean flooding date is mostly observed during early to 

mid-August across the Narmada basin, with the timing of mean flooding in the tributaries 

occurring 3-7 days earlier than in the main river. Also, the mean flooding date using both 

AMS and POT does not exhibit much variation. For all the stations the maximum difference 

in flood timing for AMS and POT approaches was within a week. Notably the Kogaon 

station exhibits the widest range in peak flood timing across both AMS and POT 

approaches, indicating significant variability in peak flood occurrences in the Kundi River. 

Additionally, tributaries such as Burhner (Mohgaon) and Shakkar (Gadarwara) also 

demonstrate considerable variations in their peak flood timings. 

 

Table 4.1 Flood timing characteristics derived by using both the AMS and POT approaches  

Stream gauging station Mean flood date 
(dd/mm) 

Days between latest and 
earliest occurrence of flood 

event (days) 
 AMS POT AMS POT 

Barmanghat 18/08 18/08 81 95 
Belkhedi 12/08 11/08 90 99 
Chhidgaon 10/08 12/08 78 127 
Gadarwara 11/08 11/08 93 99 
Garudeshwar 14/08 20/08 101 78 
Handia 16/08 14/08 77 108 
Hoshangabad 14/08 18/08 75 86 
Kogaon 12/08 13/08 113 152 
Mandleshwar 21/08 17/08 78 79 
Manot 12/08 10/08 85 117 
Mohgaon 06/08 12/08 95 114 
Sandia 18/08 15/08 78 104 

Note: Julian days starting from the beginning of water year (i.e. 1st June). 



25 
 

 
Figure 4.1 Magnitude and direction of peak floods for stations on the mainstream Narmada 
River basin using (a) AMS and (b) POT approaches. 

 

 
Figure 4.2 Magnitude and direction of peak floods for stations on the tributaries of the 
Narmada River basin and Manot (on the main Narmada River) using (a) AMS and (b) POT 
approaches. 
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4.3. Flood Frequency and Characterization 

In this section, we calculated the return periods for all flood events across the twelve 

gauging stations included in our study. For the AMS series, the Weibull distribution was 

found to be the best fit for all stations on mainstream Narmada, while Gamma was found 

to be the best distribution for tributaries and Manot (on Narmada River). Subsequently, the 

return periods for all flood events are calculated based on these best-fit distributions. The 

Generalized Pareto Distribution (GPD) was adopted for the POT series. The return period 

for the highest flood event observed at each station using both the AMS and POT 

approaches is summarized in Table 4.2. The highest flood was recorded at the Garudeshwar 

station in 1994, with a peak discharge of 60642 cumecs. The return period corresponding 

to this flood for the AMS and POT approach was 47 years and 98 years, respectively.  

From the fitted distributions, FFA curves are developed for each catchment (see Figure 

4.3). For the AMS, FFA curves are plotted using the two best-performing distributions 

based on AIC values. For the POT method, the GPD was employed, as it was assumed a 

priori for flood event identification. The POT approach offers a more event-oriented 

framework for return period estimation, as it focuses on actual flood events that exceed a 

defined threshold. In contrast, the AMS approach may include relatively low peaks from 

non-flood years, which can influence distribution fitting and reduce accuracy. Notably, the 

threshold at each station obtained from the POT analysis were close to the 1.5 to 2-year 

return period, which typically corresponds to the bankfull discharge (Williams, 1978). This 

further justifies the selection of threshold values and reinforces the relevance of the POT 

method in capturing geomorphologically significant flood events. Thus, the POT-based 

FFA provides a more realistic and hydrologically meaningful characterization of extreme 

flood behavior across the basin. 

