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Abstract

Digital transformation in healthcare has ushered in an era of interconnected,
data-driven clinical environments, enabling continuous monitoring and analysis of
patient status. As care complexity increases, smart decision-support systems have
emerged to assist medical staff in interpreting vast streams of physiological data,
addressing the growing need for timely and accurate insights at the point of care.
Alarm fatigue poses a huge problem in the healthcare sector, which critically
undermines patient safety by desensitizing clinicians to life-threatening alarms,
increasing the risk of missed or delayed responses. Its pervasive cognitive overload
and workflow disruptions also contribute to clinician burnout and medical errors.
This work emphasizes the critical role of Alarm Management Systems within
Intensive Care Units, where alarm overload and false alarms contribute to clinician
fatigue and potential safety risks. The novelty of this project lies in the fact that no
similar solution exists, we generated a dataset by simulating patient conditions and
capturing sensor data for several disease states both with and without induced system
or patient faults.

The proposed system is designed to automatically flag critical alarms the moment
they arise and to generate context-aware recommendations for both medical and
technical staff, thereby streamlining response workflows. By integrating machine-

learning algorithms with real-time sensor inputs, our approach prioritizes actionable
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alerts and suggests evidence-based interventions, reducing unnecessary disruptions
while ensuring rapid attention to life-threatening events.

The framework calculates the real-time criticality of an alarm based on patient
condition (through vitals) and the type of alarm generated (which is identified using
ML models). This generates an output that indicates whether the alarm is critical or
not. Further mapping this criticality, alarm type, and cause of the alarm leads to
suggesting responsive action for that specific alarm. This framework aims to enhance
patient safety, optimize staff efficiency, and demonstrate how advanced alarm
management can form a cornerstone of next-generation ICU care.

Future work will focus on translating our proof-of-concept into a fully integrated
software solution capable of seamless deployment within clinical environments.
Concurrently partnerships with healthcare institutions to collect and curate large-
scale, real-world alarm datasets across diverse patient populations and device
configurations. This expanded data corpus will enable us to retrain and validate our
machine-learning models, enhancing their robustness, generalizability, and resilience
to noise and variability in clinical practice. Ultimately, these efforts aim to ensure
that our Alarm Management System not only performs effectively in controlled

simulations but also delivers reliable, high-impact support in live ICU settings.

\
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Chapter 1: Introduction
1.1. Industry 4.0

Industry 4.0 represents the shift from conventional manufacturing toward highly
digitalized, data-driven production systems. Originating from Germany’s “High-
Tech Strategy 2020,[1]” it focuses on merging cyber-physical systems, the Internet
of Things, and seamless data exchange to create “smart factories.” In these
environments, equipment, sensors, and operators interact instantaneously to enable
self-adjusting, flexible workflows. The overarching objectives are to boost
efficiency, minimize waste, shorten lead times, and support individualized mass

production—all while maintaining high quality.
The following core technologies form the foundation of Industry 4.0:

1. Cyber-Physical Systems (CPS)

CPS integrates computing algorithms with physical machinery, so devices
can both monitor and influence their surroundings. In manufacturing,
embedded microprocessors, sensors, and actuators cooperate to supervise and

manage every production step. Characteristically, CPS implement:

o In-Line Monitoring and Control: Sensors collect real-time data (e.g.,
temperature, vibration), and actuators autonomously modify machine

settings (e.g., spindle speed, conveyor rate).

o Immediate Feedback Loops: Local (edge) processing enables rapid
decisions- safety interlocks or quality adjustments without relying on

a distant server.

o Distributed Intelligence: Instead of a single centralized controller,
decision-making is spread across multiple nodes, allowing machines
to anticipate faults, predict maintenance needs, and collaborate with

nearby devices [2] [3].



2. Industrial Internet of Things (IIoT)

IToT extends IoT principles to industrial equipment, using reliable protocols

(such as OPC UA and MQTT) to interconnect machinery, production lines,

storage systems, and enterprise software. Its key traits are:

o

Broad Connectivity: Every sensor, robot, and even workpiece has a
unique digital identifier, continuously exchanging status updates,

performance metrics, and maintenance alerts.

Edge and Fog Computing: Rather than transmitting all data to a
central cloud, preliminary analytics (filtering, aggregation, anomaly
detection) occur near the machine (“edge”) or in intermediate “fog”

nodes, reducing latency and conserving bandwidth.

Scalability and Interoperability: IloT architectures scale to
accommodate thousands of devices and support equipment from
various manufacturers, ensuring unified communication across

heterogeneous systems [3] [4]

3. Big Data Analytics and Data Management

Industrial environments generate vast volumes of streaming data from PLCs,

robots, and vision systems. Advanced analytics (machine learning, data

mining, predictive models) are essential for deriving actionable insights:

O

o

Real-Time Data Ingestion: High-speed pipelines ingest continuous
data streams into time-series databases or data lakes for storage and

analysis.

Predictive and Prescriptive Models: Machine learning algorithms
forecast equipment failures (predictive maintenance), optimize
operational parameters (e.g., temperature, feed rate), and simulate

“what-if” scenarios to inform production decisions.



4. Digital Twins

Virtual replicas of physical assets receive live data feeds, enabling engineers

to test process changes or equipment modifications in a simulated

environment before implementing them on the factory floor [4].

5. Cloud Computing and Software-as-a-Service (SaaS)

Cloud platforms supply on-demand computing power, storage, and industrial

software without requiring extensive local infrastructure:

(o]

Elastic Resources: Manufacturers can provision additional virtual
machines or containers to handle peak workloads such as large-scale

simulations or analytics during intensive production runs.

Centralized Data Repositories: Data from multiple plants is
aggregated in the cloud, facilitating enterprise-wide benchmarking,

cross-site analysis, and shared analytics.

SaaS Applications: Cloud-hosted ERP, MES, quality management,
and supply chain solutions can be deployed rapidly and updated

continuously, ensuring the latest features and security patches [5].

6. Artificial Intelligence (AI) and Machine Learning (ML)

Al and ML leverage historical and real-time data to detect patterns, make

predictions, and automate complex tasks:

O

Computer Vision: Deep learning-based image recognition inspects
components on production lines with higher accuracy than manual
inspections- identifying defects, alignment issues, or surface

contaminants in milliseconds.

Anomaly Detection and Predictive Maintenance: Unsupervised ML
models detect deviations from normal operating parameters such as
abnormal vibration frequencies alerting operators before machine

breakdowns occur.



Reinforcement Learning for Process Control: Advanced Al agents
continuously tune process variables (e.g., pressure, feed rate) to
optimize yield or energy usage, learning optimal operating policies

over time [2], [4].

7. Additive Manufacturing (3D Printing)

Additive manufacturing constructs parts layer by layer from digital models,

enabling rapid prototyping and production of complex geometries. In

Industry 4.0:

(o]

Design Optimization: Generative design tools and topology
optimization software produce lightweight, structurally efficient

components that conventional machining cannot easily fabricate.

Distributed Production Models: Digital part files are transmitted to
regional “micro-factories” or service bureaus, reducing shipping

times and carrying minimal inventory.

Advanced Materials: Novel metal powders, polymers, and composite
materials feed next-generation printers, supporting the on-demand
manufacture of fixtures, tooling, and end-use parts including

biomedical implants [5].

8. Augmented Reality (AR) and Virtual Reality (VR)

AR overlays digital instructions onto the physical world, while VR immerses

users in virtual environments for planning, training, or simulation:

O

Hands-Free Work Instructions: AR headsets (e.g., HoloLens) display
step-by-step guidance, 3D component models, and safety warnings in
the operator’s field of view reducing errors and accelerating

changeovers.

Remote Expert Collaboration: An on-site technician can live-stream
equipment views to an off-site specialist, who annotates the AR feed

in real time to guide maintenance or troubleshooting.

4



(o]

VR Layout and Ergonomic Simulation: Engineers can virtually walk
through proposed production line configurations, test ergonomic
considerations, and verify safety clearances before physical

installation [3].

9. Horizontal and Vertical System Integration

(o]

Horizontal Integration: Entails seamless data flow across the entire
supply chain—connecting suppliers, manufacturing, logistics, and
customers. Cloud-based supply chain platforms can automatically
reorder parts, track shipments in real time, and synchronize

production schedules to actual demand.

Vertical Integration: Breaks down traditional automation silos (PLC,
SCADA/MES, ERP) by implementing unified data models (e.g., OPC
UA, RAMI 4.0) so that shop-floor controllers, edge gateways, MES,

and ERP systems share a synchronized digital view of operations [2],

[4].

10. Cybersecurity in Industrial Control Systems (ICS)

As manufacturing environments become highly networked, built-in

cybersecurity is crucial:

(@]

O

Zero Trust Principles: Every device, user, and application is untrusted
by default; strict authentication, encrypted communications, and

least-privilege access controls are enforced throughout the network.

Network Segmentation: Separating critical control networks (PLCs,
SCADA) from corporate IT networks and applying granular firewall

rules minimizes the attack surface.

Continuous Monitoring and Threat Hunting: Real-time anomaly
detection spotting unusual command sequences or data exfiltration
attempts is embedded in ICS event logs and SIEM systems to detect
and contain threats quickly [4], [5].



11. Collaborative Robotics (Cobots) and Autonomous Mobile Robots (AMRSs)

Unlike traditional industrial robots confined behind safety fences, cobots and

AMRs operate safely alongside human workers:

o Force-Sensing and Safe Human—Robot Interaction: Cobots
incorporate torque and force sensors to detect unexpected collisions

and halt motion immediately, preventing injuries.

o Dynamic Navigation and Path Planning: AMRs use LiDAR, cameras,
and floor markers to autonomously navigate complex factory or
warehouse layouts, avoiding obstacles and optimizing delivery routes

for parts or finished goods.

o Plug-and-Play Deployment: Cobots often require minimal
programming; operators can manually guide the robot through tasks,

and it learns by demonstration [2], [3].

Example of an Industry 4.0-Enabled Facility

1. Smart Sensors and IloT Gateways continuously collect vibration,
temperature, and energy data from CNC mills, presses, and injection-molding

machines.

2. Edge Computing Nodes perform local analytics—detecting anomalies and

autonomously adjusting spindle speeds to prevent tool wear.

3. Cloud-Hosted Analytics aggregate data from multiple plants to benchmark

energy consumption and identify performance outliers.

4. Robust Cybersecurity ensures only authenticated devices can update critical

controllers, preventing unauthorized access.

5. AR Glasses overlay 3D models and torque specifications onto a technician’s

field of view during maintenance.

6. Cobots switch between tasks—such as inspection and palletizing—

automatically as production orders change in real time.



7. Additive Manufacturing Cells fabricate customized jigs on demand: an
engineer in Detroit sends a CAD file to a Berlin print cell, which produces

the fixture within hours.

By integrating CPS, IIoT, big data analytics, AI/ML, cloud/SaaS, additive
manufacturing, AR/VR, horizontal/vertical integration, cybersecurity, and advanced
robotics, Industry 4.0 transforms static, siloed factories into responsive, self-
optimizing ecosystems capable of anticipating changes, self-healing from

disruptions, and delivering higher value at lower cost and risk.

1.2. Digital healthcare and Industry 4.0

Bridging the gap between conventional healthcare and its digital counterpart requires
an ecosystem of interoperable, data-driven technologies that enhance access,
efficiency, and personalization of care. At its foundation lie Electronic
Medical/Health Record systems (EMR/EHR), which centralize patient histories,
diagnostics, and treatment plans, enabling seamless information flow across
departments and care teams [6]. Layered atop this data backbone are Internet-of-
Things (IoT) devices and wearable sensors that continuously capture vital signs and
other physiological metrics, feeding real-time streams into cloud platforms for
aggregation and long-term storage. Artificial Intelligence (Al) and Machine Learning
(ML) then transform these massive datasets into actionable insights—powering
predictive diagnostics, risk stratification, and decision-support tools that alert
clinicians to early signs of deterioration or recommend personalized treatment
pathways [7]. Telemedicine and mobile-health (mHealth) applications extend the
clinical reach beyond hospital walls, while 5G and edge-computing architectures
ensure low-latency, reliable connectivity for remote monitoring and procedural
guidance [8]. Blockchain and advanced cybersecurity protocols safeguard data
integrity and patient privacy, fostering trust in digital systems. Together, these
Industry 4.0—inspired components—from EMR/EHR and big-data analytics to
AI/ML, 10T, telehealth, and secure cloud infrastructures—form a cohesive digital

healthcare framework [9]. By integrating technologies at every layer of care delivery,



we can move from reactive, episodic interventions to proactive, continuous, and
patient-centric management, truly bridging the divide between traditional practice
and next-generation healthcare.

Digital healthcare utilizes digital technologies to enhance healthcare delivery,
making it more accessible, efficient, and cost-effective. It encompasses a wide range
of tools, including telemedicine, mobile health apps, electronic health records, and
more. These technologies aim to transform healthcare by empowering patients,

improving care quality, and expanding access, especially in remote areas.

1.3. Al and ML Introduction

Artificial Intelligence (AI) broadly refers to computational systems designed to
emulate human-like cognitive functions—such as perception, reasoning, problem-
solving, and decision-making. Al encompasses a wide range of techniques (rule-
based systems, expert systems, evolutionary algorithms, and biologically inspired
approaches) meant to automate tasks that traditionally require human intelligence

[10], [11], [12], [13], [14].

Machine Lear ning (ML) is a subset of Al focused specifically on algorithms

that enable computers to “learn” from data rather than rely on hand-coded rules. In
ML, models detect patterns or regularities in examples (training data) and generalize
these patterns to make predictions or decisions on new, unseen inputs [10], [11], [12],

[13], [14].

Categories of Machine Learning [10], [11], [12], [13], [14]

Machine learning can be broadly categorized into several paradigms based on how
models interact with data and the learning signals they receive. In its simplest form,
Supervised Learning involves training models on labelled datasets—each example
in the training set pairs an input vector with a “ground-truth” output. The model’s
objective is to learn a mapping from inputs to outputs by minimizing the discrepancy

between its predictions and the known labels. Within supervised learning, two



primary tasks emerge. Classification aims to predict discrete categories. In a binary
classification scenario, the model must distinguish between two classes (for
example, spam versus not-spam or malignant versus benign). In a multiclass
classification setting, there are more than two possible labels—common examples
include recognizing handwritten digits (0 through 9) or determining sentiment
(positive, neutral, or negative). Regression, by contrast, focuses on forecasting
continuous numerical values. A typical instance is linear regression, where one
predicts house prices based on features such as square footage or number of
bedrooms. When the relationship between features and the target variable is
nonlinear, methods like polynomial regression or other nonlinear regression
techniques can be applied (for example, modelling population growth as a nonlinear
function of time).

