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ABSTRACT

The manufacturing sector has experienced a revolutionary shift in the last few decades,
transforming from established, mechanized production systems to highly connected digital
networks of advanced technology. The key to this revolution is the digitalization of physical
systems, processes, and assets, a paradigm shift that has transformed the way industries design,
produce, monitor, and maintain. Industry 4.0 is defined by the shift to the Internet of Things
(IoT), artificial intelligence (Al), machine learning, big data analytics, cloud computing, and

industrial robotics. Central to this revolution is the Digital Twins concept.

Digital Twin technology has been widely applied across many industrial sectors. and that says
a lot about how multifaceted and revolutionary it is. In manufacturing, Digital Twins allow for
predictive maintenance by continuously monitoring the health of equipment and forecasting
potential failures ahead of time, so there is reduced unplanned downtime and maintenance

expense.

Although Digital Twin technology has huge potential and is increasingly being employed, there
remain many challenges that stand in the way of its widespread adoption and fullest use. The
most intrinsic challenge is probably data integration and interoperability. In a typical factory
environment, operational data, design specifications, maintenance history, and human
expertise are generally spread across many different platforms and systems, very seldom
gathered into one database. Lack of standardization is the second grand challenge. While
standards like ISO 23247 offer reference architectures for developing Digital Twins, the
implementation styles are immensely divergent in organizations and industries. Not having
common standards hinders receiving seamless integration among multiple systems and
stakeholders, which ultimately restricts the scalability and effectiveness of Digital Twin
solutions. The complexity of multi-stakeholder collaboration is of a nature that organizations
struggle to manage. Creating a Digital Twin typically involves input from a variety of domain
experts, like product managers, design engineers, data acquisition engineers, data scientists,
maintenance operators, and manufacturing engineers. Each contributor brings something
unique, with diverse requirements and expertise. It is a major challenge to coordinate their

activities and provide good communication.

This study offers a structured, collaborative Digital Twin development framework per the ISO
23247 architecture for use in enabling asset management within diverse industrial applications.

A scalable Digital Twin Setup Tool has been implemented based on an Excel-based interface,
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which captures domain experts' static and dynamic information systematically, ranging from
product managers, design engineers, and data acquisition engineers to data scientists. The
resultant platform fills the gap in implementation between theoretical Digital Twin architecture
and actual deployment, providing a cost-effective, easy-to-use solution with asset lifecycle
tracking and stakeholder collaboration support. It creates the foundation for enhanced analytics
like Remaining Useful Life (RUL) estimation and decision support, and as such, will help
promote Digital Twin technologies further within small- to medium-scale manufacturing

environments.

The tool was validated on two industry case studies—Go3D Artish 700 and Ball Screw
Assembly—where it successfully consumed real-time data streams and developed dynamic,
role-based dashboards. The dashboards enabled actionable insights for stakeholders such as
product managers and technical supervisors, providing continuous visibility into machine

health, utilization trends, and forecasted maintenance events.

The modular and integratable nature of the tool ensures versatility in industry and technical
competence levels. In summary, the proposed Digital Twin platform is an important step
forward in digital manufacturing with a highly potent, standardized, and scalable solution
firmly in tune with Industry 4.0 objectives and capable of future-proofing intelligent decision-

making and asset life cycle management.
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Chapter 1 - Background

1.1  History

The manufacturing industry has wundergone a revolutionary
transformation in the past few decades, shifting from traditional,
mechanized manufacturing systems to advanced, highly interconnected
digital networks. It has been driven by the relentless pursuit of
operational effectiveness, improvement in quality, and competitiveness
in an increasingly globalized economy. [1] The focal point of this
revolution is the digital representation of the physical systems,
processes, and assets, a paradigm shift that has revolutionized how

industries design, manufacture, monitor, and maintain.

Industry 4.0 is a term that was first employed in Germany in the year
2011, referring to the convergence of information technology (IT) and
operational technology (OT) to create intelligent manufacturing
environments in which the virtual and the physical worlds are
interconnected on an ongoing basis. It is characterized by the transition
to the Internet of Things (IoT), artificial intelligence (AI), machine
learning, big data analytics, cloud computing, and industrial robotics. At

the heart of this revolution is the concept of Digital Twins.

1.2  Digital Twin

Smart Manufacturing integrates IoT, Al, and automation to create
intelligent factories, while Smart Maintenance ensures these systems
operate efficiently through the use of predictive analytics and self-
healing machines. Digital Twins bridge these two concepts by
simulating real-time machine behavior, predicting equipment failures,
and displaying the machine's health status. A Digital Twin is a virtual
representation of a physical system (and its associated environment and
processes) that is updated through the exchange of information between

the physical and virtual systems.



1.3  Applications for Digital Twin Technology

Digital Twin technology has been extensively used in numerous
industrial areas, as mentioned in Figure 1, and that speaks volumes about
how versatile and transformative it can be. In manufacturing, Digital
Twins enable predictive maintenance by constantly tracking the
condition of equipment and predicting likely failures in advance, so
there is less unplanned downtime and maintenance cost. Process
optimization is another key application where Digital Twins simulate
different operating conditions to determine optimal parameters to

enhance productivity and quality.

In aerospace, Digital Twins are applied throughout the life of an aircraft,
from design and testing to monitoring in operation and maintenance
scheduling. Automotive manufacturers apply Digital Twins to virtual

prototyping, crash testing, and supply chain optimization.

[ SECTORWISEAPPLICATION |

m Manufacturing m Agriculture m Urbanization " Medical
® Robotics B Military/Aviation M Automobile M Mobile Networking/
Communication

Figure 1: Pie Chart of digital twin-based data analysis paradigm
based on the Sector observed in recent papers [2]

Digital Twins are applied in smart cities to design urban development,
traffic management, and monitor infrastructure. The building industry

employs Building Information Modeling (BIM) as a form of Digital
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Twin to represent projects graphically, plan resources, and manage

facilities.

Applications in healthcare involve patient-specific Digital Twins for
personalized treatments, optimization of medical devices, and managing
hospital workflows. The energy sector applies technology to power plant
optimization, operation of renewable energy systems, and analysis of

grid stability.

1.4 Current Challenges in Digital Twin
Implementation

Despite the immense potential and growing use of Digital Twin
technology, numerous challenges persist to hinder its mass adoption and
maximum utilization. The most inherent challenge is likely data
integration and interoperability. In typical manufacturing environments,
operational data, design parameters, maintenance records, and human
intuition are typically distributed across multiple platforms and systems,
rarely consolidated into a single database. This splitting creates huge
challenges in developing comprehensive DTs that accurately capture the

complexity of physical assets and their world of operation.

The lack of standardization is the second major challenge. Though
standards such as ISO 23247 provide reference architectures for
building Digital Twins, the styles of implementation are very different
in organizations and industries. The absence of shared standards
prevents receiving smooth integration among multiple systems and
stakeholders, which ultimately limits the scalability and efficiency of

Digital Twin solutions.

Data dependability and quality are persistent concerns in Digital Twin
implementations. The accuracy of DTs heavily depends on input data
quality from various sources, including operating systems, sensors, and
human inputs. Inconsistent data formats, missing information, faulty
sensors, and human errors can significantly reduce the fidelity and

reliability of Digital Twin models.



The complexity of multi-stakeholder collaboration is of a kind that
organizations find challenging to manage. Creating a Digital Twin
typically involves input from a variety of domain experts, like product
managers, design engineers, data acquisition engineers, data scientists,
maintenance operators, and manufacturing engineers. Each contributor
brings something unique, with diverse requirements and expertise. It is
a major challenge to coordinate their activities and provide good

communication.

Technical challenges are due to computational complexity, processing
needs in real time, cybersecurity, and the need for a robust
communication infrastructure. The integration of physical systems and
digital ones brings new vulnerabilities that must be addressed to enable

data security and system integrity.

1.5 Research Motivation

These problems highlight the imperative requirement of standardized
methodologies of Digital Twin development that can bridge the gap
between the theoretical frameworks and the practical application. ISO
23247 provides a general reference architecture of DTs, yet there
remains a huge implementation gap to transform this standard into
practical instruments for facilitating collaboration among various

stakeholders and automating the task of creating Digital Twins.

This research addresses this gap by developing a Digital Twin Setup
Tool as a holistic platform for consolidating all the information and
decisions concerned with Digital Twin development in one usable
location. The tool is designed to transform the traditional piecemeal
approach to Digital Twin development into a structured, standardized
process consonant with ISO 23247 architecture, and be pragmatic and

user-oriented for domain experts.

The primary intent of this research is to create a methodology and tool
that enables organizations to systematically capture, organize, and make

use of the multi-faceted data required for Digital Twin building,



including physical assets, environmental conditions, operational
information, and human interventions—all combined in an integrated
platform enabling good stakeholder collaboration and total coverage of

all the DT factors.

In pursuing this research, we aim to contribute to the further maturity of
Digital Twin technology by offering a pragmatic approach to addressing
real-world application issues and yet remaining faithful to global
standards already established. The development of such a tool itself is a
breakthrough in the democratization of Digital Twin technology and
making access possible for organizations to utilize the value of Industry

4.0 transformation.

1.6 Literature Review

This section gives us a brief introduction to the literature that is currently
available for developing digital twins using a specific architecture in the
manufacturing industry. Keywords used in this literature review are
Digital Twin, Fault Detection, Smart Manufacturing, Predictive
Maintenance, ISO 23247, ISO 23704, Condition Monitoring, and ML
Algorithms.

The concept of Digital Twin was initially introduced by Michael Grieves
in 2002 at the University of Michigan, initially termed as "Mirrored
Spaces Model" before evolving into the contemporary Digital Twin
terminology. Grieves conceptualized Digital Twin as a virtual
representation of a physical product that contains all information
required to describe and simulate the physical counterpart. This
foundational work established a three-dimensional model comprising

the physical space, the virtual space, and the connections between them.

NASA further developed the DT concept for spacecraft health
management and mission planning, defining it as an integrated multi-
physics, multi-scale, probabilistic simulation that uses the best available
physical models, sensor updates, and fleet history to mirror the life of its

corresponding flying twin. This aerospace application demonstrated the



potential for DTs to enable performance optimization, predictive

maintenance, and risk assessment in complex systems.

The evolution of DT technology has been significantly influenced by
advances in Internet of Things (IoT), artificial intelligence, machine
learning, and cloud computing. These technological convergences have
enabled real-time data acquisition, processing, and analysis capabilities
that are essential for maintaining synchronization between physical and

digital representations.

Recent literature has established various classification frameworks for
Digital Twin implementations. [12] Onaji et al. (2022) developed a
comprehensive framework for Digital Twin implementation in
manufacturing environments, focusing on flexibility and integration
aspects. Their research carried out a thorough literature review to
examine the potential of the digital twin concept as an integrated
platform to promote scalability, flexibility, and integration in the
manufacturing industry, providing flexibility that allows systems to

easily adapt to changes in product requirements.

[13] Attaran et al. (2023) investigated the transformative impact of
Digital Twins on intelligent manufacturing and Industry 4.0 evolution.
Their research demonstrated that in the past few years, Digital Twins
have dramatically reduced the cost of developing new manufacturing
approaches, improved efficiency, reduced waste, and minimized batch-
to-batch variability. The study highlights the evolution of Digital Twins
and reviews enabling technologies while identifying implementation

challenges.

[14] Soori et al. (2023) provided a comprehensive review of Digital
Twin applications specifically in smart manufacturing contexts. Their
research demonstrated that the application of digital twins in smart
manufacturing can reduce time to market by designing and evaluating
manufacturing processes in virtual environments before manufacture,
presenting comprehensive simulation platforms to simulate and evaluate

product performance.



