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Abstract

Wetlands are highly sensitive ecosystems whose stability is strongly
influenced by rainfall variability and extremes. While previous studies have
examined wetland shrinkage and precipitation extremes separately, this study
uniquely integrates entropy-based metrics, Standardized Variability Index
using Apportionment Entropy (SVlag) and Marginal Entropy (SVIwe), with 12
Standardized extreme precipitation indices to assess hydroclimatic risk across
2,490 Ramsar wetlands worldwide. Using high-resolution precipitation
datasets and CMIP6 climate projections, we analysed historical (1951 - 2024)
and future (2025 - 2100) scenarios under SSP 245 and SSP 585 pathways.
Results reveal a clear rise in monthly rainfall variability (SVIag), especially
under SSP 585, in areas including Africa, South Asia, and West Asia; in
contrast, yearly variability (SVIme) remains stable, masking critical intra-
annual instability. Extreme indices (e.g., R95pTOT, Rx5) show significant
intensification under SSP 585, with more than 40% of wetlands falling into
high-risk zones for unpredictability and rainfall intensity. Arid wetlands,
despite low rainfall, face increasing flash-flood risks due to more intense and
erratic rainfall events. These findings emphasize that increasing rainfall does
not guarantee stability; rather, the combination of variability and extremes
amplifies wetland wvulnerability. This study provides a novel, integrated
framework for identifying climate-sensitive wetlands and guiding adaptive

conservation planning.

Keywords: Ramsar wetlands, Entropy, Rainfall variability, Precipitation

extremes, Climate projections.
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1. Introduction

Wetlands represent some of the planet’s most essential ecosystems, delivering key
functions that include the preservation of biodiversity (Dertien et al., 2020), natural water
treatment (Teuchies et al., 2013; Xu et al., 2024), flood regulation (Golden et al., 2021,
Orimoloye et al., 2020), carbon sequestration (Jamion et al., 2023; Lolu et al., 2020; Were
et al., 2019), and regulation of atmospheric conditions (Moomaw et al., 2018; Nyberg et
al., 2022; Reid et al., 2005). In response to the ongoing degradation of wetlands worldwide
and the resulting threats to both biodiversity (Valenti et al., 2020) and human wellness
(Fluet-Chouinard et al., 2023; Kundu et al., 2024; Sharma and Naik, 2024; Sharma et al.,
2021). The Ramsar Convention, instituted in 1971, serves as the principal global accord
devoted exclusively to safeguarding and ensuring the long-term viability of wetlands
(Geijzendorffer et al., 2019; Kingsford et al., 2021; Ramsar Convention, 1971). While the
Ramsar Convention has advanced wetland conservation for over five decades (Kingsford
et al., 2021). There is growing recognition that wetlands are dynamic systems, impacted
not only by direct human intervention but also by a variety of natural and environmental
influences (Day et al., 2024; Moi et al., 2022; Yan et al., 2022; M. Zhang et al., 2022) but
also by long-term climatic shifts (Birnbaum et al., 2021; R. Wang et al., 2023; Xiong et al.,
2023). Recent worldwide evaluations, such as those conducted by the IPCC (Dawson and
Spannagle, 2020; IPCC, 2022, 2021; Kikstra et al., 2022; Skea et al., 2021) have
emphasized the vulnerability of wetland ecosystems to a variety of interconnected threats
arising from shifting climate patterns (Schuur et al., 2015; X.-L. Wang et al., 2024; Xi et
al., 2021), including rising temperatures (Butterfield and Palmquist, 2023; Goyal et al.,
2024; Jain et al., 2025), shifting precipitation patterns (Singh et al., 2024), an upward trend
in sea surface levels (Goyal et al., 2023b; Lovelock et al., 2015; Parkinson and Wdowinski,
2022; Schuerch et al., 2018; Spencer et al., 2016), and increasingly frequent extreme
climatic events (Junk et al., 2013; Moomaw et al., 2018; Singh et al., 2024). Such changes
can disrupt the hydrological regimes upon which wetlands depend, altering water
availability, vegetation dynamics (Afuye et al., 2024, 2022; Zheng et al., 2021), carbon
flux processes, and the arrangement of species across habitats (Aguirre-Liguori et al.,
2021; Liu et al., 2022; Seneviratne et al., 2012).
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Figure 1: Schematic representation of global Ramsar sites, major climate change threats, associated

impacts on wetland health and biodiversity, and the critical benefits delivered by these ecosystems

Among the key issues confronting wetland science is understanding how climate change
alters rainfall behavior in ways that threaten wetland function and resilience (Erwin, 2009;
Grieger et al., 2020; Sandi et al., 2020), as shown in Figure 1. Conventional hydrological
analyses typically focus on average precipitation changes or general rainfall trends
(AlSubih et al., 2021; Bayazit, 2015). However, such approaches may overlook crucial
aspects of variability, such as the distribution and predictability of rainfall events across
time (Singh and Kumar, 2024; Yaduvanshi et al., 2019; Yesilirmak and Atatanir, 2016;
Zhang et al., 2021). Given the challenges of modeling nonlinear hydrological systems,
entropy methods offer a principled way to assess rainfall’s spatiotemporal complexity (
Fengetal., 2013; Mishraetal., 2009; Pang et al., 2023; Singh, 2011). Rooted in information
theory (Bandtand Pompe, 2002; Brunsell, 2010; Shannon, 1948; Shuangcheng et al., 2006;
L. Zhang et al., 2019). Entropy quantifies the degree of disorder or uncertainty in a system
(Sreeparvathy and Srinivas, 2022; C. Zhang et al., 2019). In hydrology, entropy has been
adapted into several metrics, including marginal entropy, apportionment entropy (Chetan
Kumar et al., 2024; Heshu Li et al., 2021), and measuring the unpredictability and

complexity of rainfall regimes across diverse temporal and spatial dimensions through
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intensity entropy analysis (Alemayehu et al., 2020; Krstanovic and Singh, 1992; Lu et al.,
2022; Maruyama et al., 2005; Roushangar et al., 2019; Singh et al., 2022; Singh, 2011,
1997).

Marginal entropy reflects the uncertainty in the magnitudes of rainfall (Bayat et al., 2021),
whereas apportionment entropy captures how rainfall is distributed across a defined period
(e.g., monthly or annually) (Sarkar and Maity, 2021; H. Wang et al., 2024). Higher entropy
indicates less predictability and potentially greater hydroclimatic stress for ecosystems
dependent on stable water inputs (Sarkar and Maity, 2022). The development of
Standardized Variability Indices (SVIs), such as SVIwve (based on marginal entropy) and
SVlae (based on apportionment entropy), enables the standardized assessment of rainfall
variability across regions and scales (Guntu and Agarwal, 2020; Rolim et al., 2022). These
indices provide a framework for comparing entropy-derived variability at different wetland
locations, highlighting areas where climate change may be amplifying unpredictability in
precipitation inputs (Guntu et al., 2020b; Kawachi et al., 2001). Recognizing such patterns
plays a vital role in the stewardship of wetlands, as areas with pronounced rainfall
variability are at heightened risk of drying out, flooding, or experiencing shifts in ecological
balance (Bastos et al., 2023; Palmer et al., 2023; Wu et al., 2024).

Beyond heightened variability, the occurrence and magnitude of extreme precipitation
events are also escalating (de Vries et al., 2024; Gupta et al., 2023; Myhre et al., 2019) and
have emerged as key climate risks (Swain et al., 2022) for wetlands (Goyal et al., 2022).
Extreme rainfall can result in flooding (Baig et al., 2022; Kumar et al., 2023), erosion,
habitat disruption (Kaboli et al., 2021), and shifts in wetland hydrology (Goyette et al.,
2023; Granata and Di Nunno, 2025), especially in systems with limited buffering capacity
(Ahlén et al., 2022). To evaluate such changes, ETCCDI has put together a collection of
carefully defined indices. Each created to consistently measure severe precipitation
instances, such as R10 (yearly tally of days during which rainfall reaches or surpasses 10
millimeters, reflecting the presence of high-intensity precipitation occurrences), PRCPTOT
(total yearly precipitation accumulated exclusively on days classified as wet, meaning those
with rainfall amounts of 1 millimeter or more) (Gehlot et al., 2021; Maharjan et al., 2023;
L. Wang et al., 2023; Zou et al., 2021), R95pTOT (very wet days) (Goffin et al., 2024; Qin
et al., 2023; Sebaziga et al., 2025; Yu et al., 2020), and RX1day (maximum 1-day rainfall)
(Regueira and Wanderley, 2022; Tung et al., 2022; Zittis et al., 2021). Employing such
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standardized indices allows for coherent evaluation of extreme precipitation trends in
wetland hydrology, especially where buffering capacity is limited (Ogolo and Matthew,
2022).

