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ABSTRACT 

Laser Directed Energy Deposition (L-DED) has emerged as a powerful additive 

manufacturing technique for high-performance alloys, owing to its ability to 

fabricate complex, near-net-shape components. However, achieving consistent 

geometric accuracy remains a major challenge, especially for multi-layer thin-

walled structures of high-performance alloys like In718. This thesis presents a 

comprehensive, experimentally validated, data-driven framework for predicting 

and optimising geometric features—track height, width, and depth—in L-DED. 

A systematic experimental study was conducted using a structured design 

approach to understand how laser power, scan speed, and powder feed rate 

affect the geometry of L-DED deposits. By analysing the resulting data, clear 

trends emerged: laser power and powder feed rate were found to be the 

dominant factors influencing Track width and height, while scan speed played 

a more subtle role in melt pool behaviour and stability. These trends were used 

to develop predictive relationships that guided process optimisation. The 

optimised parameters enabled significant improvements in material efficiency, 

energy consumption, and build accuracy. Building on this, the study was 

extended to multi-layer thin-wall structures, where the introduction of interlayer 

time delay served as a key thermal control strategy. A 4-second delay was 

identified as optimal, resulting in enhanced mechanical performance with an 

ultimate tensile strength of approximately 1002 MPa and ductility of around 

37.5%, highlighting the importance of managing thermal history during 

deposition. 

To demonstrate real-world applicability, a 3D thin-walled mesh structure of 42 

mm × 42 mm with 10 mm height was successfully fabricated using the 

optimized parameters. This final build validated the model’s predictive strength 

and scalability. The framework provides a solid foundation for future 

integration with in-situ thermal monitoring to enable intelligent, adaptive 

control in additive manufacturing. 
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Chapter 1  

Introduction, Literature Review & Objective 

Additive Manufacturing (AM), often referred to as 3D printing, represents a 

transformative approach to fabrication, fundamentally distinct from traditional 

subtractive or formative techniques. It is defined as a process of creating objects 

by sequentially adding material, typically layer by layer, based on digital 3D 

models [1]. This innovative manufacturing paradigm offers unparalleled 

freedom in design, material utilization, and production flexibility [2]. 

As a groundbreaking technology enabling the fabrication of complex 

geometries that are often unattainable through traditional manufacturing routes, 

AM builds components layer by layer, precisely depositing material only where 

required [3]. Unlike subtractive processes which remove material from a larger 

block, this approach allows for enhanced material utilization, reduced waste, 

and design freedom that enables the creation of intricate internal structures and 

lightweight parts [4].    

1.1  Classification of Additive Manufacturing 

According to ISO/ASTM 52900:2001, Additive Manufacturing processes are 

classified into seven primary categories based on the type of feedstock and 

energy source employed during fabrication: 

1.1.1 Vat Photopolymerization 

Vat Photopolymerization is one of the earliest and most precise additive 

manufacturing techniques, wherein a liquid photopolymer resin is selectively 

cured using a light source. The process takes place in a vat filled with 

photoreactive resin, where the build platform descends layer by layer as the 

resin is selectively solidified based on sliced CAD data. Curing is achieved 

using either a laser, projector, or backlit panel depending on the subtype of the 

process. This technique is particularly renowned for its high resolution, 

excellent surface finish, and suitability for detailed prototypes, dental models, 

and microfluidic structures. The key limitation lies in the brittleness of cured 

photopolymer resins and the need for post-curing and support removal. 
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A. Stereolithography (SLA) It uses a focused ultraviolet (UV) laser to 

trace and cure each cross-section of the model on the surface of the 

liquid resin. After each layer is cured, the platform lowers slightly, 

allowing a fresh layer of resin to coat the part, and the process repeats.  

B. Digital Light Processing (DLP) employs a digital light projector to 

flash an entire layer image at once, solidifying an entire cross-section 

simultaneously rather than point-by-point.  

C. Liquid Crystal Display (LCD) Printing shares similarities with DLP 

but uses an array of UV LEDs beneath an LCD panel to mask and expose 

selected regions of resin in each layer.  

 

Fig. 1.1: Illustration of VAT polymerisation (a) SLA (b) DLP [5]. 

1.1.2 Material Jetting 

Material Jetting is an additive manufacturing technique wherein droplets of 

build material are selectively deposited onto a substrate to form a part layer by 

layer. Similar in principle to inkjet printing, this process allows for precise 

material placement and excellent surface finish. A key advantage of material 

jetting is its ability to process multiple materials within a single build, including 

combinations of rigid, flexible, and support materials. This makes it particularly 

suitable for prototyping complex assemblies, functional parts with embedded 
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features, and full-color models. The printed part is typically cured by UV light 

or thermal energy immediately after deposition to ensure dimensional stability. 

A. Drop-on-Demand (DOD) jetting involves the deposition of discrete 

droplets of material only where needed, guided by CAD-based slicing 

instructions. Each droplet is deposited via thermal or piezoelectric 

actuation. 

B. Multi-Material Jetting builds upon the principles of DOD but enables 

the simultaneous deposition of multiple build materials in a single layer.  

C. Wax Jetting, a specialized variant, utilizes wax-like materials that are 

jetted and then solidified layer by layer.  

 

Fig. 1.2: Illustration of Material Jetting process [6]. 

1.1.3 Binder Jetting 

Binder Jetting is an additive manufacturing process in which a liquid binder is 

selectively deposited onto a powder bed to join powder particles and build a part 

layer by layer. Unlike processes that involve melting or sintering during 

deposition, Binder Jetting forms a "green part" that typically requires post-

processing—such as sintering, infiltration, or curing—to achieve final strength 

and density.  

A. Metal Binder Jetting is commonly used for producing metal 

components in their green state, which are later sintered in a furnace to 

attain the desired mechanical and metallurgical properties. This 

approach avoids the high thermal input and residual stresses associated 

with laser-based metal printing. 
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B. Sand Binder Jetting is widely used in the foundry industry for creating 

sand molds and cores used in metal casting. In this process, a binder 

selectively joins layers of sand particles to form the desired mold shape, 

eliminating the need for tooling and allowing for the rapid production of 

complex geometries. 

C. Ceramic Binder Jetting applies the same principles to ceramic 

powders. 

 

Fig. 1.3: Illustration of Binder Jetting [7]. 

1.1.4 Material Extrusion 

Material extrusion is one of the most accessible and widely utilized categories 

of additive manufacturing. In this process, material is selectively dispensed 

through a nozzle by mechanical or pneumatic force to build parts layer by layer 

according to a digital model. Typically, the material is heated to a semi-molten 

state as it is extruded and then solidifies upon deposition. 

A. Fused Deposition Modeling (FDM), also referred to as Fused Filament 

Fabrication (FFF), is the most commonly recognized form of material 

extrusion. It uses a spool of thermoplastic filament, such as PLA, ABS, 

or polycarbonate, which is fed through a heated nozzle. As the filament 

melts, it is deposited in successive layers on the build platform 

B. Pellet Extrusion is a variant of FDM that uses raw thermoplastic pellets 

instead of filament. This method allows for faster material deposition 

rates and reduces material cost, making it suitable for large-scale 

applications.  
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C. Concrete Extrusion, a cement-based mixture is extruded through a 

nozzle in successive layers to build structural components such as walls, 

housing units, and infrastructure elements. 