[15] Xu, Zhang et al. (2024) presented a comprehensive analysis of
Digital Twin research trends through a systematic examination of 4,954
articles from the Web of Science database spanning 2014-2024. Their
research visually dissects digital twin literature, leveraging keyword
cluster analysis to identify focal areas that have captivated researchers
in recent years, along with prevailing research trends. The study
provides strategic recommendations for the evolutionary trajectory of

Digital Twin technology.

[16] Son et al. (2022) conducted a temporal analysis of Digital Twin
development in smart manufacturing, examining the technology's
evolution from early concepts to future applications. Their research
focused on the Fourth Industrial Revolution era, emphasizing the
growing focus on digital twin technology to advance toward smart
manufacturing. The study provides insights into the technological

trajectory and future research directions

The integration of Digital Twin technology within Industry 4.0
frameworks has been extensively studied in recent literature. [17] Tao
et al. (2020) demonstrated how Digital Twins serve as enabling
technologies for cyber-physical systems (CPS), facilitating seamless
integration between operational technology and information technology
domains. Their work highlighted the importance of Digital Twins in
achieving smart manufacturing objectives through real-time monitoring,

predictive analytics, and autonomous decision-making capabilities.

[18] Qi et al. (2021) explored the role of Digital Twins in smart
manufacturing ecosystems, emphasizing their contribution to mass
customization, flexible manufacturing, and supply chain optimization.
Their research demonstrated how Digital Twins enable manufacturers
to respond rapidly to market changes while maintaining operational

efficiency and product quality.

The concept of Digital Thread, as discussed by [19] Forward et al.
(2021), represents the evolution of Digital Twin technology toward

comprehensive product lifecycle management. Digital Thread
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encompasses the entire product journey from design and manufacturing
through operation and end-of-life, providing continuous data

connectivity and traceability across all lifecycle phases.

The development of international standards for Digital Twin
implementation has been a critical focus area in recent literature. ISO
23247 series, published in 2021, represents the first comprehensive
international standard specifically addressing Digital Twin frameworks
for manufacturing systems. The standard establishes reference
architecture, data models, and implementation guidelines that ensure
interoperability and consistency across different Digital Twin

implementations.

[3] Thelen et al. (2024) propose a five-dimensional digital twin model
(DT =F(PS, DS, P2V, V2P, OPT)), emphasizing bidirectional data flow
between physical and virtual systems. This framework integrates
physical systems, digital models, updating engines (P2V), prediction
engines (V2P), and optimization (OPT). It also provides a
comprehensive review of digital twin technologies, highlighting their
transformative potential across industries. However, challenges in data,
modeling, integration, and scalability must be addressed to unlock their
full potential. Future research should focus on hybrid modeling, real-

time data, federated learning, and scalable architectures to bridge these

gaps.

[4] Soderberg et al. (2017) discuss the implementation of a Digital Twin
for real-time geometry assurance in automated production. Geometry
assurance minimizes geometrical variations affecting product quality
across design, pre-production, and production phases. Digital Twins
leverage simulation, optimization, and real-time data to enhance
production efficiency and quality. Key functionalities include locating
scheme optimization, statistical variation simulation, inspection
preparation, and root cause analysis. The approach supports a shift from
mass production to individualized production, addressing geometry-

related cost issues effectively.



[5] Ogunsanyaa et al. (2022) focus on utilizing deep learning (multilayer
perceptron) to predict output parameters (dimensional accuracy,
porosity, tensile strength) in Fused Deposition Modeling (FDM). The
methodology used was to conduct fractional factorial design
experiments with five input parameters (layer thickness, extrusion
temperature, etc.) across 243 data points. And found out that Optimal
hyperparameters were identified, revealing that learning rates and
hidden layers significantly impact model performance. Emphasizes the
need for balancing prediction accuracy and computational efficiency for

real-time applications

[6] Kun et al. (2018) focus on the Objective to diagnose faults in delta
3D printers using attitude sensors and Support Vector Machines (SVM).
The Methodology used was to use Attitude sensors to monitor 3-axial
angles, angular velocity, and vibrations; data collected under 12 fault
types and normal conditions. Results obtained are that SVM achieved a
fault diagnosis accuracy of 94.44% using all sensor channels;
comparison with Back Propagation Neural Network (BPNN) showed
inferior performance. The proposed method effectively monitors printer

health and enhances fault detection, crucial for maintaining print quality.

[7] Li et al. (2024) focus on the Objective to analyze molten pool
dynamics and predict cladding layer height in Laser Direct Energy
Deposition (L-DED). Some key findings are defining the molten pool
overflow (MPO) phenomenon through theoretical and numerical
models. Developing a numerical-assisted RF-LSTM prediction model
to enhance cladding layer height accuracy. Experimental validation
showed a significant correlation between MPO features and cladding
quality. Implications occurred are Insights can optimize L-DED

processes, improving part quality and stability.

[8] Yao, Xifan, et al. (2019) explore the integration of Cyber-Physical
Systems (CPS) in smart manufacturing, linking it to Industry 4.0.
Introduces models like cloud manufacturing, social manufacturing, and

wisdom manufacturing. Proposes an eight-tuple model for CPS-based



manufacturing, extending to a nine-tuple for wisdom manufacturing.
Highlights real-time data access, reconfigurability, decentralized
decision-making, and enhanced intelligence. Emphasizes the need for
integrating social aspects in manufacturing for innovation and

sustainability.

[9] Thoben et al. (2017) review the fourth industrial revolution, focusing
on Industrie 4.0 and smart manufacturing. It highlights the integration
of the Internet of Things (IoT) and cyber-physical systems (CPS) in
manufacturing. Key initiatives include Germany's Industrie 4.0 and the
U.S. smart manufacturing programs. The paper discusses application
scenarios, challenges, and future research issues in technology,
methodology, and business models. Emphasis is placed on enhancing
human-robot collaboration and developing new business strategies for

competitive advantage.

[10] Pandhare Vibhor et al. (2022) discuss a two-phase methodology for
monitoring the health of ball screws in industrial applications using
inertial sensors. Ball screws are critical components in linear positioning
systems, and their degradation can lead to the loss of accuracy and
reliability in production systems. The proposed approach addresses
limitations in existing monitoring methods by combining online fault
detection and offline fault quantification. An RTF experiment was
conducted on a linear-axis testbed. Data was collected continuously over
8693 hours of operation, with periodic interruptions for Phase II
measurements. Results showed that the proposed method effectively
detected faults and quantified backlash changes, with significant
backlash observed at 8000 hours of operation. The PCA-T2 method was
compared with other state-of-the-art techniques (e.g., Gaussian Mixture
Model, Self-Organizing Maps, Isolation Forest, Auto-Encoder). PCA-
T2 was preferred for its simplicity and consistent results. Backlash was
estimated using signal position shifts and perceived ball screw pitch
changes. Both methods showed similar trends, with backlash increasing
to approximately 10 pm at 8000 hours. The two-phase methodology

provides a robust solution for early detection and backlash
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quantification, reducing downtime and enabling predictive maintenance

in production systems.

[11] Kumar et al. (2018) explore the integration of Industry 4.0 concepts
into maintenance practices, termed Maintenance 4.0, and highlight the
challenges and opportunities associated with this transformation. It also
emphasizes the importance of Maintenance 4.0 in achieving Industry 4.0

goals, enabling smarter, more efficient manufacturing processes.

1.7 Research Gaps and Opportunities

The literature review reveals several critical gaps in current Digital Twin
research and implementation approaches. While theoretical frameworks
and reference architectures are well-established, there remains a
significant lack of practical tools and methodologies that facilitate
systematic Digital Twin development. Most existing research focuses
on individual case studies or specific application domains, with limited

attention to generalizable implementation approaches.

The collaboration aspects of Digital Twin development remain
underexplored, particularly in terms of structured methodologies for
multi-stakeholder engagement and coordination. Current literature lacks
comprehensive frameworks for integrating diverse domain expertise and
managing complex stakeholder relationships throughout the Digital

Twin development lifecycle.

Furthermore, the translation of international standards such as ISO
23247 into practical implementation tools represents a significant
research opportunity. While the standard provides comprehensive
architectural guidance, there is limited research on systematic
approaches for standard compliance and practical tool development that

facilitates standard adoption across diverse industrial contexts

1.8 Objectives

This study aims to fill a gap in the literature by analyzing and
standardizing the DTs. It also focuses on the resources and their

location, required by different domain experts to develop a DT. At last,
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validate the developed tool for the creation of the DT on two different

case studies (Go3D Artish 700 and Ball Screw).

1.9 Organization of the Thesis

This thesis contains six chapters. The current chapter provides an
introduction and background to the research topic, highlighting its
importance, defining key concepts, and outlining the scope of the study.
It also focuses on the applications of DTs in different sectors. The
challenges occur while implementing digital twins without the ISO
standard. It also focuses on a comprehensive literature review, critically
analyzing and synthesizing existing research related to the topic,
identifying gaps in current knowledge, and stating the research problem
and objectives. This chapter will also give a brief overview of the

subsequent chapters.

The second chapter will focus on the methodologies and the
development of the collaborative platform for standardized digital twins

for asset management.

The third chapter will focus on exploring the types of algorithms on a
particular dataset and their results, and the scope of the dataset for

further use.

The fourth and fifth chapters will provide the details of case studies 1
and 2, respectively, and explain the implementation of the DT setup tool.
In the end, the results and findings obtained from the research will be
presented, utilizing appropriate data visualization techniques, like
dashboards, and analyzing the results about the research objectives,

highlighting the health aspects of the component.

Finally, the sixth chapter will summarize the main conclusions and
contributions of the research, discuss its potential areas for future
research, provide recommendations for further investigation, and reflect

on the overall research experience and lessons learned.
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Chapter 2 Methodology and Collaborative Digital
Twin Setup Tool Development Using ISO 23247

2.1 IS0 23247 Architecture

[22] This architecture defines a framework to support the creation of
Digital Twins for observable manufacturing elements, including
personnel, equipment, materials, processes, facilities, environment, and

products.

Digital Twin User Entity

User Interface FE

Digital Twin System Entity

Qperation and Management
Sub-system Entity

Application and Service
Sub-system Entity

Resource Access and
Interchange Sub-system Entity

Synchronization| | O&M Suppart
FE FE

simulationrC | [ Reporting I

Interoperability Plug & Play
Suppurl FE Suppurl FE

- Digilal
Presentation tE Modeling FE

Analylicservice| [ Aoplication
Fe Supporl FE

Information Exchange FE

Data Assurance FE

Security Support FE

Cross-System Entity

Access Conlrol | | Peer Inlerlace
FE FE

Data Collection and Device Control Entity

Data Collection Sub-Entity Device Control Sub-Entity

Dats Collecting
FE

DstaPre-

Identification FF
Processing FE

Actuatian FF Identification FF

Controlling FF

Observable Manufacturing Element

| Hesource-specific Fks ‘

Figure 2: Functional reference architecture of Digital Twin for
manufacturing — decomposition of functional entities (FEs)

In the above figure, you can see four major functional entities, namely
the Digital Twin User Entity, the Digital Twin System Entity, the Data
Collection and Device Control Entity, and the Observable
Manufacturing Element.

This research proposes a novel concept of implementing ISO 23247
architecture to create a DT, which is a standard one, that can integrate

with other digital twins.

2.2

The research methodology evolved through three distinct phases, each

Methodological Evolution

refining the approach based on empirical findings and practical
implementation challenges. The initial methodology established a

foundational framework for Digital Twin development, focusing on data
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diagnosis systems for comprehensive dataset analysis, followed by
digital twin modeling, machine learning algorithm implementation, and
feedback control loop development. This phase provided the essential

structure while identifying key areas for improvement.

Hyperparameter tuning

Sensor based
measured values

stored in a CSV
file
Integrate both the Train different Measure the . o/P
Test the model in
files for same [— types of models [—* accuracy of the [— real time —
timeframe for prediction predicted model
Extract x,y&z

values from
Geode and saved
in CSV file

Feed Back

Figure 3: The overall approach to predicting values from the Creality
Ender-3 Neo 3D printer dataset.