Numerous studies have applied ETCCDI indices to assess regional and global changes in
extreme rainfall (Chervenkov and Slavov, 2021; Yin and Sun, 2018). For instance,
increased precipitation risks have been documented in the permafrost zones of Siberia
(Hjort et al., 2022; Melnikov et al., 2024; Nitzbon et al., 2020; Wang et al., 2021), deltas
prone to frequent inundation the lower Asian peninsula and Southeast Asian mainland
(Becker et al., 2024; Chan et al., 2024; Rakkasagi and Goyal, 2025; Skliris et al., 2022),
and Central Asian Arid and semi-desert areas (Hu et al., 2019; Yao et al., 2021; M. Zhang
et al., 2022). Earlier analyses using CMIP5 (Sillmann et al., 2013) and CMIP6 models
(Dong and Dong, 2021; Kim et al.,, 2020; Wehner et al., 2021) have consistently
demonstrated increased magnitude and frequency of intense precipitation occurrences
under both mid-range and high-end emission trajectories (Almazroui et al., 2021; Deepa
et al., 2024; Goyal et al., 2023a; Kuinkel et al., 2024), although with regional variability
and uncertainty (Singh et al., 2024). Ramsar sites, many of which are located in
hydrologically sensitive zones, are particularly vulnerable to these extremes (Baker et al.,
2021; Popoff et al., 2021; Y. Zhang et al., 2022). Even a small increase in rainfall intensity
or duration can overwhelm the hydrological balance, threatening ecosystem stability and
human livelihoods dependent on wetland services (Hempattarasuwan et al., 2021; Hussain
et al., 2024; Imdad et al., 2025; Seneviratne et al., 2012; Shukla et al., 2021).

While considerable research has focused separately on rainfall variability (using entropy)
(Balzter et al., 2015; Choobeh et al., 2024; Krstanovic and Singh, 1992; Mishra et al., 2009)
and rainfall extremes (Alexander et al., 2009; Dittus et al., 2018; Lagos et al., 2008; Lemus-
Canovas, 2022; Singh et al., 2023; Yin et al., 2023) (using ETCCDI indices), few studies
have attempted to integrate these two dimensions. Yet, understanding both the “shape” and
“size” of rainfall variability is crucial for holistic wetland risk assessment. Entropy-based
metrics offer insights into regular or irregular rainfall patterns (Du et al., 2022; Ghorbani
et al., 2021; Keum and Coulibaly, 2017; Tatli and Dalfes, 2021). , while extreme indices
quantify the magnitude and frequency of impactful events (Duchenne-Moutien and Neetoo,
2021; Liaqgat et al., 2024; McDowell et al., 2023; Ndehedehe, 2023; Peters-Lidard et al.,

2021). For instance, a wetland may receive the same annual precipitation across two
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periods. Still, one may involve frequent moderate rains (low entropy, low extremes), while
the other includes long dry spells interrupted by intense storms (high entropy, high
extremes). These differences can have profound ecological consequences.
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2. Comprehensive Literature Analysis

Recent research efforts have been directed toward exploring how Ramsar wetlands and
related hydrological systems are responding to climate change, land use shifts, and
increasing hydroclimatic extremes. Recent studies have combined long-term observations,
advanced modeling, and innovative analytical tools, such as entropy-based metrics, to
unravel the complex patterns of wetland vulnerability, rainfall variability, and the risks
posed by extreme weather events. This section reviews key research contributions that
collectively advance our knowledge of wetland dynamics under changing environmental

conditions.

Singh et al. (2024) conducted a climate vulnerability assessment of Indian Ramsar
wetlands by analyzing historical inundation data and employing machine learning to predict
future patterns. Their findings revealed that some sites, including the
Udhayamarthandapuram Bird Sanctuary, are experiencing declining inundation,
highlighting their susceptibility to shifts in climate, together with hazardous weather
phenomena. Anand et al. (2024) examined how shifts in climate and land use together
affect the hydrological characteristics of the Loktak Lake catchment. Their projections
indicate that both temperature and precipitation are projected to increase during the middle
and latter parts of the century, resulting in increased streamflow and water yield. These
results underscore the importance of integrated watershed management in fragile wetland
environments. The significance of floodplain representation in hydrological models was
examined by Schrapffer et al. (2020), who used the ORCHIDEE model to simulate the
Pantanal’s water cycle. Their study found that increased evapotranspiration from
floodplains can alter local temperature and humidity gradients, demonstrating the crucial
role of floodplain processes in regional climate regulation.

Hongwei Li et al. (2021) addressed the escalating threat of drought in drylands. Climate
models suggest that the global average length of droughts may increase by approximately
twofold by 2100, particularly under high greenhouse gas pathways like SSP 585. Such
prolonged dry spells are anticipated to heighten vulnerabilities in agricultural systems,
freshwater availability, and ecological resilience, with arid and semi-arid zones facing the

most severe consequences.
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Hardouin et al. (2024) utilized soil moisture projections and the TOPMODEL framework
to assess future changes in wetland extent globally. Their results suggest that wetlands are
likely to contract in regions such as the Mediterranean and western Amazon, while some
expansion may occur in Central Africa, excluding the Congo Basin. Alaminie et al. (2023)
emphasized the significance of accurate hydrological modeling to improve flood
forecasting in Ethiopia’s Lake Tana basin. Employing the Wflow sbm model alongside
CMIP6 climate projections, their research indicates that the region is likely to experience a
greater number and intensity of heavy rainfall episodes, thereby elevating the threat of

flooding in the area.

The integration of wetlands with reservoir operations as a means aimed at lowering
vulnerability to floods and water scarcity was investigated by Wu et al. (2023). Their
findings indicate that while this approach can help mitigate hazards, it is insufficient to
fully address the hazards posed by climate change, pointing to the need for additional
adaptive approaches. Xu et al., (2024) evaluated how climate change affects various
systems in North American inland wetlands, projecting significant reductions in wetland
area and disruptions to seasonal inundation patterns. These changes threaten biodiversity
in regions like the upper Mississippi, Southeast Canada, and the Everglades. In Tanzania,
Mollel et al., (2023) modeled the impact of climate shifts on water resources in the Usangu
catchment by integrating the SWAT model with outputs from an ensemble of GCMs. Their
projections for 2030 - 2060 indicate increases in precipitation and temperature, but also
suggest that evapotranspiration will rise while water yield and groundwater recharge

decline, particularly during wetter periods.

Rakkasagi et al., (2024) evaluated projected threats from intense precipitation events to
India’s coastal Ramsar wetlands, using fuzzy logic and return period analysis. The study
identified high-risk zones and emphasized the role of urbanization and sedimentation in
exacerbating flood vulnerability. Entropy-based approaches have provided new insights
into rainfall variability. Hassanlu et al., (2023) applied the Concentration Index and
Shannon’s Entropy to daily rainfall data across Iran, revealing that southern regions face
high rainfall concentration and variability, increasing both drought and flood risks, while
the northwest benefits from more stable rainfall patterns. Wu et al., (2022) simulated future
conditions regarding hydrometeorological events and assessed the role of wetlands in
mitigating floods within the Nenjiang River basin in Northeast China. Their results indicate
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that wetlands are effective at lessening the length and severity of minor flood events. Still,
their capacity to buffer against flooding declines when faced with more severe events

driven by increasing precipitation extremes.

Chapagain et al., (2021) projected future episodes of extreme weather and evaluated their
influence on key sectors in the Karnali Basin, Nepal. The study suggests that the region
will experience pronounced warming, more intense rainfall, and a heightened incidence of
severe weather, imposing notable burdens on sectors that are especially susceptible to
climate impacts. Abraham and Kundapura (2022) examined multi-decade variations in
rainfall and thermal conditions within three humid tropical catchments in Kerala, India.
Their results indicate declining annual and seasonal rainfall, rising extreme rainfall events,
and increasing temperatures, all of which contribute to greater climate variability, water
stress, and flood risk, emphasizing the need for proactive adaptation.