 

Fig. 1.4: Illustration of Material Extrusion process, (a) FDM (b) Concrete & 

(c) Pellete [8]. 

1.1.5 Powder Bed Fusion (PBF) 

Powder Bed Fusion (PBF) is one of the most widely adopted additive 

manufacturing categories for both metallic and polymeric components. In this 

process, a thin layer of powder is spread over a build platform, and a high-

energy thermal source—either a laser or an electron beam—is used to 

selectively fuse the powder particles based on cross-sectional data from a 3D 

CAD model. After each layer is fused, the platform is lowered, and a new 

powder layer is spread for the next cycle. The process repeats layer by layer 

until the part is complete. 

A. Selective Laser Sintering (SLS) is primarily used for polymer powders, 

such as nylon (PA12), TPU, or composite-filled variants. A CO₂ laser 

selectively sinters the powder without fully melting it, resulting in parts 

with good strength and thermal resistance.  

B. Selective Laser Melting (SLM), also referred to as Laser Powder Bed 

Fusion (LPBF), fully melts metal powders such as stainless steel, 

aluminum, titanium, or Inconel to produce fully dense parts. A high-
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power fiber laser traces each layer with extreme precision, allowing for 

the fabrication of intricate geometries with fine details. 

C. Electron Beam Melting (EBM) uses an electron beam, rather than a 

laser, to melt metal powder in a vacuum environment.  

D. Direct Metal Laser Sintering (DMLS) is closely related to SLM but is 

optimized for specific metal alloys and is often used with proprietary 

powder formulations. 

 

Fig. 1.5: Illustration of Powder Bed Fusion [9]. 

1.1.6 Directed Energy Deposition (DED) 

Directed Energy Deposition (DED) is an advanced additive manufacturing 

process wherein material is deposited and simultaneously melted using a 

focused thermal energy source. Unlike powder bed fusion systems, DED 

systems typically use a nozzle mounted on a multi-axis arm or gantry to deposit 

material directly onto the build surface, enabling the fabrication of large, 

complex components or the repair of existing parts. Feedstock can be in the 

form of powder or wire, and the process is capable of handling a wide range of 

metals and alloys. The high deposition rates and ability to deposit material onto 

non-planar surfaces make DED highly suitable for industrial applications such 
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as aerospace repair, tooling, and hybrid manufacturing. However, due to its 

open-path nature, DED may offer lower resolution and surface finish compared 

to powder bed methods, necessitating post-processing. 

A. Laser-Based DED (DED-LB) is the most commonly adopted form of 

DED and utilizes a high-power laser beam as the energy source.  

B. Electron Beam DED (DED-EB) employs an electron beam under 

vacuum conditions to provide the thermal energy necessary for melting 

the feedstock. 

C. Plasma Arc DED uses a plasma arc as the heat source to melt the feed 

material, usually wire, during deposition. 

 

Fig. 1.6: Illustration of Direct Energy Deposition [10]. 

 

1.1.7 Sheet Lamination 

Sheet Lamination is a category of additive manufacturing where successive 

sheets of material are bonded together to form a three-dimensional object. 

Unlike extrusion or powder-based techniques, this method utilizes prefabricated 

sheets—typically paper, plastic, or metal—which are cut to shape and stacked 

in layers. The bonding process can be achieved through adhesives, heat, or 

ultrasonic energy, depending on the specific technology employed. 

A. Laminated Object Manufacturing (LOM) is one of the earliest forms 

of sheet lamination. In this process, adhesive-coated sheets (usually 
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paper or plastic) are unwound onto a build platform and bonded layer-

by-layer using a heated roller. 

B. Ultrasonic Additive Manufacturing (UAM) is a more advanced form 

of sheet lamination used primarily for metal components. It employs 

ultrasonic vibrations combined with pressure to weld thin metal foils 

together in a solid-state process, avoiding the melting typically seen in 

other AM methods. 

Each classification addresses different material types, build strategies, and 

application domains, allowing engineers to select the most appropriate 

technique based on performance, geometry, and economic constraints. 

 

Fig. 1.7: Illustration of Sheet Lamination [11]. 

 

1.2  Design for Additive Manufacturing 

Design for Additive Manufacturing (DfAM) is a specialized design approach 

that goes beyond conventional CAD modelling [12]. While the basic process of 

additive manufacturing begins with the creation of a 3D digital model—

typically using CAD software—which is then converted into a Standard 

Tessellation Language (STL) file, the implications for DfAM extend far deeper 

into how parts are conceived, optimized, and produced [13]. 

The STL file, once generated, is sliced into discrete layers, each representing a 

cross-section of the part. These layers are then translated into machine-readable 
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tool paths and commands which guide the 3D printer during fabrication [14]. 

While this workflow represents the standard pipeline for any AM process, 

designing for AM involves deliberately tailoring the part geometry and process 

strategy to enhance performance, reliability, and manufacturability [15]. 

DfAM focuses on several critical objectives: 

A. Minimization of Manufacturing Defects: Strategies are employed 

to reduce the likelihood of issues such as porosity, lack of fusion, 

and thermal distortion. This includes the optimization of scanning 

paths, support structure design, and thermal simulation [16]. 

B. Enhancement of Mechanical Properties: Through controlled 

grain orientation, layer bonding, and parameter tuning, the final 

mechanical properties of additively manufactured parts can be made 

comparable or even superior to those produced by traditional means 

[17]. 

C. Cost-Effectiveness and Resource Optimization: A key challenge 

in AM is balancing performance with process economy. Efficient 

designs aim to reduce build time, material usage, and post-

processing requirements, thus improving overall feasibility for 

industrial applications. 

D. Facilitating Future Applications: DfAM plays a pivotal role in 

paving the way for new engineering applications by enabling the 

creation of parts that are lighter, stronger, and functionally 

integrated. With advancements in simulation and topology 

optimization, DfAM is becoming increasingly data-driven and 

predictive. 

1.3  Literature Overview 

Additive manufacturing (AM) of Ni-based superalloys like Inconel 718 is of 

growing interest for high-performance applications in aerospace, energy, and 

automotive sectors due to the alloy’s exceptional high-temperature strength, 

corrosion resistance, and weldability [18], [19]. Inconel 718 (IN718) has 

become one of the most studied materials for laser-based additive processes 

such as Laser Powder Bed Fusion (L-PBF) and Laser-Directed Energy 

Deposition (L-DED) [20], [21]. While significant work has been carried out on 
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understanding the process-structure-property relationships in AM IN718, 

challenges persist in achieving high geometric fidelity, optimizing process 

parameters, and developing predictive models for as-built component geometry. 

This section provides a structured review of the literature across four thematic 

areas 

• Mechanical and microstructural characteristics of AM IN718 

• Modeling approaches (thermal, analytical, statistical, and data-

driven) 

• Deposition strategy and process parameter effects 

• Geometrical predictability and gaps in multilayer structure modeling 

 

Fig.  1.8: Fish diagram showing factors affecting laser powder DED [22]. 

1.3.1 Additive Manufactured Inconel 718 

IN718, a nickel-based superalloy, is a widely used material in additive 

manufacturing due to its high-temperature strength and corrosion resistance. 

However, its performance is sensitive to microstructural evolution during 

deposition. 

