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Abstract 
This study examines how machine learning (ML) approaches can be applied to enhance the 

performance of CMIP6 multi-model ensembles (MME) for climate projections across ten 

vulnerable locations in India. The research evaluates traditional MME methods (simple mean) 

alongside ML models—Long Short-Term Memory (LSTM), Artificial Neural Networks 

(ANN), and Support Vector Regression (SVR) to predict precipitation (PCP), maximum and 

minimum temperature (TMAX and TMIN) under both scenarios SSP245 and SSP585. Key 

findings include performance improvement of ML models consistently outperforming 

traditional MME, with LSTM achieving the highest R2 values (e.g., 0.85 for precipitation in 

Location 3 under SSP245) and reduced RMSE and MAE. SVR and ANN also showed 

significant improvements, particularly in capturing extreme events and seasonal trends. 

Temperature Projections show that all methods performed well for temperature variables, with 

minor variations, as temperature trends exhibit less variability over time. Trend Analysis shows 

that the MME-mean revealed statistically significant increasing trends in all locations, while 

LSTM displayed high variability, and ANN provided more stable projections. SVR was less 

reliable for long-term trend detection. Entropy Analysis: Variability indices (SVIAE and SVIME) 

indicated that SVR and MME-mean exhibited higher variability, whereas LSTM and ANN 

produced more consistent results, especially at annual scales. The study concludes that ML-

augmented ensembles, particularly LSTM, enhance the accuracy of climate projections, 

offering valuable insights for climate resilience planning in vulnerable regions. However, 

traditional MME remains robust for consensus-based trend analysis. These findings contribute 

to optimizing climate model ensembles for improved decision-making in adaptation strategies.

   

Keywords: Climate Change, Extreme Events, Machine Learning, Climate Variability 
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Chapter 1 

Introduction 

Climate change projections rely heavily on Global Climate Models (GCMs), particularly those 

from the Coupled Model Intercomparison Project Phase 6 (CMIP6), due to their ability to 

simulate future climate scenarios under various emission scenarios (Semenov et al., 2024; S. 

Zhang & Chen, 2021). GCMs of CMIP6 provide a comprehensive framework for 

understanding climate dynamics by integrating improved spatial resolutions, advanced 

physical processes, and diverse socioeconomic scenarios, such as the Shared Socioeconomic 

Pathways (SSPs) (Bian et al., 2023; Peng et al., 2023). These models are indispensable for 

downscaling climate data to local scales, enabling detailed assessments of temperature, 

precipitation, and extreme weather events, which are critical for impact studies and adaptation 

planning (Almazroui et al., 2021; Hirabayashi et al., 2021). Despite their coarse resolution, 

CMIP6 GCMs have demonstrated enhanced performance in replicating historical climate 

patterns and projecting future changes, though uncertainties remain, specifically in regional 

precipitation and temperature variability (Bayar et al., 2023; Wu et al., 2024). The role of 

CMIP6 GCMs is further underscored by their utility in hydrological, agricultural, and 

ecological impact assessments, making them a cornerstone of modern climate science (Anil & 

Anand Raj, 2022). Thus, understanding the strengths and weaknesses of these models is 

essential for refining climate projections and informing policy decisions aimed at mitigation 

and adaptation. The CMIP6 multi-model ensemble (MME) is a cornerstone for climate 

projections, yet it faces significant challenges, including biases, uncertainty, and inter-model 

spread, which complicate the interpretation and reliability of its outputs. Biases in CMIP6 

models vary by geographical location and magnitude, leading to potential inaccuracies in 

projections, particularly for variables like precipitation and temperature (Y. H. Kim et al., 2020; 

Knutti et al., 2010). For example, systematic cold biases in high-latitude regions and dry biases 

in tropical and subtropical areas persist across models, undermining confidence in regional 

climate predictions (Y. H. Kim et al., 2020; Osso et al., 2023). Uncertainty arises from multiple 

sources, such as the small number of models, unclear distribution in parameter space, and 

unrepresented extreme behaviors, which collectively limit the ensemble's ability to capture the 

full range of plausible climate futures (Knutti et al., 2010; Lehner et al., 2020). Additionally, 

inter-model spread reflects structural differences in model responses, often independent of 

present-day conditions, further exacerbating uncertainty (Sanderson & Knutti, 2012; Y. Zhang 
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et al., 2023). This spread is particularly pronounced in projections of regional events, such as 

the North Atlantic Oscillation and polar warming, where model disagreements dominate the 

total uncertainty (McKenna & Maycock, 2021; Y. Zhang et al., 2023). Addressing these 

challenges is critical for refining climate projections and informing robust adaptation strategies, 

especially in climate-sensitive regions (Tyagi et al., 2024). (Das et al., 2024; Moradkhani et al., 

2024) explore challenges in-depth, offering insights into mitigating biases, quantifying 

uncertainty, and reducing inter-model spread to enhance the utility of CMIP6 MME for climate 

research and policy.  

 

Figure 1 Overview of the study 

1.1 Biases in GCMs 

Bias correction is a critical step in climate modeling, as GCMs regularly exhibit systematic 

biases due to simplifications in physical processes, coarse spatial resolutions, and inadequate 

representation of regional climate features. These biases can significantly undermine the 

reliability of climate projections, particularly for variables like precipitation and temperature, 

which are essential for impact assessments in water resources, agriculture, and disaster 

management (Jose et al., 2022). To address these limitations, various bias correction techniques 

have been developed so that GCM outputs can be aligned with observed data, ensuring more 

accurate and actionable climate information. Quantile mapping (QM) is a widely used method 

to match the statistical transformations of the cumulative distribution functions (CDFs) of 

modeled and observed data (Grillakis et al., 2013; Robertson et al., 2023). While effective, QM 
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can alter the climate change signal, particularly for precipitation (Pierce et al., 2015). Advanced 

versions of bias correction techniques like quantile delta mapping (QDM) and scaled 

distribution mapping (SDM) preserve trends and raw climate signals, respectively, offering 

improved performance for temperature and precipitation corrections (Frei et al., 2022; Li & Li, 

2023). For multivariate applications, methods such as multivariate bias correction account for 

inter-variable dependencies, enhancing the physical consistency of corrected outputs (Y. Kim 

et al., 2023). Recent innovations include machine learning-based approaches, such as 

generalized regression neural networks (GRNNs) for temperature bias correction (Dutta & 

Bhattacharjya, 2022) and deep learning pathways for precipitation (W. Gao et al., 2024) 

Additionally, wavelet-based techniques like continuous wavelet bias correction (CWBC) 

address biases in both magnitude and frequency, proves effectiveness of variables like sea 

surface temperature (Kusumastuti et al., 2022). Despite these advancements, challenges persist, 

such as overcorrection in methods like Bias Correction and Spatial Disaggregation (BCSD), 

which can distort climate signals (Chandel et al., 2024).  The Multi-Model Ensemble (MME) 

technique has become a cornerstone in climate projections, offering a robust approach to 

uncertainties inherent in individual General Circulation Models (GCMs). However, despite its 

widespread adoption, significant challenges persist in enhancing the reliability of MME 

outputs. Current MME methods often suffer from overconfidence, where ensemble spreads 

underestimate true forecast uncertainties, leading to biased projections (J. Zhu et al., 2013). For 

instance, simple model averaging approaches can dilute fine-scale spatial information and 

introduce biases from low-resolution models, compromising the accuracy of regional climate 

predictions (Vrac et al., 2024). Additionally, traditional techniques like k-means clustering tend 

to favor high-density areas in climate variable distribution, failing to fully capture variability, 

particularly in extreme events (Cannon, 2015). Further limitations arise from the structural 

uncertainties in GCMs, such as parameterization errors and imperfect initial conditions, which 

are not adequately sampled in conventional ensembles (Yokohata et al., 2012). Studies 

highlight that while MMEs broadly improve reliability, they often exhibit overdispersion or 

underdispersion, depending on the geographic area and climate variable (Exbrayat et al., 2018; 

Yokohata et al., 2012). For example, precipitation projections in semi-arid regions remain 

highly uncertain due to model inconsistencies and insufficient observational constraints 

(Exbrayat et al., 2018). Moreover, methods like Bayesian Model Averaging (BMA) and 

Reliability Ensemble Averaging (REA) have shown promise but require refinement to address 

spatial inconsistencies and multi-variable dependencies  (Guan et al., 2022). These approaches 

aim to enhance ensemble reliability by integrating performance-based weighting, 
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nonparametric distributions, and automated downscaling. Nevertheless, the need for further 

improvement persists, particularly in optimizing model selection, reducing inter-model 

dependencies, and incorporating diverse error metrics (Ganguly & Arya, 2023; Talukder et al., 

2025). This study seeks to build on these advancements by developing a more robust MME 

framework that addresses these limitations, ultimately improving the reliability of climate 

projections for decision-making and risk assessment. Traditional multi-model ensembling 

techniques, such as simple mean and weighted mean, are foundational approaches in ML that 

aim to improve predictive performance by combining the outputs of multiple models. The 

simple mean method aggregates predictions by averaging them equally across all models, 

assuming each model contributes uniformly to the final output (Ren et al., 2016). In contrast, 

the weighted mean assigns varying weights to predictions of each model based on their 

respective performance, thereby allowing more accurate models to exert greater influence on 

the ensemble's results (Ali et al., 2015; J. Zhu et al., 2013). These techniques are particularly 

effective in addressing the bias-variance trade-off, leveraging the strengths of diverse models 

to improve overall accuracy and performance (Dong et al., 2020; Ren et al., 2016).  Similarly, 

(J. Zhu et al., 2013) introduced a weighted mean model for operational risk assessment, 

highlighting its practicality over complex methods that require extensive historical data. 

Despite their advantages, traditional ensembling techniques may lack the flexibility and 

adaptability offered by advanced methods like bagging, boosting, and stacking, which 

dynamically optimize model combinations (Rane et al., 2024; Tang et al., 2024).  Nevertheless, 

simple and weighted mean approaches remain integral to ensemble learning, providing a 

baseline for understanding and developing more sophisticated strategies. This research 

explores the efficacy of traditional ensembling techniques in contemporary applications, 

examining their strengths, limitations, and potential enhancements in the context of evolving 

ML models. By synthesizing insights from prior studies (Ali et al., 2015; Dong et al., 2020; 

Ren et al., 2016), we aim to bridge the gap between foundational methods and modern 

advancements, offering a comprehensive perspective on their role in predictive modeling.  The 

comparison between traditional CMIP6 MME and emerging ML-based ensembles has gained 

significant attention in climate science due to their respective strengths and limitations. CMIP6 

MMEs, which integrate simulations from multiple GCMs, have been widely used for climate 

projections, offering a robust framework for assessing uncertainties  (Eyring et al., 2016). 

However, they are computationally expensive and often exhibit biases in representing complex 

climate processes (Reichstein et al., 2019). In contrast, ML-based ensembles leverage data-

driven approaches to improve predictive accuracy, reduce computational costs, and enhance 
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the representation of nonlinear climate dynamics  (Rasp & Thuerey, 2021). Recent studies 

suggest that hybrid approaches combining CMIP6 and ML techniques may outperform 

standalone methods, particularly in regional climate projections (Labe & Barnes, 2022).  

1.2 Screening of GCMs 

Despite these advancements, a systematic comparison of their performance, uncertainty 

quantification, and scalability remains underexplored. This study aims to evaluate CMIP6 

MME against ML-based ensembles in terms of predictive skill, bias correction, and extreme 

event representation, contributing to the ongoing discourse on optimizing climate projection 

methodologies.  The evaluation of multi-model ensemble performances is critical in ensuring 

robust and reliable predictions across various domains, from climate science to financial 

forecasting. Performance metrics such as R2, Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE), and Kling-Gupta Efficiency (KGE) are widely employed to find model, 

precision, and generalizability (Chai & Draxler, 2014a; Plevris et al., 2022). R2 measures the 

proportion of variance explained by the model, providing insights into its explanatory power, 

while RMSE and MAE quantify prediction errors, with RMSE penalizing larger errors more 

heavily due to its sensitivity to outliers (Hodson, 2022; Willmott, 2005a). MAE, on the other 

hand, offers a more intuitive interpretation of average error magnitude, making it suitable for 

applications where error distributions deviate from normality (Brassington, 2017). The KGE 

metric, which integrates correlation, bias, and variability, is particularly valuable for evaluating 

hydrological and environmental models, as it addresses the improvement upon traditional 

metrics by balancing key performance factors (Botchkarev, 2019; Correndo et al., 2022). 

Recent literature emphasizes the importance of selecting appropriate metrics tailored to the 

specific nature of the data and the purpose of the study. For instance, RMSE is optimal for 

Gaussian errors, whereas MAE is preferred for Laplacian distributions (Chai & Draxler, 

2014a). However, reliance on a single metric can be misleading, as each captures distinct facets 

of model performance. A multi-metric approach, combining R2, RMSE, MAE, and KGE, is 

increasingly advocated to deliver a comprehensive assessment of ensemble models (Plevris et 

al., 2022). Despite advancements, challenges persist in metric selection, particularly in contexts 

with imbalanced data or varying risk appetites, where traditional metrics may fail to align with 

practical outcomes (Dessain, 2023; Tunkel & Herbold, 2022). The purpose of this study is to 

address the gaps by systematically evaluating multi-model ensemble performances using a 

suite of metrics, thereby enhancing the interpretability and applicability of ensemble 
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predictions in diverse fields. By integrating theoretical insights with empirical validation, this 

research aims to contribute to ongoing discourse on optimal metric selection and ensemble 

model evaluation.  

1.3 Integration of Machine Learning 

The integration of ML with ensembles of GCMs has emerged as a transformative approach to 

improve the accuracy and reliability of climate projections. Traditional GCMs, while 

foundational for climate research, often suffer from uncertainties due to coarse spatial 

resolutions, structural biases, and computational limitations (MA & Stratonovitch, 2010; 

Rampal et al., 2024). ML techniques, such as convolutional neural networks (CNNs), random 

forests (RF), and long short-term memory (LSTM) networks, address these challenges by 

improving downscaling, parameterization, and ensemble weighting (González-Abad & Baño-

Medina, 2023; Sun et al., 2023). For instance, ML-based multi-model ensembles (MMEs) have 

demonstrated superior performance in simulating precipitation and temperature extremes 

compared to conventional arithmetic mean ensembles, with methods like Extreme Gradient 

Boosting (XGBR) and Random Forest Regressor (RFR) outperforming other techniques in 

diverse geo-climatic regions (Shetty et al., 2023). The implications of ML-enhanced GCM 

ensembles for climate change impact assessment are profound. By reducing uncertainties and 

improving spatial-temporal resolution, these models provide more reliable projections of future 

climate scenarios, such as temperature rises under SSP245 and SSP585 pathways (Shetty et al., 

2023). For example, deep learning frameworks like CNNs have achieved higher skill scores 

(e.g., Taylor Skill Score of 0.98) in reproducing local-scale precipitation patterns, enabling 

better risk assessments for extreme weather events (Sun et al., 2023). Additionally, ML 

algorithms facilitate the quantification of uncertainty through techniques like Bayesian Model 

Averaging (BMA), which outperforms simple ensemble means in capturing climate variability 

(Talukder et al., 2025). Such advancements are essential for informing adaptation strategies in 

vulnerable sectors, like agriculture and water resource management, where precise climate 

projections are essential for mitigating the impacts of global warming (Bojer et al., 2024; 

Krishnamoorthy & Sistla, 2023). In summary, ML not only refines the predictive capabilities 

of GCM ensembles but also strengthens their utility in climate change impact assessments by 

addressing key limitations of traditional methods. The following sections explore these 

advancements in detail, highlighting their methodological innovations and practical 

applications.  
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Chapter 2 

 Study Area 

The present study focuses on ten different locations across India, selected for their vulnerability 

to climate extremes such as floods, heatwaves, and droughts. These locations are 10 km stretch 

of National Highways, surrounded by agricultural fields, water bodies, factories, and other 

critical infrastructures, making them critical to study in the context of increasing climate 

variability. These locations are L1, L2, L3… and L10. For each location, a 10 km stretch has 

been identified for detailed climate impact analysis. The study examines key variables, 

including PCP, TMAX, and TMIN, using historical data to project future climate conditions.  

 

Figure 2 Location Map of the National Highways considered in this study 

Location 1 is situated in Karnataka, around a 10 km stretch of NH 150 from Kalaburagi to 

Yadgiri, crosses through an area dotted with lakes and rivers, including the Bhima River, and 

is prone to flooding due to the hilly terrain. The region experiences an average annual rainfall 

of 838 mm and temperatures ranging from 39.1°C to 17.1°C.   
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Figure 3 Satellite Image of Location 1 

Location 2 is located in Andhra Pradesh and covers a 10 km segment on National Highway 

16 from Guntur to Chilakaluripet. This stretch passes through hilly terrain, causing 

stormwater to flow towards low-lying areas, often leading to flooding naturally. The region, 

which hosts many textile industries, educational institutions, and hospitals, receives an 

average annual rainfall of 966 mm, with temperatures ranging between 33.96°C and 25.13°C.  

 

Figure 4 Satellite Image of Location 2 

Location 3 is situated in Chhattisgarh, a 10 km section on National Highway 43 between 

Manendragarh and Ambikapur has been selected. This area is characterized by its proximity to 

the Hasdeo River, Aaruni Dam, and various waterfalls, making it particularly flood-prone. The 

NH-150

NH-16
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annual rainfall here is approximately 1130 mm, with average maximum and minimum 

temperatures of 30°C and 17.6°C, respectively.  

 

Figure 5 Satellite Image of Location 3 

Further north, Location 4 is located in Madhya Pradesh and includes a 10 km stretch on 

National Highway 45 from Shahpura to Jabalpur, where the Narmada River and several lakes 

define the local landscape. Prone to both flooding and seismic activity (Seismic Zone III), this 

region experiences an annual rainfall of 1280 mm, with temperatures ranging from 32.1°C to 

18.3°C.  

 

Figure 6 Satellite Image of Location 4 

Location 5 is located in Maharashtra, around National Highway 47, which covers a segment 

from Betul to Saoner, an area surrounded by dams such as Umri, Kolar, and Nanda. This region, 

NH-43

NH-45
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also vulnerable to floods, has a recorded average rainfall of 1060.2 mm, and temperatures 

fluctuate between 45°C and 12°C. 

 

Figure 7 Satellite Image of Location 5 

Location 6 is another section of 10 km stretch from Lonavala to Khandala around National 

Highway 48, a popular tourist destination in Maharashtra. Known for its waterfalls and scenic 

viewpoints, the area has been severely affected by flooding in recent years, receiving an 

average annual rainfall of 4223 mm, with temperatures ranging from 34°C to 11°C. 

 

Figure 8 Satellite Image of Location 6 

NH-47

NH-48
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Location 7 is in Gujarat, a 10 km stretch of National Highway 48 from Himatnagar to Vadodara, 

which passes through an industrial zone and intersects with major state highways. This region 

experiences an annual rainfall of 749 mm, with temperatures varying from 40°C to 14°C.  