In contrast, Unsupervised Learning deals with unlabelled data and tasks the model
with uncovering inherent structures, groupings, or low-dimensional embeddings
without explicit “correct answers.” A major subclass is clustering, where the
algorithm partitions data points into groups of similar examples. One widely used
method is k-Means Clustering, which iteratively assigns points to k clusters to
minimize within-cluster variance. Another is hierarchical clustering, which
constructs a tree of clusters either by successively merging smaller clusters
(agglomerative) or by dividing larger ones (divisive). DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) forms clusters based on regions of
high point density and can identify arbitrarily shaped clusters as well as outliers. A
second key unsupervised task is dimensionality reduction, which seeks to compress
high-dimensional inputs into a smaller set of latent features while retaining as much
“information” as possible. Principal Component Analysis (PCA) is a linear
technique that projects data onto orthogonal axes of maximum variance, whereas t-
Distributed Stochastic Neighbour Embedding (t-SNE) is a nonlinear method
especially well-suited for visualizing high-dimensional data in two or three
dimensions. Autoencoders, which are neural-network-based encoders—decoders,
learn compressed representations by training the network to reconstruct its input.

Lastly, Association Rule Learning discovers “if-then” relationships between



variables—classic algorithms include Apriori, which finds frequent itemsets in
transactional data (for example, market-basket analysis), and Eclat, which uses
depth-first search to enumerate itemsets.

Reinforcement Learning (RL) represents a third paradigm in which an agent
interacts with an environment in discrete time steps: at each step, the agent selects an
action, receives a reward (or penalty), and transitions to a new state. The goal is to
learn a policy—a mapping from states to actions—that maximizes cumulative reward
over time, balancing exploration (trying new actions) against exploitation
(leveraging known rewarding actions). Within RL, model-free methods learn value
functions or policies directly from experience without constructing an explicit model
of environment dynamics. Q-Learning is a prototypical model-free algorithm that

estimates the action-value function Q(s,a) via temporal-difference updates:

Q(s,a) « Q(s,a) + a[r + ymaxQ(s',a’) — Q(s,a)]

where a is the learning rate, r is the received reward, v is the discount factor, and s’
is the next state. SARSA (State-Action-Reward-State-Action) is an on-policy variant
that updates Q based on the action actually taken at the next state. Policy-gradient
methods directly parameterize the policy m(als;0) and adjust the parameters 0 by
ascending the gradient of expected reward; examples include the classic
REINFORCE algorithm. Actor—Critic approaches combine a policy network
(actor) with a value network (critic) so that the critic’s value estimates reduce
variance in the policy gradient updates. In model-based RL, the agent explicitly
builds or is provided with a model of environment dynamics (i.e., transition
probabilities and reward functions) and uses planning techniques—such as dynamic
programming—to compute optimal actions. In modern settings, Deep
Reinforcement Learning leverages deep neural networks as function
approximators, enabling RL to scale to high-dimensional inputs like raw images.
Notable examples include the Deep Q Network (DQN), which integrates Q-learning
with convolutional neural networks to play Atari games from pixel inputs; Deep

Deterministic Policy Gradient (DDPG), which extends actor—critic approaches to
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continuous action spaces; and policy-gradient refinements such as Proximal Policy
Optimization (PPO) and Trust Region Policy Optimization (TRPO), which
enforce constraints on policy updates to stabilize training.

Between supervised and unsupervised extremes lies Semi-Supervised Learning,
where a small amount of labelled data is augmented by a large pool of unlabelled
examples. The objective is to exploit the unlabelled set to learn the underlying data
distribution more accurately, which is especially beneficial when labelling is
expensive or time-consuming. One approach is self-training, where a classifier
trained on labelled data is used to generate pseudo-labels for unlabelled examples;
high-confidence predictions are then added to the labelled set in an iterative fashion.
Co-training trains two or more models on different “views” or feature subsets of the
data; each model labels the unlabelled examples that the other models then use for
training. Graph-based methods build a similarity graph among samples (nodes) and
propagate label information along edges to infer unknown labels. Meanwhile, semi-
supervised generative models, such as variational autoencoders with an auxiliary
classification objective, jointly optimize a generative component (modelling
p(X)p(x)p(x)) and a discriminative component (modelling p(y|x)p(y \mid x)p(y|x))
to leverage both labelled and unlabelled data.

Self-Supervised Learning is an emerging paradigm in which the model derives
supervisory signals automatically from the data itself, setting up “pretext tasks”
whose solution requires learning useful representations. In computer vision, one
example is context prediction, where a network attempts to predict the relative
position of one image patch given another. In natural language processing, masked
language modelling (as in BERT) randomly hides a subset of tokens and trains the
network to predict the masked words from their surrounding context. Another
powerful framework is contrastive learning, which constructs positive pairs (two
augmented views of the same input) and negative pairs (views from different inputs)
and trains the encoder to pull together representations of positives while pushing
apart negatives. The representations learned by solving these pretext tasks can then

be fine-tuned for downstream objectives such as classification or detection.
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Deep Learning: A Specialization of Machine Learning

Deep Learning (DL) is a subfield of machine learning that focuses on using multi-
layer neural networks—commonly referred to as deep neural networks—to
automatically learn hierarchical feature representations. Although DL methods can
be applied under any of the paradigms above (supervised, unsupervised,
reinforcement, self-supervised), the hallmark of DL is its capacity to handle very
high-dimensional and unstructured data by learning multiple levels of abstraction. A
basic architecture is the Feedforward Neural Network (FNN), in which layers of
neurons are stacked such that each layer’s outputs serve as inputs to the next, with
no cycles or feedback connections. FNNs are versatile for generic tasks in
classification and regression.

For data with spatial structure—such as images or any grid-like inputs—
Convolutional Neural Networks (CNNs) are the preferred choice. CNNs use
learnable convolutional filters and pooling layers to exploit local correlations (e.g.,
edges in images), drastically reducing the number of parameters compared to fully
connected networks. CNN architectures have led to state-of-the-art performance in
image classification, object detection, semantic segmentation, and other computer-
vision tasks. When the data are sequential—such as sentences, time series, or
speech—Recurrent Neural Networks (RNNs) offer mechanisms to process inputs
in a temporal manner by maintaining hidden states across time steps. To address the
vanishing/exploding gradient problems of vanilla RNNs, specialized RNN variants
such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
were developed; these architectures employ gating mechanisms that make it easier
to capture long-range dependencies.

Graph-structured data—where instances are nodes connected by arbitrary edges—
are effectively modelled by Graph Neural Networks (GNNs). A GNN propagates
information along edges to learn node-level or graph-level representations; this is
useful in social-network analysis, molecular property prediction, recommendations,
and any domain where relationships between entities matter. More recently,
Transformer models, built around self-attention mechanisms, have revolutionized

sequence modelling. Initially introduced for machine translation, transformers like
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BERT and the GPT series capture global dependencies by computing pairwise
attention scores, making them highly effective for language understanding. Vision
Transformers (ViTs) have adapted the same architecture to image patches, showing
competitive results with CNNs in vision tasks. Deep Learning’s flexibility allows
these architectures to be deployed in fully supervised settings, for unsupervised
representation learning (e.g., autoencoders or contrastive methods), and within

reinforcement-learning frameworks (e.g., DQN’s CNN backbone).

Additional ML Paradigms and Specialized Subtypes

Beyond the core paradigms of supervised, unsupervised, and reinforcement learning,
several other approaches have gained traction in specific applications or to overcome
particular challenges:

e Transfer Learning refers to techniques that leverage knowledge obtained
from one task or domain and apply it to another related task. A canonical
example is taking a CNN pretrained on ImageNet—a dataset of millions of
labeled images—and fine-tuning it for a specialized task like medical image
classification. Transfer learning dramatically reduces training time and the
amount of labeled data required in the target domain.

e Online Learning (Incremental Learning) trains or updates models
sequentially as new data arrive, rather than assuming access to a fixed, static
dataset. This is crucial for streaming applications—such as real-time anomaly
detection in network traffic—where patterns can shift over time, and the
model must adapt continuously without retraining from scratch.

o Federated Learning is a decentralized training paradigm designed to
preserve data privacy. Instead of sending raw data to a central server, each
edge device (e.g., smartphone, [oT sensor) trains a local model on its private
data and transmits only model updates (such as gradients or weight
differences) to a central aggregator. The server then aggregates these updates
(for example, via weighted averaging) to form a global model, which is sent
back to each device. Federated learning has proven valuable in healthcare,

finance, and mobile applications where data sensitivity is paramount.
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e Multi-Task Learning trains a single model to perform multiple related tasks
simultaneously by sharing representations among tasks. For instance, in
computer vision, one might train a network to simultaneously predict object
bounding boxes and classify object categories. By jointly optimizing for
related objectives, multi-task learning often yields better generalization than
training separate models for each task.

e Ensemble Learning improves predictive performance and robustness by
combining multiple base learners. In bagging (Bootstrap Aggregating),
several models are trained on different bootstrap samples of the data, and their
outputs are averaged (or voted) to produce a final prediction; the Random
Forest algorithm is a prime example of a bagging ensemble of decision trees.
In boosting, base models are trained sequentially, with each new model
focusing on correcting errors made by its predecessors; prominent algorithms
include AdaBoost, Gradient Boosting Machines, and XGBoost. Stacking (or
stacked generalization) trains multiple base models in parallel and then uses
a “meta-learner” to combine their predictions optimally—often yielding
further gains over bagging or boosting alone.

Collectively, these paradigms and subtypes illustrate the richness of modern machine
learning: from traditional supervised and unsupervised techniques to advanced
online, federated, and multitask frameworks. Deep learning architectures—such as
CNNs, RNNs, GNNs, and transformers—can be applied within many of these
paradigms, enabling practitioners to tackle a diverse array of real-world data

modalities, from images and text to graphs and streaming signals.

Cross validation and Hyperparameter tuning:
Cross-validation is a technique used in machine learning to evaluate how well a

model will perform on unseen data by systematically splitting the available dataset
into multiple train/validation subsets. Instead of relying on a single train/test split—
which can produce misleading performance estimates due to random data
partitioning—k-fold cross-validation divides the data into & equally sized “folds.”
The model trains on k1 folds and validates on the remaining fold, repeating this
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process k times so that every sample serves as validation exactly once. By averaging
the performance metrics across all folds, one obtains a more reliable estimate of the

model’s true generalization ability [10], [11].

Beyond the basic k-fold approach, several variants exist to address specific data
challenges. Stratified k-fold ensures that each fold maintains the same class
proportions as the overall dataset, preventing skewed validation results when dealing
with imbalanced classes. Leave-one-out (LOO) cross-validation uses each individual
sample as its own validation set, which maximizes training data but is
computationally intensive and can yield high-variance estimates. For time-series or
sequential data, forward-chaining (time-based) cross-validation respects temporal
order by training on past observations and validating on future ones. Group or block
cross-validation keeps related samples (e.g., all data from the same subject or device)

together in either the training or validation fold to avoid data leakage [11], [15].

Implementing cross-validation properly requires that all preprocessing steps—such
as scaling, encoding, or feature selection—be fit only on the training folds and then
applied to the validation fold. This ensures no information from the validation set
“leaks” into training. Cross-validation is often combined with hyperparameter tuning
(e.g., grid search), where each candidate hyperparameter configuration is evaluated
via cross-validation and the one with the best average validation performance is
selected. Overall, cross-validation provides a robust framework to prevent
overfitting, guide model selection, and generate stable performance estimates, at the

cost of increased computational effort for retraining across multiple folds [10], [15].

1.4. Classification models applied in this work

Logistic Regression is a simple yet powerful linear classification algorithm that is
widely used for both binary and multiclass classification tasks. In multiclass
problems, it uses the softmax function to estimate the probability that a given input
belongs to each class. Logistic regression assumes a linear relationship between input

features and the log-odds of the classes, making it very interpretable and fast to train.
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It is commonly used as a baseline model because of its simplicity and effectiveness

on linearly separable data [16].

Decision Tree Classifier is a non-parametric supervised learning method used for
classification. It works by recursively splitting the dataset into subsets based on
feature values that minimize impurity metrics like Gini index or entropy. The
resulting tree structure allows for intuitive decision-making and interpretation.
Decision trees can capture non-linear relationships and interactions between
variables, making them useful for a wide range of problems involving tabular data

[17].

Random Forest is an ensemble learning method that builds multiple decision trees
and merges their outputs to improve accuracy and reduce overfitting. It does this by
training each tree on a random subset of data (bagging) and then aggregating their
results, usually via majority voting in classification tasks[18]. Random Forest is more
robust than a single decision tree and performs well on high-dimensional data,

making it a go-to model for many real-world structured datasets.

k-Nearest Neighbors (kNN) is a simple and intuitive classification algorithm that
assigns a class to a new data point based on the majority vote of its k nearest
neighbors in the feature space. It is a lazy learner, meaning it doesn’t learn a model
during training but stores the dataset and uses it for prediction. Although kNN can
work well for datasets with clear class boundaries, it can be computationally

expensive for large datasets and sensitive to feature scaling [19].

MLPClassifier, or Multi-Layer Perceptron, is a type of feedforward artificial neural
network. It consists of input, hidden, and output layers with non-linear activation
functions, allowing it to capture complex patterns in data. MLP is trained using
backpropagation and gradient descent. While it requires more computational
resources and tuning than simpler models, it is very flexible and can approximate any

decision boundary given enough data and capacity [13].

Support Vector Machine (SVM) is a robust classifier that finds the optimal

hyperplane separating different classes with the maximum margin. In multiclass
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problems, SVM uses strategies like one-vs-rest or one-vs-one, and it can handle non-
linear data by applying the kernel trick (e.g., RBF kernel) [20]. SVMs are especially
effective in high-dimensional spaces and are known for their generalization ability,

although they can be slow on large datasets.