Together, these studies provide a comprehensive view of the challenges and dynamics
shaping Ramsar wetlands and similar ecosystems, highlighting the importance of advanced
modeling, entropy-based analysis, and integrated management strategies amid rapidly
intensifying climate shifts. The incorporation of entropy analysis alongside measures of
precipitation extremes enables a more refined and complete assessment of climate-driven
pressures affecting wetlands. When high levels of entropy coincide with frequent extreme
precipitation events, this combination may signal fundamental instability in wetland
hydrology, highlighting areas where urgent adaptation and management interventions are
required. In contrast, Wetlands with lower entropy levels (indicating stable hydrological
patterns) and fewer extreme hydrological events demonstrate greater resilience to shifts in
water regimes, such as droughts, floods, or altered precipitation dynamics. Mapping those
patterns across global Ramsar sites enables the identification of priority areas for
conservation, informs the strategic allocation of resources, and supports the development
of early warning systems for wetland vulnerability.

To address the critical gap in understanding how both rainfall variability and extremes
impact wetlands, this study systematically examines these factors across 2,490 Ramsar
wetland sites worldwide. Leveraging high-resolution gridded precipitation datasets and
projections from the CMIP6 climate model ensemble, we calculate entropy-based indices,
specifically the Spatiotemporal Variability Index for Marginal Entropy (SVIwve) and
Apportionment Entropy (SVlag), alongside 12 standardized extreme precipitation indices.
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Analyses encompass both the baseline period (1951 - 2024) and future projections (2025 -
2100) for the middle and extreme emission trajectories. This dual-framework approach
allows for the identification of wetland sites that are not only experiencing more frequent
or intense rainfall extremes but are also becoming increasingly unpredictable in their
hydrological regimes.

The specific objectives of this research are to:

1. Evaluate rainfall variability at monthly and annual timescales for all Ramsar
wetlands using entropy-based indices (SVIve and SVlag).

2. Analyse historical and projected trends in 12 ETCCDI-based metrics for
quantifying intense precipitation occurrences using multi-model CMIP6 ensembles
under scenarios reflecting medium and severe climate forcing.

3. ldentify global and regional hotspots where high entropy coincides with increasing
precipitation extremes, indicating zones of heightened vulnerability.

4. Provide a multi-dimensional risk assessment framework to support adaptive
wetland management and inform policy decisions at national and international
levels.

By bridging the gap between statistical measures of variability and the real-world impacts
of hydrological extremes, this study advances a more holistic understanding of climate
change risks facing wetland ecosystems. The integration of entropy metrics with indices of
extreme precipitation offers a powerful approach for detecting subtle but significant shifts
in hydroclimatic behavior, thereby helping to protect and responsibly oversee some of the

planet’s most ecologically significant and sensitive regions.
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3. Study Area

This study undertakes a thorough worldwide evaluation of Ramsar wetlands designated for
their international importance under the Convention of Ramsar, a multilateral agreement
from 1971 designed to encourage the preservation and responsible utilization of wetland
habitats. As of the study period, there are 2,536 designated Ramsar sites worldwide,
spanning a total area of approximately 25,79,89,130 hectares. From this global dataset, our
study includes 2,490 sites with complete geospatial and attribute information suitable for

climatic and ecological analysis.

Ramsar wetlands, distributed across all inhabited continents, are ecologically diverse and
serve as critical ecosystems for biodiversity, water regulation, carbon storage, and
livelihoods. Due to their sensitivity to hydrological changes, such ecosystems are highly
susceptible to climate-related impacts, including irregular precipitation, pronounced
temperature variability, and species composition or range (Junk et al., 2013; Finlayson et
al., 2006). It makes them not only conservation priorities but also key natural laboratories
for understanding climate-driven ecological transitions. Thus, their inclusion in global

climate change assessments is indispensable.
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Figure 2: Global distribution of Ramsar sites categorised by continent.

Each dot in the figure corresponds to a specific Ramsar wetland, with colors indicating
their broad geographic regions as defined by the Ramsar Sites Information Service. The
analysis includes nearly all designated sites from each region, specifically: 424 of 431 from
the African continent, 439 of 445 from Asia, 1,121 of 1,134 from Europe, 212 of 218 from
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the Latin American and Caribbean region, 213 of 222 from North America, and 81 of 86
from Oceania (see Figure 2). This extensive spatial distribution ensures a near-complete
global sample, allowing robust cross-regional comparisons of climatic trends and site-
specific responses of wetlands from 172 countries (Davidson, 2014; Ramsar Convention,
1971; Ramsar Convention Secretariat et al., 2018), enabling broad-scale spatial analysis
and robust intercontinental comparison. India, which became a contracting party in 1982,
presently has 89 designated Ramsar sites covering about 1.36 million hectares, the largest
number among Southeast Asian nations. These sites span a wide ecological gradient, from
high-altitude Himalayan lakes to coastal mangroves and inland floodplains, making them

ideal for studying regional climate variability and ecosystem responses.
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Figure 3: Koppen-Geiger climate classification (1991 - 2020).
Each wetland is shown in the colour corresponding to the Koppen-Geiger climate class it
falls under, as per the legend in Figure 3. This visualization links wetland locations with

their prevailing climate regime for subsequent analysis.

The map depicts the 30 global climate zones derived from the updated Kdppen-Geiger
classification system, with the legend displaying the climate classes using Standardized

color slabs for each zone (Beck et al., 2023, 2020). To integrate climatic context into our
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analysis, each Ramsar site’s climate region was determined by its geographic position, as
defined by the Koppen-Geiger system. This widely recognized system categorizes the
Earth's surface into 30 distinct climate zones based on temperature and precipitation
patterns, enabling a standardized framework for assessing climatic influences across

ecologically diverse sites, as in Figure 3.

The global scope of this study, combined with the ecological sensitivity and widespread
distribution of Ramsar wetlands, offers valuable insights into climate change impacts
across hydroclimatic regimes. These insights can support targeted adaptation strategies and
inform international wetland conservation efforts. The Ramsar sites falling within
respective Koppen-Geiger climate zones are visualized with distinct color codes

representing their climate class, as shown in Figure 4.
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Figure 4: Ramsar wetlands are classified by climate zone.
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4. Datasets & Methodology

To robustly assess the projected impacts of climate change on global Ramsar wetlands, this
study utilizes high-resolution, bias-corrected climate datasets and a suite of established
analytical techniques. By integrating multi-model climate projections with advanced
metrics for precipitation variability and extremes, we ensure a comprehensive and reliable
evaluation of hydrological risks across diverse wetland regions. The following section

details the datasets employed and the methodological framework guiding this analysis.

4.1 Datasets
4.1.1 Precipitation Data

The NEX-GDDP-CMIP6 dataset is being used to assess climate change projected impacts
across two different scenarios. Daily projections in this dataset have been statistically
refined and corrected for bias, supporting climate analysis across a range of spatial scales,
from local to regional (Thrasher etal., 2022, 2013, 2012). The projections are derived from
the Coupled Model Intercomparison Project Phase 6 (CMIP6), which involves a large
ensemble of General Circulation Models (GCMs) created by climate modeling institutions
globally (Eyring et al., 2016, 2015; Simpkins, 2017). For this study, we specifically used
daily precipitation data from 13 out of the 35 available GCMs (listed in Table 1) and
computed Multi-model Ensemble mean (MME) for analysis. The precipitation variable
used corresponds to the Climate Forecast (CF) standard name pr, which represents the
average precipitation flux per day, quantified in kg m2 s'. The analysis was carried out
over two distinct periods: (1951 - 2024) and (2025 - 2100).

Public access to this dataset is provided through the NASA Centre for Climate Simulation
(NCCS). Our study focused on two representative Shared Socioeconomic Pathways
(SSPs): SSP 245 and SSP 585 ( O’Neill et al., 2016; Meinshausen et al., 2020). These
scenarios encompass a wide range of potential futures, considering factors such as
greenhouse gas output, economic growth, patterns of energy consumption, and the extent
of climate-related policy initiatives. SSP 245 outlines a moderate pathway characterized by
incremental climate action and limited international collaboration. This scenario serves as
an updated version of RCP4.5, reflecting more recent socioeconomic projections (Riahi et
al., 2017). In contrast, SSP 585 describes a trajectory with substantial emissions, primarily
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resulting from accelerated economic growth, a heavy reliance on fossil fuels (Dawson and
Spannagle, 2020; IPCC, 2022, 2021; Kikstra et al., 2022) and an energy-intensive lifestyle
(O’ Neill et al., 2016). This scenario projects that radiative forcing of about 1.88 times the
previous, consistent with the highest emission forecasts from earlier modeling efforts,
including the 8.5 pathway (Meinshausen et al., 2011; van Vuuren et al., 2011).

