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ABSTRACT 

The manufacturing sector has experienced a revolutionary shift in the last few decades, 

transforming from established, mechanized production systems to highly connected digital 

networks of advanced technology. The key to this revolution is the digitalization of physical 

systems, processes, and assets, a paradigm shift that has transformed the way industries design, 

produce, monitor, and maintain. Industry 4.0 is defined by the shift to the Internet of Things 

(IoT), artificial intelligence (AI), machine learning, big data analytics, cloud computing, and 

industrial robotics. Central to this revolution is the Digital Twins concept. 

Digital Twin technology has been widely applied across many industrial sectors. and that says 

a lot about how multifaceted and revolutionary it is. In manufacturing, Digital Twins allow for 

predictive maintenance by continuously monitoring the health of equipment and forecasting 

potential failures ahead of time, so there is reduced unplanned downtime and maintenance 

expense. 

Although Digital Twin technology has huge potential and is increasingly being employed, there 

remain many challenges that stand in the way of its widespread adoption and fullest use. The 

most intrinsic challenge is probably data integration and interoperability. In a typical factory 

environment, operational data, design specifications, maintenance history, and human 

expertise are generally spread across many different platforms and systems, very seldom 

gathered into one database. Lack of standardization is the second grand challenge. While 

standards like ISO 23247 offer reference architectures for developing Digital Twins, the 

implementation styles are immensely divergent in organizations and industries. Not having 

common standards hinders receiving seamless integration among multiple systems and 

stakeholders, which ultimately restricts the scalability and effectiveness of Digital Twin 

solutions. The complexity of multi-stakeholder collaboration is of a nature that organizations 

struggle to manage. Creating a Digital Twin typically involves input from a variety of domain 

experts, like product managers, design engineers, data acquisition engineers, data scientists, 

maintenance operators, and manufacturing engineers. Each contributor brings something 

unique, with diverse requirements and expertise. It is a major challenge to coordinate their 

activities and provide good communication. 

This study offers a structured, collaborative Digital Twin development framework per the ISO 

23247 architecture for use in enabling asset management within diverse industrial applications. 

A scalable Digital Twin Setup Tool has been implemented based on an Excel-based interface, 
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which captures domain experts' static and dynamic information systematically, ranging from 

product managers, design engineers, and data acquisition engineers to data scientists. The 

resultant platform fills the gap in implementation between theoretical Digital Twin architecture 

and actual deployment, providing a cost-effective, easy-to-use solution with asset lifecycle 

tracking and stakeholder collaboration support. It creates the foundation for enhanced analytics 

like Remaining Useful Life (RUL) estimation and decision support, and as such, will help 

promote Digital Twin technologies further within small- to medium-scale manufacturing 

environments. 

The tool was validated on two industry case studies—Go3D Artish 700 and Ball Screw 

Assembly—where it successfully consumed real-time data streams and developed dynamic, 

role-based dashboards. The dashboards enabled actionable insights for stakeholders such as 

product managers and technical supervisors, providing continuous visibility into machine 

health, utilization trends, and forecasted maintenance events. 

The modular and integratable nature of the tool ensures versatility in industry and technical 

competence levels. In summary, the proposed Digital Twin platform is an important step 

forward in digital manufacturing with a highly potent, standardized, and scalable solution 

firmly in tune with Industry 4.0 objectives and capable of future-proofing intelligent decision- 

making and asset life cycle management. 
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Chapter 1 - Background 

1.1 History 

The manufacturing industry has undergone a revolutionary 

transformation in the past few decades, shifting from traditional, 

mechanized manufacturing systems to advanced, highly interconnected 

digital networks. It has been driven by the relentless pursuit of 

operational effectiveness, improvement in quality, and competitiveness 

in an increasingly globalized economy. [1] The focal point of this 

revolution is the digital representation of the physical systems, 

processes, and assets, a paradigm shift that has revolutionized how 

industries design, manufacture, monitor, and maintain. 

Industry 4.0 is a term that was first employed in Germany in the year 

2011, referring to the convergence of information technology (IT) and 

operational technology (OT) to create intelligent manufacturing 

environments in which the virtual and the physical worlds are 

interconnected on an ongoing basis. It is characterized by the transition 

to the Internet of Things (IoT), artificial intelligence (AI), machine 

learning, big data analytics, cloud computing, and industrial robotics. At 

the heart of this revolution is the concept of Digital Twins. 

1.2 Digital Twin 

Smart Manufacturing integrates IoT, AI, and automation to create 

intelligent factories, while Smart Maintenance ensures these systems 

operate efficiently through the use of predictive analytics and self- 

healing machines. Digital Twins bridge these two concepts by 

simulating real-time machine behavior, predicting equipment failures, 

and displaying the machine's health status. A Digital Twin is a virtual 

representation of a physical system (and its associated environment and 

processes) that is updated through the exchange of information between 

the physical and virtual systems. 
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1.3 Applications for Digital Twin Technology 

Digital Twin technology has been extensively used in numerous 

industrial areas, as mentioned in Figure 1, and that speaks volumes about 

how versatile and transformative it can be. In manufacturing, Digital 

Twins enable predictive maintenance by constantly tracking the 

condition of equipment and predicting likely failures in advance, so 

there is less unplanned downtime and maintenance cost. Process 

optimization is another key application where Digital Twins simulate 

different operating conditions to determine optimal parameters to 

enhance productivity and quality. 

In aerospace, Digital Twins are applied throughout the life of an aircraft, 

from design and testing to monitoring in operation and maintenance 

scheduling. Automotive manufacturers apply Digital Twins to virtual 

prototyping, crash testing, and supply chain optimization. 

 

 

Figure 1: Pie Chart of digital twin-based data analysis paradigm 

based on the Sector observed in recent papers [2] 

Digital Twins are applied in smart cities to design urban development, 

traffic management, and monitor infrastructure. The building industry 

employs Building Information Modeling (BIM) as a form of Digital 
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Twin to represent projects graphically, plan resources, and manage 

facilities. 

Applications in healthcare involve patient-specific Digital Twins for 

personalized treatments, optimization of medical devices, and managing 

hospital workflows. The energy sector applies technology to power plant 

optimization, operation of renewable energy systems, and analysis of 

grid stability. 

1.4 Current Challenges in Digital Twin 

Implementation 

Despite the immense potential and growing use of Digital Twin 

technology, numerous challenges persist to hinder its mass adoption and 

maximum utilization. The most inherent challenge is likely data 

integration and interoperability. In typical manufacturing environments, 

operational data, design parameters, maintenance records, and human 

intuition are typically distributed across multiple platforms and systems, 

rarely consolidated into a single database. This splitting creates huge 

challenges in developing comprehensive DTs that accurately capture the 

complexity of physical assets and their world of operation. 

The lack of standardization is the second major challenge. Though 

standards such as ISO 23247 provide reference architectures for 

building Digital Twins, the styles of implementation are very different 

in organizations and industries. The absence of shared standards 

prevents receiving smooth integration among multiple systems and 

stakeholders, which ultimately limits the scalability and efficiency of 

Digital Twin solutions. 

Data dependability and quality are persistent concerns in Digital Twin 

implementations. The accuracy of DTs heavily depends on input data 

quality from various sources, including operating systems, sensors, and 

human inputs. Inconsistent data formats, missing information, faulty 

sensors, and human errors can significantly reduce the fidelity and 

reliability of Digital Twin models. 
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The complexity of multi-stakeholder collaboration is of a kind that 

organizations find challenging to manage. Creating a Digital Twin 

typically involves input from a variety of domain experts, like product 

managers, design engineers, data acquisition engineers, data scientists, 

maintenance operators, and manufacturing engineers. Each contributor 

brings something unique, with diverse requirements and expertise. It is 

a major challenge to coordinate their activities and provide good 

communication. 

Technical challenges are due to computational complexity, processing 

needs in real time, cybersecurity, and the need for a robust 

communication infrastructure. The integration of physical systems and 

digital ones brings new vulnerabilities that must be addressed to enable 

data security and system integrity. 

1.5 Research Motivation 

These problems highlight the imperative requirement of standardized 

methodologies of Digital Twin development that can bridge the gap 

between the theoretical frameworks and the practical application. ISO 

23247 provides a general reference architecture of DTs, yet there 

remains a huge implementation gap to transform this standard into 

practical instruments for facilitating collaboration among various 

stakeholders and automating the task of creating Digital Twins. 

This research addresses this gap by developing a Digital Twin Setup 

Tool as a holistic platform for consolidating all the information and 

decisions concerned with Digital Twin development in one usable 

location. The tool is designed to transform the traditional piecemeal 

approach to Digital Twin development into a structured, standardized 

process consonant with ISO 23247 architecture, and be pragmatic and 

user-oriented for domain experts. 

