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Abstract 

The objective of this thesis is to implement the spring element-based 

homogenization technique to perform periodic unit cell calculations 

within the ABAQUS finite element framework. Unit cell 

calculations are critical in the context of ductile failure analysis, as 

they provide a detailed understanding of localized deformation 

mechanisms, such as plastic flow and stress evolution. 

A mathematical framework is implemented to represent the elastic–

plastic behaviour of the matrix material, incorporating isotropic 

hardening under proportional loading conditions. The governing 

equations are formulated using finite strain theory and executed 

through finite element modelling using the ABAQUS/Standard 

implicit solver. The model utilizes spring elements to enforce 

periodic boundary conditions and control stress application, 

enabling simulations under controlled multiaxial stress states. 

The results show that the accuracy of the unit cell simulation is 

primarily influenced by two key parameters: the spring stiffness and 

the size of the time increment. Improper calibration of these 

parameters can lead to notable deviations from target stress ratios, 

especially in the plastic regime. Through performance assessment 

and sensitivity analysis, the study identifies optimal ranges for these 

parameters, ensuring a balance between numerical accuracy and 

computational efficiency. 

This work establishes a robust and adaptable approach to 

micromechanical simulation, with potential extensions to dynamic 

loading conditions and porous materials in future research. 
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Chapter 1 

Introduction 

 

1.1 Overview: unit cell modeling 

In computational mechanics, the need to understand material behaviour 

across different scales has led to the development of unit cell modelling. A 

unit cell, often referred to as a Representative Volume Element (RVE), is a 

small but statistically significant section of a material’s microstructure. It 

serves as a bridge between microscopic features (like inclusions or voids) 

and the macroscopic properties observed in bulk materials. 

 

 

The schematic above illustrates the concept of homogenization, where a 

microstructural volume with varying properties is mathematically averaged 

into an effective continuum representation 

In this framework, the RVE (shown at the microscale) captures local 

heterogeneities, such as voids or grain boundaries, and the resulting data is 

used to derive homogenized material properties like effective stiffness 𝐶𝑖𝑗𝑘𝑙
∗

. These properties are then applied at the macroscale to model the overall 

Fig.1.1 Homogenization and characteristic scales length (Gross and seelig, 2018) 
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material response without resolving every microstructural detail across the 

full structure. 

To Perform unit cell calculation, Periodic Boundary Conditions (PBCs) are 

applied. These ensure that the displacements and tractions on opposite faces 

of the unit cell are matched, mimicking an infinite repetition of the 

microstructure. This approach avoids artificial edge effects and ensures 

consistent deformation behaviour across the cell. 

By leveraging unit cell modelling and PBCs, researchers can perform high-

fidelity micromechanical simulations while keeping computational costs 

manageable. This technique is widely used in materials science to evaluate 

how microstructural features influence bulk mechanical behaviour under 

complex loading scenarios. 

1.2 Application in ductile failure analysis 

Ductile failure in metals is a multiscale phenomenon typically governed by 

void nucleation, void growth, and void coalescence. These mechanisms 

evolve progressively under plastic deformation, leading to Plastic strain 

localization and eventual fracture. Understanding and predicting these 

events require detailed insight into how voids initiate and interact under 

various loading conditions. 

Unit cell Simulation becomes essential in this context, as it allows direct 

simulation of individual voids embedded in a deforming matrix. By 

applying appropriate loading and boundary conditions to the unit cell, 

researchers can study the onset and evolution of void growth and 

coalescence and quantify their contribution to macroscopic failure. For 

example, analysing void growth under triaxial or shear loading helps 

determine critical conditions for damage initiation and fracture propagation. 

Moreover, unit cell-based simulations provide a controlled platform to 

study how different factors—such as void shape, spacing, orientation, and 
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matrix hardening—affect the overall material response. These insights are 

crucial for developing and validating continuum-scale damage models used 

in large-scale structural simulations. 

1.3 Thesis organization 

This thesis is structured into seven chapters, each addressing a key 

component of the study: 

Chapter 2: Literature review 

The literature review focuses on existing algorithms for implementing 

periodic boundary conditions and proportional loading in unit cell 

simulations. Identification of research gap and problem statement. 

Chapter 3: Homogenization technique 

Overview of Technique used for performing unit cell calculations. 