Also, as seen in Table 4.2, the return periods estimated for Mohgaon using the AMS 

series are significantly higher compared to those from the POT series. This difference is 

explained by the behavior of the FFA curves shown in Figure 4.3, where the AMS Gamma 

distribution begins to flatten around 9,000 cumecs, indicating that higher return periods 

yield only small increases in discharge. In contrast, the POT curve does not exhibit the 

same degree of flattening, resulting in comparatively lower return periods for similar 

discharge values. A similar pattern is observed for Handia, where the FFA curve begins to 

flatten around 30,000 cumecs for the POT series and 35,000 cumecs for the Weibull series. 
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Beyond these points, further increases in return periods correspond to only low-modest 

increases in discharge. 

 
Figure 4.3 Flood Frequency Analysis (FFA) curves for all stream gauging stations considered 
in this study. The AMS approach is represented using Weibull and Gamma distributions, while the 
POT approach employs the Generalized Pareto distribution for threshold exceedances. 
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Table 4.2 Return levels of the highest observed flood at each gauging station, estimated using 
AMS and POT approaches. 

Stream 
gauging station 

Highest observed flood 
event and magnitude 

Return period (𝑻) of the 
highest flood event (years) 

Year Q (m3/s) AMS POT 

Barmanghat 1999 21500 41 104 
Belkhedi 1994 7600 167 82 
Chhidgaon 2007 9625 166 75 
Gadarwara 1999 5850 89 178 
Garudeshwar 1994 60642 47 98 
Handia 2020 40000 356 552 
Hoshangabad 1973 31600 44 127 
Kogaon 1990 8300 118 70 
Mandleshwar 2023 52000 44 155 
Manot 2006 6806 30 114 
Mohgaon 2004 11600 455 75 
Sandia 2009 25288 79 115 

 

 
Figure 4.4 Percentage of small, moderate, and large floods at each gauging station, using both 
the AMS and POT approaches.  
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Furthermore, we categorized floods into small, moderate, and large based on their 

return periods as per the criteria listed in Section 2.4.3. Figure 4.4 indicates that the 

percentage of large floods in the mid-lower reaches of the Narmada River (Hoshangabad, 

Handia, Mandleshwar, and Garudeshwar) is relatively lower for the AMS-based estimation 

than the POT. On the contrary, the upper reaches of the basin (Manot, Barmanghat, and 

Sandia) have a relatively high percentage of large floods based on the AMS approach. This 

could plausibly be due to the regulating effect of Indira Sagar and Sardar Sarovar dams in 

attenuating the flood peaks, particularly post year 2006, for Mandleshwar and 

Garudeshwar. Notably, the percentage of medium flood events is remarkably higher for 

POT throughout the basin. Also, from both approaches, Sandia has one of the highest 

percentages of large floods among all stations. Additionally, the POT approach highlights 

Belkhedi and Handia for large floods. 

4.4. Trends in Flood Magnitude and Timing 

The trends in flood magnitude and timing are analyzed using the Modified Mann-

Kendall (MMK) test for both AMS and POT-extracted flood events (see Figure 4.5). The 

results highlight distinct differences in trends between the AMS and POT derived floods. 

For flood magnitudes, the AMS series largely displays decreasing trend, particularly with 

a significant decline is noted at four mainstream Narmada stations (Barmanghat, 

Hoshangabad, Mandleshwar, and Garudeshwar) and three along the tributaries (Mohgaon, 

Belkhedi, and Gadarwara), indicating a reduction in flood intensity in the basin. In contrast, 

the POT series presents mixed results: Hoshangabad station shows a significant decrease 

in flood magnitude; Barmanghat, Belkhedi, Chiddgaon, Gadarwara, Mandleshwar, 

Garudeshwar, Mohgaon and Kogaon stations exhibited decreasing trends, whereas Handia, 

Sandia, and Manot stations showed increasing trends. 

In terms of flood timing (Julian Day), the AMS series does not indicate significant 

trends, but an increasing trend is noted at most mainstream stations particularly in the mid 

and lower reaches of the basin. The Mohgaon, Belkhedi, and Chiddgaon stations across the 

tributaries show decreasing trends, while Kogaon displays an increasing trend. Conversely, 

the POT series highlights a significant delay in peak floods at Mohgaon, Sandia and 

Garudeshwar stations, where floods occurrences are delayed in the monsoon. Across other 

stations, the timing of POT events shows an increasing trend at all stations; except Belkhedi 

and Gadarwara. 
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Figure 4.5 Spatial map showing trends in flood magnitude (1-day maximum streamflow) and 
timing (Julian day of 1-day maximum streamflow) using Modified Mann-Kendall test. 

