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ABSTRACT

In this study, we investigate advanced optimization strategies for fully connected

reconfigurable intelligent surface (FC-RIS) assisted downlink communication systems

operating under ultra-reliable low-latency communication (URLLC) constraints. Our

focus is on maximizing the finite blocklength (FBL) achievable rate in a multi-user

multiple-input single-output (MU-MISO) setting, where joint optimization of beam-

forming vectors, RIS phase shifts, and blocklength allocation is critical. We address

the complexity of the problem arising from high-dimensional search spaces and the

presence of Rician fading.

Our investigation begins with a deep learning-based framework that employs

gradient-based optimization to handle the non-convexity of the system. We then ex-

tend this approach by exploring reinforcement learning methods and employ the twin-

delayed deep deterministic policy gradient (TD3) algorithm to jointly optimize active

beamforming and blocklength under FC-RIS-aided URLLC scenarios. Unlike earlier

works that primarily focused on single connected RIS or standard DDPG methods,

our TD3-based approach adapts effectively to the dynamic environment and achieves

superior rate and reliability outcomes.

In the final part of our work, we propose a hybrid model that integrates convo-

lutional neural networks (CNN) and long short-term memory (LSTM) networks for

initial configuration prediction, followed by refinement using the Successive Convex

Approximation (SCA) method. These models demonstrate significant performance

gains in terms of throughput and resource utilization compared to traditional tech-

niques. Together, these results affirm the promise of intelligent optimization tech-

niques in next-generation RIS-assisted wireless systems.
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Chapter 1

Introduction

The proliferation of next-generation wireless networks is driven by a range of

mission-critical applications including industrial automation, remote healthcare (e.g.,

telesurgery), and intelligent transportation systems. These applications necessitate

stringent communication requirements, characterized primarily by ultra-reliable and

low-latency communication (URLLC). URLLC, one of the three service cate-

gories defined in 5G by 3GPP, demands end-to-end latencies below 1 millisecond and

reliability greater than 99.999% [1].

Traditional communication systems, based on Shannon’s asymptotic capacity the-

orems, assume large blocklengths and do not cater well to short-packet transmissions.

In contrast, URLLC scenarios require short packet sizes, necessitating analysis under

the finite blocklength (FBL) regime. In the FBL regime, throughput is signif-

icantly affected by decoding error probability, blocklength, and channel dispersion,

making optimization and resource allocation more challenging [2].
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CHAPTER 1. INTRODUCTION 2

1.1 Key Technologies for URLLC

1.1.1 Non-Orthogonal Multiple Access (NOMA)

NOMA has emerged as a key enabler for high spectral efficiency in URLLC net-

works. Unlike orthogonal access schemes, NOMA allows multiple users to share the

same frequency/time resources by employing power-domain or code-domain separa-

tion. In power-domain NOMA, different power levels are allocated to users, and

successive interference cancellation (SIC) is used at the receiver for decoding. This

concurrent access boosts system throughput and enables better support for heteroge-

neous QoS demands [3].

1.1.2 Reconfigurable Intelligent Surfaces (RIS)

RIS is a novel physical-layer technology that enhances the controllability of wire-

less environments. An RIS consists of a large number of low-cost passive elements that

can independently reflect incident signals with adjustable phase shifts. These surfaces

can intelligently reshape the wireless propagation environment to improve coverage,

signal strength, and interference mitigation [4, 5].

In particular, Fully Connected RIS (FC-RIS) differs from the more common

Single Connected RIS (SC-RIS) by enabling connections among all reflective

elements. This provides a much higher degree of control and greater flexibility in

shaping waveforms, which is especially advantageous in multi-user scenarios under

URLLC constraints. However, it also increases the dimensionality and complexity of

the system optimization problem.

2



CHAPTER 1. INTRODUCTION 3

1.2 Optimization in Wireless Communication Sys-

tems

1.2.1 The Need for Joint Optimization

Modern wireless communication systems are increasingly complex, involving mul-

tiple interdependent components such as transmitters, receivers, relays, antennas, and

intelligent surfaces. Optimal system performance requires the joint configuration of

several parameters, including:

• Beamforming vectors for managing signal strength and interference,

• Resource allocation across time, frequency, and spatial domains,

• Power control and user scheduling for fairness and throughput maximiza-

tion,

• Intelligent surface tuning, such as phase shift control in RIS-assisted systems.

These parameters are often coupled through the underlying channel dynamics and

user demands. Therefore, efficient joint optimization becomes essential for achieving

high spectral efficiency, coverage reliability, and energy efficiency. However, these

optimization problems are typically non-linear, non-convex, and high-dimensional,

especially in multi-user and multi-antenna systems.

1.2.2 Traditional Optimization Approaches

Historically, wireless system optimization has relied on model-driven approaches

based on well-defined mathematical formulations. Some of the most common tools

include:

3



CHAPTER 1. INTRODUCTION 4

• Convex optimization, which allows for efficient and globally optimal solutions

when the problem can be relaxed to a convex form,

• Successive Convex Approximation (SCA), which iteratively approximates

non-convex problems as solvable convex subproblems,

• Semidefinite Relaxation (SDR), often used in beamforming and power con-

trol,

• Alternating Optimization, where variables are optimized in a sequential man-

ner while others are held fixed.

While these techniques are mathematically sound, they suffer from limitations

when applied to practical large-scale or dynamic systems. These include high com-

putational complexity, dependence on perfect channel state information (CSI), and

difficulty adapting to real-time variations.

1.2.3 Emergence of Learning-Based Optimization

With the growth of data availability and computational power, learning-

based methods—particularly deep learning (DL) and reinforcement learning

(RL)—have shown great promise in addressing the limitations of traditional meth-

ods.

1.2.3.0.1 Deep Learning (DL): Supervised and unsupervised DL models can

learn non-linear mappings between CSI and control variables such as beamforming

vectors or power levels. Convolutional Neural Networks (CNN), Long Short-Term

Memory networks (LSTM), and multi-layer perceptrons (MLP) have been applied in

4



CHAPTER 1. INTRODUCTION 5

scenarios such as channel estimation, modulation classification, and resource allocation

[6].

1.2.3.0.2 Reinforcement Learning (RL): In contrast to supervised DL, RL

does not require labeled data. It learns optimal decision policies through trial and

error interactions with the environment. Algorithms such as Q-learning, Deep Q-

Network (DQN), and Twin Delayed Deep Deterministic Policy Gradient (TD3) have

been used to optimize scheduling, power allocation, and phase shifts in RIS-aided

systems [7].

1.2.3.0.3 Advantages and Challenges: Learning-based methods offer strong

adaptability, scalability, and the ability to operate with partial or outdated CSI. How-

ever, they also bring challenges such as training instability, generalization across en-

vironments, and the need for large datasets or exploration time.

1.2.4 Summary

Optimization in wireless systems has evolved from purely analytical methods to

hybrid and data-driven approaches. While traditional optimization remains essential

for interpretability and convergence guarantees, learning-based frameworks offer flexi-

bility and scalability that are well-suited for modern wireless environments. A growing

body of research is now focused on combining both paradigms to achieve robust and

efficient wireless system optimization.

5



CHAPTER 1. INTRODUCTION 6

1.3 Thesis Objective and Contributions

This thesis addresses the above challenges by proposing two complementary DL-

based optimization frameworks tailored for FC-RIS-assisted short packet NOMA sys-

tems in the FBL regime:

1. A hybrid CNN-LSTM and SCA framework that uses deep learning to ini-

tialize the RIS phase matrix and applies model-based convex optimization for

beamforming and blocklength.

2. A fully gradient-based optimization approach using the Adam optimizer

and a neural network trained to maximize the system reward (sum FBL rate).

The main contributions of this work are:

• Development of a comprehensive system model incorporating Rician fading, FC-

RIS architecture, and URLLC-FBL constraints.

• Formulation of a joint optimization problem for RIS phase shifts, BS beamform-

ing, and user-specific blocklengths.

• Design of a hybrid deep learning and optimization framework that efficiently

balances performance and complexity.

• Design of a gradient-based DL framework that jointly optimizes all critical pa-

rameters using a fully connected neural network.