 

Figure 9 Satellite Image of Location 7 

Location 8 is another segment of National Hiway 52 in Madhya Pradesh that runs from Dewas 

to Sendhwa, an area marked by both industrial and agricultural activities. The Narmada River, 

which flows through this region, contributes to its vulnerability to floods. The area sees an 

average rainfall of 833.6 mm and temperatures ranging between 44°C and 10°C.  

 

Figure 10 Satellite Image of Location 8 

Similarly, Location 9 in Gujarat, which covers the stretch around National Highway 64 from 

Ahmedabad to Nadiad, runs through a dense urban area. The region’s rainfall averages 749 mm 

annually, and temperatures range from 40°C to 14°C.  

NH-48_C

NH-52
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Figure 11 Satellite image of Location 9 

Further south, Location 10 in Tamil Nadu, marked on National Highway 87 between 

Ramanathapuram and Mandapam, runs close to the coastline, making it particularly vulnerable 

to both floods and cyclones. The region receives an average annual precipitation of 821 mm, 

with temperatures ranging from 40°C to 21°C. Lastly, This comprehensive study of these 10 

km stretches along various highways highlights the critical climate-related challenges these 

key transport routes face. The combination of geographical features and climate extremes 

makes these highways particularly vulnerable, warranting detailed analysis for better climate 

resilience planning. 

 

Figure 12 Satellite Image of Location 10 

NH-64

NH-87
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Chapter 3 

Datasets and Methodology 

In this study, data is collected from mainly two sources, i.e., India Meteorological Department 

(IMD) for observed data of precipitation and temperature, and CMIP6 is collected from NEX-

GDDP-CMIP6 for both historical values and future predictions, respectively. This study 

employed 13 bias-corrected and downscaled GCMs to a resolution of 0.25° for daily PCP, 

TMAX, and TMIN data under SSP-245 and SSP-585 scenarios. Due to high daily variability, 

data was aggregated monthly, and EQM was applied to bias-correct GCM outputs using IMD-

observed data for improved accuracy in climate projections. For the ensemble of these GCMs, 

ML techniques (LSTM, ANN, and SVR) have also been incorporated to improve future 

predictions, and trend analysis is also performed to understand the future patterns in PCP, 

TMAX, and TMIN. 

3.1 Observational Gridded Data 

IMD dataset provides daily gridded rainfall with a high spatial resolution of 0.25°. The IMD 

dataset provides a more accurate and higher-resolution representation of rainfall over India than 

the existing datasets due to its denser rain gauge stations network and robust interpolation 

method (Pai et al., 2014). IMD also provides daily temperature data for India at a spatial 

resolution of (1° × 1°), particularly to analyze climate extremes like heatwaves and cold waves. 

The data set used temperature observations from 395 quality-controlled stations across India. 

It includes daily TMAX and TMIN recorded by the IMD and covers from 1951 to 2023. The 

dataset was compared with the global temperature dataset developed by the University of 

Delaware, showing a strong correlation (0.8) between the two, confirming the accuracy of the 

IMD data(Srivastava et al., 2009). 

3.2 Climate Model Simulations 

NEX-GDDP-CMIP6 offers 0.25° resolution, bias-corrected climate projections based on the 

outputs of CMIP6 GCMs. The CMIP6 GCMs were developed in support of the Sixth 

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), which 

supports climate change studies. It is designed to assist climate scientists in conducting local 

and regional climate change studies. The dataset covers daily climate data from 1950 to 2100. 

All climate projection models provide daily average variables spanning from 1950 to 2014 
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(“retrospective simulation”) and from 2015 to 2100 (“prospective simulation”). The dataset is 

derived from 35 GCM models and uses four Scenarios SSP126, SSP245, SSP370, and 

SSP585), covering future projections (2015–2100) and each model's historical projections 

spanning from 1950–2014 for future climate scenarios (Thrasher et al., 2022).13 models which 

are selected for the study out of 35 GCMs models are mentioned in Table 1: 

Table 1 List of 13 GCMs used in this study 

Models No. Model Name Institution 

1 ACCESS-CM2 CSIRO-ARCCSS, Australia 

2 ACCESS-ESM1-5 CSIRO-ARCCSS, Australia 

3 BCC-CSM2-MR Beijing Climate Centre, China 

4 CanESM5 Canadian Centre for Climate Modelling 
and Analysis (CCCMA), Canada 

5 EC-Earth3-Veg-LR The EC-Earth consortium, Europe 

6 EC-Earth3 The EC-Earth consortium, Europe 

7 INM-CM4-8 Institute for Numerical Mathematics, 
Russia 

8 INM-CM5-0 Institute for Numerical Mathematics, 
Russia 

9 MPI-ESM1-2-HR Max Planck Institute for Meteorology 
Earth System, Germany 

10 MPI-ESM1-2-LR Max Planck Institute for Meteorology 
Earth System, Germany 

11 MRI-ESM2-0 Meteorological Research Institute, Japan 

12 NorESM2-LM Norwegian Climate Centre, Norway 

13 NorESM2-MM Norwegian Climate Centre, Norway 
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3.3 Methodology 

This study utilized 13 GCMs from the NEX-GDDP dataset. It is bias-corrected and downscaled 

to a spatial resolution of 0.25°, with daily values available for PCP, TMAX, and TMIN. IMD's 

observed data and GCMs data were downloaded for the historical period spanning 1951 to 

2023, while the future data for GCMs was obtained for the period 2024 to 2100. For this study, 

only two SSP scenarios, SSP-245 and SSP-585, were considered to analyze climate projections 

and their potential impacts under intermediate and high-emission pathways, respectively.  

Given that daily-scale data often exhibits low correlation due to high variability, the data was 

aggregated to a monthly scale. To correct biases in the climate model outputs, EQM was applied 

to bias-correct monthly PCP, TMAX, and TMIN data generated by the 13 CMIP6 climate 

models, using observed data from the IMD as a reference. Quantile mapping is an effective 

bias correction technique that adjusts model data to align with observed data distributions by 

matching quantiles between the two datasets. Specifically, EQM was applied individually to 

each of the 10 geographic locations by first fitting the observed and modeled data distributions 

at quantile intervals of 1%. This interval size was selected to capture a high-resolution quantile 

distribution and improve mapping accuracy. To ensure the robustness of the quantile mapping 

results, bootstrap sampling was employed, with 10 bootstrapped samples used to estimate 

uncertainty, and corrections were applied only on "wet days" (days with non-zero precipitation) 

to avoid skewing results with dry days. Two interpolation methods, linear and tricubic, were 

used to ensure smooth transformations of model data between quantiles, yielding two corrected 

outputs for each location. 

X!"##,% =	ecdf"&'
() (ecdf*"+,%(X*"+,%))   (1) 

where, *,-..,/ is the corrected model PCP value on day t, +,-.-01()  is the inverse ecdf of 

observed data, +,-.2-3,/ is the ecdf of model data, and *2-3,/ is the raw model precipitation 

value on day t. An R Package: qmap was used to perform the bias correction. 
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Figure 13 Flow diagram of Methodology 

Following bias correction, an MME was created by calculating the mean across the 13 GCMs 

for PCP, TMAX, and TMIN. MME methods further reduce the uncertainties by averaging the 

outputs from multiple GCMs, which minimizes errors inherent to individual models. 

Mean(t) = 	 )4∑ m(t)4
56)       (2) 

Where Mean(t) is the arithmetic mean of GCMs for time t, N is the total number of GCMs (13), 

and m(t) is the model values of nth GCM for time t. This ensemble was then compared with 

observed data from 2010 to 2023 to assess the MME’s accuracy and reliability. ML models 

were applied to enhance predictive performance further. Specifically, LSTM, ANN, and SVR 

were used. Before model training, seasonal decomposition is used to decompose observed data 

into different components mentioned in equation (3) via the ̀ Statsmodels` Time Series Analysis 
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(TSA) module in Python. This decomposition was intended to help the models capture seasonal 

peaks and other patterns present in the observed data, leading to a more accurate fit. Time series 

decomposition typically dissolves into the trend, seasonality, and residual (or noise). The trend 

component captures the long-term and underlying patterns in the data. In contrast, the 

seasonality component reflects short-term, regular fluctuations caused by recurring factors, 

such as seasonal changes or cycles. The residual component represents uncertainty in the 

variability that remains after removing the effects of trend and season. By isolating these 

components, we can observe valuable insights into the data’s structure, making it easier to 

analyze and forecast. In this study, the decomposition approach used is additive 
decomposition; the sum of its components is shown in Equation 3:  

S(x) = Trend(x) + Seasonal(x) + Residual(x)    (3)

  

This method works best when the seasonal effects do not change with the series' magnitude. 

The ML-based MME produced improved results when compared to the conventional MME-

Mean approach, indicating that ML models were effective in capturing the details of observed 

climate patterns. 

3.4 Long Short-Term Memory (LSTM) 

LSTM networks are a type of recurrent neural network (RNN) specifically designed to model 

sequential data while addressing the vanishing gradient problem typically faced by standard 

RNNs. The provided code applies LSTMs to predict precipitation using a dataset that 

incorporates observed values and additional features, including trend and seasonal components 

derived from seasonal decomposition. The process begins with data preprocessing, where the 

monthly frequency is set, and the time-series is decomposed into trend and seasonal 

components. Missing values in these components are filled using forward and backward filling 

to ensure continuity. The dataset is then divided into training and testing sets based on the 

timeline. 

Features are scaled using Standard Scaler to improve model performance and retain 

consistency across features. The scaled data, including both input features and the target 

variable, is formatted into sequences using the Time series Generator, which prepares data 

windows with a specified look-back period to capture temporal dependencies, particularly 

seasonal trends. 
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Figure 14 General Architecture of LSTM cell 

Figure 14 shows that the LSTM cell is composed of several key components that enable it to 

capture long-term dependencies. The cell state (Ct−1) stores memory from the previous time 

step and is updated with new information using the input gate, which is activated by a tanh 

function. (X(t) is the current input to the LSTM cell. The hidden state (ht−1) represents the 

output from the previous time step. The LSTM includes three gates: the forget gate, input gate, 

and output gate. The forget gate uses a sigmoid function to determine which parts of the 

previous cell state to forget, the input gate uses a sigmoid function to decide which new 

information to store in the cell state, and the output gate, which controls which parts of the cell 

state should affect the current output. The updated cell and hidden states are calculated by 

combining the previous values with the respective gates, allowing them to manage the long-

term dependencies in sequence data efficiently. The Model architecture comprises two LSTM 

layers with different combinations of neurons, both using ReLU activation to capture complex 

nonlinear patterns. Dropout layers are added between LSTMs for regularization to reduce 

overfitting, and the final dense layers ensure the transformation of learned patterns into single 

precipitation predictions. The model uses the Adam optimizer and Mean Squared Error (MSE) 

loss function to optimize weights during training. Early stopping is applied to stop training 

when the model ceases to improve, ensuring computational efficiency and preventing 

overfitting. Once trained, the model predicts the testing dataset through sequences generated 

from the TimeseriesGenerator. These predictions are inverse-scaled to the original range for 
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evaluation. Model performance is assessed using the R2 score, a metric that measures the 

proportion of variance in the observed data explained by the predictions. The code also 

generates a plot of observed versus predicted precipitation values, visualizing the model's 

predictive accuracy over time. This implementation highlights the LSTM's capability to handle 

time-dependent patterns and its effectiveness for precipitation prediction. 

3.5 Artificial Neural Networks (ANN) 

It is a powerful ML technique inspired by the structure and functioning of the human brain, 

particularly for capturing nonlinear relationships in data. The provided code demonstrates the 

application of an ANN for precipitation prediction, focusing on decomposing the observed data 

into trend, seasonal, and residual components. It utilizes an MLPRegressor, a type of 

feedforward ANN. The process starts with data preparation, where the observed precipitation 

series undergoes seasonal decomposition using an additive model, splitting it into trend, 

seasonal, and residual components. Missing values in these components are interpolated for 

smooth processing. The model defines the residuals as the target variable while using multiple 

precipitation features Model-1 to Model 13, along with the seasonal and trend components, as 

predictors. The data is split into training and testing sets based on specified date ranges, and 

feature normalization is performed using StandardScaler to improve ANN convergence. The 

ANN is structured using the MLPRegressor with different combinations of hidden layers and 

nodes, ReLU activation for non-linearity, the Adam optimizer for adaptive learning, and 

regularization (α ) to prevent overfitting. Early stopping ensures efficient training by halting 

the process when improvement plateaus. The model predicts the residuals, which are combined 

with the trend and seasonal components to reconstruct the final precipitation values. Additional 

constraints ensure non-negative predictions. The performance metrics mentioned in Table 2 

evaluate the model's performance. Visualization of observed versus predicted values over time 

offers insights into the model's ability to capture precipitation variability. This implementation 

highlights the ANN's capability for time-series prediction, its ability to handle complex 

relationships between features, and its reliance on residual learning to leverage the trends and 

seasonality inherent in precipitation data. Numerical expressions of MLP regressor are given 

as:  

h = 	θ(W5. X + B7)                (4) 
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Where X is the input feature, Wi represents the weight of the matrix connecting the input layer 

to the hidden layer, Bj represents the bias of the hidden layer, and E is the activation function 

(ReLU) applied element-wise to introduce non-linearity. 

3.6 Support Vector Regression (SVR) 

It is a robust ML technique derived from Support Vector Machines (SVM), suitable for 

modeling complex nonlinear relationships in data. The provided code applies SVR for 

precipitation prediction, emphasizing the decomposition of observed data into trend, seasonal, 

and residual components to improve predictive accuracy. The process begins with 

preprocessing, where seasonal decomposition separates the 'Observed' time series into trend, 

seasonal, and residual components, enabling the SVR model to focus on residuals, which are 

typically less structured. Features such as precipitation indices Model-1 to Model-13, along 

with seasonal and trend components, serve as inputs for the model, while the target variable is 

the residual component. On the basis of the period, the dataset is partitioned into training and 

testing, and a StandardScaler ensures normalized feature distributions, which are critical for 

the SVR's optimal performance. This model is configured with a radial basis function (RBF) 

kernel to capture nonlinear patterns, with hyperparameters such as the regularization term C, 

kernel parameter gamma, and epsilon defining the tolerance limit for prediction errors. After 

the scaled data is trained, the model predicts residuals for the testing set. These residuals are 

combined with the trend and seasonal components to reconstruct the final predicted values, 

which are then clipped to non-negative values to adhere to the physical constraints of 

precipitation data. Model evaluation is performed using metrics such as RMSE, R2, KGE, and 

MAE to assess the model's predictive capability. A plot comparing observed and predicted 

values over time provides a visual representation of the model's performance. The 

mathematical expression for SVR is be found in (Stitson et al., 1996). This implementation 

highlights SVR's strengths in handling nonlinear relationships, particularly when combined 

with techniques like seasonal decomposition. The SVR effectively models residual variability 

while leveraging seasonal and trend information to make accurate predictions of precipitation 

dynamics. 

3.7 Performance Evaluation 

The evaluation of machine learning models, including General Circulation Models (GCMs), 

relies on various evaluation metrics to assess their performance. Among these, R² shows how 
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well your independent variables explain the variation in your outcome; values close to 1 

indicate greater predictive accuracy (Shiru & Chung, 2021). RMSE quantifies the average 

magnitude of prediction errors, penalizing larger deviations more heavily, making it useful for 

understanding overall model performance (Foyhirun, Chutipat et al., 2019). MAE provides a 

straightforward average of absolute errors, offering a clear interpretation of model accuracy 

without squaring deviations (Dumbre et al., 2024). KGE integrates correlation, bias, and 

variability into a single metric, providing a comprehensive assessment of model performance, 

particularly for spatial and temporal patterns (Nashwan & Shahid, 2020). These metrics are 

often used in combination to address different aspects of model performance, such as precision 

RMSE, MAE, R2, and KGE, ensuring a robust evaluation framework for climate models and 

other predictive applications. 

3.7.1 R-SQUARED 

It is a statistical measure that evaluates a portion of the total variation in the outcome variable 

that is accounted for by the independent variables in a regression model, ranging from 0 to 1, 

where 0 means that the model explains none of the variability in the outcome variable, and 1 

means a perfect fit where all variability is explained (Miles, 2005), also known as the 

coefficient of determination. The formula to calculate R2 is given below in equation (5): 

R8 = 1 − 99!"#
99$%$&'

     (5)

  

where SSres is the sum of squared residuals, and SStotal is the total sum of squares.  However, 

R2 has limitations. It can be misleading, as a high value does not always indicate a good model 

fit, especially if the model suffers from bias or overfitting (Onyutha, 2020). Conversely, a poor 

R2 does not certainly imply a poor model, particularly in fields like social sciences, where 

explained variance may inherently be low (J. Gao, 2024).  

3.7.2 Mean Absolute Error 

It is generally used to evaluate the accuracy of predictive models, especially in regression tasks. 

It measures the average magnitude of errors between predicted and actual values without 

considering their direction, making it a robust indicator of model performance (Willmott, 

2005b).  The formula for MAE is given by: 
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MAE = 	 ):∑ JY5 − Y;LJ
:
56)     (6)

       

where Yi is the actual values, MNL  denotes the predicted values, and n represents the number of 

observations. The minimum possible value of MAE is 0, indicating perfect prediction accuracy, 

while the maximum value is unbounded and depends on the scale of the data (Chai & Draxler, 

2014b). In summary, MAE serves as a reliable metric for assessing model performance, with 

its simplicity and clarity making it a staple in fields ranging from climate science to machine 

learning. Its minimum value of 0 signifies perfect accuracy, while its maximum value is 

context-dependent, reflecting the variability in the dataset. 

3.7.3 Root Mean Square (RMSE) 

It is generally used to evaluate a predictive model’s accuracy by measuring the differences 

between observed and predicted values. To calculate RMSE, Equation (7) is given below: 

RMSE = 	O)
:∑ (U5 − UL5)8:

56)      (7)

   

where Ui represents the observed values, QNR is the predicted value, and n represents the number 

of observations. RMSE aggregates the magnitudes of prediction errors into a single measure, 

with larger errors receiving disproportionately higher weight due to the squaring operation. It 

makes RMSE particularly sensitive to outliers, which can be advantageous when large errors 

are undesirable (Brassington, 2017; Chai & Draxler, 2014b). The minimum value of RMSE is 

zero, indicating perfect prediction accuracy where all predicted values match the observed 

values exactly. The maximum value, however, is unbounded and depends on the length of the 

data and the magnitude of errors. For example, in climate research, RMSE values can vary 

significantly based on the dataset’s variability and the model's performance (Willmott, 2005b). 

Nonetheless, researchers often recommend using RMSE alongside other metrics like MAE to 

provide a comprehensive assessment of model performance (W. Zhu, 2022).  

3.7.4 Killing Gupta’s Efficiency (KGE) 

It is generally used in hydrology to evaluate the performance of hydrological models by 

assessing the goodness of fit between observed and simulated data. It addresses some 

limitations of the Nash-Sutcliffe Efficiency (NSE) by decomposing the evaluation into three 
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orthogonal components: correlation, variability bias, and mean bias (Mathevet et al., 2023). It 

is calculated using the following equation:   

KGE = 1 − U(r − 1)8 + (α − 1)8 + (β − 1)8                      (8) 

where r represents the Pearson’s correlation coefficient between observed and simulated 

values, R is the ratio of simulated to observed standard deviations (variability), and B 

represents the ratio of simulated to observed means (bias). The KGE ranges from -∞ to 1, where 

a value equal to 1 shows perfect agreement between observed and simulated data.   Unlike the 

NSE, which has an inherent benchmark of 0 (corresponding to the mean flow predictor), the 

KGE lacks a fixed benchmark. (Knoben et al., 2019) Demonstrated that using the mean flow 

as a predictor results in a KGE value of approximately -0.41 rather than 0. The KGE's 

decomposition into correlation, variability, and bias components provides a better 

understanding of model performance, making it a valuable tool for hydrological applications. 