Step 1 Step 2 Step 3 Step 4
Standardization Data Diagnosis Prediction Integration

Determine a ;
Define and Develop the suitable ML Dfe::éoggl?( a
map the Data Algorithm to control loop to
system with Diagnosis predict the life control actFl)JaI
1ISO 23704 System of atool ata ipment
certain time equip

« Determine KPI's to assess the
quality of the process.

Figure 4: Initial approach for developing the Digital Twin.

Recognizing the need for deeper data understanding, the second iteration
introduced Exploratory Data Analysis (EDA) to replace the data
diagnosis system, ensuring thorough dataset comprehension before
model development. The feedback control loop was also modified to
prioritize Digital Twin development with existing datasets, addressing

limitations in physical testing environments.
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Step 1
Standardization

Step 2
Exploratory Data
Analysis

Step 3
Prediction

Step 4
Integration

Define and
map the
system with
1ISO 23247

Determine a .
i Developing a
Explore the igﬁﬁfm% Digital Tufin
2N predict the life and applying
EDA g ot it to similar
certain time datasets

« Determine KPI's to assess the
quality of the process.

Figure 5: Modified methodology incorporating EDA for enhanced
dataset analysis.

The final phase integrated compliance with the ISO 23247 standard,
emphasizing international best practices in Digital Twin development.
It also introduced a scalable tool to ensure adaptability across diverse
industrial applications, forming the basis for the Digital Twin Setup
Tool. This refined methodology balanced theoretical rigor with practical

implementation, enabling efficient and standardized Digital Twin

deployment.
Step 1 Step 2 Step 3 Step 4
Understanding Building DT Case Study 1 Case Study 2
of ISO Standard Setup Tool
Create a
Define and scalable Developing
map the tool for a Digital Developing a
system developing Twin on Go Digital Twin
with 1ISO DT using 3D Artish on Ball Screw
standard ISO 700 Printer
Standard

Figure 6: Final methodology incorporating 1SO standards and
scalable tool development.
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Figure 7: Step-by-step Digital Twin creation process using the DT
Setup Tool (Go 3D Artish 700 Printer).

2.3 Digital Twin Setup Tool Development

This section describes the process undertaken to create the Digital Twin
(DT) Setup Tool and the resultant Digital Twin according to the ISO
23247 standard.

Prior to engaging in the process of creation, one should know the DT
Setup Tool and the resources needed to construct it. In traditional
manufacturing practices, the production of a physical asset involves a
range of dimensions such as physical components, environmental
conditions, operational information, and human decisions. These
decisions—typically made by subject matter specialists—are typically
spread out across different platforms and rarely consolidated into a
single database. DT Setup Tool attempts to bridge this disconnect by
bringing together all relevant information and decisions into a single
location. It is a single-stop source for materials required for creating a

DT.

The table below shows the different dimensions required for the
development of a DT of a physical asset. The dimensions are
components, conditions/information, decisions, and people. Based on
these dimensions the development of physical product occurs, similarly,
to build a digital twin the data which is used to develop the physical

product, the same is required.

Table 1: Different Dimensions involved in the development of a Digital
Twin for a physical asset

Dimension 2
Dimension 1 Dimension 3 Dimension 4
(Conditions/
(Components) (Decisions) (People)
Information)
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) ) ) Product
3D Printer Scheduling Maintenance
Manager
_ . ' Design
CNC Machine Planning Operations '
Engineer
. Data
. . Condition L
Bearings Maintenance o Acquisition
Monitoring )
Engineer
Production o
Nozzle Inventory o Data Scientist
Monitoring
Design Process Maintenance
Extruder o o
Specifications Monitoring Operator
Signals and . Manufacturing
Ball Screw Traceability ‘
Logs Engineer

05 Control Systems Engineer
Controls system and Actuates Machines

01 Design Engineers
[Designs physical structure and
Imechanical systems
02 Embedded systems Engineer
Develop hardware and software
(microcontrollers etc.)
&
03 Manufacturing Engineer o-.'l §
! F
Handles Observable Eokl &
manufacturing elements ' '_‘
04 Data Scientist
[Data Pre-processing and Data
[Analytics =

n\,,gd thm“ghuu,

b

q

-
x

06 Cyber Security Engineer
¥ Protects from Data Breaching and
IT Support

07 Product Managers

4
The entire development process

&'P,
%
®
of the Product

08 Maintenance Operators
Troubleshooting, and maintenance

aphd

1

Figure 8: People involved in the Asset Life cycle

Note: The table has a subset of the components. Numerous others

contribute to each dimension

Figures 8 & 9 depict the different

engineers across the asset lifecycle

Each of the domain experts is responsible for contributing to the
development of the assets. As described previously, the ISO 23247
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architecture provides a reference for DTs whereby each functional entity
makes a contribution to modeling the physical system. These functional
entities can be directly mapped to the respective domain experts. This
enables us to gather all the data required to construct a Digital Twin

systematically.

Product @
| —~ Manager

/Data Translator

Any Person
(among these)

- Maintenance
Engineer

{_—~Cyber Security i3
Engineer

-
(4 Design Engineer
-~ AN
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Data Scientist

Embedded St

™ 3 & —_— s -
ystems Engineer
Data Acquisition Data Callaction snd Device Contiol Entity ‘

Engineer ] e 1 Automation  w&
| |( I | — ||j i | Engineer / 1

Control Systems

Digltal Twin Framework .
Engineer

8§ Manufacturing

Qbservable Mant Fn ring Elements

EZ-’ Engineer |

s B

ecene | |

Figure 9: Different Experts sharing the physical data used to
manufacture an asset in the digital form as per the 1SO 23247
standard to develop the digital twin
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Figure 10: Capturing the information of the Asset using ISO 23247

Figure 10 illustrates how data are extracted from such experts based on
ISO 23247 guidelines. Even though ISO 23247 prescribes structural and
data flow entities, it does not leave it to be determined how data is
captured and stored. For our implementation, we utilized Microsoft
Excel as a platform on which to build the DT Setup Tool. Now, let us
talk about how we are going to create the digital twin setup tool using

ISO 23247 architecture. There are several options to create a digital twin
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setup tool, like a web interface, a mobile application, an Excel file, etc.
Here, an Excel file was used as an option to develop a digital twin setup

tool.

The DT Setup Tool in Excel has several sheets. Each sheet is allocated
to a particular domain expert, organized according to the ISO 23247

functional architecture.

Ny A DeaColesionfE ]
T B A II_A_Presentation FE |
‘E{::LH% II_B_Reporting FE | \ II_B_Reporting FE
- IC_PugaPiaySupportFE | | [IC_Plug8 Play Suppori FE

DT Setup Tool Individual Forms Fill All the Forms

Cover Page Cover Page

IV_OME Static IV_OME Static

1l_A_Data Collection FE

|
|
|
S—
[ Il_A_Presentation FE

Figure 11: Overview of the sheet structure of the Excel tool, with

sheets renamed to reflect the respective domain experts

As shown in the above figure, the names of the sheets are renamed in
such a way that it is easy to understand by the domain experts and also

based on the reference architecture ISO 23247.

In the above figure, the basic details of the company (user/product
manager) and its address are captured, along with its objectives.
Entering firm data and project objectives enables the reuse of pre-

formatted component templates.
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User Input Sheet

Objectives =

Select the objectives

FE T, e e biaciie fans

F L, e e b abiaciie fans

Other Instructions|:

#F B Snacdin ntrastions for tha Sodion Fhowidar

Company Name |

Company Address |:

Submit [MO

Figure 12: User Input sheet to be filled by the product manager

Obsarvable manufacturing element shall be monitored and sensed, and may be actuated and controlled
by data collection and device control entity. It includes personnel, equipment, material, process, etc

# Fill Only in YELLOW Color Boxes

Component

Awribute

# Component Name

Desciiption

Static Information for the component

# Machine Name

Ezamples

Identification
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Madel Mo

PartNo

Serial number

Dimensions (Design]

Material

Price

Daoesthe companent
have Alto send data
generated?

Expiration date of
‘wharianty

Duration of Warranty

Supplier Mame

Lead Time lrarge]

Add any extra
Identification
Parameters (it
required]

Characteristics

| [Classification of component

Tupe of Operation

iy Sub Dperation

Schedule

‘ ‘ ‘working Schedule for component

‘working schedule #2417

Maintsinance
schedule

Relationship

| [Static Relationship For component and ather manufacturing elemenits | # Machine 1 operates with material 2

# Machine 1operates with material 1

# Machine 1operates with material 3

Descriptian

‘ ‘ Additional infarmation and explanation about the static informatian of component ‘ # any other general information of companent

Figure 13: Static details of the observable manufacturing elements
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Under this structure, the static data related to the physical elements is
recorded by the design engineer in a separate sheet. This sheet is used
as a master reference that records all the non-changing characteristics
associated with the manufacturing environment. The next section is
addressed to Observable Manufacturing Elements (OMEs), which cover
all the physical equipment used in the industrial environment. They
include but are not limited to CNC machines, industrial robots, motors,

ball screws, and 3D printers.

Every OME relates to suitable sensors and actuators for bidirectional
communication between the physical and the digital worlds. Sensors are
used to acquire data from these devices, whereas actuators react to
decisions by either the user or the digital twin system itself. Recordings
of these OMEs are important because they provide an extensive insight
into the operational workflow and dynamic behavior of the shop floor.
This methodical depiction of the physical objects serves as the
foundation for creating smart monitoring, control, and decision-making

capabilities within the digital twin framework.

Dynamic Information

Attribute Description Examples
Status | |Performance aspects of the component | Products [ourpur] mm
Pressure [
Moise W
Ewtra Load [kgs) £
Pitch - #dB
Wibration #10  [#mm
Pitch mm
Backlash
Tarque Hm
Extra Load (kgs) #1900 [#kgs
Fressure Mpa
Location Lozation information [geographical ! relative location] | #Machine 2 at Work unit 2 in Foom 3
#Machine 2 at Work unit 1in Room 2
#Machine 2 at Work unit Zin Room 2
Freport ‘Working repart related to companent | #May 1dth, 20139 AM to EPM: Regulsr Maintenance
# May 14th, 2073 11 AMMachine #1repars high
temperature
® - -
Relationship Diyriamic: Fslstionship for companent and othet manufsoturing slements e e e o =)
lorwunit 2
M p N - N
Deseription Addiionalinformation 2nd suplanation abou: the dynamis informatin of component e i e el e
manufactuning processes

Figure 14: Dynamic details of the observable manufacturing elements
(OMEs)

In the above figure, dynamic details refer to the values that change over
time. This information is highly important to understand the dynamic

behavior of the physical asset.
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Process Type of Operation # Component Name

Static Information

ibute Description
Identification [[ Information to identify Process [[Processdentifier | |
Characteristics | [Classification of component |[Production
Maintenance
Cluality Test
Irwentary
Milling #ToandFro
Drilling
Additive
Schedule | [working Scheduls For Process |[Perindic One time
duration 3 [hours
Flunz 90_|Hos
Fause time 0 [Tec
Frequency 3 |daws
20 |mmisec
Speed 00| mmisec
500 |mmises
Travel 450 [mm
m - -
Felationship | Static: Flelstionship for process and other manufacturing elements || e P'°°:i;giiﬁa”age‘j [alPEEemE
Descriptian | | Additional information and explanation abaut the static information of process || # Ary other general information about process

Figure 15: Static details of the operation that is involved with the
physical asset

Figure 15 shows the static information on the physical assets’
operations. It is necessary to capture this data since the performance of
a physical asset depends largely on what operation it is performing.
Varying manufacturing processes have different effects on important
operational parameters of the physical component. Hence, it becomes
important to capture and track the operation being conducted, as it has a
direct influence on the behavior of the asset, its performance
characteristics, and lifecycle. Information acts as a basis for proper

modeling, analysis, and decision-making in the DT environment.

