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Abstract 

 Digital transformation in healthcare has ushered in an era of interconnected, 

data-driven clinical environments, enabling continuous monitoring and analysis of 

patient status. As care complexity increases, smart decision-support systems have 

emerged to assist medical staff in interpreting vast streams of physiological data, 

addressing the growing need for timely and accurate insights at the point of care.  

Alarm fatigue poses a huge problem in the healthcare sector, which critically 

undermines patient safety by desensitizing clinicians to life-threatening alarms, 

increasing the risk of missed or delayed responses. Its pervasive cognitive overload 

and workflow disruptions also contribute to clinician burnout and medical errors. 

This work emphasizes the critical role of Alarm Management Systems within 

Intensive Care Units, where alarm overload and false alarms contribute to clinician 

fatigue and potential safety risks. The novelty of this project lies in the fact that no 

similar solution exists, we generated a dataset by simulating patient conditions and 

capturing sensor data for several disease states both with and without induced system 

or patient faults. 

The proposed system is designed to automatically flag critical alarms the moment 

they arise and to generate context-aware recommendations for both medical and 

technical staff, thereby streamlining response workflows. By integrating machine-

learning algorithms with real-time sensor inputs, our approach prioritizes actionable 

Fig Project Overview 
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alerts and suggests evidence-based interventions, reducing unnecessary disruptions 

while ensuring rapid attention to life-threatening events.  

The framework calculates the real-time criticality of an alarm based on patient 

condition (through vitals) and the type of alarm generated (which is identified using 

ML models). This generates an output that indicates whether the alarm is critical or 

not. Further mapping this criticality, alarm type, and cause of the alarm leads to 

suggesting responsive action for that specific alarm. This framework aims to enhance 

patient safety, optimize staff efficiency, and demonstrate how advanced alarm 

management can form a cornerstone of next-generation ICU care. 

Future work will focus on translating our proof-of-concept into a fully integrated 

software solution capable of seamless deployment within clinical environments. 

Concurrently partnerships with healthcare institutions to collect and curate large-

scale, real-world alarm datasets across diverse patient populations and device 

configurations. This expanded data corpus will enable us to retrain and validate our 

machine-learning models, enhancing their robustness, generalizability, and resilience 

to noise and variability in clinical practice. Ultimately, these efforts aim to ensure 

that our Alarm Management System not only performs effectively in controlled 

simulations but also delivers reliable, high-impact support in live ICU settings. 
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Chapter 1: Introduction 

1.1. Industry 4.0  

Industry 4.0 represents the shift from conventional manufacturing toward highly 

digitalized, data-driven production systems. Originating from Germany’s “High-

Tech Strategy 2020,[1]” it focuses on merging cyber-physical systems, the Internet 

of Things, and seamless data exchange to create “smart factories.” In these 

environments, equipment, sensors, and operators interact instantaneously to enable 

self-adjusting, flexible workflows. The overarching objectives are to boost 

efficiency, minimize waste, shorten lead times, and support individualized mass 

production—all while maintaining high quality. 

The following core technologies form the foundation of Industry 4.0: 

1. Cyber-Physical Systems (CPS) 

CPS integrates computing algorithms with physical machinery, so devices 

can both monitor and influence their surroundings. In manufacturing, 

embedded microprocessors, sensors, and actuators cooperate to supervise and 

manage every production step. Characteristically, CPS implement: 

o In-Line Monitoring and Control: Sensors collect real-time data (e.g., 

temperature, vibration), and actuators autonomously modify machine 

settings (e.g., spindle speed, conveyor rate). 

o Immediate Feedback Loops: Local (edge) processing enables rapid 

decisions- safety interlocks or quality adjustments without relying on 

a distant server. 

o Distributed Intelligence: Instead of a single centralized controller, 

decision-making is spread across multiple nodes, allowing machines 

to anticipate faults, predict maintenance needs, and collaborate with 

nearby devices [2] [3]. 
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2. Industrial Internet of Things (IIoT) 

IIoT extends IoT principles to industrial equipment, using reliable protocols 

(such as OPC UA and MQTT) to interconnect machinery, production lines, 

storage systems, and enterprise software. Its key traits are: 

o Broad Connectivity: Every sensor, robot, and even workpiece has a 

unique digital identifier, continuously exchanging status updates, 

performance metrics, and maintenance alerts. 

o Edge and Fog Computing: Rather than transmitting all data to a 

central cloud, preliminary analytics (filtering, aggregation, anomaly 

detection) occur near the machine (“edge”) or in intermediate “fog” 

nodes, reducing latency and conserving bandwidth. 

o Scalability and Interoperability: IIoT architectures scale to 

accommodate thousands of devices and support equipment from 

various manufacturers, ensuring unified communication across 

heterogeneous systems [3] [4] 

 

3. Big Data Analytics and Data Management 

Industrial environments generate vast volumes of streaming data from PLCs, 

robots, and vision systems. Advanced analytics (machine learning, data 

mining, predictive models) are essential for deriving actionable insights: 

o Real-Time Data Ingestion: High-speed pipelines ingest continuous 

data streams into time-series databases or data lakes for storage and 

analysis. 

o Predictive and Prescriptive Models: Machine learning algorithms 

forecast equipment failures (predictive maintenance), optimize 

operational parameters (e.g., temperature, feed rate), and simulate 

“what-if” scenarios to inform production decisions. 
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4. Digital Twins 

Virtual replicas of physical assets receive live data feeds, enabling engineers 

to test process changes or equipment modifications in a simulated 

environment before implementing them on the factory floor [4]. 

5. Cloud Computing and Software-as-a-Service (SaaS) 

Cloud platforms supply on-demand computing power, storage, and industrial 

software without requiring extensive local infrastructure: 

o Elastic Resources: Manufacturers can provision additional virtual 

machines or containers to handle peak workloads such as large-scale 

simulations or analytics during intensive production runs. 

o Centralized Data Repositories: Data from multiple plants is 

aggregated in the cloud, facilitating enterprise-wide benchmarking, 

cross-site analysis, and shared analytics. 

o SaaS Applications: Cloud-hosted ERP, MES, quality management, 

and supply chain solutions can be deployed rapidly and updated 

continuously, ensuring the latest features and security patches [5]. 

6. Artificial Intelligence (AI) and Machine Learning (ML) 

AI and ML leverage historical and real-time data to detect patterns, make 

predictions, and automate complex tasks: 

o Computer Vision: Deep learning-based image recognition inspects 

components on production lines with higher accuracy than manual 

inspections- identifying defects, alignment issues, or surface 

contaminants in milliseconds. 

o Anomaly Detection and Predictive Maintenance: Unsupervised ML 

models detect deviations from normal operating parameters such as 

abnormal vibration frequencies alerting operators before machine 

breakdowns occur. 
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o Reinforcement Learning for Process Control: Advanced AI agents 

continuously tune process variables (e.g., pressure, feed rate) to 

optimize yield or energy usage, learning optimal operating policies 

over time [2], [4]. 

7. Additive Manufacturing (3D Printing) 

Additive manufacturing constructs parts layer by layer from digital models, 

enabling rapid prototyping and production of complex geometries. In 

Industry 4.0: 

o Design Optimization: Generative design tools and topology 

optimization software produce lightweight, structurally efficient 

components that conventional machining cannot easily fabricate. 

o Distributed Production Models: Digital part files are transmitted to 

regional “micro-factories” or service bureaus, reducing shipping 

times and carrying minimal inventory. 

o Advanced Materials: Novel metal powders, polymers, and composite 

materials feed next-generation printers, supporting the on-demand 

manufacture of fixtures, tooling, and end-use parts including 

biomedical implants [5]. 

8. Augmented Reality (AR) and Virtual Reality (VR) 

AR overlays digital instructions onto the physical world, while VR immerses 

users in virtual environments for planning, training, or simulation: 

o Hands-Free Work Instructions: AR headsets (e.g., HoloLens) display 

step-by-step guidance, 3D component models, and safety warnings in 

the operator’s field of view reducing errors and accelerating 

changeovers. 

o Remote Expert Collaboration: An on-site technician can live-stream 

equipment views to an off-site specialist, who annotates the AR feed 

in real time to guide maintenance or troubleshooting. 
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o VR Layout and Ergonomic Simulation: Engineers can virtually walk 

through proposed production line configurations, test ergonomic 

considerations, and verify safety clearances before physical 

installation [3]. 

9. Horizontal and Vertical System Integration 

o Horizontal Integration: Entails seamless data flow across the entire 

supply chain—connecting suppliers, manufacturing, logistics, and 

customers. Cloud-based supply chain platforms can automatically 

reorder parts, track shipments in real time, and synchronize 

production schedules to actual demand. 

o Vertical Integration: Breaks down traditional automation silos (PLC, 

SCADA/MES, ERP) by implementing unified data models (e.g., OPC 

UA, RAMI 4.0) so that shop-floor controllers, edge gateways, MES, 

and ERP systems share a synchronized digital view of operations [2], 

[4]. 

10. Cybersecurity in Industrial Control Systems (ICS) 

As manufacturing environments become highly networked, built-in 

cybersecurity is crucial: 

o Zero Trust Principles: Every device, user, and application is untrusted 

by default; strict authentication, encrypted communications, and 

least-privilege access controls are enforced throughout the network. 

o Network Segmentation: Separating critical control networks (PLCs, 

SCADA) from corporate IT networks and applying granular firewall 

rules minimizes the attack surface. 

o Continuous Monitoring and Threat Hunting: Real-time anomaly 

detection spotting unusual command sequences or data exfiltration 

attempts is embedded in ICS event logs and SIEM systems to detect 

and contain threats quickly [4], [5]. 
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11. Collaborative Robotics (Cobots) and Autonomous Mobile Robots (AMRs) 

Unlike traditional industrial robots confined behind safety fences, cobots and 

AMRs operate safely alongside human workers: 

o Force-Sensing and Safe Human–Robot Interaction: Cobots 

incorporate torque and force sensors to detect unexpected collisions 

and halt motion immediately, preventing injuries. 

o Dynamic Navigation and Path Planning: AMRs use LiDAR, cameras, 

and floor markers to autonomously navigate complex factory or 

warehouse layouts, avoiding obstacles and optimizing delivery routes 

for parts or finished goods. 

o Plug-and-Play Deployment: Cobots often require minimal 

programming; operators can manually guide the robot through tasks, 

and it learns by demonstration [2], [3]. 

Example of an Industry 4.0–Enabled Facility 

1. Smart Sensors and IIoT Gateways continuously collect vibration, 

temperature, and energy data from CNC mills, presses, and injection-molding 

machines. 

2. Edge Computing Nodes perform local analytics—detecting anomalies and 

autonomously adjusting spindle speeds to prevent tool wear. 

3. Cloud-Hosted Analytics aggregate data from multiple plants to benchmark 

energy consumption and identify performance outliers. 

4. Robust Cybersecurity ensures only authenticated devices can update critical 

controllers, preventing unauthorized access. 

5. AR Glasses overlay 3D models and torque specifications onto a technician’s 

field of view during maintenance. 

6. Cobots switch between tasks—such as inspection and palletizing—

automatically as production orders change in real time. 
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7. Additive Manufacturing Cells fabricate customized jigs on demand: an 

engineer in Detroit sends a CAD file to a Berlin print cell, which produces 

the fixture within hours. 

By integrating CPS, IIoT, big data analytics, AI/ML, cloud/SaaS, additive 

manufacturing, AR/VR, horizontal/vertical integration, cybersecurity, and advanced 

robotics, Industry 4.0 transforms static, siloed factories into responsive, self-

optimizing ecosystems capable of anticipating changes, self-healing from 

disruptions, and delivering higher value at lower cost and risk. 

 

1.2. Digital healthcare and Industry 4.0 

Bridging the gap between conventional healthcare and its digital counterpart requires 

an ecosystem of interoperable, data-driven technologies that enhance access, 

efficiency, and personalization of care. At its foundation lie Electronic 

Medical/Health Record systems (EMR/EHR), which centralize patient histories, 

diagnostics, and treatment plans, enabling seamless information flow across 

departments and care teams [6]. Layered atop this data backbone are Internet-of-

Things (IoT) devices and wearable sensors that continuously capture vital signs and 

other physiological metrics, feeding real-time streams into cloud platforms for 

aggregation and long-term storage. Artificial Intelligence (AI) and Machine Learning 

(ML) then transform these massive datasets into actionable insights—powering 

predictive diagnostics, risk stratification, and decision-support tools that alert 

clinicians to early signs of deterioration or recommend personalized treatment 

pathways [7]. Telemedicine and mobile-health (mHealth) applications extend the 

clinical reach beyond hospital walls, while 5G and edge-computing architectures 

ensure low-latency, reliable connectivity for remote monitoring and procedural 

guidance [8]. Blockchain and advanced cybersecurity protocols safeguard data 

integrity and patient privacy, fostering trust in digital systems. Together, these 

Industry 4.0–inspired components—from EMR/EHR and big-data analytics to 

AI/ML, IoT, telehealth, and secure cloud infrastructures—form a cohesive digital 

healthcare framework [9]. By integrating technologies at every layer of care delivery, 
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we can move from reactive, episodic interventions to proactive, continuous, and 

patient-centric management, truly bridging the divide between traditional practice 

and next-generation healthcare. 

Digital healthcare utilizes digital technologies to enhance healthcare delivery, 

making it more accessible, efficient, and cost-effective. It encompasses a wide range 

of tools, including telemedicine, mobile health apps, electronic health records, and 

more. These technologies aim to transform healthcare by empowering patients, 

improving care quality, and expanding access, especially in remote areas.  

 

1.3. AI and ML Introduction 

Artificial Intelligence (AI) broadly refers to computational systems designed to 

emulate human‐like cognitive functions—such as perception, reasoning, problem‐

solving, and decision‐making. AI encompasses a wide range of techniques (rule‐

based systems, expert systems, evolutionary algorithms, and biologically inspired 

approaches) meant to automate tasks that traditionally require human intelligence 

[10], [11], [12], [13], [14]. 

 

Machine Learning (ML) is a subset of AI focused specifically on algorithms 

that enable computers to “learn” from data rather than rely on hand‐coded rules. In 

ML, models detect patterns or regularities in examples (training data) and generalize 

these patterns to make predictions or decisions on new, unseen inputs [10], [11], [12], 

[13], [14]. 

