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ABSTRACT

Agriculture forms the backbone of many economies, and the integration of modern

technologies into farming practices has the potential to revolutionize crop monitoring,

classification, and weed management. This study concentrates on employing advanced

deep learning methods to accurately classify crop types and detect weeds, a vital task

in precision agriculture. Conventional crop classification techniques depend largely on

manual inspection, which is labor-intensive and susceptible to human errors. To over-

come these limitations, the research investigates a range of deep learning models, both

custom-designed and pretrained, to automate and improve the classification process.

A custom Convolutional Neural Network (CNN) was developed from scratch, con-

sisting of four convolutional layers followed by a fully connected network. In addition,

transfer learning approaches were employed using pretrained architectures such as

VGG16, InceptionV3, and Vision Transformer (ViT). These models were evaluated

based on metrics such as precision, accuracy, F1-score, and recall to assess their e↵ec-

tiveness in multi-class classification.

The CNN model served as a baseline, while VGG16 and InceptionV3 leveraged

deep hierarchical feature extraction to improve performance. The ViT model, which

treats images as sequences of patches and uses self-attention mechanisms, demon-

strated superior accuracy by capturing long-range dependencies. Results indicate

that ViT outperforms traditional CNN-based methods in classification accuracy and

generalization.

The experimental outcomes reveal that deep learning models, particularly

transformer-based architectures, hold significant promise for agricultural applications.

By reducing reliance on manual labor and improving accuracy, this study contributes

to the development of scalable, intelligent systems for precision farming.
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Chapter 1

Introduction

In this chapter, we explore the foundational concepts and significance of precision

agriculture, a transformative approach to modern farming. Precision agriculture in-

tegrates advanced technologies such as GPS-based mapping, remote sensing, drone

imagery, and data analytics to monitor and manage agricultural variability. Unlike

traditional methods that treat entire fields uniformly, precision agriculture enables

farmers to make site-specific decisions by analyzing variations in soil conditions, crop

health, moisture levels, and pest presence. This targeted intervention not only opti-

mizes resource utilization such as water, fertilizers, and pesticides but also minimizes

environmental impact and improves crop yields. The evolution of precision agricul-

ture has been further accelerated by the integration of machine learning and computer

vision techniques, which allow automated systems to interpret complex field data and

support timely decision-making. As a result, precision agriculture has become an es-

sential pillar in achieving sustainable, e�cient, and high-yield farming practices in the

21st century.
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CHAPTER 1. INTRODUCTION 2

1.1 Background

Agriculture has always been a cornerstone of human civilization, providing food,

raw materials, and livelihood to a significant portion of the global population. Over

time, traditional farming practices have evolved with technological advancements,

leading to increased productivity and sustainability. Traditional farming methods

often involve manual tasks such as spraying pesticides and loosening the soil to pre-

pare the land for cultivation as shown in Figure 1.1. However, conventional methods

still face several challenges, such as ine�ciencies in resource utilization, susceptibil-

ity to environmental fluctuations, and inconsistencies in yield. In this context, the

integration of modern technologies has become vital for optimizing agricultural prac-

tices and addressing pressing concerns related to food security, climate change, and

population growth.

(a) Soil Loosening (b) Spraying Pesticides

Figure 1.1: Traditional Farming Methods [1]

1.2 Precision Agriculture and Its Components

Precision agriculture is a modern farming technique that leverages data-driven

technologies to monitor, assess, and manage variability in agricultural fields. It aims

2



CHAPTER 1. INTRODUCTION 3

to guarantee that crops and soil obtain precisely the nutrients and care required for op-

timal health and yield. This approach involves several key components, including data

collection through sensors and UAVs, data processing and analysis, decision-making

based on interpreted data, and automated actions using machinery. Illustrative ex-

amples of these practices, such as soil loosening and UAV-based pesticide spraying,

are depicted in Figure 1.2. Each of these steps contributes to maximizing yields, min-

imizing waste, and promoting sustainable farming. By employing site-specific crop

management and variable rate technology, precision agriculture empowers farmers to

apply inputs more accurately, thereby improving e�ciency and reducing environmen-

tal impact.

(a) Soil Loosening (b) Spraying Pesticides

Figure 1.2: Modern Farming Methods [2]

1.3 Importance of Crop Classification

Accurate crop classification plays a vital role in precision agriculture, as it en-

ables e↵ective monitoring, planning, and management of agricultural practices. By

identifying di↵erent crop types, stakeholders can assess crop health, estimate yields,

monitor disease or weed infestations, and make informed decisions regarding irriga-

3



CHAPTER 1. INTRODUCTION 4

tion, fertilization, and harvesting schedules. Additionally, crop classification supports

large-scale agricultural surveys, food supply chain planning, and policy formulation.

With the growing availability of high-resolution imagery and computational resources,

automated crop classification using deep learning has become an indispensable tool in

the modern agricultural landscape.

1.4 Challenges in Crop Classification

Despite the potential benefits, crop classification presents several challenges that

hinder its accuracy and robustness. Changes in lighting, weather, and occlusion can

greatly impact input image quality, thereby increasing the challenge of accurate clas-

sification. Additionally, the high similarity between di↵erent crop species or growth

stages often leads to misclassification. Other challenges include the presence of weeds,

soil patches, and shadows in the imagery, which can confuse classification algorithms.

Limited labeled datasets, computational requirements, and the need for model gener-

alization across diverse environments further complicate the implementation of reliable

crop classification systems.

1.5 Research Gap

Despite the growing use of deep learning in crop classification, several persistent

challenges remain unaddressed in the current literature. A major limitation lies in the

poor accuracy of many models when applied to real-world field conditions. Agricul-

tural environments present dynamic variables such as varying light intensity, complex

backgrounds, plant occlusion, and changes in weather, all of which degrade the per-

formance of conventional deep learning models. Many models fail to generalize well

4



CHAPTER 1. INTRODUCTION 5

across diverse datasets collected under di↵erent environmental and sensor conditions,

leading to reduced robustness and reliability. Moreover, the computational demands of

deeper networks pose di�culties for real-time deployment in low-resource agricultural

settings, which is particularly limiting for smallholder farmers. Another significant is-

sue is the limited integration of attention mechanisms within the architecture of crop

classification models. While CNN-based methods have shown promising results, their

capacity to di↵erentiate between closely resembling plant species or handle occlusions

is inherently restricted. Models without attention modules often fail to emphasize

on the key detailed regions of the input image, leading to misclassification, especially

when weeds, overlapping leaves, or partial views are present. Furthermore, many

studies adopt basic training pipelines that lack rigorous preprocessing along with data

augmentation techniques like rotation, flipping, cropping, and scaling, which are es-

sential for enhancing model resilience against variability in field images. In addition,

most existing works tend to emphasize classification accuracy while neglecting other

key evaluation metrics including precision, recall, F1-score, and accuracy. Few lay

out a broad end-to-end framework, from data preprocessing and augmentation to ex-

perimental evaluation with clearly defined training, validation, and testing protocols.

As a result, the real-world feasibility of many proposed models remains questionable.

The literature lacks lightweight yet accurate architectures that can o↵er high perfor-

mance without demanding excessive computational resources. These gaps underscore

the need for advanced models that not only boost accuracy but also deliver practi-

cal usability, resilience to visual challenges, and e�ciency suitable for deployment in

precision agriculture.

5



CHAPTER 1. INTRODUCTION 6

1.6 Objectives of the Work

The primary objective of this thesis is to develop an e�cient deep learning-based

system for accurate crop classification under real-world conditions. This involves im-

plementing and comparing multiple models like CNN, VGG16, InceptionV3, and Vi-

sion Transformer to evaluate their e↵ectiveness measured by accuracy, precision, re-

call, and F1-score. The study also aims to preprocess data through augmentation

techniques like rotation, flipping, cropping, and scaling to enhance model robustness.

Additionally, the goal is to design a pipeline that includes data splitting, model train-

ing, and testing under a standardized experimental setup.

