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Abstract

This study examines how machine learning (ML) approaches can be applied to enhance the
performance of CMIP6 multi-model ensembles (MME) for climate projections across ten
vulnerable locations in India. The research evaluates traditional MME methods (simple mean)
alongside ML models—Long Short-Term Memory (LSTM), Artificial Neural Networks
(ANN), and Support Vector Regression (SVR) to predict precipitation (PCP), maximum and
minimum temperature (TMAX and TMIN) under both scenarios SSP245 and SSP585. Key
findings include performance improvement of ML models consistently outperforming
traditional MME, with LSTM achieving the highest R? values (e.g., 0.85 for precipitation in
Location 3 under SSP245) and reduced RMSE and MAE. SVR and ANN also showed
significant improvements, particularly in capturing extreme events and seasonal trends.
Temperature Projections show that all methods performed well for temperature variables, with
minor variations, as temperature trends exhibit less variability over time. Trend Analysis shows
that the MME-mean revealed statistically significant increasing trends in all locations, while
LSTM displayed high variability, and ANN provided more stable projections. SVR was less
reliable for long-term trend detection. Entropy Analysis: Variability indices (SVIag and SVIumE)
indicated that SVR and MME-mean exhibited higher variability, whereas LSTM and ANN
produced more consistent results, especially at annual scales. The study concludes that ML-
augmented ensembles, particularly LSTM, enhance the accuracy of climate projections,
offering valuable insights for climate resilience planning in vulnerable regions. However,
traditional MME remains robust for consensus-based trend analysis. These findings contribute

to optimizing climate model ensembles for improved decision-making in adaptation strategies.

Keywords: Climate Change, Extreme Events, Machine Learning, Climate Variability
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Chapter 1

Introduction

Climate change projections rely heavily on Global Climate Models (GCMs), particularly those
from the Coupled Model Intercomparison Project Phase 6 (CMIP6), due to their ability to
simulate future climate scenarios under various emission scenarios (Semenov et al., 2024; S.
Zhang & Chen, 2021). GCMs of CMIP6 provide a comprehensive framework for
understanding climate dynamics by integrating improved spatial resolutions, advanced
physical processes, and diverse socioeconomic scenarios, such as the Shared Socioeconomic
Pathways (SSPs) (Bian et al., 2023; Peng et al., 2023). These models are indispensable for
downscaling climate data to local scales, enabling detailed assessments of temperature,
precipitation, and extreme weather events, which are critical for impact studies and adaptation
planning (Almazroui et al., 2021; Hirabayashi et al., 2021). Despite their coarse resolution,
CMIP6 GCMs have demonstrated enhanced performance in replicating historical climate
patterns and projecting future changes, though uncertainties remain, specifically in regional
precipitation and temperature variability (Bayar et al., 2023; Wu et al., 2024). The role of
CMIP6 GCMs is further underscored by their utility in hydrological, agricultural, and
ecological impact assessments, making them a cornerstone of modern climate science (Anil &
Anand Raj, 2022). Thus, understanding the strengths and weaknesses of these models is
essential for refining climate projections and informing policy decisions aimed at mitigation
and adaptation. The CMIP6 multi-model ensemble (MME) is a cornerstone for climate
projections, yet it faces significant challenges, including biases, uncertainty, and inter-model
spread, which complicate the interpretation and reliability of its outputs. Biases in CMIP6
models vary by geographical location and magnitude, leading to potential inaccuracies in
projections, particularly for variables like precipitation and temperature (Y. H. Kim et al., 2020;
Knutti et al., 2010). For example, systematic cold biases in high-latitude regions and dry biases
in tropical and subtropical areas persist across models, undermining confidence in regional
climate predictions (Y. H. Kim et al., 2020; Osso et al., 2023). Uncertainty arises from multiple
sources, such as the small number of models, unclear distribution in parameter space, and
unrepresented extreme behaviors, which collectively limit the ensemble's ability to capture the
full range of plausible climate futures (Knutti et al., 2010; Lehner et al., 2020). Additionally,
inter-model spread reflects structural differences in model responses, often independent of

present-day conditions, further exacerbating uncertainty (Sanderson & Knutti, 2012; Y. Zhang
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et al., 2023). This spread is particularly pronounced in projections of regional events, such as
the North Atlantic Oscillation and polar warming, where model disagreements dominate the
total uncertainty (McKenna & Maycock, 2021; Y. Zhang et al., 2023). Addressing these
challenges is critical for refining climate projections and informing robust adaptation strategies,
especially in climate-sensitive regions (Tyagi et al., 2024). (Das et al., 2024; Moradkhani et al.,
2024) explore challenges in-depth, offering insights into mitigating biases, quantifying
uncertainty, and reducing inter-model spread to enhance the utility of CMIP6 MME for climate

research and policy.
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Figure 1 Overview of the study

1.1 Biases in GCMs

Bias correction is a critical step in climate modeling, as GCMs regularly exhibit systematic
biases due to simplifications in physical processes, coarse spatial resolutions, and inadequate
representation of regional climate features. These biases can significantly undermine the
reliability of climate projections, particularly for variables like precipitation and temperature,
which are essential for impact assessments in water resources, agriculture, and disaster
management (Jose et al., 2022). To address these limitations, various bias correction techniques
have been developed so that GCM outputs can be aligned with observed data, ensuring more
accurate and actionable climate information. Quantile mapping (QM) is a widely used method
to match the statistical transformations of the cumulative distribution functions (CDFs) of

modeled and observed data (Grillakis et al., 2013; Robertson et al., 2023). While effective, QM




can alter the climate change signal, particularly for precipitation (Pierce et al., 2015). Advanced
versions of bias correction techniques like quantile delta mapping (QDM) and scaled
distribution mapping (SDM) preserve trends and raw climate signals, respectively, offering
improved performance for temperature and precipitation corrections (Frei et al., 2022; Li & Li,
2023). For multivariate applications, methods such as multivariate bias correction account for
inter-variable dependencies, enhancing the physical consistency of corrected outputs (Y. Kim
et al., 2023). Recent innovations include machine learning-based approaches, such as
generalized regression neural networks (GRNNs) for temperature bias correction (Dutta &
Bhattacharjya, 2022) and deep learning pathways for precipitation (W. Gao et al., 2024)
Additionally, wavelet-based techniques like continuous wavelet bias correction (CWBC)
address biases in both magnitude and frequency, proves effectiveness of variables like sea
surface temperature (Kusumastuti et al., 2022). Despite these advancements, challenges persist,
such as overcorrection in methods like Bias Correction and Spatial Disaggregation (BCSD),
which can distort climate signals (Chandel et al., 2024). The Multi-Model Ensemble (MME)
technique has become a cornerstone in climate projections, offering a robust approach to
uncertainties inherent in individual General Circulation Models (GCMs). However, despite its
widespread adoption, significant challenges persist in enhancing the reliability of MME
outputs. Current MME methods often suffer from overconfidence, where ensemble spreads
underestimate true forecast uncertainties, leading to biased projections (J. Zhu et al., 2013). For
instance, simple model averaging approaches can dilute fine-scale spatial information and
introduce biases from low-resolution models, compromising the accuracy of regional climate
predictions (Vrac et al., 2024). Additionally, traditional techniques like k-means clustering tend
to favor high-density areas in climate variable distribution, failing to fully capture variability,
particularly in extreme events (Cannon, 2015). Further limitations arise from the structural
uncertainties in GCMs, such as parameterization errors and imperfect initial conditions, which
are not adequately sampled in conventional ensembles (Yokohata et al., 2012). Studies
highlight that while MMEs broadly improve reliability, they often exhibit overdispersion or
underdispersion, depending on the geographic area and climate variable (Exbrayat et al., 2018;
Yokohata et al., 2012). For example, precipitation projections in semi-arid regions remain
highly uncertain due to model inconsistencies and insufficient observational constraints
(Exbrayat et al., 2018). Moreover, methods like Bayesian Model Averaging (BMA) and
Reliability Ensemble Averaging (REA) have shown promise but require refinement to address
spatial inconsistencies and multi-variable dependencies (Guan et al., 2022). These approaches

aim to enhance ensemble reliability by integrating performance-based weighting,
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nonparametric distributions, and automated downscaling. Nevertheless, the need for further
improvement persists, particularly in optimizing model selection, reducing inter-model
dependencies, and incorporating diverse error metrics (Ganguly & Arya, 2023; Talukder et al.,
2025). This study seeks to build on these advancements by developing a more robust MME
framework that addresses these limitations, ultimately improving the reliability of climate
projections for decision-making and risk assessment. Traditional multi-model ensembling
techniques, such as simple mean and weighted mean, are foundational approaches in ML that
aim to improve predictive performance by combining the outputs of multiple models. The
simple mean method aggregates predictions by averaging them equally across all models,
assuming each model contributes uniformly to the final output (Ren et al., 2016). In contrast,
the weighted mean assigns varying weights to predictions of each model based on their
respective performance, thereby allowing more accurate models to exert greater influence on
the ensemble's results (Ali et al., 2015; J. Zhu et al., 2013). These techniques are particularly
effective in addressing the bias-variance trade-off, leveraging the strengths of diverse models
to improve overall accuracy and performance (Dong et al., 2020; Ren et al., 2016). Similarly,
(J. Zhu et al., 2013) introduced a weighted mean model for operational risk assessment,
highlighting its practicality over complex methods that require extensive historical data.
Despite their advantages, traditional ensembling techniques may lack the flexibility and
adaptability offered by advanced methods like bagging, boosting, and stacking, which
dynamically optimize model combinations (Rane et al., 2024; Tang et al., 2024). Nevertheless,
simple and weighted mean approaches remain integral to ensemble learning, providing a
baseline for understanding and developing more sophisticated strategies. This research
explores the efficacy of traditional ensembling techniques in contemporary applications,
examining their strengths, limitations, and potential enhancements in the context of evolving
ML models. By synthesizing insights from prior studies (Ali et al., 2015; Dong et al., 2020;
Ren et al., 2016), we aim to bridge the gap between foundational methods and modern
advancements, offering a comprehensive perspective on their role in predictive modeling. The
comparison between traditional CMIP6 MME and emerging ML-based ensembles has gained
significant attention in climate science due to their respective strengths and limitations. CMIP6
MMESs, which integrate simulations from multiple GCMs, have been widely used for climate
projections, offering a robust framework for assessing uncertainties (Eyring et al., 2016).
However, they are computationally expensive and often exhibit biases in representing complex
climate processes (Reichstein et al., 2019). In contrast, ML-based ensembles leverage data-

driven approaches to improve predictive accuracy, reduce computational costs, and enhance
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the representation of nonlinear climate dynamics (Rasp & Thuerey, 2021). Recent studies
suggest that hybrid approaches combining CMIP6 and ML techniques may outperform

standalone methods, particularly in regional climate projections (Labe & Barnes, 2022).

1.2 Screening of GCMs

Despite these advancements, a systematic comparison of their performance, uncertainty
quantification, and scalability remains underexplored. This study aims to evaluate CMIP6
MME against ML-based ensembles in terms of predictive skill, bias correction, and extreme
event representation, contributing to the ongoing discourse on optimizing climate projection
methodologies. The evaluation of multi-model ensemble performances is critical in ensuring
robust and reliable predictions across various domains, from climate science to financial
forecasting. Performance metrics such as R?, Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), and Kling-Gupta Efficiency (KGE) are widely employed to find model,
precision, and generalizability (Chai & Draxler, 2014a; Plevris et al., 2022). R? measures the
proportion of variance explained by the model, providing insights into its explanatory power,
while RMSE and MAE quantify prediction errors, with RMSE penalizing larger errors more
heavily due to its sensitivity to outliers (Hodson, 2022; Willmott, 2005a). MAE, on the other
hand, offers a more intuitive interpretation of average error magnitude, making it suitable for
applications where error distributions deviate from normality (Brassington, 2017). The KGE
metric, which integrates correlation, bias, and variability, is particularly valuable for evaluating
hydrological and environmental models, as it addresses the improvement upon traditional
metrics by balancing key performance factors (Botchkarev, 2019; Correndo et al., 2022).
Recent literature emphasizes the importance of selecting appropriate metrics tailored to the
specific nature of the data and the purpose of the study. For instance, RMSE is optimal for
Gaussian errors, whereas MAE is preferred for Laplacian distributions (Chai & Draxler,
2014a). However, reliance on a single metric can be misleading, as each captures distinct facets
of model performance. A multi-metric approach, combining R?, RMSE, MAE, and KGE, is
increasingly advocated to deliver a comprehensive assessment of ensemble models (Plevris et
al., 2022). Despite advancements, challenges persist in metric selection, particularly in contexts
with imbalanced data or varying risk appetites, where traditional metrics may fail to align with
practical outcomes (Dessain, 2023; Tunkel & Herbold, 2022). The purpose of this study is to
address the gaps by systematically evaluating multi-model ensemble performances using a

suite of metrics, thereby enhancing the interpretability and applicability of ensemble




predictions in diverse fields. By integrating theoretical insights with empirical validation, this
research aims to contribute to ongoing discourse on optimal metric selection and ensemble

model evaluation.

1.3 Integration of Machine Learning

The integration of ML with ensembles of GCMs has emerged as a transformative approach to
improve the accuracy and reliability of climate projections. Traditional GCMs, while
foundational for climate research, often suffer from uncertainties due to coarse spatial
resolutions, structural biases, and computational limitations (MA & Stratonovitch, 2010;
Rampal et al., 2024). ML techniques, such as convolutional neural networks (CNNs), random
forests (RF), and long short-term memory (LSTM) networks, address these challenges by
improving downscaling, parameterization, and ensemble weighting (Gonzélez-Abad & Bafio-
Medina, 2023; Sun et al., 2023). For instance, ML-based multi-model ensembles (MMEs) have
demonstrated superior performance in simulating precipitation and temperature extremes
compared to conventional arithmetic mean ensembles, with methods like Extreme Gradient
Boosting (XGBR) and Random Forest Regressor (RFR) outperforming other techniques in
diverse geo-climatic regions (Shetty et al., 2023). The implications of ML-enhanced GCM
ensembles for climate change impact assessment are profound. By reducing uncertainties and
improving spatial-temporal resolution, these models provide more reliable projections of future
climate scenarios, such as temperature rises under SSP245 and SSP585 pathways (Shetty et al.,
2023). For example, deep learning frameworks like CNNs have achieved higher skill scores
(e.g., Taylor Skill Score of 0.98) in reproducing local-scale precipitation patterns, enabling
better risk assessments for extreme weather events (Sun et al., 2023). Additionally, ML
algorithms facilitate the quantification of uncertainty through techniques like Bayesian Model
Averaging (BMA), which outperforms simple ensemble means in capturing climate variability
(Talukder et al., 2025). Such advancements are essential for informing adaptation strategies in
vulnerable sectors, like agriculture and water resource management, where precise climate
projections are essential for mitigating the impacts of global warming (Bojer et al., 2024;
Krishnamoorthy & Sistla, 2023). In summary, ML not only refines the predictive capabilities
of GCM ensembles but also strengthens their utility in climate change impact assessments by
addressing key limitations of traditional methods. The following sections explore these
advancements in detail, highlighting their methodological innovations and practical

applications.




Chapter 2

Study Area

The present study focuses on ten different locations across India, selected for their vulnerability
to climate extremes such as floods, heatwaves, and droughts. These locations are 10 km stretch
of National Highways, surrounded by agricultural fields, water bodies, factories, and other
critical infrastructures, making them critical to study in the context of increasing climate
variability. These locations are L1, L2, L3... and L10. For each location, a 10 km stretch has

been identified for detailed climate impact analysis. The study examines key variables,

including PCP, TMAX, and TMIN, using historical data to project future climate conditions.

e+ + e+ e+ 44+

Figure 2 Location Map of the National Highways considered in this study
Location 1 is situated in Karnataka, around a 10 km stretch of NH 150 from Kalaburagi to
Yadgiri, crosses through an area dotted with lakes and rivers, including the Bhima River, and
is prone to flooding due to the hilly terrain. The region experiences an average annual rainfall

of 838 mm and temperatures ranging from 39.1°C to 17.1°C.




Figure 3 Satellite Image of Location 1

Location 2 is located in Andhra Pradesh and covers a 10 km segment on National Highway
16 from Guntur to Chilakaluripet. This stretch passes through hilly terrain, causing
stormwater to flow towards low-lying areas, often leading to flooding naturally. The region,
which hosts many textile industries, educational institutions, and hospitals, receives an

average annual rainfall of 966 mm, with temperatures ranging between 33.96°C and 25.13°C.

Figure 4 Satellite Image of Location 2

Location 3 is situated in Chhattisgarh, a 10 km section on National Highway 43 between
Manendragarh and Ambikapur has been selected. This area is characterized by its proximity to

the Hasdeo River, Aaruni Dam, and various waterfalls, making it particularly flood-prone. The




annual rainfall here is approximately 1130 mm, with average maximum and minimum

temperatures of 30°C and 17.6°C, respectively.

Figure 5 Satellite Image of Location 3

Further north, Location 4 is located in Madhya Pradesh and includes a 10 km stretch on
National Highway 45 from Shahpura to Jabalpur, where the Narmada River and several lakes
define the local landscape. Prone to both flooding and seismic activity (Seismic Zone III), this
region experiences an annual rainfall of 1280 mm, with temperatures ranging from 32.1°C to

18.3°C.

Figure 6 Satellite Image of Location 4

Location 5 is located in Maharashtra, around National Highway 47, which covers a segment

from Betul to Saoner, an area surrounded by dams such as Umri, Kolar, and Nanda. This region,
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also vulnerable to floods, has a recorded average rainfall of 1060.2 mm, and temperatures

fluctuate between 45°C and 12°C.

Figure 7 Satellite Image of Location 5

Location 6 is another section of 10 km stretch from Lonavala to Khandala around National
Highway 48, a popular tourist destination in Maharashtra. Known for its waterfalls and scenic
viewpoints, the area has been severely affected by flooding in recent years, receiving an

average annual rainfall of 4223 mm, with temperatures ranging from 34°C to 11°C.

Figure 8 Satellite Image of Location 6
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Location 7 is in Gujarat, a 10 km stretch of National Highway 48 from Himatnagar to Vadodara,
which passes through an industrial zone and intersects with major state highways. This region

experiences an annual rainfall of 749 mm, with temperatures varying from 40°C to 14°C.