 

Categories of Machine Learning [10], [11], [12], [13], [14] 

Machine learning can be broadly categorized into several paradigms based on how 

models interact with data and the learning signals they receive. In its simplest form, 

Supervised Learning involves training models on labelled datasets—each example 

in the training set pairs an input vector with a “ground-truth” output. The model’s 

objective is to learn a mapping from inputs to outputs by minimizing the discrepancy 

between its predictions and the known labels. Within supervised learning, two 
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primary tasks emerge. Classification aims to predict discrete categories. In a binary 

classification scenario, the model must distinguish between two classes (for 

example, spam versus not-spam or malignant versus benign). In a multiclass 

classification setting, there are more than two possible labels—common examples 

include recognizing handwritten digits (0 through 9) or determining sentiment 

(positive, neutral, or negative). Regression, by contrast, focuses on forecasting 

continuous numerical values. A typical instance is linear regression, where one 

predicts house prices based on features such as square footage or number of 

bedrooms. When the relationship between features and the target variable is 

nonlinear, methods like polynomial regression or other nonlinear regression 

techniques can be applied (for example, modelling population growth as a nonlinear 

function of time). 

In contrast, Unsupervised Learning deals with unlabelled data and tasks the model 

with uncovering inherent structures, groupings, or low-dimensional embeddings 

without explicit “correct answers.” A major subclass is clustering, where the 

algorithm partitions data points into groups of similar examples. One widely used 

method is k-Means Clustering, which iteratively assigns points to k clusters to 

minimize within-cluster variance. Another is hierarchical clustering, which 

constructs a tree of clusters either by successively merging smaller clusters 

(agglomerative) or by dividing larger ones (divisive). DBSCAN (Density-Based 

Spatial Clustering of Applications with Noise) forms clusters based on regions of 

high point density and can identify arbitrarily shaped clusters as well as outliers. A 

second key unsupervised task is dimensionality reduction, which seeks to compress 

high-dimensional inputs into a smaller set of latent features while retaining as much 

“information” as possible. Principal Component Analysis (PCA) is a linear 

technique that projects data onto orthogonal axes of maximum variance, whereas t-

Distributed Stochastic Neighbour Embedding (t-SNE) is a nonlinear method 

especially well-suited for visualizing high-dimensional data in two or three 

dimensions. Autoencoders, which are neural-network-based encoders–decoders, 

learn compressed representations by training the network to reconstruct its input. 

Lastly, Association Rule Learning discovers “if-then” relationships between 
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variables—classic algorithms include Apriori, which finds frequent itemsets in 

transactional data (for example, market-basket analysis), and Eclat, which uses 

depth-first search to enumerate itemsets. 

Reinforcement Learning (RL) represents a third paradigm in which an agent 

interacts with an environment in discrete time steps: at each step, the agent selects an 

action, receives a reward (or penalty), and transitions to a new state. The goal is to 

learn a policy—a mapping from states to actions—that maximizes cumulative reward 

over time, balancing exploration (trying new actions) against exploitation 

(leveraging known rewarding actions). Within RL, model-free methods learn value 

functions or policies directly from experience without constructing an explicit model 

of environment dynamics. Q-Learning is a prototypical model-free algorithm that 

estimates the action-value function Q(s,a) via temporal-difference updates: 

 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾max𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] 

 

where α is the learning rate, r is the received reward, γ is the discount factor, and s′ 

is the next state. SARSA (State-Action-Reward-State-Action) is an on-policy variant 

that updates Q based on the action actually taken at the next state. Policy-gradient 

methods directly parameterize the policy π(a∣s;θ) and adjust the parameters θ by 

ascending the gradient of expected reward; examples include the classic 

REINFORCE algorithm. Actor–Critic approaches combine a policy network 

(actor) with a value network (critic) so that the critic’s value estimates reduce 

variance in the policy gradient updates. In model-based RL, the agent explicitly 

builds or is provided with a model of environment dynamics (i.e., transition 

probabilities and reward functions) and uses planning techniques—such as dynamic 

programming—to compute optimal actions. In modern settings, Deep 

Reinforcement Learning leverages deep neural networks as function 

approximators, enabling RL to scale to high-dimensional inputs like raw images. 

Notable examples include the Deep Q Network (DQN), which integrates Q-learning 

with convolutional neural networks to play Atari games from pixel inputs; Deep 

Deterministic Policy Gradient (DDPG), which extends actor–critic approaches to 
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continuous action spaces; and policy-gradient refinements such as Proximal Policy 

Optimization (PPO) and Trust Region Policy Optimization (TRPO), which 

enforce constraints on policy updates to stabilize training. 

Between supervised and unsupervised extremes lies Semi-Supervised Learning, 

where a small amount of labelled data is augmented by a large pool of unlabelled 

examples. The objective is to exploit the unlabelled set to learn the underlying data 

distribution more accurately, which is especially beneficial when labelling is 

expensive or time-consuming. One approach is self-training, where a classifier 

trained on labelled data is used to generate pseudo-labels for unlabelled examples; 

high-confidence predictions are then added to the labelled set in an iterative fashion. 

Co-training trains two or more models on different “views” or feature subsets of the 

data; each model labels the unlabelled examples that the other models then use for 

training. Graph-based methods build a similarity graph among samples (nodes) and 

propagate label information along edges to infer unknown labels. Meanwhile, semi-

supervised generative models, such as variational autoencoders with an auxiliary 

classification objective, jointly optimize a generative component (modelling 

p(x)p(x)p(x)) and a discriminative component (modelling p(y∣x)p(y \mid x)p(y∣x)) 

to leverage both labelled and unlabelled data. 

Self-Supervised Learning is an emerging paradigm in which the model derives 

supervisory signals automatically from the data itself, setting up “pretext tasks” 

whose solution requires learning useful representations. In computer vision, one 

example is context prediction, where a network attempts to predict the relative 

position of one image patch given another. In natural language processing, masked 

language modelling (as in BERT) randomly hides a subset of tokens and trains the 

network to predict the masked words from their surrounding context. Another 

powerful framework is contrastive learning, which constructs positive pairs (two 

augmented views of the same input) and negative pairs (views from different inputs) 

and trains the encoder to pull together representations of positives while pushing 

apart negatives. The representations learned by solving these pretext tasks can then 

be fine-tuned for downstream objectives such as classification or detection. 
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Deep Learning: A Specialization of Machine Learning 

Deep Learning (DL) is a subfield of machine learning that focuses on using multi-

layer neural networks—commonly referred to as deep neural networks—to 

automatically learn hierarchical feature representations. Although DL methods can 

be applied under any of the paradigms above (supervised, unsupervised, 

reinforcement, self-supervised), the hallmark of DL is its capacity to handle very 

high-dimensional and unstructured data by learning multiple levels of abstraction. A 

basic architecture is the Feedforward Neural Network (FNN), in which layers of 

neurons are stacked such that each layer’s outputs serve as inputs to the next, with 

no cycles or feedback connections. FNNs are versatile for generic tasks in 

classification and regression. 

For data with spatial structure—such as images or any grid-like inputs—

Convolutional Neural Networks (CNNs) are the preferred choice. CNNs use 

learnable convolutional filters and pooling layers to exploit local correlations (e.g., 

edges in images), drastically reducing the number of parameters compared to fully 

connected networks. CNN architectures have led to state-of-the-art performance in 

image classification, object detection, semantic segmentation, and other computer-

vision tasks. When the data are sequential—such as sentences, time series, or 

speech—Recurrent Neural Networks (RNNs) offer mechanisms to process inputs 

in a temporal manner by maintaining hidden states across time steps. To address the 

vanishing/exploding gradient problems of vanilla RNNs, specialized RNN variants 

such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) 

were developed; these architectures employ gating mechanisms that make it easier 

to capture long-range dependencies. 

Graph-structured data—where instances are nodes connected by arbitrary edges—

are effectively modelled by Graph Neural Networks (GNNs). A GNN propagates 

information along edges to learn node-level or graph-level representations; this is 

useful in social-network analysis, molecular property prediction, recommendations, 

and any domain where relationships between entities matter. More recently, 

Transformer models, built around self-attention mechanisms, have revolutionized 

sequence modelling. Initially introduced for machine translation, transformers like 
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BERT and the GPT series capture global dependencies by computing pairwise 

attention scores, making them highly effective for language understanding. Vision 

Transformers (ViTs) have adapted the same architecture to image patches, showing 

competitive results with CNNs in vision tasks. Deep Learning’s flexibility allows 

these architectures to be deployed in fully supervised settings, for unsupervised 

representation learning (e.g., autoencoders or contrastive methods), and within 

reinforcement-learning frameworks (e.g., DQN’s CNN backbone). 

 

Additional ML Paradigms and Specialized Subtypes 

Beyond the core paradigms of supervised, unsupervised, and reinforcement learning, 

several other approaches have gained traction in specific applications or to overcome 

particular challenges: 

• Transfer Learning refers to techniques that leverage knowledge obtained 

from one task or domain and apply it to another related task. A canonical 

example is taking a CNN pretrained on ImageNet—a dataset of millions of 

labeled images—and fine-tuning it for a specialized task like medical image 

classification. Transfer learning dramatically reduces training time and the 

amount of labeled data required in the target domain. 

• Online Learning (Incremental Learning) trains or updates models 

sequentially as new data arrive, rather than assuming access to a fixed, static 

dataset. This is crucial for streaming applications—such as real-time anomaly 

detection in network traffic—where patterns can shift over time, and the 

model must adapt continuously without retraining from scratch. 

• Federated Learning is a decentralized training paradigm designed to 

preserve data privacy. Instead of sending raw data to a central server, each 

edge device (e.g., smartphone, IoT sensor) trains a local model on its private 

data and transmits only model updates (such as gradients or weight 

differences) to a central aggregator. The server then aggregates these updates 

(for example, via weighted averaging) to form a global model, which is sent 

back to each device. Federated learning has proven valuable in healthcare, 

finance, and mobile applications where data sensitivity is paramount. 
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• Multi-Task Learning trains a single model to perform multiple related tasks 

simultaneously by sharing representations among tasks. For instance, in 

computer vision, one might train a network to simultaneously predict object 

bounding boxes and classify object categories. By jointly optimizing for 

related objectives, multi-task learning often yields better generalization than 

training separate models for each task. 

• Ensemble Learning improves predictive performance and robustness by 

combining multiple base learners. In bagging (Bootstrap Aggregating), 

several models are trained on different bootstrap samples of the data, and their 

outputs are averaged (or voted) to produce a final prediction; the Random 

Forest algorithm is a prime example of a bagging ensemble of decision trees. 

In boosting, base models are trained sequentially, with each new model 

focusing on correcting errors made by its predecessors; prominent algorithms 

include AdaBoost, Gradient Boosting Machines, and XGBoost. Stacking (or 

stacked generalization) trains multiple base models in parallel and then uses 

a “meta-learner” to combine their predictions optimally—often yielding 

further gains over bagging or boosting alone. 

Collectively, these paradigms and subtypes illustrate the richness of modern machine 

learning: from traditional supervised and unsupervised techniques to advanced 

online, federated, and multitask frameworks. Deep learning architectures—such as 

CNNs, RNNs, GNNs, and transformers—can be applied within many of these 

paradigms, enabling practitioners to tackle a diverse array of real-world data 

modalities, from images and text to graphs and streaming signals. 

 

 

 

Cross validation and Hyperparameter tuning: 

Cross-validation is a technique used in machine learning to evaluate how well a 

model will perform on unseen data by systematically splitting the available dataset 

into multiple train/validation subsets. Instead of relying on a single train/test split—

which can produce misleading performance estimates due to random data 

partitioning—k-fold cross-validation divides the data into k equally sized “folds.” 

The model trains on k–1 folds and validates on the remaining fold, repeating this 
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process k times so that every sample serves as validation exactly once. By averaging 

the performance metrics across all folds, one obtains a more reliable estimate of the 

model’s true generalization ability [10], [11]. 

 

Beyond the basic k-fold approach, several variants exist to address specific data 

challenges. Stratified k-fold ensures that each fold maintains the same class 

proportions as the overall dataset, preventing skewed validation results when dealing 

with imbalanced classes. Leave-one-out (LOO) cross-validation uses each individual 

sample as its own validation set, which maximizes training data but is 

computationally intensive and can yield high-variance estimates. For time-series or 

sequential data, forward-chaining (time-based) cross-validation respects temporal 

order by training on past observations and validating on future ones. Group or block 

cross-validation keeps related samples (e.g., all data from the same subject or device) 

together in either the training or validation fold to avoid data leakage [11], [15]. 

 

Implementing cross-validation properly requires that all preprocessing steps—such 

as scaling, encoding, or feature selection—be fit only on the training folds and then 

applied to the validation fold. This ensures no information from the validation set 

“leaks” into training. Cross-validation is often combined with hyperparameter tuning 

(e.g., grid search), where each candidate hyperparameter configuration is evaluated 

via cross-validation and the one with the best average validation performance is 

selected. Overall, cross-validation provides a robust framework to prevent 

overfitting, guide model selection, and generate stable performance estimates, at the 

cost of increased computational effort for retraining across multiple folds [10], [15]. 

1.4. Classification models applied in this work 

Logistic Regression is a simple yet powerful linear classification algorithm that is 

widely used for both binary and multiclass classification tasks. In multiclass 

problems, it uses the softmax function to estimate the probability that a given input 

belongs to each class. Logistic regression assumes a linear relationship between input 

features and the log-odds of the classes, making it very interpretable and fast to train. 
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It is commonly used as a baseline model because of its simplicity and effectiveness 

on linearly separable data [16]. 

Decision Tree Classifier is a non-parametric supervised learning method used for 

classification. It works by recursively splitting the dataset into subsets based on 

feature values that minimize impurity metrics like Gini index or entropy. The 

resulting tree structure allows for intuitive decision-making and interpretation. 

Decision trees can capture non-linear relationships and interactions between 

variables, making them useful for a wide range of problems involving tabular data 

[17]. 

Random Forest is an ensemble learning method that builds multiple decision trees 

and merges their outputs to improve accuracy and reduce overfitting. It does this by 

training each tree on a random subset of data (bagging) and then aggregating their 

results, usually via majority voting in classification tasks[18]. Random Forest is more 

robust than a single decision tree and performs well on high-dimensional data, 

making it a go-to model for many real-world structured datasets. 

k-Nearest Neighbors (kNN) is a simple and intuitive classification algorithm that 

assigns a class to a new data point based on the majority vote of its k nearest 

neighbors in the feature space. It is a lazy learner, meaning it doesn’t learn a model 

during training but stores the dataset and uses it for prediction. Although kNN can 

work well for datasets with clear class boundaries, it can be computationally 

expensive for large datasets and sensitive to feature scaling [19]. 