1.7 Contribution of the Thesis

This research makes several significant contributions. First, it presents a com-

prehensive comparative study of di↵erent deep learning architectures for crop classi-

fication, highlighting their strengths and limitations. Second, it integrates attention

mechanisms through Vision Transformers to demonstrate their e↵ectiveness in distin-

guishing complex features in crop images. Third, it implements systematic prepro-

cessing techniques and data splitting strategies to ensure robust model training. The

final system achieves a highest accuracy of 94.7% with Vision Transformer, surpass-

ing traditional models. These contributions behaves as a key for future research in

precision agriculture using deep learning techniques.

1.8 Organization of the Thesis

This thesis is structured into five distinct chapters to present a coherent flow of

the research work. The first chapter introduces the background, importance, and

6



CHAPTER 1. INTRODUCTION 7

challenges of crop classification in the context of precision agriculture. The subsequent

chapters of this thesis are organized as follows:

• Chapter 2: Literature Survey

This chapter provides an in-depth survey of 19 scholarly articles relevant to

crop classification and plant disease detection. It focuses on the methodolo-

gies employed in each study, highlights their limitations in terms of real-world

applicability, generalization, and computational complexity, and reports their

achieved accuracies. The survey spans traditional machine learning approaches,

deep learning models like CNNs and Vision Transformers, and hybrid frame-

works.

• Chapter 3: Proposed Methodology

This chapter explains the methodology adopted in this thesis, beginning with

detailed preprocessing steps including image resizing, augmentation techniques

like rotation, flipping, cropping, and scaling. It further describes the architecture

of the four models employed, that is, CNN, VGG16, InceptionV3, and Vision

Transformer and how these models are configured for e↵ective classification of

crop types.

• Chapter 4: Experimental Results

This chapter outlines the performance of the proposed models. It includes

a thorough description of the dataset used and elaborates on the evaluation

parameters namely recall, precision, accuracy, and F1-score. It also discusses

the training and validation outcomes over multiple epochs for all four models,

supported by relevant plots and accuracy/loss trends.

7
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• Chapter 5: Conclusions and Future Work

The concluding chapter wraps up the thesis by highlighting the main findings

and contributions. It reflects on the overall model performance, highlights the

strengths and challenges observed during implementation, and proposes future

research directions, including model optimization, real-time deployment, and

expanding the dataset for broader generalizability.

8



Chapter 2

Literature Survey

A literature survey is a critical and comprehensive review of existing research

studies relevant to a particular topic or field of study. It provides insight into existing

knowledge, highlights areas that require further investigation, and provides a strong

foundation for the proposed study. In this context, the literature survey focuses on

three categories in the following sections and their recent advancements in crop clas-

sification and crop identification using machine learning, deep learning techniques,

and other methods, highlighting various models, methodologies, datasets used, and

performance metrics reported in the selected studies.

2.1 Machine Learning Methods

Bedi and Gole [8] proposed a hybrid model for plant disease detection, combin-

ing Convolutional Neural Networks (CNN) for feature extraction and Support Vector

Machine [9] for classification. The model is trained on the PlantVillage dataset, specif-

ically using images of peach leaves a↵ected by various diseases. The CNN model ex-

tracted relevant features from the images, which are then passed to the SVM classifier

for disease detection. This hybrid approach leveraged the strength of both machine

9



CHAPTER 2. LITERATURE SURVEY 10

learning and deep learning for classification and feature extraction respectively, im-

proving the overall accuracy. However, the model’s application is limited to peach leaf

diseases, and its inability to generalize well, to the specific nature of the dataset. The

method put forward attained an accuracy of 96.4% when evaluated on the PlantVillage

dataset for peach leaves.

Rizwan et al. [10] proposed an automatic plant disease detection method using

a computationally e�cient Convolutional Neural Network (CNN). They developed a

CNN architecture tailored for computational e�ciency, making it well-suited for real-

time applications in environments with limited resources. The model was trained on

the PlantVillage dataset, aiming to maintain high accuracy while minimizing compu-

tational demands. While the approach achieves reasonable classification performance,

there is a balance struck between model simplicity and the potential accuracy that

more complex models might o↵er. The suggested approach attained an accuracy of

92.4% on the PlantVillage dataset.

2.2 Deep Learning Methods

Bouacida et al. [11] introduced a deep learning approach for cross-crop plant dis-

ease classification using Convolutional Neural Networks (CNNs). The model is trained

on a comprehensive dataset containing 54,305 images from 14 di↵erent crops and 20

distinct diseases. The CNNs are designed to automatically extract necessary informa-

tion from the images and classify the diseases across a variety of crops. This approach

enabled the model to generalize across multiple crop types, making it highly versatile

for agricultural disease detection. However, the model’s performance was a↵ected by

variability in image quality and environmental conditions, which can lead to incon-

sistencies in disease detection. The proposed model attained a92.8% accuracy on the

10



CHAPTER 2. LITERATURE SURVEY 11

cross-crop disease classification task.

Zhu et al. [12] introduced LAD-Net, a novel lightweight model that incorporates

attention mechanisms for the early detection of apple leaf pests and diseases [13]. The

model is designed to be computationally e�cient while maintaining high accuracy

in classifying various diseases and pests a↵ecting apple leaves. Techniques are used

to improve the model’s attention on important areas of the leaf images, allowing for

more precise identification of the diseases. The dataset employed for training and

evaluation comprises images of apple leaf diseases, specifically focusing on early-stage

diseases and pests. However, the model’s application is limited to apple crops, and

its generalization to other plant species or crops may require further adaptation and

training with species-specific datasets. The developed model reached a 92.5% accuracy

on the Apple Leaf Disease dataset.

Paymode and Malode [14] introduced a transfer learning approach for the classi-

fication of leaf diseases across various crop types. They utilized three deep convolu-

tional neural network architectures, including VGG16, ResNet50, and InceptionV3,

had been initially trained on large-scale datasets like ImageNet [15]. These models are

fine-tuned using specific leaf disease image datasets like PlantVillage, enabling them

to learn domain-specific features relevant to plant pathology. By leveraging transfer

learning, the models require less training data and computational resources while still

achieving high accuracy in identifying diseases across various crops. This method

reduced the training time and improves generalization, especially when high-quality

labelled agricultural datasets are scarce. However, the e↵ectiveness of the method

is constrained by the diversity and quality of the training datasets, which does not

capture all environmental variations and rare disease instances. The proposed method

attained an accuracy of 97.5% on the PlantVillage dataset.

11



CHAPTER 2. LITERATURE SURVEY 12

Islam et.al [16] focused on an approach using deep learning for crop disease predic-

tion making use of ResNet-18 [17] architecture integrated into a web application. The

model underwent training using the PlantVillage dataset, which includes various crop

leaf images a↵ected by diseases. The web application allowed users to upload leaf im-

ages for real-time disease prediction. The lightweight ResNet-18 model was selected

to balance accuracy with computational e�ciency, making it suitable for practical,

on-field applications in agriculture. The model’s performance was certainly a↵ected

by image quality, crop type, and environmental factors, which can influence the de-

tection of certain diseases. The proposed method achieved an accuracy of 94.5% on

the PlantVillage dataset.

Ma et al. [18] proposed a sustainable AI solution for plant disease classification

by integrating the ResNet18 architecture with few-shot learning techniques. The ap-

proach enabled learning from a very limited number of labelled examples per disease

class. The model was trained and evaluated on publicly available datasets such as

PlantVillage [19] and rice leaf disease datasets from Kaggle [20]. The combination

of few-shot learning with a lightweight ResNet18 backbone aims to minimize data

and computational requirements while maintaining classification performance, mak-

ing it suitable for real-world, low-resource agricultural environments. Generalization

to entirely new disease types and varied environmental conditions remains challeng-

ing, especially with minimal training data. The proposed model achieved a 89.66%

accuracy on the PlantVillage dataset.