A. Mechanical Properties 

Laser-AM Inconel 718 generally achieves tensile strengths 

comparable to or exceeding those of wrought/cast material [18], 

[23], [24]. Zhang et al. reported that room- and high-temperature 
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properties of SLM-fabricated IN718 are “equivalent to or even 

higher than” wrought counterparts [25]. Kurdi et al. measured 

hardness values between 330–349 HV for PBF-IN718, which is 

slightly lower than the ~408 HV seen in cast versions due to the 

absence of γ′/γ″ precipitates in the as-built condition [19]. These 

strength levels indicate that without post-build aging, the metastable 

AM microstructure sacrifices some strength but remains 

mechanically viable. 

Fatigue behavior in AM 718 has also drawn interest, although 

fatigue life is often limited by porosity, anisotropy, and lack-of-

fusion defects [26]. Nonetheless, studies such as Hosseini et al. [18] 

suggest that with adequate heat treatment and optimized process 

settings, fatigue life can approach that of wrought material. 

B. Microstructural Characteristics 

AM IN718 typically develops a cellular-dendritic structure due to 

rapid cooling and solidification under laser melting [19], [23], [27], 

[28]. Kurdi et al. observed that PBF-IN718 contains long columnar 

grains growing epitaxially along the build direction, with 

interlocking sub-cell structures at the nanoscale [19]. These 

structures also promote Nb and Ti segregation in the interdimeric 

regions, resulting in Laves phase formation [29]. These brittle 

intermetallic phases may degrade ductility and cause crack initiation 

under load. Heat treatment dissolves Laves and promotes γ′ and γ″ 

precipitation, improving strength [23], [30] . 

The presence of δ-phase at grain boundaries in as-built samples has 

also been reported, and controlling its morphology and distribution 

is crucial for ensuring optimal creep resistance [24], [31]. Thus, both 

thermal history and post-processing are pivotal in tailoring the 

mechanical performance of AM IN718 

1.3.2 Modelling Techniques 

Additive Manufacturing (AM), particularly Laser-based Directed Energy 

Deposition (L-DED), has been extensively studied using a variety of modelling 
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techniques. These can broadly be categorized into thermal, analytical, and 

statistical models. 

A. Thermal Models 

Thermal models are often physics-based and rely on finite-element or 

computational fluid dynamics simulations to predict temperature fields, 

melt pool behaviour, and cooling rates. For example, Fang et al. 

developed a 3D finite-element thermal model for multi-layer IN718 

builds and validated it against infrared thermography, showing how 

thermal histories could be used to predict mechanical properties through 

machine learning [32], [33]. Similarly, Shin et al. used coupled thermal-

fluid models to simulate the geometry evolution in DED tracks and 

found strong agreement between simulated and experimental track 

shapes [34]. 

B. Analytical Model 

Analytical models, although less computationally intensive, provide 

closed-form solutions for simpler cases. They often use the Rosenthal 

moving heat source theory or empirically derived formulas to relate 

process parameters to melt pool dimensions. While efficient, these 

models are less accurate for predicting complex geometries or multi-

layer builds due to simplifications like constant thermal properties or 

neglect of fluid flow [35]. 

C. Statistical models 

Statistical models offer a data-driven alternative by directly correlating 

input process parameters—such as laser power, scan speed, and powder 

feed rate—with output geometries like track width, height, and dilution. 

Approaches like Taguchi design and Response Surface Methodology 

(RSM) have been widely applied for parameter optimization in L-DED 

of IN718 [36], [37], [38], [39], [40], [31]. Biyikli et al. [41] 

demonstrated that bead height and wetting angle in single-track IN718 

deposits could be predicted using power-law regression models derived 

from experimental data, showing strong alignment between modeled 

and experimental results. Xv et al. [27] implemented a combination of 

ML and regression analysis to model and optimize clad geometry, 

achieving high R² values and confirming the predictive robustness of 
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statistical modeling. Ribeiro et al. [37] extended this methodology by 

applying RSM to identify optimal parameter combinations for clad 

thickness and width, followed by experimental validation. 

Building on this foundation, Ravichander et al. [24] and Xv et al. [27] 

employed advanced machine learning (ML) techniques—including 

artificial neural networks (ANN) and ensemble models—to predict bead 

geometry and mechanical properties in IN718 laser cladding. These 

models demonstrated high predictive fidelity across multiple outputs, 

including height and microhardness, particularly in multi-parametric 

scenarios. 

Despite extensive exploration of individual modeling strategies—be it thermal, 

analytical, or statistical—very few studies have successfully integrated 

statistical or machine learning models with full experimental validation, 

particularly for geometry prediction in multi-layer thin-walled structures. This 

lack of holistic integration highlights a significant research opportunity to 

develop predictive frameworks that are not only accurate but also generalizable 

to real-world additive manufacturing applications. Addressing this gap is 

especially critical for advancing Design for Additive Manufacturing (DfAM), 

where achieving precise geometric accuracy is essential to minimize post-

processing and ensure functional performance. 

1.3.3 Deposition Strategy and Parameter Effects 

The final part geometry in L-DED is heavily influenced by process parameters. 

Laser power, scan speed, and powder feed rate each affect the melt pool 

dynamics and deposition volume [42]. 

Higher laser power generally increases track width and depth by enlarging the 

melt pool. Conversely, faster scan speeds reduce energy input per unit length, 

resulting in thinner and narrower beads. Biyikli et al. observed that track height 

increased with power and feed rate, while scan speed had an inverse effect [41]. 

Xv et al. found that laser power was the most dominant factor influencing width, 

while scan speed played a greater role in height and penetration depth [27]. 
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Powder feed rate adds complexity—too low, and the bead may be 

discontinuous; too high, and incomplete melting may occur. It is showed that 

optimal feed rates improved bead consistency, but also highlighted the risk of 

excessive build-up and porosity at high deposition rates [26], [43]. 

Moreover, deposition strategies like layer overlap, scanning pattern, and inter-

layer dwell time affect heat accumulation and residual stress. Advanced scan 

strategies have been proposed to mitigate heat build-up, but most rely on real-

time feedback or closed-loop systems, which are not yet standard practice [35]. 

Process parameters—including laser power, scan speed, powder feed rate, and 

layer thickness—significantly influence geometry, microstructure, and defects 

in AM IN718 [41], [44], [45]. 

A. Laser Power: Increased power generally yields wider and deeper melt 

pools but may cause keyholing if excessive [35]. 

B. Scan Speed: Faster scan speeds reduce energy density, increasing the 

likelihood of lack-of-fusion porosity [26]. 

C. Powder Feed Rate (in DED): High feed rates can increase bead height 

but lead to porosity and poor bonding if not matched with sufficient 

energy input [37]. 

D. Layer Thickness and Hatch Spacing: Finer layers and tighter hatch 

spacing promote densification but increase build time and residual 

stresses [46]. 

Ribeiro et al. analyzed how each of these factors affects the geometry of single-

pass laser cladding in IN718 and presented empirical models to predict height 

and width [37]. Kumar et al. explored porosity dependence on scan speed and 

power, optimizing L-PBF IN718 for density exceeding 99% [26]. 

Deposition strategies such as zig-zag scanning and interlayer rotation are 

employed to minimize thermal gradients and residual stress buildup [47].  