• Extensive simulation and complexity analysis demonstrating the superiority of

the proposed methods over baseline schemes including SC-RIS, ZF, and random

phase strategies.

6



CHAPTER 1. INTRODUCTION 7

The complete implementation code, simulations, and result visualizations associ-

ated with this thesis are publicly available at: https://github.com/anandk3198/

MTech_Thesis. This repository serves as a supplementary material for reproducibility

and further research.

1.4 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2: Literature review covering RIS architectures, NOMA, and opti-

mization methods for URLLC systems.

• Chapter 3: Detailed system model and mathematical formulation of the opti-

mization problem.

• Chapter 4: Gradient-based deep learning model for joint parameter optimiza-

tion.

• Chapter 5: Proposed CNN-LSTM and SCA-based hybrid optimization algo-

rithm.

• Chapter 6: Simulation setup, performance evaluation, and complexity analysis.

• Chapter 7: Conclusion and directions for future research.

7



Chapter 2

Literature Survey

The deployment of RIS in wireless communication systems has garnered significant

attention in recent years due to its potential to enhance spectral efficiency, reliability,

and security in complex communication environments. The integration of RIS in

URLLC systems, especially in scenarios involving short packet communications, has

led to the exploration of various approaches for optimizing system performance. This

section reviews the existing literature on RIS-aided communication systems, with a

focus on related challenges and proposed solutions.

2.1 Reconfigurable Intelligent Surfaces

Reconfigurable Intelligent Surfaces have emerged as a transformative technology for

next-generation wireless networks. RIS can dynamically control the electromagnetic

environment by adjusting the phase shifts of passive elements. Early works like [8, 9, 5]

laid the foundation for energy-efficient and programmable wireless propagation.

The comprehensive tutorial by Zhang and Zhang [10] provides a taxonomy of

RIS configurations (single-connected, group-connected, fully-connected), deployment

models, and optimization frameworks. Li et al. [11] advanced this understanding

8



CHAPTER 2. LITERATURE SURVEY 9

by contrasting diagonal versus FC-RIS, showing superior performance at the cost of

higher design complexity.

2.2 Finite Blocklength and URLLC Communica-

tion

Short packet communication under the FBL regime is vital for URLLC. The foun-

dational work by Polyanskiy et al. [2] introduced the mathematical framework for

analyzing channel capacity in the FBL regime. Subsequent system-level analyses such

as [12, 13] focused on the latency-reliability trade-offs and how resource allocation

must change in short-packet transmission scenarios.

Hashemi et al. [14] studied the interplay between blocklength and achievable rates

in RIS-aided short packet systems, proposing joint sum-rate and blocklength opti-

mization strategies.

2.3 RIS-Aided URLLC Systems

The integration of RIS with URLLC systems has been explored in recent works like

[15, 16]. These studies demonstrate how RIS can enhance reliability and compensate

for poor direct links under strict latency constraints. The work by Kurma et al.

[17] introduced an active RIS model for digital twin-based URLLC IoT networks and

compared fully-connected versus sub-connected architectures.

Zhu et al. [18] proposed gradient-based manifold meta-learning for beamforming

under RIS-aided communication, effectively balancing reliability and complexity in

URLLC scenarios.

9
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2.4 Deep Learning and Reinforcement Learning in

Wireless Optimization

With the increasing complexity of wireless environments, model-free and learning-

based optimization has gained prominence. Dai et al. [19] presented DL as a paradigm

shift in wireless optimization. CNN and LSTM models, as utilized in [20], demon-

strated effective CSI estimation in RIS-NOMA systems.

RL-based schemes like those in [21, 16] employed TD3 and actor-critic models for

RIS phase control and blocklength adaptation under uncertain and dynamic condi-

tions.

2.5 Multi-Objective and Joint Optimization Tech-

niques

Several works have addressed the challenge of optimizing multiple objectives si-

multaneously — e.g., rate, reliability, latency, and energy. Marler and Arora [22]

provide a survey of multi-objective optimization methods relevant across engineering

disciplines. In the context of RIS and NOMA, joint beamforming, power allocation,

and blocklength optimization is addressed in works like [23, 24, 25], which highlight

both algorithmic strategies and system trade-offs.

2.6 Research Gap, Motivation, and Contributions

2.6.1 Research Gap

The existing body of research on RIS-aided wireless systems has predominantly

focused on two separate fronts: (i) SC-RIS architectures, and (ii) NOMA in isolation.

10



CHAPTER 2. LITERATURE SURVEY 11

While SC-RIS has gained popularity due to its simplicity and lower hardware cost,

it falls short in complex multi-user environments where interference mitigation and

fine-grained control are paramount.

Moreover, most of the works targeting URLLC under FBL constraints either

consider conventional orthogonal access or optimize one subset of system param-

eters—such as transmit power or phase shift—while neglecting joint optimization.

Studies that do incorporate machine learning methods often rely on basic reinforce-

ment learning techniques like Deep Deterministic Policy Gradient (DDPG) [16], or

they address phase shift design independently from blocklength and beamforming

[21].

To date, no comprehensive solution has been proposed that leverages the high

degrees of freedom offered by FC-RIS in a short-packet NOMA setting, while simul-

taneously optimizing beamforming, RIS phase shifts, and blocklength under stringent

URLLC constraints.

2.6.2 Motivation

FC-RIS introduces a transformative approach to wireless channel control by inter-

connecting all passive elements, offering enhanced phase resolution and spatial diver-

sity. This makes FC-RIS particularly suitable for URLLC scenarios, which demand

ultra-low latency and extremely high reliability. However, this architectural advantage

comes at the cost of significant computational and optimization complexity, particu-

larly in high-dimensional and non-convex problem spaces.

Traditional convex optimization methods struggle to scale under such complex-

ity, and while DL offers high adaptability and performance in high-dimensional

spaces [19], most existing DL-based solutions do not account for the interdependence

11
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between all optimization variables—beamforming, blocklength, and RIS configura-

tion—simultaneously.

Thus, there is a critical need to develop hybrid and data-driven optimization frame-

works that can fully exploit the benefits of FC-RIS while satisfying the rigorous con-

straints imposed by URLLC applications.

2.6.3 Contributions

In light of the identified research gap and optimization challenges, this thesis makes

the following key contributions:

• Comprehensive Joint Optimization Framework: We formulate a new op-

timization problem that aims to maximize the sum FBL rate in an FC-RIS-aided

short packet NOMA system. The problem jointly considers beamforming at the

base station, phase shift configuration of the FC-RIS, and blocklength allocation,

under URLLC constraints.

• Use of TD3 for FC-RIS Optimization: Drawing from recent reinforcement

learning applications [21], we apply the TD3 algorithm to simultaneously opti-

mize beamforming and blocklength in FC-RIS-aided NOMA under FBL, making

this one of the first applications of TD3 in such a context.

• Gradient-Based Deep Learning Framework: A second framework employs

a gradient-based learning approach, using the Adam optimizer to iteratively

update all system parameters. This is complemented by a feed-forward neural

network trained to optimize blocklength allocation based on channel features,

inspired by the manifold meta-learning concept [18].

12



CHAPTER 2. LITERATURE SURVEY 13

• Hybrid Deep Learning and SCA Approach: We propose a hybrid optimiza-

tion strategy that integrates a CNN-LSTMmodel for real-time RIS configuration

prediction with a model-based SCA method for beamforming and blocklength

refinement. This balances performance with computational efficiency.

• Empirical Validation and Complexity Analysis: Through simulations,

we validate our proposed methods against baseline models including SC-RIS,

random phase shift, and zero-forcing beamforming. We also provide a detailed

computational complexity analysis to understand the trade-offs in performance

and scalability.

The proposed methods offer a significant step forward in realizing intelligent, adap-

tive, and robust FC-RIS-aided NOMA systems suitable for future URLLC wireless

networks.

