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Abstract 

 Wetlands are highly sensitive ecosystems whose stability is strongly 

influenced by rainfall variability and extremes. While previous studies have 

examined wetland shrinkage and precipitation extremes separately, this study 

uniquely integrates entropy-based metrics, Standardized Variability Index 

using Apportionment Entropy (SVIAE) and Marginal Entropy (SVIME), with 12 

Standardized extreme precipitation indices to assess hydroclimatic risk across 

2,490 Ramsar wetlands worldwide. Using high-resolution precipitation 

datasets and CMIP6 climate projections, we analysed historical (1951 - 2024) 

and future (2025 - 2100) scenarios under SSP 245 and SSP 585 pathways. 

Results reveal a clear rise in monthly rainfall variability (SVIAE), especially 

under SSP 585, in areas including Africa, South Asia, and West Asia; in 

contrast, yearly variability (SVIME) remains stable, masking critical intra-

annual instability. Extreme indices (e.g., R95pTOT, Rx5) show significant 

intensification under SSP 585, with more than 40% of wetlands falling into 

high-risk zones for unpredictability and rainfall intensity. Arid wetlands, 

despite low rainfall, face increasing flash-flood risks due to more intense and 

erratic rainfall events. These findings emphasize that increasing rainfall does 

not guarantee stability; rather, the combination of variability and extremes 

amplifies wetland vulnerability. This study provides a novel, integrated 

framework for identifying climate-sensitive wetlands and guiding adaptive 

conservation planning. 

 

Keywords: Ramsar wetlands, Entropy, Rainfall variability, Precipitation 

extremes, Climate projections. 
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1. Introduction 

Wetlands represent some of the planet’s most essential ecosystems, delivering key 

functions that include the preservation of biodiversity (Dertien et al., 2020), natural water 

treatment  (Teuchies et al., 2013; Xu et al., 2024), flood regulation (Golden et al., 2021; 

Orimoloye et al., 2020), carbon sequestration (Jamion et al., 2023; Lolu et al., 2020; Were 

et al., 2019), and regulation of atmospheric conditions  (Moomaw et al., 2018; Nyberg et 

al., 2022; Reid et al., 2005). In response to the ongoing degradation of wetlands worldwide 

and the resulting threats to both biodiversity  (Valenti et al., 2020) and human wellness  

(Fluet-Chouinard et al., 2023; Kundu et al., 2024; Sharma and Naik, 2024; Sharma et al., 

2021). The Ramsar Convention, instituted in 1971, serves as the principal global accord 

devoted exclusively to safeguarding and ensuring the long-term viability of wetlands  

(Geijzendorffer et al., 2019; Kingsford et al., 2021; Ramsar Convention, 1971). While the 

Ramsar Convention has advanced wetland conservation for over five decades  (Kingsford 

et al., 2021). There is growing recognition that wetlands are dynamic systems, impacted 

not only by direct human intervention but also by a variety of natural and environmental 

influences  (Day et al., 2024; Moi et al., 2022; Yan et al., 2022; M. Zhang et al., 2022) but 

also by long-term climatic shifts (Birnbaum et al., 2021; R. Wang et al., 2023; Xiong et al., 

2023). Recent worldwide evaluations, such as those conducted by the IPCC  (Dawson and 

Spannagle, 2020; IPCC, 2022, 2021; Kikstra et al., 2022; Skea et al., 2021) have 

emphasized the vulnerability of wetland ecosystems to a variety of interconnected threats 

arising from shifting climate patterns  (Schuur et al., 2015; X.-L. Wang et al., 2024; Xi et 

al., 2021), including rising temperatures (Butterfield and Palmquist, 2023; Goyal et al., 

2024; Jain et al., 2025), shifting precipitation patterns (Singh et al., 2024), an upward trend 

in sea surface levels  (Goyal et al., 2023b; Lovelock et al., 2015; Parkinson and Wdowinski, 

2022; Schuerch et al., 2018; Spencer et al., 2016), and increasingly frequent extreme 

climatic events  (Junk et al., 2013; Moomaw et al., 2018; Singh et al., 2024). Such changes 

can disrupt the hydrological regimes upon which wetlands depend, altering water 

availability, vegetation dynamics  (Afuye et al., 2024, 2022; Zheng et al., 2021), carbon 

flux processes, and the arrangement of species across habitats  (Aguirre-Liguori et al., 

2021; Liu et al., 2022; Seneviratne et al., 2012). 
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Figure 1: Schematic representation of global Ramsar sites, major climate change threats, associated 

impacts on wetland health and biodiversity, and the critical benefits delivered by these ecosystems 

Among the key issues confronting wetland science is understanding how climate change 

alters rainfall behavior in ways that threaten wetland function and resilience (Erwin, 2009; 

Grieger et al., 2020; Sandi et al., 2020), as shown in Figure 1. Conventional hydrological 

analyses typically focus on average precipitation changes or general rainfall trends  

(AlSubih et al., 2021; Bayazit, 2015). However, such approaches may overlook crucial 

aspects of variability, such as the distribution and predictability of rainfall events across 

time (Singh and Kumar, 2024; Yaduvanshi et al., 2019; Yeşilırmak and Atatanır, 2016; 

Zhang et al., 2021). Given the challenges of modeling nonlinear hydrological systems, 

entropy methods offer a principled way to assess rainfall’s spatiotemporal complexity  ( 

Feng et al., 2013; Mishra et al., 2009; Pang et al., 2023; Singh, 2011). Rooted in information 

theory  (Bandt and Pompe, 2002; Brunsell, 2010; Shannon, 1948; Shuangcheng et al., 2006; 

L. Zhang et al., 2019). Entropy quantifies the degree of disorder or uncertainty in a system 

(Sreeparvathy and Srinivas, 2022; C. Zhang et al., 2019). In hydrology, entropy has been 

adapted into several metrics, including marginal entropy, apportionment entropy (Chetan 

Kumar et al., 2024; Heshu Li et al., 2021), and measuring the unpredictability and 

complexity of rainfall regimes across diverse temporal and spatial dimensions through 
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intensity entropy analysis  (Alemayehu et al., 2020; Krstanovic and Singh, 1992; Lu et al., 

2022; Maruyama et al., 2005; Roushangar et al., 2019; Singh et al., 2022; Singh, 2011, 

1997). 

Marginal entropy reflects the uncertainty in the magnitudes of rainfall (Bayat et al., 2021), 

whereas apportionment entropy captures how rainfall is distributed across a defined period 

(e.g., monthly or annually) (Sarkar and Maity, 2021; H. Wang et al., 2024). Higher entropy 

indicates less predictability and potentially greater hydroclimatic stress for ecosystems 

dependent on stable water inputs (Sarkar and Maity, 2022). The development of 

Standardized Variability Indices (SVIs), such as SVIME (based on marginal entropy) and 

SVIAE (based on apportionment entropy), enables the standardized assessment of rainfall 

variability across regions and scales  (Guntu and Agarwal, 2020; Rolim et al., 2022). These 

indices provide a framework for comparing entropy-derived variability at different wetland 

locations, highlighting areas where climate change may be amplifying unpredictability in 

precipitation inputs  (Guntu et al., 2020b; Kawachi et al., 2001). Recognizing such patterns 

plays a vital role in the stewardship of wetlands, as areas with pronounced rainfall 

variability are at heightened risk of drying out, flooding, or experiencing shifts in ecological 

balance (Bastos et al., 2023; Palmer et al., 2023; Wu et al., 2024). 

Beyond heightened variability, the occurrence and magnitude of extreme precipitation 

events are also escalating  (de Vries et al., 2024; Gupta et al., 2023; Myhre et al., 2019) and 

have emerged as key climate risks (Swain et al., 2022) for wetlands (Goyal et al., 2022). 

Extreme rainfall can result in flooding (Baig et al., 2022; Kumar et al., 2023), erosion, 

habitat disruption  (Kaboli et al., 2021), and shifts in wetland hydrology (Goyette et al., 

2023; Granata and Di Nunno, 2025), especially in systems with limited buffering capacity 

(Åhlén et al., 2022). To evaluate such changes, ETCCDI has put together a collection of 

carefully defined indices. Each created to consistently measure severe precipitation 

instances, such as R10 (yearly tally of days during which rainfall reaches or surpasses 10 

millimeters, reflecting the presence of high-intensity precipitation occurrences), PRCPTOT 

(total yearly precipitation accumulated exclusively on days classified as wet, meaning those 

with rainfall amounts of 1 millimeter or more)  (Gehlot et al., 2021; Maharjan et al., 2023; 

L. Wang et al., 2023; Zou et al., 2021), R95pTOT (very wet days) (Goffin et al., 2024; Qin 

et al., 2023; Sebaziga et al., 2025; Yu et al., 2020), and RX1day (maximum 1-day rainfall) 

(Regueira and Wanderley, 2022; Tung et al., 2022; Zittis et al., 2021). Employing such 
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standardized indices allows for coherent evaluation of extreme precipitation trends in 

wetland hydrology, especially where buffering capacity is limited  (Ogolo and Matthew, 

2022).   