MLPClassifier, or Multi-Layer Perceptron, is a type of feedforward artificial neural 

network. It consists of input, hidden, and output layers with non-linear activation 

functions, allowing it to capture complex patterns in data. MLP is trained using 

backpropagation and gradient descent. While it requires more computational 

resources and tuning than simpler models, it is very flexible and can approximate any 

decision boundary given enough data and capacity [13]. 

Support Vector Machine (SVM) is a robust classifier that finds the optimal 

hyperplane separating different classes with the maximum margin. In multiclass 
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problems, SVM uses strategies like one-vs-rest or one-vs-one, and it can handle non-

linear data by applying the kernel trick (e.g., RBF kernel) [20]. SVMs are especially 

effective in high-dimensional spaces and are known for their generalization ability, 

although they can be slow on large datasets. 

XGBoost (Extreme Gradient Boosting) is a high-performance ensemble learning 

technique based on gradient boosting. It builds trees sequentially, where each tree 

tries to correct the errors made by the previous one. It uses regularization to reduce 

overfitting and supports advanced features like missing value handling and tree 

pruning. XGBoost is highly efficient and accurate, making it a favorite in machine 

learning competitions and practical applications [21]. 

CatBoost is another gradient boosting framework that stands out for its native 

support for categorical variables. It uses a technique called ordered boosting and 

symmetric trees to achieve faster convergence and better generalization. CatBoost is 

designed to work well with minimal preprocessing and is optimized for both speed 

and accuracy. It is particularly useful when working with mixed datasets containing 

both numerical and categorical features [22]. 

LightGBM is a gradient boosting framework developed by Microsoft, known for its 

speed and efficiency. It uses a histogram-based algorithm to bucket continuous 

features, allowing it to train faster and use less memory. LightGBM also uses a leaf-

wise tree growth strategy, which often leads to better accuracy compared to level-

wise approaches. It is suitable for large-scale datasets and high-dimensional features 

and supports native multiclass classification [23].  

 

1.5. Intensive Care Unit (ICU) 

An ICU is a specialized hospital area focused on continuously managing patients 

with severe, potentially life‐threatening conditions. Individuals in the ICU need 

constant monitoring because their vital signs such as heart rate, blood pressure, 

respiratory function, and oxygen saturation can fluctuate suddenly and significantly. 
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ICUs operate 24/7 with a collaborative, multidisciplinary team that includes 

intensivists (physicians trained in critical care), critical‐care nurses (who often 

manage one or two patients at a time), respiratory therapists, pharmacists, and other 

experts. This team works together to interpret detailed patient data, respond quickly 

to changing situations, and adjust complex treatments without delay. 

Patients often rely on advanced life support devices in the ICU like mechanical 

ventilators to assist or replace breathing, infusion pumps for precise medication and 

fluid delivery, and continuous renal replacement machines to support kidney 

function. Bedside monitors continuously display a range of metrics like ECG 

readings, invasive blood pressures, oxygen levels with alarms that alert staff to any 

worrisome shifts. 

The ICU’s main objective is to stabilize critically ill patients, correct dangerous 

imbalances (such as severe infections or respiratory failure), and prevent 

complications like secondary organ injury or hospital‐acquired infections. Once a 

patient’s condition is stable and they can maintain vital functions with less intensive 

support, they are transitioned often to a step‐down unit or general ward where they 

continue to recover under less rigorous monitoring. 

1.5.1. Ventilator 

Ventilation (Physiology)- The movement of air between the environment and the 

lungs via inhalation and exhalation.  
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Mechanical Ventilation- In medicine, using artificial methods to assist breathing. 

Ventilator- A machine designed to move breathable air into and out of the lungs. 

 

Figure 1 PB 840 ventilator 
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Figure 2Ventilator System block diagram 

The diagram illustrates the components and airflow path of a mechanical ventilator 

system: starting at the graphic user interface (GUI), gas (air and oxygen) is regulated 

and conditioned through the inspiratory module (including pressure/flow sensors and 

filters), then passed through a humidification device into the patient circuit 

(inspiratory limb). Exhaled gas returns via the expiratory limb, passes through an 
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expiratory filter and collection vial, and is finally managed by the exhalation 

module’s active valve and sensors before completing the cycle [24]. 

 

In this work, ventilator is a device that generates response parameters according to 

experiment parameters. It is connected to testchest (patient lung simulator) using the 

patient circuit and ET tube. 

Basic Parameters of Mechanical Ventilation- 

Tidal Volume (VT)- Measured in millilitres (ml), this parameter determines the 

amount of volume to be delivered during each machine breath.  

Inspiratory Pressure (PI)- Measured in cmH2O, this parameter controls the 

maximum inspiratory pressure to be delivered to the patient during a pressure-

controlled machine breath.  

Respiratory Rate/Frequency (RR/f)- Measured in breaths per minute (BPM), this 

parameter determines the frequency for control breaths.  

Ventilator 

Response 

Alarm messages 

Ventilator 

settings 

Figure 3 Puritan Bennett 840 ventilator screen 
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Fraction of Inspired Oxygen (FiO2)- Measured as a fraction of 100% oxygen, this 

parameter controls the oxygen concentration in the inspired gas.  

Positive End-Expiratory Pressure (PEEP)- Measured in cmH2O, these determine 

the airway pressure above atmospheric pressure that exists at the end of expiration.  

Inspiratory Time (TI)- Measured in seconds, this parameter controls the duration 

of the inspiratory phase of breath cycle.  

Inspiratory and Expiratory Ratio (I: E Ratio)- This parameter controls the ratio 

of inspiration to expiration in relation to the machine rate. 

Trigger (Trig. /Sens)- Can be measured in cmH2O or LPM, depending on the type 

of triggering system, this parameter determines the amount of inspiratory effort 

required by the patient before the ventilator will deliver an assisted breath, or demand 

flow in the case of a spontaneous breath.  

Pressure Support (PS)- Measured in cmH2O, Pressure support provides a set 

amount of pressure during inspiration to support the spontaneously breathing patient. 

Inspiratory Pause/ Plateau Time (T Plateau)- Measured in seconds, this parameter 

delays exhalation, therefore lengthening inspiration.  

Sigh Frequency (Sigh f)- A sigh is a long and deep breath, define as a periodic deep 

breath 1.5 to 2.0 times the normal.  

Continuous Positive Airway Pressure (CPAP)- Measured in cmH2O, these 

determine the constant level of pressure above atmospheric pressure is continuously 

applied to the upper airway.  

Peak Flow (F/V’)- Measured in litres per minute (LMP), this parameter controls the 

flow rate to be delivered to the patient during a machine breath. 

Monitored Parameters of Mechanical Ventilation-  
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Peak Inspiratory Pressure (PIP)- Measured in cmH2O, Peak inspiratory pressure 

is the highest level of pressure applied to the lungs during inhalation. *Indicates the 

peak inspiratory pressure achieved during the last delivered breath.  

Mean Airway Pressure (P Mean)- This indicates the mean (average) pressure in 

the airway over the last minute.  

Exhale Tidal Volume (VTE)-This parameter provides the numerical representation 

of the patient’s volume of exhaled air.  

Exhale Minute Volume (MVE)- Represents the patient’s exhaled tidal volume 

(mechanical and spontaneous) over time.  

Minute Volume= Exhale tidal volume X Total Respiratory Rate  

Total Respiratory Rate (RR TOT/ Ftot)- Represents the total breaths (machine and 

spontaneous) delivered by the ventilator during the last minute.  

Plateau Pressure (P Plateau)- This parameter indicates the airway pressure during 

an inspiratory pause. This is used in the calculation of static compliance. 

Resistance(R)- Measured In cmH2O/(l/s), Resistance describe the opposition to a 

gas flow entering the respiratory system during inspiration, which is caused by 

frictional forces.  

R= ∆P/V’(Flow), Resistance is calculated as the ratio between the pressure 

driving a given flow and the resulting flow rate(V).  

Compliance(C)- Measure in ml/cmH2O, Compliance describe the elastic property 

of the respiratory system including the lung and the chest wall.  

C= ∆V/∆P, Static compliance is the ratio in change in volume and the 

corresponding change in pressure. 

Ventilator Alarms 

Alarms are the visual and audible signals, intended for hospital staff, that indicate 

any abnormality with the patient connected to the device or fault in the device itself. 
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Ventilator alarm characteristics for the most common alarms: 

 

Alarms can be broadly classified as patient and system alarms as shown in the figure 

below.  

Patient alarm: Alarms that are caused due to patient condition.  

System alarms: Alarms that are raised due to malfunction or damage to the 

equipment. 

Figure 4 Alarm frequency of most common ventilator alarms and corresponding criticality 
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Figure 5 Alarm Classification on basis of origin of cause 

This classification is done after studying the alarms of Puritan Bennett 840 [24]and 

Air liquid Taema Extend XT[25]. 

 

1.5.2. Para monitor/ Patient monitor  

 

A Para monitor, more commonly known as a multiparameter patient monitor, is 

a clinical device that continuously measures and displays a patient’s core vital 

signs—namely ECG (with heart rate), respiration rate, non-invasive blood pressure, 

blood oxygen saturation (SpO₂), pulse rate, and body temperature. Beyond these 

basics, most monitors offer plug-in modules for advanced metrics such as invasive 

blood pressure, end-tidal CO₂, respiratory mechanics, anesthetic gas concentrations, 

cardiac output (both invasive and non-invasive), and EEG bispectral index [26]. 
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In routine use across emergency departments, operating rooms, ICUs, CCUs, and 

general wards, the patient monitor not only tracks these physiological parameters in 

real time but also compares them against preset thresholds. Configurable audible and 

visual alarms immediately alert clinical staff to any deviations, supporting prompt 

diagnosis and intervention. By providing trend data and event logging, these systems 

underpin critical decision-making and have been shown to reduce mortality among 

critically ill patients  [26]. 

Structurally, modern monitors employ a modular “plug-in” architecture: each sensor 

or measurement function (e.g., blood oxygen probe, ECG leads, NIBP cuff) can be 

connected or removed as needed. Specialized modules—such as those for 

cardiopulmonary resuscitation quality monitoring—work in tandem with the main 

unit to evaluate and guide resuscitation efforts. Setup and operation involve a 

straightforward sequence of steps (powering on, electrode placement, cuff sizing, 

etc.), and careful attention to placement and hygiene helps ensure accurate readings 

and patient safety [26]. 

Designed for use in intensive care units, emergency departments, and operating 

rooms, it typically tracks parameters such as [26]: 

Figure 6 Para monitor/ Patient monitor 
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• Electrocardiogram (ECG) and heart rate 

• Non-invasive blood pressure (NIBP) 

• Oxygen saturation (SpO₂) via pulse oximetry 

• Respiratory rate 

• Body temperature 

• Optional modules (e.g., invasive blood pressure, end-tidal CO₂) 

Para monitors are used to capture the required vitals through the data acquisition 

system in place. Further details about the use and setup are discussed in chapter 4. 

1.6. Testchest  

TestChest® V3 is essentially a tabletop model of the human heart and lungs, built 

for teaching and hands-on training. You can use it by itself as a standalone station or 

plug it into a larger patient-simulation system. Its main purpose is to work alongside 

a real mechanical ventilator and mimic how lungs inflate and deflate, how  

Figure 7 Testchest V3 
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people breathe on their own, how oxygen and carbon dioxide move in and out of the 

blood, and even how changes in breathing affect blood oxygen saturation (SpO₂) and 

pulse pressure [27]. 

 

Software Control via TestChestLIFE  [27] 

The TestChestLIFE app breaks everything into five broad categories that you can 

adjust: 

Lung Mechanics: Airway resistance (Raw) predicted functional residual 

capacity (FRCₚᵣₑd), overall respiratory system compliance (C_rs), plus more 

advanced settings like lower/upper inflection points on the compliance curve, 

percentage of lung collapsed at zero airway pressure, and time constants for 

recruitment/collapse. 

Gas Exchange: Carbon dioxide production (V̇CO₂), dead space volume 

(V_{daw}), oxygen diffusion limits (P_{diff}), and how quickly SpO₂ falls 

during an apnea. 

Respiratory Control: The initial inspiratory effort (P₀.₁), spontaneous 

breathing rate (fₛₚₒₙₜ), and even the shape of the spontaneous breathing 

waveform (apnea or one of fifteen predefined patterns). 

Hemodynamic: Cardiac output (QT), heart rate, pulse pressure variation 

(POPv), and two parameters for heart–lung interaction (a time constant 

R_{Clh} and a phase delay T_{delay}), plus the amplitude of cardiogenic 

oscillations in airway pressure. 

Special Effects: Leak level (none to large), a low-pass filter cutoff (to smooth 

displayed curves), and an FiO₂ override (if you want to force a specific 

oxygen fraction). 

Behind the scenes, each of these settings feeds into internal algorithms that decide 

exactly how the bellows move, how the pressures change, and how quickly the lungs 

collapse or re-recruit. Those mechanical movements produce real pressure readings 
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and tidal volumes that the ventilator “feels” just like a patient’s lungs. At the same 

time, TestChest® calculates SpO₂ and (eventually) end-tidal CO₂ based on gas 

exchange equations, then feeds those signals to the OxSim finger. 

1.7. Simulated diseases 

As the work revolves around ventilation, some most common respiratory conditions 

were simulated to generate relevant data. In this work, two diseases, Asthma and 

Ventilator Associated Pneumonia (VAP), were simulated and data for respective 

diseases was captured. Below subsections provide introduction and background 

information to how the parameters for simulation were selected and manipulated. 

1.7.1. Asthma 

Asthma is a chronic inflammatory disorder of the airways characterized by variable 

airflow obstruction and bronchial hyperresponsiveness. Clinically, it presents with 

wheezing, dyspnea, chest tightness, and cough, often worsening at night or early 

morning. Pathologically, asthma involves persistent airway inflammation driven 

predominantly by eosinophils, mast cells, and T helper 2 (Th2) lymphocytes, 

although non‐Th2 (e.g., neutrophilic) phenotypes also occur. The underlying 

mechanisms include genetic predisposition (e.g., variants in the IL‐4 receptor and 

ADAM33 genes), epigenetic modifications, and environmental factors such as 

allergen exposure (house dust mite, pollen), viral infections (rhinovirus), tobacco 

smoke, and occupational sensitizers [28], [29]. 

Multiple factors contribute to asthma onset and exacerbations. Atopy and a family 

history of allergic disease increase susceptibility by promoting IgE‐mediated 

sensitization. Environmental allergens (e.g., aeroallergens, indoor mold) trigger Th2‐

driven inflammation, leading to airway eosinophilia and mast cell degranulation. 