However, its uncertainty lacks a closed-form description, necessitating empirical methods like 

bootstrapping for confidence interval estimation (Vrugt & de Oliveira, 2022). 

Table 2 Details of Evaluation Metrics 

S. 
No 

Performance 
Indicator Equation Range 

1 Root Mean Square 
Error XYZ[ = 	\

1
]
^(Q< − QL<)8
=

<6)
 0 to ∞ 

2 R-SQUARED X8 = 1 −
ZZ.>1
ZZ/-/?@

 0 to1 

3 Killing Gupta’s 
Efficiency  _`[ = 1 − U(a − 1)8 + (b − 1)8 + (c − 1)8 -∞ to 1 

4 Mean Absolute 
Error  Yd[ =	

1
]
^JM< − MALJ

=

<6)
 0 to ∞ 

3.8 Entropy  

The concept of entropy, along with two entropy-based measures, marginal entropy (ME) and 

apportionment entropy (AE), is discussed in this section, along with the standardized variability 
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index (SVI) and its application in analyzing the spatiotemporal variability of rainfall. The 

section also explores how Mean and ML techniques contribute to understanding rainfall 

variability.   

3.8.1 Apportionment Entropy (AE) 

AE was introduced by (Maruyama et al., 2005), quantifies how the total annual rainfall P is 

distributed across different temporal scales (monthly or seasonal) within a given year. The 

probability of rainfall occurring at a particular timescale i is expressed as pᵢ/P. AE is computed 

annually for each grid location using the equation  

d[ = 	−∑ B(
B log8

B(
B

=)
<6)                               (9) 

Where,   

P = total annual rainfall,   

pᵢ = rainfall amount for the specified timescale in that year,   

nc = number of class intervals (e.g., nc = 365 for daily, 12 for monthly, 4 for seasonal).   

When rainfall is uniformly distributed across all intervals (equally likely events), AE reaches 

its maximum value Hₘₐₓ, defined as log₂nc. The value of Hₘₐₓ depends on the timescale (e.g., 

log₂12 for monthly and log₂4 for seasonal). Essentially, AE captures intra-annual rainfall 

variability, reflecting how rainfall amounts are distributed within a year at different temporal 

resolutions.   

3.8.2 Marginal Entropy (ME) 

ME quantifies the uncertainty or average information content of a random variable X with a 

probability distribution P(x) as defined by (Mishra et al., 2009). This measure evaluates the 

entropy of a single time series, capturing its inherent randomness. For instance, when applied 

to a historical monthly rainfall time series at a given station, ME reflects the overall 

unpredictability across the entire record. Further methodological details can be found in 

(Mishra et al., 2009). 

In this study, ME is computed for Indian rainfall data at three temporal scales: annual, seasonal, 

and monthly, to assess interannual variability at each scale. The mathematical formulation for 

ME is given by:   
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Y[ =	−∑ .(
C log8

.(
C

=)
<6)                                  (10) 

where:   

rᵢ = rainfall amount in the i-th year,   

R = total rainfall over the study period (2024–2100).   

The same equation (Eq. 10) can be adapted for monthly and seasonal scales by substituting rᵢ 

with rainfall values for the respective months or seasons.   

3.9 Trend Analysis 

3.9.1 Mann-Kendall Test 

Mann and Kendall introduced this, and it is a widely used non-parametric method for detecting 

monotonic trends in environmental and hydrological time series data. Its popularity stems from 

its robustness against non-normal distributions and missing data, making it particularly useful 

in hydroclimatology. However, a key limitation of the traditional MK test is its assumption of 

serial independence, which is often violated in hydroclimatic data due to inherent 

autocorrelation. To address this issue, the Modified Mann-Kendall (MMK) test was 

developed by (Hamed & Rao, 1998), incorporating a variance correction factor to account for 

autocorrelation, thereby reducing the likelihood of false trend detection (Type I error). The 

MMK test has since become a standard tool in trend analysis, especially for datasets exhibiting 

persistence or seasonal effects. The MMK test is particularly useful in datasets where 

autocorrelation is present, which can affect the reliability of trend detection. Autocorrelation 

can lead to false trends being identified by the classical MK test. The MMK test corrects this 

by adjusting the variance of the test statistic, thus providing a more accurate assessment of 

trends in the presence of serial correlation (Sa’adi et al., 2019). Given its robustness and 

adaptability, the MMK test remains a critical tool for reliable trend detection in hydroclimatic 

and environmental time series. MMK is calculated as: 

Z	 = 		∑ ∑ fg](∝D−	∝<)
=
D6<E)

=()
<	6) 	             (11)

  

where n represents the number of data points, ∝< and ∝D are the values in the time series i and 
j 

(j > i), respectively, and sgn(xj - xi) is the function as: 



26 
 

fg](∝D−	∝<) = i
+1	j.	 ∝D−	∝< 	> 	0
0		j.	 ∝D−	∝< 	= 	0
−1		j.	 ∝D−	∝< 	< 	0

            (12) 

The variance is calculated as: 

noa(Z) 	=
=(=())(8=EI)(∑ /((/(())(8/(EI)*

(+,
)K               (13) 

where n represents the number of data points, P is the number of tied groups, and A tied group 

is a set of sample data having the same value. In cases where the sample size n > 30, the 

standard normal test statistic ZS is computed using Eq. (14): 

p1 =	

⎩
⎪
⎨

⎪
⎧

L()
MN?.(L) , j.	Z > 0

0	j.	Z = 0
LE)

MN?.(L) , j.	Z < 0

              (14) 

If  ZS values are Positive, then it indicate upward trends, whereas negative values denote 

downward trends. Trend significance is assessed at a specified alpha level. If the absolute ZS 

value exceeds Z1−α/2 it indicates that the null hypothesis is rejected, meaning a statistically 

significant trend. The level of significance in this study is 5% (α=0.05). Specifically: At the 5% 

level, the null hypothesis is rejected if ∣ZS∣>1.96∣ZS∣>1.96.  

3.9.2 Sen’s Slope 

Sen (1968) introduced a non-parametric approach to determine the trend slope in a dataset 

consisting of n pairs of observations, also known as Sen’s method. It employs a linear model 

to compute the trend slope, requiring that the residual variance remains constant over time. The 

calculation is performed as follows: 

Q
56	

-./	-1
./1 	O"#	56),…,:

               (15) 

In this method,  Xj and Xk represent the data values at time points j  and k  (where j > k ), 

respectively. If each period contains only a single observation, the total number of slope 

estimates ( N ) is given by N = :(:())8 , where n is the number of periods. However, if there are 

multiple observations in any period, N will be less than N = :(:())8 . The N computed slopes 

(Qi) are then sorted in ascending order, and the median of these values, referred to as Sen’s 

slope estimator, is determined as follows:  
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              (16) 

The sign of Qmed indicates the direction of the trend (increasing or decreasing), while its 

magnitude represents the trend's steepness. To assess whether the median slope is statistically 

significant (i.e., different from zero), the confidence interval of Qmed must be calculated at a 

chosen significance level. Following (Roy & Chakravarty, 2021), the confidence interval for 

the trend slope can be determined using the following equation: 

C∝ =	Z)(∝/4UVar(S)               (17) 

Here, Var(S) in Equation (13) and Z1−α/2 are derived from the standard normal distribution 

table. In this study, confidence intervals were computed at significance levels α=0.05. The 

values M1 = (n−Cα)/2 and M2 = (n+Cα)/2 are then calculated, where Cα represents the 

confidence interval width. The lower and upper bounds of the confidence 

interval, Qmin and Qmax, correspond to the M1th and (M2+1)-th largest values, respectively, in 

the ordered set of slope estimates (Roy & Chakravarty, 2021). The median slope Qmed is 

considered statistically significant (i.e., different from zero) if Qmin and Qmax share the same 

sign. 
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Chapter 4 

Results 

Different ensemble methods were applied to simulate monthly precipitation, maximum 

temperature, and minimum temperature across 10 different locations: L1, L2, L3, L4, L5, L6, 

L7, L8, L9 and L10. The evaluation was done using some key performance metrics, which 

included RMSE, R2, KGE, and MAE. The analysis consisted of scatter plots showing the 

relationship of observed values to the average of 13 GCMs and line plots of observed values 

compared with those predicted by ML models representing SVR, ANN, and LSTM. Results 

are summarized in tables for the test period of 2010 to 2023, showing the robustness of these 

models in capturing monthly variability in PCP, TMAX, and TMIN. A graphical representation 

of each model’s performance compared to observed data is given in the figures below for all 

10 locations.  

Location 1 

A stretch of 10 km of this highway falls in Karnataka NH-150, between Kalaburagi and Yadgiri. 

It crosses through an area dotted with lakes and rivers, including the Bhima River, and is prone 

to flooding due to the hilly terrain. The region experiences an average annual rainfall of 838 

mm, with temperatures ranging from 39.1°C to 17.1°C. From Table 3, for PCP, the LSTM 

model demonstrated superior performance under SSP 245, achieving the lowest RMSE (47.43), 

highest R² (0.72), lowest MAE (29.43), and highest KGE (0.82). The SVR model also 

performed well, with slightly higher errors than LSTM but better accuracy than ANN and the 

Mean method. Under SSP 585, SVR emerged as the best model with the lowest RMSE (48.52) 

and highest R² (0.71), while LSTM showed a higher RMSE (57.62) but maintained a strong 

KGE (0.80). The Mean method had the poorest performance in both scenarios, with the highest 

errors (RMSE: 51.39 for SSP 245, 58.62 for SSP 585) and lowest R² values, reinforcing the 

advantage of machine learning approaches over simple averaging. In the case of TMAX 

predictions, SVR consistently outperformed other methods in both SSP scenarios, achieving 

the lowest RMSE (1.16 for both SSP 245 and SSP 585) and highest KGE (0.95). LSTM also 

performed well, particularly under SSP 245 (RMSE: 1.15), but showed a slight decline in SSP 

585 (RMSE: 1.26). The Mean method again had the highest errors (RMSE: 1.31 for SSP 245, 

1.46 for SSP 585), indicating its inadequacy for precise temperature forecasting. For TMIN, 

LSTM was the best-performing model in both scenarios, recording the lowest RMSE (0.99 for 
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SSP 245, 1.00 for SSP 585) and highest KGE (0.94). SVR and ANN showed competitive results 

but with marginally higher errors. The Mean method had the highest RMSE (1.05 for SSP 245, 

1.22 for SSP 585), further emphasizing the limitations of traditional statistical approaches.  

It has been observed that LSTM is the best choice for PCP and TMIN predictions at L-1, 

demonstrating strong accuracy and stability across both SSP scenarios. SVR is the most reliable 

model for TMAX, providing consistent and high-precision forecasts. ANN, while not the top 

performer, showed better results than the Mean of GCMs, suggesting its utility as a secondary 

model.  The Mean method consistently underperformed, reinforcing the need for advanced 

machine-learning techniques in climate modeling. These results highlight that machine 

learning models (LSTM and SVR) significantly improve prediction accuracy compared to 

conventional methods. Future research could explore hybrid models or additional climate 

variables to enhance projection reliability at the L-1 location further.   

Table 3 SSP-245 & 585 Model performance comparison of L-1 

L-1 
Location 

PCP TMAX TMIN 

Method RMSE R2 MAE KGE RMSE R2 MAE KGE RMSE R2 MAE KGE 

SSP 245 

Mean 51.39 0.67 32.66 0.67 1.31 0.86 1.02 0.93 1.05 0.89 0.82 0.92 

LSTM 47.43 0.72 29.43 0.82 1.15 0.89 0.92 0.93 0.99 0.91 0.73 0.94 

ANN 51.16 0.67 36.97 0.70 1.19 0.88 0.93 0.94 1.04 0.89 0.79 0.92 

SVR 48.52 0.71 30.94 0.68 1.16 0.89 0.92 0.95 1.02 0.90 0.80 0.92 

SSP 585 

Mean 58.62 0.57 35.36 0.59 1.46 0.82 1.17 0.91 1.22 0.86 0.97 0.89 

ANN 51.14 0.68 36.94 0.70 1.19 0.88 0.90 0.93 1.09 0.89 0.84 0.90 

LSTM 57.62 0.59 32.74 0.80 1.26 0.87 1.00 0.92 1.00 0.90 0.77 0.94 

SVR 48.52 0.71 30.74 0.68 1.16 0.89 0.91 0.95 1.04 0.90 0.83 0.91 

 

Results of PCP under SSP-245 in Figure 15 A) show that MME-Mean has an R2 value of 0.67. 

Among three different ML models, the LSTM performed better, followed by the SVR and 

ANN, respectively. Results of LSTM represent more peaks and patterns than in ANN and SVR, 

covering extreme rainfall in the L-1 region, while SVR and ANN covered the general trend. 

LSTM under SSP 245 was overpredicted in 2015 and 2021, indicating that it may produce 

over-predicted values.   Figure 15 B) shows the result of PCP under SSP-585. The mean of 

GCMs shows an R2 value of 0.57. Among three different machine learning models, the LSTM 

showed better performance, followed by SVR and ANN, respectively. Similar to SSP 245, 
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LSTM also predicted higher values than the observed data in the year 2015 and 2021, showing 

that it may produce overpredicted values. 

 
Figure 15 SSP-245 & 585 precipitation Model performance comparison of L1 

In Figure 16 A) TMAX, the R2 value for MME-mean was 0.87. When machine learning was 

applied, results got better, with all the ML techniques outperforming it. However, there were 

some differences among the models: compared to the observed data, the ANN model 

underestimated lower peaks, while both LSTM and SVR overestimated the lower peaks, which 

may introduce errors in future predictions of this data. In Figure 16 B) TMAX, the R2 value for 

MME-mean was 0.83. When ML was applied, results got better, with all the ML techniques 

A)

B)
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outperforming it. However, there were some differences among the models: compared to the 

observed data, the ANN model underestimated lower peaks, while both LSTM and SVR 

overestimated the lower peaks, which may introduce errors in future predictions of this data. 

 
Figure 16 SSP-245 & 585 TMAX Model performance comparison of L1 

Under the SSP 245 scenario (TMIN, Figure 17 A), the R2 value of MME-mean is 0.84. With 

the application of ML, the results were improved, and all the ML techniques have shown better 

results with all the techniques. Similarly, under SSP 585 (Figure 17 B), the R2 value is of a 

similar magnitude to the mean of GCMs. It shows that there is no significant change in the 

value of TMIN after using ML. It may be due to the temperature not showing a change of high 

magnitudes.  

A)

B)
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Figure 17 SSP-245 & 585 TMIN- Model performance comparison of L1 

 

 

 

 

 

A)
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Location 2 

A stretch of 10 km of this highway falls in Andhra Pradesh, from Guntur to Chilakaluripet. It 

falls within hilly terrain, owing to which water shows a natural tendency to come down toward 

the low-lying areas and flood them frequently. Table 4 shows that For PCP, the LSTM model 

outperformed other methods in both SSP scenarios, achieving the lowest RMSE (46.70 in SSP 

245; 51.59 in SSP 585) and highest R² (0.73 in SSP 245; 0.67 in SSP 585), indicating better 

accuracy and predictive capability. The Mean method consistently performed the worst, with 

the highest RMSE and lowest R² values. The ANN and SVR models showed intermediate 

performance, with SVR slightly better than ANN in terms of MAE and KGE. In TMAX 

prediction, LSTM again demonstrated superior performance, with the lowest RMSE (1.09 in 

SSP 245; 1.15 in SSP 585) and highest R² (0.85 in SSP 245; 0.84 in SSP 585). The Mean 

method had the highest errors, particularly under SSP 585, suggesting greater variability in 

extreme climate conditions. ANN and SVR performed comparably, though SVR had a 

marginally better KGE, indicating improved hydrological consistency.  For TMIN, all machine 

learning models (LSTM, ANN, SVR) performed well, with high R² (≥0.93) and KGE (≥0.94) 

values. LSTM had the lowest RMSE (0.73 in SSP 245; 0.77 in SSP 585) and MAE, reinforcing 

its robustness in temperature prediction. The Mean method, while still reasonable (KGE ≥ 

0.95), had higher errors, particularly under SSP 585, where RMSE increased to 1.17.   

Table 4 SSP-245 & 585 Model performance comparison of L-2 

L-2 
Location 

PCP TMAX TMIN 

Method RMSE R2 MAE KGE RMSE R2 MAE KGE RMSE R2 MAE KGE 

SSP 245 

Mean 60.36 0.54 40.24 0.64 1.35 0.78 1.10 0.92 0.92 0.90 0.71 0.95 

LSTM 46.70 0.73 32.02 0.82 1.09 0.85 0.87 0.93 0.73 0.94 0.57 0.96 
ANN 54.79 0.62 40.75 0.69 1.17 0.83 0.91 0.90 0.78 0.93 0.63 0.95 
SVR 52.37 0.66 33.35 0.68 1.16 0.84 0.93 0.92 0.79 0.93 0.64 0.96 

SSP 585 

Mean 62.29 0.51 41.37 0.61 1.53 0.71 1.27 0.89 1.17 0.84 0.93 0.95 
ANN 54.76 0.62 40.68 0.69 1.17 0.83 0.92 0.91 0.80 0.93 0.65 0.94 

LSTM 51.59 0.67 34.24 0.81 1.15 0.84 0.94 0.93 0.77 0.93 0.59 0.95 
SVR 52.11 0.66 32.64 0.67 1.17 0.83 0.92 0.92 0.80 0.93 0.67 0.96 

 

Overall, LSTM consistently outperformed other models across all variables, demonstrating its 

effectiveness in handling climate prediction tasks. The Mean method, while simple, was the 

least accurate, highlighting the need for advanced modeling techniques. ANN and SVR 

provided competitive results but were generally less precise than LSTM. The findings suggest 

that deep learning approaches like LSTM are particularly effective in capturing complex 

climate patterns under different emission scenarios. Figure 18 A)  shows the precipitation of 
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SSP-245 MME-Mean having an R2 value of 0.54. Amongst three different machine learning 

models, the R2 value of LSTM was highest, followed by the SVR and SNN, correspondingly. 

The LSTM model's results represent more peaks and patterns than ANN and SVR, which have 

done a very good job of representing a general trend. Figure 18 B) shows the result of 

precipitation for SSP 585, representing that MME-Mean has an R2 value of 0.51. Amongst 

three different machine learning models, the LSTM performed better, followed by the ANN 

and SVR, respectively. The results of LSTM represent more peaks and patterns than ANN and 

SVR, which have done a very good job of representing a general trend. 