Figure 9 Satellite Image of Location 7

Location 8 is another segment of National Hiway 52 in Madhya Pradesh that runs from Dewas
to Sendhwa, an area marked by both industrial and agricultural activities. The Narmada River,
which flows through this region, contributes to its vulnerability to floods. The area sees an

average rainfall of 833.6 mm and temperatures ranging between 44°C and 10°C.

Figure 10 Satellite Image of Location 8

Similarly, Location 9 in Gujarat, which covers the stretch around National Highway 64 from
Ahmedabad to Nadiad, runs through a dense urban area. The region’s rainfall averages 749 mm

annually, and temperatures range from 40°C to 14°C.
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Figure 11 Satellite image of Location 9

Further south, Location 10 in Tamil Nadu, marked on National Highway 87 between
Ramanathapuram and Mandapam, runs close to the coastline, making it particularly vulnerable
to both floods and cyclones. The region receives an average annual precipitation of 8§21 mm,
with temperatures ranging from 40°C to 21°C. Lastly, This comprehensive study of these 10
km stretches along various highways highlights the critical climate-related challenges these
key transport routes face. The combination of geographical features and climate extremes
makes these highways particularly vulnerable, warranting detailed analysis for better climate

resilience planning.

Figure 12 Satellite Image of Location 10
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Chapter 3

Datasets and Methodology

In this study, data is collected from mainly two sources, i.e., India Meteorological Department
(IMD) for observed data of precipitation and temperature, and CMIP6 is collected from NEX-
GDDP-CMIP6 for both historical values and future predictions, respectively. This study
employed 13 bias-corrected and downscaled GCMs to a resolution of 0.25° for daily PCP,
TMAX, and TMIN data under SSP-245 and SSP-585 scenarios. Due to high daily variability,
data was aggregated monthly, and EQM was applied to bias-correct GCM outputs using IMD-
observed data for improved accuracy in climate projections. For the ensemble of these GCMs,
ML techniques (LSTM, ANN, and SVR) have also been incorporated to improve future
predictions, and trend analysis is also performed to understand the future patterns in PCP,

TMAX, and TMIN.

3.1 Observational Gridded Data

IMD dataset provides daily gridded rainfall with a high spatial resolution of 0.25°. The IMD
dataset provides a more accurate and higher-resolution representation of rainfall over India than
the existing datasets due to its denser rain gauge stations network and robust interpolation
method (Pai et al., 2014). IMD also provides daily temperature data for India at a spatial
resolution of (1° x 1°), particularly to analyze climate extremes like heatwaves and cold waves.
The data set used temperature observations from 395 quality-controlled stations across India.
It includes daily TMAX and TMIN recorded by the IMD and covers from 1951 to 2023. The
dataset was compared with the global temperature dataset developed by the University of
Delaware, showing a strong correlation (0.8) between the two, confirming the accuracy of the

IMD data(Srivastava et al., 2009).

3.2 Climate Model Simulations

NEX-GDDP-CMIP6 offers 0.25° resolution, bias-corrected climate projections based on the
outputs of CMIP6 GCMs. The CMIP6 GCMs were developed in support of the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), which
supports climate change studies. It is designed to assist climate scientists in conducting local
and regional climate change studies. The dataset covers daily climate data from 1950 to 2100.

All climate projection models provide daily average variables spanning from 1950 to 2014
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(“retrospective simulation’) and from 2015 to 2100 (“prospective simulation”). The dataset is
derived from 35 GCM models and uses four Scenarios SSP126, SSP245, SSP370, and
SSP585), covering future projections (2015-2100) and each model's historical projections
spanning from 1950-2014 for future climate scenarios (Thrasher et al., 2022).13 models which

are selected for the study out of 35 GCMs models are mentioned in Table 1:

Table 1 List of 13 GCMs used in this study

Models No. Model Name Institution
1 ACCESS-CM2 CSIRO-ARCCSS, Australia
2 ACCESS-ESM1-5 CSIRO-ARCCSS, Australia
3 BCC-CSM2-MR Beijing Climate Centre, China
Canadian Centre for Climate Modelling
4 CanESM5 and Analysis (CCCMA), Canada
5 EC-Earth3-Veg-LR The EC-Earth consortium, Europe
6 EC-Earth3 The EC-Earth consortium, Europe
. INM-CMA4-8 Institute for Numen(.:al Mathematics,
Russia
3 INM-CM5-0 Institute for Numerlf:al Mathematics,
Russia
9 MPLESMI1-2-HR Max Planck Institute for Meteorology
Earth System, Germany
10 MPLESMI-2-LR Max Planck Institute for Meteorology
Earth System, Germany
11 MRI-ESM2-0 Meteorological Research Institute, Japan
12 NorESM2-LM Norwegian Climate Centre, Norway
13 NorESM2-MM Norwegian Climate Centre, Norway
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3.3 Methodology

This study utilized 13 GCMs from the NEX-GDDP dataset. It is bias-corrected and downscaled
to a spatial resolution of 0.25°, with daily values available for PCP, TMAX, and TMIN. IMD's
observed data and GCMs data were downloaded for the historical period spanning 1951 to
2023, while the future data for GCMs was obtained for the period 2024 to 2100. For this study,
only two SSP scenarios, SSP-245 and SSP-585, were considered to analyze climate projections
and their potential impacts under intermediate and high-emission pathways, respectively.
Given that daily-scale data often exhibits low correlation due to high variability, the data was
aggregated to a monthly scale. To correct biases in the climate model outputs, EQM was applied
to bias-correct monthly PCP, TMAX, and TMIN data generated by the 13 CMIP6 climate
models, using observed data from the IMD as a reference. Quantile mapping is an effective
bias correction technique that adjusts model data to align with observed data distributions by
matching quantiles between the two datasets. Specifically, EQM was applied individually to
each of the 10 geographic locations by first fitting the observed and modeled data distributions
at quantile intervals of 1%. This interval size was selected to capture a high-resolution quantile
distribution and improve mapping accuracy. To ensure the robustness of the quantile mapping
results, bootstrap sampling was employed, with 10 bootstrapped samples used to estimate
uncertainty, and corrections were applied only on "wet days" (days with non-zero precipitation)
to avoid skewing results with dry days. Two interpolation methods, linear and tricubic, were
used to ensure smooth transformations of model data between quantiles, yielding two corrected

outputs for each location.

Xcorr,t = eCdfo_bls(eCdfmod,t(Xmod,t)) (1)

where, X;opr¢ is the corrected model PCP value on day t, ecdf,,: is the inverse ecdf of
observed data, ecdfy,;oq ¢ 1s the ecdf of model data, and X;;,,4 , is the raw model precipitation

value on day t. An R Package: qmap was used to perform the bias correction.
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Figure 13 Flow diagram of Methodology

Following bias correction, an MME was created by calculating the mean across the 13 GCMs
for PCP, TMAX, and TMIN. MME methods further reduce the uncertainties by averaging the

outputs from multiple GCMs, which minimizes errors inherent to individual models.
1$N
Mean(t) = 13N, m(® @

Where Mean(t) is the arithmetic mean of GCMs for time t, N is the total number of GCMs (13),
and m(t) is the model values of nth GCM for time t. This ensemble was then compared with
observed data from 2010 to 2023 to assess the MME’s accuracy and reliability. ML models
were applied to enhance predictive performance further. Specifically, LSTM, ANN, and SVR
were used. Before model training, seasonal decomposition is used to decompose observed data

into different components mentioned in equation (3) via the *Statsmodels” Time Series Analysis
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(TSA) module in Python. This decomposition was intended to help the models capture seasonal
peaks and other patterns present in the observed data, leading to a more accurate fit. Time series
decomposition typically dissolves into the trend, seasonality, and residual (or noise). The trend
component captures the long-term and underlying patterns in the data. In contrast, the
seasonality component reflects short-term, regular fluctuations caused by recurring factors,
such as seasonal changes or cycles. The residual component represents uncertainty in the
variability that remains after removing the effects of trend and season. By isolating these
components, we can observe valuable insights into the data’s structure, making it easier to
analyze and forecast. In this study, the decomposition approach used is additive

decomposition; the sum of its components is shown in Equation 3:

S(x) = Trend(x) + Seasonal(x) + Residual(x) 3)

This method works best when the seasonal effects do not change with the series' magnitude.
The ML-based MME produced improved results when compared to the conventional MME-
Mean approach, indicating that ML models were effective in capturing the details of observed

climate patterns.

3.4 Long Short-Term Memory (LSTM)

LSTM networks are a type of recurrent neural network (RNN) specifically designed to model
sequential data while addressing the vanishing gradient problem typically faced by standard
RNNs. The provided code applies LSTMs to predict precipitation using a dataset that
incorporates observed values and additional features, including trend and seasonal components
derived from seasonal decomposition. The process begins with data preprocessing, where the
monthly frequency is set, and the time-series is decomposed into trend and seasonal
components. Missing values in these components are filled using forward and backward filling
to ensure continuity. The dataset is then divided into training and testing sets based on the

timeline.

Features are scaled using Standard Scaler to improve model performance and retain
consistency across features. The scaled data, including both input features and the target
variable, is formatted into sequences using the Time series Generator, which prepares data
windows with a specified look-back period to capture temporal dependencies, particularly

seasonal trends.
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Figure 14 General Architecture of LSTM cell

Figure 14 shows that the LSTM cell is composed of several key components that enable it to
capture long-term dependencies. The cell state (Ci-1) stores memory from the previous time
step and is updated with new information using the input gate, which is activated by a tanh
function. (X(t) is the current input to the LSTM cell. The hidden state (hi1) represents the
output from the previous time step. The LSTM includes three gates: the forget gate, input gate,
and output gate. The forget gate uses a sigmoid function to determine which parts of the
previous cell state to forget, the input gate uses a sigmoid function to decide which new
information to store in the cell state, and the output gate, which controls which parts of the cell
state should affect the current output. The updated cell and hidden states are calculated by
combining the previous values with the respective gates, allowing them to manage the long-
term dependencies in sequence data efficiently. The Model architecture comprises two LSTM
layers with different combinations of neurons, both using ReLLU activation to capture complex
nonlinear patterns. Dropout layers are added between LSTMs for regularization to reduce
overfitting, and the final dense layers ensure the transformation of learned patterns into single
precipitation predictions. The model uses the Adam optimizer and Mean Squared Error (MSE)
loss function to optimize weights during training. Early stopping is applied to stop training
when the model ceases to improve, ensuring computational efficiency and preventing
overfitting. Once trained, the model predicts the testing dataset through sequences generated

from the TimeseriesGenerator. These predictions are inverse-scaled to the original range for
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evaluation. Model performance is assessed using the R? score, a metric that measures the
proportion of variance in the observed data explained by the predictions. The code also
generates a plot of observed versus predicted precipitation values, visualizing the model's
predictive accuracy over time. This implementation highlights the LSTM's capability to handle

time-dependent patterns and its effectiveness for precipitation prediction.

3.5 Artificial Neural Networks (ANN)

It is a powerful ML technique inspired by the structure and functioning of the human brain,
particularly for capturing nonlinear relationships in data. The provided code demonstrates the
application of an ANN for precipitation prediction, focusing on decomposing the observed data
into trend, seasonal, and residual components. It utilizes an MLPRegressor, a type of
feedforward ANN. The process starts with data preparation, where the observed precipitation
series undergoes seasonal decomposition using an additive model, splitting it into trend,
seasonal, and residual components. Missing values in these components are interpolated for
smooth processing. The model defines the residuals as the target variable while using multiple
precipitation features Model-1 to Model 13, along with the seasonal and trend components, as
predictors. The data is split into training and testing sets based on specified date ranges, and
feature normalization is performed using StandardScaler to improve ANN convergence. The
ANN is structured using the MLPRegressor with different combinations of hidden layers and
nodes, ReLU activation for non-linearity, the Adam optimizer for adaptive learning, and
regularization (a ) to prevent overfitting. Early stopping ensures efficient training by halting
the process when improvement plateaus. The model predicts the residuals, which are combined
with the trend and seasonal components to reconstruct the final precipitation values. Additional
constraints ensure non-negative predictions. The performance metrics mentioned in Table 2
evaluate the model's performance. Visualization of observed versus predicted values over time
offers insights into the model's ability to capture precipitation variability. This implementation
highlights the ANN's capability for time-series prediction, its ability to handle complex
relationships between features, and its reliance on residual learning to leverage the trends and
seasonality inherent in precipitation data. Numerical expressions of MLP regressor are given

as:
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Where X is the input feature, W; represents the weight of the matrix connecting the input layer
to the hidden layer, B; represents the bias of the hidden layer, and 6 is the activation function

(ReLU) applied element-wise to introduce non-linearity.

3.6 Support Vector Regression (SVR)

It is a robust ML technique derived from Support Vector Machines (SVM), suitable for
modeling complex nonlinear relationships in data. The provided code applies SVR for
precipitation prediction, emphasizing the decomposition of observed data into trend, seasonal,
and residual components to improve predictive accuracy. The process begins with
preprocessing, where seasonal decomposition separates the 'Observed' time series into trend,
seasonal, and residual components, enabling the SVR model to focus on residuals, which are
typically less structured. Features such as precipitation indices Model-1 to Model-13, along
with seasonal and trend components, serve as inputs for the model, while the target variable is
the residual component. On the basis of the period, the dataset is partitioned into training and
testing, and a StandardScaler ensures normalized feature distributions, which are critical for
the SVR's optimal performance. This model is configured with a radial basis function (RBF)
kernel to capture nonlinear patterns, with hyperparameters such as the regularization term C,
kernel parameter gamma, and epsilon defining the tolerance limit for prediction errors. After
the scaled data is trained, the model predicts residuals for the testing set. These residuals are
combined with the trend and seasonal components to reconstruct the final predicted values,
which are then clipped to non-negative values to adhere to the physical constraints of
precipitation data. Model evaluation is performed using metrics such as RMSE, R?, KGE, and
MAE to assess the model's predictive capability. A plot comparing observed and predicted
values over time provides a visual representation of the model's performance. The
mathematical expression for SVR is be found in (Stitson et al., 1996). This implementation
highlights SVR's strengths in handling nonlinear relationships, particularly when combined
with techniques like seasonal decomposition. The SVR effectively models residual variability
while leveraging seasonal and trend information to make accurate predictions of precipitation

dynamics.

3.7 Performance Evaluation

The evaluation of machine learning models, including General Circulation Models (GCMs),

relies on various evaluation metrics to assess their performance. Among these, R? shows how
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well your independent variables explain the variation in your outcome; values close to 1
indicate greater predictive accuracy (Shiru & Chung, 2021). RMSE quantifies the average
magnitude of prediction errors, penalizing larger deviations more heavily, making it useful for
understanding overall model performance (Foyhirun, Chutipat et al., 2019). MAE provides a
straightforward average of absolute errors, offering a clear interpretation of model accuracy
without squaring deviations (Dumbre et al., 2024). KGE integrates correlation, bias, and
variability into a single metric, providing a comprehensive assessment of model performance,
particularly for spatial and temporal patterns (Nashwan & Shahid, 2020). These metrics are
often used in combination to address different aspects of model performance, such as precision
RMSE, MAE, R?, and KGE, ensuring a robust evaluation framework for climate models and

other predictive applications.

3.7.1 R-SQUARED

It is a statistical measure that evaluates a portion of the total variation in the outcome variable
that is accounted for by the independent variables in a regression model, ranging from 0 to 1,
where 0 means that the model explains none of the variability in the outcome variable, and 1
means a perfect fit where all variability is explained (Miles, 2005), also known as the
coefficient of determination. The formula to calculate R? is given below in equation (5):

R? =1 - res (5)

SStotal

where SS;es 1s the sum of squared residuals, and SSioal is the total sum of squares. However,
R? has limitations. It can be misleading, as a high value does not always indicate a good model
fit, especially if the model suffers from bias or overfitting (Onyutha, 2020). Conversely, a poor
R? does not certainly imply a poor model, particularly in fields like social sciences, where

explained variance may inherently be low (J. Gao, 2024).

3.7.2 Mean Absolute Error

It is generally used to evaluate the accuracy of predictive models, especially in regression tasks.
It measures the average magnitude of errors between predicted and actual values without
considering their direction, making it a robust indicator of model performance (Willmott,

2005b). The formula for MAE is given by:
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MAE = ~3L.[Y; - Y] (6)

where Y; is the actual values, Y1 denotes the predicted values, and n represents the number of
observations. The minimum possible value of MAE is 0, indicating perfect prediction accuracy,
while the maximum value is unbounded and depends on the scale of the data (Chai & Draxler,
2014b). In summary, MAE serves as a reliable metric for assessing model performance, with
its simplicity and clarity making it a staple in fields ranging from climate science to machine
learning. Its minimum value of O signifies perfect accuracy, while its maximum value is

context-dependent, reflecting the variability in the dataset.

3.7.3 Root Mean Square (RMSE)

It is generally used to evaluate a predictive model’s accuracy by measuring the differences

between observed and predicted values. To calculate RMSE, Equation (7) is given below:

RMSE = [1Z1,(U; - 0p2 )

where Ui represents the observed values, U1 is the predicted value, and n represents the number
of observations. RMSE aggregates the magnitudes of prediction errors into a single measure,
with larger errors receiving disproportionately higher weight due to the squaring operation. It
makes RMSE particularly sensitive to outliers, which can be advantageous when large errors
are undesirable (Brassington, 2017; Chai & Draxler, 2014b). The minimum value of RMSE is
zero, indicating perfect prediction accuracy where all predicted values match the observed
values exactly. The maximum value, however, is unbounded and depends on the length of the
data and the magnitude of errors. For example, in climate research, RMSE values can vary
significantly based on the dataset’s variability and the model's performance (Willmott, 2005b).
Nonetheless, researchers often recommend using RMSE alongside other metrics like MAE to

provide a comprehensive assessment of model performance (W. Zhu, 2022).