While prior work has quantified parameter influence on single-layer or simple 

geometries, predicting geometry in multi-layer builds remains a challenge. This 



 

 
15 

motivates the development of predictive models tailored for geometric 

accuracy. 

1.3.4 Geometrical Predictability 

 

Fig. 1.9: Laser DED track illustration [42]. 

Several researchers have emphasized that geometrical accuracy is a primary 

constraint in Design for Additive Manufacturing (DfAM), particularly for 

components intended to undergo minimal or no post-processing. If a deposited 

part is dimensionally inaccurate, subsequent enhancements to mechanical 

properties—such as aging or hot isostatic pressing (HIP)—cannot compensate 

for the initial geometric deviation. This makes accurate geometry prediction 

critical to ensuring functionality and reducing post-build intervention. 

The challenge is especially pronounced in multi-layer, thin-walled structures, 

where cumulative errors over successive layers can lead to pronounced defects 

such as crown formation, edge overbuild, and warping. Despite its importance, 

literature reveals a significant lack of validated predictive models tailored for 

these complex geometries. 

Geometric prediction remains difficult due to factors like dynamic melt pool 

behavior, residual stress accumulation, and layer-wise distortion during the 

build process [48], [29]. Ravichander et al. [24] reported similar success using 

response surface methodology (RSM) and artificial neural networks (ANN) for 

predicting clad thickness and microhardness. Xv et al. [27] further advanced 

this area using ensemble learning models, which outperformed traditional linear 

regression in multi-output prediction tasks, such as bead height and surface 

roughness. 
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However, most of these studies are limited to single-bead or simple wall 

geometries, with few addressing the complex thermal and mechanical 

interactions seen in multi-layer, thin-wall structures [49]. 

 

Key Findings: 

A. Empirical and machine learning models have demonstrated strong accuracy 

for predicting single-track geometry [24], [27]. 

B. Very few studies explicitly model distortion, crown effect, or edge overbuild 

in multi-layer builds [48] . 

C. Integrated predictive frameworks that couple thermal, mechanical, and 

geometrical modeling remain largely underdeveloped. 

1.4  Motivation 

While numerous studies have modelled AM IN718 using regression and ML, 

most focus on limited geometries like single-track or small cuboid builds. 

Comprehensive models that accurately predict geometrical features such as wall 

thickness, surface waviness, and overall dimensional error in multi-layer LAM 

IN718 parts are scarce. Existing models also underutilize experimental 

validation and often lack generalizability. Moreover, most predictive efforts 

focus on microstructure or mechanical properties, with geometry taking a 

secondary role despite its importance in minimizing post-processing [18], [48]. 

1.4.1 Problem Statement 

The primary aim of this study is to develop an experimentally validated, data-

driven predictive framework for geometrical features in Laser Additive 

Manufacturing of Inconel 718. By integrating full factorial experimentation 

with statistical and machine learning models, the goal is to predict and optimize 

key geometric outcomes such as bead width, height, and wall thickness under 

varying process conditions. 

1.4.2 Objectives of The Study 

The primary objective of this study is to optimize the Laser-Directed Energy 

Deposition (L-DED) process for Inconel 718 by establishing accurate, 

predictive relationships between input process parameters and resulting track 
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geometries. To achieve this, the study adopts a data-driven approach combining 

statistical modelling and experimental validation. The insights gained are 

intended to improve process control, minimize resource consumption, and 

support the development of robust Design for Additive Manufacturing (DfAM) 

strategies that integrate predictive modelling into fabrication planning. 

The specific objectives of this work are as follows: 

A. To develop and evaluate statistical prediction models that correlate laser 

power, scan speed, and powder feed rate with deposition geometry 

(height, width, and depth). 

B. To incorporate these models into an optimization framework aimed at 

reducing build time, material usage, and energy consumption. 

C. To experimentally validate the prediction and optimization models using 

both single-track and multi-layer deposition trials. 

D. To demonstrate the practical utility of predictive models in guiding 

process planning for complex builds. 

E. To contribute to the advancement of DfAM methodologies by 

integrating predictive modelling with real-time fabrication insights. 

1.5  Organisation of Thesis 

Chapter 1:  Introduction, Literature review focusing on existing studies in 

laser-based DED, Process Parameter Influence, predictive modelling efforts and 

an outline of the research scope. 

Chapter 2: Experiment Methodology detailing the selection of process 

parameters, use of design of experiments (DOE) for efficient trial planning, and 

strategy for capturing geometric and mechanical trends.  

Chapter 3: Experimental Setup and Instrumentation describing the laser DED 

system, material specifications, measurement techniques, and characterization 

tools employed in the study 

Chapter 4: Objective, Results and Discussion presenting model development, 

optimization outcomes, multi-layer deposition analysis, and mechanical 

performance evaluation with critical insights 
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Chapter 5: Conclusion and Future Scope summarizing the key findings, 

demonstrating the capability of the developed framework, and proposing future 

directions for intelligent L-DED processing 
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Chapter 2  

Experiment Methodology 

The experimental framework for this study was systematically structured to 

achieve the dual objectives of process characterization and predictive model 

development for Laser Additive Manufacturing (LAM) using Inconel 718 

powder. The methodology consisted of sequential phases, each building upon 

the insights gained in the preceding stage to ensure robust model training, 

validation, and implementation. The entire design was guided by scientific 

principles of statistical analysis, design of experiments (DOE), and data-driven 

optimization. The major components of the experimental design are outlined 

below: 

2.1  Preliminary Trial Experimentation and Statistical 

Analysis 

The first stage of the experimental work involved conducting a series of 

preliminary deposition trials to qualitatively and quantitatively assess the 

influence of key process parameters—namely laser power, scan speed, and 

powder feed rate—on track geometry. These initial trials were analyzed using 

Analysis of Variance (ANOVA) to determine the statistical significance and 

relative contribution of each input factor on the output responses, such as track 

height and width. The results of ANOVA informed the selection of parameter 

ranges and justified the structure for the next phase of controlled 

experimentation. 

2.2  Full Factorial Experimental Matrix 

Following the identification of key influential factors, a full factorial 

experimental design was adopted. This approach enabled the comprehensive 

exploration of interactions among parameters across multiple levels. A full 

factorial matrix was constructed involving three independent variables (laser 

power, scan speed, and powder feed rate), each varied over a defined number of 

levels.  



 

 
20 

Table 2.1: Full factorial experiment design. 

Level→ 

1 2 3 

Parameter ↴ 

Powder Feed Rate 4.7 6.0 7.6 

Power in Watts 700 800 900 

Scan Speed mm/min 400 500 600 

This yielded a dataset rich in variability, which is essential for the development 

of accurate and generalizable predictive models. In total, 27 single-track 

deposition samples were fabricated under controlled conditions, and their 

geometric characteristics were measured using optical microscopy. 

2.3  Development and Evaluation of Predictive Models 

The dataset obtained from the full factorial experiments served as the input for 

the exploration of various machine learning and statistical modeling 

approaches. These included Support Vector Machines (SVM), Decision Trees, 

Random Forests, K-Nearest Neighbors (KNN), and Polynomial Regression. 

Each model was evaluated based on metrics such as R² score, root mean square 

error (RMSE), and visual correlation between predicted and actual values. 

Based on comparative performance analysis, a hybrid modeling approach was 

selected: Polynomial Regression was used for predicting width and height, 

while Random Forest was chosen for depth prediction due to its superior 

accuracy and robustness against overfitting. 