 

Figure 18 SSP-245 & 585 Precipitation - model performance comparison of L2 

A)

B)
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In Figure 19 A) TMAX, the R2 value for MME-mean was 0.78. When machine learning was 

applied, results got better, with all the ML techniques outperforming it. However, there were 

some differences among the models: compared to the observed data, the ANN model 

underestimated lower peaks, while both LSTM and SVR overestimated the lower peaks, which 

may introduce errors in future predictions of this data. In Figure 19 B) TMAX, the R2 value for 

MME-mean was 0.71. When machine learning was applied, results got better, with all the ML 

techniques outperforming it. However, there were some differences among the models: 

compared to the observed data, the ANN model underestimated lower peaks, while both LSTM 

and SVR overestimated the lower peaks, which may introduce errors in future predictions of 

this data. 

 

Figure 19 SSP 245 & 585 TMAX – model performance comparison of L2 

A)

B)
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In figure 20 A) TMIN, the R2 value of MME-mean is 0.90. With the application of ML, the 

results were improved, and all the ML techniques have shown better results with all the 

techniques. In the case of ANN, lower peaks are covered compared to observed data, while in 

the case of LSTM and SVR, the lower peaks were overestimated, which may generate some 

error in future prediction of these data. In Figure 20 B) TMIN, the R2 value of the MME-mean 

is 0.84. With the application of ML, the results were improved, and all the ML techniques have 

shown better results with all the techniques. In the case of ANN, lower peaks are covered 

compared to observed data, while in the case of LSTM and SVR, the lower peaks were 

overestimated, which may generate some error in future prediction of these data.  

 

Figure 20 SSP 245 & 585 TMIN – model performance comparison of L-2 

A)

B)
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Location 3 

A stretch of 10 km of this highway falls in Chhattisgarh NH-43, between Manendragarh and 

Ambikapur. This area is characterized by its proximity to the Hasdeo River, Aaruni Dam, and 

various waterfalls, making it particularly flood-prone. From Table 5 For PCP, the LSTM model 

performed best under SSP 245, achieving the lowest RMSE (56.30) and highest R² (0.85), 

indicating strong predictive accuracy. However, under SSP 585, SVR outperformed other 

methods with the lowest RMSE (61.26) and highest R² (0.82). The Mean method had the 

highest errors in both scenarios, reinforcing the need for advanced modeling techniques. ANN 

showed intermediate performance, while SVR demonstrated competitive results, particularly 

in SSP 585. In TMAX prediction, LSTM again excelled under SSP 245, with the lowest RMSE 

(1.44) and highest R² (0.91). Under SSP 585, SVR performed best (RMSE: 1.52, R²: 0.90), 

closely followed by LSTM.  

 

Table 5 SSP 245 & 585 Model performance comparison of L-3 

L-3 
Location 

PCP TMAX TMIN 

Method RMSE R2 MAE KGE RMSE R2 MAE KGE RMSE R2 MAE KGE 

SSP 245 

Mean 73.46 0.75 41.19 0.83 1.61 0.89 1.30 0.92 1.10 0.96 0.88 0.97 

LSTM 56.30 0.85 33.38 0.91 1.44 0.91 1.12 0.95 1.22 0.96 0.98 0.96 

ANN 67.09 0.79 42.81 0.82 1.58 0.89 1.22 0.91 1.09 0.96 0.83 0.97 

SVR 61.73 0.82 36.83 0.88 1.51 0.90 1.18 0.92 0.99 0.97 0.77 0.97 

SSP 585 

Mean 76.33 0.73 42.83 0.82 1.79 0.86 1.50 0.92 1.45 0.94 1.19 0.94 

ANN 67.12 0.79 42.87 0.82 1.67 0.88 1.32 0.89 1.05 0.97 0.82 0.97 

LSTM 67.78 0.79 37.32 0.86 1.59 0.89 1.27 0.95 1.27 0.95 1.03 0.92 

SVR 61.26 0.82 36.25 0.88 1.52 0.90 1.17 0.94 1.02 0.97 0.81 0.97 

 

The Mean method had the highest errors, particularly under SSP 585 (RMSE: 1.79), suggesting 

increased variability under higher emissions. ANN was consistent but slightly less accurate 

than LSTM and SVR. For TMIN, SVR was the top performer in both scenarios, achieving the 

lowest RMSE (0.99 in SSP 245; 1.02 in SSP 585) and highest R² (0.97). The Mean method had 

higher errors, especially under SSP 585 (RMSE: 1.45), while ANN and LSTM showed strong 

but slightly inferior results. Notably, LSTM's KGE dropped to 0.92 in SSP 585, indicating 

reduced hydrological consistency compared to SVR. It has been observed that LSTM is the 

best model for PCP and TMAX under SSP 245, but SVR outperformed SSP 585, suggesting 

that different methods may excel under varying climate scenarios. SVR consistently performed 
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best for TMIN, demonstrating robustness in predicting minimum temperatures. The Mean 

method consistently had the highest errors, reinforcing the superiority of machine learning 

models. ANN provided stable but intermediate results, while LSTM and SVR were more 

scenario-dependent, with LSTM excelling in moderate conditions SSP 245 and SVR 

performing better under extreme emissions SSP 585.  

 

 
Figure 21 SSP 245 & 585 Precipitation - Model performance comparison of L-3 

 

A)

B)
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Figure 21 A) shows the result of precipitation of SSP-245. The panel, that is, represents results 

for MME-Mean having an R2 value of 0.75. Amongst three different machine learning models, 

all ML techniques have shown nearby improvement in the results. In the case of extreme 

rainfall events that occurred between 2010 and 2014, the peaks are covered better by the LSTM. 

Figure 21 B) shows the result of precipitation of SSP-245. The panel, that is, represents results 

for MME-Mean having an R2 value of 0.73. Amongst three different machine learning models, 

all ML techniques have shown nearby improvement in the results. In the case of extreme 

rainfall events that occurred between 2010 and 2014, the peaks are covered better by the LSTM. 

 
Figure 22 SSP-245 & 585 TMAX - Model performance comparison of L-3 

In Figure 22 A) TMAX, the R2 value for MME-mean was 0.89. When machine learning was 

applied, results got better, and with all the ML techniques, a slight improvement was observed. 

All the ML techniques have shown comparable results. In Figure 22 B) TMAX, the R2 value 

A)

B)
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for MME-mean was 0.86. When machine learning was applied, the results got better. A slight 

improvement is observed with all the ML techniques. All the ML techniques have shown 

comparable results. 

 

Figure 23 SSP-245 & 585 TMIN - Model performance comparison of L-3 

 

In Figure 23 A) TMIN, the R2 value for MME-mean was 0.95, which is originally a good 

correlation between the mean of GCMs and observed data, but when machine learning was 

applied, the results got better. A slight improvement is observed with all the ML techniques. 

All the ML techniques have shown comparable results. In Figure 23 B) TMIN, the R2 value for 

MME-mean was 0.92, which is originally a good correlation between the mean of GCMs and 

observed data, but when machine learning was applied, the results got better. A slight 

A)

B)
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improvement is observed with all the ML techniques. All the ML techniques have shown 

comparable results. 

Location 4 

A stretch of 10 km of this highway falls in Madhya Pradesh NH-45, between Shahpura and 

Jabalpur. Where the Narmada River and several lakes define the local landscape, prone to both 

flooding and seismic activity (Seismic Zone III), this region experiences an annual rainfall of 

1280 mm, with temperatures ranging from 32.1°C to 18.3°C.  

Table 6 SSP-245 & 585 Model performance comparison of L-4 

L4 
Location 

PCP TMAX TMIN 

Method RMSE R2 MAE KGE RMSE R2 MAE KGE RMSE R2 MAE KGE 

SSP 245 

Mean 84.75 0.74 46.34 0.80 1.56 0.90 1.27 0.92 1.15 0.96 0.91 0.96 

LSTM 76.93 0.79 44.45 0.87 1.49 0.91 1.19 0.87 1.10 0.97 0.87 0.93 

ANN 81.33 0.77 52.32 0.79 1.55 0.90 1.20 0.91 1.10 0.97 0.85 0.97 

SVR 78.57 0.78 40.73 0.76 1.46 0.91 1.13 0.93 1.04 0.97 0.82 0.96 

SSP 585 

Mean 91.50 0.70 47.74 0.78 1.75 0.87 1.49 0.91 1.51 0.93 1.24 0.93 

ANN 81.33 0.77 52.32 0.79 1.55 0.90 1.23 0.93 1.17 0.96 0.89 0.94 

LSTM 61.83 0.86 39.63 0.92 1.47 0.91 1.20 0.95 1.06 0.97 0.83 0.93 

SVR 78.56 0.78 40.91 0.76 1.48 0.91 1.17 0.94 1.11 0.96 0.87 0.96 

 

From Table 6, evaluation metrics for PCP under SSP 245, LSTM performed best with the 

lowest RMSE (76.93) and highest R² (0.79), demonstrating strong predictive capability. SVR 

followed closely with an RMSE of 78.57, while ANN and Mean had higher errors. Under SSP 

585, LSTM significantly outperformed all other models, achieving the lowest RMSE (61.83) 

and highest R² (0.86), suggesting it handles extreme climate scenarios effectively. SVR and 

ANN showed similar performance, while the Mean method had the highest errors (RMSE: 

91.50, R²: 0.70). For TMAX under SSP 245, SVR was the best model, with the lowest RMSE 

(1.46) and highest R² (0.91). LSTM and ANN were competitive but slightly less accurate.  

Under SSP 585, LSTM emerged as the top performer (RMSE: 1.47, R²: 0.91), followed closely 

by SVR (RMSE: 1.48). The Mean method again had the highest errors, particularly under 

increased emissions (RMSE: 1.75). For TMIN under SSP 245, ANN and SVR performed best, 

with low RMSE (1.10 and 1.04, respectively) and high R² (0.97). LSTM had a slightly higher 

RMSE (1.10) but a lower KGE (0.93), indicating some inconsistency in hydrological 

efficiency. Under SSP 585, SVR maintained strong performance (RMSE: 1.11, R²: 0.96), while 



42 
 

LSTM had the lowest RMSE (1.06) but a reduced KGE (0.93), suggesting trade-offs between 

precision and reliability. The Mean method was the least accurate, particularly under extreme 

conditions (RMSE: 1.51). It has been observed that LSTM performs best for PCP in both 

scenarios, showing exceptional improvement under SSP 585, likely due to its ability to capture 

long-term dependencies in precipitation patterns. SVR performed best for TMAX in SSP 245, 

while LSTM excelled in SSP 585, indicating that model superiority can vary with emission 

scenarios. For TMIN, ANN and SVR were the most consistent, while LSTM showed slightly 

reduced KGE values, suggesting that simpler models may sometimes be more reliable for 

temperature prediction. The Mean method consistently underperformed, reinforcing the need 

for machine-learning approaches in climate modeling. 

 
Figure 24 SSP-245 & 585 Precipitation - Model performance comparison of L-4 

Figure 24 A) shows the result of the precipitation of SSP 245. The panel, that is, represents 

results for MME-Mean having an R2 value of 0.74. Among three different machine learning 

A)

B)
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models, the LSTM performs better, followed by the ANN and SVR, respectively. The LSTM 

model's results represent more peaks and patterns than ANN and SVR, which have done a very 

good job of representing a general trend. Figure 24 B) shows the precipitation of SSP 585, 

which represents results for MME-Mean, having an R2 value of 0.70. Among three different 

machine learning models, the LSTM performed better, followed by the ANN and SVR, 

respectively. The results of LSTM represent more peaks and patterns than ANN and SVR, 

which have done a very good job of representing a general trend. 

 

Figure 25 SSP-245 & 585 TMAX - Model performance comparison of L-4 

In Figure 25 A) TMAX, the R2   value for MME-mean was 0.89. When machine learning was applied, 

results got better, with all the ML techniques outperforming it. However, there were some differences 

among the models: compared to the observed data, the ANN model underestimated lower peaks, while 

A)

B)
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both LSTM and SVR overestimated the lower peaks, which may introduce errors in future predictions 

of this data. In Figure 25 B) TMAX, the R2 value for MME-mean was 0.86. When machine learning 

was applied, the results got better. A slight improvement is observed with all the ML techniques. All the 

ML techniques have shown comparable results.

 
Figure 26 SSP-245 TMIN - Model performance comparison of L-4 

In Figure 26 A) TMIN, the R2  value of the MME-mean is 0.95. With the application of ML, 

the results were improved, and all the ML techniques have shown better results with all the 

techniques. In the case of ANN, lower peaks are covered compared to observed data, while in 

the case of LSTM and SVR, the lower peaks were overestimated, which may generate some 

error in future prediction of these data. In figure 26 B) TMIN, the R2  value of MME-mean is 

0.92. With the application of ML, the results were improved, and all the ML techniques have 

A)
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shown better results with all the techniques. In the case of ANN, lower peaks are covered 

compared to observed data, while in the case of LSTM and SVR, the lower peaks were 

overestimated, which may generate some error in future prediction of these data. 

Location 5 

A stretch of 10 km of this highway falls in Maharashtra NH-47, between Betul and Saoner. An 

area surrounded by dams such as Umri, Kolar, and Nanda. This region, also vulnerable to 

floods, has a recorded average rainfall of 1060.2 mm, and temperatures fluctuate between 45°C 

and 12°C. From Table 7, for PCP under SSP 245, LSTM demonstrated the best performance, 

achieving the lowest RMSE (63.70) and highest R² (0.80), indicating strong predictive 

accuracy. SVR followed closely (RMSE: 67.03, R²: 0.78), while ANN and Mean had higher 

errors. Under SSP 585, LSTM significantly outperformed all other models, with the lowest 

RMSE (54.23) and highest R² (0.85), showcasing its robustness in extreme climate conditions. 

SVR and ANN performed moderately, while the Mean method had the highest errors (RMSE: 

78.63, R²: 0.69).  For TMAX under SSP 245, SVR was the top-performing model, with the 

lowest RMSE (1.39) and highest R² (0.91). LSTM and ANN were competitive but slightly less 

precise.  Under SSP 585, LSTM and SVR tied for the best performance (RMSE: 1.44 and 1.40, 

respectively), both maintaining high R² (0.90). The Mean method had the highest RMSE (1.60), 

particularly under increased emissions. For TMIN under SSP 245, SVR and LSTM performed 

comparably, with SVR having a slightly lower RMSE (1.21 vs. 1.10) but LSTM maintaining a 

higher KGE (0.90 vs. 0.95 for SVR). The Mean method was the least accurate (RMSE: 1.12). 

Under SSP 585, LSTM achieved the lowest RMSE (1.11), but its KGE (0.90) was lower than 

ANN and SVR (0.95), suggesting a trade-off between precision and consistency. SVR and 

ANN provided more balanced performance across metrics. It has been observed that LSTM 

performed best for PCP in both scenarios, with remarkable improvement under SSP 585, 

highlighting its ability to handle complex precipitation patterns under extreme conditions. SVR 

excelled in TMAX prediction under SSP 245, while LSTM and SVR were equally strong under 

SSP 585, indicating that model performance can vary with emission scenarios. For TMIN, SVR 

and ANN were the most consistent, while LSTM had lower KGE values, suggesting that 

simpler models may sometimes be more reliable for temperature forecasting. The Mean method 

consistently underperformed, reinforcing the superiority of machine learning approaches in 

climate modeling.   
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Table 7 SSP-245- Model performance comparison of L-5 

L5 
Location 

PCP TMAX TMIN 

Method RMSE R2 MAE KGE RMSE R2 MAE KGE RMSE R2 MAE KGE 

SSP 245 

Mean 74.62 0.72 41.00 0.68 1.44 0.90 1.19 0.91 1.12 0.95 0.86 0.96 

LSTM 63.70 0.80 37.59 0.84 1.40 0.90 1.12 0.93 1.10 0.95 0.87 0.90 

ANN 71.52 0.75 47.47 0.70 1.40 0.90 1.11 0.92 1.32 0.93 1.02 0.95 

SVR 67.03 0.78 37.26 0.72 1.39 0.91 1.09 0.92 1.21 0.94 0.97 0.95 

SSP 585 

Mean 78.63 0.69 43.09 0.65 1.60 0.88 1.34 0.90 1.39 0.92 1.10 0.94 

ANN 71.56 0.75 47.57 0.70 1.44 0.90 1.13 0.94 1.29 0.93 1.00 0.95 

LSTM 54.23 0.85 33.43 0.89 1.44 0.90 1.14 0.95 1.11 0.95 0.86 0.90 

SVR 68.20 0.77 36.84 0.70 1.40 0.90 1.11 0.93 1.24 0.94 1.00 0.95 

 

Figure 27 A) shows the result of precipitation of SSP-245. Part a) represents results for MME-

Mean having an R2  value of 0.72. Amongst three different machine learning models, the LSTM 

performed better, followed by the ANN and SVR, correspondingly. The results of LSTM 

represent more peaks and patterns than ANN and SVR, which have done a very good job of 

representing a general trend. Figure 27 B) shows the result of precipitation of SSP-585 

representing results for MME-Mean having an R2  value of 0.694 amongst three different 

machine learning models. The LSTM performs better, followed by the ANN and SVR, 

correspondingly. The results of LSTM represent more peaks and patterns than ANN and SVR, 

which have done a very good job of representing a general trend.
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Figure 27 SSP-245 Precipitation - Model performance comparison of L-5 

In Figure 28 A) TMAX, the R2  value for MME-mean was 0.89. When machine learning was 

applied, results got better, with all the ML techniques outperforming it. However, there were 

some differences among the models: compared to the observed data, the ANN model 

underestimated lower peaks, while both LSTM and SVR overestimated the lower peaks, which 

may introduce errors in future predictions of this data. In Figure 28 B) TMAX, the R2  value 

for MME-mean was 0.86. When machine learning was applied, results got better, with all the 

ML techniques outperforming it. However, there were some differences among the models: 

compared to the observed data, the ANN model underestimated lower peaks, while both LSTM 

A)

B)
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and SVR overestimated the lower peaks, which may introduce errors in future predictions of 

this data. 

 
Figure 28 SSP-245 & 585 TMAX- Model performance comparison of L-5 

In Figure 29 A) TMIN, the R2 value of the MME-mean is 0.93. With the application of ML, the 

results were improved, and all the ML techniques have shown better results with all the 

techniques. In the case of ANN, lower peaks are covered compared to observed data, while in 

the case of LSTM and SVR, the lower peaks were overestimated, which may generate some 

error in future prediction of these data. In figure 29 B) TMIN, the R2 value of MME-mean is 

0.90. With the application of ML, the results were improved, and all the ML techniques have 

A)

B)
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shown better results with all the techniques. In the case of ANN, lower peaks are covered 

compared to observed data, while in the case of LSTM and SVR, the lower peaks were 

overestimated, which may generate some error in future prediction of these data. 

 
Figure 29 SSP-245 & 585 TMIN- Model performance comparison of L-5 

 

 

A)

B)
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Location 6 

A stretch of 10 km of this highway falls in Gujarat NH-48, between Himatnagar and Vadodara. 