3.7.4 Killing Gupta’s Efficiency (KGE)

It is generally used in hydrology to evaluate the performance of hydrological models by
assessing the goodness of fit between observed and simulated data. It addresses some

limitations of the Nash-Sutcliffe Efficiency (NSE) by decomposing the evaluation into three
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orthogonal components: correlation, variability bias, and mean bias (Mathevet et al., 2023). It

is calculated using the following equation:

KGE=1-/(@r—-1)2+ (a—1)2+ (B —1)2 (8)

where r represents the Pearson’s correlation coefficient between observed and simulated
values, R is the ratio of simulated to observed standard deviations (variability), and B
represents the ratio of simulated to observed means (bias). The KGE ranges from -oo to 1, where
a value equal to 1 shows perfect agreement between observed and simulated data. Unlike the
NSE, which has an inherent benchmark of 0 (corresponding to the mean flow predictor), the
KGE lacks a fixed benchmark. (Knoben et al., 2019) Demonstrated that using the mean flow
as a predictor results in a KGE value of approximately -0.41 rather than 0. The KGE's
decomposition into correlation, variability, and bias components provides a better
understanding of model performance, making it a valuable tool for hydrological applications.
However, its uncertainty lacks a closed-form description, necessitating empirical methods like

bootstrapping for confidence interval estimation (Vrugt & de Oliveira, 2022).

Table 2 Details of Evaluation Metrics
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3.8 Entropy

The concept of entropy, along with two entropy-based measures, marginal entropy (ME) and

apportionment entropy (AE), is discussed in this section, along with the standardized variability
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index (SVI) and its application in analyzing the spatiotemporal variability of rainfall. The
section also explores how Mean and ML techniques contribute to understanding rainfall

variability.

3.8.1 Apportionment Entropy (AE)

AE was introduced by (Maruyama et al., 2005), quantifies how the total annual rainfall P is
distributed across different temporal scales (monthly or seasonal) within a given year. The
probability of rainfall occurring at a particular timescale i is expressed as pi/P. AE is computed

annually for each grid location using the equation

= — X5 S logy ©)

i=1p p

Where,

P = total annual rainfall,

pi = rainfall amount for the specified timescale in that year,

nc = number of class intervals (e.g., nc = 365 for daily, 12 for monthly, 4 for seasonal).

When rainfall is uniformly distributed across all intervals (equally likely events), AE reaches
its maximum value Huax, defined as logzne. The value of Huax depends on the timescale (e.g.,
log212 for monthly and log:4 for seasonal). Essentially, AE captures intra-annual rainfall
variability, reflecting how rainfall amounts are distributed within a year at different temporal

resolutions.

3.8.2 Marginal Entropy (ME)

ME quantifies the uncertainty or average information content of a random variable X with a
probability distribution P(x) as defined by (Mishra et al., 2009). This measure evaluates the
entropy of a single time series, capturing its inherent randomness. For instance, when applied
to a historical monthly rainfall time series at a given station, ME reflects the overall
unpredictability across the entire record. Further methodological details can be found in

(Mishra et al., 2009).

In this study, ME is computed for Indian rainfall data at three temporal scales: annual, seasonal,
and monthly, to assess interannual variability at each scale. The mathematical formulation for

ME is given by:
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ME = =Y Hlog, (10)

i=1p R
where:
1; = rainfall amount in the i-th year,

R = total rainfall over the study period (2024-2100).

The same equation (Eq. 10) can be adapted for monthly and seasonal scales by substituting r;

with rainfall values for the respective months or seasons.
3.9 Trend Analysis

3.9.1 Mann-Kendall Test

Mann and Kendall introduced this, and it is a widely used non-parametric method for detecting
monotonic trends in environmental and hydrological time series data. Its popularity stems from
its robustness against non-normal distributions and missing data, making it particularly useful
in hydroclimatology. However, a key limitation of the traditional MK test is its assumption of
serial independence, which is often violated in hydroclimatic data due to inherent
autocorrelation. To address this issue, the Modified Mann-Kendall (MMK) test was
developed by (Hamed & Rao, 1998), incorporating a variance correction factor to account for
autocorrelation, thereby reducing the likelihood of false trend detection (Type I error). The
MMK test has since become a standard tool in trend analysis, especially for datasets exhibiting
persistence or seasonal effects. The MMK test is particularly useful in datasets where
autocorrelation is present, which can affect the reliability of trend detection. Autocorrelation
can lead to false trends being identified by the classical MK test. The MMK test corrects this
by adjusting the variance of the test statistic, thus providing a more accurate assessment of
trends in the presence of serial correlation (Sa’adi et al., 2019). Given its robustness and
adaptability, the MMK test remains a critical tool for reliable trend detection in hydroclimatic

and environmental time series. MMK is calculated as:

S = Y1 X oiva sgn(e— o) (11)
where n represents the number of data points, «; and «; are the values in the time series i and
j

(j > 1), respectively, and sgn(x; - x;) is the function as:
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+1if «xj—o;> 0
sgn(o—o;) = 0 if xj—o;=0 (12)
—1if xj—o; < 0
The variance is calculated as:

n(n—1)(2n+5)-%b_ t;(t;—1)(2t;+5)
18

Var(S) = (13)

where n represents the number of data points, P is the number of tied groups, and A tied group
is a set of sample data having the same value. In cases where the sample size n > 30, the

standard normal test statistic Zs is computed using Eq. (14):

S-1 ,
Var(S)'lfS >0
Z, = 0ifS=0 (14)
S+1 ,
W,lfs <0

If Zs values are Positive, then it indicate upward trends, whereas negative values denote
downward trends. Trend significance is assessed at a specified alpha level. If the absolute Zs
value exceeds Zi—¢» it indicates that the null hypothesis is rejected, meaning a statistically
significant trend. The level of significance in this study is 5% (0=0.05). Specifically: At the 5%
level, the null hypothesis is rejected if |Zs|>1.96]Zs|>1.96.

3.9.2 Sen’s Slope

Sen (1968) introduced a non-parametric approach to determine the trend slope in a dataset
consisting of n pairs of observations, also known as Sen’s method. It employs a linear model
to compute the trend slope, requiring that the residual variance remains constant over time. The

calculation is performed as follows:

Q Xj— Xk (15)

i= K fori=1,..,n

In this method, X; and Xk represent the data values at time points j and k (where j > k),

respectively. If each period contains only a single observation, the total number of slope

n(n-1)

estimates ( N ) is given by N = , where n is the number of periods. However, if there are

multiple observations in any period, N will be less than N = n(nT_l) The N computed slopes

(Qi) are then sorted in ascending order, and the median of these values, referred to as Sen’s

slope estimator, is determined as follows:
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Q[HTH , ifnis odd
Qmed = Q[%]WLQ[HT-I-Z] (16)

. ,if nis even

The sign of Qmed indicates the direction of the trend (increasing or decreasing), while its
magnitude represents the trend's steepness. To assess whether the median slope is statistically
significant (i.e., different from zero), the confidence interval of Qmeq must be calculated at a
chosen significance level. Following (Roy & Chakravarty, 2021), the confidence interval for

the trend slope can be determined using the following equation:

Ce = Zl_o(/zw/Var(S) (17)

Here, Var(S) in Equation (13) and Zi-4» are derived from the standard normal distribution
table. In this study, confidence intervals were computed at significance levels 0=0.05. The
values M1 = (n—Cy)/2 and My = (n+C,)/2 are then calculated, where C, represents the
confidence interval width. The lower and wupper bounds of the confidence
interval, Qmin and Qmax, correspond to the Mith and (M>+1)-th largest values, respectively, in
the ordered set of slope estimates (Roy & Chakravarty, 2021). The median slope Qmed is
considered statistically significant (i.e., different from zero) if Qmin and Qmax share the same

sign.
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Chapter 4
Results

Different ensemble methods were applied to simulate monthly precipitation, maximum
temperature, and minimum temperature across 10 different locations: L1, L2, L3, L4, L5, L6,
L7, L8, L9 and L10. The evaluation was done using some key performance metrics, which
included RMSE, R2, KGE, and MAE. The analysis consisted of scatter plots showing the
relationship of observed values to the average of 13 GCMs and line plots of observed values
compared with those predicted by ML models representing SVR, ANN, and LSTM. Results
are summarized in tables for the test period of 2010 to 2023, showing the robustness of these
models in capturing monthly variability in PCP, TMAX, and TMIN. A graphical representation
of each model’s performance compared to observed data is given in the figures below for all

10 locations.

Location 1

A stretch of 10 km of this highway falls in Karnataka NH-150, between Kalaburagi and Yadgiri.
It crosses through an area dotted with lakes and rivers, including the Bhima River, and is prone
to flooding due to the hilly terrain. The region experiences an average annual rainfall of 838
mm, with temperatures ranging from 39.1°C to 17.1°C. From Table 3, for PCP, the LSTM
model demonstrated superior performance under SSP 245, achieving the lowest RMSE (47.43),
highest R? (0.72), lowest MAE (29.43), and highest KGE (0.82). The SVR model also
performed well, with slightly higher errors than LSTM but better accuracy than ANN and the
Mean method. Under SSP 585, SVR emerged as the best model with the lowest RMSE (48.52)
and highest R? (0.71), while LSTM showed a higher RMSE (57.62) but maintained a strong
KGE (0.80). The Mean method had the poorest performance in both scenarios, with the highest
errors (RMSE: 51.39 for SSP 245, 58.62 for SSP 585) and lowest R? values, reinforcing the
advantage of machine learning approaches over simple averaging. In the case of TMAX
predictions, SVR consistently outperformed other methods in both SSP scenarios, achieving
the lowest RMSE (1.16 for both SSP 245 and SSP 585) and highest KGE (0.95). LSTM also
performed well, particularly under SSP 245 (RMSE: 1.15), but showed a slight decline in SSP
585 (RMSE: 1.26). The Mean method again had the highest errors (RMSE: 1.31 for SSP 245,
1.46 for SSP 585), indicating its inadequacy for precise temperature forecasting. For TMIN,
LSTM was the best-performing model in both scenarios, recording the lowest RMSE (0.99 for
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SSP 245, 1.00 for SSP 585) and highest KGE (0.94). SVR and ANN showed competitive results
but with marginally higher errors. The Mean method had the highest RMSE (1.05 for SSP 245,
1.22 for SSP 585), further emphasizing the limitations of traditional statistical approaches.

It has been observed that LSTM is the best choice for PCP and TMIN predictions at L-1,
demonstrating strong accuracy and stability across both SSP scenarios. SVR is the most reliable
model for TMAX, providing consistent and high-precision forecasts. ANN, while not the top
performer, showed better results than the Mean of GCMs, suggesting its utility as a secondary
model. The Mean method consistently underperformed, reinforcing the need for advanced
machine-learning techniques in climate modeling. These results highlight that machine
learning models (LSTM and SVR) significantly improve prediction accuracy compared to
conventional methods. Future research could explore hybrid models or additional climate

variables to enhance projection reliability at the L-1 location further.

Table 3 SSP-245 & 585 Model performance comparison of L-1

L1 PCP TMAX TMIN
Location |/ thod RMSE R? MAE  KGE RMSE R? MAE KGE RMSE R? MAE
Mean = 5139 067 @ 3266 | 067 131 0.86 .02 093 105 0.89 0.82
LSTM 4743 072 2943 082 115 0.89 092 | 093 099 0.91 0.73
SSP245 " ANN sLi6 | 067 | 3697 | 070 119 0.88 093 | 094 104 0.89 0.79
SVR | 4852 071 = 3094 068  1.16 0.89 092 | 095 102 0.90 0.80
Mean = 58.62 057 @ 3536 | 059 146 0.82 117 091 122 0.86 0.97
ANN | 5114 068 = 3694 | 070  1.19 0.88 090 | 093 | 1.09 0.89 0.84
SSPS8S " IstM | 5762 059 3274 | 080 1.6 0.87 100 092 1.00 0.90 0.77
SVR | 4852 071 3074 068 1.6 0.89 091 | 095 104 0.90 0.83

Results of PCP under SSP-245 in Figure 15 A) show that MME-Mean has an R? value of 0.67.
Among three different ML models, the LSTM performed better, followed by the SVR and
ANN, respectively. Results of LSTM represent more peaks and patterns than in ANN and SVR,
covering extreme rainfall in the L-1 region, while SVR and ANN covered the general trend.
LSTM under SSP 245 was overpredicted in 2015 and 2021, indicating that it may produce
over-predicted values. Figure 15 B) shows the result of PCP under SSP-585. The mean of
GCMs shows an R? value of 0.57. Among three different machine learning models, the LSTM
showed better performance, followed by SVR and ANN, respectively. Similar to SSP 245,
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LSTM also predicted higher values than the observed data in the year 2015 and 2021, showing

that it may produce overpredicted values.
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Figure 15 SSP-245 & 585 precipitation Model performance comparison of L1

In Figure 16 A) TMAX, the R? value for MME-mean was 0.87. When machine learning was
applied, results got better, with all the ML techniques outperforming it. However, there were
some differences among the models: compared to the observed data, the ANN model
underestimated lower peaks, while both LSTM and SVR overestimated the lower peaks, which
may introduce errors in future predictions of this data. In Figure 16 B) TMAX, the R? value for

MME-mean was 0.83. When ML was applied, results got better, with all the ML techniques
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outperforming it. However, there were some differences among the models: compared to the
observed data, the ANN model underestimated lower peaks, while both LSTM and SVR

overestimated the lower peaks, which may introduce errors in future predictions of this data.
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Figure 16 SSP-245 & 585 TMAX Model performance comparison of L1
Under the SSP 245 scenario (TMIN, Figure 17 A), the R? value of MME-mean is 0.84. With
the application of ML, the results were improved, and all the ML techniques have shown better
results with all the techniques. Similarly, under SSP 585 (Figure 17 B), the R2 value is of a
similar magnitude to the mean of GCMs. It shows that there is no significant change in the
value of TMIN after using ML. It may be due to the temperature not showing a change of high

magnitudes.
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Figure 17 SSP-245 & 585 TMIN- Model performance comparison of L1
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Location 2

A stretch of 10 km of this highway falls in Andhra Pradesh, from Guntur to Chilakaluripet. It
falls within hilly terrain, owing to which water shows a natural tendency to come down toward
the low-lying areas and flood them frequently. Table 4 shows that For PCP, the LSTM model
outperformed other methods in both SSP scenarios, achieving the lowest RMSE (46.70 in SSP
245; 51.59 in SSP 585) and highest R? (0.73 in SSP 245; 0.67 in SSP 585), indicating better
accuracy and predictive capability. The Mean method consistently performed the worst, with
the highest RMSE and lowest R* values. The ANN and SVR models showed intermediate
performance, with SVR slightly better than ANN in terms of MAE and KGE. In TMAX
prediction, LSTM again demonstrated superior performance, with the lowest RMSE (1.09 in
SSP 245; 1.15 in SSP 585) and highest R? (0.85 in SSP 245; 0.84 in SSP 585). The Mean
method had the highest errors, particularly under SSP 585, suggesting greater variability in
extreme climate conditions. ANN and SVR performed comparably, though SVR had a
marginally better KGE, indicating improved hydrological consistency. For TMIN, all machine
learning models (LSTM, ANN, SVR) performed well, with high R? (>0.93) and KGE (>0.94)
values. LSTM had the lowest RMSE (0.73 in SSP 245; 0.77 in SSP 585) and MAE, reinforcing
its robustness in temperature prediction. The Mean method, while still reasonable (KGE >

0.95), had higher errors, particularly under SSP 585, where RMSE increased to 1.17.

Table 4 SSP-245 & 585 Model performance comparison of L-2

L2 PCP TMAX TMIN
Location | njethod  RMSE R’ MAE KGE RMSE R’ MAE KGE RMSE R’ MAE
Mean | 60.36 054 | 4024 064 135 0.78 110 092 092 0.90 0.71
sspags | LSTM | 4670 073 | 3202 082 109 0.85 087 | 093 073 0.94 0.57
ANN | 5479 062 | 4075 069 @ 117 0.83 091 | 090 & 0.78 0.93 0.63
SVR | 5237 0.66 | 3335 068 116 0.84 093 | 092 079 0.93 0.64
Mean | 62.29 051 4137 061 153 0.71 127 089 117 0.84 0.93
ANN | 5476 0.62 | 40.68 069 117 0.83 092 | 091 | 0.80 0.93 0.65
SPS Lstw | st 0.67 | 3424 081  L15 0.84 094 | 093 077 0.93 0.59
SVR | 5211 0.66 | 3264 067 117 0.83 092 | 092 | 0.80 0.93 0.67

Overall, LSTM consistently outperformed other models across all variables, demonstrating its
effectiveness in handling climate prediction tasks. The Mean method, while simple, was the
least accurate, highlighting the need for advanced modeling techniques. ANN and SVR
provided competitive results but were generally less precise than LSTM. The findings suggest
that deep learning approaches like LSTM are particularly effective in capturing complex

climate patterns under different emission scenarios. Figure 18 A) shows the precipitation of
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SSP-245 MME-Mean having an R? value of 0.54. Amongst three different machine learning
models, the R? value of LSTM was highest, followed by the SVR and SNN, correspondingly.
The LSTM model's results represent more peaks and patterns than ANN and SVR, which have
done a very good job of representing a general trend. Figure 18 B) shows the result of
precipitation for SSP 585, representing that MME-Mean has an R? value of 0.51. Amongst
three different machine learning models, the LSTM performed better, followed by the ANN
and SVR, respectively. The results of LSTM represent more peaks and patterns than ANN and

SVR, which have done a very good job of representing a general trend.
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Figure 18 SSP-245 & 585 Precipitation - model performance comparison of L2
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In Figure 19 A) TMAX, the R? value for MME-mean was 0.78. When machine learning was
applied, results got better, with all the ML techniques outperforming it. However, there were
some differences among the models: compared to the observed data, the ANN model
underestimated lower peaks, while both LSTM and SVR overestimated the lower peaks, which
may introduce errors in future predictions of this data. In Figure 19 B) TMAX, the R? value for
MME-mean was 0.71. When machine learning was applied, results got better, with all the ML
techniques outperforming it. However, there were some differences among the models:
compared to the observed data, the ANN model underestimated lower peaks, while both LSTM
and SVR overestimated the lower peaks, which may introduce errors in future predictions of

this data.
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Figure 19 SSP 245 & 585 TMAX — model performance comparison of L2
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In figure 20 A) TMIN, the R? value of MME-mean is 0.90. With the application of ML, the
results were improved, and all the ML techniques have shown better results with all the
techniques. In the case of ANN, lower peaks are covered compared to observed data, while in
the case of LSTM and SVR, the lower peaks were overestimated, which may generate some
error in future prediction of these data. In Figure 20 B) TMIN, the R? value of the MME-mean
is 0.84. With the application of ML, the results were improved, and all the ML techniques have
shown better results with all the techniques. In the case of ANN, lower peaks are covered
compared to observed data, while in the case of LSTM and SVR, the lower peaks were

overestimated, which may generate some error in future prediction of these data.
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Figure 20 SSP 245 & 585 TMIN — model performance comparison of L-2
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Location 3

A stretch of 10 km of this highway falls in Chhattisgarh NH-43, between Manendragarh and
Ambikapur. This area is characterized by its proximity to the Hasdeo River, Aaruni Dam, and
various waterfalls, making it particularly flood-prone. From Table 5 For PCP, the LSTM model
performed best under SSP 245, achieving the lowest RMSE (56.30) and highest R? (0.85),
indicating strong predictive accuracy. However, under SSP 585, SVR outperformed other
methods with the lowest RMSE (61.26) and highest R? (0.82). The Mean method had the
highest errors in both scenarios, reinforcing the need for advanced modeling techniques. ANN
showed intermediate performance, while SVR demonstrated competitive results, particularly
in SSP 585. In TMAX prediction, LSTM again excelled under SSP 245, with the lowest RMSE
(1.44) and highest R? (0.91). Under SSP 585, SVR performed best (RMSE: 1.52, R%: 0.90),
closely followed by LSTM.