Chapter 4: Unit cell calculations 

Description of the unit cell calculation in ABAQUS, including mesh, spring 

elements, and loading strategy. 

Chapter 5: Results and discussion 

Unit Cell calculation results, stress ratio accuracy, and effects of spring 

stiffness and increment size. 

Chapter 6: Conclusions and future scope 

Summary of key findings and future work on dynamic simulations and 

porous microstructures.  
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Chapter 2 

Literature review and problem statement 

 

2.1 Literature study  

The progression of ductile failure in metallic materials typically follows 

three key stages: void nucleation, growth, and coalescence. As discussed in 

the work of Wiktor et al., (2016) voids generally form at microstructural 

features such as inclusions or second-phase particles where stress 

concentration occurs. As the material undergoes plastic deformation, these 

voids grows and begin to interact. Eventually, neighbouring voids link up 

in a process called coalescence, leading to the formation of localized band, 

where the plastic deformation starts accumulating, leading to final fracture. 

Experimental studies have offered direct insight into this failure evolution. 

For example, Ravichandran et al., (2000). explored ductile fracture 

behaviour in high-strength steel under both quasi-static and dynamic 

loading conditions. Their findings highlighted how increased strain rates 

lead to more concentrated deformation zones, larger voids, and distinct 

shear-dominated fracture features. Through microscopy and thermal 

imaging, they identified phenomena such as void clustering, localized 

heating, and transition from uniform to tunnelled fracture surfaces. These 

results underscore the influence of loading rate and stress state on failure 

morphology. 

To analyse such phenomena more systematically, researchers have turned 

to micromechanically motivated unit cell calculations. Most of these 

studies, disregards the void nucleation and assume a preexisting voids in the 

matrix. By using unit cell calculations, one can better understand how void 
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growth and localization contribute to macroscopic ductile failure, develop 

more accurate material models, and explore the effect of microstructural 

features on material performance. 

These modelling efforts have led to the formulation of advanced 

constitutive models, such as the well-known Gurson (1977) model which 

incorporates void volume fraction into the yield criterion to capture damage 

accumulation and material softening. 

In the context of unit cell calculations, several methods have been 

developed to maintain constant stress ratios during deformation, commonly 

referred to as proportional loading. In this study, we implement a spring-

element-based approach that differs from the UEL-based formulation 

proposed by Chouksey et al., which utilizes auxiliary elements with 

displacement degrees of freedom to control generalized stress components. 

The UEL framework enables robust enforcement of multiaxial loading 

paths and facilitates stress-controlled deformation in periodic unit cells. 

Additionally, the work by Vigneshwaran and Benzerga (2024), 

demonstrated an effective alternative approach, where spring elements were 

used to apply proportional loading in periodic unit cell simulations. This 

method simplifies the application of stress states while maintaining control 

over the deformation path, particularly in implicit solvers. 

Building on these insights, the present study focuses on implementing a 

spring-element-based approach to perform unit cell calculations under 

proportional loading. The aim is to evaluate the performance of the   

algorithm in reproducing desired stress states and to assess how parameters 

such as spring stiffness and increment size influence accuracy and 

convergence. 
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2.2 Problem statement 

This thesis focuses on Implementing a spring-based stress control 

technique, originally proposed by Vigneshwaran and Benzerga (2024), to 

simulate periodic unit cell behavior under proportional loading within the 

ABAQUS implicit framework. Although the method offers a simplified 

setup, its effectiveness in achieving target stress ratios, maintaining 

numerical stability, and responding to changes in key parameters like spring 

stiffness and increment size has not been systematically studied. This 

research aims to evaluate these aspects to establish reliable usage guidelines 

for unit cell calculations. Following are the key objectives 

• Implement the spring-based stress control method within a periodic 

unit cell model using ABAQUS/Implicit. 

• Validate the method’s capability to maintain prescribed 

macroscopic stress ratios under proportional loading. 

• Investigate the influence of spring stiffness and time increment size 

on stress accuracy and convergence. 

• Determine optimal parameter ranges for achieving stable and 

accurate results. 