13



Chapter 3

System Model and Problem

Formulation

3.1 System Architecture

We consider a multi-user downlink short-packet communication system designed

for URLLC. The system architecture consists of a base station (BS) equipped with M

antennas arranged in a uniform planar array (UPA),K single-antenna user equipments

(UEs), and a FC-RIS comprising N passive reflecting elements. The FC-RIS acts as

a smart and tunable reflector positioned between the BS and the UEs to assist in

overcoming channel impairments such as deep fading or blockage, which are critical

in high-reliability environments.

Each UE receives its intended signal through both direct BS-to-UE links and in-

direct RIS-assisted paths. The system utilizes NOMA to enable simultaneous service

to all UEs over the same time and frequency resources, thereby improving spectral

efficiency. The overall architecture is illustrated in Fig. 3.1.

14



CHAPTER 3. SYSTEM MODEL AND PROBLEM FORMULATION 15

Figure 3.1: System Model: A multi-antenna multi-user short packet communication

network with Fully Connected RIS.

3.1.1 Signal Transmission and Power Constraint

The signal transmitted from the BS is a linear combination of data symbols in-

tended for different users, modulated by their respective beamforming vectors:

x =
K∑
k=1

wksk, (3.1)

where wk ∈ CM×1 is the beamforming vector for user k, and sk is the corresponding

transmitted symbol with unit power, i.e., E[|sk|2] = 1.

15



CHAPTER 3. SYSTEM MODEL AND PROBLEM FORMULATION 16

The total transmit power from the BS is constrained by:

tr(WWH) =
K∑
k=1

∥wk∥2≤ Ptotal, (3.2)

where W = [w1, . . . ,wK ] and Ptotal denotes the maximum allowable transmission

power.

3.2 Channel Model

We consider three types of channels in the system:

1. Direct channel from BS to user k: gk ∈ CM×1,

2. BS-to-RIS channel: H ∈ CN×M ,

3. RIS-to-user k channel: hk ∈ CN×1.

Each of these channels is modeled using Rician fading to capture the contributions

of both line-of-sight (LoS) and non-line-of-sight (NLoS) components. Specifically, the

direct channel is modeled as:

gk =

√
ζk

ζk + 1
gLoS,k +

√
1

ζk + 1
g̃NLoS,k, (3.3)

where ζk is the Rician factor for user k, gLoS,k represents the deterministic LoS com-

ponent, and g̃NLoS,k ∼ CN (0, βkI) is the NLoS component.

3.3 FC-RIS Design and Scattering Matrix

3.3.1 Definition and Properties

The FC-RIS is characterized by a reconfigurable impedance network where each

element is connected to all others through tunable reactances. This configuration is
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modeled using a scattering matrix Θ derived from network theory. Following the

analysis in [26], the FC-RIS matrix is expressed as:

Θ = (jX+ Z0I)
−1(jX− Z0I), (3.4)

subject to: X = XT , (3.5)

whereX ∈ RN×N is the symmetric reactance matrix and Z0 is the reference impedance.

These constraints ensure Θ is unitary and symmetric: ΘHΘ = I, Θ = ΘT .

3.3.2 Signal Reception and SINR

The signal received at user k is:

yk = (gH
k + hH

k ΘH)
K∑
i=1

wisi + zk, (3.6)

where zk ∼ CN (0, σ2) is AWGN. The SINR at user k is therefore given by:

SINRk =
|(gH

k + hH
k ΘH)wk|2∑

i ̸=k|(gH
k + hH

k ΘH)wi|2+σ2
. (3.7)

3.4 Finite Blocklength Transmission Model

In URLLC scenarios, FBL coding must be employed, which requires a departure

from the Shannon capacity framework. The rate achievable by user k under block-

length ck and target error probability ϵk is given by [2]:

Rk = ck log2(1 + SINRk)−Q−1(ϵk)
√

ckV (SINRk) + log2(ck), (3.8)

where the channel dispersion V (SINRk) is:

V (SINRk) =
1

(ln 2)2

(
1− 1

(1 + SINRk)2

)
. (3.9)
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3.5 Optimization Problem Formulation

Our goal is to jointly optimize the beamforming matrix W, the FC-RIS scattering

matrix Θ, and the blocklength vector c = [c1, . . . , cK ] to maximize the total FBL

throughput. The formal optimization problem is:

max
W,Θ,c

K∑
k=1

[
ck log2(1 + SINRk) + log2(ck)−Q−1(ϵthk )

√
ckV (SINRk)

]
subject to: Θ = (jX+ Z0I)

−1(jX− Z0I),

X = XT ,

K∑
k=1

∥wk∥2≤ Ptotal,

K∑
k=1

ck ≤ C, ck ≥ cmin, ∀k.

(3.10)

This optimization framework is designed to maximize the FBL transmission rate

while satisfying the stringent reliability and latency constraints imposed by URLLC.

The associated constraints are described as follows:

• C1: Ensures the scattering matrix Θ is defined based on the reactance matrix X

and the reference impedance Z0, adhering to the physical characteristics of the

RIS.

• C2: Imposes that the matrix X is symmetric, reflecting the practical phase-shift

model that affects the amplitude response of the RIS.

• C3: Limits the total transmit power at the BS to Ptotal, ensuring compliance

with power efficiency and hardware constraints.

• C4: Restricts the total number of channel blocklengths ck across all UEs to a

maximum value C, ensuring each ck meets the minimum requirement cmin to

maintain the validity of the FBL regime rate.
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3.5.1 RIS Cascaded Channel Representation

A vector θ is derived by vectorizing the N ×N FC-RIS scattering matrix Θ using

the approach proposed in [27]. This cascaded channel through the RIS is expressed

using the vectorized form of the scattering matrix:

ak = θN2×1 ·Ak ·H, (3.11)

Ak =
[
J0h̃k,JN h̃k, . . . ,J(N−1)N h̃k

]
, (3.12)

h̃k =

 hH
k

0T
(N−1)N

 , J =

0T
N2−1 0

IN2−1 0N2−1

 . (3.13)

This joint optimization problem is highly non-convex due to the interdependence

of variables in the SINR, the presence of non-linear functions such as Q−1(·), and the

structural constraints on Θ. Additionally, the FC-RIS offers a much larger control

space than traditional SC-RIS, making conventional optimization methods computa-

tionally intractable. Therefore, hybrid techniques involving model-based and learning-

based algorithms are essential for achieving efficient real-time configuration.
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Chapter 4

Gradient-Based Deep Learning

Optimization

4.1 Overview

This chapter presents a gradient-based DL framework aimed at jointly optimizing

the beamforming matrix, RIS scattering matrix, and blocklength allocation for each

user in a multi-user FC-RIS-aided MIMO URLLC system. The proposed framework

builds upon differentiable reward-driven optimization and integrates it with a deep

neural network for post-refinement of communication parameters.

The optimization objective is to enhance the system sum-rate while satisfying

URLLC constraints, using gradients of a differentiable performance metric. This

method efficiently updates all critical parameters via backpropagation and gradient

descent.
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4.2 Gradient-Based Joint Optimization

4.2.1 System Initialization and Optimization Flow

Initially, the beamforming matrix W ∈ CM×K , RIS scattering matrix Θ ∈ CN×N ,

and user blocklengths c = [c1, . . . , cK ] are randomly initialized or heuristically set. At

each iteration, the algorithm proceeds with the following steps:

4.2.2 SINR and FBL Rate Calculation

For each user k, the effective SINR is calculated using the expression:

SINRk =
|(gH

k + hH
k ΘH)wk|2∑

i ̸=k

|(gH
k + hH

k ΘH)wi|2+σ2
, (4.1)

where wk is the beamforming vector for user k, and the interference is summed over

all i ̸= k.

The achievable FBL rate Rk is then computed using:

Rk = ck log2(1 + SINRk)−Q−1(ϵk)
√

ckV (SINRk) + log2(ck), (4.2)

where ϵk is the target error probability, and V (SINRk) is the channel dispersion.

The cumulative system reward is defined as the sum of achievable rates:

R =
K∑
k=1

Rk. (4.3)

4.2.3 Gradient-Based Parameter Updates

Guided by the GMML approach [18], the gradients of the system reward R are

used to iteratively update:

• Beamforming matrix W: ∇WR

• RIS matrix Θ: ∇ΘR
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• Blocklength vector c: ∇cR

All updates are performed using the Adam optimizer with gradient clipping to avoid

numerical instability:

W(t+1) = Adam(W(t),∇WR), (4.4)

Θ(t+1) = Adam(Θ(t),∇ΘR), (4.5)

c(t+1) = Adam(c(t),∇cR). (4.6)

The optimization continues until convergence is achieved, ensuring the optimal values

for W and Θ.