Table 5 SSP 245 & 585 Model performance comparison of L-3

L3 PCP TMAX TMIN
Location | y/oihod = RMSE R? MAE KGE RMSE R? MAE KGE RMSE R? MAE
Mean | 73.46 0.75 41.19 | 083 161 0.89 130 | 092 | 1.10 0.96 0.88
LSTM | 56.30 0.85 3338 | 0.91 1.44 0.91 112 | 095 | 122 0.96 0.98
SSP 245
ANN | 67.09 0.79 4281 | 082 | 158 0.89 122 | 091 1.09 0.96 0.83
SVR | 61.73 0.82 3683  0.88 151 0.90 118 | 092 | 0.99 0.97 0.77
Mean | 7633 0.73 4283 082 | 179 0.86 150 | 092 | 145 0.94 1.19
ANN | 67.12 0.79 287 | 082 | 1.67 0.88 132 | 089 | 1.05 0.97 0.82
SSP 585
LSTM | 67.78 0.79 3732 | 086 @ 1.59 0.89 127 | 095 | 127 0.95 1.03
SVR 61.26 0.82 3625 | 088 @ 1.52 0.90 1.17 | 094 | 1.02 0.97 0.81

The Mean method had the highest errors, particularly under SSP 585 (RMSE: 1.79), suggesting
increased variability under higher emissions. ANN was consistent but slightly less accurate
than LSTM and SVR. For TMIN, SVR was the top performer in both scenarios, achieving the
lowest RMSE (0.99 in SSP 245; 1.02 in SSP 585) and highest R? (0.97). The Mean method had
higher errors, especially under SSP 585 (RMSE: 1.45), while ANN and LSTM showed strong
but slightly inferior results. Notably, LSTM's KGE dropped to 0.92 in SSP 585, indicating
reduced hydrological consistency compared to SVR. It has been observed that LSTM is the
best model for PCP and TMAX under SSP 245, but SVR outperformed SSP 585, suggesting

that different methods may excel under varying climate scenarios. SVR consistently performed
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best for TMIN, demonstrating robustness in predicting minimum temperatures. The Mean
method consistently had the highest errors, reinforcing the superiority of machine learning
models. ANN provided stable but intermediate results, while LSTM and SVR were more
scenario-dependent, with LSTM excelling in moderate conditions SSP 245 and SVR

performing better under extreme emissions SSP 585.
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Figure 21 SSP 245 & 585 Precipitation - Model performance comparison of L-3
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Figure 21 A) shows the result of precipitation of SSP-245. The panel, that is, represents results
for MME-Mean having an R? value of 0.75. Amongst three different machine learning models,
all ML techniques have shown nearby improvement in the results. In the case of extreme
rainfall events that occurred between 2010 and 2014, the peaks are covered better by the LSTM.
Figure 21 B) shows the result of precipitation of SSP-245. The panel, that is, represents results
for MME-Mean having an R? value of 0.73. Amongst three different machine learning models,
all ML techniques have shown nearby improvement in the results. In the case of extreme

rainfall events that occurred between 2010 and 2014, the peaks are covered better by the LSTM.
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Figure 22 SSP-245 & 585 TMAX - Model performance comparison of L-3

In Figure 22 A) TMAX, the R? value for MME-mean was 0.89. When machine learning was
applied, results got better, and with all the ML techniques, a slight improvement was observed.

All the ML techniques have shown comparable results. In Figure 22 B) TMAX, the R? value
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for MME-mean was 0.86. When machine learning was applied, the results got better. A slight
improvement is observed with all the ML techniques. All the ML techniques have shown

comparable results.
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Figure 23 SSP-245 & 585 TMIN - Model performance comparison of L-3

In Figure 23 A) TMIN, the R? value for MME-mean was 0.95, which is originally a good
correlation between the mean of GCMs and observed data, but when machine learning was
applied, the results got better. A slight improvement is observed with all the ML techniques.
All the ML techniques have shown comparable results. In Figure 23 B) TMIN, the R? value for
MME-mean was 0.92, which is originally a good correlation between the mean of GCMs and

observed data, but when machine learning was applied, the results got better. A slight
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improvement is observed with all the ML techniques. All the ML techniques have shown

comparable results.

Location 4

A stretch of 10 km of this highway falls in Madhya Pradesh NH-45, between Shahpura and
Jabalpur. Where the Narmada River and several lakes define the local landscape, prone to both
flooding and seismic activity (Seismic Zone III), this region experiences an annual rainfall of

1280 mm, with temperatures ranging from 32.1°C to 18.3°C.

Table 6 SSP-245 & 585 Model performance comparison of L-4

L4 PCP TMAX TMIN
Location |\, thod = RMSE R? MAE | KGE RMSE R? MAE KGE | RMSE R? MAE
Mean | 84.75 074 | 4634 | 080 1.6 0.90 127 | 092 | 115 0.96 091
LSTM | 7693 0.79 4445 087 | 149 0.91 119 | 087 110 0.97 0.87

SSP 245
ANN | 8133 0.77 5232 | 079 | 155 0.90 120 | 091 | 1.10 0.97 0.85
SVR | 7857 0.78 4073 076 | 146 0.91 113 | 093  1.04 0.97 0.82
Mean | 91.50 0.70 4774 078 | 175 0.87 149 | 091 | 151 0.93 1.24
ANN | 8133 0.77 5232 | 079 | 155 0.90 123 | 093 117 0.96 0.89

SSP 585
LSTM | 61.83 0.86 3963 | 092 | 147 0.91 120 | 095  1.06 0.97 0.83
SVR | 7856 0.78 4091 076 | 1.48 0.91 117 | 094 | LIl 0.96 0.87

From Table 6, evaluation metrics for PCP under SSP 245, LSTM performed best with the
lowest RMSE (76.93) and highest R? (0.79), demonstrating strong predictive capability. SVR
followed closely with an RMSE of 78.57, while ANN and Mean had higher errors. Under SSP
585, LSTM significantly outperformed all other models, achieving the lowest RMSE (61.83)
and highest R? (0.86), suggesting it handles extreme climate scenarios effectively. SVR and
ANN showed similar performance, while the Mean method had the highest errors (RMSE:
91.50, R?: 0.70). For TMAX under SSP 245, SVR was the best model, with the lowest RMSE
(1.46) and highest R? (0.91). LSTM and ANN were competitive but slightly less accurate.
Under SSP 585, LSTM emerged as the top performer (RMSE: 1.47, R%: 0.91), followed closely
by SVR (RMSE: 1.48). The Mean method again had the highest errors, particularly under
increased emissions (RMSE: 1.75). For TMIN under SSP 245, ANN and SVR performed best,
with low RMSE (1.10 and 1.04, respectively) and high R? (0.97). LSTM had a slightly higher
RMSE (1.10) but a lower KGE (0.93), indicating some inconsistency in hydrological
efficiency. Under SSP 585, SVR maintained strong performance (RMSE: 1.11, R%: 0.96), while
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LSTM had the lowest RMSE (1.06) but a reduced KGE (0.93), suggesting trade-offs between
precision and reliability. The Mean method was the least accurate, particularly under extreme
conditions (RMSE: 1.51). It has been observed that LSTM performs best for PCP in both
scenarios, showing exceptional improvement under SSP 585, likely due to its ability to capture
long-term dependencies in precipitation patterns. SVR performed best for TMAX in SSP 245,
while LSTM excelled in SSP 585, indicating that model superiority can vary with emission
scenarios. For TMIN, ANN and SVR were the most consistent, while LSTM showed slightly
reduced KGE values, suggesting that simpler models may sometimes be more reliable for
temperature prediction. The Mean method consistently underperformed, reinforcing the need

for machine-learning approaches in climate modeling.
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Figure 24 SSP-245 & 585 Precipitation - Model performance comparison of L-4

Figure 24 A) shows the result of the precipitation of SSP 245. The panel, that is, represents

results for MME-Mean having an R? value of 0.74. Among three different machine learning
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models, the LSTM performs better, followed by the ANN and SVR, respectively. The LSTM
model's results represent more peaks and patterns than ANN and SVR, which have done a very
good job of representing a general trend. Figure 24 B) shows the precipitation of SSP 585,
which represents results for MME-Mean, having an R? value of 0.70. Among three different
machine learning models, the LSTM performed better, followed by the ANN and SVR,
respectively. The results of LSTM represent more peaks and patterns than ANN and SVR,

which have done a very good job of representing a general trend.
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Figure 25 SSP-245 & 585 TMAX - Model performance comparison of L-4

In Figure 25 A) TMAX, the R? value for MME-mean was 0.89. When machine learning was applied,
results got better, with all the ML techniques outperforming it. However, there were some differences

among the models: compared to the observed data, the ANN model underestimated lower peaks, while

43




both LSTM and SVR overestimated the lower peaks, which may introduce errors in future predictions
of this data. In Figure 25 B) TMAX, the R2 value for MME-mean was 0.86. When machine learning
was applied, the results got better. A slight improvement is observed with all the ML techniques. All the

ML techniques have shown comparable results.
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Figure 26 SSP-245 TMIN - Model performance comparison of L-4

In Figure 26 A) TMIN, the R? value of the MME-mean is 0.95. With the application of ML,
the results were improved, and all the ML techniques have shown better results with all the
techniques. In the case of ANN, lower peaks are covered compared to observed data, while in
the case of LSTM and SVR, the lower peaks were overestimated, which may generate some
error in future prediction of these data. In figure 26 B) TMIN, the R? value of MME-mean is
0.92. With the application of ML, the results were improved, and all the ML techniques have
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shown better results with all the techniques. In the case of ANN, lower peaks are covered
compared to observed data, while in the case of LSTM and SVR, the lower peaks were

overestimated, which may generate some error in future prediction of these data.

Location 5

A stretch of 10 km of this highway falls in Maharashtra NH-47, between Betul and Saoner. An
area surrounded by dams such as Umri, Kolar, and Nanda. This region, also vulnerable to
floods, has a recorded average rainfall of 1060.2 mm, and temperatures fluctuate between 45°C
and 12°C. From Table 7, for PCP under SSP 245, LSTM demonstrated the best performance,
achieving the lowest RMSE (63.70) and highest R? (0.80), indicating strong predictive
accuracy. SVR followed closely (RMSE: 67.03, R%: 0.78), while ANN and Mean had higher
errors. Under SSP 585, LSTM significantly outperformed all other models, with the lowest
RMSE (54.23) and highest R? (0.85), showcasing its robustness in extreme climate conditions.
SVR and ANN performed moderately, while the Mean method had the highest errors (RMSE:
78.63, R 0.69). For TMAX under SSP 245, SVR was the top-performing model, with the
lowest RMSE (1.39) and highest R? (0.91). LSTM and ANN were competitive but slightly less
precise. Under SSP 585, LSTM and SVR tied for the best performance (RMSE: 1.44 and 1.40,
respectively), both maintaining high R? (0.90). The Mean method had the highest RMSE (1.60),
particularly under increased emissions. For TMIN under SSP 245, SVR and LSTM performed
comparably, with SVR having a slightly lower RMSE (1.21 vs. 1.10) but LSTM maintaining a
higher KGE (0.90 vs. 0.95 for SVR). The Mean method was the least accurate (RMSE: 1.12).
Under SSP 585, LSTM achieved the lowest RMSE (1.11), but its KGE (0.90) was lower than
ANN and SVR (0.95), suggesting a trade-off between precision and consistency. SVR and
ANN provided more balanced performance across metrics. It has been observed that LSTM
performed best for PCP in both scenarios, with remarkable improvement under SSP 585,
highlighting its ability to handle complex precipitation patterns under extreme conditions. SVR
excelled in TMAX prediction under SSP 245, while LSTM and SVR were equally strong under
SSP 585, indicating that model performance can vary with emission scenarios. For TMIN, SVR
and ANN were the most consistent, while LSTM had lower KGE values, suggesting that
simpler models may sometimes be more reliable for temperature forecasting. The Mean method
consistently underperformed, reinforcing the superiority of machine learning approaches in

climate modeling.
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L5
Location

SSP 245

SSP 585

Figure 27 A) shows the result of precipitation of SSP-245. Part a) represents results for MME-
Mean having an R? value of 0.72. Amongst three different machine learning models, the LSTM
performed better, followed by the ANN and SVR, correspondingly. The results of LSTM
represent more peaks and patterns than ANN and SVR, which have done a very good job of
representing a general trend. Figure 27 B) shows the result of precipitation of SSP-585
representing results for MME-Mean having an R? value of 0.694 amongst three different
machine learning models. The LSTM performs better, followed by the ANN and SVR,
correspondingly. The results of LSTM represent more peaks and patterns than ANN and SVR,

Method

Mean

LSTM

ANN

SVR

Mean

ANN

LSTM

SVR

Table 7 SSP-245- Model performance comparison of L-5

RMSE

74.62

63.70

71.52

67.03

78.63

71.56

54.23

68.20

PCP
R?
0.72
0.80
0.75
0.78
0.69
0.75
0.85

0.77

MAE

41.00

37.59

47.47

37.26

43.09

47.57

33.43

36.84

KGE

0.68

0.84

0.70

0.72

0.65

0.70

0.89

0.70

RMSE

1.44

1.40

1.40

1.39

1.60

1.44

1.44

1.40

TMAX

R?
0.90
0.90
0.90
0.91
0.88
0.90
0.90

0.90

which have done a very good job of representing a general trend.
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Figure 27 SSP-245 Precipitation - Model performance comparison of L-5

In Figure 28 A) TMAX, the R? value for MME-mean was 0.89. When machine learning was
applied, results got better, with all the ML techniques outperforming it. However, there were
some differences among the models: compared to the observed data, the ANN model
underestimated lower peaks, while both LSTM and SVR overestimated the lower peaks, which
may introduce errors in future predictions of this data. In Figure 28 B) TMAX, the R? value
for MME-mean was 0.86. When machine learning was applied, results got better, with all the
ML techniques outperforming it. However, there were some differences among the models:

compared to the observed data, the ANN model underestimated lower peaks, while both LSTM
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and SVR overestimated the lower peaks, which may introduce errors in future predictions of

this data.
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Figure 28 SSP-245 & 585 TMAX- Model performance comparison of L-5

In Figure 29 A) TMIN, the R? value of the MME-mean is 0.93. With the application of ML, the
results were improved, and all the ML techniques have shown better results with all the
techniques. In the case of ANN, lower peaks are covered compared to observed data, while in
the case of LSTM and SVR, the lower peaks were overestimated, which may generate some
error in future prediction of these data. In figure 29 B) TMIN, the R? value of MME-mean is
0.90. With the application of ML, the results were improved, and all the ML techniques have
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shown better results with all the techniques. In the case of ANN, lower peaks are covered

compared to observed data, while in the case of LSTM and SVR, the lower peaks were

overestimated, which may generate some error in future prediction of these data.
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Figure 29 SSP-245 & 585 TMIN- Model performance comparison of L-5
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Location 6

A stretch of 10 km of this highway falls in Gujarat NH-48, between Himatnagar and Vadodara.
It passes through an industrial zone and intersects with major state highways. This region
experiences an annual rainfall of 749 mm, with temperatures varying from 40°C to 14°C. From
Table 8, For PCP under SSP 245 Scenario, LSTM emerged as the clear leader with superior
performance (RMSE: 61.10, R%: 0.79), demonstrating a 22% improvement in RMSE over the
Mean method. Other machine learning models (ANN, SVR) showed limited improvement over
the baseline Mean approach. Under the SSP 585 Scenario, LSTM maintained its advantage
(RMSE: 71.27, R?: 0.71), and the performance gap narrowed compared to SSP 245. Notably,
ANN and SVR failed to significantly outperform the Mean method, suggesting challenges in
modeling precipitation under extreme climate conditions. For TMAX, both scenarios showed
remarkable consistency in model performance rankings. ANN achieved the best balance of
accuracy (RMSE: 1.16/1.21) and reliability (KGE: 0.93/0.94) across scenarios, though LSTM
and SVR showed competitive RMSE values. The Mean method's performance degraded more
noticeably under SSP 585 (14% RMSE increase vs SSP 245), highlighting increased modeling
challenges under extreme scenarios. For TMIN, ANN demonstrated exceptional performance
with the lowest RMSE (0.82/0.83) and highest R? (0.97) in both scenarios, along with
outstanding KGE values (0.98). LSTM surprisingly underperformed in TMIN prediction
(KGE: 0.87/0.88), suggesting potential limitations in modeling minimum temperature
dynamics despite its strong precipitation performance. It has been observed that ANN excelled
in temperature prediction while LSTM dominates precipitation forecasting, suggesting
different model architectures may be optimal for different climate variables. Performance
degradation under SSP 585 was most pronounced for PCP prediction (LSTM's RMSE
increased by 16.7%), indicating precipitation modeling becomes more challenging under
extreme scenarios. ANN showed remarkable consistency across temperature predictions,
maintaining high KGE values (0.93-0.98) in all scenarios. The Mean method's competitive
performance in temperature prediction (particularly TMIN) suggests simpler approaches may

sometimes suffice for certain climate variables.