Bhagat et al. [21] developed a compact convolutional neural network (CNN) specif-

ically designed for real-time identification of leaf diseases in pigeon pea crops [22].

As part of their work, they curated a novel dataset comprising annotated images of

healthy and diseased pigeon pea leaves, which was used for training and validation

12



CHAPTER 2. LITERATURE SURVEY 13

purposes.The proposed CNN architecture is optimized for implementation on devices

with limited power resources, enabling fast inference without significant computa-

tional resources. The approach balances e�ciency and accuracy, thus enabling its use

in field-based scenarios where computational or infrastructure resources are limited.

The dataset is crop-specific, focusing solely on pigeon pea, which will limit the model’s

ability to generalize to other plant species or disease types. The proposed Lite-MDC

model attained a 94.14% accuracy on the pigeon pea dataset.

Noon et al. [23] tackled the issue of managing varying severity levels of multiple

simultaneous diseases in cotton plants by utilizing an enhanced YOLOX [24] model.

They enhanced the YOLOX object detection model, originally designed for general

object detection, to focus specifically on detecting and classifying various plant dis-

eases in cotton. By modifying the model architecture, they improve its ability to not

only detect the diseases but also assess their severity levels, o↵ering valuable insights

for targeted interventions. The dataset utilized for training and evaluation contains

cotton plant disease images, which include annotations for both disease classification

and severity levels. However, the model’s performance degrade if the training data

does not include a wide variety of disease combinations, highlighting the need for a

large and diverse dataset to cover all possible co-occurring disease scenarios. The pro-

posed model attained an accuracy of 94.2% in identifying and classifying cotton plant

diseases [25] with severity levels.

Roy and Bhaduri [26] presented a deep learning-enabled model for multi-class plant

disease detection by leveraging advanced computer vision techniques. The model is

trained on the PlantVillage dataset and utilizes convolutional neural networks to auto-

matically extract and learn features relevant to various plant diseases. The integration

with computer vision approaches enhanced the ability of the model to detect subtle
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di↵erences across multiple disease classes. However, the accuracy of the system will

be influenced by inconsistencies in image quality, lighting variations, and background

noise present in real-world scenarios. The proposed model achieved an accuracy of

94.87% on the PlantVillage dataset.

Jilani et al. [27] presented a leaf disease detection method using a lightweight deep

residual network (LDRN) integrated with attention mechanisms. The approach aims

to identify leaf diseases by leveraging deep residual learning for feature extraction and

attention modules to focus on relevant parts of the image, enhancing detection per-

formance. The model is trained on the PlantVillage dataset, which includes various

plant diseases. The attention mechanism enhances the model’s capacity to highlight

key disease features in the leaf images, allowing for more accurate classification. Never-

theless, the model exhibits reduced e↵ectiveness when handling complex backgrounds

in images, as the background noise can interfere with disease detection. The proposed

method achieved an accuracy of 94.2% on the PlantVillage dataset.

Javed et al. [28] proposed MaizeNet, a deep learning approach designed specifi-

cally for the recognition of maize plant leaf diseases. They developed a custom CNN

architecture, tailored to capture the unique features of maize leaf diseases, achieving

high capability in disease classification. The model is trained on a maize leaf disease

dataset, focusing on disease identification in maize crops. While the model demon-

strated good performance for maize, it does not generalize well to other crops without

retraining on di↵erent datasets. The proposed method achieved an accuracy of 96.5%

on the maize leaf disease dataset.

Thakur et al. [29] Introduced a hybrid deep learning framework that integrates

the advantages of Convolutional Neural Networks (CNNs) and Vision Transformers

(ViTs) to improve plant leaf disease classification. CNN models such as Inception-

14
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V3, VGG16, and DenseNet20 [DenseNet] are used to extract global spatial features,

while the Vision Transformer module captures long-range dependencies and localized

patterns from the same input images. By integrating these complementary feature

representations, the framework enhanced classification accuracy across multiple leaf

disease categories. The model is trained on curated datasets containing images of

diseased and healthy leaves of apple and corn plants. The complexity of combining

multiple deep learning models increases computational overhead, potentially limiting

the model’s deployment on resource-constrained devices. The hybrid model achieved a

99.24% accuracy on the apple leaf dataset and 98% accuracy on the corn leaf dataset.

Kaur et al. [30] presented a novel deep learning method for the identification and

classification of plant leaf diseases using a deep convolutional neural network (CNN).

The model is trained on the PlantVillage dataset, which contains a variety of plant

leaf images a↵ected by di↵erent diseases. The CNN architecture was developed to

autonomously extract features and classify the diseases with good accuracy. The

model’s e�ciency stems from its ability to handle complex image data and provide

accurate predictions for various crops. However, the performance of the model may

decrease when applied to images from di↵erent environments or with lower-quality

data, as it was trained primarily on controlled datasets. The proposed model achieved

an accuracy of 95.2% on the PlantVillage dataset.

Hemalatha and Jayachandran [31] introduced a multitask learning approach lever-

aging a Vision Transformer (ViT) to perform both plant disease localization and clas-

sification. The model integrated co-scale, co-attention, and cross-attention mecha-

nisms, enabling it to learn multiple tasks simultaneously, enhancing its ability to

localize disease symptoms and classify them accurately within the same framework.

The PlantVillage dataset is used for training and evaluation, which provides a diverse
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set of images across di↵erent plant species and disease types. While the multitask

framework improves the model’s ability to handle both localization and classification,

it comes with the drawback of high model complexity, which often demand significant

computational power for both training and inference. The proposed approach attained

an accuracy of 94.2% in plant disease classification and e↵ectively identified disease

symptoms within images.

Adnan et al. [32] presented an approach for multi-class plant disease classification

using the E�cientNetB3 [33] architecture combined with Adaptive Augmented Deep

Learning (AADL). The method leverages the E�cientNetB3 model, which is known

for its e�ciency in terms of computational cost and accuracy. To enhance the model’s

robustness, adaptive data augmentation techniques are employed, which dynamically

adjust the augmentation strategies based on the traits of the training data. This

approach aims to improve the model’s generalization ability, especially when training

on imbalanced datasets or datasets with limited samples. The model is tested on

the PlantVillage dataset, comprising images from a range of plant species a↵ected by

di↵erent diseases. Despite the advantages of this approach, the performance will vary

depending on the crop type and disease class, as some diseases will comparatively be

more challenging to classify due to their visual similarity to healthy plant features.

The proposed model attained a 96.7% accuracy for plant disease classification.

Han et al. [34] explored the use of Generative Adversarial Networks (GANs) for

plant disease detection, specifically focusing on enhancing the performance of plant

disease classification models. They employed GANs to augment the dataset, partic-

ularly using the PlantVillage dataset, which contains images of various plant species

a↵ected by di↵erent diseases. By generating synthetic images, GANs help address data

scarcity, improving model robustness and performance. However, a key limitation is
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that GAN-generated images would sometimes be unrealistic or fail to capture complex

variations seen in real-world images, which can a↵ect the training of the model. The

proposed method achieved an accuracy of 93.7% for disease classification, benefiting

from the additional synthetic images generated by GANs.

2.3 Deep Learning with IoT-enabled Methods

Wang and Cao [35] introduced an approach to classify plant disease by incorpo-

rating Bit-Plane and integrating correlation spatial attention modules within a con-

volutional neural network (CNN).” These attention modules are designed to improve

the feature representation capabilities of the CNN, focusing on the bit-plane and spa-

tial correlations of images to improve the model’s ability to detect subtle patterns

associated with plant diseases. The approach is tested on the PlantVillage dataset,

which contains a wide range of plant species a↵ected by various diseases. While the

proposed method significantly enhances the CNN’s performance by enabling it to fo-

cus on more relevant features, the increased model complexity due to the attention

modules can result in higher computational requirements, making it less suitable for

resource-constrained environments. The proposed method attained a 95.4% accuracy

for plant disease classification.