Viral respiratory infections, especially in early childhood, can disrupt airway 

epithelial integrity and skew immune responses toward a pro‐asthmatic phenotype. 

Tobacco smoke and air pollutants (ozone, particulate matter) enhance airway 

inflammation by generating oxidative stress and amplifying cytokine release (e.g., 

IL‐5, IL‐13). Obesity and psychosocial stress are emerging risk factors that may alter 

lung mechanics and immune regulation, further promoting an asthma phenotype 

[28], [29]. 
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Physiologically, asthma is marked by several interrelated alterations: 

1. Airway Inflammation and Mucosal Edema: Inflammatory mediators 

(histamine, leukotrienes, prostaglandins) increase vascular permeability, 

leading to plasma exudation into the airway submucosa. This mucosal edema 

narrows the airway lumen and contributes to airflow limitation [28], [29]. 

2. Bronchial Smooth Muscle Constriction: Hyperresponsive airway smooth 

muscle (ASM) contracts excessively in response to stimuli (e.g., 

methacholine, allergens), causing acute bronchoconstriction. This results in 

increased airway resistance and reduced forced expiratory volume in one 

second (FEV₁) [29]. 

3. Mucus Hypersecretion: Goblet cell hyperplasia and submucosal gland 

hypertrophy lead to overproduction of viscous mucus. Mucus plugs can 

occlude small airways, exacerbating airflow obstruction and promoting 

ventilation–perfusion mismatch [28]. 

4. Airway Remodeling: Chronic inflammation induces structural changes, 

including subepithelial fibrosis (thickening of the reticular basement 

membrane), ASM hypertrophy, and increased extracellular matrix 

deposition. Over time, these changes stiffen the airways and fix some degree 

of airflow limitation, making the disease less reversible [28], [29]. 

5. Ventilation–Perfusion (V/Q) Mismatch: Areas with bronchoconstriction 

and mucus plugging receive perfusion but limited ventilation, producing 

right‐to‐left shunts and hypoxemia. Conversely, overventilated but 

underperfused regions contribute to dead space, further impairing gas 

exchange [29]. 

6. Dynamic Hyperinflation: During exacerbations, expiratory flow limitation 

prevents complete lung emptying. This leads to air trapping and an increase 

in end‐expiratory lung volume (auto‐PEEP), which increases the work of 

breathing and may cause respiratory muscle fatigue [28]. 
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In summary, asthma arises from genetic and environmental interactions that drive 

chronic airway inflammation. The key pathophysiological features include episodic 

bronchoconstriction, mucus hypersecretion, and structural remodeling, all of which 

culminate in varying degrees of airflow obstruction, V/Q mismatch, and increased 

work of breathing. Appropriate management targets both inflammatory pathways 

(e.g., inhaled corticosteroids) and bronchoconstriction (e.g., short‐acting β₂‐agonists) 

to mitigate symptoms and prevent progressive airway remodeling. 

1.7.2. Ventilator Associated Pneumonia (VAP) 

Ventilator-associated pneumonia (VAP) is defined as pneumonia that develops at 

least 48 hours after endotracheal intubation and initiation of invasive mechanical 

ventilation, in a patient whose respiratory tract was not infected at the time of 

intubation. Early‐onset VAP (post‐intubation days 1–4) typically involves antibiotic‐

sensitive pathogens, whereas late‐onset VAP (day 5 onward) is more often due to 

multidrug‐resistant organisms [30], [31], [32], [33], [34]. 

VAP arises because invasive ventilation breaches normal airway defenses and 

promotes microaspiration of colonized secretions. Specifically, the endotracheal tube 

bypasses the glottic barrier and inhibits the cough reflex, allowing oropharyngeal 

flora to pool above the cuff and leak into lower airways [30], [31]. Sedation, supine 

positioning, and neuromuscular blockade further impair mucociliary clearance and 

cough, facilitating aspiration [30], [31], [34]. Within days of ICU admission—

especially under broad‐spectrum antibiotic pressure—the oropharynx and trachea 

become colonized by nosocomial pathogens (e.g., Acinetobacter baumannii, 

Pseudomonas aeruginosa, Staphylococcus aureus) [31], [33]. Once these bacteria 

reach the distal airspaces, alveolar macrophages and neutrophils mount an 

inflammatory response, leading to alveolar exudation and consolidation [30], [31], 

[34]. Biofilm formation on the endotracheal tube further serves as a reservoir for 

pathogens, which can be dislodged during suctioning and inoculate the lung [31]. 

Key risk factors include mechanical ventilation duration > 48 hours; supine 

positioning; sedation and paralysis; reintubation; nasogastric tubes; and prior 

antibiotic use, which selects for resistant organisms [30], [31], [33]. 
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By consensus, VAP manifests no earlier than 48 hours after endotracheal intubation. 

Early‐onset VAP (days 1–4 of ventilation) generally involves community‐type 

organisms (e.g., MSSA, Haemophilus influenzae) and carries a more favorable 

prognosis, whereas late‐onset VAP (day 5 or later) is associated with nosocomial, 

multidrug‐resistant pathogens (e.g., A. baumannii, P. aeruginosa), resulting in higher 

morbidity and mortality [30], [33]. The highest risk of developing VAP occurs within 

the first 10 days of mechanical ventilation; thereafter, although the daily risk 

diminishes, it persists as long as the endotracheal tube remains in place [31]. 

Physiological Changes in VAP: 

When VAP develops, the following pathophysiological alterations occur: 

1. Alveolar Inflammation and Consolidation: 

Bacterial pathogens reaching the alveoli trigger innate immune activation, 

leading to neutrophil recruitment, release of inflammatory mediators, and 

alveolar‐capillary membrane injury. This results in consolidation and 

exudation, impairing gas exchange [30], [31]. 

2. Ventilation–Perfusion (V/Q) Mismatch: 

Consolidated or fluid‐filled alveoli receive perfusion but no ventilation (right‐

to‐left shunt), causing refractory hypoxemia; concomitantly, airway 

obstruction and bronchospasm elevate physiologic dead space, leading to 

CO₂ retention [31]. 

3. Impaired Oxygenation: 

As V/Q mismatch worsens, the PaO₂/FiO₂ ratio decreases. Clinicians often 

escalate FiO₂ and positive end‐expiratory pressure (PEEP) to maintain 

adequate oxygenation, which may exacerbate lung injury [30], [31]. 

4. Systemic Inflammatory Response (SIRS): 

Local cytokine release (e.g., IL‐1, TNF‐α) propagates a systemic response 

characterized by fever, tachycardia, leukocytosis, and—in severe cases—
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capillary leak and hypotension. If bacteremia ensues, patients may progress 

to septic shock [31], [32], [34]. 

5. Altered Respiratory Mechanics: 

Consolidation reduces lung compliance, increasing plateau pressures 

required to deliver target tidal volumes; simultaneously, airway inflammation 

and secretions increase airway resistance, raising peak inspiratory pressures 

[31]. 

6. Hemodynamic Consequences: 

Hypoxic pulmonary vasoconstriction in consolidated lung regions elevates 

pulmonary vascular resistance, potentially overloading the right ventricle. 

Systemic vasodilation and capillary leak from sepsis can reduce preload and 

cardiac output, compounding tissue hypoxia [31]. 

7. Risk of Progression to ARDS: 

Unchecked alveolar‐capillary damage may evolve into diffuse alveolar 

damage (DAD) and acute respiratory distress syndrome (ARDS), 

characterized by hyaline membrane formation and severe, refractory 

hypoxemia [31]. 

8. Multiorgan Dysfunction: 

Severe VAP—especially when caused by multidrug‐resistant Gram‐negative 

organisms—can precipitate acute kidney injury, coagulopathy, and 

multiorgan failure, markedly increasing mortality risk [32], [33]. 

This concludes the introduction to the thesis. The introduction encapsulates the 

whole idea of digital transformation in healthcare sector with introduction to all the 

technologies, medical equipment used and simulated medical conditions. 

1.8. Organization of thesis 

Chapter one introduces Industry 4.0, Digital healthcare and all the technologies, 

equipment, and medical conditions that are utilized in this work. 
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Chapter Two will be devoted to an exhaustive review of the literature, critically 

evaluating and integrating previous studies on the subject, pinpointing gaps in the 

existing knowledge, articulating the research problem and objectives, and exploring 

the pertinent theories and frameworks. 

Chapter three discusses the current ICU decision chain and proposes a solution to 

optimize it. 

Chapter four elaborates on the methodology used to build the proposed solution. It 

talks about the data involved, the experimentation performed and the data generation 

and acquisition method, mapping of alarm, causes and responsive actions, and finally 

the criticality calculation method. 

Chapter five and six deals with results and discussions, and conclusions that are the 

outcomes of the thesis work. Finally, chapter seven emphasizes the future potential 

and scope of this work.  
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Chapter 2: Problem statement formulation 

2.1. Literature review 

The Intensive Care Unit (ICU) is a hospital setting designed to manage patients with 

life‐threatening conditions, necessitating continuous monitoring and rapid 

interventions. ICUs handle complex cases—severe sepsis, multiorgan failure, acute 

respiratory distress—and employ advanced life‐support technologies (ventilators, 

infusion pumps, renal replacement therapy) under multidisciplinary teams of 

intensivists, critical‐care nurses, respiratory therapists, and pharmacists [35], [36]. 

Although life‐saving, this high‐acuity environment is prone to unique challenges, 

particularly related to resource constraints, diagnostic complexity, patient transitions, 

and the cumulative burden of alarms. This review examines general ICU issues, 

defines “alarm fatigue” across seminal studies, highlights alarm‐specific problems, 

and summarizes proposed solutions in chronological order. 

 

Problems faced in an ICU 

ICUs frequently operate under resource and infrastructure limitations, especially in 

low‐ and middle‐income regions, where shortages of trained staff and disrupted 

supply chains hinder standardized care delivery [35]. High patient acuity and 

diagnostic complexity compound these challenges: conditions like septic shock and 

acute respiratory distress syndrome (ARDS) demand prompt recognition, yet 

heterogeneous presentations delay diagnosis [37]. Staffing pressures such as chronic 

nursing shortages, low nurse‐to‐patient ratios elevate workloads, increasing the 

likelihood of medical errors, infection transmission, and adverse events [36]. 

Diagnostic errors also arise from frequent interruptions, cognitive overload, and 

inconsistent adherence to evidence‐based protocols (e.g., variations in “Wake Up and 

Breathe” compliance) [38]. Patient transitions—from ICU to step‐down units can 

produce care‐continuity gaps, communication failures, and mixed emotional 

responses among patients, families, and providers, further complicating recovery 

[39]. Meanwhile, survivors often endure post–intensive care syndrome (PICS) long-

term physical weakness, cognitive deficits, and psychiatric sequelae stemming from 

prolonged immobility, extended sedation, and sleep disruptions during their ICU stay 
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[37]. Finally, environmental factors such as high ambient noise (average 68–75 dBA) 

and suboptimal unit design hinder both patient rest and staff performance [40]. 

 

Alarm Fatigue definition 

Deb and Claudio (2015) define alarm fatigue as a combined state of heightened 

mental workload and negative affect (boredom, apathy, distrust) resulting from 

excessive false or nonactionable alarms; measured via NASA-TLX and affect scales 

during direct observations of ICU nurses and unit clerks [41]. Walsh and Waugh 

(2020) describe alarm fatigue implicitly as clinician desensitization caused by fewer 

than 15 % of mechanical ventilation (MV) alarms being clinically relevant, leading 

to sensor overload and delayed responses [42]. Dills (2017) frames alarm fatigue 

operationally around middleware‐filtered scenarios: RTs exposed to > 19 000 

ventilator alarms/day become unable to differentiate actionable events amid a flood 

of nonactionable high inspiratory pressure or high respiratory rate alarms [43]. The 

AAMI/ACCE (2006) white paper characterizes alarm fatigue as clinicians becoming 

“cognitively numb” to frequent false alarms (85–99 % false positive), leading to 

alarm disabling or ignoring and occasional failure to recognize true emergencies [44]. 

Stokes, Manzoor, and Cvach (2017) imply alarm fatigue through RTs reporting 

frequent nuisance ventilator alarms, undermining confidence in alarm reliability and 

prompting avoidance behaviors in alarm customization [38]. 

 

Alarm fatigue underlies several interrelated ICU problems. High false or 

nonactionable alarm rates—often 85–90 % of MV alarms and 88.8 % of arrhythmia 

alarms—overwhelm clinicians, reducing trust and elongating response times [40], 

[42]. Ambient noise levels exceeding 82 dBA from alarms further desensitize staff 

and mask true alerts [36], [40]. Inconsistent alarm terminology and priority coding 

across ventilator brands cause confusion: for instance, 89.8 % of Hamilton G5 alarms 

are “high priority” versus only 8.6 % of Puritan Bennett 840 alarms in the same ICU, 

despite similar physiologic triggers [43]. Alarm limit settings rarely track actual 

patient parameters—upper respiratory rate limits change by only 1 breath/min for a 

10 breaths/min change in measured rate—resulting in either nuisance alarms or 
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delayed detection of critical events [43]. Furthermore, redundant alarm notification 

cascades (e.g., central station + nurse‐call + middleware to Wi-Fi phones) can 

amplify a single event into multiple alerts, with each ventilator averaging 7 initial 

alarms/hour and 2.8 secondary notifications/hour, equating to ≈ 9.8 

notifications/ventilator-hour (one every ≈ 6 minutes) [43]. 

 

Industry‐level initiatives began in 2006 when the ACCE Healthcare Technology 

Foundation recommended adopting IEC 60601-1-8 to standardize alarm tones and 

priorities, alongside hospital‐wide policies that specify which alarms require 

immediate intervention [44]. They also advised appointing “alarm champions,” 

performing regular alarm audits, and embedding alarm‐system training into staff 

orientation and annual competencies. These measures aimed to reduce nuisance 

alarms, harmonize clinician interpretation, and reinforce alarm‐management 

accountability. 

Building on that foundation, Yang et al. (2012) developed a prototype intelligent 

ventilator alarm system using a PIC32MX microcontroller [38]. By continuously 

sampling ventilator parameters (Pₚₑₐₖ, Rₑₓₚ, Fₑₓₚ, end-PEEP) via RS-232 and applying 

context-specific logic (e.g., Pₚₑₐₖ↑ + Rₑₓₚ↑ + Fₑₓₚ↓ → “suction needed”), the system 

generated targeted alerts that were wirelessly transmitted via ZigBee to a nurse-

station interface. Bench testing of sputum impaction and airway leak scenarios 

demonstrated significant reductions in false alarms compared to traditional high-

pressure thresholds. 