It passes through an industrial zone and intersects with major state highways. This region 

experiences an annual rainfall of 749 mm, with temperatures varying from 40°C to 14°C. From 

Table 8, For PCP under SSP 245 Scenario, LSTM emerged as the clear leader with superior 

performance (RMSE: 61.10, R²: 0.79), demonstrating a 22% improvement in RMSE over the 

Mean method. Other machine learning models (ANN, SVR) showed limited improvement over 

the baseline Mean approach. Under the SSP 585 Scenario, LSTM maintained its advantage 

(RMSE: 71.27, R²: 0.71), and the performance gap narrowed compared to SSP 245. Notably, 

ANN and SVR failed to significantly outperform the Mean method, suggesting challenges in 

modeling precipitation under extreme climate conditions. For TMAX, both scenarios showed 

remarkable consistency in model performance rankings. ANN achieved the best balance of 

accuracy (RMSE: 1.16/1.21) and reliability (KGE: 0.93/0.94) across scenarios, though LSTM 

and SVR showed competitive RMSE values. The Mean method's performance degraded more 

noticeably under SSP 585 (14% RMSE increase vs SSP 245), highlighting increased modeling 

challenges under extreme scenarios. For TMIN, ANN demonstrated exceptional performance 

with the lowest RMSE (0.82/0.83) and highest R² (0.97) in both scenarios, along with 

outstanding KGE values (0.98). LSTM surprisingly underperformed in TMIN prediction 

(KGE: 0.87/0.88), suggesting potential limitations in modeling minimum temperature 

dynamics despite its strong precipitation performance. It has been observed that ANN excelled 

in temperature prediction while LSTM dominates precipitation forecasting, suggesting 

different model architectures may be optimal for different climate variables. Performance 

degradation under SSP 585 was most pronounced for PCP prediction (LSTM's RMSE 

increased by 16.7%), indicating precipitation modeling becomes more challenging under 

extreme scenarios. ANN showed remarkable consistency across temperature predictions, 

maintaining high KGE values (0.93-0.98) in all scenarios. The Mean method's competitive 

performance in temperature prediction (particularly TMIN) suggests simpler approaches may 

sometimes suffice for certain climate variables. 

. 
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Table 8 SSP-245 Results Model performance comparison of L-6 

L6 
Location 

PCP TMAX TMIN 

Method RMSE R2 MAE KGE RMSE R2 MAE KGE RMSE R2 MAE KGE 

SSP 245 

Mean 78.50 0.65 39.32 0.72 1.17 0.90 0.98 0.89 1.20 0.94 0.99 0.95 

LSTM 61.10 0.79 34.33 0.82 1.14 0.91 0.92 0.89 1.28 0.93 1.07 0.87 

ANN 77.63 0.65 45.32 0.71 1.16 0.90 0.94 0.93 0.82 0.97 0.60 0.98 

SVR 78.09 0.65 37.41 0.65 1.14 0.91 0.92 0.87 0.86 0.97 0.64 0.93 

SSP 585 

Mean 82.88 0.60 41.05 0.67 1.39 0.86 1.14 0.88 1.61 0.90 1.38 0.93 

ANN 77.62 0.65 45.27 0.71 1.21 0.90 0.97 0.94 0.83 0.97 0.65 0.98 

LSTM 71.27 0.71 33.68 0.72 1.23 0.89 1.00 0.88 1.30 0.93 1.11 0.88 

SVR 77.89 0.65 37.44 0.66 1.16 0.90 0.93 0.88 0.87 0.97 0.66 0.93 

 

Figure 30 A) shows the result of precipitation of SSP-245. The panel, that is, represents results 

for MME-Mean having an R2 value of 0.65. Amongst three different machine learning models, 

the LSTM performed better, followed by the ANN and SVR, correspondingly. The results of 

LSTM represent more peaks and patterns than ANN and SVR, which have done a very good 

job of representing a general trend. Figure 30 B) shows the result of precipitation of SSP-585. 

a) represents results for MME-Mean having an R2 value of 0.60. Amongst three different 

machine learning models, the LSTM performs better, followed by the ANN and SVR, 

respectively. The results of LSTM represent more peaks and patterns than ANN and SVR, 

which have done a very good job of representing a general trend.
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Figure 30 SSP-245 Precipitation- Model performance comparison of L-6 

Figure 31 A) shows that in TMAX, the R2 value for MME-mean was 0.89. When machine 

learning was applied, results got better, with all the ML techniques outperforming it. However, 

there were some differences among the models: compared to the observed data, the ANN model 

underestimated lower peaks, while both LSTM and SVR overestimated the lower peaks, which 

may introduce errors in future predictions of this data. In Figure 31 B) TMAX, the R2 value for 

MME-mean was 0.84. When machine learning was applied, results got better, with all the ML 

techniques outperforming it. However, there were some differences among the models: 

compared to the observed data, the ANN model underestimated lower peaks, while both LSTM 

A)

B)
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and SVR overestimated the lower peaks, which may introduce errors in future predictions of 

this data. 

 
Figure 31 SSP-245 & 585 TMAX- Model performance comparison of L-6 

In Figure 32 A) TMIN, the R2 value of the MME-mean is 0.92. With the application of ML, the 

results were improved, and all the ML techniques have shown better results with all the 

techniques. In the case of ANN, lower peaks are covered compared to observed data, while in 

the case of LSTM and SVR, the lower peaks were overestimated, which may generate some 

error in future prediction of these data. In figure 32 B) TMIN, the R2 value of MME-mean is 

0.92. With the application of ML, the results were improved, and all the ML techniques have 

A)

B)
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shown better results with all the techniques. In the case of ANN, lower peaks are covered 

compared to observed data, while in the case of LSTM and SVR, the lower peaks were 

overestimated, which may generate some error in future prediction of these data. 

 
Figure 32 SSP-245 & 585 TMIN -Model performance comparison of L-6 

 

 

A)

B)
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Location 7 

A stretch of 10 km of this highway falls in Maharashtra NH-48_C, between Lonavala and 

Khandala. a popular tourist destination in Maharashtra. Known for its waterfalls and scenic 

viewpoints, the area has been severely affected by flooding in recent years, receiving an 

average annual rainfall of 4223 mm, with temperatures ranging from 34°C to 11°C. From Table 

9, for PCP under the SSP 245 Scenario, LSTM emerged as the clear leader with superior 

performance (RMSE: 61.10, R²: 0.79), demonstrating a 22% improvement in RMSE over the 

Mean method. Other machine learning models (ANN, SVR) showed limited improvement over 

the baseline Mean approach. Under the SSP 585 Scenario, LSTM maintained its advantage 

(RMSE: 71.27, R²: 0.71), and the performance gap narrowed compared to SSP 245. Notably, 

ANN and SVR failed to significantly outperform the Mean method, suggesting challenges in 

modeling precipitation under extreme climate conditions. For TMAX, both scenarios showed 

remarkable consistency in model performance rankings. ANN achieved the best balance of 

accuracy (RMSE: 1.16/1.21) and reliability (KGE: 0.93/0.94) across scenarios, though LSTM 

and SVR showed competitive RMSE values. The Mean method's performance degraded more 

noticeably under SSP 585 (14% RMSE increase vs SSP 245), highlighting increased modeling 

challenges under extreme scenarios. For TMIN, ANN demonstrated exceptional performance 

with the lowest RMSE (0.82/0.83) and highest R² (0.97) in both scenarios, along with 

outstanding KGE values (0.98). LSTM surprisingly underperformed in TMIN prediction 

(KGE: 0.87/0.88), suggesting potential limitations in modeling minimum temperature 

dynamics despite its strong precipitation performance. It has been observed that ANN excelled 

in temperature prediction while LSTM dominates precipitation forecasting, suggesting 

different model architectures may be optimal for different climate variables. Performance 

degradation under SSP 585 was most pronounced for PCP prediction (LSTM's RMSE 

increased by 16.7%), indicating precipitation modeling becomes more challenging under 

extreme scenarios. ANN showed remarkable consistency across temperature predictions, 

maintaining high KGE values (0.93-0.98) in all scenarios. The Mean method's competitive 

performance in temperature prediction (particularly TMIN) suggests simpler approaches may 

sometimes suffice for certain climate variables. 
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Table 9 SSP-245 & 585 Model performance comparison of L-7 

L7 
Location 

PCP TMAX TMIN 

Method RMSE R2 MAE KGE RMSE R2 MAE KGE RMSE R2 MAE KGE 

SSP 245 

Mean 167.13 0.76 89.26 0.71 1.12 0.83 0.89 0.85 0.97 0.90 0.75 0.94 

LSTM 126.17 0.86 70.49 0.87 0.99 0.87 0.81 0.91 0.82 0.93 0.62 0.95 

ANN 142.75 0.82 92.36 0.80 0.92 0.88 0.73 0.93 0.81 0.93 0.63 0.96 

SVR 135.11 0.84 72.89 0.78 0.92 0.88 0.73 0.86 0.82 0.93 0.65 0.93 

SSP 585 

Mean 178.19 0.73 93.60 0.67 1.42 0.72 1.16 0.79 1.23 0.83 0.99 0.92 

ANN 142.77 0.82 92.38 0.80 1.06 0.84 0.86 0.90 0.87 0.92 0.69 0.95 

LSTM 119.39 0.88 66.17 0.91 1.10 0.83 0.88 0.92 0.79 0.93 0.59 0.96 

SVR 136.83 0.84 73.77 0.78 0.99 0.86 0.80 0.86 0.84 0.92 0.68 0.92 

 

Figure 33 A) shows the result of precipitation of SSP-245. The panel, that is, represents results 

for MME-Mean having an R2 value of 0.77. Amongst three different machine learning models, 

the LSTM performed better, followed by the ANN and SVR, correspondingly. The results of 

LSTM represent more peaks and patterns than ANN and SVR, which have done a very good 

job of representing a general trend. Figure 33 B) shows the result of precipitation of SSP-585. 

a) represents results for MME-Mean having an R2 value of 0.73. Amongst three different 

machine learning models, the LSTM was the best, followed by the ANN and SVR, 

correspondingly. The LSTM model's results represent more peaks and patterns than ANN and 

SVR, which have done a very good job of representing a general trend.
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Figure 33 SSP-245 & 585 precipitation- Model performance comparison of L-7 

In Figure 34 A) TMAX, the R2 value for MME-mean was 0.83. When machine learning was 

applied, results got better, with all the ML techniques outperforming it. However, there were 

some differences among the models: compared to the observed data, the ANN model 

underestimated lower peaks, while both LSTM and SVR overestimated the lower peaks, which 

may introduce errors in future predictions of this data. In Figure 34 B) TMAX, the R2 value for 

MME-mean was 0.71. When machine learning was applied, results got better, with all the ML 

techniques outperforming it. However, there were some differences among the models: 

compared to the observed data, the ANN model underestimated lower peaks, while both LSTM 

A)

B)
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and SVR overestimated the lower peaks, which may introduce errors in future predictions of 

this data. 

 
Figure 34 SSP-245 TMAX- Model performance comparison of L-7 

In Figure 35 A) TMIN, the R2 value of the MME-mean is 0.86. With the application of ML, 

the results were improved, and all the ML techniques have shown better results with all the 

techniques. In the case of ANN, lower peaks are covered compared to observed data, while in 

the case of LSTM and SVR, the lower peaks were overestimated, which may generate some 

error in future prediction of these data. In Figure 35 B), in the case of TMIN, the R2 value of 

MME-mean is 0.78. With the application of ML, the results were improved, and all the ML 

A)

B)
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techniques have shown better results with all the techniques. In the case of ANN, lower peaks 

are covered compared to observed data, while in the case of LSTM and SVR, the lower peaks 

were overestimated, which may generate some error in future prediction of these data. 

 
Figure 35 SSP-245 & 585 TMIN- Model performance comparison of L-7 

 

 

A)

B)
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Location 8 

A stretch of 10 km of this highway falls in Madhya Pradesh, NH-52, between Dewas and 

Sendhwa, an area marked by both industrial and agricultural activities. The Narmada River, 

which flows through this region, contributes to its vulnerability to floods. The area sees an 

average rainfall of 833.6 mm and temperatures ranging between 44°C and 10°C. From Table 

10, for PCP prediction, LSTM emerged as the superior model, achieving the lowest RMSE 

(52.30 in SSP 245; 50.22 in SSP 585) and highest R² (0.79-0.80), representing a 12-23% 

improvement over the Mean baseline. While SVR showed competitive PCP results with better 

MAE values (26.38 in SSP 245), its overall performance was slightly inferior to LSTM. 

Temperature predictions revealed different optimal models: ANN consistently delivered the 

best TMIN forecasts with the lowest RMSE (1.02 in SSP 245; 1.05 in SSP 585) and maintained 

high KGE values (0.97), while all machine learning methods performed comparably for TMAX 

prediction, with ANN showing a slight edge in KGE (0.91-0.92). The analysis highlights 

several key patterns: LSTM's clear advantage in precipitation prediction is maintained across 

scenarios, ANN's superior performance in minimum temperature forecasting, and the general 

consistency of machine learning methods for maximum temperature prediction. Notably, the 

Mean method was consistently outperformed, particularly for PCP under SSP 585, where 

LSTM achieved a 23% lower RMSE. These results suggest that optimal climate forecasting at 

Location L-8 would benefit from employing LSTM for precipitation and ANN for temperature 

predictions, with particular attention to scenario conditions, as model performance shows some 

variation between SSP 245 and SSP 585. The findings support the use of specialized models 

for different climate variables and highlight the value of machine-learning approaches over 

traditional baseline methods. 

Table 10 SSP-245 Model performance comparison of L-8 

L8 
Location 

PCP TMAX TMIN 

Method RMSE R2 MAE KGE RMSE R2 MAE KGE RMSE R2 MAE KGE 

SSP 245 

Mean 60.00 0.72 30.85 0.73 1.32 0.91 1.09 0.89 1.12 0.95 0.84 0.97 

ANN 59.80 0.72 33.55 0.74 1.33 0.91 1.05 0.92 1.02 0.96 0.79 0.97 

LSTM 52.30 0.79 28.14 0.88 1.35 0.91 1.10 0.88 1.15 0.95 0.90 0.95 

SVR 54.71 0.76 26.38 0.76 1.35 0.91 1.06 0.90 1.05 0.96 0.85 0.96 

SSP 585 

Mean 64.88 0.67 31.98 0.68 1.49 0.89 1.24 0.88 1.46 0.92 1.13 0.94 

ANN 59.74 0.72 33.26 0.74 1.37 0.90 1.06 0.91 1.05 0.96 0.83 0.97 

LSTM 50.22 0.80 29.22 0.75 1.33 0.91 1.05 0.92 1.15 0.95 0.90 0.94 

SVR 55.35 0.76 26.96 0.76 1.36 0.91 1.07 0.90 1.09 0.95 0.87 0.96 
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Figure 36 A) shows the precipitation of SSP-585, which represents results for MME-Mean 

having an R2 value of 0.71. Amongst three different machine learning models, the LSTM 

performed better, followed by the ANN and SVR, correspondingly. The results of LSTM 

represent more peaks and patterns than ANN and SVR, which have done a very good job of 

representing a general trend. Figure 36 B) shows the result of precipitation of SSP-585 

representing results for MME-Mean having an R2 value of 0.66. Amongst three different 

machine learning models, the LSTM was the best, followed by the ANN and SVR, 

correspondingly.  

 

Figure 36 SSP-245 & 585 Precipitation- Model performance comparison of L-8 

A)

B)
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In Figure 37 A) TMAX, the R2 value for MME-mean was 0.89. When machine learning was 

applied, results got better, with all the ML techniques outperforming it. However, there were 

some differences among the models: compared to the observed data, the ANN model 

underestimated lower peaks, while both LSTM and SVR overestimated the lower peaks, which 

may introduce errors in future predictions of this data. In figure 37 B) TMAX, the R2 value for 

MME-mean was 0.87. When machine learning was applied, results got better, with all the ML 

techniques outperforming it. However, there were some differences among the models: 

compared to the observed data, the ANN model underestimated lower peaks, while both LSTM 

and SVR overestimated the lower peaks, which may introduce errors in future predictions of 

this data.  

 
Figure 37 SSP-245 & 585 TMAX- Model performance comparison of L-8 

A)

B)
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In Figure 38 A) TMIN, the R2 value of the MME-mean is 0.89. With the application of ML, 

the results were improved, and all the ML techniques have shown better results with all the 

techniques. In the case of ANN, lower peaks are covered compared to observed data, while in 

the case of LSTM and SVR, the lower peaks were overestimated, which may generate some 

error in future prediction of these data. In Figure 38 B) TMIN, the R2 value of the MME-mean 

is 0.89. With the application of ML, the results were improved, and all the ML techniques have 

shown better results with all the techniques. In the case of ANN, lower peaks are covered 

compared to observed data, while in the case of LSTM and SVR, the lower peaks were 

overestimated, which may generate some error in future prediction of these data. 

 
Figure 38 SSP-245 & 585 TMIN- Model performance comparison of L-8 

A)

B)
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Location 9 

A stretch of 10 km of this highway falls in Gujarat NH-64, between Ahmedabad and Nadiad. 

It runs through a dense urban area. The region’s rainfall averages 749 mm annually, and 

temperatures range from 40°C to 14°C. From Table 11, for PCP forecasting, LSTM 

demonstrates clear superiority, achieving an 18% lower RMSE (63.48-63.97) compared to the 

Mean baseline while maintaining robust performance under both SSP scenarios. Temperature 

predictions show different optimal models: ANN emerges as the best performer for both 

maximum (TMAX) and minimum (TMIN) temperatures, particularly excelling in TMIN 

prediction with exceptional consistency (RMSE: 0.83, KGE: 0.99). While SVR shows 

competitive results for TMAX, ANN's superior reliability in temperature forecasting is evident 

through its consistently high KGE values (0.93-0.95). The analysis highlights the limitations 

of the Mean method, which consistently underperforms across all variables, particularly in 

extreme scenarios (SSP 585). These findings suggest that optimal climate forecasting at 

Location L-9 requires a tailored approach, employing LSTM for precipitation and ANN for 

temperature predictions. The results underscore the importance of variable-specific model 

selection and demonstrate the value of machine learning approaches in improving climate 

prediction accuracy, especially under changing climate conditions. Future research could 

explore hybrid modeling approaches to enhance predictive performance across all climate 

variables further.  

Table 11 SSP-245 & 585 Model performance comparison of L-9 

L9 
Location 

PCP TMAX TMIN 

Method RMSE R2 MAE KGE RMSE R2 MAE KGE RMSE R2 MAE KGE 

SSP 245 

Mean 77.30 0.63 38.37 0.68 1.19 0.90 1.00 0.89 1.19 0.95 0.98 0.95 

LSTM 63.48 0.75 36.28 0.79 1.17 0.91 0.94 0.86 1.15 0.95 0.96 0.93 

ANN 74.47 0.66 44.64 0.68 1.13 0.91 0.93 0.95 0.83 0.97 0.61 0.95 

SVR 74.36 0.66 35.52 0.62 1.13 0.91 0.91 0.88 0.84 0.97 0.64 0.94 

SSP 585 

Mean 81.49 0.59 39.91 0.63 1.41 0.87 1.17 0.89 1.61 0.90 1.39 0.93 

ANN 74.46 0.66 44.64 0.68 1.18 0.91 0.95 0.93 0.83 0.97 0.65 0.99 

LSTM 63.97 0.75 31.31 0.86 1.18 0.91 0.96 0.89 1.17 0.95 0.93 0.96 

SVR 74.99 0.65 35.83 0.63 1.14 0.91 0.92 0.88 0.86 0.97 0.66 0.93 

 

Figure 39 A) shows the result of precipitation of SSP-245. a) represents results for MME-Mean 

having an R2 value of 0.63. Amongst three different machine learning models, the LSTM 
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performed better, followed by the ANN and SVR, correspondingly. The results of LSTM 

represent more peaks and patterns than ANN and SVR, which have done a very good job of 

representing a general trend. Figure 39 B) shows the result of precipitation of SSP-585. a) 

represents results for MME-Mean having an R2 value of 0.59. Amongst three different machine 

learning models, the LSTM was the best, followed by the ANN and SVR, correspondingly. The 

LSTM model's results represent more peaks and patterns than ANN and SVR, which have done 

a very good job of representing a general trend.  