• Provide a framework for extending the method to more complex 

loading and material conditions in future studies.  
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Chapter 3 

   Homogenization technique 

 

3.1 Problem formulation 

3.1.1Stress state dependencies 

• Macroscopic stress calculations 

The macro stress is defined as the volume average over the unit cell of 

the microscopic stress 

< 𝜎 >=
1

𝛺
∫  
𝛺

𝜎𝑑𝛺      (3.1) 

Where 𝛺 is volume of unit cell. 

• Stress triaxiality: triaxiality is defined as the ratio of hydrostatic 

stress to equivalent (von Mises) stress. 

𝑇 =
𝜎𝑚

𝜎𝑒𝑞
, where      (3.2) 

𝜎𝑒𝑞 = √
3

2
𝜎′: 𝜎′, 𝜎𝑚 =

<𝜎1>+<𝜎2>+<𝜎3>

3
, 𝜎′=< 𝜎 > −

1

3
𝑡𝑟 < 𝜎 >. 

• Lode parameter: It characterizes the effect of the third invariant of 

the deviatoric stress tensor and helps differentiate between stress 

states and is defined as: 

𝐿 =
2<𝜎2>−<𝜎1>−<𝜎3>

<𝜎3>−<𝜎1>
      (3.3) 

Where < 𝜎1 >,< 𝜎2 >,< 𝜎3 > are the principal stresses. 

3.1.2 Deformation gradient tensor, F 

The deformation gradient tensor, denoted by F, is a fundamental quantity in 

continuum mechanics used to describe how a material body deforms from 
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its original configuration to its current state. It captures both rigid body 

motion (rotation and translation) and local stretching or shearing of material 

elements. Mathematically, the deformation gradient is defined as  

𝐹 =
𝜕𝑥

𝜕𝑋
         (3.4) 

Where 𝑋 is the position vector in the reference (undeformed) configuration 

and 𝑥 is the position vector in the current (deformed) configuration. 

3.1.3 Eulerian strain tensor, E 

The Eulerian strain tensor, often referred to as the logarithmic strain tensor, 

is a strain measure used in finite deformation analysis. It is mathematically 

defined as 

𝐸 = ln𝑉, where 𝑉 = 𝐹𝐹𝑇.Overall equivalent strain tensor is defined as 

𝐸𝑒𝑞 = √
2

3
𝐸′: 𝐸′. Where 𝐸′ is deviatoric strain tensor.  (3.5) 

Unit cell in this study is subjected to one shear and three normal stress 

components. Hence, the non-zero components of E which can be derived 

from Wong and Guo, (2015) are as follows 

𝐸11 =
1

2
ln(𝐹11𝐹22) +

1

2

𝐹12
2+𝐹11

2−𝐹22
2

𝛾𝛿
ln⁡ (

𝛾+𝛿

𝛾−𝛿
),   (3.6) 

𝐸22 =
1

2
ln(𝐹11𝐹22) +

1

2

𝐹12
2+𝐹11

2−𝐹22
2

𝛾𝛿
ln⁡ (

𝛾+𝛿

𝛾−𝛿
),   (3.7)  

𝐸33 = ln𝐹33,        (3.8) 

𝐸12 =
𝐹12𝐹22

𝛾𝛿
⁡ln⁡ (

𝛾+𝛿

𝛾−𝛿
),      (3.9) 

where 𝛾 = √𝐹12
2 + (𝐹12 + 𝐹22)2, 𝛿 = √𝐹12

2 + (𝐹12 + 𝐹22)2. (3.10) 
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3.2 Implementation 

3-D finite deformation calculations are carried out using the voided cell 

model. This framework was given by Vigneshwaran and Benzerga (2024). 

Initial dimension of unit cell is 2𝐴0, 2𝐴0, 2𝐵0.  

  

 

Fig. 3.1 Schematic of unit cell with master nodes and dummy nodes. 

Vigneshwaran and Benzerga (2024) 

3.2.1 Boundary conditions 

Fully periodic boundary conditions are applied on the unit cell. Relative 

displacements of points on opposite faces can be written as: 

𝑢(𝐴0, 𝑥2, 𝑥3) − 𝑢(−𝐴0, 𝑥2, 𝑥3) = 2𝐴0(𝐹 − 𝐼)𝑒1, 

𝑢(𝑥1, 𝐵0, 𝑥3) − 𝑢(𝑥1, −𝐵0, 𝑥3) = 2𝐵0(𝐹 − 𝐼)𝑒2, 

𝑢(𝑥1, 𝑥2, 𝐴0) − 𝑢(𝑥1, 𝑥2, −𝐴0) = 2𝐴0(𝐹 − 𝐼)𝑒3.   (3.11) 
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Where F is the macro deformation gradient which is taken as the volume 

average of microscopic counterpart and 𝑥𝑖⁡⁡  denotes coordinates in the 

initial configuration. 