50




Table 8 SSP-245 Results Model performance comparison of L-6

Lé PCP TMAX
Location | nroihod = RMSE R? MAE  KGE | RMSE R? MAE KGE RMSE
Mean | 78.50 065 | 3932 072 | 117 0.90 098 089 | 1.20
LSTM | 61.10 079 | 3433 082 | 114 0.91 092 | 089 | 128
SSP 245
ANN | 77.63 065 | 4532 071 | 1.16 0.90 094 | 093 082
SVR | 78.09 065 | 3741 065 | 1.14 0.91 092 087 | 086
Mean | 82.88 0.60 | 41.05 0.67 | 139 0.86 114 | 088 1.6l
ANN | 77.62 065 | 4527 071 | 121 0.90 097 094 | 0.83
SSP 585
LSTM | 7127 0.71 3368 | 072 | 123 0.89 1.00 | 088 | 130
SVR | 77.89 0.65 | 3744 066 | 1.16 0.90 093 088 | 0.87

Figure 30 A) shows the result of precipitation of SSP-245. The panel, that is, represents results
for MME-Mean having an R?value of 0.65. Amongst three different machine learning models,
the LSTM performed better, followed by the ANN and SVR, correspondingly. The results of
LSTM represent more peaks and patterns than ANN and SVR, which have done a very good
job of representing a general trend. Figure 30 B) shows the result of precipitation of SSP-585.
a) represents results for MME-Mean having an R? value of 0.60. Amongst three different
machine learning models, the LSTM performs better, followed by the ANN and SVR,
respectively. The results of LSTM represent more peaks and patterns than ANN and SVR,

which have done a very good job of representing a general trend.
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Figure 30 SSP-245 Precipitation- Model performance comparison of L-6

Figure 31 A) shows that in TMAX, the R? value for MME-mean was 0.89. When machine
learning was applied, results got better, with all the ML techniques outperforming it. However,
there were some differences among the models: compared to the observed data, the ANN model
underestimated lower peaks, while both LSTM and SVR overestimated the lower peaks, which
may introduce errors in future predictions of this data. In Figure 31 B) TMAX, the R? value for
MME-mean was 0.84. When machine learning was applied, results got better, with all the ML
techniques outperforming it. However, there were some differences among the models:

compared to the observed data, the ANN model underestimated lower peaks, while both LSTM

52




and SVR overestimated the lower peaks, which may introduce errors in future predictions of

this data.
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Figure 31 SSP-245 & 585 TMAX- Model performance comparison of L-6

In Figure 32 A) TMIN, the R? value of the MME-mean is 0.92. With the application of ML, the
results were improved, and all the ML techniques have shown better results with all the
techniques. In the case of ANN, lower peaks are covered compared to observed data, while in
the case of LSTM and SVR, the lower peaks were overestimated, which may generate some
error in future prediction of these data. In figure 32 B) TMIN, the R? value of MME-mean is
0.92. With the application of ML, the results were improved, and all the ML techniques have
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shown better results with all the techniques. In the case of ANN, lower peaks are covered
compared to observed data, while in the case of LSTM and SVR, the lower peaks were

overestimated, which may generate some error in future prediction of these data.
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Figure 32 SSP-245 & 585 TMIN -Model performance comparison of L-6
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Location 7

A stretch of 10 km of this highway falls in Maharashtra NH-48 C, between Lonavala and
Khandala. a popular tourist destination in Maharashtra. Known for its waterfalls and scenic
viewpoints, the area has been severely affected by flooding in recent years, receiving an
average annual rainfall of 4223 mm, with temperatures ranging from 34°C to 11°C. From Table
9, for PCP under the SSP 245 Scenario, LSTM emerged as the clear leader with superior
performance (RMSE: 61.10, R%: 0.79), demonstrating a 22% improvement in RMSE over the
Mean method. Other machine learning models (ANN, SVR) showed limited improvement over
the baseline Mean approach. Under the SSP 585 Scenario, LSTM maintained its advantage
(RMSE: 71.27, R* 0.71), and the performance gap narrowed compared to SSP 245. Notably,
ANN and SVR failed to significantly outperform the Mean method, suggesting challenges in
modeling precipitation under extreme climate conditions. For TMAX, both scenarios showed
remarkable consistency in model performance rankings. ANN achieved the best balance of
accuracy (RMSE: 1.16/1.21) and reliability (KGE: 0.93/0.94) across scenarios, though LSTM
and SVR showed competitive RMSE values. The Mean method's performance degraded more
noticeably under SSP 585 (14% RMSE increase vs SSP 245), highlighting increased modeling
challenges under extreme scenarios. For TMIN, ANN demonstrated exceptional performance
with the lowest RMSE (0.82/0.83) and highest R? (0.97) in both scenarios, along with
outstanding KGE values (0.98). LSTM surprisingly underperformed in TMIN prediction
(KGE: 0.87/0.88), suggesting potential limitations in modeling minimum temperature
dynamics despite its strong precipitation performance. It has been observed that ANN excelled
in temperature prediction while LSTM dominates precipitation forecasting, suggesting
different model architectures may be optimal for different climate variables. Performance
degradation under SSP 585 was most pronounced for PCP prediction (LSTM's RMSE
increased by 16.7%), indicating precipitation modeling becomes more challenging under
extreme scenarios. ANN showed remarkable consistency across temperature predictions,
maintaining high KGE values (0.93-0.98) in all scenarios. The Mean method's competitive
performance in temperature prediction (particularly TMIN) suggests simpler approaches may

sometimes suffice for certain climate variables.
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Table 9 SSP-245 & 585 Model performance comparison of L-7

L7 PCP TMAX
Location | y/oihod = RMSE R MAE KGE RMSE R? MAE KGE RMSE
Mean | 167.13 0.76 89.26 | 0.71 1.12 0.83 089 | 085 | 097
LSTM | 126.17 0.86 7049 | 0.87 = 0.99 0.87 081 | 091 | 082
SSP 245
ANN | 142.75 0.82 9236 | 0.80 @ 0.92 0.88 073 | 093 | 081
SVR | 135.11 0.84 7289 | 078 @ 0.92 0.88 073 | 086 | 082
Mean | 178.19 0.73 93.60 | 0.67 @ 142 0.72 116 | 079 | 123
ANN | 142.77 0.82 9238 | 0.80 @ 1.06 0.84 0.86 | 090 | 087
SSP 585
LSTM | 119.39 0.88 66.17 | 0.91 1.10 0.83 088 | 092 | 0.79
SVR | 136.83 0.84 7377 | 078 | 0.99 0.86 0.80 | 086 | 084

Figure 33 A) shows the result of precipitation of SSP-245. The panel, that is, represents results
for MME-Mean having an R?value of 0.77. Amongst three different machine learning models,
the LSTM performed better, followed by the ANN and SVR, correspondingly. The results of
LSTM represent more peaks and patterns than ANN and SVR, which have done a very good
job of representing a general trend. Figure 33 B) shows the result of precipitation of SSP-585.
a) represents results for MME-Mean having an R? value of 0.73. Amongst three different
machine learning models, the LSTM was the best, followed by the ANN and SVR,
correspondingly. The LSTM model's results represent more peaks and patterns than ANN and

SVR, which have done a very good job of representing a general trend.
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Figure 33 SSP-245 & 585 precipitation- Model performance comparison of L-7
In Figure 34 A) TMAX, the R? value for MME-mean was 0.83. When machine learning was

applied, results got better, with all the ML techniques outperforming it. However, there were
some differences among the models: compared to the observed data, the ANN model
underestimated lower peaks, while both LSTM and SVR overestimated the lower peaks, which
may introduce errors in future predictions of this data. In Figure 34 B) TMAX, the R? value for
MME-mean was 0.71. When machine learning was applied, results got better, with all the ML
techniques outperforming it. However, there were some differences among the models:

compared to the observed data, the ANN model underestimated lower peaks, while both LSTM
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and SVR overestimated the lower peaks, which may introduce errors in future predictions of

this data.
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Figure 34 SSP-245 TMAX- Model performance comparison of L-7

In Figure 35 A) TMIN, the R? value of the MME-mean is 0.86. With the application of ML,
the results were improved, and all the ML techniques have shown better results with all the
techniques. In the case of ANN, lower peaks are covered compared to observed data, while in
the case of LSTM and SVR, the lower peaks were overestimated, which may generate some
error in future prediction of these data. In Figure 35 B), in the case of TMIN, the R? value of
MME-mean is 0.78. With the application of ML, the results were improved, and all the ML
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techniques have shown better results with all the techniques. In the case of ANN, lower peaks
are covered compared to observed data, while in the case of LSTM and SVR, the lower peaks

were overestimated, which may generate some error in future prediction of these data.
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Figure 35 SSP-245 & 585 TMIN- Model performance comparison of L-7
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Location 8

A stretch of 10 km of this highway falls in Madhya Pradesh, NH-52, between Dewas and
Sendhwa, an area marked by both industrial and agricultural activities. The Narmada River,
which flows through this region, contributes to its vulnerability to floods. The area sees an
average rainfall of 833.6 mm and temperatures ranging between 44°C and 10°C. From Table
10, for PCP prediction, LSTM emerged as the superior model, achieving the lowest RMSE
(52.30 in SSP 245; 50.22 in SSP 585) and highest R? (0.79-0.80), representing a 12-23%
improvement over the Mean baseline. While SVR showed competitive PCP results with better
MAE values (26.38 in SSP 245), its overall performance was slightly inferior to LSTM.
Temperature predictions revealed different optimal models: ANN consistently delivered the
best TMIN forecasts with the lowest RMSE (1.02 in SSP 245; 1.05 in SSP 585) and maintained
high KGE values (0.97), while all machine learning methods performed comparably for TMAX
prediction, with ANN showing a slight edge in KGE (0.91-0.92). The analysis highlights
several key patterns: LSTM's clear advantage in precipitation prediction is maintained across
scenarios, ANN's superior performance in minimum temperature forecasting, and the general
consistency of machine learning methods for maximum temperature prediction. Notably, the
Mean method was consistently outperformed, particularly for PCP under SSP 585, where
LSTM achieved a 23% lower RMSE. These results suggest that optimal climate forecasting at
Location L-8 would benefit from employing LSTM for precipitation and ANN for temperature
predictions, with particular attention to scenario conditions, as model performance shows some
variation between SSP 245 and SSP 585. The findings support the use of specialized models
for different climate variables and highlight the value of machine-learning approaches over

traditional baseline methods.

Table 10 SSP-245 Model performance comparison of L-8

L8 PCP TMAX TMIN
Location | yjoihod  RMSE R? MAE | KGE RMSE R? MAE KGE RMSE R? MAE
Mean | 60.00 0.72 3085 | 073 | 132 0.91 109 | 08 | 112 0.95 0.84
ANN | 59.80 0.72 3355 | 074 | 133 0.91 105 | 092 | 1.02 0.96 0.79

SSP 245
LSTM | 52.30 0.79 28.14 | 088 | 135 0.91 110 | 088 115 0.95 0.90
SVR | 54.71 0.76 2638 076 | 135 0.91 1.06 | 090  1.05 0.96 0.85
Mean | 64.88 0.67 31.98 | 0.68 | 1.49 0.89 124 | 088 | 146 0.92 1.13
ANN | 59.74 0.72 3326 | 074 | 137 0.90 1.06 | 091 | 1.05 0.96 0.83

SSP 585
LSTM | 5022 0.80 2922 | 075 | 1.33 0.91 105 | 092 115 0.95 0.90
SVR | 5535 0.76 2696 | 0.76 | 136 0.91 1.07 | 090  1.09 0.95 0.87
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Figure 36 A) shows the precipitation of SSP-585, which represents results for MME-Mean
having an R? value of 0.71. Amongst three different machine learning models, the LSTM
performed better, followed by the ANN and SVR, correspondingly. The results of LSTM
represent more peaks and patterns than ANN and SVR, which have done a very good job of
representing a general trend. Figure 36 B) shows the result of precipitation of SSP-585
representing results for MME-Mean having an R? value of 0.66. Amongst three different
machine learning models, the LSTM was the best, followed by the ANN and SVR,

A) Observed vs ANN Observed vs LSTM
—— Observed —— Observed
R? = 0.71 R2=0.7
500 4 0719 — ANN 500 ChiS> — LST™
T 400+ T 400
E E
§ 3001 § 3001
= -]
£ £
£ 200 £ 200
13 g
a a
100 100
04 04
2010 2012 2014 2016 2018 2020 2022 2024 2010 2012 2014 2016 2018 2020 2022 2024
Year Year
Observed vs SVR Observed vs Mean
—— Observed —— Observed
R? = 0.765 R2=0.717
500 SVR 500 — Mean
£ 400 400+
E E
§ 300 l § 3001
] I B
2 1 A P ﬂ | 2
£ 200 i | ||l | £ 200
o - @
g | | | 2
& nnill \ I | &
1004 / / ‘ | } | ’ | 100 4
|1 |
| | | \ AN '\
o] - A J sl S I U ' NS | o]
2010 2012 2014 2016 2018 2020 2022 2024 2010 2012 2014 2016 2018 2020 2022 2024
Year Year
B Observed vs ANN Observed vs LSTM
) —— Observed —— Observed
R? = 0.720 R? = 0.802
500 4 — ANN 500 4 — LSTM™
T 400 E 400
E E
§ 300 § 3001
B B
] ]
£ £
2 200 2 200
2 g
a a
100 100
04 04
2010 2012 2014 2016 2018 2020 2022 2024 2010 2012 2014 2016 2018 2020 2022 2024
Year Year
Observed vs SVR Observed vs Mean
—— Observed —— Observed
R? = 0.759 R? = 0.669
500 4 SVR 500 4 —— Mean
F 400 F 400
E E
§ 300 § 300
B | B
3 \ ' I | [ 3
2 (! A | 2
§ 200 I | | L | ) | I § 200
g | I 4
a [ | | \ | \ [ &
100 | | 100
UL WL UL U LU
| | 1 | 11 '\
ol - (NIRRT AV NANRGANANAVANADS o
2010 2012 2014 2016 2018 2020 2022 2024 2010 2012 2014 2016 2018 2020 2022 2024
Year Year

Figure 36 SSP-245 & 585 Precipitation- Model performance comparison of L-8
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In Figure 37 A) TMAX, the R? value for MME-mean was 0.89. When machine learning was
applied, results got better, with all the ML techniques outperforming it. However, there were
some differences among the models: compared to the observed data, the ANN model
underestimated lower peaks, while both LSTM and SVR overestimated the lower peaks, which
may introduce errors in future predictions of this data. In figure 37 B) TMAX, the R? value for
MME-mean was 0.87. When machine learning was applied, results got better, with all the ML
techniques outperforming it. However, there were some differences among the models:
compared to the observed data, the ANN model underestimated lower peaks, while both LSTM

and SVR overestimated the lower peaks, which may introduce errors in future predictions of
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Figure 37 SSP-245 & 585 TMAX- Model performance comparison of L-8
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In Figure 38 A) TMIN, the R? value of the MME-mean is 0.89. With the application of ML,
the results were improved, and all the ML techniques have shown better results with all the
techniques. In the case of ANN, lower peaks are covered compared to observed data, while in
the case of LSTM and SVR, the lower peaks were overestimated, which may generate some
error in future prediction of these data. In Figure 38 B) TMIN, the R? value of the MME-mean
is 0.89. With the application of ML, the results were improved, and all the ML techniques have
shown better results with all the techniques. In the case of ANN, lower peaks are covered
compared to observed data, while in the case of LSTM and SVR, the lower peaks were

overestimated, which may generate some error in future prediction of these data.
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Figure 38 SSP-245 & 585 TMIN- Model performance comparison of L-8
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Location 9

A stretch of 10 km of this highway falls in Gujarat NH-64, between Ahmedabad and Nadiad.
It runs through a dense urban area. The region’s rainfall averages 749 mm annually, and
temperatures range from 40°C to 14°C. From Table 11, for PCP forecasting, LSTM
demonstrates clear superiority, achieving an 18% lower RMSE (63.48-63.97) compared to the
Mean baseline while maintaining robust performance under both SSP scenarios. Temperature
predictions show different optimal models: ANN emerges as the best performer for both
maximum (TMAX) and minimum (TMIN) temperatures, particularly excelling in TMIN
prediction with exceptional consistency (RMSE: 0.83, KGE: 0.99). While SVR shows
competitive results for TMAX, ANN's superior reliability in temperature forecasting is evident
through its consistently high KGE values (0.93-0.95). The analysis highlights the limitations
of the Mean method, which consistently underperforms across all variables, particularly in
extreme scenarios (SSP 585). These findings suggest that optimal climate forecasting at
Location L-9 requires a tailored approach, employing LSTM for precipitation and ANN for
temperature predictions. The results underscore the importance of variable-specific model
selection and demonstrate the value of machine learning approaches in improving climate
prediction accuracy, especially under changing climate conditions. Future research could
explore hybrid modeling approaches to enhance predictive performance across all climate

variables further.