Numerous studies have applied ETCCDI indices to assess regional and global changes in 

extreme rainfall (Chervenkov and Slavov, 2021; Yin and Sun, 2018). For instance, 

increased precipitation risks have been documented in the permafrost zones of Siberia 

(Hjort et al., 2022; Melnikov et al., 2024; Nitzbon et al., 2020; Wang et al., 2021), deltas 

prone to frequent inundation the lower Asian peninsula and Southeast Asian mainland  

(Becker et al., 2024; Chan et al., 2024; Rakkasagi and Goyal, 2025; Skliris et al., 2022), 

and  Central Asian Arid and semi-desert areas  (Hu et al., 2019; Yao et al., 2021; M. Zhang 

et al., 2022). Earlier analyses using CMIP5  (Sillmann et al., 2013) and CMIP6 models  

(Dong and Dong, 2021; Kim et al., 2020; Wehner et al., 2021) have consistently 

demonstrated increased magnitude and frequency of intense precipitation occurrences 

under both mid-range and high-end emission trajectories  (Almazroui et al., 2021; Deepa 

et al., 2024; Goyal et al., 2023a; Kuinkel et al., 2024), although with regional variability 

and uncertainty (Singh et al., 2024). Ramsar sites, many of which are located in 

hydrologically sensitive zones, are particularly vulnerable to these extremes (Baker et al., 

2021; Popoff et al., 2021; Y. Zhang et al., 2022). Even a small increase in rainfall intensity 

or duration can overwhelm the hydrological balance, threatening ecosystem stability and 

human livelihoods dependent on wetland services (Hempattarasuwan et al., 2021; Hussain 

et al., 2024; Imdad et al., 2025; Seneviratne et al., 2012; Shukla et al., 2021). 

While considerable research has focused separately on rainfall variability (using entropy)  

(Balzter et al., 2015; Choobeh et al., 2024; Krstanovic and Singh, 1992; Mishra et al., 2009) 

and rainfall extremes (Alexander et al., 2009; Dittus et al., 2018; Lagos et al., 2008; Lemus-

Canovas, 2022; Singh et al., 2023; Yin et al., 2023) (using ETCCDI indices), few studies 

have attempted to integrate these two dimensions. Yet, understanding both the “shape” and 

“size” of rainfall variability is crucial for holistic wetland risk assessment. Entropy-based 

metrics offer insights into regular or irregular rainfall patterns (Du et al., 2022; Ghorbani 

et al., 2021; Keum and Coulibaly, 2017; Tatli and Dalfes, 2021). , while extreme indices 

quantify the magnitude and frequency of impactful events (Duchenne-Moutien and Neetoo, 

2021; Liaqat et al., 2024; McDowell et al., 2023; Ndehedehe, 2023; Peters-Lidard et al., 

2021). For instance, a wetland may receive the same annual precipitation across two 
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periods. Still, one may involve frequent moderate rains (low entropy, low extremes), while 

the other includes long dry spells interrupted by intense storms (high entropy, high 

extremes). These differences can have profound ecological consequences. 
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2. Comprehensive Literature Analysis 

Recent research efforts have been directed toward exploring how Ramsar wetlands and 

related hydrological systems are responding to climate change, land use shifts, and 

increasing hydroclimatic extremes. Recent studies have combined long-term observations, 

advanced modeling, and innovative analytical tools, such as entropy-based metrics, to 

unravel the complex patterns of wetland vulnerability, rainfall variability, and the risks 

posed by extreme weather events. This section reviews key research contributions that 

collectively advance our knowledge of wetland dynamics under changing environmental 

conditions. 

 Singh et al. (2024) conducted a climate vulnerability assessment of Indian Ramsar 

wetlands by analyzing historical inundation data and employing machine learning to predict 

future patterns. Their findings revealed that some sites, including the 

Udhayamarthandapuram Bird Sanctuary, are experiencing declining inundation, 

highlighting their susceptibility to shifts in climate, together with hazardous weather 

phenomena.  Anand et al. (2024) examined how shifts in climate and land use together 

affect the hydrological characteristics of the Loktak Lake catchment. Their projections 

indicate that both temperature and precipitation are projected to increase during the middle 

and latter parts of the century, resulting in increased streamflow and water yield. These 

results underscore the importance of integrated watershed management in fragile wetland 

environments. The significance of floodplain representation in hydrological models was 

examined by  Schrapffer et al. (2020), who used the ORCHIDEE model to simulate the 

Pantanal’s water cycle. Their study found that increased evapotranspiration from 

floodplains can alter local temperature and humidity gradients, demonstrating the crucial 

role of floodplain processes in regional climate regulation. 

 Hongwei Li et al. (2021) addressed the escalating threat of drought in drylands. Climate 

models suggest that the global average length of droughts may increase by approximately 

twofold by 2100, particularly under high greenhouse gas pathways like SSP 585. Such 

prolonged dry spells are anticipated to heighten vulnerabilities in agricultural systems, 

freshwater availability, and ecological resilience, with arid and semi-arid zones facing the 

most severe consequences. 
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 Hardouin et al. (2024) utilized soil moisture projections and the TOPMODEL framework 

to assess future changes in wetland extent globally. Their results suggest that wetlands are 

likely to contract in regions such as the Mediterranean and western Amazon, while some 

expansion may occur in Central Africa, excluding the Congo Basin.  Alaminie et al. (2023) 

emphasized the significance of accurate hydrological modeling to improve flood 

forecasting in Ethiopia’s Lake Tana basin. Employing the Wflow_sbm model alongside 

CMIP6 climate projections, their research indicates that the region is likely to experience a 

greater number and intensity of heavy rainfall episodes, thereby elevating the threat of 

flooding in the area. 

The integration of wetlands with reservoir operations as a means aimed at lowering 

vulnerability to floods and water scarcity was investigated by  Wu et al. (2023). Their 

findings indicate that while this approach can help mitigate hazards, it is insufficient to 

fully address the hazards posed by climate change, pointing to the need for additional 

adaptive approaches. Xu et al., (2024) evaluated how climate change affects various 

systems in North American inland wetlands, projecting significant reductions in wetland 

area and disruptions to seasonal inundation patterns. These changes threaten biodiversity 

in regions like the upper Mississippi, Southeast Canada, and the Everglades. In Tanzania,  

Mollel et al., (2023) modeled the impact of climate shifts on water resources in the Usangu 

catchment by integrating the SWAT model with outputs from an ensemble of GCMs. Their 

projections for 2030 - 2060 indicate increases in precipitation and temperature, but also 

suggest that evapotranspiration will rise while water yield and groundwater recharge 

decline, particularly during wetter periods. 

 Rakkasagi et al., (2024) evaluated projected threats from intense precipitation events to 

India’s coastal Ramsar wetlands, using fuzzy logic and return period analysis. The study 

identified high-risk zones and emphasized the role of urbanization and sedimentation in 

exacerbating flood vulnerability. Entropy-based approaches have provided new insights 

into rainfall variability.  Hassanlu et al., (2023) applied the Concentration Index and 

Shannon’s Entropy to daily rainfall data across Iran, revealing that southern regions face 

high rainfall concentration and variability, increasing both drought and flood risks, while 

the northwest benefits from more stable rainfall patterns.  Wu et al., (2022) simulated future 

conditions regarding hydrometeorological events and assessed the role of wetlands in 

mitigating floods within the Nenjiang River basin in Northeast China. Their results indicate 
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that wetlands are effective at lessening the length and severity of minor flood events. Still, 

their capacity to buffer against flooding declines when faced with more severe events 

driven by increasing precipitation extremes. 

 Chapagain et al., (2021) projected future episodes of extreme weather and evaluated their 

influence on key sectors in the Karnali Basin, Nepal. The study suggests that the region 

will experience pronounced warming, more intense rainfall, and a heightened incidence of 

severe weather, imposing notable burdens on sectors that are especially susceptible to 

climate impacts.  Abraham and Kundapura (2022) examined multi-decade variations in 

rainfall and thermal conditions within three humid tropical catchments in Kerala, India. 

Their results indicate declining annual and seasonal rainfall, rising extreme rainfall events, 

and increasing temperatures, all of which contribute to greater climate variability, water 

stress, and flood risk, emphasizing the need for proactive adaptation. 