XGBoost (Extreme Gradient Boosting) is a high-performance ensemble learning
technique based on gradient boosting. It builds trees sequentially, where each tree
tries to correct the errors made by the previous one. It uses regularization to reduce
overfitting and supports advanced features like missing value handling and tree
pruning. XGBoost is highly efficient and accurate, making it a favorite in machine

learning competitions and practical applications [21].

CatBoost is another gradient boosting framework that stands out for its native
support for categorical variables. It uses a technique called ordered boosting and
symmetric trees to achieve faster convergence and better generalization. CatBoost is
designed to work well with minimal preprocessing and is optimized for both speed
and accuracy. It is particularly useful when working with mixed datasets containing

both numerical and categorical features [22].

LightGBM is a gradient boosting framework developed by Microsoft, known for its
speed and efficiency. It uses a histogram-based algorithm to bucket continuous
features, allowing it to train faster and use less memory. LightGBM also uses a leaf-
wise tree growth strategy, which often leads to better accuracy compared to level-
wise approaches. It is suitable for large-scale datasets and high-dimensional features

and supports native multiclass classification [23].

1.5. Intensive Care Unit (ICU)

An ICU is a specialized hospital area focused on continuously managing patients
with severe, potentially life-threatening conditions. Individuals in the ICU need
constant monitoring because their vital signs such as heart rate, blood pressure,

respiratory function, and oxygen saturation can fluctuate suddenly and significantly.
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ICUs operate 24/7 with a collaborative, multidisciplinary team that includes
intensivists (physicians trained in critical care), critical-care nurses (who often
manage one or two patients at a time), respiratory therapists, pharmacists, and other
experts. This team works together to interpret detailed patient data, respond quickly

to changing situations, and adjust complex treatments without delay.

Patients often rely on advanced life support devices in the ICU like mechanical
ventilators to assist or replace breathing, infusion pumps for precise medication and
fluid delivery, and continuous renal replacement machines to support kidney
function. Bedside monitors continuously display a range of metrics like ECG
readings, invasive blood pressures, oxygen levels with alarms that alert staff to any

worrisome shifts.

The ICU’s main objective is to stabilize critically ill patients, correct dangerous
imbalances (such as severe infections or respiratory failure), and prevent
complications like secondary organ injury or hospital-acquired infections. Once a
patient’s condition is stable and they can maintain vital functions with less intensive
support, they are transitioned often to a step-down unit or general ward where they

continue to recover under less rigorous monitoring.

1.5.1. Ventilator
Ventilation (Physiology)- The movement of air between the environment and the

lungs via inhalation and exhalation.

18



Figure 1 PB 840 ventilator

Mechanical Ventilation- In medicine, using artificial methods to assist breathing.

Ventilator- A machine designed to move breathable air into and out of the lungs.
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Figure 2Ventilator System block diagram

The diagram illustrates the components and airflow path of a mechanical ventilator
system: starting at the graphic user interface (GUI), gas (air and oxygen) is regulated
and conditioned through the inspiratory module (including pressure/flow sensors and
filters), then passed through a humidification device into the patient circuit
(inspiratory limb). Exhaled gas returns via the expiratory limb, passes through an
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expiratory filter and collection vial, and is finally managed by the exhalation
module’s active valve and sensors before completing the cycle [24].
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Figure 3 Puritan Bennett 840 ventilator screen

In this work, ventilator is a device that generates response parameters according to
experiment parameters. It is connected to testchest (patient lung simulator) using the
patient circuit and ET tube.

Basic Parameters of Mechanical Ventilation-
Tidal Volume (VT)- Measured in millilitres (ml), this parameter determines the

amount of volume to be delivered during each machine breath.

Inspiratory Pressure (PI)- Measured in cmH2O, this parameter controls the
maximum inspiratory pressure to be delivered to the patient during a pressure-

controlled machine breath.

Respiratory Rate/Frequency (RR/f)- Measured in breaths per minute (BPM), this

parameter determines the frequency for control breaths.
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Fraction of Inspired Oxygen (Fi02)- Measured as a fraction of 100% oxygen, this

parameter controls the oxygen concentration in the inspired gas.

Positive End-Expiratory Pressure (PEEP)- Measured in cmH2O, these determine

the airway pressure above atmospheric pressure that exists at the end of expiration.

Inspiratory Time (TI)- Measured in seconds, this parameter controls the duration

of the inspiratory phase of breath cycle.

Inspiratory and Expiratory Ratio (I: E Ratio)- This parameter controls the ratio

of inspiration to expiration in relation to the machine rate.

Trigger (Trig. /Sens)- Can be measured in cmH20 or LPM, depending on the type
of triggering system, this parameter determines the amount of inspiratory effort
required by the patient before the ventilator will deliver an assisted breath, or demand

flow in the case of a spontaneous breath.

Pressure Support (PS)- Measured in cmH20O, Pressure support provides a set

amount of pressure during inspiration to support the spontaneously breathing patient.

Inspiratory Pause/ Plateau Time (T Plateau)- Measured in seconds, this parameter

delays exhalation, therefore lengthening inspiration.

Sigh Frequency (Sigh f)- A sigh is a long and deep breath, define as a periodic deep

breath 1.5 to 2.0 times the normal.

Continuous Positive Airway Pressure (CPAP)- Measured in cmH2O, these
determine the constant level of pressure above atmospheric pressure is continuously

applied to the upper airway.

Peak Flow (F/V’)- Measured in litres per minute (LMP), this parameter controls the

flow rate to be delivered to the patient during a machine breath.

Monitored Parameters of Mechanical Ventilation-
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Peak Inspiratory Pressure (PIP)- Measured in cmH2O, Peak inspiratory pressure
is the highest level of pressure applied to the lungs during inhalation. *Indicates the

peak inspiratory pressure achieved during the last delivered breath.

Mean Airway Pressure (P Mean)- This indicates the mean (average) pressure in

the airway over the last minute.

Exhale Tidal Volume (VTE)-This parameter provides the numerical representation

of the patient’s volume of exhaled air.

Exhale Minute Volume (MVE)- Represents the patient’s exhaled tidal volume

(mechanical and spontaneous) over time.
Minute Volume= Exhale tidal volume X Total Respiratory Rate

Total Respiratory Rate (RR TOT/ Ftot)- Represents the total breaths (machine and

spontaneous) delivered by the ventilator during the last minute.

Plateau Pressure (P Plateau)- This parameter indicates the airway pressure during

an inspiratory pause. This is used in the calculation of static compliance.

Resistance(R)- Measured In cmH20O/(1/s), Resistance describe the opposition to a
gas flow entering the respiratory system during inspiration, which is caused by

frictional forces.

R= AP/V’(Flow), Resistance is calculated as the ratio between the pressure

driving a given flow and the resulting flow rate(V).

Compliance(C)- Measure in ml/cmH20, Compliance describe the elastic property

of the respiratory system including the lung and the chest wall.

C= AV/AP, Static compliance is the ratio in change in volume and the

corresponding change in pressure.
Ventilator Alarms

Alarms are the visual and audible signals, intended for hospital staff, that indicate
any abnormality with the patient connected to the device or fault in the device itself.
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Ventilator alarm characteristics for the most common alarms:

Alarm Frequency (%) Criticality
Critical Alarms
LOSS OF POWER 0.1-1.0 Critical
NO 02 SUPPLY 0.1-1.0 Critical
e ORY 1.0-3.0 Critical
CIRCUIT DISCONNECT 3.8-239 Critical
SEVERE OCCLUSION 5.0-10.0 Critical
TPCOMP 17.1-34.3 Critical
TPMEAN 17.1-34.3 Critical
4 VTE MAND 8.6-15.9 Critical
APNEA 1.3-2.9 Critical
LVTE SPONT 8.6-15.9 Critical
Non-Critical Alarms
AC POWER LOSS 0.5-3.0 Non-Critical
LOW BATTERY 1.0-5.0 Non-Critical
02 SENSOR 5.0-15.0 Non-Critical
DEVICE ALERT 3.0-12.0 Non-Critical
PROCEDURE ERROR 2.0-10.0 Non-Critical
SCREEN BLOCK 0.5-2.0 Non-Critical
TfTOoT 9.8-20.4 Non-Critical

Frequency is out of 100. Indicated Criticality is towards patient

Figure 4 Alarm frequency of most common ventilator alarms and corresponding criticality

Alarms can be broadly classified as patient and system alarms as shown in the figure

below.
Patient alarm: Alarms that are caused due to patient condition.

System alarms: Alarms that are raised due to malfunction or damage to the

equipment.
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Figure 5 Alarm Classification on basis of origin of cause

This classification is done after studying the alarms of Puritan Bennett 840 [24]and
Air liquid Taema Extend XT[25].

1.5.2. Para monitor/ Patient monitor

A Para monitor, more commonly known as a multiparameter patient monitor, is
a clinical device that continuously measures and displays a patient’s core vital
signs—namely ECG (with heart rate), respiration rate, non-invasive blood pressure,
blood oxygen saturation (SpO:), pulse rate, and body temperature. Beyond these
basics, most monitors offer plug-in modules for advanced metrics such as invasive
blood pressure, end-tidal CO-, respiratory mechanics, anesthetic gas concentrations,

cardiac output (both invasive and non-invasive), and EEG bispectral index [26].
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Figure 6 Para monitor/ Patient monitor

In routine use across emergency departments, operating rooms, ICUs, CCUs, and
general wards, the patient monitor not only tracks these physiological parameters in
real time but also compares them against preset thresholds. Configurable audible and
visual alarms immediately alert clinical staff to any deviations, supporting prompt
diagnosis and intervention. By providing trend data and event logging, these systems
underpin critical decision-making and have been shown to reduce mortality among

critically 1ll patients [26].

Structurally, modern monitors employ a modular “plug-in” architecture: each sensor
or measurement function (e.g., blood oxygen probe, ECG leads, NIBP cuff) can be
connected or removed as needed. Specialized modules—such as those for
cardiopulmonary resuscitation quality monitoring—work in tandem with the main
unit to evaluate and guide resuscitation efforts. Setup and operation involve a
straightforward sequence of steps (powering on, electrode placement, cuff sizing,
etc.), and careful attention to placement and hygiene helps ensure accurate readings

and patient safety [26].

Designed for use in intensive care units, emergency departments, and operating

rooms, it typically tracks parameters such as [26]:

26



e Electrocardiogram (ECG) and heart rate

e Non-invasive blood pressure (NIBP)

e Oxygen saturation (SpO:) via pulse oximetry
e Respiratory rate

e Body temperature

Optional modules (e.g., invasive blood pressure, end-tidal COz)

Para monitors are used to capture the required vitals through the data acquisition

system in place. Further details about the use and setup are discussed in chapter 4.

1.6. Testchest

TestChest® V3 is essentially a tabletop model of the human heart and lungs, built
for teaching and hands-on training. You can use it by itself as a standalone station or
plug it into a larger patient-simulation system. Its main purpose is to work alongside

a real mechanical ventilator and mimic how lungs inflate and deflate, how

=,
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Commercial Name:  TestChest

Model, Type: V3

Serial No.: 00:50:C2:F1:10:00 - 00:50:C2:F1:1F:FF
Firmware Revision: 3_30_03_12 or higher

User Software: TestChest!fE

Manufacturer: Organis GmbH

Tardisstrasse 225
7205 Zizers SWITZERLAND

Figure 7 Testchest V3
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people breathe on their own, how oxygen and carbon dioxide move in and out of the

blood, and even how changes in breathing affect blood oxygen saturation (SpO:) and

pulse pressure [27].

Software Control via TestChestLIFE [27]

The TestChestLIFE app breaks everything into five broad categories that you can

adjust:

Lung Mechanics: Airway resistance (Raw) predicted functional residual
capacity (FRC,d), overall respiratory system compliance (C_rs), plus more
advanced settings like lower/upper inflection points on the compliance curve,
percentage of lung collapsed at zero airway pressure, and time constants for

recruitment/collapse.

Gas Exchange: Carbon dioxide production (VCO:), dead space volume
(V_{daw}), oxygen diffusion limits (P_{diff}), and how quickly SpO: falls

during an apnea.

Respiratory Control: The initial inspiratory effort (Po.:1), spontaneous
breathing rate (fypont), and even the shape of the spontaneous breathing

waveform (apnea or one of fifteen predefined patterns).

Hemodynamic: Cardiac output (QT), heart rate, pulse pressure variation
(POPv), and two parameters for heart-lung interaction (a time constant
R _{Clh} and a phase delay T {delay}), plus the amplitude of cardiogenic

oscillations in airway pressure.

Special Effects: Leak level (none to large), a low-pass filter cutoff (to smooth
displayed curves), and an FiO: override (if you want to force a specific

oxygen fraction).

Behind the scenes, each of these settings feeds into internal algorithms that decide

exactly how the bellows move, how the pressures change, and how quickly the lungs

collapse or re-recruit. Those mechanical movements produce real pressure readings
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and tidal volumes that the ventilator “feels” just like a patient’s lungs. At the same
time, TestChest® calculates SpO: and (eventually) end-tidal CO: based on gas

exchange equations, then feeds those signals to the OxSim finger.

1.7. Simulated diseases

As the work revolves around ventilation, some most common respiratory conditions
were simulated to generate relevant data. In this work, two diseases, Asthma and
Ventilator Associated Pneumonia (VAP), were simulated and data for respective
diseases was captured. Below subsections provide introduction and background
information to how the parameters for simulation were selected and manipulated.

1.7.1. Asthma

Asthma is a chronic inflammatory disorder of the airways characterized by variable
airflow obstruction and bronchial hyperresponsiveness. Clinically, it presents with
wheezing, dyspnea, chest tightness, and cough, often worsening at night or early
morning. Pathologically, asthma involves persistent airway inflammation driven
predominantly by eosinophils, mast cells, and T helper 2 (Th2) lymphocytes,
although non-Th2 (e.g., neutrophilic) phenotypes also occur. The underlying
mechanisms include genetic predisposition (e.g., variants in the IL-4 receptor and
ADAM33 genes), epigenetic modifications, and environmental factors such as
allergen exposure (house dust mite, pollen), viral infections (rhinovirus), tobacco

smoke, and occupational sensitizers [28], [29].