 

Figure 39 SSP-245 Precipitation- Model performance comparison of L-9 

A)

B)
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In Figure 40 A), TMAX, the R2 value for MME-mean was 0.89. When machine learning was 

applied, results got better, with all the ML techniques outperforming it. However, there were 

some differences among the models: compared to the observed data, the ANN model 

underestimated lower peaks, while both LSTM and SVR overestimated the lower peaks, which 

may introduce errors in future predictions of this data. Figure 40 B), the R2 value for MME-

mean was 0.85. When machine learning was applied, results got better, with all the ML 

techniques outperforming it. However, there were some differences among the models: 

compared to the observed data, the ANN model underestimated lower peaks, while both LSTM 

and SVR overestimated the lower peaks, which may introduce errors in future predictions of 

this data.  

 
Figure 40 SSP-245 TMAX - Model performance comparison of L-9 

A)

B)
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In Figure 41 A) TMIN, the R2 value of the MME-mean is 0.92. With the application of ML, 

the results were improved, and all the ML techniques have shown better results with all the 

techniques. In the case of ANN, lower peaks are covered compared to observed data, while in 

the case of LSTM and SVR, the lower peaks were overestimated, which may generate some 

error in future prediction of these data. In Figure 41 B) TMIN, the R2 value of the MME-mean 

is 0.87. With the application of ML, the results were improved, and all the ML techniques have 

shown better results with all the techniques. In the case of ANN, lower peaks are covered 

compared to observed data, while in the case of LSTM and SVR, the lower peaks were 

overestimated, which may generate some error in future prediction of these data. 

 
Figure 41 SSP-245 & 585 TMIN- Model performance comparison of L-9 

A)

B)



68 
 

Location 10 

A stretch of 10 km of this highway falls in Tamil Nadu NH-87, between Ramanathapuram to 

Mandapam. It runs close to the coastline, making it particularly vulnerable to both floods and 

cyclones. The region receives an annual rainfall of 821 mm, with temperatures ranging between 

40°C and 21°C. From Table 11 for PCP, the LSTM model outperformed other methods in both 

SSP scenarios, achieving the lowest RMSE (71.16 in SSP 245; 71.72 in SSP 585) and highest 

KGE (0.74 in SSP 245; 0.76 in SSP 585), indicating better accuracy and reliability. The Mean 

method consistently performed the worst, with higher errors and lower R² values. In TMAX 

predictions, SVR and ANN showed strong performance, particularly under SSP 585, where 

SVR achieved the highest R² (0.87) and lowest MAE (0.60). However, LSTM also performed 

well in SSP 245, with a high KGE of 0.94. The Mean method again had the highest errors, 

especially in SSP 585 (RMSE = 1.40). For TMIN, LSTM demonstrated the best results in both 

scenarios, with the lowest RMSE (0.45 in SSP 245; 0.47 in SSP 585) and highest KGE (0.97 

in SSP 245; 0.95 in SSP 585). ANN and SVR also performed well but were slightly less 

accurate than LSTM. The Mean method had the weakest performance, particularly in SSP 585 

(R² = 0.66). Overall, machine learning models (LSTM, ANN, SVR) significantly improved 

prediction accuracy over the Mean baseline, with LSTM excelling in PCP and TMIN, while 

SVR and ANN were competitive in TMAX. 

Table 12 SSP-245 Model performance comparison of L-10 

 PCP TMAX TMIN 

L10 
Location Method RMSE R2 MAE KGE RMSE R2 MAE KGE RMSE R2 MAE KGE 

SSP 245 

Mean 78.90 0.46 53.50 0.55 1.19 0.70 0.97 0.85 0.76 0.79 0.64 0.92 

LSTM 71.16 0.56 49.33 0.74 1.04 0.77 0.84 0.94 0.45 0.92 0.34 0.97 

ANN 73.49 0.53 56.51 0.61 0.91 0.82 0.73 0.90 0.55 0.89 0.45 0.91 

SVR 73.36 0.53 47.86 0.61 0.82 0.85 0.64 0.89 0.55 0.89 0.42 0.92 

SSP 585 

Mean 80.17 0.44 52.86 0.48 1.40 0.58 1.20 0.80 0.97 0.66 0.88 0.88 

ANN 73.49 0.53 56.51 0.61 0.78 0.87 0.61 0.93 0.49 0.91 0.38 0.89 

LSTM 71.72 0.55 51.92 0.76 1.04 0.77 0.84 0.94 0.47 0.92 0.34 0.95 

SVR 72.47 0.54 47.55 0.62 0.79 0.87 0.60 0.90 0.51 0.90 0.38 0.93 

 

Figure 42 A) shows the precipitation of the SSP 245 Panel, which represents the results for 

MME-Mean with an R2 value of 0.46. Among three different machine learning models, the 

LSTM performed better, followed by the ANN and SVR, respectively. The results of LSTM 

represent more peaks and patterns than ANN and SVR, which have done a very good job of 
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representing a general trend. Figure 42 B) shows the result of precipitation of SSP585, 

representing results for MME-Mean, having an R2 value of 0.44. Among three different 

machine learning models, the LSTM performed better, followed by the ANN and SVR, 

respectively. The results of LSTM represent more peaks and patterns than ANN and SVR, 

which have done a very good job of representing a general trend. 

 
Figure 42 SSP-245 & 585 Precipitation- Model performance comparison of L-10 

In Figure 43 A) TMAX, the R2 value for MME-mean was 0.73. When machine learning was 

applied, results got better, with all the ML techniques outperforming it. However, there were 

some differences among the models: compared to the observed data, the ANN model 

A)

B)
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underestimated lower peaks, while both LSTM and SVR overestimated the lower peaks, which 

may introduce errors in future predictions of this data. Figure 43 B) TMAX, the R2 value for 

MME-mean was 0.60. When machine learning was applied, results got better, with all the ML 

techniques outperforming it. However, there were some differences among the models: 

compared to the observed data, the ANN model underestimated lower peaks, while both LSTM 

and SVR overestimated the lower peaks, which may introduce errors in future predictions of 

this data. 

 
Figure 43 SSP-245 & 585 TMAX- Model performance comparison of L-10 

A)

B)
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In Figure 44 A) TMIN, the R2 value of the MME-mean is 0.71. With the application of ML, 

the results were improved, and all the ML techniques have shown better results with all the 

techniques. In the case of ANN, lower peaks are covered compared to observed data, while in 

the case of LSTM and SVR, the lower peaks were overestimated, which may generate some 

error in future prediction of these data. In Figure 44 B) TMIN, the R2 value of the MME-mean 

is 0.54. With the application of ML, the results were improved, and all the ML techniques have 

shown better results with all the techniques. In the case of ANN, lower peaks are covered 

compared to observed data, while in the case of LSTM and SVR, the lower peaks were 

overestimated, which may generate some error in future prediction of these data. 

 
Figure 44 SSP-245 & 585 TMIN- Model performance comparison of L-10 

A)

B)
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4.1 Trend Analysis 

The trend analysis of CMIP6 multi-model ensembles using machine learning (ML) techniques 

revealed significant variations in model performance across different scenarios (SSP245 and 

SSP585) and geographical locations. Table 13 and Table 14 show that the means of GCMs 

consistently exhibited strong, statistically significant increasing trends (p < 0.05) in all regions, 

with particularly steep Sen’s slope values under SSP585 (e.g., L7: +10.55 units/year). It 

suggests that conventional MME provides a robust, consensus-based projection of warming 

trends, reinforcing its reliability in climate change assessments. In contrast, ML-based 

ensembles (ANN, LSTM, SVR) displayed greater variability in trend detection. LSTM 

demonstrated the most divergent behavior, with sharp increasing trends in some regions (e.g., 

L2 SSP585: Zc = 3.95, slope = +3.75) but significant decreasing trends in others (e.g., L7 

SSP585: Zc = -10.03, slope = -5.08). This inconsistency suggests that while LSTM captures 

complex temporal dependencies, its projections may be highly sensitive to regional climate 

dynamics. ANN, meanwhile, produced more moderate but spatially consistent trends, 

particularly under SSP585 (e.g., L5 SSP585: slope = +0.056, p < 0.001), indicating better 

stability compared to LSTM. SVR performed least reliably, with mostly non-significant trends 

(e.g., L8 SSP245: p = 0.36) except in a few cases (e.g., L8 SSP585: Zc = 5.27, p = 1.40E-07), 

while various machine learning models demonstrate unique strengths in climate trend analysis, 

each exhibits notable limitations in long-term climate trend detection. The Multi-Model 

Ensemble (MME) stands out as the most reliable for large-scale, consensus-based projections, 

offering robust and widely accepted trends. However, LSTM models, though successful in 

capturing extreme trends, suffer from high variability, making them unsuitable for standalone 

use in policy-relevant assessments. Artificial Neural Networks (ANN) present a balanced 

compromise, delivering moderate yet more stable trends compared to LSTM, though they may 

lack the precision required for detailed long-term projections. Conversely, Support Vector 

Regression (SVR) underperforms in climate trend detection, indicating limited potential for 

refining ensemble models.  
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Table 13 Trend Analysis of SSP 245 for different models at all 10 locations 

Location Model 
Near future  Far future  

Corrected 
Zc 

new P-
value 

Sen's 
slope 

Corrected 
Zc 

new P-
value 

Sen's 
slope 

L1 

ANN 0.8376 0.4023 0.0745 0.8188 0.4129 0.0127 
LSTM 0.5500 0.5823 2.8192 -0.6023 0.5470 -1.6622 
Mean 0.7767 0.4373 1.1205 2.0697 0.0385 0.7487 
SVR -0.8376 0.4023 -0.5597 1.5726 0.1158 0.2046 

L2 

ANN 1.1902 0.2340 0.0866 0.6357 0.5250 0.0169 
LSTM -0.8376 0.4023 -1.9796 -1.7733 0.0762 -1.4446 
Mean 1.5870 0.1125 2.4252 2.4091 0.0160 1.4968 
SVR -1.4157 0.1569 -0.5537 1.1618 0.2453 0.1733 

L3 

ANN 0.5731 0.5666 0.0178 0.6190 0.5359 0.0168 
LSTM 0.9698 0.3321 3.9872 2.5596 0.0105 3.9737 
Mean 0.0000 1.0000 -0.1052 9.5803 0.0000 1.8538 
SVR -1.7736 0.0761 -0.5520 -0.5688 0.5695 -0.1081 

L4 

ANN 0.7053 0.4806 0.0368 0.0578 0.9539 0.0019 
LSTM 0.2204 0.8255 0.9114 1.0707 0.2843 2.7564 
Mean -0.5731 0.5666 -1.6008 1.4118 0.1580 1.1809 
SVR 0.0882 0.9297 0.0331 -0.9536 0.3403 -0.1176 

L5 

ANN 2.2042 0.0275 0.0772 0.4852 0.6276 0.0159 
LSTM -1.6739 0.0942 -4.6941 1.4103 0.1585 1.6563 
Mean 0.3046 0.7606 0.4478 2.1061 0.0352 1.5046 
SVR 1.0139 0.3106 0.5178 0.5521 0.5809 0.0277 

L6 

ANN 1.5429 0.1229 0.1151 0.3513 0.7253 0.0128 
LSTM -0.3527 0.7243 -3.6543 -2.9420 0.0033 -2.5586 
Mean 0.6380 0.5235 1.5349 2.5095 0.0121 1.9683 
SVR 0.7122 0.4764 0.2678 -0.3011 0.7633 -0.0523 

L7 

ANN 0.2204 0.8255 0.0117 0.6190 0.5359 0.0144 
LSTM -0.1322 0.8948 -0.1608 -1.0038 0.3155 -1.7446 
Mean 0.9257 0.3546 4.2946 1.3623 0.1731 1.6266 
SVR -0.4408 0.6593 -0.3231 1.0874 0.2768 0.2608 

L8 

ANN 0.8817 0.3780 0.1250 0.9201 0.3575 0.0426 
LSTM -0.0441 0.9648 -0.1020 0.1673 0.8671 0.1812 
Mean 0.3527 0.7243 0.2915 1.4722 0.1410 0.9652 
SVR -0.9257 0.3546 -0.6663 -0.2596 0.7952 -0.0530 

L9 

ANN 1.4979 0.1342 0.1117 0.2844 0.7761 0.0092 
LSTM -0.7053 0.4806 -3.0653 0.0340 0.9729 0.2637 
Mean 0.5273 0.5980 1.5482 2.3422 0.0192 1.7379 
SVR 0.2204 0.8255 0.0861 1.0425 0.2972 0.1807 

L10 

ANN 1.4988 0.1339 0.0166 3.9010 0.0001 0.0128 
LSTM -0.1600 0.8729 -1.6714 -3.0857 0.0020 -2.2940 
Mean 0.3527 0.7243 0.6428 0.9834 0.3254 0.6444 
SVR -1.1133 0.2656 -0.6818 2.4367 0.0148 0.4459 
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4.2 Entropy 
In this study, entropy analysis is done based on the standardized variability Index, which 

Normalizes the variability index between 0 and 1, for which two indices, SVIAE and SVIME, are 

used. The analysis of SVIAE is done based on the Monthly and Seasonal scales, while SVIME is 

done on the Monthly, Seasonal, and Annual scales for both scenarios, i.e., SSP 245 and SSP 

585, to understand the variability in the models used for ensembling of GCMs.    

4.2.1 Monthly and Seasonal Variability under SSP 245 and SSP 585 based on SVIAE 

 

Figure 45 SVIAE plots of Seasonal and Monthly analysis for SSP 245 and 585 

The seasonal and monthly evaluation of SVIAE across both scenarios reveals noticeable 

variability patterns among the models. From Figure 45 A) and B), SVR demonstrates the 

highest variability, followed closely by the mean of the GCM ensemble. In contrast, Figures 

45 C) and D) show that both the ANN and LSTM exhibit significantly lower variability, which 

suggests that SVR and Mean of GCMs have predicted overpredicted values, which led to higher 

variability. The performance of machine learning (ML)-based ensemble techniques (ANN, 

LSTM, SVR) was evaluated against the traditional multi-model mean (MME) for seasonal and 

monthly CMIP6 projections under SSP245 and SSP585 scenarios. Overall, the results 

demonstrate distinct patterns in model performance across different temporal scales and 

emission scenarios. For SSP245, the SVR model consistently outperformed other methods, 

achieving the highest values across most locations (e.g., L6: 0.926, L4: 0.825). The MME 

ranked second in performance, particularly excelling in L6 (0.892) and L9 (0.900), while ANN 

A) B)

C) D)
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and LSTM showed intermediate results, with LSTM generally underperforming (e.g., L10: 

0.137). Under SSP585, a similar trend emerged, with SVR maintaining dominance (e.g., L6: 

0.933, L3: 0.835) and MME remaining competitive (L6: 0.881, L9: 0.889). Notably, LSTM 

exhibited slight improvements under SSP585 in some locations (e.g., L1: 0.447 vs. 0.266 in 

SSP245), though it still lagged behind SVR and MME. The MME demonstrated superior 

performance in monthly SSP245 projections for most locations (e.g., L6: 0.432, L9: 0.437), 

followed closely by SVR (L6: 0.447, L9: 0.451). ANN and LSTM displayed higher variability, 

with LSTM occasionally outperforming ANN (e.g., L3: 0.402 vs. 0.348) but remaining 

inconsistent (e.g., L8: 0.338 vs. 0.194 for ANN). Under SSP585, SVR again led in most cases 

(e.g., L6: 0.449, L3: 0.391), while MME retained strong performance (L6: 0.424, L9: 0.429). 

LSTM showed improved results in some regions (e.g., L1: 0.398 vs. 0.176 in SSP245), but its 

overall performance remained less stable compared to SVR and MME. 
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4.2.2 Inter-annual rainfall variability based on SVIME across different time-scales 

To investigate the inter-annual rainfall variability over monthly, seasonal, and annual variation, 

which gives an understanding of the variability obtained out of the maximum variability 

possible that can be associated with the time-series data. The calculation of SVIME is based on 

the amount of rainfall for each location. Table 14 reveals an annual analysis of SVIME across 

10 locations, demonstrating that LSTM and Mean exhibit a low value. At the same time, ANN 

and SVR showed very low values in the order of 10⁻⁶ to 10⁻⁸ under both scenarios, SSP 245 

and SSP 585. Table 16 also revealed that the SVIME value at the annual scale is smaller under 

both scenarios. Mishra et al., 2009 revealed that the inter-annual variability will be larger at a 

smaller time scale and becomes smaller at a larger time scale. 

Table 14 Annual analysis of SVIME for SSP 245 and 585 

 
Scenario 245 585 

Location ANN LSTM SVR Mean ANN LSTM SVR Mean 

L1 6.54757E-
07 

0.00408429
7 

5.16E-
05 

0.0005
4 

1.04E-
06 0.00823 5.09E-

05 
0.001833

1 

L2 5.12415E-
07 

0.00071905
8 

8.59E-
05 

0.0005
7 

6.34E-
07 

0.00173
9 

5.11E-
05 

0.001351
9 

L3 5.15443E-
07 0.0018456 2.40E-

05 
0.0006

1 
9.08E-

07 
0.00359

6 
2.81E-

05 
0.001150

5 

L4 2.09585E-
07 

0.00200858
1 

2.13E-
05 

0.0007
7 

4.27E-
07 

0.00149
8 

2.85E-
05 

0.001420
4 

L5 3.64125E-
07 

0.00136851
7 

4.98E-
05 0.0006 5.36E-

07 
0.00111

4 
6.55E-

05 
0.001659

7 

L6 9.29437E-
07 0.00712296 3.65E-

05 
0.0012

9 
1.32E-

06 
0.00351

3 
3.32E-

05 
0.002592

7 

L7 1.3261E-07 0.00110087
8 

1.48E-
05 

0.0008
2 

1.58E-
07 

0.00175
8 

1.49E-
05 

0.001842
2 

L8 1.45636E-
06 

0.00102901
1 

5.49E-
05 

0.0009
7 

1.61E-
06 

0.00217
1 

5.83E-
05 

0.002195
7 

L9 1.61062E-
06 

0.00547588
6 

6.50E-
05 

0.0013
2 

2.50E-
06 

0.00559
9 

5.66E-
05 

0.002608
7 

L10 1.1515E-08 0.00236526
3 

6.19E-
05 

0.0008
3 

1.10E-
08 

0.00339
2 

9.51E-
05 

0.001784
2 

 

Figures 46 and 47 show that the SVIME value at the annual scale is higher for LSTM, followed 

by the Mean of GCMs, which indicates that the model performance is highly variable, backing 

up the results we obtained in the trend analysis of SSP 245 in Table 13 that LSTM shows highly 

variable results in Near future at some locations it shows increasing while at others it shows 

decreasing indicating variability in the model performance.  
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Figure 46 Heatmap of SSP 245 SVIME Annual values 

 

Figure 47 Heatmap of SSP 585 SVIME Annual values 

SVIME value at the Seasonal and Annual scale was very insignificant under both Scenarios, SSP 

245 and SSP 585, for all four ensembling methods. For more information, refer to Annexure-1 

Tables 18,19,20 and 21.  