The primary intent of this research is to create a methodology and tool 

that enables organizations to systematically capture, organize, and make 

use of the multi-faceted data required for Digital Twin building, 
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including physical assets, environmental conditions, operational 

information, and human interventions—all combined in an integrated 

platform enabling good stakeholder collaboration and total coverage of 

all the DT factors. 

In pursuing this research, we aim to contribute to the further maturity of 

Digital Twin technology by offering a pragmatic approach to addressing 

real-world application issues and yet remaining faithful to global 

standards already established. The development of such a tool itself is a 

breakthrough in the democratization of Digital Twin technology and 

making access possible for organizations to utilize the value of Industry 

4.0 transformation. 

 

1.6 Literature Review 

This section gives us a brief introduction to the literature that is currently 

available for developing digital twins using a specific architecture in the 

manufacturing industry. Keywords used in this literature review are 

Digital Twin, Fault Detection, Smart Manufacturing, Predictive 

Maintenance, ISO 23247, ISO 23704, Condition Monitoring, and ML 

Algorithms. 

The concept of Digital Twin was initially introduced by Michael Grieves 

in 2002 at the University of Michigan, initially termed as "Mirrored 

Spaces Model" before evolving into the contemporary Digital Twin 

terminology. Grieves conceptualized Digital Twin as a virtual 

representation of a physical product that contains all information 

required to describe and simulate the physical counterpart. This 

foundational work established a three-dimensional model comprising 

the physical space, the virtual space, and the connections between them. 

NASA further developed the DT concept for spacecraft health 

management and mission planning, defining it as an integrated multi- 

physics, multi-scale, probabilistic simulation that uses the best available 

physical models, sensor updates, and fleet history to mirror the life of its 

corresponding flying twin. This aerospace application demonstrated the 
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potential for DTs to enable performance optimization, predictive 

maintenance, and risk assessment in complex systems. 

The evolution of DT technology has been significantly influenced by 

advances in Internet of Things (IoT), artificial intelligence, machine 

learning, and cloud computing. These technological convergences have 

enabled real-time data acquisition, processing, and analysis capabilities 

that are essential for maintaining synchronization between physical and 

digital representations. 

Recent literature has established various classification frameworks for 

Digital Twin implementations. [12] Onaji et al. (2022) developed a 

comprehensive framework for Digital Twin implementation in 

manufacturing environments, focusing on flexibility and integration 

aspects. Their research carried out a thorough literature review to 

examine the potential of the digital twin concept as an integrated 

platform to promote scalability, flexibility, and integration in the 

manufacturing industry, providing flexibility that allows systems to 

easily adapt to changes in product requirements. 

[13] Attaran et al. (2023) investigated the transformative impact of 

Digital Twins on intelligent manufacturing and Industry 4.0 evolution. 

Their research demonstrated that in the past few years, Digital Twins 

have dramatically reduced the cost of developing new manufacturing 

approaches, improved efficiency, reduced waste, and minimized batch- 

to-batch variability. The study highlights the evolution of Digital Twins 

and reviews enabling technologies while identifying implementation 

challenges. 

[14] Soori et al. (2023) provided a comprehensive review of Digital 

Twin applications specifically in smart manufacturing contexts. Their 

research demonstrated that the application of digital twins in smart 

manufacturing can reduce time to market by designing and evaluating 

manufacturing processes in virtual environments before manufacture, 

presenting comprehensive simulation platforms to simulate and evaluate 

product performance. 
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[15] Xu, Zhang et al. (2024) presented a comprehensive analysis of 

Digital Twin research trends through a systematic examination of 4,954 

articles from the Web of Science database spanning 2014-2024. Their 

research visually dissects digital twin literature, leveraging keyword 

cluster analysis to identify focal areas that have captivated researchers 

in recent years, along with prevailing research trends. The study 

provides strategic recommendations for the evolutionary trajectory of 

Digital Twin technology. 

[16] Son et al. (2022) conducted a temporal analysis of Digital Twin 

development in smart manufacturing, examining the technology's 

evolution from early concepts to future applications. Their research 

focused on the Fourth Industrial Revolution era, emphasizing the 

growing focus on digital twin technology to advance toward smart 

manufacturing. The study provides insights into the technological 

trajectory and future research directions 

The integration of Digital Twin technology within Industry 4.0 

frameworks has been extensively studied in recent literature. [17] Tao 

et al. (2020) demonstrated how Digital Twins serve as enabling 

technologies for cyber-physical systems (CPS), facilitating seamless 

integration between operational technology and information technology 

domains. Their work highlighted the importance of Digital Twins in 

achieving smart manufacturing objectives through real-time monitoring, 

predictive analytics, and autonomous decision-making capabilities. 

[18] Qi et al. (2021) explored the role of Digital Twins in smart 

manufacturing ecosystems, emphasizing their contribution to mass 

customization, flexible manufacturing, and supply chain optimization. 

Their research demonstrated how Digital Twins enable manufacturers 

to respond rapidly to market changes while maintaining operational 

efficiency and product quality. 

The concept of Digital Thread, as discussed by [19] Forward et al. 

(2021), represents the evolution of Digital Twin technology toward 

comprehensive  product  lifecycle  management.  Digital  Thread 
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encompasses the entire product journey from design and manufacturing 

through operation and end-of-life, providing continuous data 

connectivity and traceability across all lifecycle phases. 

The development of international standards for Digital Twin 

implementation has been a critical focus area in recent literature. ISO 

23247 series, published in 2021, represents the first comprehensive 

international standard specifically addressing Digital Twin frameworks 

for manufacturing systems. The standard establishes reference 

architecture, data models, and implementation guidelines that ensure 

interoperability and consistency across different Digital Twin 

implementations. 

[3] Thelen et al. (2024) propose a five-dimensional digital twin model 

(DT = F(PS, DS, P2V, V2P, OPT)), emphasizing bidirectional data flow 

between physical and virtual systems. This framework integrates 

physical systems, digital models, updating engines (P2V), prediction 

engines (V2P), and optimization (OPT). It also provides a 

comprehensive review of digital twin technologies, highlighting their 

transformative potential across industries. However, challenges in data, 

modeling, integration, and scalability must be addressed to unlock their 

full potential. Future research should focus on hybrid modeling, real- 

time data, federated learning, and scalable architectures to bridge these 

gaps. 

[4] Söderberg et al. (2017) discuss the implementation of a Digital Twin 

for real-time geometry assurance in automated production. Geometry 

assurance minimizes geometrical variations affecting product quality 

across design, pre-production, and production phases. Digital Twins 

leverage simulation, optimization, and real-time data to enhance 

production efficiency and quality. Key functionalities include locating 

scheme optimization, statistical variation simulation, inspection 

preparation, and root cause analysis. The approach supports a shift from 

mass production to individualized production, addressing geometry- 

related cost issues effectively. 
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[5] Ogunsanyaa et al. (2022) focus on utilizing deep learning (multilayer 

perceptron) to predict output parameters (dimensional accuracy, 

porosity, tensile strength) in Fused Deposition Modeling (FDM). The 

methodology used was to conduct fractional factorial design 

experiments with five input parameters (layer thickness, extrusion 

temperature, etc.) across 243 data points. And found out that Optimal 

hyperparameters were identified, revealing that learning rates and 

hidden layers significantly impact model performance. Emphasizes the 

need for balancing prediction accuracy and computational efficiency for 

real-time applications 

[6] Kun et al. (2018) focus on the Objective to diagnose faults in delta 

3D printers using attitude sensors and Support Vector Machines (SVM). 

The Methodology used was to use Attitude sensors to monitor 3-axial 

angles, angular velocity, and vibrations; data collected under 12 fault 

types and normal conditions. Results obtained are that SVM achieved a 

fault diagnosis accuracy of 94.44% using all sensor channels; 

comparison with Back Propagation Neural Network (BPNN) showed 

inferior performance. The proposed method effectively monitors printer 

health and enhances fault detection, crucial for maintaining print quality. 

[7] Li et al. (2024) focus on the Objective to analyze molten pool 

dynamics and predict cladding layer height in Laser Direct Energy 

Deposition (L-DED). Some key findings are defining the molten pool 

overflow (MPO) phenomenon through theoretical and numerical 

models. Developing a numerical-assisted RF-LSTM prediction model 

to enhance cladding layer height accuracy. Experimental validation 

showed a significant correlation between MPO features and cladding 

quality. Implications occurred are Insights can optimize L-DED 

processes, improving part quality and stability. 

[8] Yao, Xifan, et al. (2019) explore the integration of Cyber-Physical 

Systems (CPS) in smart manufacturing, linking it to Industry 4.0. 

Introduces models like cloud manufacturing, social manufacturing, and 

wisdom manufacturing. Proposes an eight-tuple model for CPS-based 
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manufacturing, extending to a nine-tuple for wisdom manufacturing. 