In 2015, Deb and Claudio quantified alarm fatigue in ICU staff through NASA-TLX 

(mental workload) and affect scales [41]. Their observational study linked high alarm 

frequency, environmental noise, and staffing ratios to elevated workload and 

negative affect, identifying personality traits as moderating factors. They 

recommended optimizing nurse-to-patient ratios, tailoring training to individual 

profiles, and implementing noise‐reduction strategies rather than focusing solely on 

alarm volume reduction. 

From 2017 to 2018, multiple institutions implemented middleware and quality-

improvement projects. Dills (2017) deployed middleware at Hospital for Special 
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Care to filter ventilator alarms: patient-specific HIP and HRR alarms that self-

resolved within 90 s were suppressed, while actionable alarms (disconnect, low 

minute ventilation) were forwarded to pagers and Wi-Fi phones, markedly reducing 

nonactionable alerts [43]. De Vaux et al. (2017) formed a multidisciplinary alarm 

management team at Yale New Haven Hospital, using the AACN toolkit to identify 

PVC alarms as the main nuisance; interventions—staff education, zone-based 

response, disabling PVC defaults, enabling continuous QTc monitoring—achieved a 

77 % reduction in audible alarms and raised alarm customization from 39 % to 87.5 

% with no adverse events [36]. Stokes et al. (2017) at Johns Hopkins simplified 

ventilator alarm guidelines and provided targeted RT education, increasing alarm 

customization from 27 % to 40 % within 24 h of ventilator initiation by addressing 

overly complex policies and notification gaps [38]. Meanwhile, Villanueva et al. 

(2018) implemented staff education, “quiet hours,” and “Quiet, Please” signage to 

reduce ICU noise from 68 ± 5 dBA to 60 ± 4 dBA (p < 0.001), improving patient 

sleep scores and indirectly mitigating alarm fatigue [40]. 

In 2019 and 2020, researchers synthesized insights and refined best practices. Scott 

et al. (2019) conducted a PRISMA‐guided review showing ICU patients face 150–

190 alarms per day (MV alarms = 11.7–42.2 %, 82–83 dBA), linking generic 

thresholds to nuisance alerts [45]. They advocated “smart alarms” (composite 

triggers, adaptive delays), middleware for off-site notifications, standardized MV 

alarm protocols, and interdisciplinary education to restore trust. Walsh and Waugh 

(2020) echoed these recommendations, emphasizing individualized thresholds based 

on patient baselines, intelligent alarm features (paired triggers, escalation 

hierarchies), and biomedical device integration to route alarms through tiered 

dashboards [42]. Cvach et al. (2020) performed a prospective study using Capsule 

Axon bridges on PB840 and G5 ventilators, revealing 7 ± 4 alarms/hour with 40 % 

persisting > 15 s (triggering 2.8 ± 1.8 secondary notifications, ~ 9.8 cascades/hour). 

They highlighted manufacturer priority discrepancies and poor alarm-

limit/parameter correlations, proposing continuous logging to guide patient-specific 

adjustments and unified priority definitions [43]. Lin et al. (2020) applied HFMEA 

to intrahospital transport, introducing mnemonic “reminder-assisted briefings” 
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(VITAL, STOP) that reduced IHT-related adverse events from 1.08 % to 0.23 % (p 

= 0.01) and increased task completeness from 80.8 % to 96.5 % (p < 0.001) [37]. 

Recent work has advanced both research agendas and technological solutions. Scott 

(2021) issued five research priorities: MV alarm reliability, patient-specific 

thresholds, off-bed notification strategies, clinician competency frameworks, and 

analyses of invasive versus noninvasive mode alarms [46]. Coldewey et al. (2021) 

systematically reviewed ventilation‐device usability, identifying 51 failure modes—

ambiguous labels, hidden power switches, deep menu hierarchies, inconsistent 

terminology (e.g., “Tplat” vs. “Tpause”), and confusing alarm color coding—and 

recommended ISO 19223 for uniform labeling, IEC 60601-1-8 for standard tones, 

UI improvements, and consistent alarm coding across brands [47]. Asadi et al. (2022) 

surveyed 140 COVID-19 ICU nurses using a 13-item alarm fatigue questionnaire 

(range 8–44) and a 24-item moral distress scale (range 0–96), finding moderate alarm 

fatigue (19.08 ± 6.26) inversely correlated with ventilator/alarm training (r = –0.25, 

p < 0.01) and higher fatigue among female/PhD-level nurses; they recommended 

regular hands-on training and minimizing rotating shifts [48]. Li and Ge (2021) 

proposed a representation-learning framework that constructs dynamic knowledge 

graphs and Probabilistic State Machines to compute real-time imminence scores, 

suppressing low-risk alarms without predefined patterns and matching LSTM 

accuracy at ≈ 100× throughput [39], [40]. Finally, Li et al. (2024) described a 

Node.js- and WebSocket-based web monitoring system integrating RS-232 

microcontrollers, PostgreSQL storage, and React Native mobile clients to filter 

noncritical alarms; in a 50-patient pilot, they achieved a 30 % reduction in alarm-

response latency (12 ± 3 s vs. 17 ± 5 s; p < 0.01) and high usability scores (≥ 4.2/5) 

[49]. 

 

2.3. Research Gap 

Despite extensive documentation of alarm‐related hazards in ICUs, false and 

nonactionable alarms persist as a significant safety concern. Early observational 

studies quantified how nurses and respiratory therapists are exposed to hundreds of 

alarms per shift, leading to delayed response times and, in some instances, missed 
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critical events [41], [43]. Even with guidelines advising customization of alarm 

thresholds, alarm volumes often rebound when new devices are introduced or when 

defaults are reset. In practice, alarm overload continues to erode clinician trust, 

illustrating that awareness alone is insufficient to curb the problem. 

Many publications advocate policy frameworks and staff education as key remedies. 

The ACCE Healthcare Technology Foundation (2006) recommended standardizing 

alarm tones (IEC 60601-1-8), appointing “alarm champions,” and conducting regular 

audits [44]. Similarly, De Vaux et al. (2017) reported that multidisciplinary teams 

and PDSA cycles reduced specific nuisance alarms by 77 % through staff training 

and default setting adjustments [36]. Stokes et al. (2017) showed that simplifying 

ventilator alarm guidelines and focused RT education increased alarm customization 

from 27 % to 40 % [38]. However, these interventions often rely on ongoing 

compliance and repeated training, which can wane under high patient loads or 

frequent staff turnover. 

To complement policies and training, several groups have developed technological 

tools. Yang et al. (2012) created a bench‐tested intelligent alarm that filters artifacts 

by analysing ventilator parameters in real time [38]. Dills (2017) implemented 

middleware to suppress short‐lived ventilator alarms, forwarding only actionable 

events [43]. Later, Walsh and Waugh (2020) and Li & Ge (2021) proposed smart‐

alarm features pairing related alarm cues, adaptive delays, and PSM‐based 

imminence scoring to further reduce false positives [40], [42]. Li et al. (2024) 

demonstrated a web‐based monitoring system that lowered alarm‐response latency 

by 30 % in a 50-patient pilot [49]. Despite promising results, these solutions have 

seen limited real‐world adoption due to scalability challenges, compatibility issues 

with diverse device inventories, and the need for substantial IT infrastructure. 

In summary, existing efforts—whether guideline‐driven, educational, or 

technological—tend to address individual aspects of alarm fatigue without delivering 

a fully integrated solution. Guidelines and training improve staff behaviour only 

while actively reinforced; intelligent alarms and middleware reduce noise but often 

require bespoke setups that are difficult to generalize across ICUs. A research gap 
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remains for a cohesive framework that combines adaptive, patient‐specific 

thresholds; universally consistent user interfaces; seamless integration with 

electronic health records; and minimal additional burden on frontline staff. 

Addressing this gap is essential to transform isolated successes into sustained, ICU‐

wide improvements. 

So, this project focusses on fabricating a smart decision support system to analyse 

the criticality of each alarm based on patient condition as well as identify cause form 

ventilator parameter fluctuations and suggest responsive actions to the staff. 

2.4. Research objectives 

• To detect actual cause of the fluctuations in the equipment readings  

• To classify alarms as Patient and System alarms 

• To find out the criticality of the alarms 

• To recommend actions appropriate for raised alarm 
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Chapter 3: Proposed Solution 

3.1. Current ICU Decision Chain 

 

Figure 8Current ICU Decision Dynamics 

 

Just like any workplace, an ICU has an order of authority and task 

compartmentalization. The above diagram depicts the decision-making hierarchy in 

an ICU. A patient in ICU is always hooked to a device called Para monitor. This 

device is used to monitor vital signs of a patient, to get an alert when the vitals deviate 

out of acceptable ranges. Similarly, ventilators are also a device that is used more 

frequently in an ICU. Whenever there is abnormality with the patient, these devices 

when hooked to a patient will generate alerts or alarms. 

These alarms can be because of various reasons, so the actions performed for each 

one will be different for different circumstances. Some alarms may be ignored, some 

may be fixed with minor adjustments, some may need clinical intervention, and 

others may be due to faulty equipment. There are numerous possibilities. 

Nurses are mostly the first individuals to be alerted by any change in patient 

condition, as they are stationed near the patient all the time. They have a particular 

set of actions and check list to perform and check to stabilize the situation. Anything 
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beyond their scope needs to be alerted to Resident Doctors and Anesthesiologists (in 

case of mechanical ventilation). Any decision regarding equipment settings and 

clinical intervention is taken by these roles. Decisions regarding involving a 

specialist as the situation demands is also a decision a doctor makes. Final treatment 

course decisions are taken by Senior doctors and specialists after looking at the report 

from their sub-ordinates. 

Everyone has some time delay in their actions depending on how the information 

was passed and what actions were taken by the immediate sub-ordinate. This is 

indicated using green dotted line.  

When an alarm occurs, the first three healthcare professionals should stabilize the 

situation as soon as possible as delayed action may endanger the patient’s life. 

Mostly, senior doctors are informed about patient progress twice a day, which is a 

large timespan for some underlying issues to go unresolved. 

The proposed solution targets these issues. 

 

3.2. Where does proposed solution fit in? 

 

Figure 9 ICU Decision Dynamics with proposed solution 
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The proposed solution aims to resolve this issue by firstly determining critical or 

actionable alarms and suggesting the most appropriate actions.  

This objective is achieved by capturing real time data from equipment, analyzing it 

to derive the cause of alarm and suggesting actions based on type of cause. This 

solution uses Industry 4.0 technologies, meaning digitalization and real time analysis, 

which reduces the time delay in the actions of medical professionals. 

The purple arrows in the diagram represent the information co-ordination between 

solutions and the medical professionals. Also, the actions taken by primary attenders 

will have no delay as the process can be parallel, instead of being in series like that 

in conventional systems. 

Benefits of the solution: 

• Reduction in response time 

• Allows actions by multiple staff members to be performed simultaneously 

• Senior Doctors can be alerted at any instance of emergency with a full report 

• Reduction in time needed to adjust treatment plans  
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Chapter 4: Methodology 

 

This chapter talks about the approach used to achieve the set objectives and steps 

followed to decipher the issue and suggest actions to the staff on ground. 

Figure 10 Working of proposed solution 

The diagram represents the complete flow of information, algorithms and backend 

analytics performed to get to a solution. Starting with the alarm generated, it is 

triggered when certain parameters cross the set threshold or the device needs 

maintenance. These alarms are to be labelled as critical or non-critical.  

The first step is to classify them as patient alarms and System alarms. A simple rule-

based classifier sorts of patient and system alarms. There is a set of alarms that can 

reflect both patient conditions as well as system failures/faults. So, these alarms are 

labelled Ambiguous alarms, as they cannot be told apart at this stage. 

Simultaneously, Ventilator parameters are being analyzed for cause detection. This 

data driven process detects any abnormalities in data and tries to distinguish the type 

of failure or fault in the system or at the patient end. This is used as the most probable 

cause for the alarms. Correlating alarms and causes helps further classification of 

ambiguous alarms as patient or system alarms. 

Once the alarm is classified as patient or system alarm, this information is used to 

calculate the criticality of that alarm. Along with alarm type, other major 
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contributions to determining the criticality of any alarm are the patient vital 

conditions at that given instance and the Artillery blood gases (ABG) report 

parameters. The score calculated tells whether the alarm is critical or not, in other 

words, it tells us if alarm should be attended or ignored. 

The results are displayed to the hospital staff, which contains the cause of the alarm 

and some responsive actions that each staff member can perform to resolve the issue 

or stabilize the patient. 

 

 

The steps taken to achieve the outcome are as follows: 

• Data  

• Mapping alarms with causes 

• Cause detection ML Model 

• Correlating alarms and causes with responsive actions  

• Criticality score calculation 

These steps are elaborated ahead. 

4.1.  Identifying Data 

“Data” is defined as a representation of facts, concepts, or instructions in a formalized 

manner, suitable for communication, interpretation, or processing by humans or by 

automatic means[50]. Data can be measured, collected, reported, and analyzed, 

Figure 11 Methodology 
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whereupon it is often visualized using graphs, images, or other analysis tools. Raw 

data ("unprocessed data") may be a collection of numbers or characters before it's 

been "cleaned" and corrected by researchers. It must be corrected so that we can 

remove outliers, instruments, or data entry errors. Data processing commonly occurs 

in stages, and therefore the "processed data" from one stage could also be considered 

the "raw data" of subsequent stages. Field data is data that's collected in an 

uncontrolled "in situ" environment. Experimental data is the data that is generated 

within the observation of scientific investigations. Data can be generated by: 

• Humans 

• Machines 

• Human-Machine combines. 

It can often generate anywhere where any information is generated and stored in 

structured or unstructured formats 

The variables that are identified to understand the alarms and the patient conditions 

are: Alarm messages from ventilator, Ventilator response parameters, Ventilator 

settings, para monitor responses lab reports and doctors’ diagnosis. 

 

Figure 12 Required data characteristics 
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Definitions: 

Ventilator Settings and Alarm Settings: These parameters are set on a ventilator 

before attaching the patient so that the patient is stabilized. The values or range of 

values are decided by the Anesthesiologist according to patient condition. 

Ventilator Alarms: It is a message representing any abnormality with the patient or 

the system (ventilator), generated by the ventilator, to alert the hospital staff. It occurs 

on the ventilator screen with associated remedies. 

Para Monitor Response: Parameters that depict the patient vitals in real time. 