Multiple factors contribute to asthma onset and exacerbations. Atopy and a family
history of allergic disease increase susceptibility by promoting IgE-mediated
sensitization. Environmental allergens (e.g., aeroallergens, indoor mold) trigger Th2-
driven inflammation, leading to airway eosinophilia and mast cell degranulation.
Viral respiratory infections, especially in early childhood, can disrupt airway
epithelial integrity and skew immune responses toward a pro-asthmatic phenotype.
Tobacco smoke and air pollutants (ozone, particulate matter) enhance airway
inflammation by generating oxidative stress and amplifying cytokine release (e.g.,
IL-5, IL-13). Obesity and psychosocial stress are emerging risk factors that may alter
lung mechanics and immune regulation, further promoting an asthma phenotype

[28], [29].
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Physiologically, asthma is marked by several interrelated alterations:

1. Airway Inflammation and Mucosal Edema: Inflammatory mediators
(histamine, leukotrienes, prostaglandins) increase vascular permeability,
leading to plasma exudation into the airway submucosa. This mucosal edema

narrows the airway lumen and contributes to airflow limitation [28], [29].

2. Bronchial Smooth Muscle Constriction: Hyperresponsive airway smooth
muscle (ASM) contracts excessively in response to stimuli (e.g.,
methacholine, allergens), causing acute bronchoconstriction. This results in
increased airway resistance and reduced forced expiratory volume in one

second (FEV1) [29].

3. Mucus Hypersecretion: Goblet cell hyperplasia and submucosal gland
hypertrophy lead to overproduction of viscous mucus. Mucus plugs can
occlude small airways, exacerbating airflow obstruction and promoting

ventilation—perfusion mismatch [28].

4. Airway Remodeling: Chronic inflammation induces structural changes,
including subepithelial fibrosis (thickening of the reticular basement
membrane), ASM hypertrophy, and increased extracellular matrix
deposition. Over time, these changes stiffen the airways and fix some degree

of airflow limitation, making the disease less reversible [28], [29].

5. Ventilation—Perfusion (V/Q) Mismatch: Areas with bronchoconstriction
and mucus plugging receive perfusion but limited ventilation, producing
right-to-left shunts and hypoxemia. Conversely, overventilated but
underperfused regions contribute to dead space, further impairing gas

exchange [29].

6. Dynamic Hyperinflation: During exacerbations, expiratory flow limitation
prevents complete lung emptying. This leads to air trapping and an increase
in end-expiratory lung volume (auto-PEEP), which increases the work of

breathing and may cause respiratory muscle fatigue [28].
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In summary, asthma arises from genetic and environmental interactions that drive
chronic airway inflammation. The key pathophysiological features include episodic
bronchoconstriction, mucus hypersecretion, and structural remodeling, all of which
culminate in varying degrees of airflow obstruction, V/Q mismatch, and increased
work of breathing. Appropriate management targets both inflammatory pathways
(e.g., inhaled corticosteroids) and bronchoconstriction (e.g., short-acting B2-agonists)

to mitigate symptoms and prevent progressive airway remodeling.

1.7.2. Ventilator Associated Pneumonia (VAP)
Ventilator-associated pneumonia (VAP) is defined as pneumonia that develops at

least 48 hours after endotracheal intubation and initiation of invasive mechanical
ventilation, in a patient whose respiratory tract was not infected at the time of
intubation. Early-onset VAP (post-intubation days 1-4) typically involves antibiotic-
sensitive pathogens, whereas late-onset VAP (day 5 onward) is more often due to

multidrug-resistant organisms [30], [31], [32], [33], [34].

VAP arises because invasive ventilation breaches normal airway defenses and
promotes microaspiration of colonized secretions. Specifically, the endotracheal tube
bypasses the glottic barrier and inhibits the cough reflex, allowing oropharyngeal
flora to pool above the cuff and leak into lower airways [30], [31]. Sedation, supine
positioning, and neuromuscular blockade further impair mucociliary clearance and
cough, facilitating aspiration [30], [31], [34]. Within days of ICU admission—
especially under broad-spectrum antibiotic pressure—the oropharynx and trachea
become colonized by nosocomial pathogens (e.g., Acinetobacter baumannii,
Pseudomonas aeruginosa, Staphylococcus aureus) [31], [33]. Once these bacteria
reach the distal airspaces, alveolar macrophages and neutrophils mount an
inflammatory response, leading to alveolar exudation and consolidation [30], [31],
[34]. Biofilm formation on the endotracheal tube further serves as a reservoir for
pathogens, which can be dislodged during suctioning and inoculate the lung [31].
Key risk factors include mechanical ventilation duration > 48 hours; supine
positioning; sedation and paralysis; reintubation; nasogastric tubes; and prior

antibiotic use, which selects for resistant organisms [30], [31], [33].
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By consensus, VAP manifests no earlier than 48 hours after endotracheal intubation.

Early-onset VAP (days 1-4 of ventilation) generally involves community-type

organisms (e.g., MSSA, Haemophilus influenzae) and carries a more favorable

prognosis, whereas late-onset VAP (day 5 or later) is associated with nosocomial,

multidrug-resistant pathogens (e.g., A. baumannii, P. aeruginosa), resulting in higher

morbidity and mortality [30], [33]. The highest risk of developing VAP occurs within

the first 10 days of mechanical ventilation; thereafter, although the daily risk

diminishes, it persists as long as the endotracheal tube remains in place [31].

Physiological Changes in VAP:

When VAP develops, the following pathophysiological alterations occur:

1.

Alveolar Inflammation and Consolidation:

Bacterial pathogens reaching the alveoli trigger innate immune activation,
leading to neutrophil recruitment, release of inflammatory mediators, and
alveolar-capillary membrane injury. This results in consolidation and

exudation, impairing gas exchange [30], [31].
Ventilation—Perfusion (V/Q) Mismatch:

Consolidated or fluid-filled alveoli receive perfusion but no ventilation (right-
to-left shunt), causing refractory hypoxemia; concomitantly, airway
obstruction and bronchospasm elevate physiologic dead space, leading to

CO: retention [31].
Impaired Oxygenation:

As V/Q mismatch worsens, the PaO/FiO: ratio decreases. Clinicians often
escalate FiO: and positive end-expiratory pressure (PEEP) to maintain

adequate oxygenation, which may exacerbate lung injury [30], [31].
Systemic Inflammatory Response (SIRS):

Local cytokine release (e.g., IL-1, TNF-a) propagates a systemic response

characterized by fever, tachycardia, leukocytosis, and—in severe cases—
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capillary leak and hypotension. If bacteremia ensues, patients may progress

to septic shock [31], [32], [34].
5. Altered Respiratory Mechanics:

Consolidation reduces lung compliance, increasing plateau pressures
required to deliver target tidal volumes; simultaneously, airway inflammation
and secretions increase airway resistance, raising peak inspiratory pressures

[31].
6. Hemodynamic Consequences:

Hypoxic pulmonary vasoconstriction in consolidated lung regions elevates
pulmonary vascular resistance, potentially overloading the right ventricle.
Systemic vasodilation and capillary leak from sepsis can reduce preload and

cardiac output, compounding tissue hypoxia [31].
7. Risk of Progression to ARDS:

Unchecked alveolar-capillary damage may evolve into diffuse alveolar
damage (DAD) and acute respiratory distress syndrome (ARDS),
characterized by hyaline membrane formation and severe, refractory

hypoxemia [31].
8. Multiorgan Dysfunction:

Severe VAP—especially when caused by multidrug-resistant Gram-negative
organisms—can precipitate acute kidney injury, coagulopathy, and

multiorgan failure, markedly increasing mortality risk [32], [33].

This concludes the introduction to the thesis. The introduction encapsulates the
whole idea of digital transformation in healthcare sector with introduction to all the

technologies, medical equipment used and simulated medical conditions.

1.8. Organization of thesis
Chapter one introduces Industry 4.0, Digital healthcare and all the technologies,

equipment, and medical conditions that are utilized in this work.
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Chapter Two will be devoted to an exhaustive review of the literature, critically
evaluating and integrating previous studies on the subject, pinpointing gaps in the
existing knowledge, articulating the research problem and objectives, and exploring

the pertinent theories and frameworks.

Chapter three discusses the current ICU decision chain and proposes a solution to

optimize it.

Chapter four elaborates on the methodology used to build the proposed solution. It
talks about the data involved, the experimentation performed and the data generation
and acquisition method, mapping of alarm, causes and responsive actions, and finally

the criticality calculation method.

Chapter five and six deals with results and discussions, and conclusions that are the
outcomes of the thesis work. Finally, chapter seven emphasizes the future potential

and scope of this work.
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Chapter 2: Problem statement formulation

2.1. Literature review

The Intensive Care Unit (ICU) is a hospital setting designed to manage patients with
life-threatening conditions, necessitating continuous monitoring and rapid
interventions. ICUs handle complex cases—severe sepsis, multiorgan failure, acute
respiratory distress—and employ advanced life-support technologies (ventilators,
infusion pumps, renal replacement therapy) under multidisciplinary teams of
intensivists, critical-care nurses, respiratory therapists, and pharmacists [35], [36].
Although life-saving, this high-acuity environment is prone to unique challenges,
particularly related to resource constraints, diagnostic complexity, patient transitions,
and the cumulative burden of alarms. This review examines general ICU issues,
defines “alarm fatigue” across seminal studies, highlights alarm-specific problems,

and summarizes proposed solutions in chronological order.

Problems faced in an ICU

ICUs frequently operate under resource and infrastructure limitations, especially in
low- and middle-income regions, where shortages of trained staff and disrupted
supply chains hinder standardized care delivery [35]. High patient acuity and
diagnostic complexity compound these challenges: conditions like septic shock and
acute respiratory distress syndrome (ARDS) demand prompt recognition, yet
heterogeneous presentations delay diagnosis [37]. Staffing pressures such as chronic
nursing shortages, low nurse-to-patient ratios elevate workloads, increasing the
likelihood of medical errors, infection transmission, and adverse events [36].
Diagnostic errors also arise from frequent interruptions, cognitive overload, and
inconsistent adherence to evidence-based protocols (e.g., variations in “Wake Up and
Breathe” compliance) [38]. Patient transitions—from ICU to step-down units can
produce care-continuity gaps, communication failures, and mixed emotional
responses among patients, families, and providers, further complicating recovery
[39]. Meanwhile, survivors often endure post—intensive care syndrome (PICS) long-
term physical weakness, cognitive deficits, and psychiatric sequelae stemming from

prolonged immobility, extended sedation, and sleep disruptions during their ICU stay
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[37]. Finally, environmental factors such as high ambient noise (average 68—75 dBA)

and suboptimal unit design hinder both patient rest and staff performance [40].

Alarm Fatigue definition

Deb and Claudio (2015) define alarm fatigue as a combined state of heightened
mental workload and negative affect (boredom, apathy, distrust) resulting from
excessive false or nonactionable alarms; measured via NASA-TLX and affect scales
during direct observations of ICU nurses and unit clerks [41]. Walsh and Waugh
(2020) describe alarm fatigue implicitly as clinician desensitization caused by fewer
than 15 % of mechanical ventilation (MV) alarms being clinically relevant, leading
to sensor overload and delayed responses [42]. Dills (2017) frames alarm fatigue
operationally around middleware-filtered scenarios: RTs exposed to > 19 000
ventilator alarms/day become unable to differentiate actionable events amid a flood
of nonactionable high inspiratory pressure or high respiratory rate alarms [43]. The
AAMI/ACCE (2006) white paper characterizes alarm fatigue as clinicians becoming
“cognitively numb” to frequent false alarms (85-99 % false positive), leading to
alarm disabling or ignoring and occasional failure to recognize true emergencies [44].
Stokes, Manzoor, and Cvach (2017) imply alarm fatigue through RTs reporting
frequent nuisance ventilator alarms, undermining confidence in alarm reliability and

prompting avoidance behaviors in alarm customization [38].

Alarm fatigue underlies several interrelated ICU problems. High false or
nonactionable alarm rates—often 85-90 % of MV alarms and 88.8 % of arrhythmia
alarms—overwhelm clinicians, reducing trust and elongating response times [40],
[42]. Ambient noise levels exceeding 82 dBA from alarms further desensitize staff
and mask true alerts [36], [40]. Inconsistent alarm terminology and priority coding
across ventilator brands cause confusion: for instance, 89.8 % of Hamilton G5 alarms
are “high priority” versus only 8.6 % of Puritan Bennett 840 alarms in the same ICU,
despite similar physiologic triggers [43]. Alarm limit settings rarely track actual
patient parameters—upper respiratory rate limits change by only 1 breath/min for a

10 breaths/min change in measured rate—resulting in either nuisance alarms or
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delayed detection of critical events [43]. Furthermore, redundant alarm notification
cascades (e.g., central station + nurse-call + middleware to Wi-Fi phones) can
amplify a single event into multiple alerts, with each ventilator averaging 7 initial
alarms/hour and 2.8 secondary notifications/hour, equating to = 9.8

notifications/ventilator-hour (one every ~ 6 minutes) [43].

Industry-level initiatives began in 2006 when the ACCE Healthcare Technology
Foundation recommended adopting IEC 60601-1-8 to standardize alarm tones and
priorities, alongside hospital-wide policies that specify which alarms require
immediate intervention [44]. They also advised appointing “alarm champions,”
performing regular alarm audits, and embedding alarm-system training into staff
orientation and annual competencies. These measures aimed to reduce nuisance
alarms, harmonize clinician interpretation, and reinforce alarm-management
accountability.

Building on that foundation, Yang et al. (2012) developed a prototype intelligent
ventilator alarm system using a PIC32MX microcontroller [38]. By continuously
sampling ventilator parameters (Ppeak, Rexp, Fexp, end-PEEP) via RS-232 and applying
context-specific logic (e.g., PpeakT + RexpT + Fexpl — “suction needed”), the system
generated targeted alerts that were wirelessly transmitted via ZigBee to a nurse-
station interface. Bench testing of sputum impaction and airway leak scenarios
demonstrated significant reductions in false alarms compared to traditional high-
pressure thresholds.

In 2015, Deb and Claudio quantified alarm fatigue in ICU staff through NASA-TLX
(mental workload) and affect scales [41]. Their observational study linked high alarm
frequency, environmental noise, and staffing ratios to elevated workload and
negative affect, identifying personality traits as moderating factors. They
recommended optimizing nurse-to-patient ratios, tailoring training to individual
profiles, and implementing noise-reduction strategies rather than focusing solely on
alarm volume reduction.