78 
 

Chapter 5 

 Conclusion 

In this study, 13 GCMs are ensembled using simple mean and 3 ML, and their performance is 

measured on the basis of evaluation metrics like R2, RMSE, MAE, and KGE based on the 

trained model's future data. This future ensembled data is used to calculate the trend analysis 

using MMK and Sen’s slope. An entropy analysis of future ensembles is also performed to 

understand the variability of precipitation ensembles using Mean and 3 ML techniques. Based 

on the results, the following conclusion has been drawn: 

1. According to the Multi-model ensemble by Mean and 3 ML techniques like LSTM, ANN, 

and SVR on the basis of performance evaluation metrics, LSTM performed better, followed 

by other ANN and SVR, which shows the ML technique has improved the value of different 

parameter of evaluation metrics.  

2. In the case of temperature, on the basis of the evaluation metric, all ensembling techniques 

performed better as the temperature parameter does not show a sharp change with respect 

to time.  

3. Mann-Kendall and Sen’s slope tests show that the ensemble means exhibited a statistically 

significant increasing trend across all 10 different locations. However, LSTM showed an 

increasing trend in most of the locations.  

4. In the case of trend analysis of temperature, LSTM showed a decreasing trend while all 

other ML techniques showed an increasing trend, which shows that it fails to capture short-

term change, i.e., Temperature.  

5. Standard variability analysis using SVIAE reveals that SVR and MME-mean exhibit high 

variability. At the same time, SVIME analysis at the annual scale showed low values for 

LSTM and MME-Mean and insignificant for SVR and ANN.  

5.1 Limitations 

1. The study has several limitations that warrant consideration. First, the reliance on CMIP6 

GCMs introduces inherent biases and uncertainties, particularly in regional precipitation 

and temperature projections, which may affect the accuracy of downscaled data. While 

advanced bias correction techniques like quantile delta mapping (QDM) and machine 

learning approaches are employed, challenges such as overcorrection and distortion of 

climate signals persist.  
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2. The MME methods, including traditional techniques like simple and weighted mean, may 

underestimate true uncertainties or fail to capture extreme events due to structural 

differences among models fully.  

3. The study acknowledges computational constraints and the limited ability of current ML-

based ensembles to address all nonlinear climate dynamics comprehensively.  

4. The evaluation metrics, though comprehensive, may not fully align with practical outcomes 

in imbalanced data scenarios, potentially limiting the interpretability of results for specific 

applications. These limitations highlight the need for further refinement in model 

integration, bias correction, and metric selection to enhance the reliability of climate 

projections. 

5.2 Future scope 

The study opens several promising avenues for future research to enhance the accuracy and 

reliability of climate projections. First, advancements in bias correction techniques, such as 

integrating hybrid methods that combine quantile mapping with machine learning (e.g., deep 

learning or wavelet-based approaches), could further reduce systematic biases in CMIP6 

models, particularly for regional precipitation and temperature variability. Second, improving 

Multi-Model Ensemble (MME) methods by incorporating dynamic weighting schemes, 

Bayesian optimization, or ensemble selection algorithms could better address inter-model 

spread and uncertainty, especially for extreme weather events.  Another critical direction is the 

development of hybrid frameworks that seamlessly merge traditional GCMs with machine 

learning models, such as transformer-based architectures or physics-informed neural networks, 

to enhance downscaling and parameterization while preserving physical consistency. 

Additionally, future work could explore the integration of high-resolution observational 

datasets and emerging climate reanalysis products to constrain model uncertainties better.  

Further research is also needed to refine evaluation metrics, particularly for imbalanced or non-

Gaussian data, by developing domain-specific performance indicators that align with real-

world risk assessment needs.  
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Annexure 
In this section, all the supplementary details related to this study are presented in tables.  

Table 15 Trend Analysis of PCP 585 

Locations Models 
Near_Future Far Future 

Corrected 
Zc 

new P-
value 

Sen's 
slope 

Corrected 
Zc 

new P-
value 

Sen's 
slope 

L1 

ANN 1.4547 0.1457 0.1117 3.5634 0.0004 0.0820 
LSTM 0.1730 0.8627 0.8702 1.7602 0.0784 3.6506 
Mean 3.9234 0.3536 4.9314 5.8721 4.30E-09 5.7375 
SVR 1.9397 0.0524 0.9550 1.3886 0.1650 0.2181 

L2 

ANN -0.8031 0.4219 -0.0292 2.2641 0.0236 0.0520 
LSTM -2.2482 0.0246 -7.6969 3.7198 0.0002 4.2098 
Mean 3.4385 0.0006 5.6015 7.5761 3.56E-14 4.7293 
SVR 0.4408 0.6593 0.2493 3.0546 0.0023 0.3729 

L3 

ANN -0.2645 0.7914 -0.0238 2.9779 0.0029 0.0944 
LSTM 2.4940 0.0126 5.9733 4.2077 0.0422 2.2783 
Mean 1.3225 0.1860 2.0504 8.1062 5.00E-16 4.9679 
SVR -1.2784 0.2011 -0.6593 1.5391 0.1238 0.2831 

L4 

ANN 0.1322 0.8948 0.0122 3.4965 0.0005 0.1025 
LSTM -0.3527 0.7243 -1.6901 0.8820 0.3778 1.2297 
Mean 0.7359 0.4618 0.9943 4.8851 1.03E-06 6.4372 
SVR 1.5984 0.1100 0.6568 -1.5559 0.1197 -0.2990 

L5 

ANN -0.1763 0.8600 -0.0125 3.3459 0.0008 0.0889 
LSTM -0.0441 0.9648 -0.8705 2.2552 0.0241 0.9578 
Mean 0.8376 0.4023 0.9868 6.9800 2.95E-12 6.4428 
SVR 1.1902 0.2340 0.5500 0.6190 0.5359 0.1897 

L6 

ANN 1.2714 0.2036 0.0560 5.8053 6.43E-09 0.1808 
LSTM -0.9257 0.3546 -5.1659 4.0069 0.2313 -0.6805 
Mean 0.4849 0.6277 0.9743 5.8219 5.82E-09 7.2236 
SVR 2.5771 0.0100 1.3193 0.3935 0.6940 0.0862 

L7 

ANN 0.2595 0.7952 0.0122 4.0988 4.15E-05 0.1100 
LSTM -1.2306 0.2185 -3.6615 -5.3404 9.27E-08 -5.8944 
Mean 1.2343 0.2171 8.0185 4.9687 6.74E-07 14.7259 
SVR 2.5771 0.0100 1.3193 0.3935 0.6940 0.0862 

L8 

ANN 1.9837 0.0473 0.2432 3.0281 0.0025 0.1256 
LSTM 0.0000 1.0000 -0.2486 -3.2226 0.0013 -3.4013 
Mean 1.2784 0.2011 1.7098 5.6379 1.72E-08 6.1289 
SVR 0.2897 0.7721 0.1732 2.9064 0.0037 0.3904 

L9 

ANN 1.0671 0.2859 0.0996 4.5170 6.27E-06 0.1957 
LSTM 1.4547 0.1457 5.6363 1.0964 0.2729 1.7384 
Mean 0.3086 0.7576 0.5586 5.6045 2.09E-08 6.5938 
SVR -0.8376 0.4023 -0.2259 0.9961 0.3192 0.1635 

L10 

ANN 0.4408 0.6593 0.0028 2.0217 0.0432 0.0064 
LSTM -0.5550 0.5789 -3.2349 2.4361 0.2080 -1.9097 
Mean 2.3364 0.0195 5.3200 4.7345 2.20E-06 4.7396 
SVR 1.0139 0.3106 0.5966 0.5521 0.5809 0.1894 
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Table 16 Trend Analysis of TMAX 585 

Location Models 
Near Future Far Future 

Corrected 
Zc 

new P-
value 

Sen's 
slope 

Corrected 
Zc 

new P-
value 

Sen's 
slope 

L1 

ANN 5.202 0.000 0.045 8.699 0.000 0.058 
LSTM 0.661 0.508 0.006 -9.710 0.000 -0.025 
Mean 5.334 0.000 0.035 9.017 0.000 0.044 
SVR 3.522 0.000 0.027 8.649 0.000 0.043 

L2 

ANN 5.070 0.000 0.039 11.982 0.000 0.054 
LSTM -1.984 0.047 -0.012 -6.475 0.000 -0.028 
Mean 5.643 0.000 0.033 11.895 0.000 0.046 
SVR 4.981 0.000 0.030 8.800 0.000 0.047 

L3 

ANN 5.466 0.000 0.049 8.331 0.000 0.057 
LSTM -0.176 0.860 -0.001 -9.266 0.000 -0.069 
Mean 5.599 0.000 0.050 9.151 0.000 0.057 
SVR 5.951 0.000 0.039 8.800 0.000 0.050 

L4 

ANN 5.290 0.000 0.066 8.566 0.000 0.064 
LSTM -3.350 0.001 -0.025 -20.657 0.000 -0.050 
Mean 4.826 0.000 0.050 9.051 0.000 0.056 
SVR 5.114 0.000 0.040 7.953 0.000 0.051 

L5 

ANN 5.334 0.000 0.066 8.716 0.000 0.065 
LSTM 2.067 0.039 0.017 1.837 0.066 0.020 
Mean 5.687 0.000 0.046 9.017 0.000 0.052 
SVR 5.510 0.000 0.041 8.766 0.000 0.050 

L6 

ANN 5.422 0.000 0.054 9.101 0.000 0.065 
LSTM -5.040 0.000 -0.030 -6.697 0.000 -0.045 
Mean 5.775 0.000 0.041 9.302 0.000 0.046 
SVR 5.643 0.000 0.038 8.800 0.000 0.044 

L7 

ANN 4.849 0.000 0.053 9.051 0.000 0.061 
LSTM -0.132 0.895 -0.003 3.846 0.000 0.024 
Mean 5.951 0.000 0.041 9.436 0.000 0.049 
SVR 5.158 0.000 0.036 9.084 0.000 0.049 

L8 

ANN 5.510 0.000 0.057 8.800 0.000 0.062 
LSTM 0.309 0.758 0.003 3.255 0.001 0.017 
Mean 5.599 0.000 0.043 9.051 0.000 0.049 
SVR 5.025 0.000 0.037 8.867 0.000 0.050 

L9 

ANN 5.070 0.000 0.049 9.084 0.000 0.061 
LSTM -1.455 0.146 -0.011 -2.274 0.023 -0.068 
Mean 5.863 0.000 0.042 9.235 0.000 0.047 
SVR 5.687 0.000 0.039 8.883 0.000 0.044 

L10 

ANN 4.981 0.000 0.035 8.766 0.000 0.052 
LSTM 1.035 0.301 0.003 2.500 0.012 0.015 
Mean 5.731 0.000 0.034 8.326 0.004 0.041 
SVR 5.510 0.000 0.025 13.713 0.000 0.038 
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Table 17 Trend Analysis of TMIN 585 

Location Models 
Near Future Far Future 

Corrected 
Zc 

new P-
value 

Sen's 
slope Corrected Zc new P-value Sen's slope 

L1 

ANN 5.9071 3.48E-09 0.0490 13.4634 0.0000 0.0566 
LSTM -0.2204 0.8255 -0.0004 -6.5740 4.90E-11 -0.0145 
Mean 5.6426 1.67E-08 0.0458 9.5694 0.0000 0.0516 
SVR 5.4663 4.60E-08 0.0340 9.4021 0.0000 0.0489 

L2 

ANN 5.2900 1.22E-07 0.0413 10.3246 0.0000 0.0547 
LSTM 0.4408 0.6593 0.0010 -4.7847 1.71E-06 -0.0110 
Mean 6.0394 1.55E-09 0.0381 9.5192 0.0000 0.0476 
SVR 5.8631 4.54E-09 0.0299 9.4356 0.0000 0.0528 

L3 

ANN 6.0835 1.18E-09 0.0491 9.8641 0.0000 0.0647 
LSTM -4.4965 6.91E-06 -0.0229 -8.1340 4.00E-16 -0.0729 
Mean 6.1276 8.92E-10 0.0520 15.9103 0.0000 0.0652 
SVR 5.8631 4.54E-09 0.0386 9.9049 0.0000 0.0640 

L4 

ANN 5.2900 1.22E-07 0.0466 9.4690 0.0000 0.0704 
LSTM -2.7409 0.0061 -0.0063 -7.0724 1.52E-12 -0.0448 
Mean 5.1300 2.90E-07 0.0505 9.5025 0.0000 0.0680 
SVR 5.2459 1.56E-07 0.0367 9.3185 0.0000 0.0673 

L5 

ANN 5.6426 1.67E-08 0.0502 11.5259 0.0000 0.0699 
LSTM -2.6009 0.0093 -0.0096 -7.5890 3.22E-14 -0.0579 
Mean 5.6867 1.30E-08 0.0501 10.0362 0.0000 0.0666 
SVR 5.2900 1.22E-07 0.0363 7.6386 2.19E-14 0.0619 

L6 

ANN 4.6892 2.74E-06 0.0416 7.8644 3.70E-15 0.0542 
LSTM -4.0116 6.03E-05 -0.0157 -8.9169 0.0000 -0.0588 
Mean 5.6426 1.67E-08 0.0475 9.4523 0.0000 0.0587 
SVR 5.1577 2.50E-07 0.0311 9.4021 0.0000 0.0590 

L7 

ANN 4.7779 1.77E-06 0.0497 18.9220 0.0000 0.0624 
LSTM 1.3225 0.1860 0.0045 3.7064 0.0002 0.1202 
Mean 6.1716 6.76E-10 0.0400 9.7200 0.0000 0.0472 
SVR 4.7610 1.93E-06 0.0254 9.4584 0.0000 0.0478 

L8 

ANN 4.6728 2.97E-06 0.0490 12.2034 0.0000 0.0669 
LSTM -2.2923 0.0219 -0.0087 -8.0303 9.00E-16 -0.0387 
Mean 5.3781 7.53E-08 0.0467 10.5434 0.0000 0.0658 
SVR 4.8932 9.92E-07 0.0318 10.9620 0.0000 0.0655 

L9 

ANN 5.2900 1.22E-07 0.0449 9.0842 0.0000 0.0554 
LSTM -4.0556 5.00E-05 -0.0238 -8.9169 0.0000 -0.0799 
Mean 5.5986 2.16E-08 0.0482 9.4356 0.0000 0.0600 
SVR 5.0255 5.02E-07 0.0330 9.4356 0.0000 0.0598 

L10 

ANN 5.9071 3.48E-09 0.0414 7.2543 4.04E-13 0.0331 
LSTM 0.0371 0.9704 0.0003 -0.4892 0.6247 -0.0011 
Mean 7.0730 1.52E-12 0.0341 6.3611 2.00E-10 0.0302 
SVR 6.6097 3.85E-11 0.0253 5.6211 1.90E-08 0.0334 
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Table 18 Seasonal Analysis of SVIME for SSP 245 

Scenar
io 

Mode
ls   L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

SSP 
245 

ANN 

Monsoon 1.56059E-
09 

2.96423E-
09 

1.80844E-
09 

3.06917E-
09 

1.40772E-
09 

4.38773E-
09 

1.69713E-
10 

2.04577E-
09 

1.07678E-
08 

1.03636E-
07 

Post-Monsoon 
Season 

1.18621E-
05 

3.14338E-
06 

5.17113E-
05 

1.2083E-
05 

1.6418E-
05 

9.6326E-
05 

2.29638E-
05 

7.80389E-
05 

0.0008571
6 

5.69978E-
10 

Pre-Monsoon 
Season 

2.33991E-
05 

1.81093E-
05 

0.0005025
68 

2.39102E-
05 

1.74399E-
05 

0.0001034
91 

0.0007578
34 

0.0001427
19 

0.0030985
39 

1.06853E-
07 

Winter 5.70299E-
05 

1.07231E-
05 

0.0005458
12 

3.83852E-
05 

3.27445E-
05 

1.42156E-
15 1 4.19029E-

08 
9.9509E-

16 
3.12019E-

07 

LST
M 

Monsoon 0.0047167
4 

0.0005011
29 

0.0016931
31 

0.0030151
35 

0.0023380
16 

0.0087874
49 

0.0010115
73 

0.0027756
85 

0.0048258
82 

0.0070087
42 

Post-Monsoon 
Season 

0.0089601
52 

0.0013634
52 

0.0216846
32 

0.0042986
4 

0.0030635
22 

0.0100669
57 

0.0131772
1 

0.0034687
03 

0.0248040
28 

0.0059290
75 

Pre-Monsoon 
Season 

0.0087248
48 

0.0195135
11 

0.2302969
57 

0.0085143
45 

0.0056889
32 

0.1735082
5 

0.1268708
23 

0.0378251
25 

0.0629206
12 

0.0009276
55 

Winter 0.0286832
85 

0.0153130
87 

0.1546219
59 

0.0031284
72 

0.0080908
13 

0.0366828
43 

0.1872742
69 

0.0303109
35 

0.0073402
23 

0.0069206
17 

Mean 

Monsoon 0.0006866
77 

0.0005722
63 

0.0006681
11 

0.0008191
04 

0.0006311
9 

0.0013132
95 

0.0008449
14 

0.0009536
01 

0.0013388
28 

0.0029525
37 

Post-Monsoon 
Season 

0.0034137
16 

0.0023418
76 

0.0085239
34 

0.0080811
14 

0.0064607
13 

0.0179480
55 

0.0070321
32 

0.0104720
86 

0.0187508
15 

0.0012169
29 

Pre-Monsoon 
Season 

0.0028506
25 

0.0076780
42 

0.0118363
71 

0.0105598
88 

0.0115433
36 

0.0755209
64 

0.0176365
32 

0.0284698
32 

0.0622274
39 

0.0064370
47 

Winter 1 0.0862698
15 

0.0117280
66 

0.0112911
21 

0.0175917
1 1 0.0598748

73 
0.4187738

14 1 0.0205763
53 

SVR 

Monsoon 6.44809E-
05 

0.0001006
64 

2.71842E-
05 

1.72268E-
05 

5.28818E-
05 

3.54948E-
05 

9.75138E-
06 

4.69918E-
05 

6.58084E-
05 

0.0022197
66 

Post-Monsoon 
Season 

0.0004704
25 

0.0003070
58 

0.0027871
01 

0.0028028
56 

0.0014429
29 

0.0063799
14 

0.0015505
49 

0.0048053
51 

0.0085985
63 

3.56196E-
05 

Pre-Monsoon 
Season 

0.0007230
3 

0.0018769
87 

0.0076054
83 

0.0048237
77 

0.0085046
65 

0.0703730
66 

0.0126394
29 

0.2389169
77 

0.0234167
78 

0.0012226
14 

Winter 0.0030584
26 

0.0112414
17 

0.0076436
56 

0.0043892
33 

0.0089800
29 1 6.36398E-

05 
1.6394E-

05 
9.9509E-

16 
0.0027043

7 
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Table 19 Seasonal Analysis of SVIME for SSP 585 