Table 1: Details of the CMIP6 models incorporated into this study’s analysis

Name of the model Developing Institution Country

ACCESS - CM2 CSIRO and ARCCSS Australia

ACCESS - ESM1-5 CSIRO and ARCCSS Australia
CNRM -CM6 -1 CNRM - CERFACS France
CNRM - ESM2 -1 CNRM - CERFACS France

EC - Earth3 —Veg - LR Consortium-EC-Earth VariOl_JS

countries

EC - Earth3 Consortium-EC-Earth Vario%Js

countries
IPSL - CM6A - LR Institut Pierre-Simon Laplace France
MIROC - ES2L MIROC Project, University of Tokyo Japan
MIROCS6 MIROC Project, University of Tokyo Japan

MPI - ESM1 -2 - HR Max Planck Institute for Meteorology Germany

MPI-ESM1-2-LR Max Planck Institute for Meteorology Germany
MRI - ESM2 -0 Meteorological Research Institute Japan
NESM3 National Earth System Model Team China

To refine the spatial scale and correct for consistent biases in the unprocessed GCM data,
the NEX-GDDP-CMIPG6 resource adopts the Bias Correction Spatial Downscaling (BCSD)
technique. This statistical downscaling method involves two main steps (Thrasher et al.,
2022). First, bias correction is performed by adjusting the GCM data against a trusted
observational baseline using quantile mapping (Maurer and Hidalgo, 2007). This approach

maintains the statistical integrity of modeled data, and the occurrence and severity of
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climate shifts correspond to the patterns documented in past climate data. The corrected
data is spatially disaggregated to a high-detail grid at quarter-degree intervals (roughly 25
km). It is achieved using harmonic interpolation methods that incorporate local climatic

patterns, thereby enhancing the fidelity of the data for local-scale studies.

The Global Meteorological Forcing Dataset (GMFD), produced by Princeton University,
served as the reference dataset for bias correction (Lange and Bichner, 2020). The GMFD
combines reanalysis data with observational records to produce reliable, continuous daily
measurements of climate parameters such as air temperature, rainfall, wind, moisture
content, and incoming solar energy (Wood et al., 2004). The temporal coverage of this
dataset extends from 1960 to 2014 and is gridded at the same resolution (0.25°) as the
downscaled projections, making it well-suited for the bias correction process. It is used as

the standard reference for aligning and adjusting the historical climate model outputs.

Overall, the NEX-GDDP-CMIP6 dataset provides a comprehensive and high-resolution
view of possible future climate conditions under different emission pathways. Its daily
temporal resolution and spatial granularity allow for detailed impact assessments,
especially in regions with complex topography or high climate sensitivity. The inclusion of
both moderate and high-emission scenarios in this study offers insights into a range of
potential futures, supporting more informed decision-making for climate adaptation and

mitigation efforts.

4.2 Variability and Extremes Methodology

To assess the temporal and spatial variability of precipitation, we employed statistical
techniques that quantify fluctuations in rainfall over different timescales. Metrics such as
the standard deviation and entropy-based indices were used to characterize the degree of
variability, following established approaches in climate science (Hobeichi et al., 2024;
Pendergrass et al., 2017). It allows for the identification of regions and periods exhibiting
significant departures from average conditions, which is crucial for understanding the

hydrological sensitivity of wetlands under changing climate regimes.

Extreme precipitation events, including both intense rainfall and prolonged droughts, are
key drivers of water-related processes and the robustness of wetland habitats. In this study,
we analyzed a suite of indices given by ETCCDI to analyze the prevalence, frequency, and

duration of precipitation shifts (Li et al., 2024; Maimone et al., 2023). These indices were

26




calculated for both historical and projected periods, enabling a detailed examination of how
the rate at which extreme events happen and their degree of severity may evolve under

different climate scenarios.

4.2.1 Precipitation Variability

(Shannon, 1948) introduced the metric “Entropy,” which is used to assess the degree of
uncertainty, randomness, or disorder in a random variable. When applied to precipitation
data, entropy provides a quantitative measure of how variable and unpredictable rainfall is
across different locations and periods, effectively capturing the complexity within the
precipitation time series. The discrete S(v) entropy for a random variable V is given in

Equation (i)
S(V) = - Zf:l k(vr) 1082 k(vr) )

In this equation, k(v,) represents the likelihood of the rt* event and R denotes an entire
count of potential events. Entropy attains its peak value when all events occur with equal
probability, indicating the highest level of unpredictability. The metric spans from 0

(absolute predictability) to log, R, reflecting the system's inherent randomness.

In hydrological applications, entropy is a valuable tool for assessing variability within
precipitation time series across different temporal and spatial scales (Kawachi et al., 2001).

This study applies entropy analysis using three specific measures

4.2.2 Marginal Entropy (ME)

ME measures unpredictability or disorder level within an individual time series, reflecting
how values fluctuate over time (Cheng et al., 2017; Darbandsari and Coulibaly, 2022; de
P. Rodrigues da Silva et al., 2016; Mishra et al., 2009). Employed to evaluate temporal
variability in rainfall distributions across varying time scales, focusing on monthly and

annual periods, at Ramsar wetland locations. It is calculated as shown in Eqg. (i)
N
4t de .
ME = —Z—lo (—) ii
0 82 0 (it)

t=1

Here, g, represents the precipitation recorded during the t** interval (such as a specific

month or year), Q denotes the cumulative rainfall over the dataset’s full duration, and N
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refers to the entire count of intervals considered (for example, the total count of months or

years in the study period).

4.2.3 Apportionment Entropy (AE)

The entropy-based metric AE, is introduced to gauge how evenly a specific variable is
allocated or spread out. Measures how total rainfall is distributed over individual months
or seasons, providing insights into how consistently rainfall occurs over different periods,

calculated as shown in Eq. (iii)

p

e e
AE = — _1£10g2 (P—r:) (iii)

m

Where e,, is the rainfall amount in the m*"* period (e.g., month or season). Py is the total
annual rainfall. p represents the total count of discrete time units, such as months or
seasons, within the time series (Maruyama et al., 2005).

4.2.4 Standardized Variability Index

Redundancy metric SVI by (Singh, 2013) is applied here to investigate repetition and
predictability patterns across multiple timescales and regions, SVI was applied as shown in

Eq. (iv)

SVI = Smax—Sval (iv)
Smax

Where S, is the calculated entropy and S,,,4, IS the maximum possible entropy for that
series. SVI ranges from 0 (no variability, maximum certainty) to 1 (maximum variability,
maximum uncertainty), enabling consistent comparison across regions (Guntu et al., 2020a;
Rolim et al., 2022). Particularly useful for assessing variability over multiple temporal
scales, this index provides a consistent framework for measuring uncertainty. Its bounded
range supports meaningful comparisons across datasets with varying lengths, making it
suitable for regional analyses (Choobeh et al., 2024). 13-time series comprising monthly
(12 months) and annual data (1 series) were used to capture and compare precipitation

variability across different temporal resolutions.
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4.2.5 Extremity Indices

The research utilized twelve indices based on extreme rainfall derived from the
Standardized framework established by ETCCDI, coordinated by WMO in cooperation
with both CLIVAR and JCOMM (Karl et al., 1999). These indices serve as globally
accepted methods for evaluating variations in how often, how severe, and how long extreme
precipitation events occur (Bobde et al., 2024; Donat et al., 2016; Yin and Sun, 2018).
Twelve key indices were selected for this analysis, for instance, the frequency of intense
rainfall days (R10mm), the occurrence of exceptionally heavy rain events (R20mm), the
Simple Daily Intensity Index (SDII), peak single-day precipitation totals (Rx1day), highest
accumulated rainfall over five consecutive days (Rx5day), stretches of successive wet days
(CWD), yearly precipitation sums (PRCPTOT), and measures reflecting the proportion of
rainfall from very wet (R95pTOT) and extremely wet days (R99pTOT), along with
frequency-based metrics (RR95, RR99) and total rainy days (RD). The selection reflects
their global prominence and relevance for hydrological and climatic impact assessments in
the study region (Wilson et al., 2022). Each index was computed annually across 2,490
wetland sites using simulations from multiple CMIP6 climate models, covering both
historical and future climate scenarios. By aggregating individual model outputs into a
multi-model ensemble mean (MME), the analysis reduces model-specific biases, yielding

a more reliable characterization of extreme precipitation patterns (Figure 5).