From 2017 to 2018, multiple institutions implemented middleware and quality-

improvement projects. Dills (2017) deployed middleware at Hospital for Special
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Care to filter ventilator alarms: patient-specific HIP and HRR alarms that self-
resolved within 90 s were suppressed, while actionable alarms (disconnect, low
minute ventilation) were forwarded to pagers and Wi-Fi phones, markedly reducing
nonactionable alerts [43]. De Vaux et al. (2017) formed a multidisciplinary alarm
management team at Yale New Haven Hospital, using the AACN toolkit to identify
PVC alarms as the main nuisance; interventions—staff education, zone-based
response, disabling PVC defaults, enabling continuous QTc monitoring—achieved a
77 % reduction in audible alarms and raised alarm customization from 39 % to 87.5
% with no adverse events [36]. Stokes et al. (2017) at Johns Hopkins simplified
ventilator alarm guidelines and provided targeted RT education, increasing alarm
customization from 27 % to 40 % within 24 h of ventilator initiation by addressing
overly complex policies and notification gaps [38]. Meanwhile, Villanueva et al.
(2018) implemented staff education, “quiet hours,” and “Quiet, Please” signage to
reduce ICU noise from 68 £ 5 dBA to 60 = 4 dBA (p < 0.001), improving patient
sleep scores and indirectly mitigating alarm fatigue [40].

In 2019 and 2020, researchers synthesized insights and refined best practices. Scott
et al. (2019) conducted a PRISMA-guided review showing ICU patients face 150—
190 alarms per day (MV alarms = 11.7-42.2 %, 82-83 dBA), linking generic
thresholds to nuisance alerts [45]. They advocated “smart alarms” (composite
triggers, adaptive delays), middleware for off-site notifications, standardized MV
alarm protocols, and interdisciplinary education to restore trust. Walsh and Waugh
(2020) echoed these recommendations, emphasizing individualized thresholds based
on patient baselines, intelligent alarm features (paired triggers, escalation
hierarchies), and biomedical device integration to route alarms through tiered
dashboards [42]. Cvach et al. (2020) performed a prospective study using Capsule
Axon bridges on PB840 and G5 ventilators, revealing 7 + 4 alarms/hour with 40 %
persisting > 15 s (triggering 2.8 + 1.8 secondary notifications, ~ 9.8 cascades/hour).
They highlighted manufacturer priority discrepancies and poor alarm-
limit/parameter correlations, proposing continuous logging to guide patient-specific
adjustments and unified priority definitions [43]. Lin et al. (2020) applied HFMEA

to intrahospital transport, introducing mnemonic “reminder-assisted briefings”
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(VITAL, STOP) that reduced IHT-related adverse events from 1.08 % to 0.23 % (p
=0.01) and increased task completeness from 80.8 % to 96.5 % (p < 0.001) [37].
Recent work has advanced both research agendas and technological solutions. Scott
(2021) issued five research priorities: MV alarm reliability, patient-specific
thresholds, off-bed notification strategies, clinician competency frameworks, and
analyses of invasive versus noninvasive mode alarms [46]. Coldewey et al. (2021)
systematically reviewed ventilation-device usability, identifying 51 failure modes—
ambiguous labels, hidden power switches, deep menu hierarchies, inconsistent
terminology (e.g., “Tplat” vs. “Tpause”), and confusing alarm color coding—and
recommended ISO 19223 for uniform labeling, IEC 60601-1-8 for standard tones,
Ul improvements, and consistent alarm coding across brands [47]. Asadi et al. (2022)
surveyed 140 COVID-19 ICU nurses using a 13-item alarm fatigue questionnaire
(range 8—44) and a 24-item moral distress scale (range 0-96), finding moderate alarm
fatigue (19.08 + 6.26) inversely correlated with ventilator/alarm training (r = —0.25,
p < 0.01) and higher fatigue among female/PhD-level nurses; they recommended
regular hands-on training and minimizing rotating shifts [48]. Li and Ge (2021)
proposed a representation-learning framework that constructs dynamic knowledge
graphs and Probabilistic State Machines to compute real-time imminence scores,
suppressing low-risk alarms without predefined patterns and matching LSTM
accuracy at = 100x throughput [39], [40]. Finally, Li et al. (2024) described a
Node.js- and WebSocket-based web monitoring system integrating RS-232
microcontrollers, PostgreSQL storage, and React Native mobile clients to filter
noncritical alarms; in a 50-patient pilot, they achieved a 30 % reduction in alarm-
response latency (12 +£3 s vs. 17 £5 s; p <0.01) and high usability scores (> 4.2/5)
[49].

2.3. Research Gap

Despite extensive documentation of alarm-related hazards in ICUs, false and
nonactionable alarms persist as a significant safety concern. Early observational
studies quantified how nurses and respiratory therapists are exposed to hundreds of

alarms per shift, leading to delayed response times and, in some instances, missed
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critical events [41], [43]. Even with guidelines advising customization of alarm
thresholds, alarm volumes often rebound when new devices are introduced or when
defaults are reset. In practice, alarm overload continues to erode clinician trust,

illustrating that awareness alone is insufficient to curb the problem.

Many publications advocate policy frameworks and staff education as key remedies.
The ACCE Healthcare Technology Foundation (2006) recommended standardizing
alarm tones (IEC 60601-1-8), appointing “alarm champions,” and conducting regular
audits [44]. Similarly, De Vaux et al. (2017) reported that multidisciplinary teams
and PDSA cycles reduced specific nuisance alarms by 77 % through staff training
and default setting adjustments [36]. Stokes et al. (2017) showed that simplifying
ventilator alarm guidelines and focused RT education increased alarm customization
from 27 % to 40 % [38]. However, these interventions often rely on ongoing
compliance and repeated training, which can wane under high patient loads or

frequent staff turnover.

To complement policies and training, several groups have developed technological
tools. Yang et al. (2012) created a bench-tested intelligent alarm that filters artifacts
by analysing ventilator parameters in real time [38]. Dills (2017) implemented
middleware to suppress short-lived ventilator alarms, forwarding only actionable
events [43]. Later, Walsh and Waugh (2020) and Li & Ge (2021) proposed smart-
alarm features pairing related alarm cues, adaptive delays, and PSM-based
imminence scoring to further reduce false positives [40], [42]. Li et al. (2024)
demonstrated a web-based monitoring system that lowered alarm-response latency
by 30 % in a 50-patient pilot [49]. Despite promising results, these solutions have
seen limited real-world adoption due to scalability challenges, compatibility issues

with diverse device inventories, and the need for substantial IT infrastructure.

In summary, existing efforts—whether guideline-driven, educational, or
technological—tend to address individual aspects of alarm fatigue without delivering
a fully integrated solution. Guidelines and training improve staff behaviour only
while actively reinforced; intelligent alarms and middleware reduce noise but often

require bespoke setups that are difficult to generalize across ICUs. A research gap
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remains for a cohesive framework that combines adaptive, patient-specific
thresholds; universally consistent user interfaces; seamless integration with
electronic health records; and minimal additional burden on frontline staff.
Addressing this gap is essential to transform isolated successes into sustained, ICU-

wide improvements.

So, this project focusses on fabricating a smart decision support system to analyse
the criticality of each alarm based on patient condition as well as identify cause form

ventilator parameter fluctuations and suggest responsive actions to the staff.

2.4. Research objectives

* To detect actual cause of the fluctuations in the equipment readings
* To classify alarms as Patient and System alarms
* To find out the criticality of the alarms

* Torecommend actions appropriate for raised alarm
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Chapter 3: Proposed Solution
3.1. Current ICU Decision Chain

ICU Decision Dynamics

Alert and report
actions taken
""" Actions to

stabalize patient
P Subset

of

= . . .

Doctor Specialist

..................
173

Figure 8Current ICU Decision Dynamics

Just like any workplace, an ICU has an order of authority and task
compartmentalization. The above diagram depicts the decision-making hierarchy in
an ICU. A patient in ICU is always hooked to a device called Para monitor. This
device is used to monitor vital signs of a patient, to get an alert when the vitals deviate
out of acceptable ranges. Similarly, ventilators are also a device that is used more
frequently in an ICU. Whenever there is abnormality with the patient, these devices

when hooked to a patient will generate alerts or alarms.

These alarms can be because of various reasons, so the actions performed for each
one will be different for different circumstances. Some alarms may be ignored, some
may be fixed with minor adjustments, some may need clinical intervention, and

others may be due to faulty equipment. There are numerous possibilities.

Nurses are mostly the first individuals to be alerted by any change in patient
condition, as they are stationed near the patient all the time. They have a particular

set of actions and check list to perform and check to stabilize the situation. Anything
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beyond their scope needs to be alerted to Resident Doctors and Anesthesiologists (in
case of mechanical ventilation). Any decision regarding equipment settings and
clinical intervention is taken by these roles. Decisions regarding involving a
specialist as the situation demands is also a decision a doctor makes. Final treatment
course decisions are taken by Senior doctors and specialists after looking at the report

from their sub-ordinates.

Everyone has some time delay in their actions depending on how the information
was passed and what actions were taken by the immediate sub-ordinate. This is

indicated using green dotted line.

When an alarm occurs, the first three healthcare professionals should stabilize the
situation as soon as possible as delayed action may endanger the patient’s life.
Mostly, senior doctors are informed about patient progress twice a day, which is a

large timespan for some underlying issues to go unresolved.

The proposed solution targets these issues.

3.2. Where does proposed solution fit in?

ICU Decision Dynamics with proposed solution
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Equipment data Analyse cause, criticality and actionability and Pro d
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=== Suggested actions P suggest immediate and follow up actions for each Solution o

=== Report actions taken role
Generated
Alarms

----- ¥ Actions to
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Figure 9 ICU Decision Dynamics with proposed solution
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The proposed solution aims to resolve this issue by firstly determining critical or

actionable alarms and suggesting the most appropriate actions.

This objective is achieved by capturing real time data from equipment, analyzing it
to derive the cause of alarm and suggesting actions based on type of cause. This
solution uses Industry 4.0 technologies, meaning digitalization and real time analysis,

which reduces the time delay in the actions of medical professionals.

The purple arrows in the diagram represent the information co-ordination between
solutions and the medical professionals. Also, the actions taken by primary attenders
will have no delay as the process can be parallel, instead of being in series like that

in conventional systems.
Benefits of the solution:

e Reduction in response time
e Allows actions by multiple staff members to be performed simultaneously
e Senior Doctors can be alerted at any instance of emergency with a full report

e Reduction in time needed to adjust treatment plans
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Chapter 4: Methodology

This chapter talks about the approach used to achieve the set objectives and steps

followed to decipher the issue and suggest actions to the staff on ground.

Rule-based
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Figure 10 Working of proposed solution

The diagram represents the complete flow of information, algorithms and backend
analytics performed to get to a solution. Starting with the alarm generated, it is
triggered when certain parameters cross the set threshold or the device needs

maintenance. These alarms are to be labelled as critical or non-critical.

The first step is to classify them as patient alarms and System alarms. A simple rule-
based classifier sorts of patient and system alarms. There is a set of alarms that can
reflect both patient conditions as well as system failures/faults. So, these alarms are

labelled Ambiguous alarms, as they cannot be told apart at this stage.

Simultaneously, Ventilator parameters are being analyzed for cause detection. This
data driven process detects any abnormalities in data and tries to distinguish the type
of failure or fault in the system or at the patient end. This is used as the most probable
cause for the alarms. Correlating alarms and causes helps further classification of

ambiguous alarms as patient or system alarms.

Once the alarm is classified as patient or system alarm, this information is used to

calculate the criticality of that alarm. Along with alarm type, other major
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contributions to determining the criticality of any alarm are the patient vital
conditions at that given instance and the Artillery blood gases (ABG) report
parameters. The score calculated tells whether the alarm is critical or not, in other

words, it tells us if alarm should be attended or ignored.

The results are displayed to the hospital staff, which contains the cause of the alarm

and some responsive actions that each staff member can perform to resolve the issue

or stabilize the patient.
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Figure 11 Methodology

The steps taken to achieve the outcome are as follows:

e Data

e Mapping alarms with causes

e (Cause detection ML Model

e Correlating alarms and causes with responsive actions

e C(riticality score calculation

These steps are elaborated ahead.

4.1. Identifying Data

“Data” is defined as a representation of facts, concepts, or instructions in a formalized
manner, suitable for communication, interpretation, or processing by humans or by

automatic means[50]. Data can be measured, collected, reported, and analyzed,
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whereupon it is often visualized using graphs, images, or other analysis tools. Raw
data ("unprocessed data") may be a collection of numbers or characters before it's
been "cleaned" and corrected by researchers. It must be corrected so that we can
remove outliers, instruments, or data entry errors. Data processing commonly occurs
in stages, and therefore the "processed data" from one stage could also be considered
the "raw data" of subsequent stages. Field data is data that's collected in an
uncontrolled "in situ" environment. Experimental data is the data that is generated

within the observation of scientific investigations. Data can be generated by:

e Humans
e Machines
e Human-Machine combines.

It can often generate anywhere where any information is generated and stored in

structured or unstructured formats

The variables that are identified to understand the alarms and the patient conditions
are: Alarm messages from ventilator, Ventilator response parameters, Ventilator

settings, para monitor responses lab reports and doctors’ diagnosis.

Identified actionable alarm Check if similar issue per;ists :
after replacement of ventilator map correlation

Alarms——3> A11 A5 A1 A9 A2 Al A8 Al A1l AB A3 A8

good condition

time series data

time series data

Figure 12 Required data characteristics
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Definitions:

Ventilator Settings and Alarm Settings: These parameters are set on a ventilator
before attaching the patient so that the patient is stabilized. The values or range of

values are decided by the Anesthesiologist according to patient condition.

Ventilator Alarms: It is a message representing any abnormality with the patient or
the system (ventilator), generated by the ventilator, to alert the hospital staff. It occurs

on the ventilator screen with associated remedies.
Para Monitor Response: Parameters that depict the patient vitals in real time.

Ventilator Response Parameters: These parameters show the patient’s response to

the mechanical ventilation provided by the ventilator.