4.3 Deep Learning-Based Blocklength and Re-

source Refinement

The neural network model is designed to predict the reward r0, which guides the

optimization of blocklength and resource allocation. The architecture consists of an

input layer, three hidden layers, and an output layer, as illustrated in Fig. 4.1.

4.3.1 Problem Motivation and Architecture

Once W and Θ are optimized, a DL model is employed to refine blocklength

allocation and further enhance the system reward. The model is trained on system

state features extracted from optimized configurations.

4.3.1.1 Input Features

Each sample in the dataset contains the following:

• State 1: Initial interference power and phase.
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Figure 4.1: Neural Network Architecture

• State 2: Norms of channel vectors, beamforming matrix statistics.

• State 3: RIS phase shift parameters θ.

4.3.1.2 Feature Normalization

Each input feature xi is normalized using z-score:

xnorm
i =

xi − µi

σi

, (4.7)

where µi and σi are the mean and standard deviation of the i-th feature.

4.3.2 Network Architecture and Training

The neural network is designed to predict the system reward r̂0, which reflects the

overall performance in terms of achievable rate under finite blocklength constraints.
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The model takes as input a normalized feature vector x ∈ Rn, comprising the system

state information such as interference metrics, power allocations, RIS phase shifts, and

channel properties. The input is passed through a deep feedforward neural network

consisting of three hidden layers, each followed by a ReLU activation and dropout

regularization to prevent overfitting.

The first hidden layer applies a linear transformation followed by a non-linear

activation, computed as:

h(1) = ReLU(Ω1x+ β1), (4.8)

where Ω1 ∈ R256×n is the weight matrix, β1 ∈ R256 is the bias vector, and ReLU

denotes the element-wise rectified linear unit activation function.

The second hidden layer further processes the intermediate representation:

h(2) = Dropout
(
ReLU(Ω2h

(1) + β2)
)
, (4.9)

with Ω2 ∈ R128×256 and β2 ∈ R128. Dropout is applied with a probability of 0.2 to

randomly deactivate neurons during training, enhancing generalization.

The third hidden layer is defined similarly:

h(3) = Dropout
(
ReLU(Ω3h

(2) + β3)
)
, (4.10)

where Ω3 ∈ R64×128 and β3 ∈ R64.

Finally, the output layer computes the predicted reward:

r̂0 = Ω4h
(3) + β4, (4.11)

where Ω4 ∈ R1×64 and β4 ∈ R. This scalar output represents the expected perfor-

mance (e.g., achievable sum-rate) for the given input system configuration.

Each Ωl denotes the weight matrix and βl the bias vector for the l-th layer of

the neural network, with l ∈ {1, 2, 3, 4}. The ReLU activation function introduces
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non-linearity, allowing the network to learn complex mappings from input features

to output reward. The dropout layers help prevent overfitting by randomly omitting

nodes during training.

The network is trained using the Adam optimizer with a learning rate of 10−4, mini-

batch size of 32, and over 200 epochs. The loss function used is the mean squared error

(MSE) between the predicted and true reward values, promoting precise regression

performance for joint blocklength and resource optimization.

4.3.2.1 Loss Function and Training Setup

The model is trained using mean squared error (MSE):

L =
1

L

L∑
i=1

(r̂
(i)
0 − r

(i)
0 )2. (4.12)

where L is the number of training samples, r̂
(i)
0 is the predicted reward for the i-th

sample, and r
(i)
0 is the true reward for the i-th sample.

Adam optimizer is used with a learning rate of 10−4, 200 epochs, batch size 32,

and validation every 30 iterations.

4.4 Gradient-Based Learning Algorithm

The proposed optimization strategy follows an iterative gradient-based learning frame-

work designed to jointly optimize the beamforming matrix W, the FC-RIS scattering

matrixΘ, and the blocklength vector c = [c1, c2, . . . , cK ] in a fully connected RIS-aided

URLLC system.

Initially, the system parameters W, Θ, and c are randomly initialized within feasi-

ble regions that satisfy power, latency, and blocklength constraints. These parameters

are then iteratively refined over a predefined number of training epochs. In each epoch,
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the following steps are performed:

1. SINR Computation: For each user k ∈ {1, 2, . . . , K}, the signal-to-

interference-plus-noise ratio (SINR) SINRk is computed. This includes contri-

butions from both the direct BS-to-UE link and the RIS-assisted indirect path.

2. FBL Rate Calculation: Based on the SINR, the finite blocklength achievable

rate Rk for each user is evaluated using the Polyanskiy formula. This rate

considers blocklength constraints and the target error probability ϵk as:

Rk = ck log2(1 + SINRk)−Q−1(ϵk)
√

ckV (SINRk) + log2(ck), (4.13)

where V (SINRk) is the channel dispersion function.

3. System Reward Computation: The total system reward is defined as the

sum of all users’ FBL rates:

R =
K∑
k=1

Rk. (4.14)

4. Gradient-Based Updates: The gradients of the reward function R are com-

puted with respect to W, Θ, and c. These gradients are used to update the

parameters via the Adam optimizer. The optimizer adapts learning rates individ-

ually for each parameter and supports momentum through exponential moving

averages. Optionally, gradient clipping is applied to stabilize training.

5. Iteration and Convergence: The process is repeated for the specified number

of epochs or until convergence is observed, i.e., when the change in the reward

across epochs falls below a threshold.

The final output of this optimization procedure consists of the optimized beam-

forming matrixW∗, the fully connected RIS scattering matrixΘ∗, and the blocklength
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allocation vector c∗. These parameters represent the best joint configuration found

through the gradient-based iterative process. Once obtained, they are forwarded to the

neural network-based joint allocation module, which performs additional fine-tuning to

further optimize the blocklength and overall resource allocation strategy for improved

system performance.

The proposed framework integrates gradient-based learning with deep neural net-

works for efficient optimization of FC-RIS-assisted URLLC systems. By exploiting

differentiable metrics and learning-based inference, it provides scalable performance

improvements in complex communication environments.
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Chapter 5

Hybrid CNN-LSTM + SCA

Optimization Framework

5.1 Introduction

The optimization problem formulated in Chapter 3 is inherently complex due to

its high-dimensional, non-convex nature. The coupling between beamforming vectors,

blocklength allocations, and the FC-RIS scattering matrix presents significant chal-

lenges for conventional optimization techniques. To tackle this, we propose a hybrid

optimization approach that integrates model-based SCA for tractable sub-problems

with a DL architecture based on convolutional and recurrent neural networks (CNN-

LSTM) to predict the RIS scattering matrix.

5.2 Proposed Method

The proposed method is structured into two interleaved components:

• Beamforming and Blocklength Optimization: Using the Tchebyshev

method for problem reformulation and solving iteratively through SCA.
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• FC-RIS Optimization: A CNN-LSTM neural network learns the mapping

from channel state information (CSI) to the optimal RIS scattering matrix Θ.

This alternation allows each component to focus on a tractable subproblem, im-

proving both convergence and scalability.

5.2.1 Tchebyshev-Based Reformulation of the Objective

Function

The joint optimization of the beamforming matrix (i.e., power allocation) and

blocklength configuration follows the SCA methodology introduced in [14]. While

the original work in [14] addresses the problem under a SC-RIS architecture, we ex-

tend this approach to handle the more complex interactions in FC-RIS systems. The

additional non-linearity and inter-element coupling introduced by the FC-RIS configu-

ration demand modified formulations for effective optimization, which we incorporate

into our alternating framework.

To handle the non-convex and multi-objective nature of the original problem in-

volving beamforming, blocklength, and RIS scattering matrix optimization, we em-

ploy the Tchebyshev scalarization method [22]. This approach allows us to convert

the multi-objective problem into a tractable single-objective form by introducing an

auxiliary variable µ, and a non-negative weight parameter, Tchebyshev coefficient,

λ ∈ [0, 1] that reflects the decision maker’s preference between the objectives.