Highlights real-time data access, reconfigurability, decentralized 

decision-making, and enhanced intelligence. Emphasizes the need for 

integrating social aspects in manufacturing for innovation and 

sustainability. 

[9] Thoben et al. (2017) review the fourth industrial revolution, focusing 

on Industrie 4.0 and smart manufacturing. It highlights the integration 

of the Internet of Things (IoT) and cyber-physical systems (CPS) in 

manufacturing. Key initiatives include Germany's Industrie 4.0 and the 

U.S. smart manufacturing programs. The paper discusses application 

scenarios, challenges, and future research issues in technology, 

methodology, and business models. Emphasis is placed on enhancing 

human-robot collaboration and developing new business strategies for 

competitive advantage. 

[10] Pandhare Vibhor et al. (2022) discuss a two-phase methodology for 

monitoring the health of ball screws in industrial applications using 

inertial sensors. Ball screws are critical components in linear positioning 

systems, and their degradation can lead to the loss of accuracy and 

reliability in production systems. The proposed approach addresses 

limitations in existing monitoring methods by combining online fault 

detection and offline fault quantification. An RTF experiment was 

conducted on a linear-axis testbed. Data was collected continuously over 

8693 hours of operation, with periodic interruptions for Phase II 

measurements. Results showed that the proposed method effectively 

detected faults and quantified backlash changes, with significant 

backlash observed at 8000 hours of operation. The PCA-T2 method was 

compared with other state-of-the-art techniques (e.g., Gaussian Mixture 

Model, Self-Organizing Maps, Isolation Forest, Auto-Encoder). PCA- 

T2 was preferred for its simplicity and consistent results. Backlash was 

estimated using signal position shifts and perceived ball screw pitch 

changes. Both methods showed similar trends, with backlash increasing 

to approximately 10 µm at 8000 hours. The two-phase methodology 

provides  a  robust  solution  for  early  detection  and  backlash 
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quantification, reducing downtime and enabling predictive maintenance 

in production systems. 

[11] Kumar et al. (2018) explore the integration of Industry 4.0 concepts 

into maintenance practices, termed Maintenance 4.0, and highlight the 

challenges and opportunities associated with this transformation. It also 

emphasizes the importance of Maintenance 4.0 in achieving Industry 4.0 

goals, enabling smarter, more efficient manufacturing processes. 

1.7 Research Gaps and Opportunities 

The literature review reveals several critical gaps in current Digital Twin 

research and implementation approaches. While theoretical frameworks 

and reference architectures are well-established, there remains a 

significant lack of practical tools and methodologies that facilitate 

systematic Digital Twin development. Most existing research focuses 

on individual case studies or specific application domains, with limited 

attention to generalizable implementation approaches. 

The collaboration aspects of Digital Twin development remain 

underexplored, particularly in terms of structured methodologies for 

multi-stakeholder engagement and coordination. Current literature lacks 

comprehensive frameworks for integrating diverse domain expertise and 

managing complex stakeholder relationships throughout the Digital 

Twin development lifecycle. 

Furthermore, the translation of international standards such as ISO 

23247 into practical implementation tools represents a significant 

research opportunity. While the standard provides comprehensive 

architectural guidance, there is limited research on systematic 

approaches for standard compliance and practical tool development that 

facilitates standard adoption across diverse industrial contexts 

1.8 Objectives 

This study aims to fill a gap in the literature by analyzing and 

standardizing the DTs. It also focuses on the resources and their 

location, required by different domain experts to develop a DT. At last, 
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validate the developed tool for the creation of the DT on two different 

case studies (Go3D Artish 700 and Ball Screw). 

1.9 Organization of the Thesis 

This thesis contains six chapters. The current chapter provides an 

introduction and background to the research topic, highlighting its 

importance, defining key concepts, and outlining the scope of the study. 

It also focuses on the applications of DTs in different sectors. The 

challenges occur while implementing digital twins without the ISO 

standard. It also focuses on a comprehensive literature review, critically 

analyzing and synthesizing existing research related to the topic, 

identifying gaps in current knowledge, and stating the research problem 

and objectives. This chapter will also give a brief overview of the 

subsequent chapters. 

The second chapter will focus on the methodologies and the 

development of the collaborative platform for standardized digital twins 

for asset management. 

The third chapter will focus on exploring the types of algorithms on a 

particular dataset and their results, and the scope of the dataset for 

further use. 

The fourth and fifth chapters will provide the details of case studies 1 

and 2, respectively, and explain the implementation of the DT setup tool. 

In the end, the results and findings obtained from the research will be 

presented, utilizing appropriate data visualization techniques, like 

dashboards, and analyzing the results about the research objectives, 

highlighting the health aspects of the component. 

Finally, the sixth chapter will summarize the main conclusions and 

contributions of the research, discuss its potential areas for future 

research, provide recommendations for further investigation, and reflect 

on the overall research experience and lessons learned. 
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Chapter 2 Methodology and Collaborative Digital 

Twin Setup Tool Development Using ISO 23247 

2.1 ISO 23247 Architecture 

[22] This architecture defines a framework to support the creation of 

Digital Twins for observable manufacturing elements, including 

personnel, equipment, materials, processes, facilities, environment, and 

products. 

Figure 2: Functional reference architecture of Digital Twin for 

manufacturing – decomposition of functional entities (FEs) 

In the above figure, you can see four major functional entities, namely 

the Digital Twin User Entity, the Digital Twin System Entity, the Data 

Collection and Device Control Entity, and the Observable 

Manufacturing Element. 

This research proposes a novel concept of implementing ISO 23247 

architecture to create a DT, which is a standard one, that can integrate 

with other digital twins. 

2.2 Methodological Evolution 

The research methodology evolved through three distinct phases, each 

refining the approach based on empirical findings and practical 

implementation challenges. The initial methodology established a 

foundational framework for Digital Twin development, focusing on data 
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diagnosis systems for comprehensive dataset analysis, followed by 

digital twin modeling, machine learning algorithm implementation, and 

feedback control loop development. This phase provided the essential 

structure while identifying key areas for improvement. 

 

 

Figure 3: The overall approach to predicting values from the Creality 

Ender-3 Neo 3D printer dataset. 
 

 

Figure 4: Initial approach for developing the Digital Twin. 

Recognizing the need for deeper data understanding, the second iteration 

introduced Exploratory Data Analysis (EDA) to replace the data 

diagnosis system, ensuring thorough dataset comprehension before 

model development. The feedback control loop was also modified to 

prioritize Digital Twin development with existing datasets, addressing 

limitations in physical testing environments. 
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Figure 5: Modified methodology incorporating EDA for enhanced 

dataset analysis. 

The final phase integrated compliance with the ISO 23247 standard, 

emphasizing international best practices in Digital Twin development. 

It also introduced a scalable tool to ensure adaptability across diverse 

industrial applications, forming the basis for the Digital Twin Setup 

Tool. This refined methodology balanced theoretical rigor with practical 

implementation, enabling efficient and standardized Digital Twin 

deployment. 

 

 

Figure 6: Final methodology incorporating ISO standards and 

scalable tool development. 
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Figure 7: Step-by-step Digital Twin creation process using the DT 

Setup Tool (Go 3D Artish 700 Printer). 

2.3 Digital Twin Setup Tool Development 

This section describes the process undertaken to create the Digital Twin 

(DT) Setup Tool and the resultant Digital Twin according to the ISO 

23247 standard. 

Prior to engaging in the process of creation, one should know the DT 

Setup Tool and the resources needed to construct it. In traditional 

manufacturing practices, the production of a physical asset involves a 

range of dimensions such as physical components, environmental 

conditions, operational information, and human decisions. These 

decisions—typically made by subject matter specialists—are typically 

spread out across different platforms and rarely consolidated into a 

single database. DT Setup Tool attempts to bridge this disconnect by 

bringing together all relevant information and decisions into a single 

location. It is a single-stop source for materials required for creating a 

DT. 

The table below shows the different dimensions required for the 

development of a DT of a physical asset. The dimensions are 

components, conditions/information, decisions, and people. Based on 

these dimensions the development of physical product occurs, similarly, 

to build a digital twin the data which is used to develop the physical 

product, the same is required. 

 

 

Table 1: Different Dimensions involved in the development of a Digital 

Twin for a physical asset 
 

Dimension 1 

(Components) 

Dimension 2 

 

(Conditions/ 

Information) 

Dimension 3 

(Decisions) 

Dimension 4 

(People) 
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3D Printer Scheduling Maintenance 
Product 

Manager 

CNC Machine Planning Operations 
Design 

Engineer 

 

Bearings 

 

Maintenance 
Condition 

Monitoring 

Data 

Acquisition 
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Nozzle Inventory 
Production 

Monitoring 
Data Scientist 

Extruder 
Design 

Specifications 

Process 

Monitoring 

Maintenance 

Operator 

Ball Screw 
Signals and 

Logs 
Traceability 

Manufacturing 

Engineer 

 

 

 

Figure 8: People involved in the Asset Life cycle 

 

 

 

Note: The table has a subset of the components. Numerous others 

contribute to each dimension. 