Arterial Blood Gasses (ABG) Report: This report provides information about the
important factors of blood that are directly related to ventilation or respiratory system

functioning.

The table below shows the data generation frequency of each group of parameters.

Each parameter in a group has the same frequency as that of the group of parameters.

Table 1 Generation frequency of each data group

Data Source Generation Frequency
Ventilator Settings Ventilator continuous
Ventilator Alarm Settings Ventilator once every setup
Ventilator alarms Ventilator 7-8 per hour on average
Para monitor Readings Para monitor continuous
Ventilator Response Ventilator continuous
ABG report Lab results Once or per day

48



Details of each parameter are given below[24]:

Table 2 Name, representation and unit of every parameter

Parameters Representations Units
Ventilator Settings

Ventilation Mode - -
Inspiratory Pressure Pl cmH20
Pressure support PS cmH20
:’:):;t;\l:(:eEnd Expiratory PEEP cm H20
Tidal volume Vit ml
Maximum Minute ventilation Vmin L/min
Respiratory Rate F bpm- breaths per minute
Inhalation time to Exhalation IE )
time ratio
Fraction of inspired oxygen FiO02 %

Ventilator Alarm Settings

Peak pressure Ppeak cm H20
Respiratory Rate Ftot bpm- breaths per minute
Minute ventilation Vetot L/min

Tidal volume mandatory Vtmand ml

Tidal volume spontaneous Vtspont ml

Response Parameters

Ventilator alarms

Alarm message

Para-monitor Readings

Heart Rate HR/ PR bpm- beats per minute

Oxygen Saturation Sp02 %

Blood Pressure BP mm of Hg

Temperature Temp F
Ventilator Response

Type of ventilation - -

Peak Pressure Ppeak cmH20

g(r)es;tsl\ljt:eEnd Expiratory PEEP cm H20

Tidalvolume Vit ml

Minute ventilation Vetot L/min
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Respiratory Rate

Ftot

bpm- breaths per minute

Inhalation time to Exhalation

time ratio

I:E

4.2. Cause detection

Data Identificati Data Simulation Data Integration Data Analvsi
ata fdentiication and Collection and Cleaning ala Analysis

Identified data:

Ventilator setting and
response parameters

Para-monitor readings

Doctor’s diagnosis and
report results

Alarms raised by
ventilator

Patient condition
scenarios are
simulated on

Testchest to collect
data.

Design of Experiments
is performed to
optimize
experimentation.

Ventilator readings
and para-monitor
readings are collected
simultaneously using
computer vision.

Data from ventilator
and paramonitor is
synced with respect to
time stamp.

Any missing value are
cleaned out and data
is corrected manually
in case of collection
error.

Exploratory Data
Analysis (EDA) is
performed to
understand and
interpret data better.

Techniques used:
Analysis of Variance
(ANOVA), K-means
clustering, and t-
distributed Stochastic
Neighbor Embedding
(t-SNE)

Model Training and
Testing

Classification to
detect cause and track
progression of
condition.

Evaluation: Accuracy,
Precision, recall and
F1 score

Figure 13 Cause identification methodology

4.2.1. Identifying Data
The data structure and requirements are the same as in section 4.1.

4.2.2. Data Simulation and Acquisition

Detected cause used
to calculate criticality
which can be used to
suggest actions for
every alarm.

Gathering and capturing real world data for such solutions is the ideal choice. But
this approach has lot of challenges. Lack of digital infrastructure in hospitals, ethical
obstacles and unavailability of proper datasets are some of them. This prompted the
data simulation idea.

4.2.2.1. Data Simulation

A Simulator, the testchest, is used to simulate various patient conditions and vital

signs. And the responses are recorded from the ventilator and para monitor screens.

Few experiments were carried out to simulate various faults in ventilation while

healthy and diseased patients are being ventilated. The experiment details are as

follows:
Objectives:

* To form a dataset that can be used to detect cause, i.e., mechanical failures
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* To capture data for leakages and blockages while running different patient

lung conditions

Theory: Testchest and its use, specification parameters

Apparatus:
1. Testchest
1i. Ventilator
1il. Para monitor
iv. Patient circuit
V. Endotracheal tube with ID 7

vi. A simple open/shut valve with ID 7

Vii. Air compressor
Experiment setup:

Testchest is the lung simulator and simulates vital signs. It is connected to a ventilator
via ET tube and patient circuit. The patient circuit has two arms, one for inhalation

and the other for exhalation connected to respective ports in ventilator.

The testchest simulated patient vitals are transmitted to para monitor via pulse

oximeter.
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The system at the bottom left corner of the image uses a software called TestChest

Organis to design and send simulation instructions to the testchest.

Para-monitor
Reflects Patient vitals

Ventilator
Ventilator settings and patient
Responses are reflected

Testchest
Simulates patient’s
respiratory condition

- N

A )\

Patient Circuit
Connects ventilator to
patient’s respiratory system.

Patient-vitals simulator
Simulates oxygen
saturation and pulse rate

Figure 14 Experiment setup indication the experiment apparatus
Experiment control and response parameters:

Control parameters Response parameters

Patient Respiratory condition simulation

Paramonitor Readings
TestChest Settings
* HeartRate
« Lung Mechanics Oxygen S: i
* Gas Exchange = * Blood Pressure
« Respiratory « Temperature
Control S o secucn §
» Haemodynamics v—
 Special Effects
Ventilator Response
* Type of ventilation
. * Peak Pressure
Ventilator Settings. * Positive End Expiratory.
Pressure
_—
« Ventilation Mode B e
* Type of ventilation » Respiratory

Rate
* Peak Inspiratory Pressure » Inhalation to Exhalation ratio

* Positive End Expiratory
Pressure

Ventilator alarms.

Figure 15 The setup information and response parameters of the experiment

The Control parameters have three main divisions. First, the patient’s respiratory
condition, is manipulated using 33 parameters classified in 5 broad categories- Lung
Mechanics, Respiratory Control, Hemodynamic, Gas Exchange, and Special Effects.
Secondly, the ventilator settings, to ventilate the simulated lung. And finally,
ventilator alarm settings, set to trigger alarms based on ventilation requirements.
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Response parameters are the simulation results that are reflected on the ventilator and

para monitor screens.

The Control parameter settings for 2 experiments are as follows:

Table 3 Experiment 01 control parameters for healthy and Severe Asthma patients

Adult >18 Adult >18
65 65
Healthy Severe Asthma
Ventilator Settings
A/C A/C
VC VC
470 470
5.64 5.64
12 12
3 3
01:02 01:02
32 32
33 33
NA NA
NA NA
Testchest settings
Rp5 Rp200
0 30
None Large
100 93
30 80

Table 4 Experiment 02 control parameters for healthy and VAP patients

Adult >18

65
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Mild Moderate Severe
Patient Lung condition : Healthy VAP VAP VAP
Ventilator Settings
Mode: A/C A/C A/C A/C
Peak Inspiratory
Pressure: cm H20 VC VC VC VC
TV : ml 450 450 450 450
MV : L/min 5.85 5.85 5.85 5.85
RR: frequency 13 13 13 13
PEEP : cm H20 3 3 3 3
I:E 01:02 01:02 01:02 01:02
Vmin max L/min 32 32 32 32
Vmin sens L/min 3 3 3 3
PI cmH20 NA NA NA NA
Ti sec NA NA NA NA
Testchest settings
Airway Resistance Raw Rp5 Rp5 Rp20 Rp50
Collapse % 0 10 30 60
mL/cm
Lung compliance, Cl H20 117 90 70 35
mL/cm
Chest compliance, CW H20 93.6 94 94 94
mL/cm
Total compliance, Crs H20 52 42 31 21
Fi02 % 30 40 60 90
Table 5 Alarm thresholds set on ventilator during experimentation
Alarm Thresholds
Lower limit Upper limit
Ppeak - 40 cm H20
Ftot - 30 frequency
Vminetot 3.25 6 L/min
Vtemand 330 610 ml
Vte spont 330 610 ml

All the experiments are done for adult patients that need mandatory ventilation.

These parameters

anesthesiologists.

are

selected based on discussions
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Experiment scenarios:

Experiment 01:

Table 6 Faults induced and the method to simulate it in Experiment 01

Disease Induced Fault Simulates
Healthy No fault
LTCleakage Large leakage due to ET tube using testchest
MTCleakage Medium leakage due to ET tube using testchest
70Blockage at IS due 70% patient circuit blockage on Inhalation arm
to pipe squeeze due to kink
95Blockage at IS due 95% patient circuit blockage on Inhalation arm
to pipe squeeze due to kink
70Blockage at ES due 70% patient circuit blockage on exhalation arm
to pipe squeeze due to kink
95Blockage at ES due 95% patient circuit blockage on exhalation arm
to pipe squeeze due to kink
STCleakage Small leakage due to ET tube using testchest
30.67% patient circuit blockage using zip tie-
ISL1Blockage diameter reduction at Inhalation side
o : P T
ISL2Blockage 45.33 A) patient mrcqlt blockage using zip tie
Healthy diameter reduction at Inhalation side
24% patient circuit blockage using zip tie-
ESL3Blockage diameter reduction at exhalation side
33.33% patient circuit blockage using zip tie-
ESL4Blockage diameter reduction at exhalation side
56% patient circuit blockage using zip tie-
ESL5Blockage diameter reduction at exhalation side
2cm cut on patient circuit arm-Leakage in
EScCutleakage exhalation arm closer to ET tube
2cm cut on patient circuit arm- Leakage in
IScCutleakage inhalation arm closer to ET tube
2cm cut on patient circuit arm- Leakage in
ESACutleakage exhalation arm away to ET tube
2cm cut on patient circuit arm- Leakage in
ISACutleakage inhalation arm away to ET tube
Inside tube blockage Blockage using a cotton l?all inside the patient
circuit
Normal No fault
LTCleakage Large leakage due to ET tube using testchest
MTCleakage Medium leakage due to ET tube using testchest
Severe STCleakage Small leakage due to ET tube using testchest
Asthma ISAleakace 2cm cut on patient circuit arm- Leakage in
& inhalation arm away to ET tube
ESAleakage 2cm cut on patient circuit arm- Leakage in

exhalation arm away to ET tube
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2cm cut on patient circuit arm-Leakage in

ESCleakage exhalation arm closer to ET tube
2cm cut on patient circuit arm- Leakage in
ISCleakage inhalation arm closer to ET tube
E180tubelink Blockage due to 180 degree tube kink at
exhalation arm
[180tubekink Blockage due to 180 degree tube kink at inhalation

arm

(c)

Figure 16 a)180 degrees Patient circuit kink, b) Simulating blockage using patient circuit squeeze
¢) Leakage simulation using a cut in patient circuit

Figure 17 Teschest used for leakage simulation
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Experiment 02:

Experiments for three faults or causes at different levels while simulating diseased

lung conditions are performed in the following manner-

Table 7 Induced fault and method of simulation for Experiment 02

Disease Induced Fault Simulates
Normal No fault
STCleakage leakage due to ET tube
MTCleakage leakage due to ET tube
LTCleakage leakage due to ET tube
L1ETTblockage Obstruction inside ET tube
Healthy —
L2ETTblockage Obstruction inside ET tube
L3ETTblockage Obstruction inside ET tube
20DETTblockage ET Tube Kink/ bend
25DETTblockage ET Tube Kink/ bend
30DETTblockage ET Tube Kink/ bend
Normal No fault
STCleakage leakage due to ET tube
MTCleakage leakage due to ET tube
LTCleakage leakage due to ET tube
VAP-mild L1ETTblockage Obstruct%on %ns%de ET tube
L2ETTblockage Obstruction inside ET tube
L3ETTblockage Obstruction inside ET tube
20DETTblockage ET Tube Kink/ bend
25DETTblockage ET Tube Kink/ bend
30DETTblockage ET Tube Kink/ bend
Normal No fault
STCleakage leakage due to ET tube
MTCleakage leakage due to ET tube
LTCleakage leakage due to ET tube
VAP-moderate L1ETTblockage Obstruct?on ?ns?de ET tube
L2ETTblockage Obstruction inside ET tube
L3ETTblockage Obstruction inside ET tube
20DETTblockage ET Tube Kink/ bend
25DETTblockage ET Tube Kink/ bend
30DETTblockage ET Tube Kink/ bend
Normal No fault
VAP-Severe STCleakage leakage due to ET tube
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MTCleakage leakage due to ET tube

LTCleakage leakage due to ET tube
L1ETTblockage Obstruction inside ET tube
L2ETTblockage Obstruction inside ET tube
L3ETTblockage Obstruction inside ET tube
20DETTblockage ET Tube Kink/ bend
25DETTblockage ET Tube Kink/ bend
30DETTblockage ET Tube Kink/ bend

The following table explains the method used to simulate the faults.

Induced Fault Method to achieve fault
Normal No induced fault
STCleakage Small leakage through test chest settings
MTCleakage Medium leakage through test chest settings
LTCleakage Large leakage through test chest settings
L1ETTblockage 47.79 % blockage of ET tube opening
L2ETTblockage 69.90 % blockage of ET tube opening
L3ETTblockage 91.16 % blockage of ET tube opening
20DETTblockage 20 degrees valve position
25DETTblockage 25 degrees valve position
30DETTblockage 30 degrees valve position

Figure 18 Testchest used for leakage simulation
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Figure 20 Simulation of blockage of ET Tube kink/bend using a valve

Experiment procedure:

1. Design lung condition parameters from literature and verify with doctors.

il. Follow the standard procedures to start and set up the individual devices.

1il. Feed the lung parameters to testchest via TestChest Organis and start the
simulation.

iv. Connect the para monitor to the testchest using a pulse oximeter.

V. Connect the patient circuit to the ventilator and at the other end with

single opening, connect the ET tube.

vi. Set up the ventilator using the decided control parameters and start
ventilation.

vii.  Insert the open end of ET tube in the testchest opening and inflate the cuff
to hold it in place.

viii.  The setup is complete. Ventilator and para monitor screens will show the
responses.

iX. Run different fault scenarios and capture data.
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X. Once done with fault scenarios, change the patient condition using test

chest and repeat the fault scenarios.

4.2.2.2. Data Acquisition
Data Acquisition: This stage encompasses the methods used to collect raw data

from various sources. This could involve sensor reading, scraping web data, or

gathering information through surveys and application logs.