The reformulated problem is given by:

P2: min
w,c,θ,t

t, (5.1)
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subject to:

C1–C3 (original constraints), (5.2)

C̃1 :
λ

R∗
total

(R∗
total −Rtotal(w, c,θ)) ≤ t, (5.3)

C̃2 :
1− λ

c∗total
(ctotal(c)− c∗total) ≤ t, (5.4)

where:

• t is the auxiliary optimization variable.

• R∗
total and c∗total are the utopia points (i.e., the ideal best values) of the total

achievable FBL sumrate and the total blocklength, respectively.

• Rtotal(·) and ctotal(·) =
∑K

k=1 ck are the actual total FBL rate and blocklength

values under the current allocation.

The utopia point c∗ can be trivially computed as
∑K

k=1 c
min
k since the minimization

of total blocklength subject only to constraints C1–C3 yields this result. The value

of R∗ is computed by solving the original problem with the blocklength objective

excluded.

This scalarized problem P2 is then solved using an alternating optimization ap-

proach, where beamforming and blocklength are optimized via SCA, and the RIS

scattering matrix is learned via the CNN-LSTM model described in subsequent sec-

tions.

5.2.2 Beamforming Optimization (Power Allocation)

Given a fixed blocklength vector c(i) and RIS matrix θ(i), the beamforming sub-

problem reduces to:

max
wk

Rtotal(wk, c
(i),θ(i)), (5.5)
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s.t.
K∑
k=1

∥wk∥22≤ Ptotal. (5.6)

In our model, the base station applies maximal ratio transmission (MRT) precoding

for each user, where the MRT beamforming vector is defined as:

wMRT
k =

hk

∥hk∥
, (5.7)

where hk is the effective channel of user k. Let pk denote the transmit power allocated

to user k, i.e., E[|sk[t]|2] = pk. Then, the overall beamforming matrix W is given by:

W = [
√
p1 ·wMRT

1 ,
√
p2 ·wMRT

2 , . . . ,
√
pK ·wMRT

K ]. (5.8)

The total rate Rtotal is expressed as:

Rtotal(p, c,θ) = R̃+
t (p, c,θ)− R̃−

t (p, c,θ), (5.9)

where:

R̃+
t (p, c,θ) =

K∑
k=1

ck log2
(
Ik(p,θ) + pk|dk,k + θHrk,k|2

)
+ log2(ck),

(5.10)

R̃−
t (p, c,θ) =

K∑
k=1

(
ck log2(Ik(p,θ)) +

ck
ln 2

Q−1(ϵk)
)
. (5.11)

Here, p, c,θ are the transmit power vector, blocklength allocation vector, and FC-

RIS scattering matrix vector, respectively. The term rk,k denotes the effective reflected

channel at user k given by:

rk,k = H̃kw
MRT
k , (5.12)

where H̃k is the cascaded BS-RIS-UE channel for user k. Using SCA, we approximate

R̃− using a first-order Taylor expansion around p(i):

R̂total(w) = R̃+(w)− R̃−(w(i))−∇wR̃
−(w(i))T (w −w(i)). (5.13)

This convex subproblem is solved iteratively.
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5.2.3 Blocklength Optimization

With the beamforming matrix w = w(i) and RIS configuration θ = θ(i) fixed from

the previous iteration, the blocklength allocation vector c is optimized by solving the

following sub-problem:

min
c,t

t (5.14a)

subject to: C1 (feasibility constraints), (5.14b)

C̃2 :
1− λ

c∗
(c∗ −

K∑
k=1

ck) ≤ t, (5.14c)

C̃1 : R̄t(p
(i), c,θ(i))− R̃+

t (p
(i), c,θ(i)) ≥ R∗(1− t). (5.14d)

Here, R̄t(·) represents the SCA-based approximation of the concave component

R̃−
t (·), and R∗ is the utopia point corresponding to the maximum achievable total

rate. Following the approach of [14], the concave part R̃−
t (p

(i), c,θ(i)) is upper bounded

using a first-order Taylor expansion:

R̃−
t (p

(i), c,θ(i)) ≤
K∑
k=1

Q−1(ϵk)

√
c
(i)
k Vk(γk)

2

(
1 +

ck

c
(i)
k

)
, (5.15)

resulting in the convex approximation:

R̄t(p
(i), c,θ(i)) = R̃+

t (p
(i), c,θ(i))− upper bound of R̃−

t . (5.16)

This leads to a convex optimization problem that can be efficiently solved using

convex solvers such as CVX. The method ensures that the finite blocklength (FBL)

rate is maximized while satisfying system constraints, and is iteratively refined starting

from the feasible point c(i).

The formulation is inspired by and extends the method introduced in [14] to ac-

commodate the FC-RIS architecture.
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5.2.4 CNN-LSTM-Based FC-RIS Optimization

To optimize the FC-RIS scattering matrix Θ ∈ CM×M , we propose a CNN-LSTM

deep neural network that learns a mapping from the system state, including channel

state information (CSI), power allocation, and blocklength allocation, to the optimal

RIS configuration. This hybrid neural architecture combines spatial and temporal

feature extraction mechanisms, enabling real-time inference for dynamic URLLC sce-

narios.

5.2.4.1 Input and Architecture Overview

The network accepts the following composite input:

• Channel Information: The direct BS-to-UE channel matrix H ∈ CM×K and

the RIS-to-UE channel vectors hk ∈ CN×1 for each UE k.

• Power Allocation: Transmit power vector p = [p1, p2, . . . , pK ].

• Blocklength Allocation: Codeword blocklength vector c = [c1, c2, . . . , cK ].

These are concatenated and flattened into a sequence input of size N ×M +N ×

K +K +K.

5.2.4.2 Convolutional Feature Extraction

The real and imaginary components of the CSI matrices are separated and con-

catenated along the input channel dimension. This real-valued sequence is passed

through two 1D convolutional layers:

• Conv1D Layers: Each layer uses 128 filters and a kernel size optimized for the

data dimensionality.
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• Activation: ReLU (Rectified Linear Unit) is used after each convolution to

introduce non-linearity.

This stage captures local spatial dependencies and signal patterns inherent in CSI and

allocation vectors.

The operations in the l-th convolutional layer are:

F(l) = ReLU(BNl(W
(l)
cnn ∗ F(l−1) + b(l)

cnn)), (5.17)

where:

• ∗: 1D convolution,

• W
(l)
cnn,b

(l)
cnn: kernel weights and biases,

• BNl: batch normalization at layer l,

• F(0): input sequence.

5.2.4.3 LSTM Temporal Modeling

The CNN output is flattened and forwarded to a two-layer LSTM module to model

temporal or contextual relationships:

• First LSTM Layer: 256 hidden units.

• Second LSTM Layer: 128 hidden units.

• Dropout: Applied to prevent overfitting.

• Activation: ReLU is applied post-activation in each LSTM cell.
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Each LSTM cell is updated using the following equations:

it = σ(W
(i)
lstmxt +U

(i)
lstmht−1 + b

(i)
lstm), (5.18)

ft = σ(W
(f)
lstmxt +U

(f)
lstmht−1 + b

(f)
lstm), (5.19)

ot = σ(W
(o)
lstmxt +U

(o)
lstmht−1 + b

(o)
lstm), (5.20)

c̃t = tanh(W
(c)
lstmxt +U

(c)
lstmht−1 + b

(c)
lstm), (5.21)

ct = ft ⊙ ct−1 + it ⊙ c̃t, (5.22)

ht = ot ⊙ tanh(ct), (5.23)

where:

• xt ∈ Rd: Flattened CNN feature vector at time t.

• it, ft,ot ∈ Rdh : Input, forget, and output gates.

• ct ∈ Rdh : Cell memory state at time t.

• ht ∈ Rdh : LSTM hidden state at time t.

• c̃t: Candidate cell state.

• W
(∗)
lstm,U

(∗)
lstm,b

(∗)
lstm: Trainable weight matrices and bias vectors.

• σ(·): Sigmoid activation function.