3.2.2 Loading condition 

Proportional loading refers to a loading condition where the direction of the 

stress ratios remains constant.  

In this study, proportional loading is characterized using two independent 

stress ratios, typically denoted as T and L. Proportional loading is 

considered using two stress ratios 

𝜌 =
𝜎11

𝜎22
= 

𝜎33

𝜎22
;  𝜅 =

𝜎12

𝜎22
.     (3.12)   

Stress Triaxiality and Lode Parameter can be expressed in terms of these 

stress ratios given by Vigneshwaran and Benzerga (2024) as 

𝑇 =
(1+2𝜌)sgn⁡(𝜎22)

3√(1−𝜌)2+3𝜅2
;     𝐿 = −

(1−𝜌)sgn⁡(𝜎22)

√(1−𝜌)2+4𝜅2
.    (3.13) 

The periodic boundary condition has been imposed using the master nodes 

where the displacements of the master nodes are defined as  

𝑢𝑀1 = 2𝐴0(𝐹 − 𝐼)𝑒1, 

𝑢𝑀2 = 2𝐵0(𝐹 − 𝐼)𝑒2,       (3.14) 

𝑢𝑀3 = 2𝐴0(𝐹 − 𝐼)𝑒3.       

By comparing eq. (3.14) with eq. (3.10) we get 

𝑢(𝐴0, 𝑥2, 𝑥3) − 𝑢(−𝐴0, 𝑥2, 𝑥3) = 2𝑢𝑀1 , 

𝑢(𝑥1, 𝐵0, 𝑥3) − 𝑢(𝑥1, −𝐵0, 𝑥3) = 2𝑢𝑀2,    (3.14) 

𝑢(𝑥1, 𝑥2, 𝐴0) − 𝑢(𝑥1, 𝑥2, −𝐴0) = 2𝑢𝑀3. 

Macro deformation gradient is related to master nodes through  
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F=

[
 
 
 
 

𝐴

𝐴0

𝑣

𝐵0
0

0
𝐵

𝐵0
0

0 0
𝐶

𝐴0]
 
 
 
 

.       (3.15) 

Where the current dimensions of the deformed unit cell can be calculated as 

𝐴 = 𝐴0 + 𝑢1 , 𝐴 = 𝐴0 + 𝑢2 , 𝐴 = 𝐴0 + 𝑢3  and 𝑢1
𝑀1 =  𝑢1 , 𝑢2

𝑀2 = 𝑢2 , 

𝑢3
𝑀3 = 𝑢3, 𝑢1

𝑀2 = 𝑣,The rate of deformation is then obtained as 

𝐷 = Sym(𝐹̇𝐹−1)=

[
 
 
 
 

𝑢1̇

𝐴

1

2
(
𝑣̇

𝐵
−

𝑣𝑢1̇

𝐴𝐵
) 0

1

2
(
𝑣̇

𝐵
−

𝑣𝑢1̇

𝐴𝐵
)

𝑢2̇

𝐵
0

0 0
𝑢3̇

𝑐 ]
 
 
 
 

.   (3.16) 

Proportional stressing is applied by introducing nodal forces, which are 

related to the master displacement. If 𝑃𝑖𝑗  denotes the generalized force 

corresponding to degree of freedom 𝑖 of master node 𝑗, the external power 

is 

𝑊̇𝑒𝑥𝑡 = 𝑃11𝑢1̇ + 𝑃22𝑢2̇+ 𝑃33𝑢3̇+ 𝑃12𝑣̇.    (3.17) 

The Hill–Mandel lemma is adopted to write the internal power of the cell 

as 

𝑊̇𝑖𝑛𝑡 = 𝛺(𝜎11𝐷11+ 𝜎22𝐷22 + 𝜎11𝐷33 + 2𝜎12𝐷12),   (3.18) 