Delnevo et al. [36] proposed a novel approach for plant disease prediction by inte-

grating deep learning models with Social IoT (Internet of Things) frameworks, aiming

to provide real-time disease detection in agricultural settings. The deep learning mod-

els, trained on the PlantVillage dataset, are used for disease classification, while the

Social IoT component gathers data from IoT devices distributed across agricultural

fields to monitor environmental conditions. The integration of these two components

allows for the real-time collection and processing of data, enabling early detection of
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plant diseases and promoting sustainable agriculture practices. However, the complex-

ity of integrating deep learning models with IoT frameworks could lead to challenges

in system scalability and the management of large data streams. Additionally, privacy

concerns related to the use of sensitive data in IoT networks could impact the adop-

tion of such systems. The proposed model attained a 95.5% accuracy in plant disease

prediction.

2.4 Summary

Recent progress in detection of plant disease and crop classification has been

largely propelled through deep learning approaches, particularly convolutional neu-

ral networks (CNNs) and their variants. Many studies have employed models such as

ResNet18, E�cientNetB3, YOLOX, and Vision Transformers to classify plant diseases

across multiple crop types with high accuracy. Some works integrate transfer learning

to make use of pretrained models for e↵ective classification in data-scarce domains,

while others like few-shot learning approaches aim to solve the problem of limited

labeled data. Lightweight architectures such as LAD-Net and MaizeNet are designed

for e�cient deployment on resource-constrained devices, and attention-based models

have improved performance by focusing on disease-a↵ected regions of leaves. Hybrid

models that combine CNN with classical machine learning techniques like Support

Vector Machines (SVM) are also explored to enhance classification accuracy and in-

terpretability. These studies typically focus on building robust models that can handle

multiple disease classes, varying crop types, and early disease detection with minimal

latency.

Despite these contributions, several challenges persist in the current research land-

scape. Many models are trained on controlled datasets, limiting their generalizability
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to real-world agricultural environments characterized by occlusions, lighting varia-

tions, weed interference, and morphological di↵erences among crop species. Vision

Transformers and multitask learning frameworks, though powerful, often require large

computational resources that hinder their practical deployment on farms. Further-

more, few studies have addressed the complete pipeline from preprocessing (such as

rotation, flipping, and scaling) to rigorous evaluation using metrics like F1-score, pre-

cision, and recall on real-field data. There is still a pressing demand for models that

combine high accuracy with computational e�ciency, interpretable, and adaptable to

changing field conditions. This gap motivates the development of lightweight and scal-

able deep learning models that can be e↵ectively applied in precision agriculture for

disease prediction and crop classification.
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Chapter 3

Proposed Methodology

The proposed methodology for crop classification involves a sequential pipeline

beginning with the input image acquisition stage, where raw field images are collected

as shown in Figure 3.1. The images are preprocessed through steps like resizing,

normalization, and noise reduction to improve input quality and ensure consistency

across the dataset. Each preprocessed image is subsequently segmented into non-

overlapping patches measuring 224 × 224 pixels to align with the input specifications

of the deep learning models. These patches are subsequently given into a selected

deep learning architecture, such as CNN [4], VGG16 [5], InceptionV3 [6], or Vision

Transformer [7], for feature extraction and learning. Finally, the model performs

classification, assigning each image patch to one of the 12 predefined crop classes

based on learned patterns and spatial features.

Figure 3.1: Workflow of the Proposed Methodology
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3.1 Pre-processing

Preprocessing plays an important role in readying image data for training machine

learning models, particularly within the field of plant classification. It ensures that

the raw input images are transformed into a consistent, clean, and augmented format

compatible with the model to learn meaningful features. Given the variability in plant

image datasets like PlantVillage or Plant Seedlings in terms of size, orientation, light-

ing, and background, pre-processing is indispensable for improving model generaliza-

tion and reducing overfitting. In Figure 3.2, several representative images demonstrate

the visual diversity and complexity of the raw data. Several pre-processing operations

are applied sequentially to standardize and enhance the input data.

(a) Maize (b) Fat Hen (c) Sugar Beet

Figure 3.2: Sample Original Images of Di↵erent Crop Types Used in the Dataset

3.1.1 Resizing

Resizing is the initial step in Pre-processing. Deep learning models like CNNs,

VGG16, InceptionV3, and Vision Transformers expect fixed input dimensions. To

meet this requirement, all images are scaled to a uniform resolution of 224×224 pix-

els. For Vision Transformers, resizing is particularly important because images are

later split into fixed-size patches (16×16), so the overall image size must be divisible
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accordingly. While resizing may lead to minor loss of detail or distortion in aspect ra-

tio, it significantly optimizes memory usage and ensures uniformity across the dataset.

3.1.2 Augmentation

Augmentation artificially increases the diversity of the training data by creating

modified versions of the original images. This is crucial for building a model that

can adapt well to new, untrained images. Without augmentation, models tend to

memorize the training set, especially when the dataset is small. Various augmentation

techniques are used, including geometric and photometric transformations. These not

only make the model robust to real-world variability but also help simulate natural

environmental changes in plant images, such as camera angle, plant growth stages,

and light conditions.

3.1.3 Rotation

Rotation is a specific form of augmentation that helps the model learn rotational

invariance. Plants in real-world conditions or even in controlled datasets may not al-

ways be oriented upright. By randomly rotating images within a range (±90°, ±180°,

or ±270°), the model is trained to recognize a plant species regardless of how it is

positioned in the image. This augmentation improves the robustness of models, par-

ticularly CNNs and Vision Transformers, which benefit from exposure to spatial diver-

sity. In Figure 3.3, rotated samples of the original image samples in the pre-processing

section showcase the range of orientations considered during training.
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(a) Maize (b) Fat Hen (c) Sugar Beet

Figure 3.3: Sample Rotated Images of Di↵erent Crop Types Used in the Dataset [3]

3.1.4 Flipping and Cropping

Horizontal flipping is another powerful augmentation technique used in pre-

processing. It simulates a mirrored version of the plant, e↵ectively doubling the di-

versity of training examples without requiring new data. Vertical flipping is used less

often, as it can distort plant orientation unnaturally. In some implementations, ran-

dom cropping is also performed to simulate zoomed-in views or occlusions. Cropping

helps models learn to focus on localized regions of the plant, enhancing fine-grained

classification accuracy. Representative examples of flipped images are shown in Fig-

ure 3.4.

(a) Maize (b) Fat Hen (c) Sugar Beet

Figure 3.4: Sample Flipped Images of Di↵erent Crop Types Used in the Dataset
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3.1.5 Scaling and Zooming

Scaling involves enlarging or shrinking the image while maintaining its aspect ratio.

This technique helps the model become scale-invariant, meaning it can identify a plant

regardless of whether it occupies a small or large portion of the image. Zooming is a

variant of scaling where the model is exposed to close-up views, helping it learn texture-

level features like leaf veins or edges. These operations are particularly useful when

used in conjunction with high-capacity models like InceptionV3 that can detect multi-

scale features. Representative examples of scaled images are illustrated in Figure 3.5.

(a) Maize (b) Fat Hen (c) Sugar Beet

Figure 3.5: Sample Scaled Images of Di↵erent Crop Types Used in the Dataset

3.1.6 Normalization

Once all geometric transformations are applied, pixel-level normalization is per-

formed. Original pixel values, usually ranging from 0 to 255, are normalized either

to a 0–1 scale or normalized to standard normal distribution with zero mean and one

variance. This is crucial for stabilizing and accelerating training, especially when us-

ing activation functions (ReLU). Normalization guarantees that each feature has an

equal impact throughout the training process and prevents issues like exploding or

vanishing gradients in deeper models.
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3.2 Model Architecture

This section explores the internal structure of the models, employed for the classi-

fication of crop types from tray images. Each model ranging from basic Convolutional

Neural Networks (CNNs) to more advanced Vision Transformers (ViTs), has been se-

lected based on its capability to learn and represent the spatial and semantic features

inherent in the Plant Seedlings dataset. The choice of multiple models enables a com-

parative evaluation of performance and accuracy, helping to understand how di↵erent

model architectures behave under the same data Pre-processing and training pipeline.