4.5. Hydro-meteorological Analysis of Flood Events 

In this section, the top seven flood events (1973, 1984, 1994, 1999, 2013, 2020 and 

2023) were selected in the Narmada basin based on flood frequency analysis and its 

classification. Following this, rainfall variability for a temporal window of four days were 

plotted—the peak flow (𝑡), two days preceding the peak flow (𝑡 − 2,  𝑡 − 1), and one day 

succeeding the peak flow (𝑡 + 1), along with hydrographs for the corresponding peak flow 

events. Here, 𝑡 represents the actual date of peak discharge at given stream gauges. In this 

analysis the chosen flood events were distinctly clustered into two classes: pre-2006 and 

post-2006, to delineate the regulation effect of Indira Sagar dam. The pre-2006 flood events 

include 1973, 1984, 1994, and 1999, while post-2006 flood events were 2013, 2020, and 

2023. 
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Figure 4.6 Spatial variability of daily rainfall, from day (𝒕 − 𝟐) to (𝒕 + 𝟏), across the Narmada River basin for the 1973 flood event  
and corresponding flood hydrograph for different stream gauges, where 𝒕 represents the date of the peak flow. 
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Figure 4.7 Spatial variability of daily rainfall, from day (𝒕 − 𝟐) to (𝒕 + 𝟏), across the Narmada River basin for the 1984 flood event and 
corresponding flood hydrograph for different stream gauges, where 𝒕 represents the date of the peak flow. 
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Figure 4.8 Spatial variability of daily rainfall, from day (𝒕 − 𝟐) to (𝒕 + 𝟏), across the Narmada River basin for the 1994 flood event and 
corresponding flood hydrograph for different stream gauges, where 𝒕 represents the date of the peak flow. 
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Figure 4.9 Spatial variability of daily rainfall, from day (𝒕 − 𝟐) to (𝒕 + 𝟏), across the Narmada River basin for the 1999 flood event and 
corresponding flood hydrograph for different stream gauges, where 𝒕 represents the date of the peak flow. 
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Figure 4.10 Spatial variability of daily rainfall, from day (𝒕 − 𝟐) 𝒕𝒐 (𝒕 + 𝟏), across the Narmada River basin for the 2013 flood event and 
corresponding flood hydrograph for different stream gauges, where 𝒕 represents the date of the peak flow. 
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Figure 4.11 Spatial variability of daily rainfall, from day (𝒕 − 𝟐) 𝒕𝒐 (𝒕 + 𝟏), across the Narmada River basin for the 2020 flood event and 
corresponding flood hydrograph for different stream gauges, where 𝒕 represents the date of the peak flow. 
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Figure 4.12 Spatial variability of daily rainfall, from day (𝒕 − 𝟐) 𝒕𝒐 (𝒕 + 𝟏), across the Narmada River basin for the 2023 flood event and 
corresponding flood hydrograph for different stream gauges, where 𝒕 represents the date of the peak flow. 
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Figure 4.13 Temporal variation of (a) total annual rainfall and (b) Rx1day, Rx3day, and Rx5day for the selected flood events in the Narmada River 
basin, the dashed lines represent the years considered, red band represents values above 90th percentile, yellow band represents values between 
the 75th and 90th percentiles, and green band represents values between the 50th and 75th percentiles.
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Reservoir level data for these events was obtained from the India-WRIS portal 

(https://indiawris.gov.in/wris/#/Reservoirs). Additionally, three extreme rainfall indices, 

viz., Rx1day, Rx3day, and Rx5day, representing one-day, consecutive three-day, and five-

day maximum rainfall in a given year, were also estimated. 