2.4  Model Validation Through Experimental 

Depositions 

To assess the predictive accuracy of the selected hybrid model, a validation step 

was carried out. New deposition trials were conducted using parameter 

combinations not included in the training dataset. The experimental outcomes 

were then compared with the model predictions to verify accuracy. This step 
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was critical to confirming the model’s applicability in real-world deposition 

tasks and provided insights into its limitations and boundary conditions. 

2.5  Optimization Framework Based on Predictive Model 

Upon successful validation, the predictive model was integrated into an 

optimization framework for process parameter selection. The optimization 

objective was to minimize deposition time, powder consumption, and energy 

usage while achieving a target geometry. A custom cost function incorporating 

build time, material usage, and energy consumption was defined. The model 

then served as a surrogate function to predict deposition outcomes during 

iterative optimization, thus eliminating the need for time-consuming physical 

experiments during process planning. 

2.6  Introduction of Multi-Layer Deposition Control 

Building on the single-track insights, the experimental methodology was 

extended to address multi-layer deposition challenges. This included the 

introduction of additional control parameters such as inter-layer delay time and 

overlap strategy. These variables were identified as crucial for maintaining 

structural integrity, preventing heat accumulation, and ensuring dimensional 

accuracy in multi-layered builds. 

2.7  Final Thin-Wall Deposition and Demonstration 

The final stage involved the fabrication of a thin-walled multi-layer geometry 

using the optimized process parameters. This demonstration served as a proof-

of-concept for the developed prediction and optimization framework. The 

fabricated component was subjected to geometrical and mechanical evaluations 

to assess build quality, thereby concluding the experimental validation of the 

entire research approach. 
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Chapter 3  

Experimental Setup and Instrumentation 

The experimental investigations were conducted using the TVASHTR Laser 

DED system, an indigenously developed platform by the Laser Additive 

Manufacturing Laboratory, part of the Engineering Design and Manufacturing 

Division at Raja Ramanna Centre for Advance Technology, Indore. This setup 

is tailored for precision deposition of metallic powders using laser-based 

directed energy deposition (DED) techniques and incorporates a variety of 

subsystems enabling controlled multi-axis additive manufacturing. 

 

Fig 3.1: TVASHTR LAM DED system. 

3.1  Machine Setup 

The system comprises a vacuum-sealable glove-box-style chamber, allowing 

optional inert or controlled atmosphere processing. The deposition head features 

a coaxial powder-feed nozzle, which is integrated into a three-axis gantry 

system. The build platform is further enhanced with two additional axes of 

rotation, facilitating five-axis deposition strategies for complex geometries and 

curved surfaces. 
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Fig. 3.2: Illustration of TVASHTR system [50]. 

Core Components of the Setup 

A. Deposition Chamber and Motion Control: 

The setup consists of a glove-box style chamber that is optionally vacuum-

sealable and inert-gas purgeable. A three-axis gantry system forms the 

primary motion platform, with the base platform incorporating two 

rotational axes, thus offering five degrees of freedom for complex part 

fabrication. Motion is controlled via a Mitsubishi M80-A CNC controller, 

which ensures precise synchronization between toolpath and deposition 

parameters. 

B. Laser System: 

A 2-kW continuous-wave (CW) Ytterbium-doped fiber laser from IPG 

Photonics serves as the energy source. The laser operates at a wavelength of 

1080 ± 5 nm, and is optically conditioned using a collimating unit (20 mm 

beam diameter) and a focusing lens of 200 mm focal length. The distance 

between the lens and the substrate is fixed at 215 mm, and the stand-off 

distance (SOD) from the nozzle tip to the workpiece is maintained at 11 mm. 

C. Powder Feeding System: 

A dual-hopper powder feeder delivers feedstock to the nozzle through 

pressurized argon gas. The system is configured for coaxial powder 

injection, with three equidistant feed inlets (separated by 120°) at the nozzle, 

ensuring uniform powder distribution around the laser beam. The powder 

feed angle into the melt pool is maintained at 18 degrees for optimal 
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interaction with the laser-induced melt pool. The feedstock used is Inconel 

718 powder, with particle sizes ranging from 46 µm to 104 µm. The carrier 

gas flow rate for powder transport is maintained at 6 liters per minute 

(LPM). 

D. Shielding and Carrier Gas System: 

Argon gas is employed both as the central shielding gas and as the carrier 

gas for powder transport. The central shielding gas flow rate is maintained 

at 12 liters per minute (LPM) to provide an inert environment at the melt 

pool and to minimize oxidation during deposition. 

E. Control Interface and Software Integration: 

The laser power is independently controlled via a dedicated PC-based 

interface, allowing real-time adjustment of energy input. The motion system 

and powder feeders are controlled via the numerical controller (Mitsubishi 

M80-A). Mastercam is used for part design and toolpath generation, 

allowing direct import of CAD models and facilitating layer-wise build 

strategies. 

Table 3.1: Fixed parameters of laser setup. 

Parameter Value 

Laser Type IPG Photonics Yb-doped fiber 

Laser Power 2 kW (Continuous Wave) 

Laser Wavelength 1080 ± 5 nm 

Beam Diameter (Pre-focal) 20 mm 

Focal Length 200 mm 

Stand-Off Distance (SOD) 11 mm 

Powder Feed Angle 18° 

Powder Feed Configuration 3-way coaxial (120° separation) 

Powder Particle Size 46–104 µm (Inconel 718) 

Shielding & Carrier Gas Argon 

Central Gas Flow Rate 12 LPM 

Carrier Gas Flow Rate 06 LPM 

Control System Mitsubishi M80-A CNC 

Software Platform Mastercam (CAD & Toolpath) 
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The process is performed under open ambient environmental conditions, i.e., 

without active thermal enclosure or atmospheric chambering, making it 

representative of industrial-scale operations. This configuration allows for 

studying the effects of process parameters under realistic fabrication scenarios 

and serves as a testbed for model validation and deposition strategy 

optimization. 

3.2  Materials 

For deposition of INCONEL718 (Osprey 718 powder from Sandvik) has 

been used with powder size in the range of 45-104 micrometre, & following 

chemical composition.  

Table 3.2: Chemical composition of In718 by % [51]. 

Ni – Nickel 50 – 55 % 

Fe – Iron Bal. 

C – Carbon ≤0.08 % 

Cr – Chromium 17.0 – 21.0 % 

Mo – Molybdenum 2.8 – 3.3 % 

Nb – niobium 4.75 – 5.5 % 

Mn – Manganese ≤ 0.35 % 

Si – Silicon ≤ 0.35 % 

P – Phosphorus ≤ 0.015 % 

S – Sulfur ≤ 0.015 % 

B – Boron ≤ 0.006 % 

Cu – Copper ≤ 0.3 % 

Al – Aluminum 0.2 - 0.8 % 

Ti – Titanium 0.65 – 1.15 % 

Co – Cobalt ≤ 1.00 % 

3.3  Sample Preparation 

All depositions are carried out on a 75 mm Dia and 15 mm thick circular 

substrates of SS304. To examine the microstructural characteristics, micro-

indentation hardness and strength analysis, the samples were sectioned across 
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the cross-section using a wire electro-discharge machining (EDM) system 

(CONCORD Wire EDM, DK7732). The specimens were then processed 

following standard metallographic techniques to ensure accurate material 

characterisation. Special precautions were taken to minimize excessive heat 

generation, preventing potential damage to the samples. Sample preparation, 

adhering to established metallographic procedures, is crucial  

for material characterisation. This process involves a sequence of steps to ensure 

precise material analysis. The observation surface underwent polishing using 

abrasive papers, ranging from coarse (~80) to fine (~2000), followed by 

diamond abrasive polishing to achieve a mirror-like finish and reduce 

imperfections. To contrast, Electro chemical etching was applied to polished 

sample using 10% Oxalic acid solution. These etching processes allowed for the 

Contrast visualization of deposited track. Optical analysis provided valuable 

insights into geometry of deposited track. 