Figures 8 & 9 depict the different engineers across the asset lifecycle. 

Each of the domain experts is responsible for contributing to the 

development of the assets. As described previously, the ISO 23247 
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architecture provides a reference for DTs whereby each functional entity 

makes a contribution to modeling the physical system. These functional 

entities can be directly mapped to the respective domain experts. This 

enables us to gather all the data required to construct a Digital Twin 

systematically. 

 

 

Figure 9: Different Experts sharing the physical data used to 

manufacture an asset in the digital form as per the ISO 23247 

standard to develop the digital twin 

 

 

Figure 10: Capturing the information of the Asset using ISO 23247 

 

Figure 10 illustrates how data are extracted from such experts based on 

ISO 23247 guidelines. Even though ISO 23247 prescribes structural and 

data flow entities, it does not leave it to be determined how data is 

captured and stored. For our implementation, we utilized Microsoft 

Excel as a platform on which to build the DT Setup Tool. Now, let us 

talk about how we are going to create the digital twin setup tool using 

ISO 23247 architecture. There are several options to create a digital twin 
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setup tool, like a web interface, a mobile application, an Excel file, etc. 

Here, an Excel file was used as an option to develop a digital twin setup 

tool. 

The DT Setup Tool in Excel has several sheets. Each sheet is allocated 

to a particular domain expert, organized according to the ISO 23247 

functional architecture. 

 

 

Figure 11: Overview of the sheet structure of the Excel tool, with 

sheets renamed to reflect the respective domain experts 

As shown in the above figure, the names of the sheets are renamed in 

such a way that it is easy to understand by the domain experts and also 

based on the reference architecture ISO 23247. 

In the above figure, the basic details of the company (user/product 

manager) and its address are captured, along with its objectives. 

Entering firm data and project objectives enables the reuse of pre- 

formatted component templates. 
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Figure 12: User Input sheet to be filled by the product manager 
 

 

Figure 13: Static details of the observable manufacturing elements 
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Under this structure, the static data related to the physical elements is 

recorded by the design engineer in a separate sheet. This sheet is used 

as a master reference that records all the non-changing characteristics 

associated with the manufacturing environment. The next section is 

addressed to Observable Manufacturing Elements (OMEs), which cover 

all the physical equipment used in the industrial environment. They 

include but are not limited to CNC machines, industrial robots, motors, 

ball screws, and 3D printers. 

Every OME relates to suitable sensors and actuators for bidirectional 

communication between the physical and the digital worlds. Sensors are 

used to acquire data from these devices, whereas actuators react to 

decisions by either the user or the digital twin system itself. Recordings 

of these OMEs are important because they provide an extensive insight 

into the operational workflow and dynamic behavior of the shop floor. 

This methodical depiction of the physical objects serves as the 

foundation for creating smart monitoring, control, and decision-making 

capabilities within the digital twin framework. 

 

 

 

Figure 14: Dynamic details of the observable manufacturing elements 

(OMEs) 

In the above figure, dynamic details refer to the values that change over 

time. This information is highly important to understand the dynamic 

behavior of the physical asset. 
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Figure 15: Static details of the operation that is involved with the 

physical asset 

Figure 15 shows the static information on the physical assets’ 

operations. It is necessary to capture this data since the performance of 

a physical asset depends largely on what operation it is performing. 

Varying manufacturing processes have different effects on important 

operational parameters of the physical component. Hence, it becomes 

important to capture and track the operation being conducted, as it has a 

direct influence on the behavior of the asset, its performance 

characteristics, and lifecycle. Information acts as a basis for proper 

modeling, analysis, and decision-making in the DT environment. 

 

 

Figure 16: Dynamic information of the operation that is involved with 

the physical asset 

Figure 16 gives dynamic data pertaining to the operation related to the 

physical asset. As shown, the operational processes change with time, 

and the changes over time can also significantly affect the key process 

parameters. These changes have a direct effect on the behavior and 
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overall performance of the physical asset. Thus, it is crucial to keep 

capturing and documenting these dynamic changes so that they can 

facilitate correct analysis, ensure operational reliability, and improve the 

predictive functionality of the digital twin system. 

 

 

Figure 17: Both Static and Dynamic information of the environment 

where the physical asset is located 

The environment where the physical asset is located can also affect the 

performance of the physical asset. Hence, the basic detail of the 

environment needs to be captured. 

Referring to Figure 18, there is a need to determine the types of sensors 

employed in collecting data and the type of data they provide. The data 

sheets on the sensors are important in assessing the quality of sensors 

and the validity of data obtained. Most important parameters like 

sampling rate, sensitivity, resolution, and data conversion factors are 

important since they have a direct influence on the reliability and 

accuracy of the measurements obtained. 
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Figure 18: Details need to be filled in by the Data Acquisition 

Engineer about the types of sensors and the type of data retrieved 
 

 

Figure 19: Details to be filled in by the product manager 

On the presentation sheet in figure 19, which can be thought of as a 

dashboard, it refers to the nature of information to be displayed, the 

corresponding plots, and parameters. The choice of these should go in 

sync with the goals discussed previously by the product manager. The 

data presented in the dashboard is filled based on the objectives 

previously discussed. 
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Figure 20: Details need to be filled in by the data scientist as per the 

objectives provided by the product manager 

The Analytical Service Sheet in figure 20 is the center of the digital tool, 

where all the analytical processes are carried out. The sheet is required 

to have information on the data location, the type of information in the 

data files, data cleaning process steps, synchronization on timestamps, 

and the choice of suitable algorithms specific to desired objectives. It is 

up to the data scientist to fill this sheet with the required information. 

The outcomes derived from such analysis steps are then displayed on 

the dashboard so that they adhere to the objectives. 

 

 

Figure 21: Details need to be filled by the product manager to define 

the user roles to display specific information to them on the 

dashboards 

The Reporting Sheet in figure 21 holds crucial information that is 

uniquely designed for the user roles set by the product manager. For 

example, in a manufacturing environment, when a maintenance operator 

inputs information through the system, this input may have to be 

escalated to the higher authorities. Such information flows and user roles 
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responsible for viewing and acting on the data included in the 

dashboards are defined in the Reporting Sheet. 

 

 

Figure 22: The basic overview of the DT setup tool at the end 

resembles the ISO 23247 architecture 

From the above figure, the digital twin setup tool we have implemented 

follows the ISO 23247 reference architecture very closely (Figure 2). In 

the diagram, the red-colored boxes signify that the corresponding 

functional entity is incomplete or awaiting input. After the appropriate 

domain experts complete and submit the corresponding sheets, the color 

turns green from red, which indicates that the respective functional 

entity has been finalized with proper data. It summarizes what has been 

done and what still needs to be done. Users can easily determine from 

this data who needs to give the rest of the data and by which relevant 

functional entities, thereby helping in the development of DT. The full 

structure and functionality of the digital twin setup tool will be 

illustrated through a series of case studies discussed in the subsequent 

sections of this study. This graphical illustration also aids in monitoring 

the completion level of each functional entity and helps identify the 

remaining data needed for the development of the DT. 
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Chapter 3 – Case Study 1 - Creality Ender 3 Neo 

3D Printer 

This chapter provides a comprehensive review of the datasets utilized in 

the case study for DT implementation, along with the experimentation 

and results. 

3.1 Creality Ender 3 Neo 3D Printer Dataset 

The first dataset employed in this research consists of timestamped 

position data from a Creality Ender 3 Neo 3D printer, capturing the 

nozzle head movement along the x, y, and z directions. The experimental 

setup involved printing a square shell component with dual-layer 

geometry, featuring an inner shell of 8 mm × 8 mm dimensions and an 

outer shell of 10 mm × 10 mm dimensions. The analysis was conducted 

under the assumption of constant nozzle head acceleration throughout 

the entire printing process. 

 

 

Figure 23: CAD model of a square shell 

 

The experimental parameters were systematically varied to capture the 

effect of different operational conditions on the printing process. Feed 

Factor percentages were set at 50%, 75%, and 100%, while Layer Height 

was varied between 0.1 mm, 0.2 mm, and 0.3 mm. Belt Tension was 

adjusted across three levels (1, 2, and 3) to evaluate its impact on 

positioning accuracy and print quality. 
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Table 2: Machine parameters table 
 

Parameters Levels 

Feed Factor (%) 50, 75, 100 

Layer Height (mm) 0.1, 0.2, 0.3 

Belt Tension 1, 2, 3 

Data acquisition was accomplished through optical encoders interfaced 

with an Arduino board, enabling real-time capture of nozzle position 

data during the printing process. The integration methodology involved 

generating reference data from CAD files, which were converted into G- 

code format containing nozzle position coordinates, feed rates, extrusion 

parameters, and temperature profiles. A specialized Python script was 

developed to extract temporal data from G-code files, creating 

comprehensive CSV datasets that served as the foundation for machine 

learning algorithm development and Digital Twin modeling. 