The 1973 flood event (see Figure 4.6) was marked by a classic upstream-to-

downstream storm progression, with noticeable intensification near the Hoshangabad 

gauging station. This spatial movement of rainfall contributed to widespread flooding 

across the basin. A similar storm trajectory was observed in 1984 (see Figure 4.7), though 

the storm intensified more strongly over the upper-mid to mid-reaches of the basin. This 

resulted in localized peak rainfall intensities of 150–225 mm, triggering high flows at 

upstream stations like Hoshangabad and Handia. During both these floods no major 

reservoir was present, thus the accumulated runoff propagated downstream, leading to a 

peak discharge of approximately 50,000 cumecs at Garudeshwar. 

The 1994 flood (see Figure 4.8) exhibited an upstream-to-downstream propagation 

pattern, but was notably intensified over the Chandwada catchment, where rainfall 

intensities reached 300–400 mm. This resulted in the highest ever peak flood recorded in 

the Orsang River at the Chandwada station, around 9,070 cumecs. Despite relatively low 

rainfall in the two days preceding the event, the flood magnitude was extraordinary, with 

Mandleshwar and Garudeshwar recording peak discharges of 48,200 and 60,642 cumecs, 

respectively. This can be attributed to the exceptionally high total monsoonal rainfall 

accumulated (June to September) across the basin approximately 1,400 mm, which is the 

highest recorded in the past 50 years. In comparison, the 1999 flood (see Figure 4.9) was 

more spatially confined, with rainfall primarily concentrated in the upstream regions. 

Although less extensive, it was characterized by high multi-day rainfall accumulation, 

resulting in localized but significant flooding at Barmanghat, Sandia, Hoshangabad, and 

Handia. 

The 2013 flood (see Figure 4.10) showed peak rainfall intensities over the middle 

reaches of the basin. The presence of regulated reservoirs, filled to ~80% capacity helped 

moderate downstream impacts. Storm movement in this case remained consistent with the 

general upstream-to-downstream trend observed in other major events. The 2020 flood (see 

Figure 4.11) followed a similar pattern, with rainfall intensities of 200–300 mm focused on 

the upper and middle reaches. However, lower rainfall in downstream zones allowed for 

https://indiawris.gov.in/wris/#/Reservoirs
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relatively effective regulation, even though reservoirs were nearly 90% full prior to the 

event. 

The most recent 2023 flood (see Figure 4.12) event was notable for very high localized 

rainfall intensities (250–400 mm) not only in the middle reaches but also extending to the 

lower reaches—a spatial distribution that compounded the severity of downstream 

flooding. With reservoirs already near their FRL, the system had limited buffering ability, 

resulting in Mandleshwar recording a peak discharge of record 52,000 cumecs, the highest 

ever recorded in its history.  

From Figure 4.13, we can clearly categorize the flood events into three types based on 

the extreme rainfall indices and annual total rainfall: extreme precipitation-driven events, 

soil moisture or antecedent wetness-driven events, and those influenced by a combination 

of both mechanisms. The first category includes years such as 1984, which was primarily 

driven by extreme short-duration rainfall. This event recorded the highest Rx3day and 

second-highest Rx5day in the basin over the past five decades, while the annual rainfall 

was relatively low (less than 50th percentile). The lack of significant antecedent wetness 

and the absence of major reservoir regulation suggests that this was a flood triggered almost 

entirely by an intense and short-lived precipitation burst. 

The second category comprises events like 1994 and 2013, where flood severity was 

influenced more by sustained seasonal rainfall than by intense short-duration rainfall. In 

these years, Rx1day, Rx3day, and Rx5day values were moderate—mostly within the 50th 

to 75th percentile range—yet the basin experienced some of the highest annual rainfall 

totals. These wet antecedent conditions likely saturated the catchment, increasing runoff 

even under moderate storm conditions. Hence, these floods are best described as soil 

moisture-driven events. 