𝑊̇𝑖𝑛𝑡= 𝛺 [ (
𝜎11

𝐴
−

𝜎12𝑣

𝐴𝐵
) 𝑢1̇ + (

𝜎22

𝐵
) 𝑢2̇ + (

𝜎11

𝐶
) 𝑢3̇ + (

𝜎12

𝐵
) 𝑣̇].  (3.19)  

Where 𝛺 is volume of the unit cell, using the principle of virtual work, 

using eq. (3.17) and eq. (3.19) gives 

𝑃11=𝛺 (
𝜎11

𝐴
−

𝜎12𝑣

𝐴𝐵
),  𝑃22 = 𝛺 (

𝜎22

𝐵
), 

𝑃33 = 𝛺 (
𝜎11

𝐶
),   𝑃12 = 𝛺 (

𝜎12

𝐵
).    (3.20) 



12 
 

To achieve constant average stress ratios, direct application of forces to the 

master nodes is restricted by the constraint represented in Eq. (3.14). As a 

workaround, a penalty-based method is implemented where four spring 

elements are introduced to link the displacements of the master nodes with 

corresponding dummy nodes. Forces in springs are given by 

𝑃11 = k(𝑈1 − 𝑢1),  𝑃22 = 𝑘(𝑈2 − 𝑢2), 

𝑃33 = k(𝑈3 − 𝑢3),  𝑃12 = k(𝑉 − 𝑣).    (3.21) 

Where k is stiffness of the spring. If the forces are normalized by a force 

𝑃22, following constraints are obtained.  

𝑈1 − 𝑢1 = (
𝜌𝐵

𝐴
−

𝜅𝑣

𝐴
) (𝑈2 − 𝑢2), 

𝑈3 − 𝑢3 = (
𝜌𝐵

𝐶
) (𝑈2 − 𝑢2),      (3.22) 

𝑉 − 𝑣 = 𝜅(𝑈2 − 𝑢2). 

If the forces are normalized by a normal force 𝑃12, following constraints 

are obtained 

𝑈1 − 𝑢1 = (
𝜌𝐵

𝜅𝐴
−

𝑣

𝐴
) (𝑉 − 𝑣), 

𝑈3 − 𝑢3 = (
𝜌𝐵

𝜅𝐶
) (𝑉 − 𝑣),      (3.23) 

 𝑈2 − 𝑢2 =
1

𝜅
(𝑉 − 𝑣). 

3.3 Displacement control strategy 

The formulation involves solving a nonlinear system of equations that 

includes eight unknown displacements, 𝑈1, 𝑈2, 𝑈3, 𝑉, 𝑢1, 𝑢2, 𝑢3, 𝑣 . These 

variables consist of four master nodes displacements and four dummy 

node displacements. 

To enable numerical stability and ensure convergence, one of these 

displacement components is selected as a pilot or dummy variable. This 
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pilot displacement acts as a reference point for the iterative solution process, 

allowing the solver to anchor the system while calculating the remaining 

unknowns. As discussed by the Vigneshwaran and Benzerga (2024) choice 

of this control variable depends on the magnitude of the applied shear stress 

ratio, denoted as κ. When 𝜅 < 0.7 , indicating that the loading is not 

predominantly shear-driven, the model utilizes Equation (3.27), assigning 

𝑈2the vertical displacement as the pilot. In cases where 𝜅 > 0.7, where 

shear dominates the loading scenario, Equation (3.28) is applied, and the 

tangential displacement 𝑉 is used instead. This adaptive strategy ensures 

that the deformation applied to the unit cell closely mirrors realistic stress 

states, avoiding artificial constraints or instability in the numerical scheme. 

This displacement control strategy is integral to the implementation of 

periodic boundary conditions, which simulate the effect of the unit cell 

being part of a larger, repeating structure. The control algorithm enables 

constant implementation of stress ratios in the unit cell, regardless of 

whether the dominant mode of loading is tension, compression, or shear. As 

a result, the model can accurately capture key micromechanical phenomena 

such as void elongation, rotation, and eventual coalescence, which are 

critical to predicting failure in porous and ductile materials. 
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Chapter 4 

Unit cell calculations 

 

4.1 Simulation setup and methodology 

To numerically evaluate the mechanical response of the unit cell under 

multiaxial loading, a finite element model was developed using 

ABAQUS/CAE Standard 2017, as shown in Fig. 4.1. The unit cell was 

modeled with 27 eight-noded hexahedral elements (C3D8), and the 

discretization resulted in a total of 64 nodes. 