Together, these studies provide a comprehensive view of the challenges and dynamics 

shaping Ramsar wetlands and similar ecosystems, highlighting the importance of advanced 

modeling, entropy-based analysis, and integrated management strategies amid rapidly 

intensifying climate shifts. The incorporation of entropy analysis alongside measures of 

precipitation extremes enables a more refined and complete assessment of climate-driven 

pressures affecting wetlands. When high levels of entropy coincide with frequent extreme 

precipitation events, this combination may signal fundamental instability in wetland 

hydrology, highlighting areas where urgent adaptation and management interventions are 

required. In contrast, Wetlands with lower entropy levels (indicating stable hydrological 

patterns) and fewer extreme hydrological events demonstrate greater resilience to shifts in 

water regimes, such as droughts, floods, or altered precipitation dynamics. Mapping those 

patterns across global Ramsar sites enables the identification of priority areas for 

conservation, informs the strategic allocation of resources, and supports the development 

of early warning systems for wetland vulnerability. 

To address the critical gap in understanding how both rainfall variability and extremes 

impact wetlands, this study systematically examines these factors across 2,490 Ramsar 

wetland sites worldwide. Leveraging high-resolution gridded precipitation datasets and 

projections from the CMIP6 climate model ensemble, we calculate entropy-based indices, 

specifically the Spatiotemporal Variability Index for Marginal Entropy (SVIME) and 

Apportionment Entropy (SVIAE), alongside 12 standardized extreme precipitation indices. 
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Analyses encompass both the baseline period (1951 - 2024) and future projections (2025 - 

2100) for the middle and extreme emission trajectories. This dual-framework approach 

allows for the identification of wetland sites that are not only experiencing more frequent 

or intense rainfall extremes but are also becoming increasingly unpredictable in their 

hydrological regimes. 

The specific objectives of this research are to: 

1. Evaluate rainfall variability at monthly and annual timescales for all Ramsar 

wetlands using entropy-based indices (SVIME and SVIAE). 

2. Analyse historical and projected trends in 12 ETCCDI-based metrics for 

quantifying intense precipitation occurrences using multi-model CMIP6 ensembles 

under scenarios reflecting medium and severe climate forcing. 

3. Identify global and regional hotspots where high entropy coincides with increasing 

precipitation extremes, indicating zones of heightened vulnerability. 

4. Provide a multi-dimensional risk assessment framework to support adaptive 

wetland management and inform policy decisions at national and international 

levels. 

By bridging the gap between statistical measures of variability and the real-world impacts 

of hydrological extremes, this study advances a more holistic understanding of climate 

change risks facing wetland ecosystems. The integration of entropy metrics with indices of 

extreme precipitation offers a powerful approach for detecting subtle but significant shifts 

in hydroclimatic behavior, thereby helping to protect and responsibly oversee some of the 

planet’s most ecologically significant and sensitive regions. 
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3. Study Area 

This study undertakes a thorough worldwide evaluation of Ramsar wetlands designated for 

their international importance under the Convention of Ramsar, a multilateral agreement 

from 1971 designed to encourage the preservation and responsible utilization of wetland 

habitats. As of the study period, there are 2,536 designated Ramsar sites worldwide, 

spanning a total area of approximately 25,79,89,130 hectares. From this global dataset, our 

study includes 2,490 sites with complete geospatial and attribute information suitable for 

climatic and ecological analysis. 

Ramsar wetlands, distributed across all inhabited continents, are ecologically diverse and 

serve as critical ecosystems for biodiversity, water regulation, carbon storage, and 

livelihoods. Due to their sensitivity to hydrological changes, such ecosystems are highly 

susceptible to climate-related impacts, including irregular precipitation, pronounced 

temperature variability, and species composition or range (Junk et al., 2013; Finlayson et 

al., 2006). It makes them not only conservation priorities but also key natural laboratories 

for understanding climate-driven ecological transitions. Thus, their inclusion in global 

climate change assessments is indispensable. 

 

Figure 2: Global distribution of Ramsar sites categorised by continent. 

Each dot in the figure corresponds to a specific Ramsar wetland, with colors indicating 

their broad geographic regions as defined by the Ramsar Sites Information Service. The 

analysis includes nearly all designated sites from each region, specifically: 424 of 431 from 

the African continent, 439 of 445 from Asia, 1,121 of 1,134 from Europe, 212 of 218 from 
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the Latin American and Caribbean region, 213 of 222 from North America, and 81 of 86 

from Oceania (see Figure 2). This extensive spatial distribution ensures a near-complete 

global sample, allowing robust cross-regional comparisons of climatic trends and site-

specific responses of wetlands from 172 countries  (Davidson, 2014; Ramsar Convention, 

1971; Ramsar Convention Secretariat et al., 2018), enabling broad-scale spatial analysis 

and robust intercontinental comparison. India, which became a contracting party in 1982, 

presently has 89 designated Ramsar sites covering about 1.36 million hectares, the largest 

number among Southeast Asian nations. These sites span a wide ecological gradient, from 

high-altitude Himalayan lakes to coastal mangroves and inland floodplains, making them 

ideal for studying regional climate variability and ecosystem responses. 

 

Figure 3:  Köppen-Geiger climate classification (1991 - 2020). 

Each wetland is shown in the colour corresponding to the Köppen-Geiger climate class it 

falls under, as per the legend in Figure 3. This visualization links wetland locations with 

their prevailing climate regime for subsequent analysis. 

The map depicts the 30 global climate zones derived from the updated Köppen-Geiger 

classification system, with the legend displaying the climate classes using Standardized 

color slabs for each zone (Beck et al., 2023, 2020). To integrate climatic context into our 



23 

 

analysis, each Ramsar site’s climate region was determined by its geographic position, as 

defined by the Köppen-Geiger system. This widely recognized system categorizes the 

Earth's surface into 30 distinct climate zones based on temperature and precipitation 

patterns, enabling a standardized framework for assessing climatic influences across 

ecologically diverse sites, as in Figure 3. 

The global scope of this study, combined with the ecological sensitivity and widespread 

distribution of Ramsar wetlands, offers valuable insights into climate change impacts 

across hydroclimatic regimes. These insights can support targeted adaptation strategies and 

inform international wetland conservation efforts. The Ramsar sites falling within 

respective Koppen-Geiger climate zones are visualized with distinct color codes 

representing their climate class, as shown in Figure 4. 

 

Figure 4: Ramsar wetlands are classified by climate zone. 
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4. Datasets & Methodology 

To robustly assess the projected impacts of climate change on global Ramsar wetlands, this 

study utilizes high-resolution, bias-corrected climate datasets and a suite of established 

analytical techniques. By integrating multi-model climate projections with advanced 

metrics for precipitation variability and extremes, we ensure a comprehensive and reliable 

evaluation of hydrological risks across diverse wetland regions. The following section 

details the datasets employed and the methodological framework guiding this analysis. 

4.1 Datasets 

4.1.1 Precipitation Data 

The NEX-GDDP-CMIP6 dataset is being used to assess climate change projected impacts 

across two different scenarios. Daily projections in this dataset have been statistically 

refined and corrected for bias, supporting climate analysis across a range of spatial scales, 

from local to regional  (Thrasher et al., 2022, 2013, 2012). The projections are derived from 

the Coupled Model Intercomparison Project Phase 6 (CMIP6), which involves a large 

ensemble of General Circulation Models (GCMs) created by climate modeling institutions 

globally  (Eyring et al., 2016, 2015; Simpkins, 2017). For this study, we specifically used 

daily precipitation data from 13 out of the 35 available GCMs (listed in Table 1) and 

computed Multi-model Ensemble mean (MME) for analysis. The precipitation variable 

used corresponds to the Climate Forecast (CF) standard name pr, which represents the 

average precipitation flux per day, quantified in kg m⁻² s⁻¹. The analysis was carried out 

over two distinct periods: (1951 - 2024) and (2025 - 2100). 

Public access to this dataset is provided through the NASA Centre for Climate Simulation 

(NCCS). Our study focused on two representative Shared Socioeconomic Pathways 

(SSPs): SSP 245 and SSP 585 ( O’Neill et al., 2016; Meinshausen et al., 2020). These 

scenarios encompass a wide range of potential futures, considering factors such as 

greenhouse gas output, economic growth, patterns of energy consumption, and the extent 

of climate-related policy initiatives. SSP 245 outlines a moderate pathway characterized by 

incremental climate action and limited international collaboration. This scenario serves as 

an updated version of RCP4.5, reflecting more recent socioeconomic projections  (Riahi et 

al., 2017). In contrast, SSP 585 describes a trajectory with substantial emissions, primarily 
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resulting from accelerated economic growth, a heavy reliance on fossil fuels  (Dawson and 

Spannagle, 2020; IPCC, 2022, 2021; Kikstra et al., 2022) and an energy-intensive lifestyle  

(O’Neill et al., 2016). This scenario projects that radiative forcing of about 1.88 times the 

previous, consistent with the highest emission forecasts from earlier modeling efforts, 

including the 8.5 pathway  (Meinshausen et al., 2011; van Vuuren et al., 2011). 