Table 11 SSP-245 & 585 Model performance comparison of L-9

Lo PCP TMAX TMIN
Location |\ thod RMSE R2 MAE KGE RMSE R2 MAE | KGE RMSE R2 MAE
Mean | 77.30 0.63 3837 068 119 0.90 100 | 089  1.19 0.95 0.98
LSTM | 63.48 0.75 3628 079 | 1.17 091 094 086 115 0.95 0.96

SSP 245
ANN | 7447 0.66 4464 068  1.13 091 093 095 083 0.97 0.61
SVR | 7436 066 3552 062  1.13 091 091 | 088 0.4 0.97 0.64
Mean | 81.49 059 3991 063 141 0.87 117 | 089 161 0.90 1.39
ANN | 74.46 0.66 4464 068  1.18 091 095 093 | 083 0.97 0.65

SSP 585
LSTM | 63.97 0.75 3131 086 118 091 096 089 117 0.95 0.93
SVR | 74.99 0.65 3583 0.63  1.14 091 092 088  0.86 0.97 0.66

Figure 39 A) shows the result of precipitation of SSP-245. a) represents results for MME-Mean
having an R? value of 0.63. Amongst three different machine learning models, the LSTM
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performed better, followed by the ANN and SVR, correspondingly. The results of LSTM
represent more peaks and patterns than ANN and SVR, which have done a very good job of
representing a general trend. Figure 39 B) shows the result of precipitation of SSP-585. a)
represents results for MME-Mean having an R? value of 0.59. Amongst three different machine
learning models, the LSTM was the best, followed by the ANN and SVR, correspondingly. The
LSTM model's results represent more peaks and patterns than ANN and SVR, which have done

a very good job of representing a general trend.
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Figure 39 SSP-245 Precipitation- Model performance comparison of L-9
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In Figure 40 A), TMAX, the R? value for MME-mean was 0.89. When machine learning was
applied, results got better, with all the ML techniques outperforming it. However, there were
some differences among the models: compared to the observed data, the ANN model
underestimated lower peaks, while both LSTM and SVR overestimated the lower peaks, which
may introduce errors in future predictions of this data. Figure 40 B), the R? value for MME-
mean was 0.85. When machine learning was applied, results got better, with all the ML
techniques outperforming it. However, there were some differences among the models:
compared to the observed data, the ANN model underestimated lower peaks, while both LSTM

and SVR overestimated the lower peaks, which may introduce errors in future predictions of

this data.
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Figure 40 SSP-245 TMAX - Model performance comparison of L-9
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In Figure 41 A) TMIN, the R? value of the MME-mean is 0.92. With the application of ML,
the results were improved, and all the ML techniques have shown better results with all the
techniques. In the case of ANN, lower peaks are covered compared to observed data, while in
the case of LSTM and SVR, the lower peaks were overestimated, which may generate some
error in future prediction of these data. In Figure 41 B) TMIN, the R? value of the MME-mean
is 0.87. With the application of ML, the results were improved, and all the ML techniques have
shown better results with all the techniques. In the case of ANN, lower peaks are covered
compared to observed data, while in the case of LSTM and SVR, the lower peaks were

overestimated, which may generate some error in future prediction of these data.
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Figure 41 SSP-245 & 585 TMIN- Model performance comparison of L-9
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Location 10

A stretch of 10 km of this highway falls in Tamil Nadu NH-87, between Ramanathapuram to
Mandapam. It runs close to the coastline, making it particularly vulnerable to both floods and
cyclones. The region receives an annual rainfall of 821 mm, with temperatures ranging between
40°C and 21°C. From Table 11 for PCP, the LSTM model outperformed other methods in both
SSP scenarios, achieving the lowest RMSE (71.16 in SSP 245; 71.72 in SSP 585) and highest
KGE (0.74 in SSP 245; 0.76 in SSP 585), indicating better accuracy and reliability. The Mean
method consistently performed the worst, with higher errors and lower R? values. In TMAX
predictions, SVR and ANN showed strong performance, particularly under SSP 585, where
SVR achieved the highest R? (0.87) and lowest MAE (0.60). However, LSTM also performed
well in SSP 245, with a high KGE of 0.94. The Mean method again had the highest errors,
especially in SSP 585 (RMSE = 1.40). For TMIN, LSTM demonstrated the best results in both
scenarios, with the lowest RMSE (0.45 in SSP 245; 0.47 in SSP 585) and highest KGE (0.97
in SSP 245; 0.95 in SSP 585). ANN and SVR also performed well but were slightly less
accurate than LSTM. The Mean method had the weakest performance, particularly in SSP 585
(R? = 0.66). Overall, machine learning models (LSTM, ANN, SVR) significantly improved
prediction accuracy over the Mean baseline, with LSTM excelling in PCP and TMIN, while
SVR and ANN were competitive in TMAX.

Table 12 SSP-245 Model performance comparison of L-10

PCP TMAX TMIN
qu Method = RMSE R? MAE KGE RMSE R? MAE KGE | RMSE R? MAE
Location
Mean 78.90 0.46 53.50 @ 0.55 1.19 0.70 0.97 0.85 0.76 0.79 0.64
LSTM 71.16 0.56 49.33 0.74 1.04 0.77 0.84 0.94 0.45 0.92 0.34
SSP 245
ANN 73.49 0.53 56.51 0.61 0.91 0.82 0.73 0.90 0.55 0.89 0.45
SVR 73.36 0.53 47.86 @ 0.61 0.82 0.85 0.64 0.89 0.55 0.89 0.42
Mean 80.17 0.44 52.86 @ 0.48 1.40 0.58 1.20 0.80 0.97 0.66 0.88
ANN 73.49 0.53 56.51 0.61 0.78 0.87 0.61 0.93 0.49 0.91 0.38
SSP 585
LSTM 71.72 0.55 5192 0.76 1.04 0.77 0.84 0.94 0.47 0.92 0.34
SVR 72.47 0.54 47.55 0.62 0.79 0.87 0.60 0.90 0.51 0.90 0.38

Figure 42 A) shows the precipitation of the SSP 245 Panel, which represents the results for
MME-Mean with an R? value of 0.46. Among three different machine learning models, the
LSTM performed better, followed by the ANN and SVR, respectively. The results of LSTM
represent more peaks and patterns than ANN and SVR, which have done a very good job of
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representing a general trend. Figure 42 B) shows the result of precipitation of SSP585,
representing results for MME-Mean, having an R? value of 0.44. Among three different
machine learning models, the LSTM performed better, followed by the ANN and SVR,
respectively. The results of LSTM represent more peaks and patterns than ANN and SVR,

which have done a very good job of representing a general trend.
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Figure 42 SSP-245 & 585 Precipitation- Model performance comparison of L-10

In Figure 43 A) TMAX, the R? value for MME-mean was 0.73. When machine learning was
applied, results got better, with all the ML techniques outperforming it. However, there were

some differences among the models: compared to the observed data, the ANN model
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underestimated lower peaks, while both LSTM and SVR overestimated the lower peaks, which
may introduce errors in future predictions of this data. Figure 43 B) TMAX, the R? value for
MME-mean was 0.60. When machine learning was applied, results got better, with all the ML
techniques outperforming it. However, there were some differences among the models:
compared to the observed data, the ANN model underestimated lower peaks, while both LSTM
and SVR overestimated the lower peaks, which may introduce errors in future predictions of

this data.
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Figure 43 SSP-245 & 585 TMAX- Model performance comparison of L-10
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In Figure 44 A) TMIN, the R? value of the MME-mean is 0.71. With the application of ML,
the results were improved, and all the ML techniques have shown better results with all the
techniques. In the case of ANN, lower peaks are covered compared to observed data, while in
the case of LSTM and SVR, the lower peaks were overestimated, which may generate some
error in future prediction of these data. In Figure 44 B) TMIN, the R? value of the MME-mean
is 0.54. With the application of ML, the results were improved, and all the ML techniques have
shown better results with all the techniques. In the case of ANN, lower peaks are covered
compared to observed data, while in the case of LSTM and SVR, the lower peaks were

overestimated, which may generate some error in future prediction of these data.
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Figure 44 SSP-245 & 585 TMIN- Model performance comparison of L-10
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4.1 Trend Analysis

The trend analysis of CMIP6 multi-model ensembles using machine learning (ML) techniques
revealed significant variations in model performance across different scenarios (SSP245 and
SSP585) and geographical locations. Table 13 and Table 14 show that the means of GCMs
consistently exhibited strong, statistically significant increasing trends (p < 0.05) in all regions,
with particularly steep Sen’s slope values under SSP585 (e.g., L7: +10.55 units/year). It
suggests that conventional MME provides a robust, consensus-based projection of warming
trends, reinforcing its reliability in climate change assessments. In contrast, ML-based
ensembles (ANN, LSTM, SVR) displayed greater variability in trend detection. LSTM
demonstrated the most divergent behavior, with sharp increasing trends in some regions (e.g.,
L2 SSP585: Zc = 3.95, slope = +3.75) but significant decreasing trends in others (e.g., L7
SSP585: Z¢ = -10.03, slope = -5.08). This inconsistency suggests that while LSTM captures
complex temporal dependencies, its projections may be highly sensitive to regional climate
dynamics. ANN, meanwhile, produced more moderate but spatially consistent trends,
particularly under SSP585 (e.g., L5 SSP585: slope = +0.056, p < 0.001), indicating better
stability compared to LSTM. SVR performed least reliably, with mostly non-significant trends
(e.g., L8 SSP245: p = 0.36) except in a few cases (e.g., L8 SSP585: Zc = 5.27, p = 1.40E-07),
while various machine learning models demonstrate unique strengths in climate trend analysis,
each exhibits notable limitations in long-term climate trend detection. The Multi-Model
Ensemble (MME) stands out as the most reliable for large-scale, consensus-based projections,
offering robust and widely accepted trends. However, LSTM models, though successful in
capturing extreme trends, suffer from high variability, making them unsuitable for standalone
use in policy-relevant assessments. Artificial Neural Networks (ANN) present a balanced
compromise, delivering moderate yet more stable trends compared to LSTM, though they may
lack the precision required for detailed long-term projections. Conversely, Support Vector
Regression (SVR) underperforms in climate trend detection, indicating limited potential for

refining ensemble models.
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Table 13 Trend Analysis of SSP 245 for different models at all 10 locations

Near future Far future
Location | Model | Corrected | new P- Sen's Corrected new P- Sen's
Zc value slope Zc value slope
ANN 0.8376 0.4023 0.0745 0.8188 0.4129 0.0127
L1 LSTM 0.5500 0.5823 2.8192 -0.6023 0.5470 -1.6622
Mean 0.7767 0.4373 1.1205 2.0697 0.0385 0.7487
SVR -0.8376 0.4023 | -0.5597 1.5726 0.1158 0.2046
ANN 1.1902 0.2340 0.0866 0.6357 0.5250 0.0169
L2 LSTM | -0.8376 0.4023 | -1.9796 -1.7733 0.0762 -1.4446
Mean 1.5870 0.1125 2.4252 2.4091 0.0160 1.4968
SVR -1.4157 0.1569 | -0.5537 1.1618 0.2453 0.1733
ANN 0.5731 0.5666 0.0178 0.6190 0.5359 0.0168
L3 LSTM 0.9698 0.3321 3.9872 2.5596 0.0105 3.9737
Mean 0.0000 1.0000 | -0.1052 9.5803 0.0000 1.8538
SVR -1.7736 0.0761 | -0.5520 -0.5688 0.5695 -0.1081
ANN 0.7053 0.4806 0.0368 0.0578 0.9539 0.0019
L4 LSTM 0.2204 0.8255 09114 1.0707 0.2843 2.7564
Mean -0.5731 0.5666 | -1.6008 1.4118 0.1580 1.1809
SVR 0.0882 0.9297 0.0331 -0.9536 0.3403 -0.1176
ANN 2.2042 0.0275 0.0772 0.4852 0.6276 0.0159
L5 LSTM | -1.6739 0.0942 | -4.6941 1.4103 0.1585 1.6563
Mean 0.3046 0.7606 0.4478 2.1061 0.0352 1.5046
SVR 1.0139 0.3106 0.5178 0.5521 0.5809 0.0277
ANN 1.5429 0.1229 0.1151 0.3513 0.7253 0.0128
L6 LSTM | -0.3527 0.7243 | -3.6543 -2.9420 0.0033 -2.5586
Mean 0.6380 0.5235 1.5349 2.5095 0.0121 1.9683
SVR 0.7122 0.4764 0.2678 -0.3011 0.7633 -0.0523
ANN 0.2204 0.8255 0.0117 0.6190 0.5359 0.0144
L7 LSTM | -0.1322 0.8948 | -0.1608 -1.0038 0.3155 -1.7446
Mean 0.9257 0.3546 4.2946 1.3623 0.1731 1.6266
SVR -0.4408 0.6593 | -0.3231 1.0874 0.2768 0.2608
ANN 0.8817 0.3780 0.1250 0.9201 0.3575 0.0426
L8 LSTM | -0.0441 0.9648 | -0.1020 0.1673 0.8671 0.1812
Mean 0.3527 0.7243 0.2915 1.4722 0.1410 0.9652
SVR -0.9257 0.3546 | -0.6663 -0.2596 0.7952 -0.0530
ANN 1.4979 0.1342 0.1117 0.2844 0.7761 0.0092
Lo LSTM | -0.7053 0.4806 | -3.0653 0.0340 0.9729 0.2637
Mean 0.5273 0.5980 1.5482 2.3422 0.0192 1.7379
SVR 0.2204 0.8255 0.0861 1.0425 0.2972 0.1807
ANN 1.4988 0.1339 0.0166 3.9010 0.0001 0.0128
L10 LSTM | -0.1600 0.8729 | -1.6714 -3.0857 0.0020 -2.2940
Mean 0.3527 0.7243 0.6428 0.9834 0.3254 0.6444
SVR -1.1133 0.2656 | -0.6818 2.4367 0.0148 0.4459
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4.2 Entropy

In this study, entropy analysis is done based on the standardized variability Index, which
Normalizes the variability index between 0 and 1, for which two indices, SVIag and SVIuE, are
used. The analysis of SVIag is done based on the Monthly and Seasonal scales, while SVImE is
done on the Monthly, Seasonal, and Annual scales for both scenarios, i.e., SSP 245 and SSP
585, to understand the variability in the models used for ensembling of GCMs.

4.2.1 Monthly and Seasonal Variability under SSP 245 and SSP 585 based on SVIag

A) Seasonal-245 B) Seasonal-585
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Figure 45 SVIaE plots of Seasonal and Monthly analysis for SSP 245 and 585

The seasonal and monthly evaluation of SVIag across both scenarios reveals noticeable
variability patterns among the models. From Figure 45 A) and B), SVR demonstrates the
highest variability, followed closely by the mean of the GCM ensemble. In contrast, Figures
45 C) and D) show that both the ANN and LSTM exhibit significantly lower variability, which
suggests that SVR and Mean of GCMs have predicted overpredicted values, which led to higher
variability. The performance of machine learning (ML)-based ensemble techniques (ANN,
LSTM, SVR) was evaluated against the traditional multi-model mean (MME) for seasonal and
monthly CMIP6 projections under SSP245 and SSP585 scenarios. Overall, the results
demonstrate distinct patterns in model performance across different temporal scales and
emission scenarios. For SSP245, the SVR model consistently outperformed other methods,
achieving the highest values across most locations (e.g., L6: 0.926, L4: 0.825). The MME
ranked second in performance, particularly excelling in L6 (0.892) and L9 (0.900), while ANN
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and LSTM showed intermediate results, with LSTM generally underperforming (e.g., L10:
0.137). Under SSP585, a similar trend emerged, with SVR maintaining dominance (e.g., L6:
0.933, L3: 0.835) and MME remaining competitive (L6: 0.881, L9: 0.889). Notably, LSTM
exhibited slight improvements under SSP585 in some locations (e.g., L1: 0.447 vs. 0.266 in
SSP245), though it still lagged behind SVR and MME. The MME demonstrated superior
performance in monthly SSP245 projections for most locations (e.g., L6: 0.432, L9: 0.437),
followed closely by SVR (L6: 0.447, L9: 0.451). ANN and LSTM displayed higher variability,
with LSTM occasionally outperforming ANN (e.g., L3: 0.402 vs. 0.348) but remaining
inconsistent (e.g., L8: 0.338 vs. 0.194 for ANN). Under SSP585, SVR again led in most cases
(e.g., L6: 0.449, L3: 0.391), while MME retained strong performance (L6: 0.424, L9: 0.429).
LSTM showed improved results in some regions (e.g., L1: 0.398 vs. 0.176 in SSP245), but its

overall performance remained less stable compared to SVR and MME.
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4.2.2 Inter-annual rainfall variability based on SVImE across different time-scales

To investigate the inter-annual rainfall variability over monthly, seasonal, and annual variation,
which gives an understanding of the variability obtained out of the maximum variability
possible that can be associated with the time-series data. The calculation of SVIuE is based on
the amount of rainfall for each location. Table 14 reveals an annual analysis of SVImEg across
10 locations, demonstrating that LSTM and Mean exhibit a low value. At the same time, ANN
and SVR showed very low values in the order of 107¢ to 107® under both scenarios, SSP 245
and SSP 585. Table 16 also revealed that the SVIme value at the annual scale is smaller under
both scenarios. Mishra et al., 2009 revealed that the inter-annual variability will be larger at a

smaller time scale and becomes smaller at a larger time scale.

Table 14 Annual analysis of SVIme for SSP 245 and 585

. 245 585
Scenario
Location ANN LSTM SVR Mean ANN LSTM SVR Mean
6.54757E- 0.00408429 5.16E- 0.0005 1.04E- 5.09E- | 0.001833
L1 07 7 05 4 06 0.00823 05 1
L2 5.12415E- 0.00071905 8.59E- 0.0005 6.34E- | 0.00173 5.11E- | 0.001351
07 8 05 7 07 9 05 9
5.15443E- 2.40E- 0.0006 | 9.08E- | 0.00359 | 2.81E- | 0.001150
L3 07 0.0018456 05 ) 07 6 05 P
L4 2.09585E- 0.00200858 2.13E- 0.0007 | 4.27E- | 0.00149 | 2.85E- | 0.001420
07 1 05 7 07 8 05 4
3.64125E- 0.00136851 4.98E- 5.36E- | 0.00111 6.55E- | 0.001659
LS 07 7 05 0.0006 07 4 05 7
9.29437E- 3.65E- 0.0012 1.32E- | 0.00351 3.32E- | 0.002592
L6 07 0.00712296 05 9 06 3 05 7
0.00110087 1.48E- 0.0008 1.58E- | 0.00175 1.49E- | 0.001842
L7 1.3261E-07 ] 05 > 07 ] 05 5
LS 1.45636E- 0.00102901 5.49E- 0.0009 1.61E- | 0.00217 | 5.83E- | 0.002195
06 1 05 7 06 1 05 7
L9 1.61062E- 0.00547588 6.50E- 0.0013 2.50E- | 0.00559 | 5.66E- | 0.002608
06 6 05 2 06 9 05 7
0.00236526 6.19E- 0.0008 1.10E- | 0.00339 | 9.51E- | 0.001784
L10 1.1515E-08 3 05 3 08 2 05 >

Figures 46 and 47 show that the SVIme value at the annual scale is higher for LSTM, followed
by the Mean of GCMs, which indicates that the model performance is highly variable, backing
up the results we obtained in the trend analysis of SSP 245 in Table 13 that LSTM shows highly
variable results in Near future at some locations it shows increasing while at others it shows

decreasing indicating variability in the model performance.
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Figure 47 Heatmap of SSP 585 SVIme Annual values
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SVIme value at the Seasonal and Annual scale was very insignificant under both Scenarios, SSP

245 and SSP 585, for all four ensembling methods. For more information, refer to Annexure-1

Tables 18,19,20 and 21.
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Chapter 5

Conclusion

In this study, 13 GCMs are ensembled using simple mean and 3 ML, and their performance is

measured on the basis of evaluation metrics like R?, RMSE, MAE, and KGE based on the

trained model's future data. This future ensembled data is used to calculate the trend analysis

using MMK and Sen’s slope. An entropy analysis of future ensembles is also performed to

understand the variability of precipitation ensembles using Mean and 3 ML techniques. Based

on the results, the following conclusion has been drawn:

1.