3.4  Optical Characterisation 

A Metavis model advanced motorized metallurgy microscope was employed to 

measure track geometry and analyse surface topography of the built samples 

having capability of magnification of 5X to 50X. This instrument offers 

enhanced visualization capabilities, enabling precise measurements and detailed 

examination of surface features. The images are taken with 100 µm scale and 

then analysed using the open-source ImageJ Software.  

 

Fig. 3.3: Optical Microscope Setup. 
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3.5  Strength analysis 

The tensile strength of the deposited samples was analysed using ASTM 

standard tensile testing procedures with a Shimadzu AGX-V universal testing 

machine at a crosshead speed of 1 mm/min. Tensile specimens with a gauge 

length of 4 mm, width of 3 mm, and thickness of 1 mm were prepared for micro-

tensile testing. Due to limited material availability and the small scale of the 

fabricated samples, the testing followed the methodology outlined in ASTM 

E345 Standard Test Method with necessary adaptations. 

  

Fig. 3.4: UTM Setup for Tensile Test. Fig. 3.5: Illustration of Micro 

Tensile Sample . 

 

 

Fig. 3.6: Micro Tensile Samples. Fig 3.7: Tensile Sample After 

Failure. 

 

3.6  Hardness Test 

Micro-indentation hardness testing was performed using Vickers hardness test 

to evaluate the hardness distribution along the build direction, where a square-

based pyramidal diamond indenter with specified face angles is pressed into the 
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material under controlled conditions. After applying and removing the test 

force, the diagonal lengths of the indentation are measured to determine the 

Vickers hardness number (HV). This number is calculated as the applied test 

force F (kgf) divided by the surface area (AS) of the indentation (mm²), as 

expressed by: 

𝐻𝑉 =  
𝐹(𝑘𝑔𝑓)

𝐴𝑆(𝑚𝑚^2)
 

The surface area (AS) is derived using the formula: 

𝐴𝑆 =  
𝑑𝑎𝑣𝑔

2

1.8544
 

Where davg represents the average diagonal length of the indentation. 

𝑑𝑎𝑣𝑔 =
𝑑1 + 𝑑2

2
 

 

Fig. 3.8: Vicker Hardness Test Setup. 

For this study, a Mitutoyo HM-210 Type A or UHL VMHT Vickers hardness 

tester was used. A 300kgf load was applied for a total duration of 18 seconds, 

which included a loading time of 4 seconds, a hold time of 10 seconds, and an 

unloading time of 4 seconds. Hardness values were measured along a vertical 

line at the centre of the deposited beads or multilayer structure, and the average 

values were taken for comparative analysis. 
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Chapter 4  

Observations, Results and Discussions 

This chapter presents and interprets the outcomes of the experimental 

investigations performed on Laser Powder Directed Energy Deposition (Laser-

DED) of Inconel 718, in accordance with the experiment design of this thesis. 

The experimental results include process trials, full factorial depositions, 

predictive modelling validation, and mechanical testing. Each observation is 

followed by analysis and discussion of trends, parameter influences, and 

comparison with existing literature, where appropriate. The aim is to build a 

comprehensive understanding of how laser power, scan speed, and powder feed 

rate influence bead geometry and quality, and how statistical and machine 

learning models can be leveraged to predict and optimize these outputs.   

4.1  Preliminary Experiment and Parameter Influence 

Initial experiments were conducted to understand and verify the sensitivity of 

geometric outputs to individual process parameters targeted in this thesis. An 

ANOVA analysis was performed to assess the significance of factors—laser 

power, scan speed, and powder feed rate—on bead width and height. 

The ANOVA results indicate that for track width (O1), laser power (P1) had the 

most statistically significant influence, with a p-value well below 0.05, 

confirming its effect at the 95% confidence level. In contrast, powder feed rate 

(P3) did not exhibit significant influence on track width. Although scan speed 

(P2) did not show statistically significant impact on either track height (O2) or 

Table 4.1: ANOVA result for trial experiment. 

 F-Value P-Value F-Value P-Value 

P1 11.69 0.000074 2.939 0.054579 

P2 0.929 0. 480024 1.874 0.138015 

P3 1.552 0. 228025 7.075 0.001547 
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track width (O1) based on ANOVA, it is hypothesized that scan speed plays a 

more nuanced role, particularly in maintaining uniformity and stability of the 

melt pool rather than directly influencing geometry under conditions where 

deposition is already established. 

For track height (O2), powder feed rate (P3) emerged as the most significant 

factor, with a p-value well below 0.05, indicating strong statistical relevance. 

Laser power (P1) showed a marginally significant effect on height, suggesting 

that height is influenced by both material availability and energy input, but more 

sensitively by the volume of material being delivered into the melt pool. These 

statistical insights are complemented by a correlation heatmap, which was 

generated to further explore interdependencies between process parameters and 

geometric outputs. 

 

Fig. 4.1: Correlation heatmap. 

The correlation heat map reveals a strong positive correlation between laser 

power (P1) and track width (O1) (r ≈ +0.85), indicating that higher energy input 

significantly contributes to lateral melt pool expansion. Scan speed (P2) shows 

a moderately negative correlation with track height (O2) and a negligible 

correlation with width, supporting the hypothesis that scan speed primarily 

affects the uniformity and consistency of the deposition process rather than 
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directly influencing geometric dimensions. When deposition conditions are 

stable, scan speed appears to influence track width indirectly through its effect 

on height and layer continuity. Powder feed rate (P3) demonstrated a moderate 

positive correlation with track height and a moderate negative correlation with 

track width, suggesting that increased material input contributes to vertical 

build-up but may lead to narrower bead formation due to insufficient lateral melt 

pool spread. These correlations provided critical insight for defining parameter 

bounds in the subsequent full factorial experimental design. 

A full factorial design with three input parameters at three levels each was 

employed to generate a complete dataset of bead geometries. The outputs—

bead height, width, depth, and area—were recorded for each of the 27 

combinations. 

Table 4.2: Optical characterisation of full factorial depositions. 