Table 1: Details of the CMIP6 models incorporated into this study’s analysis 

Name of the model Developing Institution Country 

ACCESS - CM2 CSIRO and ARCCSS Australia 

ACCESS - ESM1-5 CSIRO and ARCCSS Australia 

CNRM - CM6 – 1 CNRM - CERFACS France 

CNRM - ESM2 – 1 CNRM - CERFACS France 

EC - Earth3 – Veg - LR Consortium-EC-Earth 
Various 

countries 

EC - Earth3 Consortium-EC-Earth 
Various 

countries 

IPSL - CM6A – LR Institut Pierre-Simon Laplace France 

MIROC - ES2L MIROC Project, University of Tokyo Japan 

MIROC6 MIROC Project, University of Tokyo Japan 

MPI - ESM1 - 2 – HR Max Planck Institute for Meteorology Germany 

MPI - ESM1 - 2 - LR Max Planck Institute for Meteorology Germany 

MRI - ESM2 - 0 Meteorological Research Institute Japan 

NESM3 National Earth System Model Team China 

To refine the spatial scale and correct for consistent biases in the unprocessed GCM data, 

the NEX-GDDP-CMIP6 resource adopts the Bias Correction Spatial Downscaling (BCSD) 

technique. This statistical downscaling method involves two main steps  (Thrasher et al., 

2022). First, bias correction is performed by adjusting the GCM data against a trusted 

observational baseline using quantile mapping (Maurer and Hidalgo, 2007). This approach 

maintains the statistical integrity of modeled data, and the occurrence and severity of 
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climate shifts correspond to the patterns documented in past climate data. The corrected 

data is spatially disaggregated to a high-detail grid at quarter-degree intervals (roughly 25 

km). It is achieved using harmonic interpolation methods that incorporate local climatic 

patterns, thereby enhancing the fidelity of the data for local-scale studies. 

The Global Meteorological Forcing Dataset (GMFD), produced by Princeton University, 

served as the reference dataset for bias correction (Lange and Büchner, 2020). The GMFD 

combines reanalysis data with observational records to produce reliable, continuous daily 

measurements of climate parameters such as air temperature, rainfall, wind, moisture 

content, and incoming solar energy  (Wood et al., 2004). The temporal coverage of this 

dataset extends from 1960 to 2014 and is gridded at the same resolution (0.250) as the 

downscaled projections, making it well-suited for the bias correction process. It is used as 

the standard reference for aligning and adjusting the historical climate model outputs. 

Overall, the NEX-GDDP-CMIP6 dataset provides a comprehensive and high-resolution 

view of possible future climate conditions under different emission pathways. Its daily 

temporal resolution and spatial granularity allow for detailed impact assessments, 

especially in regions with complex topography or high climate sensitivity. The inclusion of 

both moderate and high-emission scenarios in this study offers insights into a range of 

potential futures, supporting more informed decision-making for climate adaptation and 

mitigation efforts. 

4.2 Variability and Extremes Methodology 

To assess the temporal and spatial variability of precipitation, we employed statistical 

techniques that quantify fluctuations in rainfall over different timescales. Metrics such as 

the standard deviation and entropy-based indices were used to characterize the degree of 

variability, following established approaches in climate science (Hobeichi et al., 2024; 

Pendergrass et al., 2017). It allows for the identification of regions and periods exhibiting 

significant departures from average conditions, which is crucial for understanding the 

hydrological sensitivity of wetlands under changing climate regimes. 

Extreme precipitation events, including both intense rainfall and prolonged droughts, are 

key drivers of water-related processes and the robustness of wetland habitats. In this study, 

we analyzed a suite of indices given by ETCCDI to analyze the prevalence, frequency, and 

duration of precipitation shifts  (Li et al., 2024; Maimone et al., 2023). These indices were 
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calculated for both historical and projected periods, enabling a detailed examination of how 

the rate at which extreme events happen and their degree of severity may evolve under 

different climate scenarios. 

4.2.1 Precipitation Variability 

 (Shannon, 1948) introduced the metric “Entropy,” which is used to assess the degree of 

uncertainty, randomness, or disorder in a random variable. When applied to precipitation 

data, entropy provides a quantitative measure of how variable and unpredictable rainfall is 

across different locations and periods, effectively capturing the complexity within the 

precipitation time series. The discrete 𝑺(𝒗) entropy for a random variable  𝑉 is given in 

Equation (ⅰ) 

𝑆(𝑉) = − ∑ 𝑘(𝑣𝑟) log2 𝑘(𝑣𝑟)𝑅
𝑟=1                                                    (ⅰ) 

In this equation, 𝑘(𝑣𝑟) represents the likelihood of the  𝑟𝑡ℎ event and 𝑅 denotes an entire 

count of potential events. Entropy attains its peak value when all events occur with equal 

probability, indicating the highest level of unpredictability. The metric spans from 0 

(absolute predictability) to  log2 𝑅, reflecting the system's inherent randomness. 

In hydrological applications, entropy is a valuable tool for assessing variability within 

precipitation time series across different temporal and spatial scales (Kawachi et al., 2001). 

This study applies entropy analysis using three specific measures 

4.2.2 Marginal Entropy (𝑴𝑬) 

𝑴𝑬 measures unpredictability or disorder level within an individual time series, reflecting 

how values fluctuate over time  (Cheng et al., 2017; Darbandsari and Coulibaly, 2022; de 

P. Rodrigues da Silva et al., 2016; Mishra et al., 2009). Employed to evaluate temporal 

variability in rainfall distributions across varying time scales, focusing on monthly and 

annual periods, at Ramsar wetland locations. It is calculated as shown in Eq. (ii)  

𝑀𝐸 = − ∑
𝑞𝑡

𝑄
log2 (

𝑞𝑡

𝑄
)

𝑁

𝑡=1

                                                    (𝑖𝑖)      

Here, 𝑞𝑡  represents the precipitation recorded during the 𝑡𝑡ℎ  interval (such as a specific 

month or year), 𝑄 denotes the cumulative rainfall over the dataset’s full duration, and 𝑁 
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refers to the entire count of intervals considered (for example, the total count of months or 

years in the study period). 

4.2.3 Apportionment Entropy (𝑨𝑬) 

The entropy-based metric 𝑨𝑬, is introduced to gauge how evenly a specific variable is 

allocated or spread out. Measures how total rainfall is distributed over individual months 

or seasons, providing insights into how consistently rainfall occurs over different periods, 

calculated as shown in Eq. (iii)  

𝐴𝐸 = − ∑
𝑒𝑚

𝑃𝑇
log2 (

𝑒𝑚

𝑃𝑇
)

𝑝

𝑚=1

                                                         (iii) 

Where 𝑒𝑚 is the rainfall amount in the 𝑚𝑡ℎ period (e.g., month or season). 𝑃𝑇 is the total 

annual rainfall. 𝑝 represents the total count of discrete time units, such as months or 

seasons, within the time series  (Maruyama et al., 2005). 

4.2.4 Standardized Variability Index 

Redundancy metric 𝑺𝑽𝑰 by  (Singh, 2013) is applied here to investigate repetition and 

predictability patterns across multiple timescales and regions, 𝑺𝑽𝑰 was applied as shown in 

Eq. (iv) 

𝑆𝑉𝐼 =
𝑆𝑚𝑎𝑥−𝑆𝑣𝑎𝑙

𝑆𝑚𝑎𝑥
                                                                    (iv) 

Where 𝑺𝒗𝒂𝒍 is the calculated entropy and 𝑺𝒎𝒂𝒙 is the maximum possible entropy for that 

series. SVI ranges from 0 (no variability, maximum certainty) to 1 (maximum variability, 

maximum uncertainty), enabling consistent comparison across regions (Guntu et al., 2020a; 

Rolim et al., 2022). Particularly useful for assessing variability over multiple temporal 

scales, this index provides a consistent framework for measuring uncertainty. Its bounded 

range supports meaningful comparisons across datasets with varying lengths, making it 

suitable for regional analyses (Choobeh et al., 2024). 13-time series comprising monthly 

(12 months) and annual data (1 series) were used to capture and compare precipitation 

variability across different temporal resolutions. 
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Figure 5: Methodology Flowchart 
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4.2.5 Extremity Indices 

The research utilized twelve indices based on extreme rainfall derived from the 

Standardized framework established by ETCCDI, coordinated by WMO in cooperation 

with both CLIVAR and JCOMM  (Karl et al., 1999). These indices serve as globally 

accepted methods for evaluating variations in how often, how severe, and how long extreme 

precipitation events occur  (Bobde et al., 2024; Donat et al., 2016; Yin and Sun, 2018). 