The third category includes 1973, 1999, 2020, and 2023, which show characteristics 

of both intense short-duration rainfall and higher total annual rainfall, suggesting a 

combined influence of extreme precipitation and catchment wetness. In 1973, the basin 

recorded one of the highest annual rainfall along with high Rx3day and Rx5day values. The 

1999 flood event, although spatially concentrated in the upper basin, featured Rx5day 

above the 90th percentile and reasonably high seasonal rainfall. The 2020 flood also had 

Rx3day and annual rainfall within the 75th to 90th percentile range. The 2023 flood event 

exhibited extremely high localized rainfall intensities, with the highest rainfall recorded in 
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a day in the past 50 years, and Rx3day and Rx5day above the 90th percentile, while also 

recording annual rainfall above the 90th percentile. This clearly positions 2023 among the 

events driven by a combination of extreme precipitation and pre-existing wet conditions, 

which is also one of the most severe flooding in recent years. 

4.6. Role of Catchment Wetness 

To understand the role of catchment wetness in driving floods, we selected the top 40 

POT flood events for each catchment and calculated the Spearman rank correlation between 

flood magnitudes and the Antecedent Precipitation Buildup (APB) at different lags (lag 0 

to lag 30). By analysing these correlations, we evaluated the influence of accumulated 

precipitation on flood magnitude across different catchments. From Figure 4.14, it is 

evident that catchments such as Barmanghat, Sandia, Hoshangabad, Chhidgaon, Handia, 

and Kogaon exhibit strong correlations between flood magnitudes and APB, indicating that 

catchment wetness plays a major role in flood generation in these regions. Catchments like 

Handia, Kogaon, and Chhidgaon show significant correlations extending to longer lags, 

suggesting that sustained wet conditions and excess soil moisture could be key drivers of 

higher flood magnitudes in these areas. 

 
Figure 4.14 Dependence structure between peak-over-threshold (POT) flood magnitudes and 
antecedent precipitation buildup (APB) at various lags for the top forty POT events in each 
catchment. The figure shows Spearman rank correlation (𝜌) values between flood magnitudes and 
cumulative rainfall over d-day periods preceding the flood event, evaluated from lag 0 to lag 30 (x-
axis), for each catchment (y-axis). Higher correlation values indicate stronger influence of 
antecedent rainfall on flood magnitude, highlighting the role of catchment wetness in flood 
generation. 
 

In contrast, flood magnitudes at catchments such as Mohgaon, Manot, Belkhedi, 

Gadarwara, Mandleshwar, and Garudeshwar show weak or no significant correlation with 
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APB. This implies that antecedent rainfall buildup may have limited influence on the 

magnitude of floods in these catchments, and that such floods are more likely triggered by 

short-duration extreme precipitation events or a combination of both extreme rainfall and 

catchment wetness. Notably, Mandleshwar and Garudeshwar on the Narmada River are 

regulated by the Indira Sagar and Sardar Sarovar reservoirs, respectively. These stations 

along the mainstream river display relatively low correlation with APB, highlighting the 

dominant role of reservoir operations in modulating flood magnitudes at these stations. 

4.7. Closure 

The results and discussions in this chapter provide a comprehensive understanding of 

the temporal and spatial dynamics of floods in the Narmada basin. The integration of 

statistical analyses with hydro-meteorological insights offers a nuanced perspective on 

flood behaviour and its driving factors. These findings form the basis for the conclusions 

and recommendations presented in the final chapter of the study.  
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Chapter - 5 

CONCLUSIONS AND FUTURE SCOPE 

5.1. Key Conclusions 

This study provides valuable insights into flood dynamics in the Narmada River basin 

through a comprehensive analysis of flood timings, magnitudes, and their trends. Our 

findings reveal significant patterns that underscore the importance of adaptive management 

strategies to address the evolving nature of flooding in the region. The key findings are: 

(i) The analysis reveals that the mean flood timing in the Narmada basin is mid-August 

(using both AMS and POT approaches), with the Kundi River exhibiting the widest 

range of flood occurrence timings, highlighting variability in flood timings. 