Ventilator Response Parameters: These parameters show the patient’s response to 

the mechanical ventilation provided by the ventilator. 

Arterial Blood Gasses (ABG) Report: This report provides information about the 

important factors of blood that are directly related to ventilation or respiratory system 

functioning. 

The table below shows the data generation frequency of each group of parameters. 

Each parameter in a group has the same frequency as that of the group of parameters. 

 

Table 1 Generation frequency of each data group 

Data Source Generation Frequency 

Ventilator Settings Ventilator continuous 

Ventilator Alarm Settings Ventilator once every setup 

Ventilator alarms Ventilator 7-8 per hour on average  

Para monitor Readings Para monitor continuous 

Ventilator Response Ventilator continuous 

ABG report Lab results Once or per day 
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Details of each parameter are given below[24]: 

Table 2 Name, representation and unit of every parameter 

Parameters Representations Units 
Ventilator Settings 

Ventilation Mode - - 
Inspiratory Pressure PI cm H2O 
Pressure support PS cm H2O 
Positive End Expiratory 
Pressure PEEP cm H2O 

Tidal volume Vt ml 
Maximum Minute ventilation Vmin L/min 
Respiratory Rate F bpm- breaths per minute 
Inhalation time to Exhalation 
time ratio I:E - 

Fraction of inspired oxygen FiO2 % 
   

Ventilator Alarm Settings 
Peak pressure Ppeak cm H2O 
Respiratory Rate Ftot bpm- breaths per minute 
Minute ventilation Vetot L/min 
Tidal volume mandatory Vtmand ml 
Tidal volume spontaneous Vtspont ml 

   
Response Parameters 

   
Ventilator alarms 

Alarm message - - 
   

Para-monitor Readings 
Heart Rate HR/ PR bpm- beats per minute 
Oxygen Saturation SpO2 % 
Blood Pressure BP mm of Hg 
Temperature Temp F 

   
Ventilator Response 

Type of ventilation - - 
Peak Pressure Ppeak cm H2O 
Positive End Expiratory 
Pressure PEEP cm H2O 

Tidal volume Vt ml 
Minute ventilation Vetot L/min 
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Respiratory Rate Ftot bpm- breaths per minute 
Inhalation time to Exhalation 
time ratio I:E - 

 

4.2. Cause detection 

Figure 13 Cause identification methodology 

4.2.1. Identifying Data 

The data structure and requirements are the same as in section 4.1. 

4.2.2. Data Simulation and Acquisition 

Gathering and capturing real world data for such solutions is the ideal choice. But 

this approach has lot of challenges. Lack of digital infrastructure in hospitals, ethical 

obstacles and unavailability of proper datasets are some of them. This prompted the 

data simulation idea.  

4.2.2.1.  Data Simulation 

A Simulator, the testchest, is used to simulate various patient conditions and vital 

signs. And the responses are recorded from the ventilator and para monitor screens.  

Few experiments were carried out to simulate various faults in ventilation while 

healthy and diseased patients are being ventilated. The experiment details are as 

follows: 

Objectives:  

• To form a dataset that can be used to detect cause, i.e., mechanical failures  
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• To capture data for leakages and blockages while running different patient 

lung conditions 

Theory: Testchest and its use, specification parameters 

Apparatus: 

i. Testchest 

ii. Ventilator 

iii. Para monitor 

iv. Patient circuit 

v. Endotracheal tube with ID 7 

vi. A simple open/shut valve with ID 7 

vii. Air compressor 

Experiment setup: 

Testchest is the lung simulator and simulates vital signs. It is connected to a ventilator 

via ET tube and patient circuit. The patient circuit has two arms, one for inhalation 

and the other for exhalation connected to respective ports in ventilator. 

The testchest simulated patient vitals are transmitted to para monitor via pulse 

oximeter. 
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The system at the bottom left corner of the image uses a software called TestChest 

Organis to design and send simulation instructions to the testchest. 

Experiment control and response parameters: 

 

Figure 15 The setup information and response parameters of the experiment 

The Control parameters have three main divisions. First, the patient’s respiratory 

condition, is manipulated using 33 parameters classified in 5 broad categories- Lung 

Mechanics, Respiratory Control, Hemodynamic, Gas Exchange, and Special Effects. 

Secondly, the ventilator settings, to ventilate the simulated lung. And finally, 

ventilator alarm settings, set to trigger alarms based on ventilation requirements. 

Figure 14 Experiment setup indication the experiment apparatus 
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Response parameters are the simulation results that are reflected on the ventilator and 

para monitor screens. 

The Control parameter settings for 2 experiments are as follows: 

Table 3 Experiment 01 control parameters for healthy and Severe Asthma patients 

Experiment 01 for Healthy and Severe Asthma patients 

  

Patient details 

Age :   Adult >18 Adult >18 

Weight :   65 65 

Patient Lung condition :   Healthy Severe Asthma 

Ventilator Settings 

Mode:   A/C A/C 

Peak Inspiratory Pressure: cm H2O VC VC 

TV : ml 470 470 

MV : L/min 5.64 5.64 

RR : frequency 12 12 

PEEP : cm H2O 3 3 

I:E   01:02 01:02 

Vmin max L/min 32 32 

Vmin sens L/min 3.3 3.3 

PI cmH2O NA NA 

Ti sec NA NA 

Testchest settings 

Airway Resistance Raw   Rp5  Rp200 

Collapse % 0 30 

Vdaw- dead airway   None Large 

Chest compliance, CW mL/cm H2O 100 93 

FiO2 % 30 80 

 

 

Table 4 Experiment 02 control parameters for healthy and VAP patients 

Experiment 02 for Healthy and Ventilator Associated Pneumonia patients 

 

Patient details 

Age :   

Adult 

>18 

Adult 

>18 Adult >18 Adult >18 

Weight :   65 65 65 65 
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Patient Lung condition :   Healthy 

Mild 

VAP 

Moderate 

VAP 

Severe 

VAP 

Ventilator Settings 

Mode:   A/C A/C A/C A/C 

Peak Inspiratory 

Pressure: cm H2O VC VC VC VC 

TV : ml 450 450 450 450 

MV : L/min 5.85 5.85 5.85 5.85 

RR : frequency 13 13 13 13 

PEEP : cm H2O 3 3 3 3 

I:E   01:02 01:02 01:02 01:02 

Vmin max L/min 32 32 32 32 

Vmin sens L/min 3 3 3 3 

PI cmH2O NA NA NA NA 

Ti sec NA NA NA NA 

Testchest settings 

Airway Resistance Raw   Rp5  Rp5  Rp20 Rp50 

Collapse % 0 10 30 60 

Lung compliance, Cl 

mL/cm 

H2O 117 90 70 35 

Chest compliance, CW 

mL/cm 

H2O 93.6 94 94 94 

Total compliance, Crs 

mL/cm 

H2O 52 42 31 21 

FiO2 % 30 40 60 90 

 

Table 5 Alarm thresholds set on ventilator during experimentation 

 

All the experiments are done for adult patients that need mandatory ventilation. 

These parameters are selected based on discussions with doctors and 

anesthesiologists. 

Alarm Thresholds 

  Lower limit Upper limit   

Ppeak - 40 cm H2O 

Ftot - 30 frequency 

Vminetot 3.25 6 L/min 

Vtemand 330 610 ml 

Vte spont 330 610 ml 
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Experiment scenarios: 

Experiment 01: 

Table 6 Faults induced and the method to simulate it in Experiment 01 

Disease Induced Fault Simulates 

Healthy  

Healthy No fault 

LTCleakage Large leakage due to ET tube using testchest 

MTCleakage Medium leakage due to ET tube using testchest 

70Blockage at IS due 

to pipe squeeze 

70% patient circuit blockage on Inhalation arm 

due to kink 

95Blockage at IS due 

to pipe squeeze 

95% patient circuit blockage on Inhalation arm 

due to kink 

70Blockage at ES due 

to pipe squeeze 

70% patient circuit blockage on exhalation arm 

due to kink 

95Blockage at ES due 

to pipe squeeze 

95% patient circuit blockage on exhalation arm 

due to kink 

STCleakage Small leakage due to ET tube using testchest 

ISL1Blockage 
30.67% patient circuit blockage using zip tie- 

diameter reduction at Inhalation side 

ISL2Blockage 
45.33% patient circuit blockage using zip tie- 

diameter reduction at Inhalation side 

ESL3Blockage 
24% patient circuit blockage using zip tie- 

diameter reduction at exhalation side 

ESL4Blockage 
33.33% patient circuit blockage using zip tie- 

diameter reduction at exhalation side 

ESL5Blockage 
56% patient circuit blockage using zip tie-

diameter reduction at exhalation side 

EScCutleakage 
2cm cut on patient circuit arm-Leakage in 

exhalation arm closer to ET tube 

IScCutleakage 
2cm cut on patient circuit arm- Leakage in 

inhalation arm closer to ET tube 

ESACutleakage 
2cm cut on patient circuit arm- Leakage in 

exhalation arm away to ET tube 

ISACutleakage 
2cm cut on patient circuit arm- Leakage in 

inhalation arm away to ET tube 

Inside tube blockage 
Blockage using a cotton ball inside the patient 

circuit  

Severe 

Asthma  

Normal No fault 

LTCleakage Large leakage due to ET tube using testchest 

MTCleakage Medium leakage due to ET tube using testchest 

STCleakage Small leakage due to ET tube using testchest 

ISAleakage 
2cm cut on patient circuit arm- Leakage in 

inhalation arm away to ET tube 

ESAleakage 
2cm cut on patient circuit arm- Leakage in 

exhalation arm away to ET tube 
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ESCleakage 
2cm cut on patient circuit arm-Leakage in 

exhalation arm closer to ET tube 

ISCleakage 
2cm cut on patient circuit arm- Leakage in 

inhalation arm closer to ET tube 

E180tubekink 
Blockage due to 180 degree tube kink at 

exhalation arm 

I180tubekink 
Blockage due to 180 degree tube kink at inhalation 

arm 

 

Figure 16 a)180 degrees Patient circuit kink, b) Simulating blockage using patient circuit squeeze 
c) Leakage simulation using a cut in patient circuit 

Figure 17 Testchest used for leakage simulation 

(a) (b) 

(c) 
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Experiment 02: 

Experiments for three faults or causes at different levels while simulating diseased 

lung conditions are performed in the following manner- 

Table 7 Induced fault and method of simulation for Experiment 02 

Disease Induced Fault Simulates 

Healthy 

Normal No fault 

STCleakage leakage due to ET tube 

MTCleakage leakage due to ET tube 

LTCleakage leakage due to ET tube 

L1ETTblockage Obstruction inside ET tube 

L2ETTblockage Obstruction inside ET tube 

L3ETTblockage Obstruction inside ET tube 

20DETTblockage ET Tube Kink/ bend 

25DETTblockage ET Tube Kink/ bend 

30DETTblockage ET Tube Kink/ bend 

VAP-mild 

Normal No fault 

STCleakage leakage due to ET tube 

MTCleakage leakage due to ET tube 

LTCleakage leakage due to ET tube 

L1ETTblockage Obstruction inside ET tube 

L2ETTblockage Obstruction inside ET tube 

L3ETTblockage Obstruction inside ET tube 

20DETTblockage ET Tube Kink/ bend 

25DETTblockage ET Tube Kink/ bend 

30DETTblockage ET Tube Kink/ bend 

VAP-moderate 

Normal No fault 

STCleakage leakage due to ET tube 

MTCleakage leakage due to ET tube 

LTCleakage leakage due to ET tube 

L1ETTblockage Obstruction inside ET tube 

L2ETTblockage Obstruction inside ET tube 

L3ETTblockage Obstruction inside ET tube 

20DETTblockage ET Tube Kink/ bend 

25DETTblockage ET Tube Kink/ bend 

30DETTblockage ET Tube Kink/ bend 

VAP-Severe 
Normal No fault 

STCleakage leakage due to ET tube 
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MTCleakage leakage due to ET tube 

LTCleakage leakage due to ET tube 

L1ETTblockage Obstruction inside ET tube 

L2ETTblockage Obstruction inside ET tube 

L3ETTblockage Obstruction inside ET tube 

20DETTblockage ET Tube Kink/ bend 

25DETTblockage ET Tube Kink/ bend 

30DETTblockage ET Tube Kink/ bend 

 

The following table explains the method used to simulate the faults. 

Induced Fault Method to achieve fault 

Normal No induced fault 

STCleakage Small leakage through test chest settings 

MTCleakage Medium leakage through test chest settings 

LTCleakage Large leakage through test chest settings 

L1ETTblockage 47.79 % blockage of ET tube opening 

L2ETTblockage 69.90 % blockage of ET tube opening 

L3ETTblockage 91.16 % blockage of ET tube opening 

20DETTblockage 20 degrees valve position 

25DETTblockage 25 degrees valve position 

30DETTblockage 30 degrees valve position 

 

 

 

Figure 18 Testchest used for leakage simulation 
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Experiment procedure: 

i. Design lung condition parameters from literature and verify with doctors. 

ii. Follow the standard procedures to start and set up the individual devices. 

iii. Feed the lung parameters to testchest via TestChest Organis and start the 

simulation. 

iv. Connect the para monitor to the testchest using a pulse oximeter. 

v. Connect the patient circuit to the ventilator and at the other end with 

single opening, connect the ET tube. 

vi. Set up the ventilator using the decided control parameters and start 

ventilation. 

vii. Insert the open end of ET tube in the testchest opening and inflate the cuff 

to hold it in place. 

viii. The setup is complete. Ventilator and para monitor screens will show the 

responses. 

ix. Run different fault scenarios and capture data. 

Figure 19 Simulation of in-tube blockage obstruction inside ET tube 

Figure 20 Simulation of blockage of ET Tube kink/bend using a valve 
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x. Once done with fault scenarios, change the patient condition using test 

chest and repeat the fault scenarios. 

 

4.2.2.2.  Data Acquisition 

Data Acquisition: This stage encompasses the methods used to collect raw data 

from various sources. This could involve sensor reading, scraping web data, or 

gathering information through surveys and application logs. 

The experiments generate the necessary data. This data needs to be collected in a 

digital format. The best way to capture this data would be to take data directly from 

the devices, but there are ethical restrictions to this method. 

So, an optical character recognition solution was used to capture data from the device 

screens.  

A camera focuses on the device screen and captures images alternatively for both the 

devices. The clicked image is then processed using an Optical character recognition 

(OCR) model. This model uses YOLOv7 for object detection and QWEN for 

character recognition. The extracted data from the images is stored in Excel files. 