Scenar
io 

Mode
ls 

 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

SSP 
585 

ANN 

Monsoon 1.28903E-
09 

1.6375E-
09 

1.50224E-
09 

2.13901E-
09 

9.04347E-
10 

3.77402E-
09 

1.21755E-
10 

2.08748E-
09 

6.41891E-
09 

1.60779E-
07 

Post-Monsoon 
Season 

1.73089E-
05 

3.53545E-
06 

7.16035E-
05 

1.83867E-
05 

1.55378E-
05 0.0001069 1.92477E-

05 
6.74067E-

05 
0.0009767

55 
5.26904E-

10 
Pre-Monsoon 

Season 
3.4494E-

05 
2.68008E-

05 
0.0005913

02 
3.45851E-

05 
3.08283E-

05 0.0001474 0.0010124
55 

0.0001667
08 

0.0038571
85 

7.91865E-
08 

Winter 1.93315E-
08 

2.24975E-
05 

0.0005671
64 

4.04228E-
05 

3.09451E-
05 

4.81051E-
10 1 5.77465E-

08 
1.23747E-

05 
2.43593E-

07 

LST
M 

Monsoon 0.0200068
66 

0.0022934
41 

0.0037691
4 

0.0019857
72 

0.0014850
49 

0.0039198
56 

0.0015200
72 

0.0021532
53 

0.0042656
2 

0.0067076
99 

Post-Monsoon 
Season 

0.0098244
43 

0.0045935
02 0.0247842 0.0065883

43 
0.0043412

76 
0.0069713

26 
0.0158268

29 
0.0054082

27 
0.0373574

22 
0.0091472

06 
Pre-Monsoon 

Season 
0.0373558

47 
0.0445304

36 
0.0980524

08 
0.0078509

77 
0.0125906

97 
0.2856041

2 
0.2033759

22 
0.0279726

26 
0.2755224

29 
0.0018739

32 

Winter 0.1358800
03 

0.0534747
72 

0.1044859
98 

0.0064526
1 

0.0057508
72 

0.2066952
88 

0.2615386
78 

0.1990358
52 

0.1133395
55 

0.0044458
85 

Mean 

Monsoon 0.0015556
43 

0.0012515
28 

0.0010225
9 

0.0013831
42 

0.0014107
31 

0.0024995
07 

0.0017025
98 

0.0018983
91 

0.0025382
62 

0.0052372
54 

Post-Monsoon 
Season 

0.0074709
25 

0.0033964
1 

0.0136175
23 

0.0122884
47 

0.0107507
64 

0.0202337
23 

0.0093736
65 

0.0139099
2 

0.0220129
42 

0.0021405
58 

Pre-Monsoon 
Season 

0.0051605
91 

0.0089832
51 

0.0116988
28 

0.0127374
92 

0.0149628
21 

0.0607280
75 

0.0241586
25 

0.0252233
21 

0.0559674
33 

0.0055075
98 

Winter 1 0.0796482
49 

0.0128384
25 

0.0117969
1 

0.0161770
55 1 0.0519162

29 
0.3319147

91 1 0.0178362
28 

SVR 

Monsoon 5.84782E-
05 

5.87409E-
05 

2.59519E-
05 

2.16929E-
05 

6.36774E-
05 

3.37604E-
05 

1.24938E-
05 

4.02572E-
05 

6.26924E-
05 

0.0027353
66 

Post-Monsoon 
Season 

0.0004283
78 

0.0002940
34 

0.0072039
58 

0.0055449
99 

0.0025334
55 

0.0101971
46 

0.0020368
21 

0.0050975
77 

0.0147328
61 

3.17636E-
05 

Pre-Monsoon 
Season 

0.0009466
13 

0.0025353
26 

0.0098773
56 

0.0093475
18 

0.0084786
29 

0.1184694
82 

0.0244669
31 

0.1834972
8 

0.0479209
61 

0.0012647
01 

Winter -9.9509E-
16 

0.0042223
75 

0.0115832
08 

0.0043035
62 

0.0065187
54 1 1.86071E-

05 
3.42037E-

05 
0.0004595

15 
0.0046889

21 
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Table 20 Monthly Analysis of SVIME under SSP 245 
    L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

ANN 

January 0.000194919 1.3166E-07 0.00100753 5.9092E-05 5.5903E-05 1.42E-05 1 1.4134E-08 1.95E-01 3.8794E-07 
February 0.000307731 3.62266E-05 0.00102697 7.7953E-05 8.9775E-05 0.000307731 1 1.6863E-07 1.95E-01 6.36536E-07 

March 0.000212429 5.49606E-05 0.00093503 6.7166E-05 6.6183E-05 3.11423E-08 1 7.8581E-06 0.000112435 5.47204E-07 
April 0.000110847 0.000191752 0.00175039 2.0338E-05 2.607E-05 6.67106E-08 1 1.1908E-06 7.86145E-05 1.77876E-07 
May 1.06754E-05 1.08605E-05 0.00159196 9.4568E-05 7.4099E-05 0.000604221 0.000757834 0.00082283 0.004267965 2.60967E-07 
June 3.99148E-08 7.86555E-08 6.0509E-08 1.2766E-07 3.0281E-08 1.21952E-07 1.51515E-09 5.3916E-08 4.18224E-07 5.76999E-07 
July 1.50844E-10 1.12697E-10 1.4929E-11 2.402E-11 1.8591E-11 7.10963E-12 1.36469E-12 1.49E-11 1.13039E-11 4.11229E-07 

August 6.29307E-05 0.000925748 0.00010647 1.1738E-11 5.4883E-11 1.11233E-11 6.12236E-12 1.4118E-11 1.76978E-11 3.07854E-07 
September 8.69204E-05 9.66715E-05 3.3568E-09 7.0734E-09 2.3876E-09 2.36587E-08 5.05242E-09 4.06E-09 3.15853E-08 1.27332E-07 

October 3.59366E-08 1.03245E-09 4.4862E-05 2.7673E-05 5.4721E-06 0.00033655 8.90371E-06 5.6783E-05 0.001414879 2.79221E-10 
November 0.000285379 3.96192E-07 0.00020069 1.9406E-05 0.00013209 8.09423E-05 0.000558138 0.00063688 0.000995493 1.34051E-10 
December 1.6946E-06 0.000237314 0.0093507 8.236E-05 0.00011901 0.000167204 1 0.00024042 0.011716515 6.90114E-09 

LSTM 

January 0.040885419 0.011559364 0.20347682 0.00330361 0.00855267 0.02895458 0.162694109 0.0438896 0.006511405 0.011827812 
February 0.021668697 0.024974377 0.14368554 0.00312204 0.00799806 0.059770017 0.294278416 0.02120658 0.008991538 0.002836924 

March 0.011725935 0.029910618 0.18551877 0.00388494 0.00898216 0.135518939 0.795769554 0.02846009 0.032486949 0.001146499 
April 0.008823057 0.027734272 0.40501462 0.00971393 0.00695566 0.312638564 0.555715188 0.04881799 0.101107716 0.000756946 
May 0.007974316 0.014087594 0.40405844 0.01961984 0.00627764 0.443536214 0.122680781 0.05251205 0.130450153 0.00110703 
June 0.00760547 0.00494408 0.04389795 0.01797289 0.0382294 0.255536654 0.009291828 0.04907392 0.039367375 0.002010983 
July 0.006430154 0.000808644 0.00500623 0.01110678 0.00962277 0.031369014 0.00099269 0.01422588 0.007334764 0.004342797 

August 0.00748071 0.000495992 0.0022741 0.00356645 0.00253636 0.009796362 0.001292228 0.00336699 0.003485238 0.010428342 
September 0.008033389 0.00065552 0.0035813 0.00520703 0.00173761 0.007587964 0.002005119 0.00222513 0.01205423 0.019316061 

October 0.00883605 0.000798348 0.02691286 0.00765902 0.00298893 0.012960942 0.007507709 0.00241507 0.0383022 0.012571888 
November 0.012832821 0.001574191 0.06060089 0.00403957 0.00894151 0.014401662 0.028591337 0.02684634 0.013227239 0.005206568 
December 0.035037048 0.003829236 0.20389925 0.00378249 0.00914526 0.010462377 0.078241198 0.11379871 0.01074926 0.007181478 

Mean 

January 1 0.946395662 0.02555564 0.02155688 0.04446873 1 1 0.73582074 1 0.025518179 
February 1 0.085794498 0.02044267 0.02025682 0.02901859 1 0.059874873 0.47674766 1 0.044009833 

March 0.021893576 0.048976971 0.01728588 0.01868697 0.02675624 0.430137435 0.018032429 0.12664686 0.402798694 0.029649508 
April 0.006309897 0.014984103 0.04021625 0.06828223 0.08096516 1 1 0.57438754 1 0.01124088 
May 0.004810271 0.011620639 0.03385236 0.02907647 0.02172216 0.075976979 0.019516845 0.02966813 0.063164766 0.010940801 
June 0.004611344 0.004298131 0.00559262 0.00867739 0.00612395 0.006665907 0.005073552 0.0061908 0.006951885 0.011853043 
July 0.001482344 0.001226834 0.00144849 0.00183836 0.00150718 0.001709912 0.001689153 0.00160969 0.001823709 0.006398153 

August 0.002057175 0.001598522 0.00075101 0.00108858 0.00095156 0.00246483 0.001424319 0.00135823 0.002491106 0.006959325 
September 0.00189787 0.001494552 0.00199771 0.00324962 0.00258345 0.006887415 0.00333484 0.0042998 0.006983551 0.006659805 

October 0.004096998 0.003219314 0.00957863 0.01277317 0.00922841 0.022655367 0.009153237 0.01562034 0.022591954 0.002561585 
November 0.011572238 0.005403549 0.20342519 0.07807696 0.03149171 0.065603136 0.028736329 0.03120503 0.112236479 0.001867664 
December 0.004709735 0.024631593 0.05107461 0.02470359 0.04200192 0.164166055 0.167073294 0.10393866 0.136327706 0.006461978 

SVR 

January 0.003058426 1 0.01292796 0.00500279 0.00636912 1 0.000843114 1.5186E-06 0.843113713 0.003224064 
February 1 0.011241417 0.01923775 0.02146108 0.02782903 1 0.333716722 0.53465861 1 0.007439727 

March 0.001673312 0.033709073 0.00746198 0.00733469 0.0090315 1 0.002389293 0.71764503 0.000571285 0.005181956 
April 0.001532037 0.024156158 0.0045511 1 0.03178836 1 0.52934114 1 0.0014852 0.001850009 
May 0.001486747 0.002079885 0.05273981 0.03328121 0.04016103 0.070373066 0.038985625 0.24108564 0.035172302 0.002573318 
June 0.00045941 0.000839135 0.00034582 0.00055327 0.00033953 0.001442327 9.73671E-05 0.00057459 0.002382046 0.019732213 
July 0.000246246 0.000285822 4.8425E-05 4.5404E-05 0.00014749 4.14481E-05 3.22178E-06 8.605E-05 5.82115E-05 0.008523321 

August 0.000232236 0.000292718 4.5193E-05 2.7089E-05 0.00019944 5.00647E-05 1.46271E-05 6.5401E-05 6.52888E-05 0.004397931 
September 0.000129039 0.000330646 0.00020432 0.000176 0.00035082 0.000421041 0.000308725 0.00027109 0.00074078 0.003527391 

October 0.000476189 0.000252158 0.00299341 0.00378796 0.00118314 0.019197854 0.002580011 0.00621336 0.025409365 0.000140531 
November 0.007256424 0.002069559 0.00016398 0.00163864 0.02859388 0.001577928 0.006793656 0.02460302 0.003964954 0.000419431 
December 1.29405E-05 0.014185184 0.06121403 0.03355447 0.11439266 0.001233134 2.24262E-05 0.0144735 0.047045554 0.000223302 
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Table 21 Monthly analysis SVIME under  SSP 585 
    L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

ANN 

January 0.111220558 2.08E-10 0.000883 4.88E-05 3.16E-05 1.85952E-09 1 2.83E-08 2.07671E-05 3.65E-07 
February 8.61455E-08 7.68E-05 0.001 8.28E-05 7.8E-05 0.000247556 1 2.11E-07 0.125185693 6.7E-07 

March 0.000263747 8.1E-05 0.001048 9.32E-05 8.47E-05 5.65875E-08 1 8.78E-06 0.000205852 4.54E-07 
April 0.000147882 0.000263 0.001728 1.49E-05 1.52E-05 2.30705E-07 1 1.79E-07 0.000140235 1.19E-07 
May 1.10782E-05 5.87E-06 0.001392 0.000113 0.00011 0.000833003 0.001012455 0.000939 0.005248005 1.97E-07 
June 3.64754E-08 4.29E-08 4.55E-08 9.25E-08 2.25E-08 1.14621E-07 1.41618E-09 6.52E-08 2.51602E-07 5.69E-07 
July 1.31121E-10 2.45E-10 1.66E-11 4.55E-11 2.83E-11 6.15435E-12 1.42838E-12 1.7E-11 9.28362E-12 3.93E-07 

August 6.53581E-11 1.57E-10 1.16E-11 6.28E-12 1.65E-11 7.0097E-12 3.57479E-12 7.58E-12 9.75614E-12 3.5E-07 
September 5.35607E-11 1.31E-10 4.46E-09 1.1E-08 1.45E-09 1.28008E-08 3.22691E-09 1.66E-09 1.49031E-08 1.37E-07 

October 8.72035E-09 3.98E-10 6.09E-05 3.55E-05 3.97E-06 0.000388667 6.18856E-06 4.26E-05 0.001683866 4.29E-10 
November 0.000424646 2.73E-07 0.000405 2.55E-05 0.000121 7.73923E-05 0.000400463 0.000532 0.00179577 1.96E-10 
December 2.36821E-06 0.000263 0.007368 9.61E-05 0.000139 0.000143147 1 0.000142 0.009571157 4.99E-09 

LSTM 

January 0.183434537 0.045023 0.113343 0.007321 0.00608 0.20673796 0.250655621 0.223471 0.094549148 0.008349 
February 0.141565134 0.217402 0.102305 0.006184 0.006426 0.210175491 0.675192397 0.199907 0.188139619 0.003988 

March 0.102711442 0.18355 0.103557 0.007725 0.005071 0.268069942 1 0.092476 0.387759658 0.004081 
April 0.052419568 0.079913 0.089375 0.009003 0.015308 0.377985638 1 0.024434 0.491504204 0.001293 
May 0.022012602 0.020341 0.129308 0.010065 0.1202 0.287678417 0.20180354 0.019634 0.257330111 0.001303 
June 0.024955336 0.004836 0.024251 0.012399 0.063647 0.113265199 0.013493885 0.013802 0.055678371 0.002042 
July 0.041389427 0.002932 0.008322 0.008867 0.003295 0.011159984 0.00139713 0.011907 0.004040665 0.004423 

August 0.035271351 0.003671 0.00401 0.003381 0.001604 0.003775235 0.001740292 0.001944 0.003687363 0.00941 
September 0.022038996 0.005084 0.005962 0.002627 0.001857 0.003487112 0.003149593 0.001619 0.012858883 0.018837 

October 0.014863478 0.004099 0.036336 0.009494 0.005527 0.007029105 0.008345409 0.005021 0.050537935 0.016364 
November 0.042143239 0.005609 0.028577 0.00662 0.009835 0.014495891 0.054541627 0.009014 0.048536526 0.008405 
December 0.417387024 0.008471 0.112236 0.011309 0.009844 0.072450745 0.108421516 0.040654 0.055130647 0.009418 

Mean 

January 1 0.753519 0.023364 0.017669 0.038249 1 1 0.475805 1 0.021369 
February 1 0.079783 0.019145 0.018775 0.024652 1 0.051916229 0.44672 1 0.049494 

March 0.017979688 0.052569 0.018843 0.024456 0.029376 0.290758279 0.021172384 0.132409 0.2746385 0.0237 
April 0.007883865 0.022444 0.034769 0.058809 0.055483 1 1 0.621911 1 0.010412 
May 0.00768688 0.011447 0.025501 0.027636 0.026322 0.061178159 0.026518695 0.025977 0.05666387 0.008013 
June 0.005179106 0.005184 0.006914 0.008724 0.006223 0.007662496 0.006209873 0.006978 0.007845871 0.012704 
July 0.002241555 0.001863 0.001278 0.001862 0.001887 0.002806847 0.001985608 0.002168 0.002881406 0.009505 

August 0.002469214 0.001801 0.001091 0.001483 0.001484 0.003112488 0.002304146 0.002118 0.003225215 0.009451 
September 0.004295379 0.002463 0.00397 0.005596 0.004149 0.007696266 0.005303308 0.00517 0.007759872 0.006865 

October 0.007378836 0.003308 0.015349 0.019724 0.014403 0.023225305 0.010540841 0.017908 0.026769999 0.002811 
November 0.019434498 0.008798 0.177445 0.095154 0.029583 0.06624017 0.019286217 0.026267 0.10745009 0.002786 
December 0.367083983 0.030476 0.03857 0.02863 0.048083 0.163154431 0.1214416 0.112245 0.123593546 0.006472 

SVR 

January 0.25452639 1 0.0204 0.004415 0.005695 1 0.257627801 2.83E-06 0.000459515 0.005238 
February 1 0.004222 0.025065 0.017911 0.022036 1 0.413544064 0.475007 1 0.015018 

March 0.002133728 0.03149 0.015553 0.01332 0.010547 1 0.00455191 0.725914 0.001722105 0.009791 
April 0.002023503 0.039391 0.00429 1 0.011122 1 0.257724669 1 0.003058426 0.001911 
May 0.001580348 0.002621 0.071677 0.039452 0.062131 0.118469482 0.094456766 0.184527 0.077000471 0.002352 
June 0.000409124 0.000552 0.000282 0.000418 0.000382 0.001041324 0.000154068 0.000467 0.001934815 0.036399 
July 0.000274358 0.000243 4.13E-05 4.37E-05 0.000176 3.37588E-05 1.38232E-06 5.82E-05 4.94485E-05 0.008631 

August 0.000128858 0.000225 5.88E-05 2.85E-05 0.000131 3.1121E-05 1.66855E-05 5.47E-05 4.81829E-05 0.007616 
September 8.00378E-05 0.000217 0.000186 0.000239 0.000341 0.000248854 0.000204148 0.000233 0.000892068 0.003094 

October 0.000531957 0.000184 0.008036 0.008922 0.002765 0.033142151 0.003057988 0.005827 0.046764509 0.000111 
November 0.010907878 0.001964 8.62E-05 0.007854 0.025776 0.002563953 0.004512817 0.032186 0.004753188 3.97E-05 
December 1.13307E-05 0.016376 0.105064 0.03245 0.12147 0.15996208 4.24822E-05 0.016686 0.081050869 0.000214 
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