Dynamic Information

Attribute Description E
Sttatus [[Status of the Process Planned
In—Process
Stopped abruptly
Location Location infarmation [geographical | relative location] | | #Process 1, Machine 2, Room 3
# 3 #,

R S —— T B P

. . . S . #MilingOperation #1is operated by Persan #3 with Skil
Relationship Dwnamic Relationship for process and ather manufacturing elements 42 in WorkCorter £3

. " . . N # Dynamic information of component changing during
Description Additional information and explanation about the dynamic infarmation of process 3
manufacturing processes

Figure 16: Dynamic information of the operation that is involved with
the physical asset

Figure 16 gives dynamic data pertaining to the operation related to the
physical asset. As shown, the operational processes change with time,
and the changes over time can also significantly affect the key process

parameters. These changes have a direct effect on the behavior and
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overall performance of the physical asset. Thus, it is crucial to keep
capturing and documenting these dynamic changes so that they can
facilitate correct analysis, ensure operational reliability, and improve the

predictive functionality of the digital twin system.

Environment During the Process # Component Name

Static Information
Artribute Description

|dentification Infarmation to identify environment including time and location # Combination of time, senzor 0 and sensor value

# Combination of time and energy cansumptian (K]

Characteristics | [Classification of Ervironment |[Temperature # units

Humidity # Linits.

omin aree Furits
Scheddls | [ orking Schedule For srwironmert | [Pericdic % Oire time

uraticn F[hours

Fause time 0] zec

Frequency F[days

Fliocm #2 should e Rept 2t 207 C while marfactur,
Felationship Static Fielationship for enviranments and cther manulacturing slements P &
is being performed

Dlescription | |F\dditional infarmation and enplanation about the static infarmation of process || # any ather general information about environment

Dynamic Information

Attribute Description E
Status [[Status of the environment Il Hormal

. . . . " " # May 1dth, 201310 AM: temperature #2is 25 'Cin Room
Location Location information [gecgraphical { relative lacation]

: : #May 1dth, 20133 AM: Room #2 reports alarm of high
P t ok trelated b 3
=per mringrepart (estedia envienmen temperature that the temperature #2is 30°C.
# 4 #: ili

Relationship Diyriamic: Relatiorship for environment and other manufacturting slements Tg[”a::‘c‘:'n ZderEﬁT‘I:::?Zmi‘e‘:;‘:iir‘znezza'g"”

. - ! . . ) # dyn.amic infarmation of environment changing during
D=scription Additional information and explanation about the dynamic infarmation of environment )

manufacturing processes

(St [M5 ]

Figure 17: Both Static and Dynamic information of the environment
where the physical asset is located

The environment where the physical asset is located can also affect the
performance of the physical asset. Hence, the basic detail of the

environment needs to be captured.

Referring to Figure 18, there is a need to determine the types of sensors
employed in collecting data and the type of data they provide. The data
sheets on the sensors are important in assessing the quality of sensors
and the validity of data obtained. Most important parameters like
sampling rate, sensitivity, resolution, and data conversion factors are
important since they have a direct influence on the reliability and

accuracy of the measurements obtained.
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Data callecting FE provides data collection function ality fram obzervable manufacturing element

# Fill Only in YELLOW Color Boxes

Senso |Sensor 1(# Triaxial Accelerometer) |Quantity | | 2 |
Type ey #(Type] Datetime | timestamp Conversion factor
Collecte
S itivi midig #[Tupe] Vibration H anis # 50 mmisectV| contraller speed
Resolutio #[Tupe] Vibration y anis & 0.24 NmiV | contraller tarque
Range g #(Type] Vibration z anis wanis | Wibration
- zera
Eandu idt iz WAl column #10 oty yaris \libration
Hz zaniz  [Wibration
Moise [umis21VH
Sampling He Lacation | # At the top side of Companent
Rate aof Sensar [distance from the edge]
duration haours
Runs MNas
Pause time Seo
Frequency days
mmizec
Speed mmizec
mmizec
Travel mm
1] 0
Senso
r Sensor 2 (# Dial Indicator) Quantity 1
Gradation | Tum |

[Submit [E] |

Figure 18: Details need to be filled in by the Data Acquisition
Engineer about the types of sensors and the type of data retrieved

Preszentation FE provides functionality of presenting observable manufacturing element as digital entity
in conjunction with digital madeling FE

Items to be Displayed [Line Graph \ibration
Items to be Displayed [Line Graph \ibration
Items= ta be Displayed [Line Graph \ibration
Items ta be Displayed | Line Graph ibration
Items ta be Displayed |Line Graph Wibration
Items ta be Displayed |Line Graph Wibration
lkems to be Displayed |Separate Line | Time
Ikems ta be Displaved |Separate line | Action
Items= to be Displaved | Separate line |Realtime
Items to be Displayed [Status of OT | Time
Items= ta be Displayed | Status of OT | Learning
ltems ta be Displayed | Status of DT |Learning count

Figure 19: Details to be filled in by the product manager

On the presentation sheet in figure 19, which can be thought of as a
dashboard, it refers to the nature of information to be displayed, the
corresponding plots, and parameters. The choice of these should go in
sync with the goals discussed previously by the product manager. The
data presented in the dashboard is filled based on the objectives

previously discussed.
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Analytic: zervice FE provides functionality of analysing data collected from abservable manufacturing
element and the result of simulation

File Location
Filz Name

File tupe

Columns
DataCleaning
Synchronization
Tupe of Algarithm
Mame of ML Model

ETEN S

Figure 20: Details need to be filled in by the data scientist as per the
objectives provided by the product manager

The Analytical Service Sheet in figure 20 is the center of the digital tool,
where all the analytical processes are carried out. The sheet is required
to have information on the data location, the type of information in the
data files, data cleaning process steps, synchronization on timestamps,
and the choice of suitable algorithms specific to desired objectives. It is
up to the data scientist to fill this sheet with the required information.
The outcomes derived from such analysis steps are then displayed on

the dashboard so that they adhere to the objectives.

Reparting FE provides functionality of generating report of praduction result, analysis on simulation,
etc

From Production Line

Ta Operatar
Supervizor
Production Manager

| [Sobm [0 -

15

Figure 21: Details need to be filled by the product manager to define
the user roles to display specific information to them on the
dashboards

The Reporting Sheet in figure 21 holds crucial information that is
uniquely designed for the user roles set by the product manager. For
example, in a manufacturing environment, when a maintenance operator
inputs information through the system, this input may have to be

escalated to the higher authorities. Such information flows and user roles
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responsible for viewing and acting on the data included in the

dashboards are defined in the Reporting Sheet.

in Omna Ctieesion & Device Comra Sy

Figure 22: The basic overview of the DT setup tool at the end
resembles the 1SO 23247 architecture

From the above figure, the digital twin setup tool we have implemented
follows the ISO 23247 reference architecture very closely (Figure 2). In
the diagram, the red-colored boxes signify that the corresponding
functional entity is incomplete or awaiting input. After the appropriate
domain experts complete and submit the corresponding sheets, the color
turns green from red, which indicates that the respective functional
entity has been finalized with proper data. It summarizes what has been
done and what still needs to be done. Users can easily determine from
this data who needs to give the rest of the data and by which relevant
functional entities, thereby helping in the development of DT. The full
structure and functionality of the digital twin setup tool will be
illustrated through a series of case studies discussed in the subsequent
sections of this study. This graphical illustration also aids in monitoring
the completion level of each functional entity and helps identify the

remaining data needed for the development of the DT.
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Chapter 3 — Case Study 1 - Creality Ender 3 Neo
3D Printer

This chapter provides a comprehensive review of the datasets utilized in
the case study for DT implementation, along with the experimentation

and results.

3.1 Creality Ender 3 Neo 3D Printer Dataset

The first dataset employed in this research consists of timestamped
position data from a Creality Ender 3 Neo 3D printer, capturing the
nozzle head movement along the x, y, and z directions. The experimental
setup involved printing a square shell component with dual-layer
geometry, featuring an inner shell of 8 mm x 8 mm dimensions and an
outer shell of 10 mm x 10 mm dimensions. The analysis was conducted
under the assumption of constant nozzle head acceleration throughout

the entire printing process.

Figure 23: CAD model of a square shell

The experimental parameters were systematically varied to capture the
effect of different operational conditions on the printing process. Feed
Factor percentages were set at 50%, 75%, and 100%, while Layer Height
was varied between 0.1 mm, 0.2 mm, and 0.3 mm. Belt Tension was
adjusted across three levels (1, 2, and 3) to evaluate its impact on

positioning accuracy and print quality.
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Table 2: Machine parameters table

Parameters Levels
Feed Factor (%) 50,75, 100
Layer Height (mm) 0.1,0.2,0.3
Belt Tension 1,2,3

Data acquisition was accomplished through optical encoders interfaced
with an Arduino board, enabling real-time capture of nozzle position
data during the printing process. The integration methodology involved
generating reference data from CAD files, which were converted into G-
code format containing nozzle position coordinates, feed rates, extrusion
parameters, and temperature profiles. A specialized Python script was
developed to extract temporal data from G-code files, creating
comprehensive CSV datasets that served as the foundation for machine

learning algorithm development and Digital Twin modeling.

Desktop Display Back to PC
3D CAD Octoprint \[*
Modelling Py software *
Software créo Asset/ machine
Ultimaker (30 Izrlnter)
Cura o
STL file Gceode file
- f
Gcode — x,ylz &f values Sensors i ati
i (Optical ~= i Synchronization 9 '
Encoders) | TR .JE
F(t) = (xy) Measured i : Fit) = (x) 3 i —=——» Manual Data Flow
gl Values i . | H » Automatic Data
g, ‘\\ -------- ‘ PR J Flow

Figure 24: Flow diagram of integrating the predicted values into the
actual machine (Creality Ender-3 Neo)

From the above figure, the left block explains to us how the reference
data is generated from the CAD file to x, y, &z values of the nozzle
position of the 3D printer. The g-code file contains the nozzle position,
feed, extrusion rate, and temperature of the nozzle, etc. A Python script
i1s written in such a way that the values from the g-code files are
extracted along with the timestamp and stored in a CSV file. Then, in
the middle, there are sensors, optical encoders, that capture the measured

values of the position of the nozzle in the 3D printer along with the
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timestamp and store them separately in a CSV file. These two CSV files

act as the source for the ML algorithms to predict the values as per the

objectives.
Hyperparameter tuning
Sensor based
measured values
stored in a CSV
file
Integrate both the Train different Measure the T . or
- est the model in
files for same |—| types of models [—+ accuracy of the real time —
timeframe for prediction predicted model
Extract x,y&z
values from
Gceode and saved
in CSV file
Feed Back

Figure 25: The overall approach to predicting the values from the
Creality Ender-3 Neo 3D printer dataset

3.2

This dataset was used only for analytical purposes. In the development

Experimentation and Results

of the digital twin, data analytics has been at the heart of it. So,
predicting the values using the right algorithm is one of the complex
tasks. Two algorithms were used for predicting values. They are Auto
Regressive Moving Average (ARMA) and Kalman Filter. These
algorithms were selected based on their nature of flexibility in time
series data and computational load on a real-time basis. Let’s discuss

each of the algorithms one by one and their usage on this current dataset.

Square shell @ layer1 (z=0.2)
116
114 K. — EYP.
112
%110
o
108
106
L (= e &
104
94 96 98 100 102 104 106
X -Axis

Figure 26: Line plot of square shell, the 3D printed product based on
g-code data (values are in mm)
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The starting point for toolpath generation was taken from the G-code
file of the first layer (Z = 0.2 mm) of the printed part. The optimum path
is shown in Figure 11, which shows the command path of the print head
in the X-Y plane. It is an approximate rectangular shell with well-
defined corners and straight linear sides. This course is the ground truth
or reference path from which all later measured and predicted

movements are calibrated.