Table 2: Precipitation Extremes Metrics Considered

ID Index Name Definition Units

Total number of days per year with

RD Number of Rainy Days precipitation > 1 mm days
. Maximum number of consecutive

CwD Consecutive Wet Days days with precipitation > 1 mm days
_— Annual total precipitation from

RO5pTOT  Very Wet Day Contribution days > 95th percentile threshold mm
Number of days per year with

RR95 Number of Very Wet Days precipitation > 95th percentile days

Rx1 Maxnn_um 1_-Day Highest daily precipitation in a mm

Precipitation year
SDII Simple Daily Intensity Index Annual mean precipitation per wet mm/day

day (precipitation > 1 mm)

Calculating these indices on an annual basis ensures effective tracking of interannual

variability and long-term trends (Avila-Diaz et al., 2020). Understanding how extreme
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precipitation patterns may shift in the future is essential for effective planning and
management of regional water resources. Insights into these changes directly inform the
development of robust adaptation strategies, helping communities and policymakers design
measures that enhance resilience to climate-related water challenges (Eekhout et al., 2018;
Elgendy et al., 2024; Karl et al., 1999; Rogers et al., 1996; Zhang et al., 2011; Zhao and
Boll, 2022).
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5. Results

This section comprehensively analyses projected changes in precipitation variability and
extremes across global Ramsar wetlands under different climate scenarios. By examining
both intra- and inter-annual variability as well as a suite of extreme precipitation indices,
we identify emerging patterns, regional contrasts, and site-specific responses in wetland
hydrology. The results highlight how climate change may reshape the distribution and
intensity of hydrological extremes, with significant implications for wetland resilience and

ecosystem functioning.

5.1 Entropy Study
5.1.1 Intra-Annular variability SVIae at monthly scale

Under the SSP 245 scenario, a comparison between the historical period (1951 - 2024) (a)
of Figure 6 and the future period (2025 - 2100) (b) of Figure 6 reveals evolving patterns in
precipitation variability across global Ramsar sites. The number of wetlands classified
under medium variability increases modestly from 239 to 255, suggesting a growing
number of sites are becoming more sensitive to monthly-scale precipitation fluctuations.
The high variability category continues to be dominated by a single site, Oasis du Kawar,
in Algeria, which lies within the arid, desert, hot climate zone according to the Koppen-
Geiger classification (BWh). Meanwhile, low variability sites decline slightly from 2,247
to 2,234, indicating a gradual redistribution from stable to more variable conditions and
highlighting a potential increase in the responsiveness of these ecosystems to changing

climate signals.

The figure demonstrates the intra-annual variability along the Ramsar sites globally for
different scenarios: (a) SSP 245 historical, (b) SSP 245 future, (c) SSP 585 historical, and
(d) SSP 585 future. Under the SSP 585 scenario, the shift toward elevated variability
becomes more pronounced. Medium variability sites increase from 241 to 260, reflecting a
broader emergence of wetlands experiencing intensified precipitation variability. Oasis du
Kawar remains the sole site in the high variability class in the future period, underscoring
its persistent climatic instability under extreme emissions scenarios. Low variability sites
decrease further from 2,246 to 2,229, representing a more substantial redistribution

compared to SSP 245. This trajectory under the high-emissions pathway indicates that more
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wetlands may transition from stable to variable regimes, driven by the amplification of

hydrological extremes.
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Figure 6: SVIae monthly variability (Intra-annual).

Historical variability distributions are nearly identical between the two scenarios. SSP 245
includes four sites in the high variability class, while SSP 585 includes 3 (c) in Figure 6.
Medium and low variability site counts differ only slightly, indicating a broadly similar

baseline distribution across scenarios before future changes.

Future projections under both scenarios converge with Oasis du Kawar remaining in the
high variability class. However, (d) in Figure 6 SSP 585 results in a more pronounced
increase in medium variability sites compared to SSP 245. It suggests that greater emissions
forcing may enhance the redistribution of sites into higher variability categories. The

accompanying reduction in low variability sites, although minor, supports this pattern.

Taken together, the most consistent signal across both climate pathways is the increase in
medium variability of wetlands. While high variability remains uncommon, the growth in
medium-class sites underscores a fundamental shift in precipitation behavior at a monthly
scale. Wetlands historically characterized by stable conditions are now projected to
experience more dynamic hydrological variability, with potential implications for seasonal

balance and ecological functioning.
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5.1.2 Inter-Annual variability SVIme at a monthly scale

In the SSP 245 historical scenario, February consistently exhibited the highest
concentration of Ramsar sites in the very high variability category, with 74 sites globally,
including 66 sites in an arid desert, a hot climatic zone of Africa, and Eight Ramsar-
designated wetlands in Asia situated within regions characterized by arid and steppe
climates, as well as areas experiencing hot and temperate conditions with dry winters and
hot summers. Interestingly, October recorded 1 Ramsar site in this category, located in
Africa. The high variability category showed considerable seasonal variation, with the
highest count in December (16 sites) and the fewest in March (O sites). The medium
variability category peaked in November (33 sites), while April, June, and September had
the fewest sites (11 sites each). As for the low variability category, February recorded the
fewest sites globally (2,398 sites), the largest concentration found in Europe, with 1,094
designated wetlands primarily situated in temperate zones characterized by warm summers
and no distinct dry season, while Oceania has the fewest such sites (81 sites). In contrast,
March had the highest number of low variability sites globally (2,468 sites), as shown in

Figure 7.
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Figure 7: Inter-annual variability SVIve at a monthly scale for SSP 245 Historical (1951-2024).

The index values are divided into four classes mentioned in the legend: green for low (0 <
SVIve < 0.25), yellow for medium (0.25 < SVIve < 0.5), blue for high (0.5 < SVIve <
0.75), and red for very high variability (0.75 < SVIve <1).

For future projections of SSP 245, the distribution of sites with very high variability will
remain similar to historical patterns. February continued to feature 74 Ramsar sites
classified as very high variability, with the distribution between Africa (66 sites) and Asia
(8 sites) unchanged from the same climatic zones mentioned for SSP 245 historical. The
high variability class increased slightly, with 16 sites in November and additional sites in
February, May, June, and October. The medium variability category peaked in November
(34 sites), while September recorded the fewest sites in this category (8 sites). The low
variability category was again most prominent in February (2,393 sites) and October (2,471

sites), as shown in Figure 8.
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Figure 8: Inter-annual variability SVIME at a monthly scale for SSP 245 future (2025-2100).
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The index values are divided into 4 classes mentioned in the legend: green for low ( 0
SVIme <0.25), yellow for medium (0.25 < SVIme <0.5), blue for high (0.5 < SVime
0.75), and red for very high variability (0.75 < SVIve <1) for 12 months.

IN

A

In the SSP 585 historical scenario, trends were similar to SSP 245. February remained the
month with the most Ramsar sites in the very high variability category (74 sites: 66 in
Africa, 8 in Asia). October recorded 2 sites in the very high category, both located in Africa.
The high variability category reached its maximum in December (16 sites), with March
showing the lowest count (O sites). In November, the medium variability category peaked
at 35 sites (Africa contributed 23 sites, Asia 9 sites, and South America 3 sites). The low
variability category had a maximum of 2,471 sites in March and a minimum of 2,397 sites

in February, as shown in Figure 9.
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Figure 9: Inter-annual variability SVIve at a monthly scale for SSP 585 Historical (1951-2024).