Twelve key indices were selected for this analysis, for instance, the frequency of intense 

rainfall days (R10mm), the occurrence of exceptionally heavy rain events (R20mm), the 

Simple Daily Intensity Index (SDII), peak single-day precipitation totals (Rx1day), highest 

accumulated rainfall over five consecutive days (Rx5day), stretches of successive wet days 

(CWD), yearly precipitation sums (PRCPTOT), and measures reflecting the proportion of 

rainfall from very wet (R95pTOT) and extremely wet days (R99pTOT), along with 

frequency-based metrics (RR95, RR99) and total rainy days (RD). The selection reflects 

their global prominence and relevance for hydrological and climatic impact assessments in 

the study region  (Wilson et al., 2022). Each index was computed annually across 2,490 

wetland sites using simulations from multiple CMIP6 climate models, covering both 

historical and future climate scenarios. By aggregating individual model outputs into a 

multi-model ensemble mean (MME), the analysis reduces model-specific biases, yielding 

a more reliable characterization of extreme precipitation patterns (Figure 5).  

Table 2: Precipitation Extremes Metrics Considered 

ID Index Name Definition Units 

RD Number of Rainy Days 
Total number of days per year with 

precipitation ≥ 1 mm 
days 

CWD Consecutive Wet Days 
Maximum number of consecutive 

days with precipitation ≥ 1 mm 
days 

R95pTOT Very Wet Day Contribution 
Annual total precipitation from 

days ≥ 95th percentile threshold 
mm 

RR95 Number of Very Wet Days 
Number of days per year with 

precipitation ≥ 95th percentile 
days 

Rx1 
Maximum 1-Day 

Precipitation 

Highest daily precipitation in a 

year 
mm 

SDII Simple Daily Intensity Index 
Annual mean precipitation per wet 

day (precipitation ≥ 1 mm) 
mm/day 

Calculating these indices on an annual basis ensures effective tracking of interannual 

variability and long-term trends  (Avila-Diaz et al., 2020). Understanding how extreme 
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precipitation patterns may shift in the future is essential for effective planning and 

management of regional water resources. Insights into these changes directly inform the 

development of robust adaptation strategies, helping communities and policymakers design 

measures that enhance resilience to climate-related water challenges  (Eekhout et al., 2018; 

Elgendy et al., 2024; Karl et al., 1999; Rogers et al., 1996; Zhang et al., 2011; Zhao and 

Boll, 2022). 
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5. Results 

This section comprehensively analyses projected changes in precipitation variability and 

extremes across global Ramsar wetlands under different climate scenarios. By examining 

both intra- and inter-annual variability as well as a suite of extreme precipitation indices, 

we identify emerging patterns, regional contrasts, and site-specific responses in wetland 

hydrology. The results highlight how climate change may reshape the distribution and 

intensity of hydrological extremes, with significant implications for wetland resilience and 

ecosystem functioning. 

5.1 Entropy Study 

5.1.1 Intra-Annular variability SVIAE at monthly scale 

Under the SSP 245 scenario, a comparison between the historical period (1951 - 2024) (a) 

of Figure 6 and the future period (2025 - 2100) (b) of Figure 6 reveals evolving patterns in 

precipitation variability across global Ramsar sites. The number of wetlands classified 

under medium variability increases modestly from 239 to 255, suggesting a growing 

number of sites are becoming more sensitive to monthly-scale precipitation fluctuations. 

The high variability category continues to be dominated by a single site, Oasis du Kawar, 

in Algeria, which lies within the arid, desert, hot climate zone according to the Koppen-

Geiger classification (BWh). Meanwhile, low variability sites decline slightly from 2,247 

to 2,234, indicating a gradual redistribution from stable to more variable conditions and 

highlighting a potential increase in the responsiveness of these ecosystems to changing 

climate signals. 

The figure demonstrates the intra-annual variability along the Ramsar sites globally for 

different scenarios: (a) SSP 245 historical, (b) SSP 245 future, (c) SSP 585 historical, and 

(d) SSP 585 future. Under the SSP 585 scenario, the shift toward elevated variability 

becomes more pronounced. Medium variability sites increase from 241 to 260, reflecting a 

broader emergence of wetlands experiencing intensified precipitation variability. Oasis du 

Kawar remains the sole site in the high variability class in the future period, underscoring 

its persistent climatic instability under extreme emissions scenarios. Low variability sites 

decrease further from 2,246 to 2,229, representing a more substantial redistribution 

compared to SSP 245. This trajectory under the high-emissions pathway indicates that more 
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wetlands may transition from stable to variable regimes, driven by the amplification of 

hydrological extremes. 

 

 

Figure 6: SVIAE monthly variability (Intra-annual). 

Historical variability distributions are nearly identical between the two scenarios. SSP 245 

includes four sites in the high variability class, while SSP 585 includes 3 (c) in Figure 6. 

Medium and low variability site counts differ only slightly, indicating a broadly similar 

baseline distribution across scenarios before future changes. 

Future projections under both scenarios converge with Oasis du Kawar remaining in the 

high variability class. However, (d) in Figure 6 SSP 585 results in a more pronounced 

increase in medium variability sites compared to SSP 245. It suggests that greater emissions 

forcing may enhance the redistribution of sites into higher variability categories. The 

accompanying reduction in low variability sites, although minor, supports this pattern.  

Taken together, the most consistent signal across both climate pathways is the increase in 

medium variability of wetlands. While high variability remains uncommon, the growth in 

medium-class sites underscores a fundamental shift in precipitation behavior at a monthly 

scale. Wetlands historically characterized by stable conditions are now projected to 

experience more dynamic hydrological variability, with potential implications for seasonal 

balance and ecological functioning. 
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5.1.2 Inter-Annual variability SVIME at a monthly scale  

In the SSP 245 historical scenario, February consistently exhibited the highest 

concentration of Ramsar sites in the very high variability category, with 74 sites globally, 

including 66 sites in an arid desert, a hot climatic zone of Africa, and Eight Ramsar-

designated wetlands in Asia situated within regions characterized by arid and steppe 

climates, as well as areas experiencing hot and temperate conditions with dry winters and 

hot summers. Interestingly, October recorded 1 Ramsar site in this category, located in 

Africa. The high variability category showed considerable seasonal variation, with the 

highest count in December (16 sites) and the fewest in March (0 sites). The medium 

variability category peaked in November (33 sites), while April, June, and September had 

the fewest sites (11 sites each). As for the low variability category, February recorded the 

fewest sites globally (2,398 sites), the largest concentration found in Europe, with 1,094 

designated wetlands primarily situated in temperate zones characterized by warm summers 

and no distinct dry season, while Oceania has the fewest such sites (81 sites). In contrast, 

March had the highest number of low variability sites globally (2,468 sites), as shown in 

Figure 7.  
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Figure 7: Inter-annual variability SVIME at a monthly scale for SSP 245 Historical (1951-2024). 

The index values are divided into four classes mentioned in the legend: green for low ( 0 ≤ 

SVIME ≤ 0.25), yellow for medium (0.25 < SVIME  ≤ 0.5), blue for high (0.5 < SVIME  ≤ 

0.75), and red for very high variability (0.75 < SVIME  ≤ 1).  

For future projections of SSP 245, the distribution of sites with very high variability will 

remain similar to historical patterns. February continued to feature 74 Ramsar sites 

classified as very high variability, with the distribution between Africa (66 sites) and Asia 

(8 sites) unchanged from the same climatic zones mentioned for SSP 245 historical. The 

high variability class increased slightly, with 16 sites in November and additional sites in 

February, May, June, and October. The medium variability category peaked in November 

(34 sites), while September recorded the fewest sites in this category (8 sites). The low 

variability category was again most prominent in February (2,393 sites) and October (2,471 

sites), as shown in Figure 8.  

 

Figure 8: Inter-annual variability SVIME at a monthly scale for SSP 245 future (2025-2100). 
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The index values are divided into 4 classes mentioned in the legend: green for low ( 0  ≤  

SVIME  ≤ 0.25), yellow for medium (0.25 < SVIME  ≤ 0.5), blue for high (0.5 < SVIME  ≤ 

0.75), and red for very high variability (0.75 < SVIME  ≤ 1) for 12 months. 

In the SSP 585 historical scenario, trends were similar to SSP 245. February remained the 

month with the most Ramsar sites in the very high variability category (74 sites: 66 in 

Africa, 8 in Asia). October recorded 2 sites in the very high category, both located in Africa. 

The high variability category reached its maximum in December (16 sites), with March 

showing the lowest count (0 sites). In November, the medium variability category peaked 

at 35 sites (Africa contributed 23 sites, Asia 9 sites, and South America 3 sites). The low 

variability category had a maximum of 2,471 sites in March and a minimum of 2,397 sites 

in February, as shown in Figure 9.  

 

Figure 9:  Inter-annual variability SVIME at a monthly scale for SSP 585 Historical (1951-2024). 