 

 

Figure 24: Flow diagram of integrating the predicted values into the 

actual machine (Creality Ender-3 Neo) 

From the above figure, the left block explains to us how the reference 

data is generated from the CAD file to x, y, &z values of the nozzle 

position of the 3D printer. The g-code file contains the nozzle position, 

feed, extrusion rate, and temperature of the nozzle, etc. A Python script 

is written in such a way that the values from the g-code files are 

extracted along with the timestamp and stored in a CSV file. Then, in 

the middle, there are sensors, optical encoders, that capture the measured 

values of the position of the nozzle in the 3D printer along with the 



29  

Square shell @ layer1 (z=0.2) 

116 

114 

112 

110 

108 

106 

104 

94 96 98 100 

X -Axis 

102 104 106 

timestamp and store them separately in a CSV file. These two CSV files 

act as the source for the ML algorithms to predict the values as per the 

objectives. 

 

 

Figure 25: The overall approach to predicting the values from the 

Creality Ender-3 Neo 3D printer dataset 

3.2 Experimentation and Results 

This dataset was used only for analytical purposes. In the development 

of the digital twin, data analytics has been at the heart of it. So, 

predicting the values using the right algorithm is one of the complex 

tasks. Two algorithms were used for predicting values. They are Auto 

Regressive Moving Average (ARMA) and Kalman Filter. These 

algorithms were selected based on their nature of flexibility in time 

series data and computational load on a real-time basis. Let’s discuss 

each of the algorithms one by one and their usage on this current dataset. 

 

 

 

 
 

 
     

      

      

      

      

      

 

 

 

 

Figure 26: Line plot of square shell, the 3D printed product based on 

g-code data (values are in mm) 
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The starting point for toolpath generation was taken from the G-code 

file of the first layer (Z = 0.2 mm) of the printed part. The optimum path 

is shown in Figure 11, which shows the command path of the print head 

in the X-Y plane. It is an approximate rectangular shell with well- 

defined corners and straight linear sides. This course is the ground truth 

or reference path from which all later measured and predicted 

movements are calibrated. 

 

 

Figure 27: Line plot of square shell, the 3D printed product based on 

sensor data (values are in mm) 

The true toolhead motion was captured using sensor-annotated feedback 

and graphed to see the physical excursions from the optimal G-code 

path. Figure 12 shows the measured tool path. The overall geometry of 

the square shell is maintained, a sign that the machine traced the planned 

path with good faithfulness. Still, some deviations from the optimal 

route are evident. Namely: 

• The corners of the measured shell have minor rounding, as 

opposed to sharp corners on the G-code. 

• The lines, although predominantly straight, have minor 

curvatures and irregularities. 

Such deviations can be caused by mechanical backlash, structural 

vibration, or control errors inherent in the motion system of the machine. 

However, the measured data does not exceed acceptable limits, and the 
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closeness of the data to the desired path assures satisfactory system 

performance. 

3.2.1 ARMA Algorithm 

To predict the future position of the toolhead, an Autoregressive Moving 

Average (ARMA) model was used to the measured trajectory data. The 

goal was to investigate if ARMA was able to learn the motion pattern 

and make useful predictions for the subsequent steps of tool movement. 

Figure 13 shows the results of the predictions. The blue line indicates 

the measured historical values, and the orange line indicates the 

predicted future values as given by the ARMA model. The following 

observations can be made: 

• The predictions are far from the trajectory range of observation. 

While the measured values hover within the X-range of about 95 

to 105, the predictions are found in a far-off range (about 180 to 

200). 

• There is a total disconnection between the historic movement 

and the forecast path, which shows that the ARMA model could 

not replicate the spatial dependencies or system dynamics. 

 

 

Figure 28: Line plot of square shell, the 3D printed product after 

applying ARMA algorithm (values are in mm) 
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This divergence implies that the ARMA model is not appropriate for 

such multi-dimensional time-series data, where both spatial and 

temporal features have to be addressed in concert. 

The results indicate that the physical execution of the G-code is 

reasonably accurate, but the ARMA model does not predict the next 

sequence of movement steps accurately. The high standard deviation of 

predicted values indicates either bad model training, bad data 

preprocessing, or the limitations of the ARMA method in this area of 

application. 

3.2.2 Kalman Filter 

In this section, the Kalman filter algorithm is examined to improve the 

quality of measured data during the 3D printing process. The objective 

is to reduce sensor reading noise and improve the precision of the 

movement path of the nozzle in comparison to the G-code path. Also, 

the ability of the Kalman filter is tested to project future positions, which 

has potential uses in digital twin models and real-time process 

monitoring. 

Impact of Time Step on Performance of Kalman Filter 

 

Two different configurations of the Kalman filter were run, with time 

steps (dt) at 0.5 sec and 5.0 sec, respectively. These provide an 

opportunity to check the effect of updating frequency on the accuracy 

and responsiveness of trajectory estimation. 

(a) Kalman Filter with dt = 0.5 sec 

 

Figure 29 shows the estimated trajectory with the Kalman filter having 

a reduced time step of 0.5. The filtered trajectory (green) has an 

extremely high level of fidelity to the actual measured path (blue) and 

desired G-code path (orange). Measurement noise is greatly reduced by 

the filter and the important features of the trajectory are maintained. 

Corner transitions are well captured, though slight delays are noticed 

due to the recursiveness of the filter 
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Next, let us assume the same example that we have discussed in the 

previous algorithm (ARMA) and pass the values through KF algorithm 

the below is the plot that we observe 

 

 

Figure 29: Line plot of square shell after applying the Kalman Filter 

algorithm (values are in mm) for dt = 0.5 sec 

For a change in dt = 5.0 sec, the change in the path of the predicted 

values is plotted in the figure below. 

 

 

Figure 30: Line plot of square shell after applying the Kalman Filter 

algorithm (values are in mm) for dt = 5.0 sec 
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If we go deep into the specific side (left) of the square shell, then we 

can see the points that KF predicted. 

 

 

Figure 31: Line plot of left of the external square shell after applying 

the Kalman Filter algorithm (values are in mm) for dt = 5.0 sec 

The results indicate that a smaller time step (dt = 0.5) improves tracking 

accuracy and is more appropriate for settings where frequent high- 

frequency updates are present. A large time step (dt = 5.0) helps filter 

noise in low-dynamic conditions but can be detrimental to precision 

during sudden directional changes. The Kalman filter efficiently 

produces smooth trajectories from noisy observations. The Kalman 

filter's prediction capability paves the way for real-time error detection 

and correction, anomaly identification, and predictive analysis. 

These results favor incorporating Kalman filtering as a building block 

in smart manufacturing systems, particularly in condition monitoring, 

process optimization, and digital twin applications 

Due to the limited data available in the dataset, the dataset was changed 

to include the complete lifecycle of the component (Ball Screw), which 

was already mentioned in Chapter 2. 
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Chapter 4 – Case Study 2 – Ball Screw 

In this Chapter we will be discussing about the implementation of the 

digital twin setup tool which was developed and build the digital twin 

for Ball Screw component. 

4.1 Ball Screw Dataset 

The new dataset is taken from the “NIST Public Data Repository, Linear 

Axis Testbed at IMS Center – Run-to-Failure Experiment 01” 

repository. 

A concrete slab that weighed about 1700 kg had the linear axis screwed 

onto it. The carriage is moved nominally parallel to the X-axis by a ball 

screw that revolves via a motor. For a total possible journey of 450 mm, 

the carriage is constrained to move nominally linearly along the 

guideway by four trucks with ball bearings making contact with two 

rails. The carriage is laden with 100 kg of steel weights to hasten the 

degrading process, which will occur during months of back-and-forth 

operation. Data is gathered using two triaxial accelerometers with a 

nominal sensitivity of 100 mV/g. In the IMU, the digital rate gyroscope 

has a half-power bandwidth of 0 to 200 Hz and a noise output of 35 

(μrad/s)/~Hz, while the analogue accelerometer has a half-power point 

bandwidth of 0 to 300 Hz, nominal sensitivity of 2000 mV/g, and a noise 

output of 7 μg rms/~Hz. During axis degradation, information from 

these 12 inertial sensors is recorded in addition to controller data. With 

a data gathering strategy that mirrored real-life operation and 

monitoring, the new linear axis was run to failure (RTF). Data collection 

for ball screw health monitoring was carried out in two stages Phase I 

and Phase II. 