 

Fig. 4.1 Finite element mesh of the 3D unit cell with spring 

elements. 

A structured hexahedral mesh was adopted due to its superior performance 

in capturing stress gradients compared to tetrahedral elements. Spring 
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elements were introduced along specific boundaries to simulate compliant 

loading and to control displacement transmission across the unit cell. 

4.2 Boundary conditions and constraint implementation 

To simulate the mechanical behaviour of the unit cell as part of a periodic 

microstructure, periodic boundary conditions (PBCs) were applied. These 

boundary conditions ensure that opposite faces of the unit cell deform in 

accordance with the displacement continuity condition (Eq. 3.11), enabling 

the model to represent the behaviour of an infinite, repeating material 

domain. 

The displacement constraint in eq. 3.11 were implemented using the 

*Equation option available in ABAQUS. To streamline and automate this 

process, the Matlab scripting package, developed by Chouksey et al. (2019), 

was used. Matlab simplifies the generation of equation constraints across 

node sets on opposing faces, greatly reducing manual workload and 

improving accuracy in constraint application. 

In addition to the periodic boundary condition, a user-defined multi-point 

constraint (MPC) subroutine was developed to control the stress ratios 

during the deformation. This subroutine adapts to the applied stress ratio 

(𝜌⁡&⁡𝜅), eq. 3.12, switching between Equation (3.21) and Equation (3.22) 

to determine the appropriate control displacement using either the vertical 

component U2 or the tangential displacement V as the pilot variable as 

suggested by Vigneshwaran and Benzerga (2024). This adaptive 

enforcement is critical for maintaining numerical stability, particularly 

under varied multiaxial loading conditions. 

To monitor and record the material response throughout the simulation, the 

URDFIL subroutine was used to extract key output variables such as 

displacement of the master nodes at each increment. This procedure, in line 

with the methodology described by Chouksey et al., (2019), allows for 
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detailed analysis of evolving deformation patterns, void geometry, and 

porosity evolution. 

Moreover, the implementation of the UHARD subroutine enabled the 

incorporation of a custom strain hardening law, allowing the model to 

update the material's yield stress in response to accumulated plastic strain. 

This subroutine plays a vital role in capturing the nonlinear material 

behaviour, ensuring that the hardening response is accurately reflected in 

the constitutive framework. 

Collectively, these tools *Equation constraints, the MPC subroutine, and 

the URDFIL and UHARD routines provided a robust and flexible 

foundation for applying complex boundary conditions and tracking the 

micromechanical response of the unit cell under proportional loading 

conditions. 

4.3 Spring stiffness and numerical stability 

SPRINGA elements were used in ABAQUS to model compliant boundary 

loading conditions, allowing precise control over displacement application. 

Their implementation follows guidelines provided in the ABAQUS User 

Manual (2017) for spring-based interactions. 

The use of spring elements in the finite element model plays a crucial role 

in stabilizing the simulation, particularly by controlling the pilot 

displacement and ensuring consistent deformation across the unit cell. 

Although the spring stiffness constant (𝑘) does not appear directly in the 

normalized governing equations (Equations 3.27 and 3.28), its impact on 

iterative convergence is substantial. These springs are placed to facilitate 

smooth displacement transmission across boundaries while avoiding 

numerical instability. 

In this study, a series of simulations were performed by varying the spring 

stiffness over a wide range—from 0.01 to 0.5 times of the value of E, where 
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𝐸 is the elastic modulus of the material. This range was selected to 

investigate the effect of spring stiffness on solution stability, convergence 

rate, and deformation accuracy. It was observed that very low stiffness 

value, 0.01 times the value of E, led to poor constraint control, while higher 

value, 0.5 times the value of E, introduced artificial stiffness that suppressed 

realistic deformation. Based on this analysis, a spring stiffness of 

approximately 0.1 times the value of E was found to provide optimal 

convergence and is adopted in simulations. Mesh refinement is necessary 

when inhomogeneities are present, as they cause local stress and strain 

variations that require a finer mesh for accurate results. The detailed 

influence of spring stiffness on simulation outcomes is presented in Chapter 

5: Results and Discussion. 
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Chapter 5 

Results and discussion 

 

5.1 Constitutive behaviour of material  

The mechanical response of the matrix is assumed to follow the rate 

independent isotropic J2 plasticity framework., where the elastic behavior 

has been defined with two elastic constants, modulus of elasticity, 

E=210GPa, and Poisson’s ratio, 𝜈=0.3.  