The experiments generate the necessary data. This data needs to be collected in a
digital format. The best way to capture this data would be to take data directly from

the devices, but there are ethical restrictions to this method.

So, an optical character recognition solution was used to capture data from the device

screens.

A camera focuses on the device screen and captures images alternatively for both the
devices. The clicked image is then processed using an Optical character recognition
(OCR) model. This model uses YOLOv7 for object detection and QWEN for
character recognition. The extracted data from the images is stored in Excel files.

These files are further processed to get data in the required format.

OCR Model

LN N

= See, Data Extraction from
R Image
] oy
|
1 RN
1 =
] e\
\
Ventilator AN -
\ o o
4 L Camera
T
)
&=)
\ e J Stored In .csv format

Para-monitor

Figure 21 Data Acquisition method
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2.3. Data Collection and integration
Data collected in excel format is stored in multiple files. Ventilator and para monitor
data are stored in two different files. While the third file contains the labels for all

the causes and the timestamps for which each experiment was run.

All data from these three files was compiled in one using the timestamps as the

connecting link. This step is called data integration.

4.2.4. Data Preprocessing

Data preprocessing involves cleaning, transforming, and organizing raw data to
make it suitable for analysis or model training. It's a crucial step in data science and
machine learning, enhancing data quality, ensuring consistency, and preparing data

for specific analytical techniques.

The raw data obtained needs preprocessing to get it ready to perform any analysis on
it. In this step, all the missing values and duplicates are dealt with using multiple

methods.

The integrated data from the experiments have multiple missing values. The reason
being not every datapoint in the Ventilator and para monitor file had the linking time
stamp in the label file, as the data was collected in a continuous manner, each scenario

in the experiments had some stabilizing time.

Some data point had missing value, while others had wrong entries in wrong
columns. These were handled by setting the threshold for the columns and the odd

values were replaced with the column mean of that scenario.
outliers along the whole dataset.

4.2.5. Exploratory data analysis (EDA)
EDA is performed to extract trends and correlation among parameters from the data.

It is performed in the following steps:
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Exploration:
e Univariate Analysis: Analyse individual variables using descriptive
statistics (mean, median, mode, range, variance, standard deviation) and

visualizations (histograms, box plots).

o Bivariate Analysis: Examine relationships between two variables using

scatter plots, heatmaps, or other visualizations.

e Multivariate Analysis: Investigate interactions between multiple variables,

often using correlation analysis.

e Multivariable analysis: one outcome but multiple predictor (independent)
variables (e.g., multiple regression, logistic regression with several
covariates).

The aim is to identify cause using multiple variables. So, a multivariable ANOVA analysis
was performed to find out the significance of each variable on outcome.

ANOVA Test Results - Significance of Parameters for healthy lung

PEAK -

PMEAN

FTOT 4

VTE

Parameter

VETOT 4

PEEP1 +

PR

T T T T v T
4] 500 1000 1500 2000 2500 3000
F-statistic

Figure 22 ANOVA results for healthy patient data in Experiment 01

ANOVA Test Results - Significance of Parameters For Severe Asthma

PEAK

PMEAN -

VETOT 4

Parameter

5p02

PEEP1 4

o 50000 100000 150000 200000 250000
F-statistic

Figure 23ANOVA results for Severe Asthma patient data in Experiment 01
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ANOVA Test Results - Significance of Parameters

PMEAN 1

PEEP1 1

Parameter
3
S

VTE 4

5p02 4

VETOT -

o 20000 40000 60000 80000 100000
F-statistic

Figure 24 ANOVA results for Experiment 02

Feature Engineering:

Most prominent and relevant features based on the ANOVA results were selected for

model training.
Hypothesis Testing:

Whether the collected parameters have any significant change with respect to the
Table 8 F and P values from ANOVA Results for Experiment 02

Parameter F-statistic  p-value

1 PEAK 99504.560000000 0.000000000

2| PMEAN| 6158.069000000 0.000000000!
[ 3] PEEP1  95.569590000 0.000000000!
5 E 17081.230000000 0.000000000

6 FTOT|  100.104700000 0.000000000

| 7 VIE  482.901300000 0.000000000!
10 SpO2l  86.752220000 0.000000000
"8 veToT 2.698109000 0.000000114|
9 PR 1636240000 0.008318358|

related causes. So, let the null hypothesis be, parameters have no significant impact
on the outcome. And alternate hypothesis be, parameters have significant impact on

the outcome
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Conclusion:

Ppeak, VTE, Pmean, PEEP1, E and VETOT are the parameters that have significant
p values in ANOVA test, as can be seen from figures 24 and 25 for experiment 01
and figure 26 and table 8 for experiment 02. So, we reject null hypothesis and accept

the alternate.
So, these parameters are selected to train the ML models for cause identification.

4.2.6. Models training and testing
The problem at hand is to identify the class to which the incoming parameters belong. So,

this is a classification problem.

9 Classification models were trained and tested on the data generated. While training the
models, 5-fold cross validation and hyperparameter tuning was carried out using
GridSearchCV. These techniques ensured the reliability of the accuracies obtained from

testing.

Results are discussed in the results and discussions section.

4.3. Mapping alarms, causes and responsive actions

Figure 25 Relationship mapping between Alarm, cause and Responsive action

Establishing a clear correlation between alarms and causes helps narrow down the
recommended action suggestions. Segregation of ambiguous alarms into patient and

system alarms is possible as the cause can reflect that information.

Below are 3 causes that are used to segregate alarms as patient and system alarms.
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Table 9 Simulated Cause and Alarm type

Alarm type Cause
Patient Obstruction inside ET tube
ET Tube Kink/ bend
System

Leakage due to ET tube

Table 10 Risk factor associated with the alarm and classification of patient and system alarm for PB 840 ventilator

Alarm

Patient Alarm

System Alarm

Ambiguous

CIRCUIT DISCONNECT (lockable)
COMPRESSOR INGPERATIVE

LOSS OF POWER
LOWAC POWER
LOWBATTERY

NO AIR SUPPLY

NO 02 SUPPLY
SCREENBLOCK
PROCEDURE ERROR

VTE (lockable)
1VE TOT (lockable)
1VTIMAND (lockable)
1VTI SPONT (lockable)

|VTEMAND (lockable)
low VTE SPONT (lockable)
low V E TOT (lockabla)

SEVERE OCCLUSION

WVOLUME NOT DELIVERED (This alarm appliesto VC+ and VS breaths.

tPCOMP (lockable)

INOPERATIVEBATTERY

APNEA (lockable)
TPMEAN (lockable)
1PPEAK (lockable)
1TOT (lockable)

LOW INSP PRESSURE (lockable)

27 INSPIRATION TOO LONG (lockable)

ACPOWERLOSS

COMPLIANGE LIMITEDVT (lockable)
DEVICE ALERT

HIGH 02%

102%

02 SENSCR

1PVENT (lockable)

This table classifies alarms into 3 categories and labels each of them with some risk

or severity. The third category represents the alarms that cannot directly be classified

as patient or system alarms, more information about their cause is required to do so.

The table below correlated all the ambiguous alarms for PB840 with the causes to

determine the type of alarm.

Table 11 Mapping correlation between alarm and cause

Alarm type Sr. No. Alarm Cause (detected using ML model)
Patient 2 APNEA (lockable) Obstruction inside ET tube
Patient 9 1PMEAN (lockable) Obstruction inside ET tube
Patient 10 TPPEAK (lockable) Obstruction inside ET tube
Patient 11 TPVENT (lockable)

Patient 12 TVTE (lockable) Patient spontaneous breathing
Patient 13 TVE TOT (lockable) Patient spontaneous breathing
Patient 14 TVTI MAND (lockable) Patient spontaneous breathing
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Patient 15 1VTI SPONT (lockable) Patient spontaneous breathing
Patient 16 TMTOT (lockable) Patient spontaneous breathing
Patient 24 |VTE MAND (lockable) Obstruction inside ET tube
Patient 25 low VTE SPONT (lockable) Obstruction inside ET tube
Patient 26 low V E TOT (lockable) Obstruction inside ET tube
Patient 32 SEVERE OCCLUSION
VOLUME NOT DELIVERED
Patient 33 (This alarm applies to VC+ and
VS breaths.)
System 8 TPCOMP (lockable) ET Tube Kink/ bend
System 9 TPMEAN (lockable) ET Tube Kink/ bend
System 10 T1PPEAK (lockable) ET Tube Kink/ bend
System 11 TPVENT (lockable)
System 12 TVTE (lockable) Leakage due to ET tube
System 13 TVE TOT (lockable) Leakage due to ET tube
System 14 TVTI MAND (lockable) Leakage due to ET tube
System 15 1TVTI SPONT (lockable) Leakage due to ET tube
System 16 IfTOT (lockable)
System 24 JVTE MAND (lockable) ET Tube Kink/ bend
System 25 low VTE SPONT (lockable) ET Tube Kink/ bend
System 26 low V E TOT (lockable) ET Tube Kink/ bend
System 32 SEVERE OCCLUSION
VOLUME NOT DELIVERED
System 33 (This alarm applies to VC+ and
VS breaths.)
Table 12 Correlating Cause and Responsive actions
Responsive action suggestion
Cause . Senior
detected Nurse Anaesthesiologist Resident Doctors/
doctors Specialist
No fault
Check ET tube cuff
Check leakages pressure and
Leakage due position
to ET tube Check ET tube Prescribe sedation
cuff pressure and  in case of Agitated
position patient
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Check Vitals and
make necessary
adjustments to
ventilator settings
Check for Check Vitals and Check Check
o make necessary . .
secretions in the . patient patient
ET tube ad].ustrnents.to condition condition
Obstruction ventilator settings
mstljgeE T Check ET tube Prescribe tr(c:e{al?nrlii t
position medication cOUrse
Suctioni Call needed  Call needed
uctioning .o .
specialist specialist
Check ET tube
position
Adjust patient
ET Tube head position
Kink/ bend | Check for Patient
organs pressing
or biting on ET
tube

These two tables connect alarms, causes and the responsive action suggestions

together.

4.4. Criticality score calculation

The Criticality score takes two major factors into consideration. The first factor being
the state of patient’s vital signs while the second factor is the type of alarm and its

associated risk towards the patient.
Formula:

Criticality Score = FVitals + ax* FAlarmtype + .B * (FAlarmseverity - 1)

Fyitais — Factor of criticality indicating patient vitals state
Faiarmeype — Factor of criticality indicating type of alarm

Fatarmseverity — Factor of criticality indicating alarm criticality
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a, f — Multiplier
B = 30, constant

This equation makes sure that the criticality can be directly interpreted from the score
itself. The threshold value for MEWS is >5. Meaning, if the score is higher than 4
the patient’s health is in critical state. With this reference, the threshold for Modified

MEWS is also set at >5.

Table 13 Criticality score determining whether the alarm is critical or not based on the patient condition

Non-critical Critical

Severity with
Alarm type Lower Upper Lower Upper score
limit Limit limit Limit
0 4 5 24
System 30 34 35 54 _
Alarm g
60 64 65 84 g
_ 100 104 105 124 ’
Patient 130 134 135 154
Alarm
160 164 165 184

Calculating F 4;4;m

With the intention to distinguish the Patient and system critical alarms, the multiplier

1s introduced. This will enable easy mapping of data from the real world.

For Patient alarms, @ = 100, and Fyarmiype = 1

For System alarms, a =1 and Fyarmeype = 0

Determining suitable ICU scoring system to calculate Fy;;q;

Few ICU scoring methods, [51],were studied and determined the best possible
method for this application. As can be seen from the table below, MEWS is the most
suitable scoring method. It is simple, considers the most relevant parameters and is

proven.
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Table 14 ICU Scoring methods

Score Purpose Type Parameters considered
Severity & ) ) )
' ) Physiological, chronic health, age,
APACHE 11 mortality Numeric ) )
o diagnosis
prediction
Improved
APACHE ' ) APACHE II parameters + more
mortality Numeric
/v o detailed chronic illness
prediction
SOFA Organ dysfunction Numeric Respiration, Coagulation, Liver,
assessment (daily use) CVS, CNS, Renal
Rapid screening Numeric Respiratory rate, altered
qSOFA - | .
for sepsis risk (simple) mentation, BP
SAPS 11/ Mortality ) Physiological variables,
o Numeric )
SAPS 111 prediction demographics
Early )
o Numeric
MEWS deterioration ] BP, HR, RR, Temp, LOC
o (simple)
prediction
Muli Numeric Resoi | henat
ulti-organ espiratory, renal, hepatic,
MODS i (organ- .
dysfunction cardiovascular, CNS
based)
Glasgow .
Consciousness )
Coma Scale Numeric Eye, verbal, motor response
assessment
(GCS)
Sedation & Numeric ) o
RASS o _ Sedation-agitation levels
agitation (behavioural)
PIM & Paediatric severity ) Paediatric ICU-specific
Numeric
PRISM prediction

parameters

The Modified Early Warning Score (MEWS), [52],is a simple, physiological score

that may allow improvement in the quality and safety of management provided to

69



surgical ward patients. The primary purpose is to prevent delays in intervention or

transfer of critically ill patients.

The threshold value for MEWS is >5. Meaning, if the score is higher than 4 the

patient’s health is in critical state.

Table 15 Modified Early Warning Score

Score 3 2 1 0 1 2 3
Respiratory
- <8 - 9-14 15-20 21-29 >29
rate (min")
Heart rate
- <40 41-50  51-100 101-110 111-129 >129
(min™)
Systolic BP 101-
<70 71-80 81-100 - >200 -
(mmHg) 199
Urine output
Nil <0.5 - - - - -
(ml/kg/h)
Temperature 35.1-  36.1- 38.1-
- <35 >38.6 -
(°C) 36 38 38.5

. Reacting Reacting .
Neurological - - - Alert Unresponsive
to voice  to pain

This system still needs to be refined and modified further to meet the application on

hand. The modifications and additions needed to the scoring system are discussed
ahead.