4.1.1 Phase I Data Collection 

A centered 220-mm-long stroke (movement between 110 and 330 mm 

relative to the zero position) was used to move the linear axis back and 

forth continuously, day and night, and this represents roughly half of the 

entire available trip. At 400 mm/s, the axis travels in both positive and 
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negative directions. Every movement direction was followed by a one- 

second break. The regular operation of a linear axis in industry was 

symbolized by its continuous movement. To prevent undesired 

transitory behavior, data collecting starts after a notional 2-hour first 

warmup operation period. At a sample rate of 10 kHz, 10 s of data were 

gathered every 30 minutes throughout this initial phase. Data gathering 

for online incipient defect detection is represented by this collection 

mode. 

4.1.2 Phase II Data Collection 

The second phase of data collecting temporarily interrupts the first phase 

every three or four days. The axis is moved back and forth with a full 

stroke of 450 mm in this second phase. The axis moves back and forth 

at three different speeds during each run: slowly (20 mm/s), moderately 

(100 mm/s), and quickly (500 mm/s). This second phase consists of 90 

runs. Data collection takes place over three hours, partly because of the 

10-second rest time between each of these moves. For every run, IMU 

data are obtained at a sampling rate of roughly 1000 Hz for the 

gyroscope and 1613 Hz for the triaxial accelerometer. 

According to the manufacturer's instructions, this two-phase 

experimental data gathering process was repeated until the ball screw 

reached an ultimate failure point larger than 10 μm. The ball screw was 

not lubricated at any point during the trial. Days 0 through 38, 116 

through 255, and 377 through 574 were all included in the experiment's 

duration. The ball screw accrued 8693 operating hours over this period. 

Extenuating factors led to the trial being halted for days 38 through 116 

and days 255 through 377. An extra step is occasionally conducted to 

get backlash measurements that monitor the axis’ deterioration over 

time when transitioning from the first to the second phase. Sub gradation 

measures were determined by eye using a dial indicator with a gradation 

of 12.7 μm. 

The dial indicator's lever is orientated so that its tip nearly touches the 

steel weights on the ball screw carriage and is programmed to rotate in 
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the XY plane. After the dial indicator is in place, it is attached to the 

testbed base using a magnetic base. After measuring the dial indicators, 

the ball screw is instructed to travel successive fixed distances at 

intervals of 1 μm. Human observation is then used to identify the 

position of the lever's first contact with the dial indicator. The process is 

then carried out repeatedly in both positive and negative directions, with 

the exception that the position of the last touch is ascertained for the 

negative direction. 

Table 3: Experiment Timeline of the Ball Screw 
 

Day Ball Screw Operational Hours Event 

0 0 Start 

38 855.5 Pause 

116 855.5 Resume 

255 4033 Pause 

377 4033 Resume 

574 8693 End 

 

 

In the above five paragraphs, the data collection method was explained, 

and the entire experimental setup was presented in the literature to 

understand the dataset completely. 

4.2 Experimentation and Results 

Now, for this dataset, I have performed PCA T2 Analysis, and the results 

are shown below. But before that, let us understand what PCA T2 is and 

how it can be used for this dataset. 

In the figure 32, the plot shows the PCA T-squared (T²) statistic applied 

to your ball screw dataset over 1st week and similarly in figure 33, it was 

applied over 89 weeks. On the X-axis, it is labelled as "Observation across 



38  

89 weeks", which represents all the individual data points collected over 

time. 

 

 

Figure 32: PCA T2 statistic for 1st week data 

This is a flattened view where all weeks' observations are laid out one 

after another. On the other hand, the Y-axis is labeled as "T-squared", 

which represents the T² statistic value for each observation. Higher 

values indicate greater deviation from the PCA model's normal 

behavior. Red Dashed Line, which is the Control Limit. 

 

 

Figure 33: PCA T2 statistic for all 89 Weeks of data 
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This is the T² threshold based on a confidence level (95%). Points above 

this line is considered anomalies, faults, or unusual behavior in the ball 

screw system. 

What the plot tells us is that in the Early phase (left side), the T² values 

are low and stable, indicating normal operation. Middle to later phase 

(center to right), the sudden spikes and sustained high values indicate 

that T² values frequently cross the control limit. This likely suggests 

degradation, wear, or emerging faults in the ball screw system. Periodic 

dips to zero tell us that these gaps indicate missing or dropped data, 

downtime or inactive monitoring, and reset or maintenance events. 

Thus, a clear trend of increasing deviation, especially after the halfway 

mark. This is a strong indicator that the ball screw is experiencing 

progressive degradation. The PCA T² metric is helping us identify when 

and where that deviation starts and grows, i.e., at 30 weeks. 

To evaluate the performance of various machine learning algorithms on 

the ball screw dataset, four prominent regression models were 

implemented: Random Forest Regressor, Support Vector Regression 

(SVR), Extreme Gradient Boosting (XGBoost), and Multi-Layer 

Perceptron (MLP) Regressor. The models were assessed based on three 

key criteria: 

1. Prediction Accuracy, measured by Mean Absolute Error (MAE), 

 

2. Computational Efficiency, measured by training time on CPU 

(without GPU), 

3. Model-specific Insights, derived from behavior and tuning 

requirements. 

The results are summarized in Table 4 and discussed in detail. 
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Table 4: Performance of various machine learning algorithms on the 

ball screw dataset 
 

 

Model Name 

Mean 

Absolute 

Error (MAE) 

 

Insights 

Computational 

Time (Without 

GPU) 

Random 

Forest 

 

1.33075 

Lowest Error 

among all Four 

models 

 

9.2 min 

 

Support 

Vector 

Regression 

 

 

1.92968 

Highest Error 

because it is 

sensitive to 

Hyperparameter 

Tuning 

 

 

93.5 min 

 

 

 

 

XGBoost 

 

 

 

 

1.53233 

This approach 

is effective in 

capturing Non- 

Linear 

Relationships – 

also requires 

HT 

 

 

 

 

18.0 sec 

 

MLP 

Regressor 

 

 

1.68122 

This model 

requires 

additional 

layers to learn 

 

 

1.5 min 

 

 

Among the four models evaluated, the Random Forest Regressor 

emerged as the most reliable choice, offering the lowest prediction error 

and robust performance even without extensive tuning. While XGBoost 

demonstrated impressive computational efficiency and acceptable 

accuracy, its dependence on tuning may limit plug-and-play 

applicability. SVR underperformed in both accuracy and computational 
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time, indicating it may not be suitable for large-scale or real-time 

applications in ball screw condition monitoring. The MLP Regressor 

showed promise but would benefit from further exploration of deeper 

architectures or GPU-accelerated training. 

This comparative analysis provides valuable insight into the trade-offs 

between model accuracy and computational efficiency, guiding the 

selection of appropriate models for predictive maintenance systems in 

precision mechanical components like ball screws. 

Now, if we apply the developed Digital twin setup tool to this case study 

2, Ball Screw. The figures were displayed accordingly in the next pages. 

But before that mapping of the entire physical setup was done for this 

case study and is shown in the figure below. 

 

 

Figure 34: Mapping of the physical assets (Ball screw) to the ISO 

23247 architecture 
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Figure 35: Cover Page in the Excel file to be filled in by the Product 

Manager 

In the above figure, the basic details of the company (user) and its 

address are captured, along with its objectives. This helps us identify 

common component digital twins, which can be used as a template in 

the future when developing a digital twin for a similar component. 
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Figure 36: Static details of the Ball Screw 

 

 

Figure 37: Dynamic details of the Ball Screw 
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Figure 38: Details of the operation where Ball Screw is used 

 

 

Figure 39: Details of the environment of Ball Screw 
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Figure 40: Details filled in by the Data Acquisition Engineer about the 

types of sensors used in Ball Screw 

 

 

Figure 41: Details required for Ball Screw dashboard 
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Figure 42: Details need to be filled in by the data scientist as per the 

objectives provided by the product manager 

Similarly the other domain experts fills in the details based on the 

requirement for developing the digital twin. The basic overview of how 

the tool looks like is shown in the below figure. 

 

 

Figure 43: Overview of the Ball Screw DT setup tool 

 

Overview of the Digital Twin Setup Tool after filling in the details by 

the respective domain experts looks like the above figure. The red color 

box indicates that the details were not filled in by the respective domain 

expert. The green color indicates that the information is captured and 

ready to use to develop the digital twin. 

4.3 Digital Twin dashboard of Ball Screw 

The DT setup tool, designed so far, covers all the necessary information 

needed to create an effective digital twin. A scripted approach is used to 
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pull corresponding data from the DT setup tool and conduct the requisite 

analyses, which are plotted on the dashboard. The dashboard is 

interactive and enables users to enter data and track the status of the 

component along three important dimensions: historical performance, 

present condition, and future projections. 