Square shell of Z=0.2 layer

114 4

112 4

Y_mea
=
=
o
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96 98 100 102 104
X_mea

Figure 27: Line plot of square shell, the 3D printed product based on
sensor data (values are in mm)

The true toolhead motion was captured using sensor-annotated feedback
and graphed to see the physical excursions from the optimal G-code
path. Figure 12 shows the measured tool path. The overall geometry of
the square shell is maintained, a sign that the machine traced the planned
path with good faithfulness. Still, some deviations from the optimal

route are evident. Namely:

e The corners of the measured shell have minor rounding, as
opposed to sharp corners on the G-code.
e The lines, although predominantly straight, have minor

curvatures and irregularities.

Such deviations can be caused by mechanical backlash, structural
vibration, or control errors inherent in the motion system of the machine.

However, the measured data does not exceed acceptable limits, and the
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closeness of the data to the desired path assures satisfactory system

performance.

3.2.1 ARMA Algorithm

To predict the future position of the toolhead, an Autoregressive Moving
Average (ARMA) model was used to the measured trajectory data. The
goal was to investigate if ARMA was able to learn the motion pattern

and make useful predictions for the subsequent steps of tool movement.

Figure 13 shows the results of the predictions. The blue line indicates
the measured historical values, and the orange line indicates the
predicted future values as given by the ARMA model. The following

observations can be made:

e The predictions are far from the trajectory range of observation.
While the measured values hover within the X-range of about 95
to 105, the predictions are found in a far-off range (about 180 to
200).

e There is a total disconnection between the historic movement
and the forecast path, which shows that the ARMA model could

not replicate the spatial dependencies or system dynamics.

Prediction of next movement

—— Previous values
Predicted value for next values

0.4 4

0.2

Y _mea
o
o
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Figure 28: Line plot of square shell, the 3D printed product after
applying ARMA algorithm (values are in mm)
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This divergence implies that the ARMA model is not appropriate for
such multi-dimensional time-series data, where both spatial and

temporal features have to be addressed in concert.

The results indicate that the physical execution of the G-code is
reasonably accurate, but the ARMA model does not predict the next
sequence of movement steps accurately. The high standard deviation of
predicted values indicates either bad model training, bad data
preprocessing, or the limitations of the ARMA method in this area of

application.

3.2.2 Kalman Filter

In this section, the Kalman filter algorithm is examined to improve the
quality of measured data during the 3D printing process. The objective
is to reduce sensor reading noise and improve the precision of the
movement path of the nozzle in comparison to the G-code path. Also,
the ability of the Kalman filter is tested to project future positions, which
has potential uses in digital twin models and real-time process

monitoring.
Impact of Time Step on Performance of Kalman Filter

Two different configurations of the Kalman filter were run, with time
steps (dt) at 0.5 sec and 5.0 sec, respectively. These provide an
opportunity to check the effect of updating frequency on the accuracy

and responsiveness of trajectory estimation.
(a) Kalman Filter with dt = 0.5 sec

Figure 29 shows the estimated trajectory with the Kalman filter having
a reduced time step of 0.5. The filtered trajectory (green) has an
extremely high level of fidelity to the actual measured path (blue) and
desired G-code path (orange). Measurement noise is greatly reduced by
the filter and the important features of the trajectory are maintained.
Corner transitions are well captured, though slight delays are noticed

due to the recursiveness of the filter
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Next, let us assume the same example that we have discussed in the
previous algorithm (ARMA) and pass the values through KF algorithm

the below is the plot that we observe

Kalman Filter Applied

114

112 A

[ —8— Measured
> 110 4 —— G-Code
—#— Kalman Filter

108

106

Figure 29: Line plot of square shell after applying the Kalman Filter
algorithm (values are in mm) for dt = 0.5 sec

For a change in dt = 5.0 sec, the change in the path of the predicted

values is plotted in the figure below.

Kalman Filter Applied

114 A
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——8— Measured
> 110 —»— G-Code
—m— Kalman Filter
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106

T T T T T
96 98 100 102 104

Figure 30: Line plot of square shell after applying the Kalman Filter
algorithm (values are in mm) for dt = 5.0 sec
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If we go deep into the specific side (left) of the square shell, then we
can see the points that KF predicted.

Kalman Filter Applied - Predicted Path

—8— Measured
G-Code
114 1 —m— Kalman Filter
—&— Predicted next point

112 4

> 110 4

108 4

106 +

T T T T T
95.12 95.14 95.16 95.18 95.20

Figure 31: Line plot of left of the external square shell after applying
the Kalman Filter algorithm (values are in mm) for dt = 5.0 sec

The results indicate that a smaller time step (dt = 0.5) improves tracking
accuracy and is more appropriate for settings where frequent high-
frequency updates are present. A large time step (dt = 5.0) helps filter
noise in low-dynamic conditions but can be detrimental to precision
during sudden directional changes. The Kalman filter efficiently
produces smooth trajectories from noisy observations. The Kalman
filter's prediction capability paves the way for real-time error detection

and correction, anomaly identification, and predictive analysis.

These results favor incorporating Kalman filtering as a building block
in smart manufacturing systems, particularly in condition monitoring,

process optimization, and digital twin applications

Due to the limited data available in the dataset, the dataset was changed
to include the complete lifecycle of the component (Ball Screw), which

was already mentioned in Chapter 2.
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Chapter 4 — Case Study 2 — Ball Screw

In this Chapter we will be discussing about the implementation of the
digital twin setup tool which was developed and build the digital twin

for Ball Screw component.

4.1 Ball Screw Dataset

The new dataset is taken from the “NIST Public Data Repository, Linear
Axis Testbed at IMS Center — Run-to-Failure Experiment 01~
repository.

A concrete slab that weighed about 1700 kg had the linear axis screwed
onto it. The carriage is moved nominally parallel to the X-axis by a ball
screw that revolves via a motor. For a total possible journey of 450 mm,
the carriage is constrained to move nominally linearly along the
guideway by four trucks with ball bearings making contact with two
rails. The carriage is laden with 100 kg of steel weights to hasten the
degrading process, which will occur during months of back-and-forth
operation. Data is gathered using two triaxial accelerometers with a
nominal sensitivity of 100 mV/g. In the IMU, the digital rate gyroscope
has a half-power bandwidth of 0 to 200 Hz and a noise output of 35
(urad/s)/~Hz, while the analogue accelerometer has a half-power point
bandwidth of 0 to 300 Hz, nominal sensitivity of 2000 mV/g, and a noise
output of 7 pg rms/~Hz. During axis degradation, information from
these 12 inertial sensors is recorded in addition to controller data. With
a data gathering strategy that mirrored real-life operation and
monitoring, the new linear axis was run to failure (RTF). Data collection
for ball screw health monitoring was carried out in two stages Phase |

and Phase 1II.

4.1.1 Phase I Data Collection

A centered 220-mm-long stroke (movement between 110 and 330 mm
relative to the zero position) was used to move the linear axis back and
forth continuously, day and night, and this represents roughly half of the

entire available trip. At 400 mm/s, the axis travels in both positive and
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negative directions. Every movement direction was followed by a one-
second break. The regular operation of a linear axis in industry was
symbolized by its continuous movement. To prevent undesired
transitory behavior, data collecting starts after a notional 2-hour first
warmup operation period. At a sample rate of 10 kHz, 10 s of data were
gathered every 30 minutes throughout this initial phase. Data gathering
for online incipient defect detection is represented by this collection

mode.

4.1.2 Phase II Data Collection

The second phase of data collecting temporarily interrupts the first phase
every three or four days. The axis is moved back and forth with a full
stroke of 450 mm in this second phase. The axis moves back and forth
at three different speeds during each run: slowly (20 mm/s), moderately
(100 mm/s), and quickly (500 mm/s). This second phase consists of 90
runs. Data collection takes place over three hours, partly because of the
10-second rest time between each of these moves. For every run, IMU
data are obtained at a sampling rate of roughly 1000 Hz for the

gyroscope and 1613 Hz for the triaxial accelerometer.

According to the manufacturer's instructions, this two-phase
experimental data gathering process was repeated until the ball screw
reached an ultimate failure point larger than 10 um. The ball screw was
not lubricated at any point during the trial. Days O through 38, 116
through 255, and 377 through 574 were all included in the experiment's
duration. The ball screw accrued 8693 operating hours over this period.
Extenuating factors led to the trial being halted for days 38 through 116
and days 255 through 377. An extra step is occasionally conducted to
get backlash measurements that monitor the axis’ deterioration over
time when transitioning from the first to the second phase. Sub gradation
measures were determined by eye using a dial indicator with a gradation

of 12.7 pm.

The dial indicator's lever is orientated so that its tip nearly touches the

steel weights on the ball screw carriage and is programmed to rotate in

36



the XY plane. After the dial indicator is in place, it is attached to the
testbed base using a magnetic base. After measuring the dial indicators,
the ball screw is instructed to travel successive fixed distances at
intervals of 1 pm. Human observation is then used to identify the
position of the lever's first contact with the dial indicator. The process is
then carried out repeatedly in both positive and negative directions, with
the exception that the position of the last touch is ascertained for the

negative direction.

Table 3: Experiment Timeline of the Ball Screw

Day Ball Screw Operational Hours Event
0 0 Start
38 855.5 Pause
116 855.5 Resume
255 4033 Pause
377 4033 Resume

574 8693 End

In the above five paragraphs, the data collection method was explained,
and the entire experimental setup was presented in the literature to

understand the dataset completely.

4.2 Experimentation and Results
Now, for this dataset, [ have performed PCA T? Analysis, and the results
are shown below. But before that, let us understand what PCA T? is and

how it can be used for this dataset.

In the figure 32, the plot shows the PCA T-squared (T?) statistic applied
to your ball screw dataset over 1% week and similarly in figure 33, it was

applied over 89 weeks. On the X-axis, it is labelled as "Observation across
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89 weeks", which represents all the individual data points collected over

time.
T-squared Statistic with PCA
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Figure 32: PCA T statistic for I week data

This is a flattened view where all weeks' observations are laid out one
after another. On the other hand, the Y-axis is labeled as "T-squared",
which represents the T2 statistic value for each observation. Higher
values indicate greater deviation from the PCA model's normal

behavior. Red Dashed Line, which is the Control Limit.
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Figure 33: PCA T? statistic for all 89 Weeks of data
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This is the T? threshold based on a confidence level (95%). Points above
this line is considered anomalies, faults, or unusual behavior in the ball

screw system.

What the plot tells us is that in the Early phase (left side), the T? values
are low and stable, indicating normal operation. Middle to later phase
(center to right), the sudden spikes and sustained high values indicate
that T? values frequently cross the control limit. This likely suggests
degradation, wear, or emerging faults in the ball screw system. Periodic
dips to zero tell us that these gaps indicate missing or dropped data,
downtime or inactive monitoring, and reset or maintenance events.
Thus, a clear trend of increasing deviation, especially after the halfway
mark. This is a strong indicator that the ball screw is experiencing
progressive degradation. The PCA T? metric is helping us identify when

and where that deviation starts and grows, i.e., at 30 weeks.

To evaluate the performance of various machine learning algorithms on
the ball screw dataset, four prominent regression models were
implemented: Random Forest Regressor, Support Vector Regression
(SVR), Extreme Gradient Boosting (XGBoost), and Multi-Layer
Perceptron (MLP) Regressor. The models were assessed based on three

key criteria:
1. Prediction Accuracy, measured by Mean Absolute Error (MAE),

2. Computational Efficiency, measured by training time on CPU

(without GPU),

3. Model-specific Insights, derived from behavior and tuning

requirements.