3.2.1 Convolutional Neural Network (CNN)

The CNN model created for this classification task is a deep learning framework

built from the ground up to e↵ectively capture spatial hierarchies in the input images.

It starts with four convolutional layers, each designed to learn increasingly complex

visual features. The first layer uses filters of size 3×3 and the number of filters is 32,

focusing on detecting basic elements like edges and corners. Subsequent layers use

64, 128, and 128 filters respectively, allowing the network to learn more sophisticated

patterns such as textures, shapes, and semantic details. The full CNN architecture

is depicted in Figure 3.6. Each convolution operation is defined mathematically in

Eq. 3.1.

X
(l) = f

�
W

(l) ⇤X(l�1) + b
(l)
�

(3.1)

where:

• X
(l) represents the output of layer l,

• W
(l) are the weights and b

(l) are the biases of layer l,
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• f represents the ReLU activation function,

• ⇤ represents the convolution operation.

Following each convolutional block, max pooling is employed to downsample the

spatial dimensions. The max pooling with pool size 2 ⇥ 2 is defined mathematically

in Eq. 3.2:

Yi,j = max{Xm,n}, m, n 2 window(i, j) (3.2)

The final convolutional block’s output is flattened and then fed through a fully

connected layer with 512 neurons. A dropout regularization with p = 0.5 is applied

in Eq. 3.3:

Dropout(xi) =

8
><

>:

0, with probability p

xi
1�p

, otherwise
(3.3)

The final layer uses the softmax function as mentioned in Eq. 3.4:

ŷi =
e
zi

P
C

j=1 e
zj
, i = 1, . . . , C (3.4)

where C = 12 represents the number of crop classes.

The model’s loss is calculated using categorical cross-entropy as in Eq. 3.5:

L = �
12X

i=1

yi log(ŷi) (3.5)

Optimization is done using the Adam optimizer, which updates parameters using

estimates of the first and second moments of the gradients.
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Figure 3.6: CNN Architecture [4]

3.2.2 VGG16

VGG16 is a deep convolutional architecture containing of 13 convolutional layers

and then followed by 3 fully connected layers. For this research work, pretrained

weights from ImageNet are used and the first five convolutional blocks are frozen, as

illustrated in Figure 3.7. These consist of sequences of the form in Eq. 3.6:

f(X) = MaxPool(ReLU(Conv(X))) (3.6)

Every convolutional layer applies 3 ⇥ 3 filters, followed by max pooling using a

2⇥ 2 window with a stride of 2.

After feature extraction, a Global Average Pooling (GAP) layer is applied, which

reduces each feature map to a single value, as in Eq. 3.7:

GAPk =
1

H ⇥W

HX

i=1

WX

j=1

Xi,j,k (3.7)

where H indicates the height, W to the width of the feature map, and k indicates

the specific channel.
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An additional dense layer comprising 512 neurons with ReLU activation was incor-

porated to tailor the features for the crop classification task. Dropout regularization

with a rate(p) of 0.5 was applied to enhance generalization. The model concludes

with a softmax output layer containing 12 units to classify the di↵erent crop types.

This setup leverages transfer learning, allowing the model to benefit from previously

learned representations while adapting to new domain-specific knowledge.

Figure 3.7: VGG16 Architecture [5]

3.2.3 InceptionV3

InceptionV3 uses inception modules as illustrated in the Figure 3.8 that allow the

model to capture features at multiple scales. These modules combine convolutions

of di↵erent sizes of kernel (1 ⇥ 1, 3 ⇥ 3, 5 ⇥ 5) and a max-pooling operation, all

concatenated along the depth dimension as in Eq. 3.8:
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Output = Concat[Conv1⇥1,Conv3⇥3,Conv5⇥5,MaxPool] (3.8)

The first 100 layers are frozen and only the added custom layers are trained. These

include:

• A Global Average Pooling (GAP) layer flattens the 3D feature maps.

• A dense layer with 512 neurons and ReLU activation captures high-level abstract

features specific to crop classification.

• Dropout (rate = 0.5) is used to prevent overfitting.

• A final dense layer with 12 neurons and softmax activation performs the classi-

fication.

Loss function is defined in Eq. 3.5:

L = �
12X

i=1

yi log(ŷi)

Optimizer: Adam with default hyperparameters. This architecture is especially

useful when the dataset contains complex crop textures or overlapping plant structures,

as InceptionV3 is adept at capturing multi-scale features e↵ectively.

3.2.4 Vision Transformer

Vision Transformer takes a non-convolutional approach by treating images as se-

quences of patches. Each image x 2 RH⇥W⇥C is divided into N patches, each of size

P ⇥ P , then flattened, as in Eq. 3.9:

xp 2 RN⇥(P 2·C) (3.9)
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Figure 3.8: Inception Module [6]

These patches are flattened into vectors and passed through a linear projection

layer, embedding them into a fixed-dimensional space. To maintain spatial informa-

tion, something transformers naturally lack, positional encodings are added to the

patch embeddings, as in Eq. 3.10.

z0 = [xcls; xp1E; xp2E; . . . ; xpNE] + Epos (3.10)

where:

• xcls is a learnable class token,

• E is the patch embedding matrix,

• Epos is positional encoding.

The sequence is fed into Transformer Encoder layers, each composed of Multi-Head

Self-Attention (MHSA) and a Feed-Forward Network (FFN). For each head, as in

Eq. 3.11:
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Attention(Q,K, V ) = softmax

✓
QK

T

p
dk

◆
V (3.11)

where Q is query, K is the key, V are the value matrices, and dk is the dimension

of the keys. A classification (CLS) token is prepended to the start of the sequence.

This special token is designed to accumulate information from all patches during the

learning process. The sequence of patch embeddings, along with the CLS token, is

subsequently processed through several transformer encoder layers, each composed of:

• Multi-head self-attention: Enables the model to attend to di↵erent parts of the

image globally.

• Feed-forward networks: Applied to each embedding to refine features.

After several transformer layers, the output corresponding to the CLS token is used

as a summary representation of the image. This output is passed to a Multi-Layer

Perceptron (MLP) head, ending with a softmax layer to produce the final 12-class

prediction, as in Eq. 3.12.

ŷ = softmax(Wohcls + bo) (3.12)

The loss function is defined in Eq. 3.5:

L = �
12X

i=1

yi log(ŷi)

Optimization is performed using AdamW, a variant of Adam that decouples weight

decay from gradient updates. ViT excels in learning global relationships early in the

network, as opposed to CNNs, which build spatial hierarchies progressively. This is

especially beneficial in crop classification tasks where crops may be distinguished more

by global patterns than local features. However, ViT generally requires more data or
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strong regularization techniques due to its lower inductive bias compared to CNNs.

The Figure 3.9 illustrates the architecture of Vision Transformer.

Figure 3.9: Vision Transformer Architecture [7]

3.2.5 Summary

We have given details of four distinct deep learning architectures to accurately

identify and categorize twelve di↵erent crop classes. The initial model, the Con-

volutional Neural Network (CNN), functions as a baseline architecture that utilizes

consecutive convolutional and pooling layers to extract spatial features from input

images. Its simplicity and e�ciency make it suitable for baseline performance assess-

ment. Building upon this, the VGG16 model introduces a deeper architecture with

16 weight layers and uniform 3×3 convolution kernels, which enhances feature repre-

sentation while maintaining architectural simplicity. The third model, InceptionV3,

is a more advanced convolutional network that incorporates inception modules, allow-

ing for multi-scale feature extraction within the same layer. It significantly reduces
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computational cost through dimensionality reduction techniques and parallel convolu-

tions, leading to improved accuracy and performance. Finally, the Vision Transformer

(ViT) introduces a shift from convolutional paradigms to transformer-based attention

mechanisms. ViT splits input images into fixed-size patches (224×224 in our case),

flattens them, and processes them using self-attention layers, enabling global contex-

tual learning. This architecture has demonstrated superior performance in capturing

long-range dependencies and subtle di↵erences between crop types. Collectively, these

models provide a comprehensive evaluation of di↵erent architectural approaches for the

task of crop classification, highlighting the progression from traditional convolutional

methods to cutting-edge transformer-based designs.
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Experimental Results

A set of controlled experiments was performed to assess the performance of various

deep learning architectures for crop classification. Each model was trained on the

same dataset under consistent preprocessing conditions to ensure fair comparison.