 

 

Figure 44 Dashboard displaying the login page 

 

Once the code runs in the terminal, it redirects to the dashboard, asking 

the user to enter the role and password to investigate the stats of the 

digital twin. 

 

 

Figure 45 Dashboard displaying the stats for the Product Manager 

 

After we have entered the respective role in the login page, it takes us to 

the dashboard, where it displays the basic stats of the product. In the 
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Figure 46: The dashboard displays the login page for another user 

above figure, the chosen role was taken as a Product Manager, and 

hence only the basic details such as utilization, maintenance, and 

backlash have been displayed on it. With the use of this dashboard, the 

product manager will have the ability to see the entire statistics of the 

product and make decisions required to modify the process to improve 

efficiency and productivity. 

After entering the another role by the user the dashboard for them would 

be similar to it but with some extra features added in it to visualize the 

digital twin. The assumed another role is Technical Supervisor, where 

they can visualize every details of the analysis how it was happened in 

the past, and currently what is happening and what will happen in the 

future. 

 

 

Figure 47 Dashboard displaying the stats for the Technical Supervisor 
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The technical supervisor can now look into the in-depth analysis of how 

the utilization, maintenance, and backlash parameters are changing. 

There is an option in each of the parameter containers to investigate the 

details deeply. If you click on the “Press Here for Details” button inside 

the parameter containers, then the analysis containers would be 

displayed in terms of past, present, and future. 

 

 

Figure 48 Dashboard displaying the analytical plots for the utilization 

parameter 

We can observe from the above figure that at the left side of the 

dashboard, there is a past container where there is a date selector to 

choose the duration. Below, there are options to provide input to the x- 

axis, y-axis to plot the graphs. Depending on this user's selection, the bar 

plots are shown. From here, we can see what the trend is in that chosen 

time. Likewise, in the center of the dashboard, there is a current 

container that shows the status of the component and progress of the 

digital twin. In the above figure, there is a gauge plot showing the 

Operational Hours of the component, i.e., the time for which the product 

has been utilized up to the current date. In the same container below the 

gauge plot, there is a table indicating the recommended actions 

according to the usage of the product. In the right corner of the 

dashboard, there is a future container where we can observe the 
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projected values and line plot according to the chosen weeks. 
 

 

Figure 49 Dashboard displaying the analytical plots for the 

maintenance parameter 

In the same way, in the maintenance parameter, on the left side of the 

dashboard, we have data of the product of how many hours it was 

operating and in maintenance. In the middle present container, we have 

the status of maintenance in the dashboard. In the future container the 

plot informs us when the product will fail and when to halt the process. 

On this basis, we can order the new part prior to its failure. 

 

 

Figure 50 Dashboard displaying the analytical plots for the backlash 

parameter 

Similarly, for the backlash parameter, all the containers will be identical, 

and the plots will vary depending on the parameter. Here, in the past 

container, the bar plot was between week and backlash. In a present 

container, the present backlash value is shown in the gauge plot, and a 

suggested action is also indicated below it. In the future container, 
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depending on the chosen weeks, it shows any possibility of failure or 

future backlash values. 

This chapter demonstrated the development and deployment of digital 

twin systems for two mechanical components: the Go 3D Artish 700 

Printer and ball screw assembly. Utilization, production, and 

maintenance of the 3D printer were tracked using dashboards designed 

in a Past–Present–Future model to make predictive observations and 

operational efficiency. Similarly, the digital twin of the ball screw 

focused on utilization, maintenance tracking, and backlash monitoring 

to measure wear and performance degradation over time. Both 

installations illustrate the adaptability and versatility of digital twin 

technology for condition monitoring and predictive maintenance in 

different systems. These are examples of the potential of digital twins to 

facilitate transparency, reduce downtime, and support data-driven 

decision-making in state-of-the-art manufacturing environments 
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Chapter 5 – Case Study: Go 3D Artish 700 

In this chapter, we shall discuss the practical application and 

implementation of the Digital Twin Setup Tool within the 

manufacturing context. This tool is essential in coordinating and 

connecting physical assets’ static and dynamic information to their 

digital duplicates. The DT Setup Tool facilitates real-time analysis, 

condition monitoring, and predictive maintenance. This systematic 

approach facilitates enhanced visibility, traceability, and informed 

decision-making throughout different phases of the asset life cycle. 

5.1 Go 3D Artish 700 3D Printer Dataset 

This dataset has been created using web scraping, a technique where 

data displayed on a webpage is directly accessed using a Python script 

and then stored in a CSV file. 

 

 

Figure 51: Go3D Artish 700 3D printer 

 

The 3D printer incorporates a Revo Hemera XS extruder capable of 

300°C temperature and 1.75 mm filament, 85.5 × 28.9 × 65.5 mm in size 

and weighing 256.25 g. The bed area is 700 x 500 mm with the 

capability of printing at a height of 500 mm. It runs on a 24V supply at 

7000 rpm with a 1.8° step and is constructed from stainless steel and 

aluminum. GT2 timing belts (2 mm pitch, 153 g, rubber-fiber 

composite) drive the cast iron slider on the X and Y axes to the motion 
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system. Yearly maintenance of the extruder, semi-annual gear checks, 

and yearly timing belt checks for stretching and sliders every 3–4 

months are planned. The mechanism is additive in nature, runs 

constantly at a speed of ~60 mm/s, and at ambient temperatures of 25– 

27°C, with no routine breaks or halts. 

5.2 Experimentation and Results 

Here, different domain expert roles were assumed and filled out the 

respective sheets based on the data available, whether acquired through 

sensors or from literature. 

 

 

Figure 52: Input sheet of Go3D Artish 700 filled by Product Manager 

For the 3d printer, the objective selected was condition monitoring, and 

the details of the company were filled as per the manufacturer of the 3d 

printer. 
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Figure 53: Static details of Go3D Artish 700 Nozzle filled by Design 

Engineer 

From figures 29 to 33, the information of the Go3D Artish 3D printer 

nozzle was recorded, trying to include as much corresponding 

information as possible. This information is a basic understanding of the 

component structure and functionality. If the performance properties of 

this component differ between companies, this recorded information 

will enable future research designed for particular industrial 

environments, allowing customized solutions to be formulated on the 

basis of outcomes. The respective data was entered into the respective 

sheets systematically, with provisions made for entering more 

information as necessary. 
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Figure 54: Static details of the Extruder in Go3D Artish 700 
 

 

Figure 55: Static details of the Timing Belt in Go3D Artish 700 
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Figure 56: Static details of the slider in Go3D Artish 700 
 

 

Figure 57: Details of the Process and Environment in Go3D Artish 

700 
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Figure 58: Data collection sheet for Go3D Artish 700 

The data collected for the Go3D Artish 700 was through the web 

scraping technique. And the storage of the data was mentioned in the 

above link column to retrieve the data whenever used by the Python 

script for developing the digital twin. 

 

 

Figure 59: Details required for Go3D Artish 700 dashboard 

These are the details filled by the product manager to display specific 

details for the specific user roles. But for testing purposes, the details 

that were taken into consideration were utilization, maintenance, and 

production. These were selected among all the other parameters because 

they are important factors that affect the physical components of the 

printer. 
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Figure 60: Details of the user roles to be created to display specific 

information of Go3D Artish 700 

Referring to the above figure, the selected roles were admin, product 

manager, and Technical Supervisor. These were selected because in any 

industry, these roles were common and standard. 

 

 

Figure 61: Details of communication between the Go3D Artish 700 

and the user system (PC) 
 

 

Figure 62: Overview of Go3D Artish 700 DT Setup Tool 

Overview of the Digital Twin Setup Tool after filling in the details by 

the respective domain experts looks like the above figure. The red color 
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box indicates that the details were not filled in by the respective domain 

expert. The green color indicates that the information is captured and 

ready to use to develop the digital twin. 

5.3 Digital Twin Dashboard for Go 3D Artish 700 3D 

Printer 

This section introduces an all-encompassing digital twin interface 

created for the Go 3D Artish 700 Printer. The dashboard is constructed 

to monitor utilization, maintenance, and production parameters in a 

time-segmented manner—Past, Present, and Future, enabling a full- 

cycle overview of the machine’s behavior. 