P1W P2S P3W Height Depth Width Image Area 

watts mm/min g/min mm mm mm 590pixels/mm  mm2 

900 400 4.7 0.41 0.28 2.23 

 

1.05 

900 500 4.7 0.34 0.26 2.09 

 

0.97 

900 600 4.7 0.23 0.31 2 

 

0.74 

700 400 6.0 0.28 0.27 1.79 

 

0.62 

700 500 6.0 0.26 0.31 1.73 

 

0.59 
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700 600 6.0 0.23 0.31 1.73 

 

0.53 

800 400 6.0 0.37 0.32 1.98 

 

0.90 

800 500 6.0 0.29 0.32 1.82 

 

0.71 

800 600 6.0 0.26 0.33 1.69 

 

0.62 

900 400 6.0 0.39 0.37 2.17 

 

1.12 

900 500 6.0 0.32 0.32 2.23 

 

0.92 

900 600 6.0 0.31 0.32 2.11 

 

0.85 

700 400 7.8 0.44 0.24 1.69 

 

0.72 

700 500 7.8 0.31 0.3 1.62 

 

0.59 

700 600 7.8 0.25 0.32 1.53 

 

0.50 
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800 400 7.8 0.48 0.3 2.08 

 

0.98 

800 500 7.8 0.35 0.29 1.91 

 

0.79 

800 600 7.8 0.3 0.29 1.77 

 

0.61 

900 400 7.8 0.51 0.25 2.3 

 

1.16 

900 500 7.8 0.36 0.35 2.11 

 

0.98 

900 600 7.8 0.41 0.22 2.07 

 

0.84 

700 400 4.7 0.28 0.53 1.87 

 

0.91 

700 500 4.7 0.21 0.52 1.87 

 

0.81 

700 600 4.7 0.25 0.44 1.69 

 

0.74 

800 400 4.7 0.34 0.63 2.04 

 

1.30 
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800 500 4.7 0.27 0.55 1.87 

 

0.96 

800 600 4.7 0.2 0.51 1.82 

 

0.87 

The results indicate clear trends. At constant scan speed, increasing laser power 

significantly increased bead height and width, while excessive power at lower 

scan speeds led to surface roughness and partial over-melting. Conversely, 

higher scan speeds led to narrower beads and insufficient fusion. The powder 

feed rate had a pronounced effect on bead height and dilution, particularly at 

lower power levels. 

The aspect ratio (W/H) serves as a reliable indicator of melt pool morphology 

and is commonly used to identify the preferred working range in laser powder 

DED processes. In this study, all depositions from the full factorial experiment 

exhibited W/H values within the typical range of 3 to 6, which corresponds to 

the transition mode of operation. This mode is characterized by a stable melt 

pool, good bonding quality, and reduced risk of defects compared to keyhole or 

conduction modes, making it ideal for additive manufacturing applications. 

 

Fig. 4.2: Aspect Ratio Spread of all the deposited track. 
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4.2  Model Validation and Error Analysis 

To evaluate the reliability and generalization capability of the developed 

predictive models, a set of test tracks were deposited using process parameter 

combinations not included in the training dataset. The geometry of these test 

tracks was measured and compared with model-predicted outputs for track 

height (O2), track width (O1), and track depth (O3). 

 

Fig. 4.3: Test track depositions. 

Figure 4.3 shows the cross-sectional macrographs of six representative test 

tracks etched and imaged under optical microscopy. These sections reveal a 

range of bead morphologies and quality characteristics influenced by the chosen 

parameter combinations. 

Among the six samples, some tracks show smooth bead boundaries with 

consistent dilution, while others exhibit notable porosity, undercuts, or uneven 

fusion at the base. These visual observations indicate that although the macro-

geometry may be reasonably predicted, microstructural defects remain sensitive 

to local variations in powder–laser interaction and thermal gradients. 

4.2.1 Height Prediction Analysis 

Figure 4.4, illustrates the comparison between actual and predicted bead heights 

across the six test samples. The predicted values closely follow the actual 

measurements, with deviations remaining within acceptable limits for most 

samples. The average error in height prediction was below ±5%, suggesting 

strong agreement between model and experimental data. 
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Fig. 4.4: Actual vs Predicted Height. 

The high accuracy in height prediction is attributed to the direct influence of 

laser power and powder feed rate—both well captured during model training. 

These results validate the model’s robustness for height prediction within the 

explored process window. 

4.2.2 Depth Prediction Challenges 

Figure 4.5 presents the parity plot for actual vs predicted track depth values. In 

contrast to height, depth prediction was less accurate, with visible and consistent 

overestimation by the model across all test cases. The predicted depth values 

cluster closely together, while the actual values show broader variance. 

 

Fig. 4.5: Actual vs Predicted Depth. 
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The limited reliability of the depth model is likely due to challenges in 

accurately defining the true dilution zone during measurement. The overlap 

between the heat-affected zone (HAZ) and actual dilution boundary in etched 

cross-sections may have introduced ambiguity in depth quantification. This is a 

known issue in optical microscopy-based depth analysis, especially for 

materials like Inconel 718 where thermal gradients are steep and melt pool 

boundaries are diffuse. As a result, depth prediction was excluded from 

subsequent optimization studies, and future work may require enhanced 

imaging (e.g., SEM + EDS mapping) or thermal simulations to better quantify 

and model melt pool depth 

4.2.3 Width Prediction Analysis 

The comparison between the predicted and actual track width (O1) values for 

the test tracks is shown in Figure 4.6. Overall, the model demonstrated 

satisfactory performance in estimating bead width, with the predicted values 

closely tracking the actual measurements for most samples. The deviations were 

generally within a ±5–7% range, indicating that the width predictions were 

reasonably accurate, although slightly less precise than those for height. 

 

Fig. 4.6: Actual vs Predicted Width. 
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build direction for three multilayer wall samples fabricated with different time 

delays (TD = 0 s, 4 s, and 8 s) between successive layers. Figure 4.7 illustrates 

the Vickers hardness (HV₀.₃) values measured at incremental distances from the 

substrate up to 8 mm height. 

The results reveal a clear trend in which hardness tends to decrease 

progressively from the substrate towards the top layers for all three samples. 

This gradient is particularly pronounced in the wall with TD = 8 seconds, which 

exhibits the lowest hardness values overall, with a final layer hardness dropping 

below 200 HV. In contrast, the wall fabricated with no delay (TD = 0 s) 

maintains the highest average hardness throughout the build height, remaining 

consistently above 230 HV. 

This behavior can be attributed to the thermal history and cumulative heat input 

during layer-by-layer deposition. With no interlayer delay, heat from previous 

layers is retained, leading to thermal accumulation and a quasi-continuous 

solidification environment. This promotes rapid solidification and the formation 

of finer cellular dendritic structures, which are known to enhance microhardness 

in Inconel 718 due to higher dislocation density and solute trapping. Conversely, 

increasing the interlayer time delay allows each layer to cool more extensively 

before the next one is deposited, resulting in lower thermal gradients, coarser 

microstructures, and reduced hardness. 

 

Fig 4.7: Micro indentation hardness tests data for thin wall depositions. 
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The decreasing hardness profile with build height also aligns with the 

understanding that the initial layers benefit from substrate conduction, while the 

upper layers are subject to reduced cooling efficiency and longer solidification 

times. This is further accentuated when additional delay is introduced, as seen 

with TD = 8 seconds. 

These findings highlight the sensitivity of mechanical properties to thermal 

management strategies in laser-DED processes. They also emphasize the 

importance of process control during multi-layer deposition, particularly when 

targeting functionally graded structures or minimizing post-processing 

requirements. 

4.4 Strength Analysis 

To assess the mechanical integrity and anisotropy of the laser-deposited 

multilayer structures, tensile tests were performed on samples extracted along 

both the scan direction and build direction for three different interlayer time 

delays (TD = 0, 4, and 8 seconds). The results, summarized in Table 5.2, include 

ultimate tensile strength (UTS), strain at UTS, and strain at failure for each 

direction. 