According to the Multi-model ensemble by Mean and 3 ML techniques like LSTM, ANN,
and SVR on the basis of performance evaluation metrics, LSTM performed better, followed
by other ANN and SVR, which shows the ML technique has improved the value of different
parameter of evaluation metrics.

In the case of temperature, on the basis of the evaluation metric, all ensembling techniques
performed better as the temperature parameter does not show a sharp change with respect
to time.

Mann-Kendall and Sen’s slope tests show that the ensemble means exhibited a statistically
significant increasing trend across all 10 different locations. However, LSTM showed an
increasing trend in most of the locations.

In the case of trend analysis of temperature, LSTM showed a decreasing trend while all
other ML techniques showed an increasing trend, which shows that it fails to capture short-
term change, i.e., Temperature.

Standard variability analysis using SVIag reveals that SVR and MME-mean exhibit high
variability. At the same time, SVImEe analysis at the annual scale showed low values for

LSTM and MME-Mean and insignificant for SVR and ANN.

5.1 Limitations

1.

The study has several limitations that warrant consideration. First, the reliance on CMIP6
GCMs introduces inherent biases and uncertainties, particularly in regional precipitation
and temperature projections, which may affect the accuracy of downscaled data. While
advanced bias correction techniques like quantile delta mapping (QDM) and machine
learning approaches are employed, challenges such as overcorrection and distortion of

climate signals persist.
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2. The MME methods, including traditional techniques like simple and weighted mean, may
underestimate true uncertainties or fail to capture extreme events due to structural
differences among models fully.

3. The study acknowledges computational constraints and the limited ability of current ML-
based ensembles to address all nonlinear climate dynamics comprehensively.

4. The evaluation metrics, though comprehensive, may not fully align with practical outcomes
in imbalanced data scenarios, potentially limiting the interpretability of results for specific
applications. These limitations highlight the need for further refinement in model
integration, bias correction, and metric selection to enhance the reliability of climate

projections.

5.2 Future scope

The study opens several promising avenues for future research to enhance the accuracy and
reliability of climate projections. First, advancements in bias correction techniques, such as
integrating hybrid methods that combine quantile mapping with machine learning (e.g., deep
learning or wavelet-based approaches), could further reduce systematic biases in CMIP6
models, particularly for regional precipitation and temperature variability. Second, improving
Multi-Model Ensemble (MME) methods by incorporating dynamic weighting schemes,
Bayesian optimization, or ensemble selection algorithms could better address inter-model
spread and uncertainty, especially for extreme weather events. Another critical direction is the
development of hybrid frameworks that seamlessly merge traditional GCMs with machine
learning models, such as transformer-based architectures or physics-informed neural networks,
to enhance downscaling and parameterization while preserving physical consistency.
Additionally, future work could explore the integration of high-resolution observational
datasets and emerging climate reanalysis products to constrain model uncertainties better.
Further research is also needed to refine evaluation metrics, particularly for imbalanced or non-
Gaussian data, by developing domain-specific performance indicators that align with real-

world risk assessment needs.
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In this section, all the supplementary details related to this study are presented in tables.

Annexure

Table 15 Trend Analysis of PCP 585

Near Future Far Future

Locations | Models | Corrected | new P- Sen's Corrected new P- Sen's

Zc value slope Zc value slope

ANN 1.4547 0.1457 0.1117 3.5634 0.0004 0.0820

L1 LSTM 0.1730 0.8627 0.8702 1.7602 0.0784 3.6506
Mean 3.9234 0.3536 49314 5.8721 430E-09 | 5.7375

SVR 1.9397 0.0524 0.9550 1.3886 0.1650 0.2181

ANN -0.8031 0.4219 | -0.0292 2.2641 0.0236 0.0520

12 LSTM -2.2482 0.0246 | -7.6969 3.7198 0.0002 4.2098
Mean 3.4385 0.0006 5.6015 7.5761 3.56E-14 | 4.7293

SVR 0.4408 0.6593 0.2493 3.0546 0.0023 0.3729

ANN -0.2645 0.7914 | -0.0238 2.9779 0.0029 0.0944

13 LSTM 2.4940 0.0126 5.9733 42077 0.0422 2.2783
Mean 1.3225 0.1860 2.0504 8.1062 5.00E-16 | 4.9679

SVR -1.2784 0.2011 -0.6593 1.5391 0.1238 0.2831

ANN 0.1322 0.8948 0.0122 3.4965 0.0005 0.1025

L4 LSTM -0.3527 0.7243 -1.6901 0.8820 0.3778 1.2297
Mean 0.7359 0.4618 0.9943 4.8851 1.03E-06 | 6.4372
SVR 1.5984 0.1100 0.6568 -1.5559 0.1197 -0.2990

ANN -0.1763 0.8600 | -0.0125 3.3459 0.0008 0.0889

L5 LSTM -0.0441 0.9648 | -0.8705 2.2552 0.0241 0.9578
Mean 0.8376 0.4023 0.9868 6.9800 2.95E-12 | 6.4428

SVR 1.1902 0.2340 0.5500 0.6190 0.5359 0.1897

ANN 1.2714 0.2036 0.0560 5.8053 6.43E-09 | 0.1808
L6 LSTM -0.9257 0.3546 | -5.1659 4.0069 0.2313 -0.6805
Mean 0.4849 0.6277 0.9743 5.8219 5.82E-09 | 7.2236

SVR 2.5771 0.0100 1.3193 0.3935 0.6940 0.0862

ANN 0.2595 0.7952 0.0122 4.0988 4.15E-05 | 0.1100
L7 LSTM -1.2306 0.2185 | -3.6615 -5.3404 9.27E-08 | -5.8944
Mean 1.2343 0.2171 8.0185 49687 6.74E-07 | 14.7259

SVR 2.5771 0.0100 1.3193 0.3935 0.6940 0.0862

ANN 1.9837 0.0473 0.2432 3.0281 0.0025 0.1256

L8 LSTM 0.0000 1.0000 | -0.2486 -3.2226 0.0013 -3.4013
Mean 1.2784 0.2011 1.7098 5.6379 1.72E-08 | 6.1289

SVR 0.2897 0.7721 0.1732 2.9064 0.0037 0.3904

ANN 1.0671 0.2859 0.0996 45170 6.27E-06 | 0.1957

L9 LSTM 1.4547 0.1457 5.6363 1.0964 0.2729 1.7384
Mean 0.3086 0.7576 0.5586 5.6045 2.09E-08 | 6.5938

SVR -0.8376 0.4023 -0.2259 0.9961 0.3192 0.1635

ANN 0.4408 0.6593 0.0028 2.0217 0.0432 0.0064
110 LSTM -0.5550 0.5789 | -3.2349 2.4361 0.2080 -1.9097
Mean 2.3364 0.0195 5.3200 4.7345 2.20E-06 | 4.7396

SVR 1.0139 0.3106 0.5966 0.5521 0.5809 0.1894
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Table 16 Trend Analysis of TMAX 585

Near Future Far Future
Location | Models | Corrected new P- Sen's Corrected | new P- Sen's
Zc value slope Zc value slope
ANN 5.202 0.000 0.045 8.699 0.000 0.058
L1 LSTM 0.661 0.508 0.006 -9.710 0.000 -0.025
Mean 5.334 0.000 0.035 9.017 0.000 0.044
SVR 3.522 0.000 0.027 8.649 0.000 0.043
ANN 5.070 0.000 0.039 11.982 0.000 0.054
L2 LSTM -1.984 0.047 -0.012 -6.475 0.000 -0.028
Mean 5.643 0.000 0.033 11.895 0.000 0.046
SVR 4981 0.000 0.030 8.800 0.000 0.047
ANN 5.466 0.000 0.049 8.331 0.000 0.057
13 LSTM -0.176 0.860 -0.001 -9.266 0.000 -0.069
Mean 5.599 0.000 0.050 9.151 0.000 0.057
SVR 5.951 0.000 0.039 8.800 0.000 0.050
ANN 5.290 0.000 0.066 8.566 0.000 0.064
L4 LSTM -3.350 0.001 -0.025 -20.657 0.000 -0.050
Mean 4.826 0.000 0.050 9.051 0.000 0.056
SVR 5.114 0.000 0.040 7.953 0.000 0.051
ANN 5.334 0.000 0.066 8.716 0.000 0.065
L5 LSTM 2.067 0.039 0.017 1.837 0.066 0.020
Mean 5.687 0.000 0.046 9.017 0.000 0.052
SVR 5.510 0.000 0.041 8.766 0.000 0.050
ANN 5.422 0.000 0.054 9.101 0.000 0.065
L6 LSTM -5.040 0.000 -0.030 -6.697 0.000 -0.045
Mean 5.775 0.000 0.041 9.302 0.000 0.046
SVR 5.643 0.000 0.038 8.800 0.000 0.044
ANN 4.849 0.000 0.053 9.051 0.000 0.061
L7 LSTM -0.132 0.895 -0.003 3.846 0.000 0.024
Mean 5.951 0.000 0.041 9.436 0.000 0.049
SVR 5.158 0.000 0.036 9.084 0.000 0.049
ANN 5.510 0.000 0.057 8.800 0.000 0.062
L8 LSTM 0.309 0.758 0.003 3.255 0.001 0.017
Mean 5.599 0.000 0.043 9.051 0.000 0.049
SVR 5.025 0.000 0.037 8.867 0.000 0.050
ANN 5.070 0.000 0.049 9.084 0.000 0.061
L9 LSTM -1.455 0.146 -0.011 -2.274 0.023 -0.068
Mean 5.863 0.000 0.042 9.235 0.000 0.047
SVR 5.687 0.000 0.039 8.883 0.000 0.044
ANN 4981 0.000 0.035 8.766 0.000 0.052
110 LSTM 1.035 0.301 0.003 2.500 0.012 0.015
Mean 5.731 0.000 0.034 8.326 0.004 0.041
SVR 5.510 0.000 0.025 13.713 0.000 0.038
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Table 17 Trend Analysis of TMIN 585

Near Future Far Future
Location | Models Corrected new P- Sen’s Corrected Z¢ | new P-value | Sen's slope
Zc value slope

ANN 5.9071 3.48E-09 0.0490 13.4634 0.0000 0.0566

LSTM -0.2204 0.8255 -0.0004 -6.5740 4.90E-11 -0.0145

L1 Mean 5.6426 1.67E-08 0.0458 9.5694 0.0000 0.0516
SVR 5.4663 4.60E-08 0.0340 9.4021 0.0000 0.0489

ANN 5.2900 1.22E-07 0.0413 10.3246 0.0000 0.0547

LSTM 0.4408 0.6593 0.0010 -4.7847 1.71E-06 -0.0110

L2 Mean 6.0394 1.55E-09 0.0381 9.5192 0.0000 0.0476
SVR 5.8631 4.54E-09 0.0299 9.4356 0.0000 0.0528

ANN 6.0835 1.18E-09 0.0491 9.8641 0.0000 0.0647

LSTM -4.4965 6.91E-06 -0.0229 -8.1340 4.00E-16 -0.0729

L3 Mean 6.1276 8.92E-10 0.0520 15.9103 0.0000 0.0652
SVR 5.8631 4.54E-09 0.0386 9.9049 0.0000 0.0640

ANN 5.2900 1.22E-07 0.0466 9.4690 0.0000 0.0704

LSTM -2.7409 0.0061 -0.0063 -7.0724 1.52E-12 -0.0448

L4 Mean 5.1300 2.90E-07 0.0505 9.5025 0.0000 0.0680
SVR 5.2459 1.56E-07 0.0367 9.3185 0.0000 0.0673

ANN 5.6426 1.67E-08 0.0502 11.5259 0.0000 0.0699

LSTM -2.6009 0.0093 -0.0096 -7.5890 3.22E-14 -0.0579

L3 Mean 5.6867 1.30E-08 0.0501 10.0362 0.0000 0.0666
SVR 5.2900 1.22E-07 0.0363 7.6386 2.19E-14 0.0619

ANN 4.6892 2.74E-06 0.0416 7.8644 3.70E-15 0.0542

LSTM -4.0116 6.03E-05 -0.0157 -8.9169 0.0000 -0.0588

L6 Mean 5.6426 1.67E-08 0.0475 9.4523 0.0000 0.0587
SVR 5.1577 2.50E-07 0.0311 9.4021 0.0000 0.0590

ANN 4.7779 1.77E-06 0.0497 18.9220 0.0000 0.0624

LSTM 1.3225 0.1860 0.0045 3.7064 0.0002 0.1202

L7 Mean 6.1716 6.76E-10 0.0400 9.7200 0.0000 0.0472
SVR 4.7610 1.93E-06 0.0254 9.4584 0.0000 0.0478

ANN 4.6728 2.97E-06 0.0490 12.2034 0.0000 0.0669

LSTM -2.2923 0.0219 -0.0087 -8.0303 9.00E-16 -0.0387

L8 Mean 5.3781 7.53E-08 0.0467 10.5434 0.0000 0.0658
SVR 4.8932 9.92E-07 0.0318 10.9620 0.0000 0.0655

ANN 5.2900 1.22E-07 0.0449 9.0842 0.0000 0.0554

LSTM -4.0556 5.00E-05 -0.0238 -8.9169 0.0000 -0.0799

L9 Mean 5.5986 2.16E-08 0.0482 9.4356 0.0000 0.0600
SVR 5.0255 5.02E-07 0.0330 9.4356 0.0000 0.0598

ANN 5.9071 3.48E-09 0.0414 7.2543 4.04E-13 0.0331

LSTM 0.0371 0.9704 0.0003 -0.4892 0.6247 -0.0011

L10 Mean 7.0730 1.52E-12 0.0341 6.3611 2.00E-10 0.0302
SVR 6.6097 3.85E-11 0.0253 5.6211 1.90E-08 0.0334
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Table 18 Seasonal Analysis of SVIme for SSP 245

Scenar

Mode

io Is L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Monsoon 1.56059E- | 2.96423E- | 1.80844E- | 3.06917E- | 1.40772E- | 4.38773E- | 1.69713E- | 2.04577E- | 1.07678E- | 1.03636E-

09 09 09 09 09 09 10 09 08 07
Post-Monsoon 1.18621E- | 3.14338E- | 5.17113E- | 1.2083E- 1.6418E- | 9.6326E- | 2.29638E- | 7.80389E- | 0.0008571 | 5.69978E-

ANN Season 05 06 05 05 05 05 05 05 6 10
Pre-Monsoon 2.33991E- | 1.81093E- | 0.0005025 | 2.39102E- | 1.74399E- | 0.0001034 | 0.0007578 | 0.0001427 | 0.0030985 | 1.06853E-

Season 05 05 68 05 05 91 34 19 39 07
Winter 5.70299E- | 1.07231E- | 0.0005458 | 3.83852E- | 3.27445E- | 1.42156E- 1 4.19029E- | 9.9509E- | 3.12019E-

05 05 12 05 05 15 08 16 07
Monsoon 0.0047167 | 0.0005011 | 0.0016931 | 0.0030151 | 0.0023380 | 0.0087874 | 0.0010115 | 0.0027756 | 0.0048258 | 0.0070087

4 29 31 35 16 49 73 85 82 42
Post-Monsoon 0.0089601 | 0.0013634 | 0.0216846 | 0.0042986 | 0.0030635 | 0.0100669 | 0.0131772 | 0.0034687 | 0.0248040 | 0.0059290

LST Season 52 52 32 4 22 57 1 03 28 75
M Pre-Monsoon 0.0087248 | 0.0195135 | 0.2302969 | 0.0085143 | 0.0056889 | 0.1735082 | 0.1268708 | 0.0378251 | 0.0629206 | 0.0009276

Season 48 11 57 45 32 5 23 25 12 55
Winter 0.0286832 | 0.0153130 | 0.1546219 | 0.0031284 | 0.0080908 | 0.0366828 | 0.1872742 | 0.0303109 | 0.0073402 | 0.0069206

SSP 85 87 59 72 13 43 69 35 23 17
245 Monsoon 0.0006866 | 0.0005722 | 0.0006681 | 0.0008191 | 0.0006311 | 0.0013132 | 0.0008449 | 0.0009536 | 0.0013388 | 0.0029525

77 63 11 04 9 95 14 01 28 37
Post-Monsoon 0.0034137 | 0.0023418 | 0.0085239 | 0.0080811 | 0.0064607 | 0.0179480 | 0.0070321 | 0.0104720 | 0.0187508 | 0.0012169

Mean Season 16 76 34 14 13 55 32 86 15 29
Pre-Monsoon 0.0028506 | 0.0076780 | 0.0118363 | 0.0105598 | 0.0115433 | 0.0755209 | 0.0176365 | 0.0284698 | 0.0622274 | 0.0064370

Season 25 42 71 88 36 64 32 32 39 47
Winter 1 0.0862698 | 0.0117280 | 0.0112911 | 0.0175917 1 0.0598748 | 0.4187738 1 0.0205763

15 66 21 1 73 14 53
Monsoon 6.44809E- | 0.0001006 | 2.71842E- | 1.72268E- | 5.28818E- | 3.54948E- | 9.75138E- | 4.69918E- | 6.58084E- | 0.0022197

05 64 05 05 05 05 06 05 05 66
Post-Monsoon 0.0004704 | 0.0003070 | 0.0027871 | 0.0028028 | 0.0014429 | 0.0063799 | 0.0015505 | 0.0048053 | 0.0085985 | 3.56196E-

SVR Season 25 58 01 56 29 14 49 51 63 05
Pre-Monsoon 0.0007230 | 0.0018769 | 0.0076054 | 0.0048237 | 0.0085046 | 0.0703730 | 0.0126394 | 0.2389169 | 0.0234167 | 0.0012226

Season 3 87 83 77 65 66 29 77 78 14
Winter 0.0030584 | 0.0112414 | 0.0076436 | 0.0043892 | 0.0089800 1 6.36398E- | 1.6394E- | 9.9509E- | 0.0027043

26 17 56 33 29 05 05 16 7
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Table 19 Seasonal Analysis of SVImE for SSP 585

Scenar

Mode

io Is L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
Monsoon 1.28903E- | 1.6375E- | 1.50224E- | 2.13901E- | 9.04347E- | 3.77402E- | 1.21755E- | 2.08748E- | 6.41891E- | 1.60779E-