 

 

Figure 63: Go3D Artish 700 Digital Twin dashboard displaying the 

utilization for the Technical Supervisor role 
 

 

Figure 64: Go3D Artish 700 Digital Twin dashboard displaying the 

production for the Technical Supervisor role 

Figures 59 and 60 depict the user interface of the digital twin dashboard, 

focusing on Utilization and Production views, respectively. 
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Figure 59 shows the Utilization Dashboard, which is further divided into 

three sections. They are Past Panel (Left), which shows the machine 

usage time across different dates in a bar chart, supports historical data 

selection through a calendar dropdown, and facilitates identification of 

usage trends, operational peaks, and downtimes. Present Panel (Middle), 

which demonstrates real-time values of timestamp, G-code file name, 

Nozzle X, Y, Z coordinates, the extruder temperature, and the heated 

bed temperature. Allows the user to carry out real-time diagnostics and 

ensure proper functioning during prints. Future Panel (Right), which 

applies Polynomial Regression for predicting machine usage frequency, 

enables planning and scheduling of upcoming printing jobs and 

maintenance activities, and this dashboard provides data-driven insight 

into the machine's past usage and short-term usage forecasts. 

Figure 60 shows the Production Dashboard, with analogous layout 

rationale as the Utilization Dashboard but oriented to print file statistics. 

Past Panel (Left), which shows a bar graph of print jobs run per day, 

analysis of workload trends, project pace, and productivity is enabled. 

Present Panel (Middle), which has real-time information on the current 

print job, including print file name, current timestamp, positional 

coordinates, nozzle and bed temperatures, feed rates (when appropriate), 

and critical for live production monitoring and parameter compliance 

assurance. Future Panel (Right), which predicts the volume of files to 

print based on past trends, aids in predictive workload balancing and 

planning for resources in future prints. All this makes up the Production 

Dashboard, a tool critical for monitoring and optimizing 3D printing 

output. 

Though not comprehensively visualized in the snapshots, the 

Maintenance module finds a central position in both dashboards. It acts 

as a connector between the Production and Utilization perspectives, 

offering hardware condition alerts, notifications for extruder or bed 

anomalies, history of maintenance cycles completed. The integration 

supports ensuring that usage and production statistics complement 

machine health so as to allow predictive maintenance strategies. 
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Go 3D Artish 700 Printer Digital Twin is an end-to-end tool for 

connecting the physical and digital worlds of 3D printing. By using 

easy-to-use dashboards divided into utilization and manufacturing 

facets, users are equipped with visibility, traceability, and predictability. 

The three-tiered Past–Present–Future model provides great machine 

management, allowing wiser decisions and fewer manual interventions. 

Differences were observed while using the DT setup tool for both case 

studies are shown in the table below. 

Table 5: Differences observed while using DT Setup Tool for Go 3D 

Artish 700 Printer & Ball Screw 
 

Attributes Go 3D Artish 700 Ball Screw 

Decision 

making 

Utilization monitoring, 

Production monitoring 

Utilization monitoring, 

Backlash monitoring, 

Remaining useful life 

(RUL) 

Data Position of Nozzle (x, y, 

&z), Temperature, flow 

rate, etc. 

Vibration (x, y, &z 

directions) 

Data 

collection 

method 

Multiple Experts' input 

needs to be taken into 

consideration for 

creating the DT Setup 

Tool 

Multiple Experts' input 

needs to be taken into 

consideration for creating 

the DT Setup Tool 

Frequency Manager - Per day/week, 

DAQ Engineer - 

Continuous, 

Maintenance - every 3 to 

4 months, Design Eng - 

after 1 life cycle 

DAQ Engineer - 3hrs for 

every 3 days, Maintenance 

- 6 months, Sampling Rate 

– 1617 Hz 
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Data type Integers, String, Float, 

Date Time 

Date Time, Float, Integers 

Maintenance 

time 

Once in 3 to 4 months 

(for specific Parts – Lead 

Screw   &   Slider 

Greasing, Nozzle 

Cleaning) 

Once in 6 months 
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Chapter 6 - Conclusion & Future Scope 

6.1 Conclusion 

The use of the ISO 23247 standard to develop Digital Twins proved to 

be highly effective because of its customizable structure of use, user- 

focused design, and standardized vocabulary that immensely facilitated 

multidisciplinary teams in communicating effectively. The standard 

ensured that Digital Twins were systematically and structurally 

developed for different stakeholders with distinct technical inclinations. 

A scalable, modular, and highly reliable Digital Twin Setup Tool 

tailored to the ISO 23247 framework was created. The tool is highly 

integrable with various industrial settings. It provided unbroken data 

acquisition, model creation, and real-time monitoring with a foundation 

for the effective application of digital twins. 

The tool was validated and tested using two industry case studies: 

 

• Go3D Artish 700 

 

• Ball Screw Assembly 

 

In both instances, the solution was able to ingest all the data streams 

required to construct dynamic and reliable Digital Twins. Additionally, 

role-specific visualizations were created and deployed, providing 

tailored dashboards customized for different users, including: 

• Product Manager 

 

• Technical Supervisor 

 

These dashboards were able to provide real-time visibility into machine 

health, operating performance, and predictive maintenance 

notifications. Its modularity made it simple to understand and navigate, 

regardless of what technical expertise. 

Overall, the Digital Twin architecture proposed here reflects a real leap 

in digital manufacturing technology. Not only is it internationally 
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standard compatible, but it also has cross-functional usability, 

scalability, and preparedness to further integrate and be utilized in 

Industry 4.0. 

6.2 Future Work 

The present work lays the groundwork for a modular and scalable 

Digital Twin (DT) Setup Tool based on the ISO 23247 standard. While 

the tool had been demonstrated useful in actual case studies, there is 

ample scope for improvement and enlargement in order to take full 

benefit of the resources of digital twins in smart manufacturing systems. 

The following research directions in future are suggested: 

 

1. Standardized Multi-disciplinary Data Sharing Mechanism 

 

According to ISO 23247, an even more structured data sharing 

framework between multidisciplinary teams—industrial, 

software, electrical, and mechanical engineers—will be 

established. This will improve integration, traceability, and 

cooperation, particularly in large industrial installations where 

interoperability is the biggest issue. 

2. Autonomous Feedback and Closed-Loop Control Systems 

 

Future releases of the DT Setup Tool will have real-time, closed- 

loop control capability. This addition will enable independent 

process compensation based on real-time feedback from the 

digital twin, which will result in adaptive manufacturing and 

intelligent decision-making without human intervention. 

3. Scalability through Multi-device and Cross-platform 

Compatibility 

To accommodate a wide range of machines and industrial uses, 

the tool will be optimized to support cross-platform use. This 

will  require  limited  setup  procedures  for  configuration, 
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facilitating easy deployment across various devices and systems 

in heterogeneous environments. 

4. Cloud-Native Architecture for Remote Monitoring 

 

Upgrading the current digital twin infrastructure to cloud-native 

is on priority. The transition will facilitate real-time remote 

monitoring, scalable deployment, continuous 

integration/updates, and collaborative analytics—thus 

increasing operational responsiveness and transparency. 

5. Enhanced Role-based Visualization and Custom Dashboards 

 

Future development will focus on extending the visualization 

ability to other stakeholders such as maintenance engineers, 

plant supervisors, and data analysts. These role-based 

dashboards will contain personalized alerts, KPIs, and insights 

based on user responsibility and need. 

6. Digital Twin Template Marketplace or Library 

 

To promote reusability and reduce time to develop, a digital twin 

template library for common industrial components (e.g., 

motors, actuators, 3D printers, and conveyors) will be created. 

The library will be modular so that plug-and-play configurations 

are supported and thus accelerate deployment in new 

applications. 

7. Integration for Sustainability and Energy Analytics 

 

Future enhancements will also encompass modules that track 

and report energy consumption, emissions, and environmental 

impacts. These modules will drive organizational sustainability 

efforts and compliance with global energy standards. 

The creation and implementation of a modular, ISO 23247-compatible 

Digital Twin Setup Tool is a milestone in the utilization of smart 

manufacturing. The study demonstrates the effectiveness of the tool 
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through two industrial case studies that differ from each other—Go3D 

Artish 700 and the Ball Screw Assembly—and thereby establishes the 

scalability, flexibility, and practical relevance of standardized digital 

twin architectures. The system not only supported real-time monitoring 

and predictive maintenance but also user-specific visualizations that 

helped stakeholders make better decisions, such as product managers 

and technical supervisors. 

The ISO 23247 implementation offered a systematic, interoperable, and 

multidisciplinary-focused architecture that highly improved team 

collaboration and deployment productivity. Further, the future 

directions outlined—diverse from individual control systems and cloud- 

native infrastructure to sustainability analytics and a reusable digital 

twin template marketplace—are a good starting point for the next phase 

of this effort. 

In conclusion, this digital twin approach is not just a theoretical model 

but a real, adjustable, and expandable solution for Industry 4.0 facilities. 

It introduces a new benchmark for integrating physical assets with 

digital smarts, automating operational excellence, inter-disciplinary 

collaboration, and sustainable long-term growth 
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