The index values are divided into 4 classes mentioned in the legend: green for low ( 0  ≤  

SVIME  ≤ 0.25), yellow for medium (0.25 < SVIME  ≤ 0.5), blue for high (0.5 < SVIME  ≤ 

0.75), and red for very high variability (0.75 < SVIME  ≤ 1) for 12 months. For the future 

projections of SSP 585, the very high variability category saw a slight increase to 75 sites 
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in February (66 in Africa, 9 in Asia). One site was recorded in Africa in October. The high 

variability category peaked at 16 sites in July, with 11 sites in Africa, 1 site in Asia, 3 sites 

in Europe, and 1 site in South America. March recorded the minimum (1 site in Africa). 

The medium variability category peaked at 27 sites in November, with 14 sites in Africa 

and 13 sites in Asia. Low variability remained the dominant category, peaking in October 

(2,472 sites) and February (2,395 sites), as shown in Figure 10.  

 

Figure 10:  Inter-annual variability SVIME at a monthly scale for SSP 585 future (2025-2100). 

The index values are divided into 4 classes mentioned in the legend: green for low ( 0  ≤  

SVIME  ≤ 0.25), yellow for medium (0.25 < SVIME  ≤ 0.5), blue for high (0.5 < SVIME  ≤ 

0.75), and red for very high variability (0.75 < SVIME  ≤ 1) for 12 months. Regarding site-

level shifts in SVIME, Nguru Lake and the Marma Channel Complex of the arid, steppe hot 

zone of Africa recorded a significant increase in SVIME in October, shifting dramatically 

within the low variability category. Fivebough and Tuckerbil Swamps in the arid, steppe, 

cold zone of Oceania showed a slight increase in SVIME in November, remaining within 

the low variability category. Being in a temperate, dry summer, hot summer zone, Zarivar 

in Asia experienced a notable decrease in SVIME in August, transitioning from medium to 
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low variability. Kayrakum Reservoir, also in Asia, falling under the arid, desert, cold zone, 

showed a minor decrease in SVIME in November, remaining in the low category. 

Under SSP 585, Nguru Lake and the Marma Channel Complex showed a remarkable shift 

in SVIME in October, transitioning from low to high variability. Conversely, the Angola 

Accession Site in Africa had a very minor increase in SVIME in May, reflecting almost no 

change in variability. The most dramatic decrease in SVIME under SSP 585 occurred at Île 

Blanche, another African site falling in the tropical monsoon climate zone, which saw a 

significant drop in December, transitioning from high to low variability. Annsjön in Europe 

experienced a slight decrease but remained in the low variability category. 

5.1.3 Inter - Annual variability SVIME at the annual scale  

At the annual scale, the analysis of SVIME under SSP 245 reveals remarkable stability in 

categorical variability across both historical (1951 - 2024) (a) in Figure 11 and future (2025 

- 2100) (b) in Figure 11 periods. Of the 2,490 Ramsar sites studied, only one site, Delta 

Intérieur du Niger (Mali), exhibited medium variability in both timeframes, showing a 

decrease in entropy index from 0.335 during the historical timeframe to 0.2899 in the 

projected future, a modest reduction. The remaining 2,489 sites consistently retained low 

variability classification across both periods. Despite this constancy in class distribution, 

entropy values within the low variability category exhibited both upward and downward 

trends. Specifically, 1,091 sites demonstrated entropy increases, ranging from a minimal 

increment at Pelican Island National Wildlife Refuge (USA) to a significant rise at East 

Calcutta Wetlands (India). Notably, East Calcutta Wetlands showed scenario-sensitive 

behavior, with entropy declining under SSP 585. 

Entropy measurements dropped at 1,399 sites under SSP245, signaling reduced variability 

between baseline and future climate conditions. Most of the extreme reduction occurred at 

the Sierra Leone River Estuary (Sierra Leone), with entropy falling sharply, while the least 

decline was observed at Lavinia Nature Reserve (Australia), showing a negligible decrease. 

These results illustrate that even though class-level variability remained constant, internal 

dynamics at the entropy value level reveal nuanced responses to climate forcing across 

individual sites.  

Under SSP 585, similar categorical consistency was observed. Delta Intérieur du Niger 

remained the only site in the medium variability class, with entropy declining from 0.3418 
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to 0.271. All remaining 2,489 sites retained low variability classification across historical 

and future periods represented in (c) and (d) in Figure 11. However, entropy magnitudes 

displayed a sharper contrast compared to SSP 245. A total of 1,937 sites exhibited increased 

entropy values under SSP 585, with the most dramatic increase occurring at Maladumba 

Lake (Nigeria), highlighting high sensitivity to emissions trajectory. Interestingly, this 

same site showed an opposite trend under SSP 245. 

 

Figure 11:  Inter-annual variability SVIME at the annual scale. 

The index value is categorized into 4 classes at 4 different scenarios across 2 different time 

durations: (a) SSP 245 historical (1951-2024), (b) SSP 245 future (2025-2100), (c) SSP 

585 historical (1951-2024), (d) SSP 585 future (2025-2100). Entropy decreased in 553 sites 

under SSP 585. The most substantial decline was again seen at Sierra Leone River Estuary 

(tropical, monsoon climate zone), closely mirroring the drop observed in SSP 245. The 

least decrease was recorded at Thanet Coast and Sandwich Bay (England), where entropy 

reduced marginally. Intriguingly, this same site registered a significant increase under SSP 

245, reinforcing the site-specific variability in response to scenario pathways. 

Crucially, across both SSP 245 and SSP 585, despite the extensive spread of entropy 

increases and decreases at the site level, the number of Ramsar sites in each variability class 

(medium and low) remained identical between historical and future periods. It includes 

Delta Intérieur du Niger (Mali), which maintained its medium variability status in all cases, 

despite undergoing reductions in entropy and is present in arid, desert, hot climate zone. 
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This categorical stability, even amidst substantial numerical shifts in entropy values, 

suggests that while overall annual-scale variability is not dramatically reorganized in class 

terms, the internal dynamism within classes is substantial and, in some sites, highly 

sensitive to emissions scenario and regional hydrological response. 

5.2 Spatiotemporal Analysis of Precipitation Extremes across Ramsar 

Sites 

Twelve key precipitation indices are analysed under four scenarios, encompassing both 

historical and projected periods for the SSP 245 and SSP 585 emission pathways to evaluate 

spatial and temporal variations in precipitation extremes under changing climate 

conditions. These indices, R10, R20, RD, CWD, PRCPTOT, R95pTOT, R99pTOT, RR95, 

RR99, Rx1, Rx5, and SDII, characterize how often precipitation events occur, how intense 

they are, and how long they last, including the most extreme rainfall episodes. For each 

scenario, spatial plots represent the global distribution of these indices, enabling 

comparison between moderate and high-emission pathways over time. This framework 

provides a basis for assessing regional changes in rainfall behavior and identifying potential 

climate risks. Under SSP 245 historical conditions, there are notable differences in how 

precipitation extremes are distributed geographically among the six zones. In Asia, 

wetlands experience intense short-duration rainfall, with Rx1 ranging between 80 - 120 mm 

and SDII between 7 - 11 mm/day. The CWD spans between 20 and 45 days, while RD can 

extend to 180 days in arid sub-regions. Very wet days (RR95) occur 12 - 25 times annually, 

contributing to a substantial share (18 - 28%) of total annual rainfall through R95pTOT. In 

Africa, particularly across Central and West Africa, rainfall is both intense and unevenly 

distributed. Rx1 varies from 70 - 110 mm, and SDII values are relatively high (8 - 12 

mm/day). 

CWD reaches up to 40 days, and RD can last as long as 200 days in some regions. The 

RR95 varies from 10 to 22, and the proportion of total precipitation (R95pTOT) attributed 

to these days is remarkably high, reaching 20 - 30%. Europe shows moderate precipitation 

extremes with Rx1 in the range of 60 - 100 mm and SDII between 6 - 9 mm/day. However, 

it experiences extended wet spells, with CWD reaching up to 50 days. RR95 ranges from 

8 - 18 events per year, and R95pTOT remains within 12 - 20%, suggesting a relatively 

lower concentration of extremes compared to tropical regions. In North America, Rx1 

ranges from 65 - 110 mm and SDII from 7 - 10 mm/day. Wetlands experience 15 - 35 CWD 
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and RD extending up to 180 days in drier areas. The RR95 varies from 10 - 20, while 14 - 

24% of total rainfall originates from these extreme events R95pTOT. 

 

Figure 12:  Geographical patterns of precipitation extremes indices in global wetlands during the 

historical SSP 245 scenario (1951 - 2024). 