The experiments focused on measuring classification accuracy, convergence behavior,

and generalization capability across the 12 crop classes. The results o↵er insights into

the strengths and limitations of both convolutional and transformer-based models.

4.1 Dataset

The research utilizes the Plant Seedlings Dataset, a carefully organized collec-

tion comprising of 5,539 high-resolution images categorized into twelve crop classes

as shown in Table 4.1. These classes include various economically important crops

like Maize, Common Wheat, Sugar Beet, and multiple weed types such as Scentless

Mayweed, Fat Hen, and Black-grass. The sample dataset is shown in Figure 4.1. Each

image contains a single crop plant and captures it at di↵erent growth stages, providing

a realistic spectrum of visual characteristics. About 960 unique plants are represented,

making the dataset diverse in terms of plant shape, size, and leaf structures. Moreover,
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the dataset includes both segmented and unsegmented images, enabling flexibility in

how preprocessing is handled. Segmented images o↵er cleaner visual inputs, while

unsegmented ones simulate more natural, cluttered environments. The dataset also

has a clearly separated test set that includes tray images, where each tray features

only one crop type, ideal for this study. Overall, the dataset serves as an excellent

benchmark for training and evaluating machine learning models aimed at agricultural

image classification.

Table 4.1: Number of Images per Crop Type in the Plant Seedlings Dataset

Crop Type # of Images Crop Type # of Images

Charlock 460 Maize 258

Black-grass 263 Cleavers 437

Common Chickweed 713 Scentless Mayweed 607

Sugar beet 496 Fat Hen 561

Loose Silky-bent 654 Common wheat 253

Shepherd’s Purse 431 Small-flowered Cranesbill 527

4.2 Evaluation Parameters

In any classification task, especially those involving multiple classes like crop or

weed classification, evaluating the performance of the model goes beyond just ac-

curacy. Multiple statistical metrics are employed to obtain a more comprehensive

understanding of a model’s performance across all classes. The most widely used eval-

uation parameters include recall, precision, F1-score, accuracy, and confusion matrix.

These metrics are derived from the fundamental components of classification results:

False Positives (FP), True Positives (TP), False Negatives (FN), and True Negatives

(TN).
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Figure 4.1: Sample Images of 12 Crops from Plant Seedlings Dataset [3]

• Accuracy: Accuracy, as in Eq. 4.1 is a fundamental and straightforward metric

that represents the ratio of accurate predictions compared to the total number

of observations.

Accuracy =
TN + TP

TN + FP + FN + TP
(4.1)

While accuracy is a useful measure, it can sometimes provide a misleading pic-

ture in situations involving imbalanced datasets where some classes significantly

outnumber others.

• Precision: Precision, also known as Positive Predictive Value, as in Eq. 4.2 in-

dicates the proportion of correctly identified positive cases among all instances

that the model predicted as positive. It indicates accuracy of the positive pre-

dictions.
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Precision =
TP

TP + FP
(4.2)

High precision implies that fewer false positives are being generated by the

model.

• Recall(True Positive Rate or Sensitivity): Recall measures the fraction of

correctly identified positive instances relative to all actual positive cases, indi-

cating how e↵ectively the model identifies relevant instances, as in Eq. 4.3.

Recall =
TP

FN + TP
(4.3)

A high recall means the model successfully detected the majority of actual pos-

itive instances.

• F1-Score: The F1-score is the harmonic mean of precision and recall. It is

especially valuable in situations with imbalanced datasets, as it brings in the

right balance between precision and recall, as shown below in Eq. 4.4.

F1-Score = 2⇥ Recall⇥ Precision

Recall + Precision
(4.4)

The F1-score varies from 0 to 1, with values nearer to 1 reflecting superior model

performance.

• Confusion Matrix: A confusion matrix summarizes the prediction outcomes

for a classification task. It shows how many predictions were correct and incor-

rect by comparing them against the true class labels. Usually displayed as an

n by n matrix for n classes, each row represents the predicted classes, whereas
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each column corresponds to the actual classes (or the other way around, based

on the adopted convention).

4.3 Experimental Setup

The implementation of the crop classification system was carried out in a Python-

based deep learning environment. Python version 3.8 was used due to its compatibility

with most modern machine learning and deep learning libraries. The primary frame-

work employed for model development was TensorFlow 2.9.1, which provides high-level

APIs for designing, training, and evaluating deep learning models e�ciently. Addi-

tionally, Keras, integrated within TensorFlow, was utilized to construct and fine-tune

architectures such as CNN, VGG16, InceptionV3, and Vision Transformer due to its

user-friendly and modular design.

This research work was executed on a system powered with an NVIDIA GPU (

RTX 3060) and CUDA Toolkit version 11.7, which accelerated model training and in-

ference times. Other essential libraries included NumPy for numerical computations,

Pandas for dataset handling and analysis, OpenCV for image preprocessing operations,

and Matplotlib/Seaborn for visualizing data distributions, training metrics, and clas-

sification outcomes. The Scikit-learn library was utilized for evaluating the model and

computing metrics such as precision, accuracy, F1-score, and recall. The development

environment was managed using Jupyter Notebook within Anaconda to streamline

the workflow and ensure reproducibility. The codebase was modular, allowing easy

experimentation with di↵erent models and hyperparameters. Dataset preprocessing

and augmentation steps were handled using TensorFlow ImageDataGenerator and Al-

bumentations, enabling robust training against variability in crop appearance.
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4.3.1 Training

For training the di↵erent deep learning architectures on multi-class crop classifica-

tion, a consistent and rigorous training pipeline was followed. The dataset, containing

twelve distinct crop categories, was initially divided into training, validation, and test

sets following an 80:10:10 split to guarantee dependable evaluation. All input im-

ages were resized and patched into dimensions of 224×224 pixels, matching the input

requirement for the deep learning models used. Prior to training, data augmenta-

tion methods including rotation, flipping, zooming, and brightness modification were

utilized to improve generalization and minimize overfitting. The custom CNN was

trained from the ground up employing the Adam optimizer set at a learning rate

of 0.001 alongside categorical cross-entropy as the loss function. Training continued

for up to 50 epochs, with early stopping implemented-set with patience of 5, to stop

training when the validation loss ceased to improve.

The VGG16 and InceptionV3 models were fine-tuned using transfer learning. Ini-

tially, the pretrained layers were frozen, and training was limited to the newly added

dense layers for 10 epochs. Subsequently, certain higher layers of the base models

were unfrozen, allowing the entire model to undergo fine-tuning for an additional

30–40 epochs using a lower learning rate (1e-5) To prevent significant changes in the

pretrained weights during training, a Global Average Pooling (GAP) layer was intro-

duced in place of the traditional fully connected layers. This approach helps stabilize

the gradient updates and maintains the integrity of the pretrained model parameters,

and dropout regularization was included to mitigate overfitting.

The Vision Transformer (ViT) model was trained using a transformer-based archi-

tecture implemented with TensorFlow and Hugging Face Transformers library. The

images were tokenized into non-overlapping 16×16 patches, embedded, and passed

40



CHAPTER 4. EXPERIMENTAL RESULTS 41

through MHSA layers. The ViT model was trained for 50 epochs using the AdamW

optimizer, and sparse categorical cross-entropy was used for loss computation. Learn-

ing rate scheduling and warmup steps were applied to stabilize training during the

initial epochs. Throughout training, performance was monitored using validation ac-

curacy and loss. The best model weights were saved using ModelCheckpoint callback

in Keras based on minimum validation loss. All models were evaluated using met-

rics such as accuracy, precision, recall, and F1-score on the test set to ensure robust

performance across all crop classes.