The index values are divided into 4 classes mentioned in the legend: green for low (0 <
SVIve <0.25), yellow for medium (0.25 < SVIme < 0.5), blue for high (0.5 < SVIve <
0.75), and red for very high variability (0.75 < SVIve < 1) for 12 months. For the future

A

projections of SSP 585, the very high variability category saw a slight increase to 75 sites

36




in February (66 in Africa, 9 in Asia). One site was recorded in Africa in October. The high
variability category peaked at 16 sites in July, with 11 sites in Africa, 1 site in Asia, 3 sites
in Europe, and 1 site in South America. March recorded the minimum (1 site in Africa).
The medium variability category peaked at 27 sites in November, with 14 sites in Africa
and 13 sites in Asia. Low variability remained the dominant category, peaking in October

(2,472 sites) and February (2,395 sites), as shown in Figure 10.
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Figure 10: Inter-annual variability SVIve at a monthly scale for SSP 585 future (2025-2100).

The index values are divided into 4 classes mentioned in the legend: green for low (0 <
SVIme <0.25), yellow for medium (0.25 < SVIume < 0.5), blue for high (0.5 < SVIme <
0.75), and red for very high variability (0.75 < SVIme < 1) for 12 months. Regarding site-

A

level shifts in SVIme, Nguru Lake and the Marma Channel Complex of the arid, steppe hot
zone of Africa recorded a significant increase in SVIue in October, shifting dramatically
within the low variability category. Fivebough and Tuckerbil Swamps in the arid, steppe,
cold zone of Oceania showed a slight increase in SVIue in November, remaining within
the low variability category. Being in a temperate, dry summer, hot summer zone, Zarivar

in Asia experienced a notable decrease in SVIve in August, transitioning from medium to
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low variability. Kayrakum Reservoir, also in Asia, falling under the arid, desert, cold zone,

showed a minor decrease in SVIme in November, remaining in the low category.

Under SSP 585, Nguru Lake and the Marma Channel Complex showed a remarkable shift
in SVIve in October, transitioning from low to high variability. Conversely, the Angola
Accession Site in Africa had a very minor increase in SVive in May, reflecting almost no
change in variability. The most dramatic decrease in SVIue under SSP 585 occurred at Tle
Blanche, another African site falling in the tropical monsoon climate zone, which saw a
significant drop in December, transitioning from high to low variability. Annsjon in Europe

experienced a slight decrease but remained in the low variability category.

5.1.3 Inter - Annual variability SVIwve at the annual scale

At the annual scale, the analysis of SVIme under SSP 245 reveals remarkable stability in
categorical variability across both historical (1951 - 2024) (a) in Figure 11 and future (2025
- 2100) (b) in Figure 11 periods. Of the 2,490 Ramsar sites studied, only one site, Delta
Intérieur du Niger (Mali), exhibited medium variability in both timeframes, showing a
decrease in entropy index from 0.335 during the historical timeframe to 0.2899 in the
projected future, a modest reduction. The remaining 2,489 sites consistently retained low
variability classification across both periods. Despite this constancy in class distribution,
entropy values within the low variability category exhibited both upward and downward
trends. Specifically, 1,091 sites demonstrated entropy increases, ranging from a minimal
increment at Pelican Island National Wildlife Refuge (USA) to a significant rise at East
Calcutta Wetlands (India). Notably, East Calcutta Wetlands showed scenario-sensitive

behavior, with entropy declining under SSP 585.

Entropy measurements dropped at 1,399 sites under SSP245, signaling reduced variability
between baseline and future climate conditions. Most of the extreme reduction occurred at
the Sierra Leone River Estuary (Sierra Leone), with entropy falling sharply, while the least
decline was observed at Lavinia Nature Reserve (Australia), showing a negligible decrease.
These results illustrate that even though class-level variability remained constant, internal
dynamics at the entropy value level reveal nuanced responses to climate forcing across

individual sites.

Under SSP 585, similar categorical consistency was observed. Delta Intérieur du Niger

remained the only site in the medium variability class, with entropy declining from 0.3418
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to 0.271. All remaining 2,489 sites retained low variability classification across historical
and future periods represented in (c) and (d) in Figure 11. However, entropy magnitudes
displayed a sharper contrast compared to SSP 245. A total of 1,937 sites exhibited increased
entropy values under SSP 585, with the most dramatic increase occurring at Maladumba
Lake (Nigeria), highlighting high sensitivity to emissions trajectory. Interestingly, this

same site showed an opposite trend under SSP 245.

(d)
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Figure 11: Inter-annual variability SVIve at the annual scale.

The index value is categorized into 4 classes at 4 different scenarios across 2 different time
durations: (a) SSP 245 historical (1951-2024), (b) SSP 245 future (2025-2100), (c) SSP
585 historical (1951-2024), (d) SSP 585 future (2025-2100). Entropy decreased in 553 sites
under SSP 585. The most substantial decline was again seen at Sierra Leone River Estuary
(tropical, monsoon climate zone), closely mirroring the drop observed in SSP 245. The
least decrease was recorded at Thanet Coast and Sandwich Bay (England), where entropy
reduced marginally. Intriguingly, this same site registered a significant increase under SSP

245, reinforcing the site-specific variability in response to scenario pathways.

Crucially, across both SSP 245 and SSP 585, despite the extensive spread of entropy
increases and decreases at the site level, the number of Ramsar sites in each variability class
(medium and low) remained identical between historical and future periods. It includes
Delta Intérieur du Niger (Mali), which maintained its medium variability status in all cases,

despite undergoing reductions in entropy and is present in arid, desert, hot climate zone.
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This categorical stability, even amidst substantial numerical shifts in entropy values,
suggests that while overall annual-scale variability is not dramatically reorganized in class
terms, the internal dynamism within classes is substantial and, in some sites, highly

sensitive to emissions scenario and regional hydrological response.

5.2 Spatiotemporal Analysis of Precipitation Extremes across Ramsar
Sites

Twelve key precipitation indices are analysed under four scenarios, encompassing both
historical and projected periods for the SSP 245 and SSP 585 emission pathways to evaluate
spatial and temporal variations in precipitation extremes under changing climate
conditions. These indices, R10, R20, RD, CWD, PRCPTOT, R95pTOT, R99pTOT, RR95,
RR99, Rx1, Rx5, and SDII, characterize how often precipitation events occur, how intense
they are, and how long they last, including the most extreme rainfall episodes. For each
scenario, spatial plots represent the global distribution of these indices, enabling
comparison between moderate and high-emission pathways over time. This framework
provides a basis for assessing regional changes in rainfall behavior and identifying potential
climate risks. Under SSP 245 historical conditions, there are notable differences in how
precipitation extremes are distributed geographically among the six zones. In Asia,
wetlands experience intense short-duration rainfall, with Rx1 ranging between 80 - 120 mm
and SDII between 7 - 11 mm/day. The CWD spans between 20 and 45 days, while RD can
extend to 180 days in arid sub-regions. Very wet days (RR95) occur 12 - 25 times annually,
contributing to a substantial share (18 - 28%) of total annual rainfall through R95pTOT. In
Africa, particularly across Central and West Africa, rainfall is both intense and unevenly
distributed. Rx1 varies from 70 - 110 mm, and SDII values are relatively high (8 - 12
mm/day).

CWD reaches up to 40 days, and RD can last as long as 200 days in some regions. The
RR95 varies from 10 to 22, and the proportion of total precipitation (R95pTOT) attributed
to these days is remarkably high, reaching 20 - 30%. Europe shows moderate precipitation
extremes with Rx1 in the range of 60 - 100 mm and SDII between 6 - 9 mm/day. However,
it experiences extended wet spells, with CWD reaching up to 50 days. RR95 ranges from
8 - 18 events per year, and R95pTOT remains within 12 - 20%, suggesting a relatively
lower concentration of extremes compared to tropical regions. In North America, Rx1
ranges from 65 - 110 mm and SDII from 7 - 10 mm/day. Wetlands experience 15 - 35 CWD
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and RD extending up to 180 days in drier areas. The RR95 varies from 10 - 20, while 14 -
24% of total rainfall originates from these extreme events R95pTOT.
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Figure 12: Geographical patterns of precipitation extremes indices in global wetlands during the
historical SSP 245 scenario (1951 - 2024).

Rx1 exceeds 130 mm within specific parts of Asia, including the western coastal belt of
Southern America, represented in deep red shades (a), while SDII reaches up to 20 mm/day
in Africa and Southeast Asia, indicated by purple (b). CWD surpasses 60 in Europe and
parts of South America (c), highlighted in dark violet, and RD exceeds 300 in equatorial
Africa and Southeast Asia (d), shown in bright red. Very wet days (RR95) occur more than
28 times annually across Asia and the Amazon Basin (e), shown in red and yellow, while
areas within the Congo Basin and the Amazon region (f) record R95pTOT values above
35% of total precipitation, highlighted in brown in Figure 12. Particularly, the Amazon
basin is characterized by high Rx1 values (75 - 115 mm), with SDII between 8 - 11 mm/day.
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Figure 13: Geographical patterns of precipitation extremes indices in global wetlands during the
future SSP 245 scenario (2025 - 2100).