• tanh(·): Hyperbolic tangent activation function.

• dh: Dimensionality of the hidden state.

and ⊙ denotes element-wise multiplication.
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5.2.4.4 Fully Connected Output and RIS Mapping

The final hidden state hT ∈ R128 from the LSTM layer is projected using a fully

connected layer:

Θpred = tanh(W
(out)
fc hT + b

(out)
fc ), (5.24)

where:

• W
(out)
fc ∈ RM2×128: Output layer weights.

• b
(out)
fc ∈ RM2

: Output layer biases.

• Θpred ∈ RM×M : Predicted real-valued RIS matrix.

The tanh activation ensures values in [−1, 1], scalable to phase angles in [−π, π].

5.2.4.5 Scattering Matrix Computation

The predicted Θpred is used to construct the reactance matrix X, from which the

scattering matrix is derived as:

Θ = (jX+ Z0I)
−1(jX− Z0I). (5.25)

5.2.4.6 Training and Inference

• Loss Function: Mean Squared Error (MSE) between predicted and target

phase matrices.

• Optimizer: Adam optimizer with exponential learning rate decay.

• Training: 200 epochs, mini-batch size of 64.

36



CHAPTER 5. HYBRID CNN-LSTM + SCA OPTIMIZATION FRAMEWORK 37

5.2.4.7 Model Mapping Equation

The final deep learning model is represented as:

Θpred = tanh (fCNN-LSTM(H,hk,p, c)) , (5.26)

where fCNN-LSTM(·) encapsulates all network layers from convolution through LSTM

to the fully connected output.

This deep learning approach enables fast and data-adaptive optimization of FC-

RIS configurations, significantly reducing the complexity of solving high-dimensional,

non-convex optimization problems in URLLC environments.

5.2.5 Alternating Optimization Algorithm

The proposed optimization approach employs an iterative alternating strategy to

efficiently solve the complex joint problem of beamforming, blocklength allocation, and

RIS configuration. The method begins by initializing the beamforming matrix W, the

FC-RIS scattering matrix Θ, and the blocklength vector c. These initial values may

be randomly chosen or derived from heuristic rules.

In each iteration, the algorithm proceeds in two main stages. First, with the current

RIS configuration Θ fixed, the beamforming vectors and blocklengths are updated

using the SCA technique. This step addresses the power and latency constraints

while maximizing the FBL rate. The convexified sub-problems for beamforming and

blocklengths are solved iteratively until a local optimal solution is obtained.

Next, keeping the updated values of W and c fixed, the RIS scattering matrix

Θ is predicted using the trained CNN-LSTM deep learning model. This model takes

as input the CSI and outputs the optimal FC-RIS configuration that improves signal

propagation and interference management.
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After both stages are complete, the algorithm checks for convergence. This can

be assessed based on whether the change in the objective function between successive

iterations falls below a predefined threshold, or after a maximum number of iterations

is reached. If the convergence condition is not satisfied, the updated variables are used

as the new inputs, and the process repeats.

Upon convergence, the algorithm outputs the final optimized variables: the beam-

forming matrix W∗, the blocklength allocation vector c∗, and the FC-RIS scattering

matrixΘ∗. This alternating optimization procedure efficiently balances computational

complexity with performance accuracy, and is well-suited for real-time application in

dynamic wireless environments.

5.3 Conclusion

This chapter presented a hybrid optimization framework combining SCA with a

CNN-LSTM deep learning model to solve the joint optimization of beamforming,

blocklength, and RIS configuration. By leveraging both theoretical and data-driven

tools, the framework offers an effective and scalable solution for URLLC under FC-RIS

architectures.
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Chapter 6

Simulation Setup and Performance

Evaluation

6.1 Simulation Results for Gradient-Based DL

Method

6.1.1 Simulation Setup

To evaluate the performance of the proposed gradient-based deep learning opti-

mization framework, extensive simulations were conducted using the parameters listed

in Tables 6.1 and 6.2. The simulation involves a downlink transmission scenario with

four single-antenna UEs located at coordinates (114, 40)m, (132, 44)m, (148, 35)m,

and (164, 45)m, respectively. The BS is equipped withM = 4 antennas and positioned

at the origin. A fully connected RIS with N = 16 passive elements is placed at (40,

10)m. The reference impedance of the RIS is set to 50 ohms.

All channels are modeled as Rician fading with a Rician factor of 10, and pathloss

exponents are set to 3.5 (BS-to-UE), 2.2 (BS-to-RIS), and 2.2 (RIS-to-UE). A total

of 1000 independent channel realizations are used to average the performance metrics

39



CHAPTER 6. SIMULATION SETUP AND PERFORMANCE EVALUATION 40

such as SINR and achievable finite blocklength (FBL) rate.

Table 6.1: Gradient-Based DL Network Training Parameters

Parameter Value/Description

Beamforming matrix (W) 4 × 4 complex matrix, initialized with

small random values

RIS Phase Matrix (Θ) 16× 16 matrix, initialized randomly

Block Length Allocation (ck) 1×4 vector, randomly initialized under

constraints

Learning Rate (α) 5× 10−4

Optimizer Adam optimizer

Epochs 200

Gradient Clipping Threshold 0.05

Adam Parameters β1 = 0.9, β2 = 0.999, ϵ = 10−8

Batch Size 32

6.1.2 Performance Evaluation

6.1.2.1 Training Convergence

Fig. 6.1 illustrates the evolution of the training loss across iterations for different

system architectures. It is evident that the FC-RIS short packet NOMA configu-

ration exhibits a slower and more gradual convergence pattern compared to other

schemes. This behavior is attributed to the increased complexity of the FC-RIS de-

sign, where each RIS element contributes to the optimization space, leading to a

higher-dimensional and more intricate objective landscape. The model must there-

fore process a richer set of CSI patterns and dynamically optimize more parameters,

which inherently demands more computational iterations. Conversely, SC-RIS and

no-RIS short packet NOMA configurations demonstrate quicker convergence due to
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Table 6.2: Simulation Parameters for DL Algorithm

Parameter Value

Number of UEs (K) 4

Number of BS antennas (M) 4

Number of RIS elements (N) 16

Total transmit power (Ptotal) 10 dB

Target BLER (ϵth) 10−6

Noise power density (N0) 1 dB

Minimum CBL (cmin) 10

Total available CBL (C) 100

Bandwidth 0.1 MHz

Reference path loss (PL0) -30 dB

Path loss coefficients BS-UE: 3.5, BS-RIS: 2.2, RIS-UE: 2.2

BS location [0,0] m

RIS location [40,10] m

their lower-dimensional design spaces and fewer optimization variables. Additionally,

the FC-RIS short packet OMA scenario converges the fastest among all, likely because

it does not involve the inter-user interference handling required in NOMA systems,

allowing for a simpler and more stable optimization process. These observations are

in line with theoretical expectations and emphasize the practical challenges involved

in learning-assisted joint optimization under FC-RIS-NOMA conditions.

6.1.2.2 Reward vs. Transmit Power

To evaluate the relationship between system transmit power and achievable FBL

rate, we simulate the proposed method across a transmit power range of 10 dB to

30 dB. As shown in Fig. 6.2a, the optimized reward improves monotonically with in-

creasing transmit power due to enhanced SINR for each user. The FC-RIS-enabled
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Figure 6.1: Training loss versus number of iterations.

configuration consistently delivers the highest sum-rate among all tested configura-

tions, including SC-RIS and non-RIS baselines. This superior performance highlights

the benefits of fine-grained phase adjustment across all RIS elements in the fully

connected topology. The curve also shows that while random RIS configurations do

offer improvements over no-RIS setups, they are significantly outperformed by both

FC-RIS and SC-RIS with optimized phase shift matrices. Notably, the traditional

zero-forcing (ZF) beamforming strategy achieves modest rate gains but is clearly

suboptimal compared to the proposed hybrid learning-based optimization strategy,

which more effectively captures system-level dependencies and constraints. As trans-

mit power increases, the gap between random and optimized RIS configurations also

widens, reflecting the compounding benefits of structured optimization in high-SNR

regimes.