Rx1 exceeds 130 mm within specific parts of Asia, including the western coastal belt of 

Southern America, represented in deep red shades (a), while SDII reaches up to 20 mm/day 

in Africa and Southeast Asia, indicated by purple (b). CWD surpasses 60 in Europe and 

parts of South America (c), highlighted in dark violet, and RD exceeds 300 in equatorial 

Africa and Southeast Asia (d), shown in bright red. Very wet days (RR95) occur more than 

28 times annually across Asia and the Amazon Basin (e), shown in red and yellow, while 

areas within the Congo Basin and the Amazon region (f) record R95pTOT values above 

35% of total precipitation, highlighted in brown in Figure 12. Particularly, the Amazon 

basin is characterized by high Rx1 values (75 - 115 mm), with SDII between 8 - 11 mm/day. 
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Figure 13: Geographical patterns of precipitation extremes indices in global wetlands during the 

future SSP 245 scenario (2025 - 2100). 

Wet periods extend up to 40 days, while RR95 occurs 12 - 22 times annually. R95pTOT 

exceeds 25% in several tropical wetlands, indicating significant rainfall clustering. Oceania 

demonstrates moderate precipitation behavior with Rx1 ranging from 60 - 90 mm and SDII 

from 6 - 9 mm/day. CWD ranges from 15 - 35 days, while RD extends up to 190 days, 

especially in parts of Australia. RR95 occurs 8 - 16 times per year, and R95pTOT is 

between 13 - 21%. Finally, the Global Tropics emerge as the most hydrologically extreme 

zone, with Rx1 exceeding 130 mm, SDII between 9 - 13 mm/day, CWD reaching 45 days, 

and RR95 occurring up to 28 times annually. Notably, more than 25 - 35% of total 

precipitation in this region is delivered by very wet days, underscoring the severe clustering 

of rainfall extremes in tropical wetland systems. 

Rx1 surpasses 140 mm within specific parts of Asia, including the western coastal belt of 

Southern America, with these zones depicted in deep red (a), while SDII reaches up to 
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20 mm/day in Africa and Asia, shown in purple (b). CWD surpasses 60 in Europe and North 

Asia (c), indicated by dark violet, and RD exceeds 300 annually in Central Africa and 

Southeast Asia, marked in red (d). RR95 occurs over 28 times/year in South America and 

Asia (e), shown in red and yellow, while R95pTOT exceeds 40% in several African and 

Amazonian sites (f), highlighted in brown. Under the SSP 245 future scenario (2025 - 2100) 

in Figure 13, wetlands across the globe are projected to undergo intensifying 

hydrometeorological extremes, though with marked regional contrasts in severity and 

expression. Asia, South America, and the Global Tropics are projected to face the most 

dramatic escalation, with Rx1 values exceeding 140 - 150 mm, SDII reaching 10 - 13 

mm/day, and RR95 occurring up to 30 times annually. These regions also exhibit the 

highest rainfall concentration, with R95pTOT contributing 28 - 38% of annual 

precipitation, suggesting that rainfall is increasingly clustered into a small number of high-

impact events, heightening flood risk and overwhelming wetland buffering capacities. In 

Africa, the dual stress of high-intensity rainfall (Rx1: 90 - 130 mm; SDII: 9 - 13 mm/day) 

and RD extending up to 180 days reflects a growing seasonal imbalance. RR95 values in 

African wetlands range from 13 - 25 days/year, with a significant share of rainfall (22 - 

32%) concentrated in those events. North America shows similar signs of intensification, 

with Rx1 reaching 120 mm, SDII up to 11 mm/day, and extreme days contributing up to 

28% of annual rainfall, particularly affecting western and southern wetland systems. In 

Europe, changes are more moderate but still notable: CWD lengthen to 50 days, and rainfall 

intensity (SDII: 7 - 10 mm/day) increases steadily, while R95pTOT remains below 22%, 

signaling a gradual but persistent shift in precipitation patterns. Oceania, particularly 

Australia, experiences moderate extremes, with Rx1 reaching 105 mm, wet spells lasting 

20 - 35 days, and dry spells persisting up to 170 days, indicating an episodic and uneven 

wet-dry cycle. Across all regions, however, the Global Tropics remain the epicenter of 

hydrological intensification, with nearly every index reaching its upper bound, including 

Rx1 >150 mm, SDII >13 mm/day, and extreme rainfall days delivering more than 38% of 

annual precipitation. These findings collectively highlight a growing reliance on extreme 

precipitation events to fulfill annual hydrological budgets in wetlands worldwide, 

threatening not only their ecological balance but also their resilience under projected 

climate trajectories. 
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Figure 14: Geographical patterns of precipitation extremes indices in global wetlands during the 

historical SSP 585 scenario (1951 - 2024). 

Rx1 exceeds 130 mm within specific parts of Asia, including the western coastal belt of 

Southern America, highlighted in deep red (a), while SDII reaches up to 20 mm/day across 

Africa and Asia, shown in purple (b). CWD exceeds 60 days in Europe and South America 

(c), marked in dark violet, and RD surpasses 300 days in Central Africa and Southeast Asia, 

indicated by dark red (d). RR95 occurs more than 28 times annually in Asia and South 

America (e), with red and yellow shades, while R95pTOT exceeds 35% in Central Africa 

and the Amazon Basin, represented in brown (f). Under the SSP 585 historical scenario 

(1951 - 2024) shown in Figure 14, wetlands across all global regions already exhibit strong 

signatures of hydrological stress driven by precipitation extremes. The most intense rainfall 

characteristics are concentrated in Asia, South America, and the Global Tropics, where Rx1 

ranges from 90 - 140 mm, and SDII reaches 9 - 12 mm/day, indicating frequent and forceful 

rainfall bursts. 
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Figure 15: Geographical patterns of precipitation extremes indices in global wetlands during the 

future SSP 585 scenario (2025 - 2100). 

These regions also experience CWD extending up to 45 days, while RR95 occurs 14 - 26 

times annually, contributing as much as 35% of R95pTOT - a sign of highly clustered and 

flood-prone rainfall regimes. In contrast, Europe and Oceania display more moderate 

extremes, with Rx1 between 70 - 105 mm, SDII between 6 - 9 mm/day, and R95pTOT 

remaining below 20%, suggesting a relatively stable but less intense precipitation structure. 

However, even these regions are not exempt from pressure, as wet spell durations exceed 

40 days, and RD still reaches 130 - 160 days, indicating evolving seasonal imbalances. 

Africa and North America fall in the middle of this spectrum, marked by a dual burden of 

extremes: SDII up to 12 mm/day and RR95 up to 24 events/year, combined with extended 

dry spells of 160 - 180 days, especially in sub-Saharan and southwestern areas.  

These findings confirm that even under historical climate forcing, a significant proportion 

of global wetlands are already experiencing rainfall regimes characterized by high 
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intensity, prolonged wet or dry phases, and increasing dependence on a small number of 

extreme events, all of which heighten the risk of waterlogging, drought, and ecological 

disruption in these sensitive ecosystems. 

Rx1 ranges from 0 to over 160 mm, with deep red shades marking the most intense events 

(a), (b) SDII, (c) CWD (range), (d) RD, (e) RR95 occur more than 30 times annually, and 

f) the percentage of rainfall contributed by R95pTOT exceeds 40% in many tropical sites. 

Under the SSP 585 future scenario (2025 - 2100) shown in Figure 15, Global projections 

indicate that nearly all regions will face heightened precipitation extremes, with the most 

significant changes expected in the Global Tropics, Asia, along with South America, 

emerging as the most impacted zones. Rx1 reaches 130 - 170 mm in the tropics, compared 

to 120 - 160 mm in Asia and South America, and around 80 - 120 mm in Europe. Similarly, 

SDII exceeds 14 mm/day in Africa and the tropics, highlighting a steep rise in event-scale 

intensity relative to more modest increases of 8 - 11 mm/day in temperate zones. In terms 

of temporal patterns, CWD is projected to extend beyond 50 days in the tropics and Europe. 

RD remains longest in Africa and Oceania, reaching up to 180 days, reflecting an 

intensification of seasonal rainfall imbalance. The RR95 also shows a notable rise, with the 

tropics and South America experiencing 20 - 34 events/year, compared to 12 - 22 

events/year in Europe and Oceania. Crucially, the share of annual precipitation contributed 

by R95pTOT exceeds 40% in the tropics, 35% in Asia and South America, and reaches 

30% even in North America, demonstrating a global shift toward rainfall clustering. 