Calculating F;, ,

The second factor considers a total of 8 parameters. They are given on the table
below. The scoring system used is based on an established method called Modified

Early Warning Score (MEWS).
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Table 16 Vital Criticality Score, based on MEWS

Score  Score Score Score=0 Score= Score Score
Parameter
=3 =2 =1 (Normal¥) 1 =2 =
101- 111-
Heart Rate (bpm) - <40 4150 51-100 >130
110 129
81-
Systolic BP (mmHg) <70 71-80 100 101-199 - >200 -
Diastolic BP
<60 - 61-75 75-80 81-89 - >90
(mmHg)
Respiratory Rate 21-
- <8 - 9-14 15-20 >30
(/min) 29
35.1- 38.1-
Temperature (°C) - <35.0 36.1-38.0 - >38.6
36.0 38.5
ABG: pH <7.30 — - 7.31-7.45 — — >7.46
56—
ABG:PaCO:(mmHg) <20 21-25 26-34 35-45 46-55 65 >66
101—-
ABG: PaO: (mmHg) <40 41-55 56-70 71-100 200 - -

Normal*- the * indicates that the range of the normal is variable from patient to patient. To solve

this problem, a personalized baseline approach is proposed

With a few adjustments to the MEWS method, a new scoring method for the

criticality score is formulated. The adjustments made are as follows:

i. Nonrelevant parameters- Urine output and Neurological are removed.

ii. Few additional parameters like diastolic BP, ABG- PaO2, PaCO2 and pH

are added to make the score more relevant to the application[53].

Personalized vitals baseline generation

Vital parameter normal ranges differ from patient to patient. This leads to the issue

that a generalized value range for vital parameters may not depict the actual patient
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condition. To overcome this issue, the need for personalized baseline for every
patient is necessary. So, when a patient is admitted to an ICU, using the initial vitals
data to calculate normal ranges which will serve as personalized base lie for that
patient. This will help reduce all the initial patient condition-based alarms, which
need to be ignored as suggested by doctors. The ranges will update as the data keeps

updating.
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Chapter 5: Results and Discussions

5.1. Results

Disease Identification

K-Means Clustering Visualization on HealthySAcombined
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Figure 26 K-mean clustering to visualise the multi-dimensional dataset in 2D, Unsupervised
learning to check the distinguishability in data groups

Accuracy: 1.9
Classification Report:
precision recall f1-score support

1.08 1.0 1.00
1.08 1.00 1.08
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Figure 27 XGBoost Model Results for disease identification using Experiment 01 data
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Both supervised and unsupervised learning models showed that the ventilator parameters
can be used to identify diseases. Also, they serve as validation methods for the other
learning methods.

Cause Identification Results

Experiment 01:
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Figure 28 t-SNE plot visualising multiple clusters denoting to distinguishability in data group on Experiment 01
data

Table 17 Simulated disease and faults for Experiment 01

Label Lung condition Fault induced
0 Healthy None

1 Healthy LTCleakage

2 Healthy MTCleakage
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Healthy 70Blockage at IS due to pipe squeeze

Healthy 90Blockage at IS due to pipe squeeze
Healthy 70Blockage at ES due to pipe squeeze

6 Healthy 90Blockage at ES due to pipe squeeze

7 Healthy STCleakage

8 Healthy ISL1Blockage

9 Healthy ISL2Blockage

10 Healthy ESL3Blockage

11 Healthy ESL4Blockage

12 Healthy ESLSBlockage

13 Healthy EScCutleakage

14 Healthy IScCutleakage

15 Healthy ESACutleakage

16 Healthy ISACutleakage

17 Healthy Inside tube blockage

18 Severe Asthma None

19 Severe Asthma LTCleakage

20 Severe Asthma MTCleakage

21 Severe Asthma STCleakage

22 Severe Asthma ISAleakage

23 Severe Asthma ESAleakage

24 Severe Asthma ESCleakage

25 Severe Asthma ISCleakage

26 Severe Asthma E180tubekink

27 Severe Asthma 1180tubekink
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The t-SNE plots are unsupervised models, these are used to check variation in the
datapoints for different causes. The plot shows that similar data points making a small
cluster showing these data points different from others. Each cluster is a different

group of data points.

Some of the groups have multiple labels, this is either because the groups share
similar characteristics or due to outliers. These problems can be solved with large

quantity of data points.

Experiment 02:
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Figure 29 t-SNE visualisation for Experiment 02 data
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Table 18 Faults induced for healthy and 3 levels of VAP patients

Disease Induced_Fault Simulates
Normal No fault
STCleakage leakage due to ET tube
MTCleakage leakage due to ET tube
LTCleakage leakage due to ET tube
Healthy L1ETTblockage Obstruction inside ET tube
L2ETTblockage Obstruction inside ET tube
L3ETTblockage Obstruction inside ET tube
20DETTblockage ET Tube Kink/ bend
25DETTblockage ET Tube Kink/ bend
30DETTblockage ET Tube Kink/ bend
Normal No fault
STCleakage leakage due to ET tube
MTCleakage leakage due to ET tube
LTCleakage leakage due to ET tube
VAP-mild L1ETTblockage Obstruction %ns?de ET tube
L2ETTblockage Obstruction inside ET tube
L3ETTblockage Obstruction inside ET tube
20DETTblockage ET Tube Kink/ bend
25DETTblockage ET Tube Kink/ bend
30DETTblockage ET Tube Kink/ bend
Normal No fault
STCleakage leakage due to ET tube
MTCleakage leakage due to ET tube
LTCleakage leakage due to ET tube
VAP-moderate L1ETTblockage Obstruction inside ET tube
L2ETTblockage Obstruction inside ET tube
L3ETTblockage Obstruction inside ET tube
20DETTblockage ET Tube Kink/ bend
25DETTblockage ET Tube Kink/ bend
30DETTblockage ET Tube Kink/ bend
Normal No fault
STCleakage leakage due to ET tube
MTCleakage leakage due to ET tube
LTCleakage leakage due to ET tube
VAP-Severe L1ETTblockage Obstruction inside ET tube
L2ETTblockage Obstruction inside ET tube
L3ETTblockage Obstruction inside ET tube
20DETTblockage ET Tube Kink/ bend
25DETTblockage ET Tube Kink/ bend
30DETTblockage ET Tube Kink/ bend
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This t-SNE plot shows that the groups of data points have distinct characteristics and
can be easily distinguished.

Model Results:

Experiment 01:

Table 19 Classification Model results for Experiment 01

Model Best Params Accuracy Precision Recall F1
Logistic Regression {'C': 1, 'multi_class" 'multinomial', 'solver": 'Ibfgs'} 0.7808 0.6746 0.7371 0.6931
Decision Tree {'criterion": 'gini', 'max_depth": None, 'min_samples_split": 2} 0.9543 0.965 0.9582 0.9595
Random Forest {'max_depth": None, 'n_estimators": 100} 0.9589 0.9639 0.9532 0.9544
k-Nearest Neighbors {'n_neighbors'": 3, 'weights': 'distance'} 0.9452 0.9549 0.9375 0.9388
MLP Neural Network {'activation': 'tanh', 'alpha": 0.001, 'hidden_layer_sizes": (50,)} 0.863 0.8255 0.8588 0.8338
Support Vector Machine {'C': 1, 'gamma': 'scale’, 'kernel": 'tbf'} 0.5525 0.2759 0.3888 0.3102
XGBoost {'learning_rate": 0.1, 'max_depth": 3, 'n_estimators': 100} 0.9498 0.9528 0.9341 0.9386
CatBoost {'depth': 5, "iterations': 100, 'learning_rate': 0.1} 0.9635 0.9731 0.963 0.9661
LightGBM {'learning_rate": 0.1, 'max_depth": 5, 'n_estimators': 50} 0.9498 0.9522 0.9419 0.9437

Confusion Matrix
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Figure 30 Confusion matrix of XGBoost for Experiment 01 data
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Experiment 02

Table 20 Classification Model results for Experiment 02

F1

Precision Recall

Accuracy

Best Params

Model

0.5013 0.4219

0.4079

0.5733

{'C': 1, 'multi_class': 'multinomial’, 'solver': 'lbfgs'}

Logistic Regression

0.9038 0.9038

0.9117

0.9125

{'criterion’: 'gini', 'max_depth': None, 'min_samples_split": 4}

Decision Tree

0.9059 0.9075

0.9156

0.9125

}

'n_estimators": 50

{'max_depth': None,

Random Forest

0.8612 0.8636

0.8753

0.8753

{'n_neighbors" 3, 'weights': 'uniform'}

k-Nearest Neighbors

0.5993 0.5216

0.5039

0.6499

{'activation’: 'tanh', 'alpha": 0.0001, 'hidden_layer_sizes" (100,)}

MLP Neural Network

0.0821 0.0277

0.0175

0.1313

{'C": 1, 'gamma': 'scale', 'kernel': 'rbf'}

Support Vector Machine

0.9157 0.916

0.922

0.9212

{'learning_rate": 0.1, 'max_depth": 3, 'n_estimators': 50}

XGBoost

0.8949 0.8958

0.9156

0.9125

{'depth'": 5, "iterations': 100, 'learning_rate': 0.1}

CatBoost

0.8983 0.9004

0.9088

0.9103

{'learning_rate": 0.01, 'max_depth': 3, 'n_estimators": 100}

LightGBM

Confusion Matrix - XGBoost
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Figure 31 Confusion matrix of XGBoost for Experiment 02 data
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In both cases, XGBoost performs best with the highest accuracy and F1 score.

This tells us that the faults can be identified from the dataset with 92 percent
accuracy.

Example demonstrating the solution flow

Assuming a case of blockage in the ET tube due to patient secretions. Below
example demonstrates the criticality calculation for the alarm(s) raised in this

scenario.
Possible alarms raised:

i. High PPEAK
ii. Low VTE MAND
1ii. Low V ETOT

Primary classification: Ambiguous alarm
Cause detected: Obstruction inside ET tube
Secondary classification: Patient Alarm

Criticality Calculation:

CT‘itiC(llity Score = FVitals + ax* FAlarmtype + :8 * (FAlarmseverity - 1)

Friarm = 1, for patient alarm from classification results
a =100
B =30

Fatarmseverity = 3 [from Risk factor table- Table 10]
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Let the patient vitals be:

Table 21 Vitals table with associated score

Values Score
Heart Rate (bpm) 101 1
Systolic BP (mmHg) 135.5 0
Diastolic BP (mmHg) 62.5 1
Respiratory Rate (/min) 20 1
Temperature (°C) 39.61111111 3
ABG: pH 7.32 0
ABG:PaCO:(mmHg) 39 0
ABG: PaO: (mmHg) 115 1
Fyitais - 7

Now,

Criticality Score = Fyitqis + @ * Faigrmeype + B * (Faiarmsevericy — 1)
Criticality Score = Fyitqis + 100 * Fyarmiype + 30 * (Faigrmseverity — 1)
Criticality Score =7+ 100* 1+ 30%(3—1)

Criticality Score = 167

Hence, the alarm is critical, due to patient conditions and is triggered because of
blockage inside ET tube, which is probably because of excessive secretions in the

respiratory system of the patient.

The breakdown of the score is as follows:
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11.

1il.

Fyitais being 7, which is greater than 4 (threshold for Modified-MEWS)
which describes the poor vitals. (If the value were to be 4 or less, the score
would be in between 160 and 164. Then the alarm would have been

labelled as non-critical as the patient is stabilised.)

(a * Fpgrmeype)= 100, as it is the patient alarm.

(ﬁ * (FAlarmseverity - 1))=60, as the alarm risk factor is 3.

This shows that the criticality is controlled by the patient condition, as the thresholds

set for alarm criticality are made keeping it as the anchor point.

5.2. Discussions

Simulation settings and lung behavior remain constant for the entire duration
of each scenario. It does not change dynamically once the scenario is running
and needs to be changed manually for the next scenario. Although the
behavior fluctuates a little to incorporate realistic data pattern.

Each experiment is designed for a particular set of populations, adult
population with complete respiratory support.

As classification models are used, the classification happens amongst the
existing classes, which means baseline for each disease is required so that an
escalation pattern can be generalized once the patient condition is out of
picture.

The accuracy will improve with more data, as deep learning models perform

best for these types of data where many variables are involved.
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Chapter 6: Conclusion

Criticality of alarm is calculated based on patient condition and ventilator parameters

can be used to detect the underlying cause.

Conclusions regarding cause Identification are:

Ventilator parameters can be used to distinguish diseases.

Faulty Patient circuit detection for leakage scenarios is successful. Different

origins of leakages can be detected and classified.

Blockage in Patient circuit due to tube twist does not pose an issue as its
diameter is sufficiently large compared to smallest cross-section in the

complete airway passage.

In case of patient circuit tube blockage, alert is raised only at complete

blockage.
Halfway leakages and blockages are hidden in pressure and volume alarms.
Subtle changes in diseases severity can be detected.

Different types and levels of blockage can be identified just by analyzing the

parameters.

Blockage alarms for in-tube blockage are triggered at complete blockage but

can be identified with the help of parameters.

The models developed for cause identification are 92% accurate. With this, it was

observed that severe causes are more clearly identified as compared to minor faults.

This works in favor of the solution.

A baseline for any disease is necessary to accurately access the faults, this is where

the expert opinions of doctors can play a very important role. Similarly, personalized
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baseline of patient vitals is necessary to access the actual criticality of the alarm and

fault rectification.

84



Chapter 7: Future scope

Building on existing alarm-management frameworks, future work should expand the
catalogue of failure modes by systematically identifying additional causes of false or
artifact-driven alarms—such as sensor dislodgement, tubing occlusions, or transient
patient-ventilator desynchronies—and incorporate these into a unified detection
strategy. Concurrently, time-series modelling techniques (e.g., ARIMA, LSTM, or
Transformer architectures) can be developed to capture temporal patterns in
ventilator parameters, enabling early detection of evolving faults rather than relying
on fixed threshold breaches. By integrating these models into a prototype software
platform, clinicians will gain real-time insights into device performance and patient

status, minimizing nuisance alarms and improving clinical trust.

Once the software is built, targeted deployment in a controlled ICU or simulation lab
will provide critical real-world feedback, allowing iterative refinement of algorithms
and user interfaces. Data collected during this phase can seed a curated repository of
annotated ventilator events, which will improve model robustness and
generalizability. Finally, exploring additional data streams—such as waveform
morphologies, patient-ventilator interaction metrics, or ventilator internal error
logs—will further enhance the solution’s ability to distinguish true alarms from
benign artifacts, ultimately paving the way for a scalable, clinically validated alarm-

management system.
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