6.1.2.3 Reward vs. Maximum Blocklength

The impact of available blocklength on system performance is analyzed in Fig. 6.2b,

where the total maximum code block length (CBL) is varied from 100 to 200 sym-

bols. The optimized FBL rate increases with larger blocklength allocations, primarily
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Figure 6.2: Comparison of FBL rate under varying system parameters.

because longer codewords reduce decoding error probabilities, thereby improving the

achievable data rates. This performance boost is significantly more prominent in the

FC-RIS scenario compared to the SC-RIS configuration. The results validate that

the FC-RIS offers better adaptability and spatial control, enabling more efficient ex-

ploitation of the available codeword symbols. Moreover, we observe that strategies

employing equal CBL allocation across users underperform in both RIS architectures,

underscoring the necessity for optimized blocklength assignments to maximize spec-

tral efficiency. These trends reaffirm the utility of learning-assisted multi-variable

optimization for URLLC under finite blocklength constraints.

6.2 Simulation Results for SCA-CNN-LSTM-

Based Method

6.2.1 Simulation Setup

The CNN-LSTM-based optimization is evaluated using the same multi-user RIS-

assisted short packet system, where the FC-RIS assists the BS in delivering data to
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four UEs. The RIS has 16 elements and a reference impedance of 50 ohms. The base

station is placed at (180, 0) m, and the RIS is at (200, 0) m. The user positions remain

unchanged. Channels are assumed to undergo Rician fading with factor 10, and the

simulations use 1000 different random realizations.

Table 6.3: CNN-LSTM-Based DL Network Training Parameters

Component Description

CNN Layers 2 convolutional layers with ReLU activa-

tions

LSTM Network 2 LSTM layers (256 and 128 units) with

dropout

Output Layer Fully connected + tanh() activation

Beamforming Initialization 4× 4 complex matrix, power-normalized

RIS Initialization Random symmetric 16 × 16 matrix

mapped via impedance formula

CBL Vector (c) Random in [10, 100], with
∑

ck ≤ 100

Learning Rate 1× 10−4, Adam optimizer

Epochs 200

Batch Size 64

Gradient Clipping Threshold 0.05

6.2.2 Performance Evaluation

6.2.2.1 Convergence Behavior over Iterations

To evaluate the convergence performance of the proposed CNN-LSTM-assisted

SCA framework, we plot the optimized sum-rate over 100 iterations for different bench-

mark methods, as shown in Fig. 6.3. The proposed CLSTM+SCA method, which com-

bines successive convex approximation for convexified subproblems with CNN-LSTM-
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Table 6.4: Simulation Parameters for CNN-LSTM-Based FC-RIS Optimization

Parameter Value

Number of UEs (K) 4

BS antennas (M) 4

RIS elements (N) 16

Transmit power (Ptotal) 10 mW

Target BLER 10−8

Noise Power Density -174 dBm/Hz

Total Bandwidth 2 MHz

Reference Pathloss -30 dB, -20 dB

Minimum Blocklength 20 symbols

Total CBL (C) 200

Tchebyshev Coefficient (λ) 0.8

based learning for RIS matrix prediction, demonstrates the fastest convergence and

highest sum-rate performance. The optimization stabilizes near 30 bits/s/Hz within

the first 20 iterations and maintains stable performance thereafter. In comparison,

the gradient-based DL method without convexification converges slower and reaches a

lower steady-state sum-rate of around 28.5 bits/s/Hz, indicating its limited effective-

ness in handling the high non-convexity of RIS-aided systems. The SCA-only approach

initially improves rapidly but soon saturates below 28 bits/s/Hz, lacking the general-

ization capabilities provided by neural prediction models. The SC-RIS case, despite

utilizing the same hybrid framework, performs the worst due to architectural limita-

tions in scattering flexibility and demonstrates how FC-RIS offers significant spectral

efficiency gains. These trends collectively confirm that the CLSTM+SCA method is

more efficient and robust, offering superior convergence and optimized rate perfor-

mance over alternative schemes. The gap between FC-RIS and SC-RIS cases further
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highlights the benefits of precise and tunable RIS control in enhancing URLLC per-

formance under FBL constraints. Our findings are also consistent with related works

such as [18] and [14], reinforcing the idea that a hybrid model-based and learning-

driven optimization paradigm offers better scalability and real-time adaptability than

either approach in isolation.
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Figure 6.3: Optimized sum-rate (bits/s/Hz) versus number of iterations for various

optimization strategies.

6.2.2.2 Optimized Sumrate vs. Transmit Power

Fig. 6.4 illustrates how the average finite FBL rate evolves with increasing trans-

mit power across different RIS configurations. The proposed method, which com-

bines CNN-LSTM-based scattering matrix prediction with SCA-based optimization,

achieves the highest performance among all schemes evaluated. As transmit power

increases from 10 mW to 25 mW, the FC-RIS configuration optimized with CNN-
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LSTM shows a consistently steeper increase in achievable rate compared to both the

SC-RIS and the SCA-only variant. Notably, systems using random phase shifts at the

RIS perform significantly worse, with the performance gap widening at higher power

levels, underscoring the importance of intelligent RIS phase design. The traditional

no-RIS scenario lags far behind all RIS-enabled schemes, reaffirming the critical role

of RIS in enhancing link quality under FBL constraints. These results emphasize that

precise beamforming and phase control—enabled by the CNN-LSTM model—are key

to harnessing the full potential of RIS in low-latency communication regimes.
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6.2.2.3 Minimum Required Blocklength vs. Number of UEs

The results in Fig. 6.5a evaluate the system’s scalability by examining the min-

imum required channel blocklength as the number of UEs increases from 2 to 8. A

clear upward trend is observed across all configurations, consistent with the growing

demand on system resources due to increased user interference and contention. How-

ever, the FC-RIS configurations, particularly with a higher number of BS antennas

(i.e., M = 8), require significantly lower blocklength than other schemes. This advan-

tage becomes increasingly pronounced as the number of users grows, highlighting the

proposed method’s ability to maintain low-latency communication in dense networks.

The SC-RIS-based schemes, while benefiting from RIS assistance, exhibit higher block-

length requirements than their FC-RIS counterparts. Furthermore, systems with ran-

dom RIS phase shifts consistently require the highest blocklength, indicating inefficient

channel utilization in the absence of optimization.

2 3 4 5 6 7 8

Number of UEs, K

20

40

60

80

100

120

140

160

M
in

im
u
m

 C
h
a
n
n
e
l 
B

lo
c
k
le

n
g
th

Proposed (Fully RIS), M=8

Proposed (Fully RIS), M=4

Proposed (SC-RIS), M=8

Proposed (SC RIS), M=4

Random Phase (Fully RIS), M=4

(a) Minimum required blocklength as a func-

tion of number of UEs.

100 110 120 130 140 150 160 170 180 190 200

Total Blocklength (CBL)

23

24

25

26

27

28

29

30

31

32

A
v
e
ra

g
e
 R

a
te

 [
b
p
s
/H

z
]

Fully RIS NOMA (Optimized CBL CNNLSTM-SCA)

Fully RIS NOMA (Optimized SCA)

Fully RIS NOMA (Equal CBL)

Single RIS NOMA (CNNLSTM-SCA)

(b) Average rate vs. total blocklength for

different RIS and allocation strategies.

Figure 6.5: Performance comparison of blocklength and rate under varying conditions.

48



CHAPTER 6. SIMULATION SETUP AND PERFORMANCE EVALUATION 49

6.2.2.4 Optimized Sumrate vs. Total Blocklength

Fig. 6.5b presents the variation of average achievable rate with respect to total

blocklength, highlighting the effect of both RIS configuration and codeword block-

length allocation strategies. It is evident that increasing the blocklength leads to

significant rate improvements across all scenarios, owing to reduced decoding error

probability. The CNN-LSTM + SCA framework with FC-RIS and optimized block-

length allocation consistently achieves the best performance, surpassing both equal

allocation and SC-RIS cases. Compared to SCA-only optimization, the hybrid method

further enhances rate performance, particularly at higher blocklength values. The gap

between equal and optimized blocklength allocation becomes increasingly substan-

tial, confirming that blocklength adaptation is crucial for maximizing FBL rates in

heterogeneous network environments.