(ii) The severe most flood in the Narmada basin was observed at the Garudeshwar station 

in 1994 of magnitude 60642 cumecs, with an estimated return period of 47 years 

using the AMS approach and 98 years using the POT approach. The AMS series 

shows a high percentage of large floods at the Barmanghat, Chiddgaon, and Manot 

stations, while at Belkhedi and Handia stations using POT approach. Furthermore, 

the POT series had a lower percentage of large floods, but a higher percentage of 

medium floods compared to AMS. 

(iii) A declining trend in flood magnitude is observed in the AMS series, particularly at  

mainstream stations like Barmanghat, Hoshangabad, Mandleshwar, and 

Garudeshwar, and tributary stations such as Mohgaon, Belkhedi, and Gadarwara. The 

POT series also shows decreasing trends at several stations, though catchments like 

Handia, Sandia, and Manot exhibit increasing trends. A significant decline in 

streamflow is observed in Hoshangabad in both the AMS and POT approaches. 

(iv) The AMS series shows no significant trends in flood timing, while increasing trend 

is visible at most mainstream stations. The POT series highlights a significant delay 

in peak flood timing at Mohgaon, Sandia, and Garudeshwar, with most other stations 

also showing an increasing trend in flood timing, except Belkhedi and Gadarwara. 

(v) Based on the flood analysis, three typologies of flood events were identified: (i) 

extreme precipitation-driven events, such as the 1984 flood, characterized by intense 

short-duration rainfall and low seasonal accumulation, indicating limited influence 

of antecedent wetness; (ii) soil moisture-driven events, like those in 1994 and 2013, 
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where moderate short-duration rainfall combined with exceptionally high seasonal 

rainfall suggests catchment saturation played a dominant role; and (iii) combination 

events, including 1973, 1999, 2020, and 2023, where both high rainfall intensities 

and elevated annual rainfall contributed, highlighting the joint influence of extreme 

precipitation and antecedent wetness in amplifying flood severity. 

(vi) Catchment-wise correlation analysis between flood magnitudes and antecedent 

precipitation buildup reveals a clear spatial distinction in flood-generating 

mechanisms across the Narmada basin. In the upper and middle catchments—such 

as Barmanghat, Sandia, Handia, and Hoshangabad—flood magnitudes are strongly 

influenced by catchment wetness, with significant correlations observed even at 

longer lags. This highlights the role of sustained precipitation and soil moisture 

accumulation in amplifying flood responses. In contrast, stations like Mandleshwar 

and Garudeshwar, which are regulated by major reservoirs such as Indira Sagar and 

Sardar Sarovar, exhibit weak or no correlation with antecedent precipitation, 

suggesting that flood magnitudes in these regions might be controlled by other factors 

such as reservoir operations, regulated releases, or localised extreme rainfall events. 

5.2. Future Scope of study 

This study provides a foundational understanding of flood-generating mechanisms in 

the Narmada River basin, with emphasis on the roles of extreme precipitation events and 

antecedent precipitation buildup. Building upon this, future research will incorporate 

satellite-derived or modeled soil moisture data to directly examine the relationship between 

flood magnitudes and antecedent soil moisture conditions. This will allow for a more 

explicit attribution of floods to wet catchment conditions, extreme rainfall, or their 

combined influence, thereby facilitating a deeper catchment-level understanding of flood 

drivers and supporting more targeted flood management strategies. Additionally, future 

work will focus on identifying the maximum fortnightly probability of flood occurrence for 

each catchment. This will involve determining the specific fortnightly window during 

which floods are most likely to occur, using either empirical distributions or parametric 

distribution fitting. Such analysis will provide critical information for improving the timing 

of flood preparedness measures and optimizing resource allocation during the flood season. 

These future directions will enhance the understanding of flood dynamics and contribute 

to the development of more effective flood mitigation and management strategies. 
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