The results are summarized in Table 4 and discussed in detail.
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Table 4: Performance of various machine learning algorithms on the
ball screw dataset

Mean Computational
Model Name Absolute Insights Time (Without
Error (MAE) GPU)
Random Lowest Error
Forest 1.33075 among all Four 9.2 min
models
Highest Error
Support because it is
Vector 1.92968 sensitive to 93.5 min
Regression Hyperparameter
Tuning
This approach
is effective in
capturing Non-
XGBoost 1.53233 Linear 18.0 sec
Relationships —
also requires
HT
This model
ML 1.68122 roquires 1.5 min
Regressor additional
layers to learn

Among the four models evaluated, the Random Forest Regressor
emerged as the most reliable choice, offering the lowest prediction error
and robust performance even without extensive tuning. While XGBoost
demonstrated impressive computational efficiency and acceptable
accuracy, its dependence on tuning may limit plug-and-play

applicability. SVR underperformed in both accuracy and computational
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time, indicating it may not be suitable for large-scale or real-time
applications in ball screw condition monitoring. The MLP Regressor
showed promise but would benefit from further exploration of deeper

architectures or GPU-accelerated training.

This comparative analysis provides valuable insight into the trade-offs
between model accuracy and computational efficiency, guiding the
selection of appropriate models for predictive maintenance systems in

precision mechanical components like ball screws.

Now, if we apply the developed Digital twin setup tool to this case study
2, Ball Screw. The figures were displayed accordingly in the next pages.
But before that mapping of the entire physical setup was done for this

case study and is shown in the figure below.

Digital Twin user entity /’ —
[Luserinterface e | |

Information exchange A (IE-A)

Digital Twin entity

Operation & management Apolication & service
sub-entity Information sub-entity Information

S
Reporting FE

Mrmanan exthange FE I
s

X

Information exchange C (IE-C)

Data collection & device control entity (DCDCE)
Data collection sub-entity Device control sub-entity””

o

Information exchange D (IE-D]]

Observable manufacturing elemep+{OME) P |

| Resource-specific FEs |

Figure 34: Mapping of the physical assets (Ball screw) to the ISO
23247 architecture
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User Input Sheet

Objectives : Predictive Maintenance

# If Other, write the objective here

# If Other, write the sub objective here

Other Instructions |:

# Any Specific Instructions for the Solution Provider

Companv Name IIT Indore Student

Company Address |: T Indore

[submit [ves |

Figure 35: Cover Page in the Excel file to be filled in by the Product
Manager

In the above figure, the basic details of the company (user) and its
address are captured, along with its objectives. This helps us identify
common component digital twins, which can be used as a template in

the future when developing a digital twin for a similar component.
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Obzervable manufactuing element shall be monitored and sensed. and may be actuated and cantralled
by data collection and device control entity. ktincludes personnel, equipment, material, process, etc
# Fill Only in YELLOW Color Boxes
Equipment Ball Screw Milling
Static Information
Artribute Description Examples
Identification Infarmation taidentify equipment Madel Mo MA
Part Mo A
serial number MA
Dimensions A
Material stainless steel
Price A
Riating H
|z the equipment
SMART? FVES MO
mention detailz
|z Warranty
available? Mo
Supplier Details A
Lead Time A
Add any extra
Identific.ation
Farameters [if L
required)
Characteristics | [Classification of Equipment |[Tupe of Operation Milling
Any Sub Operation A
Scheduls | ‘working Schedule for Equipment Working scheduls 247
Maintainance
schedule M
Relationship | | Sitatic: Relationzhip for equipment and other manufacturing elements ‘ Milling Machine operates with Cast Iron Black
A
3
Dezcription | | Additional infarmation and explanation about the static infarmation of equipment ‘ &

Figure 36: Static details of the Ball Screw

Status [[Status of the equipment | OFf
Breakdawn
Products [output] &
Energy Usage & k'wh
Cltput [ '/
Temperature WES |C
Maise A dB
Perform || Pitch 10[ mm
ance || Vibration WES |mm
Backlash YES |um
Torque VES |Nm
Eitral oad (kgs) 100| kas
Pressure & pa
Loeation Lo ation information [gengraphical | relative location] el S e loestitineer e Lesd ey allillig
Machine
A
A
. . Due to unforeseen circumstances the machine
Report | ‘wharking report related to Equipment ctoppedfor 200 days ouer 574 days
MA
Relationzship Dynamic Relationzhip for equipment and other manufacturing elements MN&A
Dezcription Additional infermation and explanation about the dynamic information of equipment A

Figure 37: Dynamic details of the Ball Screw

43



Process Type of Operation Ball Screw
d 'l i d U0

Artribute Desciription Examples
|dentification Information taidentify Process [[Process ldentfier | [Milling
Characteristics | [ Classification of Equipment | [Preduction YES
Maintenance ]
| Guality Test o]
nventory o
[Milling YES
| Cirilling MO
Additive u[m]
Schedule | ['warking Schedule for Process | [Periadic Ore time:
| duration 3 |hours
Flunz 90 |Mos
[Pause time 0 [Sec
Frequency 3 |days
20 |mmizec
Speed 100 | mmisec
500 |mmisec
Travel 450 [mm
Relationship | | Sttatic Relationzhip for process and other manufacturing elements ‘ | Eall Screw is operated with extra load of 100 kgs
Description | | Additional infarmation and explanation about the static infarmation of process ‘ | MA
) : D atio
Artribute Description Examples
Status [[Status of the Process Planned
Completed
Stopped Abruptly
Location | Location information (geographical ! relative location) ‘ | MA
Report ‘working report related to process MNA
Relationship ‘ Dunamic Relationship for pracess and ather manufacturing elements ‘ ‘ &
Description ‘ ‘ Additional information and explanation about the dynamic information of process ‘ ‘ H&

Figure 38: Details of the operation where Ball Screw is used

Environment During the Process Ball Screw
Static Information
Artribute Description Examples
|dentification Infarmation taidentify enviranment including time and location A
A
Characteristics Classification of Environment | [Temperature A [#units
Humidity A |#units
lluminance i #units
Schedule | [Working Schedule for envirorment | [Periadic Orie time:
duration 3| hours
Pausze time 10fzec
Frequency 3| days
Relationship | | Static Relationship for enviranments and ather manufacturing elements | | A
Description | | Additionalinformation and explanation about the static information of process | | M
nformation
Artribute Examples
Status [ [Status of the erwironment I Mormal
Lacation ‘ Lacation infarmation [gecgraphical ! relative location) ‘ ‘ A
Report ‘warking report related to envilanment M
Relationship Dynamic Pelationship for environment and other manutacturing elements A
- Additionalinformation and explanation about the dunamicinformation of
Dezcription n N&
enwiranment

Submit |YES

Figure 39: Details of the environment of Ball Screw
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Data collecting FE provides data collection functionality from observable manufacturing element
# Fill Only in YELLOW Color Boxes
Location Di\Linear axis test bed{Vibhor sir dataset]{IMU Data
Sensor|Tr|ax|aI Accelerometer |Quant|ty ‘ 2 |
T Anal Datetime timestam Conversion factor
= log Collected D
2000 |mV/g Vibration X Exis 50 mm/sec/V |controller speed
N/A Vibration y axis 0.24 Nm{V__ |controller torque
Range 2 E Vibration Z axis. X 3Xis Vibration
0 |me length = 10g/v ) o
column yaxis Vibration
400 |Hz Z axis Vibration
MNoise 69 (em/s2)/VHz
1613 |He Location of| At the top side of Component
Rate Sensor (distance from the edge)
i 3 hours
Runs 90 Nos
Pause time 10 Sec
Frequency 3 days
20 mm/sec
Speed 100 |mmfsec
500 |mm/sec
Travel 450 |mm
0 o o
Sensor|Dial Indicator Quantity 1
Gradation | 127 |um |
Submit YES

Figure 40: Details filled in by the Data Acquisition Engineer about the

types of sensors used in Ball Screw

Items to be DisplayedLine Graph |Vibration X axis time
Items to be DisplayedLine Graph |Vibration X axis week
Items to be DisplayedLine Graph |Vibration Y axis time
Items to be DisplayedLine Graph |Vibration Y axis week
Items to be DisplayedLine Graph |Vibration Z axis time
Items to be DisplayedLine Graph |Vibration Z axis week
Items to be Displayed Separate Line| Time RUL hours
Items to be Displayed Separate line|Action Alert Mes=zage
Items to be Displayed Separate line|Realtime Timestamp|date and time]
Items to be Displayed Status of DT |Time hours
Items to be Displayed Status of DT |Learning Yes Mo
Items to be Displayed Status of DT |Learning count Mos
[submit [ves |

Figure 41: Details required for Ball Screw dashboard
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File Location

D:\Linear axis test bed(Vikhor sir dataset)\IMU Data

File Name Accelerometer
File type ot
Columns timestamp X-axis vibration y-axis vibration [z-axis vibration [zero column

Data Cleaning

Yes

Yes

Yes

Yes

No

Synchronization

Yes

Yes

Yes

Yes

No

Type of Algorithm

Classification

Prediction

Name of ML Model

Random Forest

Linear Regression

Logarithmic Regression

S0 0on

soon

[submit

[vEs

Figure 42: Details need to be filled in by the data scientist as per the

objectives provided by the product manager

Similarly the other domain experts fills in the details based on the
requirement for developing the digital twin. The basic overview of how

the tool looks like is shown in the below figure.

i FEET— [ T |
«
[ e 1
] Digiad Tovin Emiy
«
v (401}
n Daca Cobection & Device Comrol Eaticy
A B B .
L]
[aumonre ]
Jventicaronre | | ]
I
v Obsarvatis Mantocterng Demes
- o ]

Figure 43: Overview of the Ball Screw DT setup tool

Overview of the Digital Twin Setup Tool after filling in the details by
the respective domain experts looks like the above figure. The red color
box indicates that the details were not filled in by the respective domain
expert. The green color indicates that the information is captured and

ready to use to develop the digital twin.

4.3 Digital Twin dashboard of Ball Screw
The DT setup tool, designed so far, covers all the necessary information

needed to create an effective digital twin. A scripted approach is used to
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pull corresponding data from the DT setup tool and conduct the requisite
analyses, which are plotted on the dashboard. The dashboard is
interactive and enables users to enter data and track the status of the
component along three important dimensions: historical performance,

present condition, and future projections.

: : Login Page
Logln Page Logm Page g 9
Select Role
Selact Role SelectRole Product Manager
| Selected Rale: Product Manager
Enter Password L
Product Manager
Technical Supervisor

Figure 44 Dashboard displaying the login page

Once the code runs in the terminal, it redirects to the dashboard, asking
the user to enter the role and password to investigate the stats of the

digital twin.

4

Ball Screw Digital Twin Dashboard =

Equipment Number Location Date and Time Person Operating

DTAIL - 01 IIT Indore 2025-05-20 mt2302103004

Dashboard for Product Manager

7790.5 hrs Resumed after 2nd 9.46 pm
Maintenance

& Errors * Callbacks | v3.0.1 | Server ©

Figure 45 Dashboard displaying the stats for the Product Manager

After we have entered the respective role in the login page, it takes us to

the dashboard, where it displays the basic stats of the product. In the
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Login Page Login Page Login Page

Select Role
Select Role Select Role

admin

Technical Supervisor

Selected Role: Technical Supervisor
Enter Password

Product Manager

Technical Supervisor

Figure 46: The dashboard displays the login page for another user

above figure, the chosen role was taken as a Product Manager, and
hence only the basic details such as utilization, maintenance, and
backlash have been displayed on it. With the use of this dashboard, the
product manager will have the ability to see the entire statistics of the
product and make decisions required to modify the process to improve

efficiency and productivity.

After entering the another role by the user the dashboard for them would
be similar to it but with some extra features added in it to visualize the
digital twin. The assumed another role is Technical Supervisor, where
they can visualize every details of the analysis how it was happened in
the past, and currently what is happening and what will happen in the

future.