Thus, the SCA-CNN-LSTM approach demonstrates strong capability in managing

highly non-convex RIS design problems, producing consistent gains in FBL rate, re-

source usage, and adaptability. Compared to the gradient-based method, it provides

improved scalability and accuracy in high-dimensional optimization under short-packet

communication constraints.

6.2.3 Complexity Analysis

6.2.3.1 Gradient-Based Deep Learning Method

The computational complexity of the gradient-based deep learning method is pri-

marily dominated by three components: optimization using the Adam optimizer, gra-

dient clipping, and neural network training.

The Adam optimizer performs parameter updates for the beamforming matrix W,

the RIS scattering matrix Θ, and the user blocklength vector c. The complexity per
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update is O(MK+N2) forW andΘ, and O(K) for c. Additionally, gradient clipping,

which is a component-wise operation on the gradients, incurs O(MK +N2 +K) cost

per iteration. Letting T denote the number of training iterations, the total complexity

for the optimizer becomes:

O(T × (MK +N2 +K)). (6.1)

The neural network consists of multiple fully connected layers applied to an input

of size O(N2 +MK +K), which combines the beamforming vector, RIS phases, and

user metrics. Let the network have L layers and each layer have Nl neurons. The

forward and backward passes through the network per epoch thus have complexity:

O((N2 +MK +K)×
L∑
l=1

Nl). (6.2)

If the network is trained over E epochs, the total training complexity becomes:

O(E × (N2 +MK +K)×
L∑
l=1

Nl). (6.3)

Combining the optimizer updates and training phases, the total computational

complexity of the gradient-based deep learning approach is:

O

(
T (MK +N2 +K) + E(N2 +MK +K)

L∑
l=1

Nl

)
. (6.4)

6.2.3.2 CNN-LSTM + SCA Alternating Optimization Method

The CNN-LSTM + SCA method involves channel estimation, neural network in-

ference, and convex optimization. Each component has a distinct computational foot-

print.

For channel estimation, the direct BS–UE links and RIS–UE links are estimated

with complexity O(MK +NK).
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The CNN-LSTM model receives as input a flattened tensor of size D = N ·M +

N ·K + 2K and produces a phase matrix Θ ∈ CN×N . For a model with L layers and

F neurons per layer, the forward-pass inference complexity is dominated by matrix

multiplications and is given by:

O(FD +N2), (6.5)

where N2 accounts for reshaping and conversion to phase shifts.

SCA-based convex optimization includes two alternating sub-problems per itera-

tion. The power allocation and blocklength allocation steps each involve K optimiza-

tion variables with quadratic constraints, and both have a per-iteration complexity

of:

O(K3). (6.6)

Additionally, computing the FBL rate across K users involves:

O(KM), (6.7)

as it includes logarithmic and square root evaluations per user.

Combining all components, the total complexity per iteration of the CNN-LSTM

+ SCA-based algorithm is:

O(MK +NK + FD +N2 + 2K3 +KM) . (6.8)

Assuming F and D scale as O(NM), the expression simplifies to:

O(MK +NK +N2M + 2K3) . (6.9)

6.2.3.3 Comparison and Observations

The above complexity analysis shows that the CNN-LSTM+ SCA approach signifi-

cantly reduces the high computational cost traditionally associated with RIS optimiza-

tion, such as in full FC-based deep learning (O(N3)) or matrix inversion methods [28].
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Table 6.5: Computational Complexity Comparison of Different Methods

Method Complexity

Gradient-Based DL O(T (MK +N2 +K) + E(N2 +MK +K)
∑

Nl)

CNN-LSTM + SCA O(MK +NK +N2M + 2K3)

Deep Learning (FC only) O(N3 +M3)

ZF Beamforming [28] O(M3)

Random RIS Phase O(MK)

RIS with grouping (size g) O(MK +
N

g
K +K3)

Although gradient-based methods may appear simpler, their training cost can dom-

inate as the network size grows. In contrast, once trained, the CNN-LSTM model

allows faster inference-based decisions with significantly reduced RIS optimization

cost compared to naive exhaustive search or traditional matrix decomposition meth-

ods. The proposed hybrid architecture offers an effective trade-off between real-time

inference, optimization accuracy, and computational burden, making it well-suited for

intelligent 6G wireless environments with ultra-low-latency requirements.
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Chapter 7

Conclusion and Future Work

This thesis presented a comprehensive study on the optimization of downlink re-

source allocation in reconfigurable intelligent surface (RIS)-aided ultra-reliable low-

latency communication (URLLC) systems under the short packet regime. The pri-

mary goal was to enhance system performance, measured by the achievable finite

blocklength (FBL) rate, while satisfying practical constraints such as power budgets

and strict latency requirements. A joint optimization framework was proposed, tar-

geting the beamforming matrix at the base station (BS), the RIS scattering matrix,

and the user-specific codeword blocklengths.

To address the intrinsic non-convexity of the problem, two distinct yet complemen-

tary methodologies were developed. The first approach relied on a gradient-based deep

learning (DL) model integrated with the Adam optimizer. This method updated the

beamforming weights, RIS phases, and blocklengths iteratively using the gradients of

the FBL rate as the objective function. The neural network was trained to learn opti-

mal policies based on high-dimensional channel state information and user constraints,

offering a scalable and adaptive solution suitable for real-time implementation.

The second method incorporated a hybrid model combining the interpretability of
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successive convex approximation (SCA) with the prediction power of a deep learning

model. A CNN-LSTM-based architecture was trained to map time-varying CSI to

the RIS scattering matrix. The SCA framework was used alternately to solve the

convexified sub-problems for beamforming and blocklength optimization. This hy-

brid CNN-LSTM + SCA framework showed superior performance by leveraging both

domain knowledge and data-driven learning.

Extensive simulations were conducted to validate the proposed methods. Results

showed that both the gradient-based DL and CNN-LSTM + SCA schemes signifi-

cantly outperformed conventional baselines, such as random RIS phases, zero-forcing

(ZF) beamforming, and equal blocklength allocation strategies. In particular, the

CNN-LSTM + SCA framework achieved the highest FBL rates and the lowest re-

quired blocklengths across different system configurations. Furthermore, the proposed

approach offered robust scalability with respect to the number of users and RIS ele-

ments, establishing its applicability in future 6G networks.

The complexity analysis revealed that the CNN-LSTM + SCA method offers a

favorable trade-off between performance and computational overhead. Once trained,

the CNN-LSTM network allows for efficient inference of the RIS matrix, avoiding

the need for exhaustive search or iterative decomposition. Compared to traditional

methods, the proposed hybrid architecture achieves high optimization accuracy with

moderate computational cost, making it suitable for practical deployment in dynamic

environments with stringent latency constraints.

While the proposed approaches deliver substantial improvements in system per-

formance, several open directions remain for future research. First, the current CNN-

LSTM model assumes a supervised training environment with perfect ground truth.

Future work may explore reinforcement learning or unsupervised learning frameworks
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that enable training directly from interaction with the environment, thereby eliminat-

ing the need for labeled data.

Second, while this work focused on single-cell MISO systems, extension to multi-

cell and multi-RIS networks presents both challenges and opportunities. Inter-cell

interference, RIS cooperation, and distributed optimization schemes need to be care-

fully addressed. Incorporating graph neural networks or federated learning paradigms

could be promising directions to tackle such scalability issues.

Third, energy efficiency and hardware impairments were not considered in this

study. Practical implementations of RISs often suffer from hardware limitations such

as discrete phase shifts, quantization noise, and imperfect channel estimation. Inte-

grating these real-world constraints into the optimization framework is essential for

reliable system design.

Finally, the integration of RIS with emerging technologies such as cell-free massive

MIMO, and mmWave communications remains largely unexplored in the context of

short packet URLLC. Exploring RIS-aided NOMA in high-frequency bands under FBL

constraints could significantly enhance network reliability and capacity.

In conclusion, this thesis provides a solid foundation for intelligent RIS optimiza-

tion under FBL constraints and opens several new avenues for innovation in future

wireless communication systems.
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