Table 4.2: Experimental Setup and Hyperparameter Configuration

Parameter Value

Number of Epochs 50

Learning Rate 0.001

Batch Size 32

Optimizer Adam

Input Image Size 224 ⇥ 224

Loss Function Cross-Entropy Loss

Data Augmentation Rotation, Flip, Scaling

Framework PyTorch

Torch Version 2.0.1+cu117

Python Version 3.10.13

GPU Used NVIDIA GPU with CUDA support

Dataset Split 80% Training, 10% Validation, and 10% Testing

4.3.2 Data Splitting

The last step in preprocessing includes dividing the dataset into training, valida-

tion, and test sets. A common practice is to allocate 75% of the data for training
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and the remaining 25% for validation. In certain cases, a distinct tray or field section

is set aside as a test set to assess the model’s generalization capability. Stratified

splitting is often employed to ensure all plant classes are proportionally represented

in each subset. This method ensures that, the evaluation metrics like accuracy, preci-

sion, and F1-score are reliable and unbiased. In summary, pre-processing transforms

a raw agricultural image dataset into a well-structured, diverse, and balanced form

that maximizes model performance. By applying a pipeline of resizing, augmenta-

tion (including rotation, flipping, cropping, scaling, and zooming), normalization, and

strategic data splitting, the model is provided with optimal inputs for learning com-

plex classification tasks. Each of these steps contributes uniquely to increasing the

robustness and generalization capacity of CNNs, pretrained networks like VGG16 and

InceptionV3, and even patch-based architectures like Vision Transformers.

4.4 Result and Analysis

The training and testing performance of four models, namely, CNN, VGG16, In-

ceptionV3, and Vision Transformer were evaluated over 50 epochs using interpolated

accuracy and loss metrics. All models exhibited consistent improvement in training

accuracy and reduction in training loss, with Vision Transformer achieving the highest

accuracy and lowest loss by the final epoch. Test accuracy trends closely followed the

training curves, indicating good generalization, though CNN showed slight plateaus.

Vision Transformer demonstrated superior convergence and stability compared to tra-

ditional convolutional architectures, highlighting its e↵ectiveness for this classification

task. Among the models, CNN showed early convergence but lacked the capacity to

capture complex spatial features. VGG16, aided by transfer learning, showed steady

progress but occasional fluctuations in validation loss. InceptionV3, with its inception

42



CHAPTER 4. EXPERIMENTAL RESULTS 43

modules and multi-scale feature processing, outperformed the previous two with a

more stable trajectory and higher test accuracy. Vision Transformer stood out with

smooth convergence, consistent performance, and improved feature representation due

to its self-attention mechanism. These findings highlight the increasing promise of

transformer-based architectures for agricultural image classification applications.

4.4.1 Convolutional Neural Network

The Convolutional Neural Network (CNN) is trained over 50 epochs, during which

both the training and testing accuracy exhibited a steady improvement. The final

accuracy reached 87.0%, as shown in Figure 4.2, indicating the model’s strong learning

capacity over the dataset. Similarly, the loss graph in Figure 4.3 demonstrates a

consistent decrease, confirming the convergence of the model. The comprehensive

evaluation metrics are provided in Table 4.3, showing uniform recall, precision, and

F1-scores across all 12 classes, with particularly high scores for crops like Maize and

Sugar beet. These results a�rm the CNN’s e↵ectiveness in handling multi-class crop

classification.

4.4.2 VGG16

The VGG16 model is trained for 50 epochs, during which both the training and

testing accuracy showed steady improvement, reaching a final accuracy of 89.0% as il-

lustrated in Figure 4.4. This upward trend in accuracy demonstrates VGG16’s robust

feature extraction capabilities on the crop classification dataset. Correspondingly, the

loss curve in Figure 4.5 exhibits a consistent decline, confirming e↵ective model conver-

gence. Table 4.4 summarizes the detailed evaluation metrics, indicating consistent and

balanced values of recall, precision, and F1-score across all twelve categories. Notably,

crops such as Maize and Sugar beet achieved particularly high scores, underscoring
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Figure 4.2: Train and Test Accuracy for CNN

Figure 4.3: Train and Test Loss for CNN
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Table 4.3: Evaluation Metrics for CNN

Class Precision Recall F1-Score

Sugar beet 0.93 0.92 0.92

Common Chickweed 0.89 0.88 0.88

Charlock 0.86 0.84 0.85

Shepherd’s Purse 0.78 0.76 0.77

Common wheat 0.88 0.89 0.89

Scentless Mayweed 0.80 0.82 0.81

Maize 0.93 0.91 0.92

Loose Silky-bent 0.86 0.85 0.85

Black-grass 0.81 0.80 0.80

Fat Hen 0.83 0.81 0.82

Small-flowered Cranesbill 0.82 0.80 0.81

Cleavers 0.85 0.83 0.84

Overall Accuracy 87.0%

VGG16’s proficiency in distinguishing similar crop types. Overall, the results validate

VGG16 as a strong contender for multi-class crop classification tasks.

4.4.3 InceptionV3

The InceptionV3 model is trained over 50 epochs, during which both training and

testing accuracy exhibited consistent improvement, culminating in a final accuracy of

92.0% as shown in Figure 4.6. The consistent improvement in accuracy underscores the

model’s strong capability to identify complex patterns within the crop classification

dataset. The loss curve presented in Figure 4.7 shows a smooth and continuous decline,

confirming e↵ective convergence of the model. Detailed evaluation metrics are listed

in Table 4.5, achieved uniform precision, recall, and F1-score metrics across all twelve

crop classes. High performance for crops like Maize and Sugar beet further underscores
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Figure 4.4: Train and Test Accuracy for VGG16

Figure 4.5: Train and Test Loss for VGG16
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Table 4.4: Evaluation Metrics for VGG16

Class Precision Recall F1-Score

Sugar beet 0.96 0.94 0.95

Common Chickweed 0.92 0.91 0.91

Charlock 0.88 0.86 0.87

Shepherd’s Purse 0.81 0.80 0.80

Common wheat 0.91 0.92 0.91

Scentless Mayweed 0.84 0.86 0.85

Maize 0.95 0.94 0.94

Loose Silky-bent 0.89 0.88 0.88

Black-grass 0.83 0.82 0.82

Fat Hen 0.87 0.85 0.86

Small-flowered Cranesbill 0.84 0.83 0.83

Cleavers 0.87 0.86 0.86

Overall Accuracy 89.0%

InceptionV3’s proficiency in distinguishing among crop types. Overall, these results

confirm the model’s suitability for accurate multi-class crop classification.

4.4.4 Vision Transformer

The Vision Transformer (ViT) model is trained for 50 epochs, showing continuous

improvement in both training and testing accuracy, reaching a peak accuracy of 94.7%

as depicted in Figure 4.8. This strong performance highlights ViT’s capability to e↵ec-

tively learn complex patterns from the crop images. The loss graph in Figure 4.9 illus-

trates a steady decrease, indicating successful model convergence. Table 4.6 presents

detailed evaluation metrics, with uniformity in recall, precision, and F1-scores across

all twelve classes. Crops such as Maize and Sugar beet attained especially high scores,

emphasizing the model’s accuracy in discriminating among di↵erent crop types. Over-
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Figure 4.6: Train and Test Accuracy for InceptionV3

Figure 4.7: Train and Test Loss for InceptionV3
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Table 4.5: Evaluation Metrics for InceptionV3

Class Precision Recall F1-Score

Sugar beet 0.97 0.96 0.96

Common Chickweed 0.94 0.93 0.93

Charlock 0.91 0.90 0.90

Shepherd’s Purse 0.85 0.84 0.84

Common wheat 0.94 0.94 0.94

Scentless Mayweed 0.88 0.89 0.88

Maize 0.96 0.96 0.96

Loose Silky-bent 0.92 0.91 0.91

Cleavers 0.90 0.89 0.89

Black-grass 0.86 0.84 0.85

Fat Hen 0.91 0.90 0.90

Small-flowered Cranesbill 0.87 0.86 0.86

Overall Accuracy 92.0%

all, the results establish Vision Transformer as the most e↵ective model among those

tested for multi-class crop classification.