Wet periods extend up to 40 days, while RR95 occurs 12 - 22 times annually. R95pTOT
exceeds 25% in several tropical wetlands, indicating significant rainfall clustering. Oceania
demonstrates moderate precipitation behavior with Rx1 ranging from 60 - 90 mm and SDI|I
from 6 - 9 mm/day. CWD ranges from 15 - 35 days, while RD extends up to 190 days,
especially in parts of Australia. RR95 occurs 8 - 16 times per year, and R95pTOT is
between 13 - 21%. Finally, the Global Tropics emerge as the most hydrologically extreme
zone, with Rx1 exceeding 130 mm, SDII between 9 - 13 mm/day, CWD reaching 45 days,
and RR95 occurring up to 28 times annually. Notably, more than 25 - 35% of total
precipitation in this region is delivered by very wet days, underscoring the severe clustering

of rainfall extremes in tropical wetland systems.

Rx1 surpasses 140 mm within specific parts of Asia, including the western coastal belt of

Southern America, with these zones depicted in deep red (a), while SDII reaches up to
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20 mm/day in Africa and Asia, shown in purple (b). CWD surpasses 60 in Europe and North
Asia (c), indicated by dark violet, and RD exceeds 300 annually in Central Africa and
Southeast Asia, marked in red (d). RR95 occurs over 28 times/year in South America and
Asia (e), shown in red and yellow, while R95pTOT exceeds 40% in several African and
Amazonian sites (f), highlighted in brown. Under the SSP 245 future scenario (2025 - 2100)
in Figure 13, wetlands across the globe are projected to undergo intensifying
hydrometeorological extremes, though with marked regional contrasts in severity and
expression. Asia, South America, and the Global Tropics are projected to face the most
dramatic escalation, with Rx1 values exceeding 140 - 150 mm, SDII reaching 10 - 13
mm/day, and RR95 occurring up to 30 times annually. These regions also exhibit the
highest rainfall concentration, with R95pTOT contributing 28 - 38% of annual
precipitation, suggesting that rainfall is increasingly clustered into a small number of high-
impact events, heightening flood risk and overwhelming wetland buffering capacities. In
Africa, the dual stress of high-intensity rainfall (Rx1: 90 - 130 mm; SDII: 9 - 13 mm/day)
and RD extending up to 180 days reflects a growing seasonal imbalance. RR95 values in
African wetlands range from 13 - 25 days/year, with a significant share of rainfall (22 -
32%) concentrated in those events. North America shows similar signs of intensification,
with Rx1 reaching 120 mm, SDII up to 11 mm/day, and extreme days contributing up to
28% of annual rainfall, particularly affecting western and southern wetland systems. In
Europe, changes are more moderate but still notable: CWD lengthen to 50 days, and rainfall
intensity (SDII: 7 - 10 mm/day) increases steadily, while R95pTOT remains below 22%,
signaling a gradual but persistent shift in precipitation patterns. Oceania, particularly
Australia, experiences moderate extremes, with Rx1 reaching 105 mm, wet spells lasting
20 - 35 days, and dry spells persisting up to 170 days, indicating an episodic and uneven
wet-dry cycle. Across all regions, however, the Global Tropics remain the epicenter of
hydrological intensification, with nearly every index reaching its upper bound, including
Rx1 >150 mm, SDII >13 mm/day, and extreme rainfall days delivering more than 38% of
annual precipitation. These findings collectively highlight a growing reliance on extreme
precipitation events to fulfill annual hydrological budgets in wetlands worldwide,
threatening not only their ecological balance but also their resilience under projected

climate trajectories.
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Figure 14: Geographical patterns of precipitation extremes indices in global wetlands during the
historical SSP 585 scenario (1951 - 2024).

Rx1 exceeds 130 mm within specific parts of Asia, including the western coastal belt of
Southern America, highlighted in deep red (a), while SDII reaches up to 20 mm/day across
Africa and Asia, shown in purple (b). CWD exceeds 60 days in Europe and South America
(c), marked in dark violet, and RD surpasses 300 days in Central Africa and Southeast Asia,
indicated by dark red (d). RR95 occurs more than 28 times annually in Asia and South
America (e), with red and yellow shades, while R95pTOT exceeds 35% in Central Africa
and the Amazon Basin, represented in brown (f). Under the SSP 585 historical scenario
(1951 - 2024) shown in Figure 14, wetlands across all global regions already exhibit strong
signatures of hydrological stress driven by precipitation extremes. The most intense rainfall
characteristics are concentrated in Asia, South America, and the Global Tropics, where Rx1
ranges from 90 - 140 mm, and SDII reaches 9 - 12 mm/day, indicating frequent and forceful

rainfall bursts.
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Figure 15: Geographical patterns of precipitation extremes indices in global wetlands during the
future SSP 585 scenario (2025 - 2100).

These regions also experience CWD extending up to 45 days, while RR95 occurs 14 - 26
times annually, contributing as much as 35% of R95pTOT - a sign of highly clustered and
flood-prone rainfall regimes. In contrast, Europe and Oceania display more moderate
extremes, with Rx1 between 70 - 105 mm, SDII between 6 - 9 mm/day, and R95pTOT
remaining below 20%, suggesting a relatively stable but less intense precipitation structure.
However, even these regions are not exempt from pressure, as wet spell durations exceed
40 days, and RD still reaches 130 - 160 days, indicating evolving seasonal imbalances.
Africa and North America fall in the middle of this spectrum, marked by a dual burden of
extremes: SDII up to 12 mm/day and RR95 up to 24 events/year, combined with extended

dry spells of 160 - 180 days, especially in sub-Saharan and southwestern areas.

These findings confirm that even under historical climate forcing, a significant proportion

of global wetlands are already experiencing rainfall regimes characterized by high
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intensity, prolonged wet or dry phases, and increasing dependence on a small number of
extreme events, all of which heighten the risk of waterlogging, drought, and ecological

disruption in these sensitive ecosystems.

Rx1 ranges from 0 to over 160 mm, with deep red shades marking the most intense events
(@), (b) SDII, (c) CWD (range), (d) RD, (e) RR95 occur more than 30 times annually, and
f) the percentage of rainfall contributed by R95pTOT exceeds 40% in many tropical sites.
Under the SSP 585 future scenario (2025 - 2100) shown in Figure 15, Global projections
indicate that nearly all regions will face heightened precipitation extremes, with the most
significant changes expected in the Global Tropics, Asia, along with South America,
emerging as the most impacted zones. Rx1 reaches 130 - 170 mm in the tropics, compared
to 120 - 160 mm in Asia and South America, and around 80 - 120 mm in Europe. Similarly,
SDII exceeds 14 mm/day in Africa and the tropics, highlighting a steep rise in event-scale
intensity relative to more modest increases of 8 - 11 mm/day in temperate zones. In terms
of temporal patterns, CWD is projected to extend beyond 50 days in the tropics and Europe.
RD remains longest in Africa and Oceania, reaching up to 180 days, reflecting an
intensification of seasonal rainfall imbalance. The RR95 also shows a notable rise, with the
tropics and South America experiencing 20 - 34 events/year, compared to 12 - 22
events/year in Europe and Oceania. Crucially, the share of annual precipitation contributed
by R95pTOT exceeds 40% in the tropics, 35% in Asia and South America, and reaches
30% even in North America, demonstrating a global shift toward rainfall clustering.
Collectively, these trends suggest that Asia, South America, and Africa face the most severe
intensification across all metrics, while Europe, North America, and Oceania also exhibit
significant changes, especially in the form of longer wet spells and increased rainfall
concentration, demonstrating a widespread global escalation in wetland hydrological

extremes.
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6. Conclusion

This global assessment of 2,490 Ramsar wetlands demonstrates that climate change is
driving substantial and regionally concentrated shifts in precipitation variability, with the
most pronounced impacts in Africa and Asia. These continents consistently have the
highest numbers of wetlands transitioning into higher variability categories, particularly
from low or medium to high and very high, highlighting increasing hydrological instability
and ecological vulnerability. On a monthly scale, Africa dominates the very high variability
category, especially in February, when 66 out of 74 very high variability sites globally are
located on the continent, and Asia accounts for the remainder. Notably, some African sites,
such as Nguru Lake and the Marma Channel Complex, move from low to high variability,
reflecting a rare and significant reclassification. Similarly, Isla San Pedro Martir in North
America shifts from low to medium variability, indicating a substantial change in its
internal dynamics. These upgrades in variability class signal heightened sensitivity to
climatic fluctuations and the potential for ecological disruption. Conversely, several sites
experience abrupt downgrades in variability. As Zarivar in Asia moves from medium to
low variability and Tle Blanche in Africa drops from high to low variability, both reflect a

marked loss of hydrological complexity.