Ball Screw Digital Twin Dashboard

Equipment Number Location Date and Time Person Operating

1l
4

DTAIL - 01 IIT Indore 2025-05-20 mt2302103004

Dashboard for Technical Supervisor

7790.5 hrs Resumed after 2nd

4 Errors % Callbacks | v3.0.1 | Server ©

Figure 47 Dashboard displaying the stats for the Technical Supervisor
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The technical supervisor can now look into the in-depth analysis of how
the utilization, maintenance, and backlash parameters are changing.
There is an option in each of the parameter containers to investigate the
details deeply. If you click on the “Press Here for Details” button inside
the parameter containers, then the analysis containers would be

displayed in terms of past, present, and future.

T pap e .
mmmmmﬁunmm

Errors X Callbacks | v3.01 valatle 4 | server
o Cleas Details =

Figure 48 Dashboard displaying the analytical plots for the utilization

parameter

We can observe from the above figure that at the left side of the
dashboard, there is a past container where there is a date selector to
choose the duration. Below, there are options to provide input to the x-
axis, y-axis to plot the graphs. Depending on this user's selection, the bar
plots are shown. From here, we can see what the trend is in that chosen
time. Likewise, in the center of the dashboard, there is a current
container that shows the status of the component and progress of the
digital twin. In the above figure, there is a gauge plot showing the
Operational Hours of the component, i.e., the time for which the product
has been utilized up to the current date. In the same container below the
gauge plot, there is a table indicating the recommended actions
according to the usage of the product. In the right corner of the

dashboard, there is a future container where we can observe the
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projected values and line plot according to the chosen weeks.
[ T

Maintenance Status:

Resumed after 2nd Maintenance

atus (2024-00-00 to 2024-12-24) WA BrREoR

Fl

Figure 49 Dashboard displaying the analytical plots for the

maintenance parameter

In the same way, in the maintenance parameter, on the left side of the
dashboard, we have data of the product of how many hours it was
operating and in maintenance. In the middle present container, we have
the status of maintenance in the dashboard. In the future container the

plot informs us when the product will fail and when to halt the process.

On this basis, we can order the new part prior to its failure.

5,
.l |||| H H“ H ‘
ik

Figure 50 Dashboard displaying the analytical plots for the backlash

Errors X Callbacks | v3.0.1 Dash uodate avallable - 1304 | Server @

parameter

Similarly, for the backlash parameter, all the containers will be identical,
and the plots will vary depending on the parameter. Here, in the past
container, the bar plot was between week and backlash. In a present
container, the present backlash value is shown in the gauge plot, and a

suggested action is also indicated below it. In the future container,
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depending on the chosen weeks, it shows any possibility of failure or

future backlash values.

This chapter demonstrated the development and deployment of digital
twin systems for two mechanical components: the Go 3D Artish 700
Printer and ball screw assembly. Utilization, production, and
maintenance of the 3D printer were tracked using dashboards designed
in a Past-Present—Future model to make predictive observations and
operational efficiency. Similarly, the digital twin of the ball screw
focused on utilization, maintenance tracking, and backlash monitoring
to measure wear and performance degradation over time. Both
installations illustrate the adaptability and versatility of digital twin
technology for condition monitoring and predictive maintenance in
different systems. These are examples of the potential of digital twins to
facilitate transparency, reduce downtime, and support data-driven

decision-making in state-of-the-art manufacturing environments
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Chapter 5 — Case Study: Go 3D Artish 700

In this chapter, we shall discuss the practical application and
implementation of the Digital Twin Setup Tool within the
manufacturing context. This tool is essential in coordinating and
connecting physical assets’ static and dynamic information to their
digital duplicates. The DT Setup Tool facilitates real-time analysis,
condition monitoring, and predictive maintenance. This systematic
approach facilitates enhanced visibility, traceability, and informed

decision-making throughout different phases of the asset life cycle.

5.1 Go 3D Artish 700 3D Printer Dataset
This dataset has been created using web scraping, a technique where
data displayed on a webpage is directly accessed using a Python script

and then stored in a CSV file.

Figure 51: Go3D Artish 700 3D printer

The 3D printer incorporates a Revo Hemera XS extruder capable of
300°C temperature and 1.75 mm filament, 85.5 x 28.9 x 65.5 mm in size
and weighing 256.25 g. The bed area is 700 x 500 mm with the
capability of printing at a height of 500 mm. It runs on a 24V supply at
7000 rpm with a 1.8° step and is constructed from stainless steel and
aluminum. GT2 timing belts (2 mm pitch, 153 g, rubber-fiber

composite) drive the cast iron slider on the X and Y axes to the motion
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system. Yearly maintenance of the extruder, semi-annual gear checks,
and yearly timing belt checks for stretching and sliders every 3—4
months are planned. The mechanism is additive in nature, runs
constantly at a speed of ~60 mm/s, and at ambient temperatures of 25—

27°C, with no routine breaks or halts.

5.2 Experimentation and Results
Here, different domain expert roles were assumed and filled out the
respective sheets based on the data available, whether acquired through

sensors or from literature.

User Input Sheet

Objectives Condition Monitoring

#E s, ninde the obiacii fhora

FFEL R i Ha et ofiasiies faara

Other INStructions| ... socoi i o she St Foisar

Company Name Go3D Artish 700
Company Address Gujarat
Submit YES

Figure 52: Input sheet of Go3D Artish 700 filled by Product Manager

For the 3d printer, the objective selected was condition monitoring, and
the details of the company were filled as per the manufacturer of the 3d

printer.
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Component Nozzle 3D Printer

Static Information for the component

Attribute Description Examples
Identification Infarmation to identify component Model Mo E3D Revo Mozzle
Serial raamber RC-MOZZLE-DE00-AS-
SPH
Material Brass
Sock Colour Blue

"CAUzerstgtmantOnelii

Bimensions (Desigr ve - IIT Indor=ADigital

Mozzle Dia 0.6mm

WM Temperature 300

Inpuit Filament 1.75mm
Diameter
PETG.PLA.ABSIASA.T

PU3ZA, TPUSSA TRUTS

Types of Filaments can

beused AXTCF20PACE
Price 2023.4
Doesthe component
haue Alto send data Mo
generated?
Expiration date of 10-02-26
\warranty
Duration af warranty Tyear
Supplier Mame G030
Lead Time [range] Tweck
Add any extra
Identification Only useful for 175 mm
Parameters [if filament dia
required]
Characteristics \Class\fication of component Tupe of Operation 30 printing
Airw Sub Operation NA
Schedule ‘working Schedule for component ‘wiorking schedule 247
Maintainance
schedule #months
Relationship ‘ Sitatic Relationship for component and ather manufactuning elements PLA filament is paszing thraugh the nozzle from estruder
NA
NA
Dezcription ‘ Additional information and explanation about the static information of companent Cold replacable not ke other [hot replaceble)

Figure 53: Static details of Go3D Artish 700 Nozzle filled by Design
Engineer

From figures 29 to 33, the information of the Go3D Artish 3D printer
nozzle was recorded, trying to include as much corresponding
information as possible. This information is a basic understanding of the
component structure and functionality. If the performance properties of
this component differ between companies, this recorded information
will enable future research designed for particular industrial
environments, allowing customized solutions to be formulated on the
basis of outcomes. The respective data was entered into the respective
sheets systematically, with provisions made for entering more

information as necessary.
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Component Extruder
Static Information for the component
Attribute Description E: I
Identification Infarmation wo identify companent Model Mo E3D
Partlo FevoHemera X5
Serial number NA
Printing Temperature 300
Max
filament Diameter 1.75mm
Oimensions 855226 34655mm
weight 256.25ams
speed T000rpm
voltage 12vi2ay
step angle 18
Aluminium, Mylon cover,
Material Stainless steel gear,
scetalidler
Price 0E36. T4
Does the component
haue Alto send data Ma
generated?
Expiration date of D-02-26;
‘warranty
Duration of warranty Tyear
Supplier Mame G030
Lead Time [range] Tweek
o any euira Do nat remave the
Identification "
grease from the drive
Parameters (if o
required] g
Characteristics \Class\fication of component Tupe of Operation 30 Printing
Ary Sub Oparation Extrusion
Schedule ‘ ‘orking Schedule for component ‘working schedule 24'7
Maintsinance it
coheduls alfter one year
Relationship ‘ Static Relationship for component and other manufacturing elements b s l:: ”UZI:‘E ellemtmg /Lo rers
rougl
NA

Figure 54: Static details of the Extruder in Go3D Artish 700

Component

Static Information for the component

Attribute Description Examples
|dentification Infarmation tao identify component Madel Mo : GT & Timing Belt
Part Mo o |NA
Serial number : o |NA
Dimensions [Design] : |pitch 2mm
Material : Rubber + Fibre
‘wheight : 15gms
Price : 93
Doesthe component
have Alto send data : |Ne
generated?
Expiration date of A
Ywharianty
Duration of 'wWarranty : | NA
Supplier Name : Robocraze
Lead Time [range) : |3-Tdaus
Add any extra
Idertification . |Look out for belt
Parameters [if * | elongation sfter 1year
required]
Characteristios [ Classifization of somponent Tupe of Operation
Ainy Sub Operation
Schedule ‘working Schedule for component ‘whorking schedule 27
Maintainance Manually tightening can
schedule be done
Relationzship |Static Relationship far component and ather manufacturing elements Twao belts holds twa gears on bath sides of wu axves
)
Na
heck the belt after 1 disruption i duct
Description |Additiona\ information and explanation abowt the static information of companent checkthebel ater yE:LZL;ny EREm e

Figure 55: Static details of the Timing Belt in Go3D Artish 700
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Component

Slider

Static Information for the component

wear koo, Can be based on product quality

Attribute Description E: I
Identification Infarmation wo identify companent Model Mo Iariry
Part Mo A
Serial number A
Dimensions [Design) A
Iaterial Castlran
Price Ma
Doesthe component
haue Alto send data MO
generated?
Expiration date of A
‘wiarranty
Duration of \warranty [l
Suppliet Hame A
Lead Time [range] A
Add ary extra
Idertification Print quality check -
Parameters (if skewness
required]
Characteristics [ Classifization of component Type of Operation 30Piinting
Arw Sub Operation
Schedule ‘ ‘working Schedule for compaonent ‘working schedule 2417
Maintainance
sohedul every 3 to 4 months
The slider is the t hich th: lid with th
Felationship Shatic Felationship for companent and ather manutscturing slements = Sideris tha part an whish e anes sz SiSwihine
help of a belt driven motar
MA
MNA
Desoription ‘ Additional information and explanation about the statis infarmation of component =R ae e B EEs /e e CEr I Eeen

Figure 56: Static details of the slider in Go3D Artish 700

Type of Operation

Static Information

ibute Description
|dentification Information to identifu Process Process Identifier 30 Printing
Characteristics Classification of compaonent Production Yes
Maintenance [w]
Cuality Test [
[ HO
Milling MO
Driling (8]
Additive Yes
Schedule ‘ ‘wiorking Schedule for Process Periodic Continuous
duration 24 |haurs
Funz MA  |Mos
Pause time MNA  |Sec
Frequency 247 |daus
B0 |mmlsec
Speed Ff | mmizec
MNA  |mmisec
Travel M4 |mm
Relationship Static Relationzhip far pracess and ather manufacturing elements A
Description Additional infarmation and explanation about the static information of process A

Environment

During the Process
Static Information

Attribute

Description

ibute Desciription E

Identification Person whoiz operating the environment Perzon 1

Characteristics Classification of Enuironment Temperature 25-27 |degrees
Hurnidity A # units
lluminance A # units

Schedule [orking Schedule for erwironment Periodic # One time
duratian 247 |hours
Pause time Ofsec
Frequency 0|days