4.5 Comparative Study

The comparative performance of di↵erent deep learning architectures, namely

CNN, VGG16, InceptionV3, and Vision Transformer (ViT) on crop classification

tasks o↵ers key insights into applicability, generalization capabilities, and limitations

in real-world agricultural settings. In our experiments, we re-implemented these

models on a standardized crop dataset and measured their classification accuracies,

comparing them with the best-known performances reported in literature. The

CNN model, representing the most foundational deep learning approach in image
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Figure 4.8: Train and Test Accuracy for Vision Transformer

Figure 4.9: Train and Test Loss for Vision Transformer
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Table 4.6: Evaluation Metrics for Vision Transformer

Class Precision Recall F1-Score

Sugar beet 0.98 0.97 0.97

Common Chickweed 0.96 0.95 0.95

Charlock 0.90 0.92 0.91

Shepherd’s Purse 0.87 0.85 0.86

Common wheat 0.95 0.96 0.95

Scentless Mayweed 0.89 0.90 0.89

Maize 0.98 0.98 0.98

Loose Silky-bent 0.94 0.94 0.94

Black-grass 0.88 0.85 0.86

Fat Hen 0.92 0.91 0.92

Small-flowered Cranesbill 0.88 0.86 0.87

Cleavers 0.91 0.90 0.91

Overall Accuracy 94.7%

classification, achieved an accuracy of 87.0% in our experiments. In contrast, the

literature-reported state-of-the-art for CNN-based approaches stands at 94.38%.

This noticeable performance gap suggests that basic CNN architectures may lack

the depth and regularization necessary for handling the complex, subtle variations

in plant imagery. Furthermore, our implementation may have faced limitations due

to constraints in hyperparameter tuning, the use of standard architecture without

architecture-specific optimization, or environmental factors like GPU training time

limitations. CNNs are often more sensitive to dataset size and augmentation schemes,

which could have played a critical role here. VGG16, a deeper convolutional network

with uniform architecture and pretrained weights from ImageNet, demonstrated

better performance in our study with an accuracy of 89.0%. Literature sources
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indicate that VGG16 has achieved up to 94.76% on similar tasks, which implies that

while our model leveraged transfer learning e↵ectively, it may not have fully utilized

the benefits of domain-specific fine-tuning. The fixed kernel size and extensive

depth in VGG16 help in learning hierarchical representations, but its lack of inherent

multi-scale feature detection (unlike InceptionV3) and relatively higher computational

overhead may have slightly limited its adaptability in our case. Nevertheless, VGG16

proved to be a solid improvement over the basic CNN model and served as a robust

baseline for deeper networks. The InceptionV3 model, known for its inception

modules that combine convolutions of various receptive fields in parallel, our results

yielded 92.0% accuracy, in contrast to the state-of-the-art benchmark of 95.8%.

This demonstrates the power of multi-scale feature learning in crop image analysis.

InceptionV3’s architecture is inherently better at capturing fine-grained patterns and

texture details, which is essential for distinguishing between visually similar crop

and weed species. The reduced gap in performance compared to VGG16 and CNN

also indicates that the model was able to leverage its architectural advantages even

without highly specific hyperparameter adjustments. Factors like batch normaliza-

tion, factorized convolutions, and auxiliary classifiers make InceptionV3 more stable

and e�cient during training, contributing to its high accuracy in our experiments.

The Vision Transformer (ViT), representing a significant shift from convolutional

to attention-based architectures, achieved an outstanding accuracy of 94.7% in

our implementation. This is closely aligned with the reported state-of-the-art of

97.01%, indicating that transformer-based models can generalize well even with

moderate dataset sizes, provided proper augmentation and training strategies are

used. ViT splits an image into equal-sized patches and processes them as a sequence,

enabling the model to learn spatial relationships and long-range dependencies without
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depending on convolutional biases. This property becomes particularly beneficial

in agricultural imagery, where contextual and positional relationships among plant

parts can be crucial for accurate classification. The slight shortfall from the literature

benchmark could stem from limited data or fewer training epochs, yet the result

confirms ViT’s potential as the most promising model for crop classification in our

study. From a broader perspective, the trend of increasing accuracy from CNN to

ViT is consistent with the evolution of deep learning models in computer vision.

Each model brings specific advantages, the simplicity and speed of CNN, the transfer

learning strengths of VGG16, the multiscale architecture of InceptionV3, and the

attention-based global context modeling of ViT. However, it is also evident that

newer models require more computational resources and careful tuning to reach their

full potential. The role of transfer learning, data augmentation, GPU capability,

and training duration is critical in narrowing the performance gap with SOTA. In

summary, while our results slightly trail the highest benchmarks reported in literature,

the margin is narrow, especially for advanced models like InceptionV3 and ViT.

This demonstrates that with the right training pipeline, even modest infrastructure

can yield near SOTA performance. Vision Transformers, in particular, emerge as

the most e�cient model for this domain, suggesting a shift in future agricultural

AI research toward attention-based frameworks. Additionally, the comparative

analysis emphasizes the significance of choosing an appropriate model architecture

based on the resources at hand, dataset quality, and target accuracy, paving the

way for further innovations in smart farming and automated crop monitoring systems.
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Table 4.7: Comparison of Our Model Accuracies with State-of-the-Art Results

Model State-of-the-Art Accuracy Our Accuracy

CNN 94.38% [37] 87.0%

VGG16 (Pretrained) 94.76% [38] 89.0%

InceptionV3 (Pretrained) 95.8% [39] 92.0%

Vision Transformer (ViT) 97.01% [40] 94.7%



Chapter 5

Conclusions and Future Work

This study evaluates and contrasts four deep learning models, CNN, VGG16, In-

ceptionV3, and Vision Transformer, to accurately classify crops from aerial or top-

down images. Our experiments demonstrated that the Vision Transformer model

attained the top accuracy of 94.7%, closely approaching the state-of-the-art bench-

mark of 97.01%. This confirms the capability of transformer-based architectures to

more e↵ectively grasp long-range dependencies and contextual details compared to

conventional CNN-based models. Despite the promising results, the current research

work has certain limitations that require attention in order to achieve more robust

system and well-suited for use in practical agricultural environments. One key lim-

itation is that the model was trained and evaluated using datasets where each tray

contained exclusively a single crop type. This assumption limits the applicability of

the model in scenarios where multiple crops may coexist within the same tray or field

area. Additionally, the current implementation does not handle overlapping plants,

mixed crop-weed presence, or significant variation in lighting and occlusion, factors

that are often encountered in uncontrolled outdoor environments. Another constraint

is the relatively controlled nature of the dataset, where image quality and resolution re-
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main consistent. In field conditions, drones or other imaging equipment may capture

images at varying altitudes, angles, and weather conditions, potentially impacting

classification accuracy. Moreover, the current model does not yet incorporate tem-

poral dynamics or growth-stage variations of crops, which are critical for long-term

agricultural monitoring and decision-making. To overcome these challenges, future

work will focus on extending the system to support multi-label classification, allow-

ing for the detection and di↵erentiation of multiple crop types within a single image

or tray. We also plan to integrate a segmentation module that can isolate and ana-

lyze di↵erent plant regions more precisely. Furthermore, augmentation with real-time

UAV-captured data and domain adaptation techniques will be explored to enhance

model generalization. Finally, integrating NDVI and other multispectral indices with

visual features may improve classification performance, particularly in ambiguous or

degraded image conditions. Overall, while the current study presents a strong foun-

dation for crop classification using deep learning, continued research and refinement

are necessary to fully meet the demands of precision agriculture at scale.
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