Collectively, these trends suggest that Asia, South America, and Africa face the most severe 

intensification across all metrics, while Europe, North America, and Oceania also exhibit 

significant changes, especially in the form of longer wet spells and increased rainfall 

concentration, demonstrating a widespread global escalation in wetland hydrological 

extremes. 
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6. Conclusion 

This global assessment of 2,490 Ramsar wetlands demonstrates that climate change is 

driving substantial and regionally concentrated shifts in precipitation variability, with the 

most pronounced impacts in Africa and Asia. These continents consistently have the 

highest numbers of wetlands transitioning into higher variability categories, particularly 

from low or medium to high and very high, highlighting increasing hydrological instability 

and ecological vulnerability. On a monthly scale, Africa dominates the very high variability 

category, especially in February, when 66 out of 74 very high variability sites globally are 

located on the continent, and Asia accounts for the remainder. Notably, some African sites, 

such as Nguru Lake and the Marma Channel Complex, move from low to high variability, 

reflecting a rare and significant reclassification. Similarly, Isla San Pedro Mártir in North 

America shifts from low to medium variability, indicating a substantial change in its 

internal dynamics. These upgrades in variability class signal heightened sensitivity to 

climatic fluctuations and the potential for ecological disruption. Conversely, several sites 

experience abrupt downgrades in variability. As Zarivar in Asia moves from medium to 

low variability and Île Blanche in Africa drops from high to low variability, both reflect a 

marked loss of hydrological complexity.  

Particularly concerning are sites that transition directly from very high to low variability 

within a single period, as observed in two African sites (December) and one Asian site 

(January), which may indicate regime shifts or ecological thresholds being crossed. 

Directional analysis of category transitions further underscores the dynamic nature of these 

changes: under SSP245, 100 sites moved to higher variability categories, while 109 shifted 

downward; under SSP585, 117 upgrades, and 120 downgrades were recorded. Such 

bidirectional movements highlight the fluidity and unpredictability of wetland responses to 

climate forcing, with Africa and Asia showing the greatest volatility. While most wetlands 

remain in the low variability category, the widespread and sometimes dramatic internal 

entropy changes within these classes—such as the notable increases at Maladumba Lake 

(Nigeria) and East Calcutta Wetlands (India) demonstrate that apparent class stability can 

mask significant internal dynamism and emerging risks. In summary, under both moderate 

and high-emission scenarios, Ramsar wetlands, especially those in Africa and Asia, are 

increasingly at risk of shifting into higher variability categories, with some sites 

experiencing rare and substantial category conversions. These trends represent a serious 
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situation for wetland resilience, ecosystem services, and biodiversity, underscoring the 

urgent need for region-specific monitoring, adaptive management, and targeted 

conservation strategies to address the accelerating impacts of climate change on the world’s 

most vulnerable wetland landscapes. 

In the historical SSP 245 scenario, precipitation extremes remain moderate, with most 

wetlands recording PRCPTOT values between 600 - 1000 mm and most sites falling in the 

20 - 40 days range for R10 and 11 - 20 days for R20. Rx1 values are largely below 40 mm. 

Indices R95pTOT and R99pTOT predominantly fall within the lower ranges, remaining 

between 0–5% and 0–2%, respectively. During the historical baseline under the SSP 585 

pathway, similar patterns are observed with slight intensification; more wetlands cross into 

the 1000 - 1200 mm PRCPTOT range, R10 increases into the 41 - 60 days class, and R20 

shifts into 21 - 40 days. Likewise, Rx1 shows a small increase with more wetlands 

exceeding 40 mm, and R95pTOT expands into the 5 - 10% category in some regions. Future 

projections under SSP 245 indicate a clear intensification of extremes. PRCPTOT 

increases, with many wetlands shifting into the 1000 - 1500 mm class. R10 predominantly 

increases to 41 - 60 days, and R20 moves further into 21 - 40 days. Rx1 surpasses 60 mm 

in several wetlands. Likewise, R95pTOT rises into the 10 - 15% range, and R99pTOT 

shows increases into 5 - 6% for specific wetlands. The future SSP 585 scenario shows the 

strongest intensification across nearly all indices. PRCPTOT values markedly increase, 

with large wetland regions exceeding 1500 - 2000 mm and many surpassing 2000 - 3000 

mm. R10 exceeds 60 days, and R20 reaches 40 - 60 days in a wide area. Short-duration 

extremes intensify notably, with Rx1 values surpassing 80 mm and Rx5 crossing 200 mm, 

with some wetlands reaching >300 mm. R95pTOT peaks beyond 15 - 20%, and R99pTOT 

rises above 8 - 10% across multiple regions. Similarly, RR95 increases from 0 - 5 days 

historically to 10 - 15 days under SSP 585, while RR99 grows from 0 - 1 day to 2 - 3 days. 

CWD shows more modest increases, shifting from 5 - 10 days historically to 16 - 20 days 

in several regions under SSP 585. Overall, the spatial extent of wetlands exposed to extreme 

precipitation intensities expands substantially under SSP 585, with several indices (e.g., 

PRCPTOT >2000 mm) showing classes not reached under historical or SSP 245 scenarios. 

Differences: SSP 245 Historical vs SSP 585 Historical 

Under SSP 585 historical conditions, Rx1 values (max 1-day rainfall) are slightly higher, 

exceeding 130 mm in more locations (e.g., Asia, South America) compared to SSP 245, 
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where values mostly remain below 130 mm. Similarly, SDII reaches up to 20 mm/day more 

frequently in SSP 585, especially across Africa and South Asia, indicating higher storm 

intensity. CWD extends beyond 60 days more widely in SSP 585, particularly in Europe 

and South America, while SSP 245 shows this only in fewer pockets. It suggests longer 

periods of sustained rainfall under SSP 585. RD is slightly elevated in SSP 585 in Central 

Africa and Southeast Asia, with more wetlands exceeding 300 rainy days/year. SSP 245 

also shows high RD but with slightly less spatial spread in extreme zones. SSP 585 exhibits 

more sites with RR95 > 25 days/year, particularly in South America, Asia, and Africa, 

compared to SSP 245. It implies that very wet days are more frequent in SSP 585, even 

under historical conditions. The contribution of total precipitation (R95pTOT) is 

considerably higher under SSP 585, with more wetlands crossing the 35 - 40% threshold, 

especially in the Amazon, Congo Basin, and parts of Asia. It signals a stronger rainfall 

concentration in SSP 585. 

Difference between SSP 245 Future vs SSP 585 Future 

In SSP 585, Rx1 values exceed 160 mm in several regions, such as Asia and South America, 

whereas most values fall below 140 - 150 mm in SSP 245. It indicates sharper rainfall bursts 

under SSP 585, reflecting the influence of stronger radiative forcing. SDII reaches more 

than 20 mm/day in SSP 585, especially in Africa and Southeast Asia, while SSP 245 stays 

mostly below 18 mm/day. Future conditions modeled by SSP 585 suggest that heavy 

rainfall will become more pronounced. Such heightened precipitation intensity could 

potentially cause disruptions to ecosystems or result in habitat loss, particularly affecting 

wetland species that are vulnerable to heavy rainfall. SSP 585 shows more wetlands with 

CWD > 60 days, especially in Europe and northern latitudes, compared to SSP 245, where 

such long wet periods are less widespread. This implies longer, uninterrupted wet phases 

under higher emissions. While both scenarios show RD > 300 days/year in the equatorial 

zone, SSP 585 has broader coverage, indicating more persistent annual rainfall in regions 

like Central Africa and Southeast Asia. Under SSP 585, RR95 exceeds 30 days/year in 

many tropical wetlands, more than in SSP 245, where RR95 is mostly under 28. This means 

that extreme wet days become more frequent under SSP 585. SSP 585 intensifies rainfall 

clustering, with R95pTOT > 40% in many areas (especially Amazon, Congo Basin, and 

South Asia), compared to SSP 245, where values generally remain under 35%. It reflects a 

greater reliance on extreme days for annual rainfall under higher forcing. 
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Building on the integrated entropy and climate extremes framework applied to global 

Ramsar wetlands, several promising avenues for future research emerge. First, expanding 

the analysis to incorporate additional hydroclimatic variables such as temperature 

extremes, evapotranspiration, and groundwater dynamics could provide a more holistic 

assessment of wetland vulnerability under climate change1. There is an opportunity to 

improve the spatial and temporal resolution of climate projections, enabling targeted 

adaptation strategies for wetlands in regions that are highly variable or lack sufficient data. 

Further, coupling entropy-based metrics with ecological and socio-economic indicators 

would enhance our understanding of how changes in precipitation variability and extremes 

translate to impacts on wetland-dependent communities, biodiversity, and ecosystem 

services1. Long-term monitoring and the integration of remote sensing data can help 

validate model projections and detect early warning signals of regime shifts or ecological 

thresholds being crossed. Finally, future research should explore the effectiveness of 

adaptive management and restoration interventions in mitigating the identified risks, 

particularly in regions projected to experience the most dramatic shifts in variability and 

extremes. Collaborative, transboundary studies and the development of decision-support 

tools based on the presented methodology can inform international conservation policy and 

support the resilience of wetlands worldwide. 
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