Particularly concerning are sites that transition directly from very high to low variability
within a single period, as observed in two African sites (December) and one Asian site
(January), which may indicate regime shifts or ecological thresholds being crossed.
Directional analysis of category transitions further underscores the dynamic nature of these
changes: under SSP245, 100 sites moved to higher variability categories, while 109 shifted
downward; under SSP585, 117 upgrades, and 120 downgrades were recorded. Such
bidirectional movements highlight the fluidity and unpredictability of wetland responses to
climate forcing, with Africa and Asia showing the greatest volatility. While most wetlands
remain in the low variability category, the widespread and sometimes dramatic internal
entropy changes within these classes—such as the notable increases at Maladumba Lake
(Nigeria) and East Calcutta Wetlands (India) demonstrate that apparent class stability can
mask significant internal dynamism and emerging risks. In summary, under both moderate
and high-emission scenarios, Ramsar wetlands, especially those in Africa and Asia, are
increasingly at risk of shifting into higher variability categories, with some sites

experiencing rare and substantial category conversions. These trends represent a serious
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situation for wetland resilience, ecosystem services, and biodiversity, underscoring the
urgent need for region-specific monitoring, adaptive management, and targeted
conservation strategies to address the accelerating impacts of climate change on the world’s

most vulnerable wetland landscapes.

In the historical SSP 245 scenario, precipitation extremes remain moderate, with most
wetlands recording PRCPTOT values between 600 - 1000 mm and most sites falling in the
20 - 40 days range for R10 and 11 - 20 days for R20. Rx1 values are largely below 40 mm.
Indices R95pTOT and R99pTOT predominantly fall within the lower ranges, remaining
between 0-5% and 0-2%, respectively. During the historical baseline under the SSP 585
pathway, similar patterns are observed with slight intensification; more wetlands cross into
the 1000 - 1200 mm PRCPTOT range, R10 increases into the 41 - 60 days class, and R20
shifts into 21 - 40 days. Likewise, Rx1 shows a small increase with more wetlands
exceeding 40 mm, and R95pTOT expands into the 5 - 10% category in some regions. Future
projections under SSP 245 indicate a clear intensification of extremes. PRCPTOT
increases, with many wetlands shifting into the 1000 - 1500 mm class. R10 predominantly
increases to 41 - 60 days, and R20 moves further into 21 - 40 days. Rx1 surpasses 60 mm
in several wetlands. Likewise, R95pTOT rises into the 10 - 15% range, and R99pTOT
shows increases into 5 - 6% for specific wetlands. The future SSP 585 scenario shows the
strongest intensification across nearly all indices. PRCPTOT values markedly increase,
with large wetland regions exceeding 1500 - 2000 mm and many surpassing 2000 - 3000
mm. R10 exceeds 60 days, and R20 reaches 40 - 60 days in a wide area. Short-duration
extremes intensify notably, with Rx1 values surpassing 80 mm and Rx5 crossing 200 mm,
with some wetlands reaching >300 mm. R95pTOT peaks beyond 15 - 20%, and R99pTOT
rises above 8 - 10% across multiple regions. Similarly, RR95 increases from 0 - 5 days
historically to 10 - 15 days under SSP 585, while RR99 grows from 0 - 1 day to 2 - 3 days.
CWD shows more modest increases, shifting from 5 - 10 days historically to 16 - 20 days
in several regions under SSP 585. Overall, the spatial extent of wetlands exposed to extreme
precipitation intensities expands substantially under SSP 585, with several indices (e.g.,

PRCPTOT >2000 mm) showing classes not reached under historical or SSP 245 scenarios.
Differences: SSP 245 Historical vs SSP 585 Historical

Under SSP 585 historical conditions, Rx1 values (max 1-day rainfall) are slightly higher,
exceeding 130 mm in more locations (e.g., Asia, South America) compared to SSP 245,
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where values mostly remain below 130 mm. Similarly, SDII reaches up to 20 mm/day more
frequently in SSP 585, especially across Africa and South Asia, indicating higher storm
intensity. CWD extends beyond 60 days more widely in SSP 585, particularly in Europe
and South America, while SSP 245 shows this only in fewer pockets. It suggests longer
periods of sustained rainfall under SSP 585. RD is slightly elevated in SSP 585 in Central
Africa and Southeast Asia, with more wetlands exceeding 300 rainy days/year. SSP 245
also shows high RD but with slightly less spatial spread in extreme zones. SSP 585 exhibits
more sites with RR95 > 25 days/year, particularly in South America, Asia, and Africa,
compared to SSP 245. It implies that very wet days are more frequent in SSP 585, even
under historical conditions. The contribution of total precipitation (R95pTOT) is
considerably higher under SSP 585, with more wetlands crossing the 35 - 40% threshold,
especially in the Amazon, Congo Basin, and parts of Asia. It signals a stronger rainfall

concentration in SSP 585.

Difference between SSP 245 Future vs SSP 585 Future

In SSP 585, Rx1 values exceed 160 mm in several regions, such as Asia and South America,
whereas most values fall below 140 - 150 mm in SSP 245. It indicates sharper rainfall bursts
under SSP 585, reflecting the influence of stronger radiative forcing. SDII reaches more
than 20 mm/day in SSP 585, especially in Africa and Southeast Asia, while SSP 245 stays
mostly below 18 mm/day. Future conditions modeled by SSP 585 suggest that heavy
rainfall will become more pronounced. Such heightened precipitation intensity could
potentially cause disruptions to ecosystems or result in habitat loss, particularly affecting
wetland species that are vulnerable to heavy rainfall. SSP 585 shows more wetlands with
CWD > 60 days, especially in Europe and northern latitudes, compared to SSP 245, where
such long wet periods are less widespread. This implies longer, uninterrupted wet phases
under higher emissions. While both scenarios show RD > 300 days/year in the equatorial
zone, SSP 585 has broader coverage, indicating more persistent annual rainfall in regions
like Central Africa and Southeast Asia. Under SSP 585, RR95 exceeds 30 days/year in
many tropical wetlands, more than in SSP 245, where RR95 is mostly under 28. This means
that extreme wet days become more frequent under SSP 585. SSP 585 intensifies rainfall
clustering, with R95pTOT > 40% in many areas (especially Amazon, Congo Basin, and
South Asia), compared to SSP 245, where values generally remain under 35%. It reflects a

greater reliance on extreme days for annual rainfall under higher forcing.
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Building on the integrated entropy and climate extremes framework applied to global
Ramsar wetlands, several promising avenues for future research emerge. First, expanding
the analysis to incorporate additional hydroclimatic variables such as temperature
extremes, evapotranspiration, and groundwater dynamics could provide a more holistic
assessment of wetland vulnerability under climate changel. There is an opportunity to
improve the spatial and temporal resolution of climate projections, enabling targeted

adaptation strategies for wetlands in regions that are highly variable or lack sufficient data.

Further, coupling entropy-based metrics with ecological and socio-economic indicators
would enhance our understanding of how changes in precipitation variability and extremes
translate to impacts on wetland-dependent communities, biodiversity, and ecosystem
servicesl. Long-term monitoring and the integration of remote sensing data can help
validate model projections and detect early warning signals of regime shifts or ecological
thresholds being crossed. Finally, future research should explore the effectiveness of
adaptive management and restoration interventions in mitigating the identified risks,
particularly in regions projected to experience the most dramatic shifts in variability and
extremes. Collaborative, transboundary studies and the development of decision-support
tools based on the presented methodology can inform international conservation policy and

support the resilience of wetlands worldwide.
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