Dynamic Information

Location

Lacation infarmation [geographical | relative location)

30 Printer is in ICL setup raom

Submit [YES

Figure 57: Details of the Process and Environment in Go3D Artish

700
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Web Scraping

C\Users\gtman\OneDlrive - 11T Indere\Digital Twin\Web Scraping Code\scrapTest.py

Type

Link

Figure 58: Data collection sheet for Go3D Artish 700
The data collected for the Go3D Artish 700 was through the web

scraping technique. And the storage of the data was mentioned in the
above link column to retrieve the data whenever used by the Python

script for developing the digital twin.

ltems to be Displayed |Line Graph Paosition X axis time
ltems to be Displayed |Line Graph Paosition y axis time
ltems to be Displayed |Line Graph Paosition z axis time
ltems to be Displayed |Line Graph temperature |time degrees
ltems to be Displayed |Line Graph temperature |position degrees
ltems to be Displayed |Line Graph feed rate extruder movement time
Items to be Displayed |Separate Line |Time Total Time Usage of machine |hours
Items to be Displayed |Separate line |Action Alert Message
ltems to be Displayed |Separate line |Realtime Timestamp date and time
ltems to be Displayed |Status of DT |Learning Yes No
Items to be Displayed |Status of DT |Learning count MNos
[submit [ves

Figure 59: Details required for Go3D Artish 700 dashboard

These are the details filled by the product manager to display specific
details for the specific user roles. But for testing purposes, the details
that were taken into consideration were utilization, maintenance, and
production. These were selected among all the other parameters because
they are important factors that affect the physical components of the

printer.
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From Production Line
To Admin
Technical Supervisor

Production Manager

[submit |ves |

Figure 60: Details of the user roles to be created to display specific
information of Go3D Artish 700

Referring to the above figure, the selected roles were admin, product
manager, and Technical Supervisor. These were selected because in any

industry, these roles were common and standard.

Connection ¥ES

Communication Protocol |TCR/IP

Server address 192.168.31.28

Submit [YES

Figure 61: Details of communication between the Go3D Artish 700
and the user system (PC)

g ot e .

<
g

Figure 62: Overview of Go3D Artish 700 DT Setup Tool

Overview of the Digital Twin Setup Tool after filling in the details by

the respective domain experts looks like the above figure. The red color
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box indicates that the details were not filled in by the respective domain
expert. The green color indicates that the information is captured and

ready to use to develop the digital twin.

5.3 Digital Twin Dashboard for Go 3D Artish 700 3D
Printer

This section introduces an all-encompassing digital twin interface
created for the Go 3D Artish 700 Printer. The dashboard is constructed
to monitor utilization, maintenance, and production parameters in a
time-segmented manner—Past, Present, and Future, enabling a full-

cycle overview of the machine’s behavior.

Digital Twin of Go 3D Artish 700 Printer Equipment Number: 1 Location: TIT Indore
Overall Printer Usage 132 Hrs Maintenance Status N/A Number of Files Printed 53
et s " Utilization Dashboard
s

oJ

Vachine Usags Tene v Dates
: 183906
Fy [
o
L 0
B
EANF A A A A A A A A

Figure 63: Go3D Artish 700 Digital Twin dashboard displaying the
utilization for the Technical Supervisor role

LA A A A

Digital Twin of Go 3D Artish 700 Printer Equipment Number: 1 Location: ITT Indore
Overall Printer Usage 132 Hrs Maintenance Status N/A Number of Files Printed 53
== Production Dashboard

1 Pints Per D

a9

Figure 64: Go3D Artish 700 Digital Twin dashboard displaying the
production for the Technical Supervisor role

Figures 59 and 60 depict the user interface of the digital twin dashboard,

focusing on Utilization and Production views, respectively.
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Figure 59 shows the Utilization Dashboard, which is further divided into
three sections. They are Past Panel (Left), which shows the machine
usage time across different dates in a bar chart, supports historical data
selection through a calendar dropdown, and facilitates identification of
usage trends, operational peaks, and downtimes. Present Panel (Middle),
which demonstrates real-time values of timestamp, G-code file name,
Nozzle X, Y, Z coordinates, the extruder temperature, and the heated
bed temperature. Allows the user to carry out real-time diagnostics and
ensure proper functioning during prints. Future Panel (Right), which
applies Polynomial Regression for predicting machine usage frequency,
enables planning and scheduling of upcoming printing jobs and
maintenance activities, and this dashboard provides data-driven insight

into the machine's past usage and short-term usage forecasts.

Figure 60 shows the Production Dashboard, with analogous layout
rationale as the Utilization Dashboard but oriented to print file statistics.
Past Panel (Left), which shows a bar graph of print jobs run per day,
analysis of workload trends, project pace, and productivity is enabled.
Present Panel (Middle), which has real-time information on the current
print job, including print file name, current timestamp, positional
coordinates, nozzle and bed temperatures, feed rates (when appropriate),
and critical for live production monitoring and parameter compliance
assurance. Future Panel (Right), which predicts the volume of files to
print based on past trends, aids in predictive workload balancing and
planning for resources in future prints. All this makes up the Production
Dashboard, a tool critical for monitoring and optimizing 3D printing

output.

Though not comprehensively visualized in the snapshots, the
Maintenance module finds a central position in both dashboards. It acts
as a connector between the Production and Utilization perspectives,
offering hardware condition alerts, notifications for extruder or bed
anomalies, history of maintenance cycles completed. The integration
supports ensuring that usage and production statistics complement

machine health so as to allow predictive maintenance strategies.
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Go 3D Artish 700 Printer Digital Twin is an end-to-end tool for
connecting the physical and digital worlds of 3D printing. By using
easy-to-use dashboards divided into utilization and manufacturing
facets, users are equipped with visibility, traceability, and predictability.
The three-tiered Past—Present—Future model provides great machine

management, allowing wiser decisions and fewer manual interventions.

Differences were observed while using the DT setup tool for both case

studies are shown in the table below.

Table 5: Differences observed while using DT Setup Tool for Go 3D
Artish 700 Printer & Ball Screw

Attributes Go 3D Artish 700 Ball Screw
Decision Utilization monitoring, | Utilization monitoring,
making Production monitoring | Backlash monitoring,

Remaining useful life

(RUL)

Data Position of Nozzle (x, y, | Vibration (x, vy, &z

&z), Temperature, flow | directions)

rate, etc.
Data Multiple Experts' input | Multiple Experts' input
collection needs to be taken into | needs to be taken into
method consideration for | consideration for creating

creating the DT Setup | the DT Setup Tool
Tool

Frequency Manager - Per day/week, | DAQ Engineer - 3hrs for
DAQ Engineer - | every 3 days, Maintenance
Continuous, - 6 months, Sampling Rate
Maintenance - every 3to | — 1617 Hz

4 months, Design Eng -
after 1 life cycle
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Data type Integers, String, Float, | Date Time, Float, Integers

Date Time

Maintenance | Once in 3 to 4 months | Once in 6 months
time (for specific Parts — Lead
Screw & Slider
Greasing, Nozzle

Cleaning)
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Chapter 6 - Conclusion & Future Scope
6.1 Conclusion

The use of the ISO 23247 standard to develop Digital Twins proved to
be highly effective because of its customizable structure of use, user-
focused design, and standardized vocabulary that immensely facilitated
multidisciplinary teams in communicating effectively. The standard
ensured that Digital Twins were systematically and structurally

developed for different stakeholders with distinct technical inclinations.

A scalable, modular, and highly reliable Digital Twin Setup Tool
tailored to the ISO 23247 framework was created. The tool is highly
integrable with various industrial settings. It provided unbroken data
acquisition, model creation, and real-time monitoring with a foundation

for the effective application of digital twins.

The tool was validated and tested using two industry case studies:
* Go3D Artish 700
* Ball Screw Assembly

In both instances, the solution was able to ingest all the data streams
required to construct dynamic and reliable Digital Twins. Additionally,
role-specific visualizations were created and deployed, providing

tailored dashboards customized for different users, including:
* Product Manager
* Technical Supervisor

These dashboards were able to provide real-time visibility into machine
health, operating performance, and predictive maintenance
notifications. Its modularity made it simple to understand and navigate,

regardless of what technical expertise.

Overall, the Digital Twin architecture proposed here reflects a real leap

in digital manufacturing technology. Not only is it internationally
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standard compatible, but it also has cross-functional usability,

scalability, and preparedness to further integrate and be utilized in

Industry 4.0.

6.2 Future Work

The present work lays the groundwork for a modular and scalable

Digital Twin (DT) Setup Tool based on the ISO 23247 standard. While

the tool had been demonstrated useful in actual case studies, there is

ample scope for improvement and enlargement in order to take full

benefit of the resources of digital twins in smart manufacturing systems.

The following research directions in future are suggested:

1.

Standardized Multi-disciplinary Data Sharing Mechanism

According to ISO 23247, an even more structured data sharing
framework between multidisciplinary teams—industrial,
software, electrical, and mechanical engineers—will be
established. This will improve integration, traceability, and
cooperation, particularly in large industrial installations where

interoperability is the biggest issue.
Autonomous Feedback and Closed-Loop Control Systems

Future releases of the DT Setup Tool will have real-time, closed-
loop control capability. This addition will enable independent
process compensation based on real-time feedback from the
digital twin, which will result in adaptive manufacturing and

intelligent decision-making without human intervention.

Scalability  through  Multi-device and  Cross-platform
Compatibility

To accommodate a wide range of machines and industrial uses,
the tool will be optimized to support cross-platform use. This

will require limited setup procedures for configuration,
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facilitating easy deployment across various devices and systems

in heterogeneous environments.
4. Cloud-Native Architecture for Remote Monitoring

Upgrading the current digital twin infrastructure to cloud-native
is on priority. The transition will facilitate real-time remote
monitoring, scalable deployment, continuous
integration/updates, and  collaborative  analytics—thus

increasing operational responsiveness and transparency.
5. Enhanced Role-based Visualization and Custom Dashboards

Future development will focus on extending the visualization
ability to other stakeholders such as maintenance engineers,
plant supervisors, and data analysts. These role-based
dashboards will contain personalized alerts, KPIs, and insights

based on user responsibility and need.
6. Digital Twin Template Marketplace or Library

To promote reusability and reduce time to develop, a digital twin
template library for common industrial components (e.g.,
motors, actuators, 3D printers, and conveyors) will be created.
The library will be modular so that plug-and-play configurations
are supported and thus accelerate deployment in new

applications.
7. Integration for Sustainability and Energy Analytics

Future enhancements will also encompass modules that track
and report energy consumption, emissions, and environmental
impacts. These modules will drive organizational sustainability

efforts and compliance with global energy standards.

The creation and implementation of a modular, ISO 23247-compatible
Digital Twin Setup Tool is a milestone in the utilization of smart

manufacturing. The study demonstrates the effectiveness of the tool
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through two industrial case studies that differ from each other—Go3D
Artish 700 and the Ball Screw Assembly—and thereby establishes the
scalability, flexibility, and practical relevance of standardized digital
twin architectures. The system not only supported real-time monitoring
and predictive maintenance but also user-specific visualizations that
helped stakeholders make better decisions, such as product managers

and technical supervisors.

The ISO 23247 implementation offered a systematic, interoperable, and
multidisciplinary-focused architecture that highly improved team
collaboration and deployment productivity. Further, the future
directions outlined—diverse from individual control systems and cloud-
native infrastructure to sustainability analytics and a reusable digital
twin template marketplace—are a good starting point for the next phase

of this effort.

In conclusion, this digital twin approach is not just a theoretical model
but a real, adjustable, and expandable solution for Industry 4.0 facilities.
It introduces a new benchmark for integrating physical assets with
digital smarts, automating operational excellence, inter-disciplinary

collaboration, and sustainable long-term growth
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