These files are further processed to get data in the required format. 

 

Figure 21 Data Acquisition method 
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2.3. Data Collection and integration 

Data collected in excel format is stored in multiple files. Ventilator and para monitor 

data are stored in two different files. While the third file contains the labels for all 

the causes and the timestamps for which each experiment was run. 

All data from these three files was compiled in one using the timestamps as the 

connecting link. This step is called data integration.  

4.2.4. Data Preprocessing 

Data preprocessing involves cleaning, transforming, and organizing raw data to 

make it suitable for analysis or model training. It's a crucial step in data science and 

machine learning, enhancing data quality, ensuring consistency, and preparing data 

for specific analytical techniques.  

The raw data obtained needs preprocessing to get it ready to perform any analysis on 

it. In this step, all the missing values and duplicates are dealt with using multiple 

methods.  

The integrated data from the experiments have multiple missing values. The reason 

being not every datapoint in the Ventilator and para monitor file had the linking time 

stamp in the label file, as the data was collected in a continuous manner, each scenario 

in the experiments had some stabilizing time.  

Some data point had missing value, while others had wrong entries in wrong 

columns. These were handled by setting the threshold for the columns and the odd 

values were replaced with the column mean of that scenario. 

outliers along the whole dataset. 

4.2.5. Exploratory data analysis (EDA) 

EDA is performed to extract trends and correlation among parameters from the data. 

It is performed in the following steps: 
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Exploration: 

• Univariate Analysis: Analyse individual variables using descriptive 

statistics (mean, median, mode, range, variance, standard deviation) and 

visualizations (histograms, box plots).  

• Bivariate Analysis: Examine relationships between two variables using 

scatter plots, heatmaps, or other visualizations.  

• Multivariate Analysis: Investigate interactions between multiple variables, 

often using correlation analysis.  

• Multivariable analysis: one outcome but multiple predictor (independent) 

variables (e.g., multiple regression, logistic regression with several 

covariates). 

The aim is to identify cause using multiple variables. So, a multivariable ANOVA analysis 

was performed to find out the significance of each variable on outcome. 

 

Figure 22 ANOVA results for healthy patient data in Experiment 01 

Figure 23ANOVA results for Severe Asthma patient data in Experiment 01 
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Feature Engineering:  

Most prominent and relevant features based on the ANOVA results were selected for 

model training. 

Hypothesis Testing:  

Whether the collected parameters have any significant change with respect to the 

related causes. So, let the null hypothesis be, parameters have no significant impact 

on the outcome. And alternate hypothesis be, parameters have significant impact on 

the outcome 

 

 

Figure 24 ANOVA results for Experiment 02 

Table 8 F and P values from ANOVA Results for Experiment 02 
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Conclusion:  

Ppeak, VTE, Pmean, PEEP1, E and VETOT are the parameters that have significant 

p values in ANOVA test, as can be seen from figures 24 and 25 for experiment 01 

and figure 26 and table 8 for experiment 02. So, we reject null hypothesis and accept 

the alternate. 

So, these parameters are selected to train the ML models for cause identification. 

4.2.6. Models training and testing 

The problem at hand is to identify the class to which the incoming parameters belong. So, 

this is a classification problem.  

9 Classification models were trained and tested on the data generated. While training the 

models, 5-fold cross validation and hyperparameter tuning was carried out using 

GridSearchCV. These techniques ensured the reliability of the accuracies obtained from 

testing. 

Results are discussed in the results and discussions section. 

4.3. Mapping alarms, causes and responsive actions 

Establishing a clear correlation between alarms and causes helps narrow down the 

recommended action suggestions. Segregation of ambiguous alarms into patient and 

system alarms is possible as the cause can reflect that information. 

Below are 3 causes that are used to segregate alarms as patient and system alarms. 

 

Figure 25 Relationship mapping between Alarm, cause and Responsive action 
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Table 9 Simulated Cause and Alarm type 

Alarm type Cause 

Patient Obstruction inside ET tube 

System 
ET Tube Kink/ bend 

Leakage due to ET tube 

 

Table 10 Risk factor associated with the alarm and classification of patient and system alarm for PB 840 ventilator 

 

This table classifies alarms into 3 categories and labels each of them with some risk 

or severity. The third category represents the alarms that cannot directly be classified 

as patient or system alarms, more information about their cause is required to do so. 

The table below correlated all the ambiguous alarms for PB840 with the causes to 

determine the type of alarm.  

Table 11 Mapping correlation between alarm and cause 

Alarm type Sr. No. Alarm Cause (detected using ML model) 

Patient 2 APNEA (lockable) Obstruction inside ET tube 

Patient 9 ↑PMEAN (lockable) Obstruction inside ET tube 

Patient 10 ↑PPEAK (lockable) Obstruction inside ET tube 

Patient 11 ↑PVENT (lockable)   

Patient 12 ↑VTE (lockable) Patient spontaneous breathing 

Patient 13 ↑VE TOT (lockable) Patient spontaneous breathing 

Patient 14 ↑VTI MAND (lockable) Patient spontaneous breathing 
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Patient 15 ↑VTI SPONT (lockable) Patient spontaneous breathing 

Patient 16 ↑fTOT (lockable) Patient spontaneous breathing 

Patient 24 ↓VTE MAND (lockable) Obstruction inside ET tube 

Patient 25 low VTE SPONT (lockable) Obstruction inside ET tube 

Patient 26 low V E TOT (lockable) Obstruction inside ET tube 

Patient 32 SEVERE OCCLUSION   

Patient 33 

VOLUME NOT DELIVERED 

(This alarm applies to VC+ and 

VS breaths.) 

  

System 8 ↑PCOMP (lockable) ET Tube Kink/ bend 

System 9 ↑PMEAN (lockable) ET Tube Kink/ bend 

System 10 ↑PPEAK (lockable) ET Tube Kink/ bend 

System 11 ↑PVENT (lockable)   

System 12 ↑VTE (lockable) Leakage due to ET tube 

System 13 ↑VE TOT (lockable) Leakage due to ET tube 

System 14 ↑VTI MAND (lockable) Leakage due to ET tube 

System 15 ↑VTI SPONT (lockable) Leakage due to ET tube 

System 16 1fTOT (lockable)   

System 24 ↓VTE MAND (lockable) ET Tube Kink/ bend 

System 25 low VTE SPONT (lockable) ET Tube Kink/ bend 

System 26 low V E TOT (lockable) ET Tube Kink/ bend 

System 32 SEVERE OCCLUSION   

System 33 

VOLUME NOT DELIVERED 

(This alarm applies to VC+ and 

VS breaths.) 

  

 

 

Table 12 Correlating Cause and Responsive actions 

Cause 

detected 

Responsive action suggestion 

Nurse Anaesthesiologist 
Resident 

doctors 

Senior 

Doctors/ 

Specialist  

No fault         

Leakage due 

to ET tube 

Check leakages 

Check ET tube cuff 

pressure and 

position 

    

Check ET tube 

cuff pressure and 

position 

Prescribe sedation 

in case of Agitated 

patient 
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Check Vitals and 

make necessary 

adjustments to 

ventilator settings 

    

Obstruction 

inside ET 

tube 

Check for 

secretions in the 

ET tube 

Check Vitals and 

make necessary 

adjustments to 

ventilator settings 

Check 

patient 

condition 

Check 

patient 

condition 

Check ET tube 

position 
  

Prescribe 

medication 

Change 

treatment 

course 

Suctioning   
Call needed 

specialist 

Call needed 

specialist 

ET Tube 

Kink/ bend 

Check ET tube 

position 
      

Adjust patient 

head position 
      

Check for Patient 

organs pressing 

or biting on ET 

tube 

      

 

These two tables connect alarms, causes and the responsive action suggestions 

together. 

4.4. Criticality score calculation 

The Criticality score takes two major factors into consideration. The first factor being 

the state of patient’s vital signs while the second factor is the type of alarm and its 

associated risk towards the patient. 

Formula: 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = 𝐹𝑉𝑖𝑡𝑎𝑙𝑠  +  𝛼 ∗  𝐹𝐴𝑙𝑎𝑟𝑚𝑡𝑦𝑝𝑒 +  𝛽 ∗ (𝐹𝐴𝑙𝑎𝑟𝑚𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 − 1) 

 

𝐹𝑉𝑖𝑡𝑎𝑙𝑠 − 𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑣𝑖𝑡𝑎𝑙𝑠 𝑠𝑡𝑎𝑡𝑒 

𝐹𝐴𝑙𝑎𝑟𝑚𝑡𝑦𝑝𝑒 − 𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑎𝑙𝑎𝑟𝑚 

𝐹𝐴𝑙𝑎𝑟𝑚𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 − 𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑎𝑙𝑎𝑟𝑚 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 



68 
 

𝛼, 𝛽 − 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 

𝛽 = 30, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

This equation makes sure that the criticality can be directly interpreted from the score 

itself. The threshold value for MEWS is ≥5. Meaning, if the score is higher than 4 

the patient’s health is in critical state. With this reference, the threshold for Modified 

MEWS is also set at ≥5. 

Table 13 Criticality score determining whether the alarm is critical or not based on the patient condition 

Alarm type 

Non-critical Critical 
Severity with 

score Lower 

limit 

Upper 

Limit 

Lower 

limit 

Upper 

Limit 

System 

Alarm 

0 4 5 24 
  

30 34 35 54 

60 64 65 84 

Patient 

Alarm 

100 104 105 124 

130 134 135 154 

160 164 165 184 

 

Calculating  𝑭𝑨𝒍𝒂𝒓𝒎 

With the intention to distinguish the Patient and system critical alarms, the multiplier 

is introduced. This will enable easy mapping of data from the real world. 

For Patient alarms, 𝛼 = 100,   and  𝐹𝐴𝑙𝑎𝑟𝑚𝑡𝑦𝑝𝑒 = 1 

For System alarms,     𝛼 = 1    and  𝐹𝐴𝑙𝑎𝑟𝑚𝑡𝑦𝑝𝑒 = 0 

 

Determining suitable ICU scoring system to calculate  𝑭𝑽𝒊𝒕𝒂𝒍 

Few ICU scoring methods, [51],were studied and determined the best possible 

method for this application. As can be seen from the table below, MEWS is the most 

suitable scoring method. It is simple, considers the most relevant parameters and is 

proven.  

 

In
creases 
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Table 14 ICU Scoring methods 

Score Purpose Type Parameters considered 

APACHE II 

Severity & 

mortality 

prediction 

Numeric 
Physiological, chronic health, age, 

diagnosis 

APACHE 

III/IV 

Improved 

mortality 

prediction 

Numeric 
APACHE II parameters + more 

detailed chronic illness 

SOFA 
Organ dysfunction 

assessment 

Numeric 

(daily use) 

Respiration, Coagulation, Liver, 

CVS, CNS, Renal 

qSOFA 
Rapid screening 

for sepsis risk 

Numeric 

(simple) 

Respiratory rate, altered 

mentation, BP 

SAPS II / 

SAPS III 

Mortality 

prediction 
Numeric 

Physiological variables, 

demographics 

MEWS 

Early 

deterioration 

prediction 

Numeric 

(simple) 
BP, HR, RR, Temp, LOC 

MODS 
Multi-organ 

dysfunction 

Numeric 

(organ-

based) 

Respiratory, renal, hepatic, 

cardiovascular, CNS 

Glasgow 

Coma Scale 

(GCS) 

Consciousness 

assessment 
Numeric Eye, verbal, motor response 

RASS 
Sedation & 

agitation 

Numeric 

(behavioural) 
Sedation-agitation levels 

PIM & 

PRISM 

Paediatric severity 

prediction 
Numeric 

Paediatric ICU-specific 

parameters 

 

The Modified Early Warning Score (MEWS), [52],is a simple, physiological score 

that may allow improvement in the quality and safety of management provided to 
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surgical ward patients. The primary purpose is to prevent delays in intervention or 

transfer of critically ill patients. 

The threshold value for MEWS is ≥5. Meaning, if the score is higher than 4 the 

patient’s health is in critical state. 

Table 15 Modified Early Warning Score  

Score 3 2 1 0 1 2 3 

Respiratory 

rate (min−1) 
- ≤ 8 - 9–14 15–20 21–29 > 29 

Heart rate 

(min−1) 
- ≤ 40 41–50 51–100 101–110 111–129 > 129 

Systolic BP 

(mmHg) 
≤ 70 71–80 81–100 

101–

199 
- ≥ 200 - 

Urine output 

(ml/kg/h) 
Nil < 0.5 - - - - - 

Temperature 

(°C) 
- ≤ 35 

35.1–

36 

36.1–

38 

38.1–

38.5 
≥ 38.6 - 

Neurological - - - Alert 
Reacting Reacting 

Unresponsive 
to voice to pain 

 

This system still needs to be refined and modified further to meet the application on 

hand. The modifications and additions needed to the scoring system are discussed 

ahead. 

Calculating  𝑭𝑽𝒊𝒕𝒂𝒍 

The second factor considers a total of 8 parameters. They are given on the table 

below. The scoring system used is based on an established method called Modified 

Early Warning Score (MEWS). 
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Table 16 Vital Criticality Score, based on MEWS  

Parameter 
Score 

= 3 

Score 

= 2 

Score 

= 1 

Score = 0 

(Normal*) 

Score = 

1 

Score 

= 2 

Score 

= 3 

Heart Rate (bpm) - ≤40 41–50 51–100 
101-

110 

111–

129 
≥130 

Systolic BP (mmHg) ≤70 71–80 
81-

100 
101-199 - ≥200 - 

Diastolic BP 

(mmHg) 
<60 - 61-75 75-80 81-89 - ≥90 

Respiratory Rate 

(/min) 
- ≤8 - 9–14 15–20 

21–

29 
≥30 

Temperature (°C) - ≤35.0 
35.1–

36.0 
36.1–38.0 

38.1–

38.5 
– ≥38.6 

ABG: pH ≤7.30 – – 7.31–7.45 – – ≥7.46 

ABG:PaCO₂(mmHg) ≤20 21–25 26–34 35–45 46–55 
56–

65 
≥66 

ABG: PaO₂ (mmHg) ≤40 41–55 56–70 71–100 
101–

200 
– – 

 

Normal*- the * indicates that the range of the normal is variable from patient to patient. To solve 

this problem, a personalized baseline approach is proposed  

With a few adjustments to the MEWS method, a new scoring method for the 

criticality score is formulated. The adjustments made are as follows: 

i. Nonrelevant parameters- Urine output and Neurological are removed.  

ii. Few additional parameters like diastolic BP, ABG- PaO2, PaCO2 and pH 

are added to make the score more relevant to the application[53]. 