Table 4.3: Tensile test data. 

Time 

Delay 
Direction UTS 

% Strain at 

UTS 

% Strain at 

Failure 
Behaviour 

0 
Scan 810 31.9 35.75 Ductile 

Build 678.65 35.76 35.76 Ductile 

4 
Scan 1004 37.54 37.54 Ductile 

Build 661.8 32.67 37.54 Ductile 

8 
Scan 730.4 31.8 32 Ductile 

Build 626.8 27 32 Ductile 

 

The tensile test results for the three multilayer IN718 walls fabricated with 

varying interlayer time delays (TD = 0 s, 4 s, and 8 s) reveal notable trends in 

strength and ductility. Among all samples, the TD = 4 s condition 

demonstrated the highest ultimate tensile strength (UTS) in the scan direction 
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(~1002 MPa), accompanied by considerable elongation (~37.5%), indicating a 

balanced combination of strength and ductility. The TD = 0 s sample exhibited 

moderately lower UTS (~810 MPa) but still retained significant elongation 

(~35.8%), suggesting that minimal dwell time leads to a slightly softer but 

ductile build. 

 

Fig. 4.8: Tensile Plot of TD = 0 sec Wall. 

In contrast, the TD = 8 s sample showed reduced UTS (~730 MPa in scan 

direction), with a relatively lower strain at failure (~31.9%), indicating that 

prolonged interlayer cooling may have led to poor layer bonding or increased 

porosity, both of which could degrade tensile performance. Across all 

samples, the tensile behaviour in the build direction was consistently lower 

than in the scan direction, with UTS values dropping to ~626–678 MPa, 

reinforcing the known anisotropy in L-DED builds due to the columnar grain 

structure and interlayer interfaces. 

Overall, the results emphasize the importance of thermal management during 

deposition. A controlled interlayer delay (around 4 seconds in this case) helps 

balance thermal gradients, improves fusion quality between layers, and 

ultimately enhances mechanical performance. These insights are consistent 

with microstructural trends observed in similar studies on laser-based DED of 

IN718. 
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Fig. 4.9: Tensile Plot of TD = 4 sec Wall. 

 

Fig. 4.10: Tensile Plot of TD = 8 sec Wall. 
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• Grain orientation, which tends to be columnar and aligned along the build 

axis 

Moreover, strain at failure remained relatively comparable in both directions, 

confirming that while strength varied, ductility was retained regardless of 

orientation. This reflects the influence of thermal gradients and remelting 

behavior on the microstructure and bonding integrity between layers. 

4.4.2 Overall Trends and Interpretation 

These tensile test results reinforce the importance of thermal management 

during Laser-DED. Moderate interlayer delay (TD = 4 s) yielded the best 

mechanical performance by balancing heat retention for good interlayer 

bonding and allowing sufficient cooling to avoid thermal degradation. In 

contrast, both zero delay (TD = 0 s) and extended delay (TD = 8 s) compromised 

strength—either due to overheating or under-melting between layers. 

The findings are consistent with microhardness trends observed earlier (Section 

5.3), where the TD = 0 s wall had the highest average hardness due to finer 

microstructure but not the best tensile strength, likely due to internal residual 

stresses or non-uniform fusion. The TD = 4 s sample emerged as the most 

mechanically robust, confirming it as the most balanced strategy for multi-layer 

deposition under the given process conditions. 
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Chapter 5  

Conclusions and Scope for Future Work 

5.1  Conclusions 

This research aimed to develop a robust, experimentally validated, data-driven 

framework for the prediction and optimization of geometric features in Laser 

Directed Energy Deposition (L-DED) of Inconel 718. By combining 

comprehensive experimental trials with machine learning and statistical 

modeling techniques, the study successfully achieved its objectives. The 

following key conclusions can be drawn: 

A. Development of a Predictive Framework: 

A hybrid predictive model was established using polynomial 

regression for track height and width prediction, and random forest 

for depth prediction. The model was trained on a full-factorial 

experimental dataset and demonstrated strong predictive accuracy 

for key geometric parameters. 

B. Parameter Influence on Geometry: 

Laser power and powder feed rate were found to be the most 

influential parameters on bead width and height, while scan speed 

exhibited more indirect effects related to melt pool stability. 

ANOVA and correlation analysis reinforced these trends. 

C. Validation and Optimization: 

Model validation using unseen test data showed excellent agreement 

for height (±5%) and width (±7%). Although depth prediction was 

less precise due to optical measurement challenges, the model still 

provided valuable trend-level accuracy. The model was then 

integrated into an optimization framework to reduce material usage, 

energy consumption, and build time. 

D. Multi-Layer Build Demonstration: 

The predictive framework was extended to multi-layer thin-wall 

deposition, incorporating interlayer control strategies. Experimental 

results showed that a 4-second interlayer delay yielded the highest 
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mechanical performance (UTS ≈ 1002 MPa) and maintained high 

ductility (~37.5%), confirming the positive influence of thermal 

control strategies. 

E. Mechanical and Microstructural Integrity: 

Vickers microhardness profiling and tensile testing confirmed that 

interlayer thermal history directly influenced material hardness and 

strength. Reduced interlayer delay led to finer microstructures and 

higher hardness, but optimal mechanical properties were achieved 

with a balanced 4-second delay. 

F. Implication for DfAM: 

The framework provides a valuable foundation for data-driven 

Design for Additive Manufacturing (DfAM), enabling accurate 

geometry prediction, process planning, and reduced reliance on post-

processing in metal additive manufacturing workflows. 

5.2  Scope for Future Work 

While this study has laid a strong foundation, several opportunities exist to build 

upon and enhance the proposed framework: 

A. Integration with In-Situ Monitoring: 

Incorporating real-time in-situ temperature monitoring—such as 

infrared thermography or pyrometry—can exponentially improve model 

fidelity. The observed enhancement in geometric quality and 

mechanical strength via controlled interlayer delay underscores the 

value of thermal feedback. Real-time data can enable closed-loop 

control, improving consistency and adaptability in L-DED processes. 

B. Enhanced Depth and Melt Pool Prediction: 

Advanced imaging techniques like Scanning Electron Microscopy 

(SEM), Energy-Dispersive X-ray Spectroscopy (EDS), or thermal 

simulations can help improve the prediction of melt pool depth, which 

remains a challenge in this study due to the limitations of optical 

microscopy. 
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C. Generalization to Complex Geometries: 

Future work should validate and extend the model’s applicability to non-

planar, multi-axis, and large-scale 3D components. This would confirm 

the model’s scalability and reliability for real-world engineering parts. 

D. Machine Learning-Based Feedback Control: 

Leveraging the trained models within a real-time control loop, possibly 

enhanced by reinforcement learning or adaptive systems, can enable 

smart manufacturing systems that self-optimize during operation. 

This study not only demonstrates the potential of data-driven methods in 

predicting and optimizing geometric features in L-DED of Inconel 718 but 

also provides a foundational framework that can be extended through real-

time monitoring and intelligent process control to move towards a fully 

autonomous and adaptive additive manufacturing ecosystem. 

 

Fig 5.1: Final demonstration deposition (all dimensions in mm). 
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