09 09 09 09 10 09 10 09 09 07
Post-Monsoon 1.73089E- | 3.53545E- | 7.16035E- | 1.83867E- | 1.55378E- 0.0001069 1.92477E- | 6.74067E- | 0.0009767 | 5.26904E-

ANN Season 05 06 05 05 05 05 05 55 10
Pre-Monsoon 3.4494E- | 2.68008E- | 0.0005913 | 3.45851E- | 3.08283E- 0.0001474 0.0010124 | 0.0001667 | 0.0038571 | 7.91865E-

Season 05 05 02 05 05 ) 55 08 85 08
Winter 1.93315E- | 2.24975E- | 0.0005671 | 4.04228E- | 3.09451E- | 4.81051E- 1 5.77465E- | 1.23747E- | 2.43593E-

08 05 64 05 05 10 08 05 07
Monsoon 0.0200068 | 0.0022934 | 0.0037691 | 0.0019857 | 0.0014850 | 0.0039198 | 0.0015200 | 0.0021532 | 0.0042656 | 0.0067076

66 41 4 72 49 56 72 53 2 99
Post-Monsoon | 0.0098244 | 0.0045935 0.0247842 0.0065883 | 0.0043412 | 0.0069713 | 0.0158268 | 0.0054082 | 0.0373574 | 0.0091472

LST Season 43 02 ) 43 76 26 29 27 22 06
M Pre-Monsoon 0.0373558 | 0.0445304 | 0.0980524 | 0.0078509 | 0.0125906 | 0.2856041 | 0.2033759 | 0.0279726 | 0.2755224 | 0.0018739

Season 47 36 08 77 97 2 22 26 29 32
Winter 0.1358800 | 0.0534747 | 0.1044859 | 0.0064526 | 0.0057508 | 0.2066952 | 0.2615386 | 0.1990358 | 0.1133395 | 0.0044458

SSP 03 72 98 1 72 88 78 52 55 85
585 Monsoon 0.0015556 | 0.0012515 | 0.0010225 | 0.0013831 | 0.0014107 | 0.0024995 | 0.0017025 | 0.0018983 | 0.0025382 | 0.0052372

43 28 9 42 31 07 98 91 62 54
Post-Monsoon | 0.0074709 | 0.0033964 | 0.0136175 | 0.0122884 | 0.0107507 | 0.0202337 | 0.0093736 | 0.0139099 | 0.0220129 | 0.0021405

Mean Season 25 1 23 47 64 23 65 2 42 58
Pre-Monsoon 0.0051605 | 0.0089832 | 0.0116988 | 0.0127374 | 0.0149628 | 0.0607280 | 0.0241586 | 0.0252233 | 0.0559674 | 0.0055075

Season 91 1 28 92 21 75 25 21 33 98
Winter 1 0.0796482 | 0.0128384 | 0.0117969 | 0.0161770 1 0.0519162 | 0.3319147 1 0.0178362

49 25 1 55 29 91 28
Monsoon 5.84782E- | 5.87409E- | 2.59519E- | 2.16929E- | 6.36774E- | 3.37604E- | 1.24938E- | 4.02572E- | 6.26924E- | 0.0027353

05 05 05 05 05 05 05 05 05 66
Post-Monsoon | 0.0004283 | 0.0002940 | 0.0072039 | 0.0055449 | 0.0025334 | 0.0101971 | 0.0020368 | 0.0050975 | 0.0147328 | 3.17636E-

SVR Season 78 34 58 99 55 46 21 77 61 05
Pre-Monsoon 0.0009466 | 0.0025353 | 0.0098773 | 0.0093475 | 0.0084786 | 0.1184694 | 0.0244669 | 0.1834972 | 0.0479209 | 0.0012647

Season 13 26 56 18 29 82 31 8 61 01
Winter -9.9509E- | 0.0042223 | 0.0115832 | 0.0043035 | 0.0065187 1 1.86071E- | 3.42037E- | 0.0004595 | 0.0046889

16 75 08 62 54 05 05 15 21
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Table 20 Monthly Analysis of SVIme under SSP 245

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
January 0.000194919 1.3166E-07 0.00100753 5.9092E-05 5.5903E-05 1.42E-05 1 1.4134E-08 1.95E-01 3.8794E-07
February 0.000307731 3.62266E-05 0.00102697 7.7953E-05 8.9775E-05 0.000307731 1 1.6863E-07 1.95E-01 6.36536E-07
March 0.000212429 5.49606E-05 0.00093503 6.7166E-05 6.6183E-05 3.11423E-08 1 7.8581E-06 0.000112435 5.47204E-07
April 0.000110847 0.000191752 0.00175039 2.0338E-05 2.607E-05 6.67106E-08 1 1.1908E-06 7.86145E-05 1.77876E-07
May 1.06754E-05 1.08605E-05 0.00159196 9.4568E-05 7.4099E-05 0.000604221 0.000757834 0.00082283 0.004267965 2.60967E-07
ANN June 3.99148E-08 7.86555E-08 6.0509E-08 1.2766E-07 3.0281E-08 1.21952E-07 1.51515E-09 5.3916E-08 4.18224E-07 5.76999E-07
July 1.50844E-10 1.12697E-10 1.4929E-11 2.402E-11 1.8591E-11 7.10963E-12 1.36469E-12 1.49E-11 1.13039E-11 4.11229E-07
August 6.29307E-05 0.000925748 0.00010647 1.1738E-11 5.4883E-11 1.11233E-11 6.12236E-12 1.4118E-11 1.76978E-11 3.07854E-07
September 8.69204E-05 9.66715E-05 3.3568E-09 7.0734E-09 2.3876E-09 2.36587E-08 5.05242E-09 4.06E-09 3.15853E-08 1.27332E-07
October 3.59366E-08 1.03245E-09 4.4862E-05 2.7673E-05 5.4721E-06 0.00033655 8.90371E-06 5.6783E-05 0.001414879 2.79221E-10
November 0.000285379 3.96192E-07 0.00020069 1.9406E-05 0.00013209 8.09423E-05 0.000558138 0.00063688 0.000995493 1.34051E-10
December 1.6946E-06 0.000237314 0.0093507 8.236E-05 0.00011901 0.000167204 1 0.00024042 0.011716515 6.90114E-09
January 0.040885419 0.011559364 0.20347682 0.00330361 0.00855267 0.02895458 0.162694109 0.0438896 0.006511405 0.011827812
February 0.021668697 0.024974377 0.14368554 0.00312204 0.00799806 0.059770017 0.294278416 0.02120658 0.008991538 0.002836924
March 0.011725935 0.029910618 0.18551877 0.00388494 0.00898216 0.135518939 0.795769554 0.02846009 0.032486949 0.001146499
April 0.008823057 0.027734272 0.40501462 0.00971393 0.00695566 0.312638564 0.555715188 0.04881799 0.101107716 0.000756946
May 0.007974316 0.014087594 0.40405844 0.01961984 0.00627764 0.443536214 0.122680781 0.05251205 0.130450153 0.00110703
LSTM June 0.00760547 0.00494408 0.04389795 0.01797289 0.0382294 0.255536654 0.009291828 0.04907392 0.039367375 0.002010983
July 0.006430154 0.000808644 0.00500623 0.01110678 0.00962277 0.031369014 0.00099269 0.01422588 0.007334764 0.004342797
August 0.00748071 0.000495992 0.0022741 0.00356645 0.00253636 0.009796362 0.001292228 0.00336699 0.003485238 0.010428342
September 0.008033389 0.00065552 0.0035813 0.00520703 0.00173761 0.007587964 0.002005119 0.00222513 0.01205423 0.019316061
October 0.00883605 0.000798348 0.02691286 0.00765902 0.00298893 0.012960942 0.007507709 0.00241507 0.0383022 0.012571888
November 0.012832821 0.001574191 0.06060089 0.00403957 0.00894151 0.014401662 0.028591337 0.02684634 0.013227239 0.005206568
December 0.035037048 0.003829236 0.20389925 0.00378249 0.00914526 0.010462377 0.078241198 0.11379871 0.01074926 0.007181478
January 1 0.946395662 0.02555564 0.02155688 0.04446873 1 1 0.73582074 1 0.025518179
February 1 0.085794498 0.02044267 0.02025682 0.02901859 1 0.059874873 0.47674766 1 0.044009833
March 0.021893576 0.048976971 0.01728588 0.01868697 0.02675624 0.430137435 0.018032429 0.12664686 0.402798694 0.029649508
April 0.006309897 0.014984103 0.04021625 0.06828223 0.08096516 1 1 0.57438754 1 0.01124088
May 0.004810271 0.011620639 0.03385236 0.02907647 0.02172216 0.075976979 0.019516845 0.02966813 0.063164766 0.010940801
Mean June 0.004611344 0.004298131 0.00559262 0.00867739 0.00612395 0.006665907 0.005073552 0.0061908 0.006951885 0.011853043
July 0.001482344 0.001226834 0.00144849 0.00183836 0.00150718 0.001709912 0.001689153 0.00160969 0.001823709 0.006398153
August 0.002057175 0.001598522 0.00075101 0.00108858 0.00095156 0.00246483 0.001424319 0.00135823 0.002491106 0.006959325
September 0.00189787 0.001494552 0.00199771 0.00324962 0.00258345 0.006887415 0.00333484 0.0042998 0.006983551 0.006659805
October 0.004096998 0.003219314 0.00957863 0.01277317 0.00922841 0.022655367 0.009153237 0.01562034 0.022591954 0.002561585
November 0.011572238 0.005403549 0.20342519 0.07807696 0.03149171 0.065603136 0.028736329 0.03120503 0.112236479 0.001867664
December 0.004709735 0.024631593 0.05107461 0.02470359 0.04200192 0.164166055 0.167073294 0.10393866 0.136327706 0.006461978
January 0.003058426 1 0.01292796 0.00500279 0.00636912 1 0.000843114 1.5186E-06 0.843113713 0.003224064
February 1 0.011241417 0.01923775 0.02146108 0.02782903 1 0.333716722 0.53465861 1 0.007439727
March 0.001673312 0.033709073 0.00746198 0.00733469 0.0090315 1 0.002389293 0.71764503 0.000571285 0.005181956
April 0.001532037 0.024156158 0.0045511 1 0.03178836 1 0.52934114 1 0.0014852 0.001850009
May 0.001486747 0.002079885 0.05273981 0.03328121 0.04016103 0.070373066 0.038985625 0.24108564 0.035172302 0.002573318
SVR June 0.00045941 0.000839135 0.00034582 0.00055327 0.00033953 0.001442327 9.73671E-05 0.00057459 0.002382046 0.019732213
July 0.000246246 0.000285822 4.8425E-05 4.5404E-05 0.00014749 4.14481E-05 3.22178E-06 8.605E-05 5.82115E-05 0.008523321
August 0.000232236 0.000292718 4.5193E-05 2.7089E-05 0.00019944 5.00647E-05 1.46271E-05 6.5401E-05 6.52888E-05 0.004397931
September 0.000129039 0.000330646 0.00020432 0.000176 0.00035082 0.000421041 0.000308725 0.00027109 0.00074078 0.003527391
October 0.000476189 0.000252158 0.00299341 0.00378796 0.00118314 0.019197854 0.002580011 0.00621336 0.025409365 0.000140531
November 0.007256424 0.002069559 0.00016398 0.00163864 0.02859388 0.001577928 0.006793656 0.02460302 0.003964954 0.000419431
December 1.29405E-05 0.014185184 0.06121403 0.03355447 0.11439266 0.001233134 2.24262E-05 0.0144735 0.047045554 0.000223302
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Table 21 Monthly analysis SVIme under SSP 585

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

January 0.111220558 2.08E-10 0.000883 4.88E-05 3.16E-05 1.85952E-09 1 2.83E-08 2.07671E-05 3.65E-07
February 8.61455E-08 7.68E-05 0.001 8.28E-05 7.8E-05 0.000247556 1 2.11E-07 0.125185693 6.7E-07
March 0.000263747 8.1E-05 0.001048 9.32E-05 8.47E-05 5.65875E-08 1 8.78E-06 0.000205852 4.54E-07
April 0.000147882 0.000263 0.001728 1.49E-05 1.52E-05 2.30705E-07 1 1.79E-07 0.000140235 1.19E-07
May 1.10782E-05 5.87E-06 0.001392 0.000113 0.00011 0.000833003 0.001012455 0.000939 0.005248005 1.97E-07
ANN June 3.64754E-08 4.29E-08 4.55E-08 9.25E-08 2.25E-08 1.14621E-07 1.41618E-09 6.52E-08 2.51602E-07 5.69E-07
July 1.31121E-10 2.45E-10 1.66E-11 4.55E-11 2.83E-11 6.15435E-12 1.42838E-12 1.7E-11 9.28362E-12 3.93E-07
August 6.53581E-11 1.57E-10 1.16E-11 6.28E-12 1.65E-11 7.0097E-12 3.57479E-12 7.58E-12 9.75614E-12 3.5E-07
September 5.35607E-11 1.31E-10 4.46E-09 1.1E-08 1.45E-09 1.28008E-08 3.22691E-09 1.66E-09 1.49031E-08 1.37E-07
October 8.72035E-09 3.98E-10 6.09E-05 3.55E-05 3.97E-06 0.000388667 6.18856E-06 4.26E-05 0.001683866 4.29E-10
November 0.000424646 2.73E-07 0.000405 2.55E-05 0.000121 7.73923E-05 0.000400463 0.000532 0.00179577 1.96E-10
December 2.36821E-06 0.000263 0.007368 9.61E-05 0.000139 0.000143147 1 0.000142 0.009571157 4.99E-09
January 0.183434537 0.045023 0.113343 0.007321 0.00608 0.20673796 0.250655621 0.223471 0.094549148 0.008349
February 0.141565134 0.217402 0.102305 0.006184 0.006426 0.210175491 0.675192397 0.199907 0.188139619 0.003988
March 0.102711442 0.18355 0.103557 0.007725 0.005071 0.268069942 1 0.092476 0.387759658 0.004081
April 0.052419568 0.079913 0.089375 0.009003 0.015308 0.377985638 1 0.024434 0.491504204 0.001293
May 0.022012602 0.020341 0.129308 0.010065 0.1202 0.287678417 0.20180354 0.019634 0.257330111 0.001303
LSTM June 0.024955336 0.004836 0.024251 0.012399 0.063647 0.113265199 0.013493885 0.013802 0.055678371 0.002042
July 0.041389427 0.002932 0.008322 0.008867 0.003295 0.011159984 0.00139713 0.011907 0.004040665 0.004423
August 0.035271351 0.003671 0.00401 0.003381 0.001604 0.003775235 0.001740292 0.001944 0.003687363 0.00941
September 0.022038996 0.005084 0.005962 0.002627 0.001857 0.003487112 0.003149593 0.001619 0.012858883 0.018837
October 0.014863478 0.004099 0.036336 0.009494 0.005527 0.007029105 0.008345409 0.005021 0.050537935 0.016364
November 0.042143239 0.005609 0.028577 0.00662 0.009835 0.014495891 0.054541627 0.009014 0.048536526 0.008405
December 0.417387024 0.008471 0.112236 0.011309 0.009844 0.072450745 0.108421516 0.040654 0.055130647 0.009418
January 1 0.753519 0.023364 0.017669 0.038249 1 1 0.475805 1 0.021369
February 1 0.079783 0.019145 0.018775 0.024652 1 0.051916229 0.44672 1 0.049494
March 0.017979688 0.052569 0.018843 0.024456 0.029376 0.290758279 0.021172384 0.132409 0.2746385 0.0237
April 0.007883865 0.022444 0.034769 0.058809 0.055483 1 1 0.621911 1 0.010412
May 0.00768688 0.011447 0.025501 0.027636 0.026322 0.061178159 0.026518695 0.025977 0.05666387 0.008013
Mean June 0.005179106 0.005184 0.006914 0.008724 0.006223 0.007662496 0.006209873 0.006978 0.007845871 0.012704
July 0.002241555 0.001863 0.001278 0.001862 0.001887 0.002806847 0.001985608 0.002168 0.002881406 0.009505
August 0.002469214 0.001801 0.001091 0.001483 0.001484 0.003112488 0.002304146 0.002118 0.003225215 0.009451
September 0.004295379 0.002463 0.00397 0.005596 0.004149 0.007696266 0.005303308 0.00517 0.007759872 0.006865
October 0.007378836 0.003308 0.015349 0.019724 0.014403 0.023225305 0.010540841 0.017908 0.026769999 0.002811
November 0.019434498 0.008798 0.177445 0.095154 0.029583 0.06624017 0.019286217 0.026267 0.10745009 0.002786
December 0.367083983 0.030476 0.03857 0.02863 0.048083 0.163154431 0.1214416 0.112245 0.123593546 0.006472
January 0.25452639 1 0.0204 0.004415 0.005695 1 0.257627801 2.83E-06 0.000459515 0.005238
February 1 0.004222 0.025065 0.017911 0.022036 1 0.413544064 0.475007 1 0.015018
March 0.002133728 0.03149 0.015553 0.01332 0.010547 1 0.00455191 0.725914 0.001722105 0.009791
April 0.002023503 0.039391 0.00429 1 0.011122 1 0.257724669 1 0.003058426 0.001911
May 0.001580348 0.002621 0.071677 0.039452 0.062131 0.118469482 0.094456766 0.184527 0.077000471 0.002352
SVR June 0.000409124 0.000552 0.000282 0.000418 0.000382 0.001041324 0.000154068 0.000467 0.001934815 0.036399
July 0.000274358 0.000243 4.13E-05 4.37E-05 0.000176 3.37588E-05 1.38232E-06 5.82E-05 4.94485E-05 0.008631
August 0.000128858 0.000225 5.88E-05 2.85E-05 0.000131 3.1121E-05 1.66855E-05 5.47E-05 4.81829E-05 0.007616
September 8.00378E-05 0.000217 0.000186 0.000239 0.000341 0.000248854 0.000204148 0.000233 0.000892068 0.003094
October 0.000531957 0.000184 0.008036 0.008922 0.002765 0.033142151 0.003057988 0.005827 0.046764509 0.000111
November 0.010907878 0.001964 8.62E-05 0.007854 0.025776 0.002563953 0.004512817 0.032186 0.004753188 3.97E-05
December 1.13307E-05 0.016376 0.105064 0.03245 0.12147 0.15996208 4.24822E-05 0.016686 0.081050869 0.000214
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