Personalized vitals baseline generation 

Vital parameter normal ranges differ from patient to patient. This leads to the issue 

that a generalized value range for vital parameters may not depict the actual patient 
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condition. To overcome this issue, the need for personalized baseline for every 

patient is necessary. So, when a patient is admitted to an ICU, using the initial vitals 

data to calculate normal ranges which will serve as personalized base lie for that 

patient. This will help reduce all the initial patient condition-based alarms, which 

need to be ignored as suggested by doctors. The ranges will update as the data keeps 

updating.  
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Chapter 5: Results and Discussions 

 

5.1. Results 

Disease Identification 

 

Figure 26 K-mean clustering to visualise the multi-dimensional dataset in 2D, Unsupervised 
learning to check the distinguishability in data groups 

Figure 27 XGBoost Model Results for disease identification using Experiment 01 data 
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Both supervised and unsupervised learning models showed that the ventilator parameters 

can be used to identify diseases. Also, they serve as validation methods for the other 

learning methods. 

Cause Identification Results 

Experiment 01: 

 

Figure 28 t-SNE plot visualising multiple clusters denoting to distinguishability in data group on Experiment 01 
data 

 

Table 17 Simulated disease and faults for Experiment 01 

Label Lung condition Fault induced 

0 Healthy None 

1 Healthy LTCleakage 

2 Healthy MTCleakage 
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3 Healthy 70Blockage at IS due to pipe squeeze 

4 Healthy 90Blockage at IS due to pipe squeeze 

5 Healthy 70Blockage at ES due to pipe squeeze 

6 Healthy 90Blockage at ES due to pipe squeeze 

7 Healthy STCleakage 

8 Healthy ISL1Blockage 

9 Healthy ISL2Blockage 

10 Healthy ESL3Blockage 

11 Healthy ESL4Blockage 

12 Healthy ESL5Blockage 

13 Healthy EScCutleakage 

14 Healthy IScCutleakage 

15 Healthy ESACutleakage 

16 Healthy ISACutleakage 

17 Healthy Inside tube blockage 

18 Severe Asthma None 

19 Severe Asthma LTCleakage 

20 Severe Asthma MTCleakage 

21 Severe Asthma STCleakage 

22 Severe Asthma ISAleakage 

23 Severe Asthma ESAleakage 

24 Severe Asthma ESCleakage 

25 Severe Asthma ISCleakage 

26 Severe Asthma E180tubekink 

27 Severe Asthma I180tubekink 
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The t-SNE plots are unsupervised models, these are used to check variation in the 

datapoints for different causes. The plot shows that similar data points making a small 

cluster showing these data points different from others. Each cluster is a different 

group of data points. 

Some of the groups have multiple labels, this is either because the groups share 

similar characteristics or due to outliers. These problems can be solved with large 

quantity of data points. 

Experiment 02: 

 

Figure 29 t-SNE visualisation for Experiment 02 data 
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Table 18 Faults induced for healthy and 3 levels of VAP patients 

Disease Induced_Fault Simulates 

Healthy 

Normal No fault 

STCleakage leakage due to ET tube 

MTCleakage leakage due to ET tube 

LTCleakage leakage due to ET tube 

L1ETTblockage Obstruction inside ET tube 

L2ETTblockage Obstruction inside ET tube 

L3ETTblockage Obstruction inside ET tube 

20DETTblockage ET Tube Kink/ bend 

25DETTblockage ET Tube Kink/ bend 

30DETTblockage ET Tube Kink/ bend 

VAP-mild 

Normal No fault 

STCleakage leakage due to ET tube 

MTCleakage leakage due to ET tube 

LTCleakage leakage due to ET tube 

L1ETTblockage Obstruction inside ET tube 

L2ETTblockage Obstruction inside ET tube 

L3ETTblockage Obstruction inside ET tube 

20DETTblockage ET Tube Kink/ bend 

25DETTblockage ET Tube Kink/ bend 

30DETTblockage ET Tube Kink/ bend 

VAP-moderate 

Normal No fault 

STCleakage leakage due to ET tube 

MTCleakage leakage due to ET tube 

LTCleakage leakage due to ET tube 

L1ETTblockage Obstruction inside ET tube 

L2ETTblockage Obstruction inside ET tube 

L3ETTblockage Obstruction inside ET tube 

20DETTblockage ET Tube Kink/ bend 

25DETTblockage ET Tube Kink/ bend 

30DETTblockage ET Tube Kink/ bend 

VAP-Severe 

Normal No fault 

STCleakage leakage due to ET tube 

MTCleakage leakage due to ET tube 

LTCleakage leakage due to ET tube 

L1ETTblockage Obstruction inside ET tube 

L2ETTblockage Obstruction inside ET tube 

L3ETTblockage Obstruction inside ET tube 

20DETTblockage ET Tube Kink/ bend 

25DETTblockage ET Tube Kink/ bend 

30DETTblockage ET Tube Kink/ bend 
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This t-SNE plot shows that the groups of data points have distinct characteristics and 

can be easily distinguished. 

Model Results: 

Experiment 01: 

Table 19 Classification Model results for Experiment 01 

Model Best Params Accuracy Precision Recall F1 

Logistic Regression {'C': 1, 'multi_class': 'multinomial', 'solver': 'lbfgs'} 0.7808 0.6746 0.7371 0.6931 

Decision Tree {'criterion': 'gini', 'max_depth': None, 'min_samples_split': 2} 0.9543 0.965 0.9582 0.9595 

Random Forest {'max_depth': None, 'n_estimators': 100} 0.9589 0.9639 0.9532 0.9544 

k-Nearest Neighbors {'n_neighbors': 3, 'weights': 'distance'} 0.9452 0.9549 0.9375 0.9388 

MLP Neural Network {'activation': 'tanh', 'alpha': 0.001, 'hidden_layer_sizes': (50,)} 0.863 0.8255 0.8588 0.8338 

Support Vector Machine {'C': 1, 'gamma': 'scale', 'kernel': 'rbf'} 0.5525 0.2759 0.3888 0.3102 

XGBoost {'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 100} 0.9498 0.9528 0.9341 0.9386 

CatBoost {'depth': 5, 'iterations': 100, 'learning_rate': 0.1} 0.9635 0.9731 0.963 0.9661 

LightGBM {'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 50} 0.9498 0.9522 0.9419 0.9437 

 

 

Figure 30 Confusion matrix of XGBoost for Experiment 01 data 
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Experiment 02: 

Table 20 Classification Model results for Experiment 02 

Model Best Params Accuracy Precision Recall F1 

Logistic Regression {'C': 1, 'multi_class': 'multinomial', 'solver': 'lbfgs'} 0.5733 0.4079 0.5013 0.4219 

Decision Tree {'criterion': 'gini', 'max_depth': None, 'min_samples_split': 4} 0.9125 0.9117 0.9038 0.9038 

Random Forest {'max_depth': None, 'n_estimators': 50} 0.9125 0.9156 0.9059 0.9075 

k-Nearest Neighbors {'n_neighbors': 3, 'weights': 'uniform'} 0.8753 0.8753 0.8612 0.8636 

MLP Neural Network {'activation': 'tanh', 'alpha': 0.0001, 'hidden_layer_sizes': (100,)} 0.6499 0.5039 0.5993 0.5216 

Support Vector Machine {'C': 1, 'gamma': 'scale', 'kernel': 'rbf'} 0.1313 0.0175 0.0821 0.0277 

XGBoost {'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 50} 0.9212 0.922 0.9157 0.916 

CatBoost {'depth': 5, 'iterations': 100, 'learning_rate': 0.1} 0.9125 0.9156 0.8949 0.8958 

LightGBM {'learning_rate': 0.01, 'max_depth': 3, 'n_estimators': 100} 0.9103 0.9088 0.8983 0.9004 

 

 

Figure 31 Confusion matrix of XGBoost for Experiment 02 data 
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In both cases, XGBoost performs best with the highest accuracy and F1 score. 

This tells us that the faults can be identified from the dataset with 92 percent 

accuracy. 

 

Example demonstrating the solution flow 

Assuming a case of blockage in the ET tube due to patient secretions. Below 

example demonstrates the criticality calculation for the alarm(s) raised in this 

scenario. 

Possible alarms raised:  

i. High PPEAK 

ii. Low VTE MAND 

iii. Low V E TOT 

Primary classification: Ambiguous alarm 

Cause detected: Obstruction inside ET tube 

Secondary classification: Patient Alarm 

Criticality Calculation: 

 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = 𝐹𝑉𝑖𝑡𝑎𝑙𝑠  +  𝛼 ∗  𝐹𝐴𝑙𝑎𝑟𝑚𝑡𝑦𝑝𝑒 +  𝛽 ∗ (𝐹𝐴𝑙𝑎𝑟𝑚𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 − 1) 

 𝐹𝐴𝑙𝑎𝑟𝑚 = 1, 𝑓𝑜𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑎𝑙𝑎𝑟𝑚 𝑓𝑟𝑜𝑚 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 

 𝛼 = 100 

β = 30 

𝐹𝐴𝑙𝑎𝑟𝑚𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = 3  [from Risk factor table- Table 10] 
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Let the patient vitals be: 

Table 21 Vitals table with associated score  

 Values Score 

Heart Rate (bpm) 101 1 

Systolic BP (mmHg) 135.5 0 

Diastolic BP (mmHg) 62.5 1 

Respiratory Rate (/min) 20 1 

Temperature (°C) 39.61111111 3 

ABG: pH 7.32 0 

ABG:PaCO₂(mmHg) 39 0 

ABG: PaO₂ (mmHg) 115 1 

𝑭𝑽𝒊𝒕𝒂𝒍𝒔  - 7 

 

 

Now,  

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = 𝐹𝑉𝑖𝑡𝑎𝑙𝑠  +  𝛼 ∗  𝐹𝐴𝑙𝑎𝑟𝑚𝑡𝑦𝑝𝑒 +  𝛽 ∗ (𝐹𝐴𝑙𝑎𝑟𝑚𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 − 1) 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = 𝐹𝑉𝑖𝑡𝑎𝑙𝑠  +  100 ∗  𝐹𝐴𝑙𝑎𝑟𝑚𝑡𝑦𝑝𝑒 +  30 ∗ (𝐹𝐴𝑙𝑎𝑟𝑚𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 − 1) 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = 7 + 100 ∗  1 +  30 ∗ (3 − 1) 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = 167 

Hence, the alarm is critical, due to patient conditions and is triggered because of 

blockage inside ET tube, which is probably because of excessive secretions in the 

respiratory system of the patient. 

The breakdown of the score is as follows:  
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i.  𝐹𝑉𝑖𝑡𝑎𝑙𝑠 being 7, which is greater than 4 (threshold for Modified-MEWS) 

which describes the poor vitals. (If the value were to be 4 or less, the score 

would be in between 160 and 164. Then the alarm would have been 

labelled as non-critical as the patient is stabilised.) 

ii. ( 𝛼 ∗  𝐹𝐴𝑙𝑎𝑟𝑚𝑡𝑦𝑝𝑒)= 100, as it is the patient alarm. 

iii. (𝛽 ∗ (𝐹𝐴𝑙𝑎𝑟𝑚𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 − 1))=60, as the alarm risk factor is 3. 

This shows that the criticality is controlled by the patient condition, as the thresholds 

set for alarm criticality are made keeping it as the anchor point. 

 

5.2. Discussions 

• Simulation settings and lung behavior remain constant for the entire duration 

of each scenario. It does not change dynamically once the scenario is running 

and needs to be changed manually for the next scenario. Although the 

behavior fluctuates a little to incorporate realistic data pattern. 

• Each experiment is designed for a particular set of populations, adult 

population with complete respiratory support. 

• As classification models are used, the classification happens amongst the 

existing classes, which means baseline for each disease is required so that an 

escalation pattern can be generalized once the patient condition is out of 

picture. 

• The accuracy will improve with more data, as deep learning models perform 

best for these types of data where many variables are involved.    
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Chapter 6: Conclusion 

 

Criticality of alarm is calculated based on patient condition and ventilator parameters 

can be used to detect the underlying cause. 

Conclusions regarding cause Identification are: 

• Ventilator parameters can be used to distinguish diseases. 

• Faulty Patient circuit detection for leakage scenarios is successful. Different 

origins of leakages can be detected and classified. 

• Blockage in Patient circuit due to tube twist does not pose an issue as its 

diameter is sufficiently large compared to smallest cross-section in the 

complete airway passage. 

• In case of patient circuit tube blockage, alert is raised only at complete 

blockage. 

• Halfway leakages and blockages are hidden in pressure and volume alarms. 

• Subtle changes in diseases severity can be detected. 

• Different types and levels of blockage can be identified just by analyzing the 

parameters. 

• Blockage alarms for in-tube blockage are triggered at complete blockage but 

can be identified with the help of parameters. 

The models developed for cause identification are 92% accurate. With this, it was 

observed that severe causes are more clearly identified as compared to minor faults. 

This works in favor of the solution. 

A baseline for any disease is necessary to accurately access the faults, this is where 

the expert opinions of doctors can play a very important role. Similarly, personalized 
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baseline of patient vitals is necessary to access the actual criticality of the alarm and 

fault rectification.  
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Chapter 7: Future scope 

 

Building on existing alarm‐management frameworks, future work should expand the 

catalogue of failure modes by systematically identifying additional causes of false or 

artifact‐driven alarms—such as sensor dislodgement, tubing occlusions, or transient 

patient‐ventilator desynchronies—and incorporate these into a unified detection 

strategy. Concurrently, time‐series modelling techniques (e.g., ARIMA, LSTM, or 

Transformer architectures) can be developed to capture temporal patterns in 

ventilator parameters, enabling early detection of evolving faults rather than relying 

on fixed threshold breaches. By integrating these models into a prototype software 

platform, clinicians will gain real‐time insights into device performance and patient 

status, minimizing nuisance alarms and improving clinical trust. 

Once the software is built, targeted deployment in a controlled ICU or simulation lab 

will provide critical real‐world feedback, allowing iterative refinement of algorithms 

and user interfaces. Data collected during this phase can seed a curated repository of 

annotated ventilator events, which will improve model robustness and 

generalizability. Finally, exploring additional data streams—such as waveform 

morphologies, patient‐ventilator interaction metrics, or ventilator internal error 

logs—will further enhance the solution’s ability to distinguish true alarms from 

benign artifacts, ultimately paving the way for a scalable, clinically validated alarm‐

management system. 
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