 

Fig 5.1 True stress versus True strain curve of material. 

The power law isotropic hardening law has been considered as 

𝜎𝑦 = 𝜎0 (1 +
𝜀

𝜀0
)
𝑛

       (5.1) 

Here, 𝜎0 =420MPa represents the initial yield strength, 𝜀0 =0.002 is the 

reference plastic strain, and n=0.05, strain hardening exponent.  

The stress-strain curve of the considered matrix material has been shown in 

Fig. 5.1. Since the unit cell contains no voids, the deformation response 
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remains homogeneous and primarily influenced by the intrinsic material 

properties rather than microstructural discontinuities.  

5.2 Results  

The results obtained from finite element unit cell calculations were analyzed 

based on the input stress ratios for two distinct loading conditions. Each 

case was evaluated, and any observed deviations are discussed in Section 

5.3 under error analysis.  

Case 1: 𝜌 = 0.625, 𝜅 = 0 

(Equivalent to T = 2, L = -1) 

In this case, the loading corresponds to a triaxial stress state with no shear 

contribution. Since 𝜅 = 0, the shear component < 𝜎12 >  is expected to be 

zero, eq. 3.12(b). In Fig. 5.2, stress field contours have been superimposed 

on the unit cell deformed configuration for different stresses at the same 

strain level. Contour plot shown in Fig. 5.2 (a) confirms this, showing 

negligible values of < 𝜎12 >, thereby validating the absence of shear.  
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(a) (b)  

(c) (d)  

Fig. 5.2 The stress field contours have been superimposed on the unit cell 

deformed configuration for ρ = 0.625, and κ = 0 (a) < 𝜎12 >, (b) < 𝜎11 >, 

(c) < 𝜎22 > (d) < 𝜎33 >. 

The prescribed loading condition enforced equal axial stresses, < 𝜎11 >   = 

< 𝜎33 >. The stress fields for < 𝜎11 >   and < 𝜎33 > are near-identical, 

indicating axisymmetric deformation behavior with < 𝜎11 >   = < 𝜎33 >. 
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The ratios < 𝜎11 > /< 𝜎22 >  and < 𝜎33 > /< 𝜎22 >  were prescribed to be 

equal and correspond to 𝜌 = 0.625. While the output shows these ratios to 

be nearly identical, there is a slight deviation from the input values—this 

variation is attributed to numerical discretization and convergence 

tolerances, and is further discussed in Section 5.3. 

Case 2: 𝜌 = 1, 𝜅 = 𝜅 =
1

√3
 

(Corresponding to T = 1, L = 0) 

Second loading condition has been chosen with non-zero 𝜅 value. The 

chosen value of 𝜌 = 1 and 𝜅 =
1

√3
 corresponds to,  < 𝜎11 > = < 𝜎22 >  =<

𝜎33 >  along with < 𝜎12 >≠ 0. In Fig. 5.3, stress field contours have been 

superimposed on the deformed configuration of the unit cell for different 

stresses corresponds to 𝜌 = 1 and 𝜅 =
1

√3
. The contours show same normal 

stress level and < 𝜎12 > level corresponding to 𝜅 value. 

Overall, the results from the second case also demonstrate that both the 

normal and shear stress components align well with input. The small 

variations observed in the output ratios are attributed to discretization and 

numerical approximations, which are further analyzed in Section 5.3. 
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(a) (b)  

(c) (d)  

Fig. 5.3 The stress field contours have been superimposed on the unit cell 

deformed configuration for 𝜌 = 1, 𝜅 =
1

√3
 (a) < 𝜎11 > , (b) < 𝜎22 > ,                   

(c) < 𝜎33 >, (d) < 𝜎12 > . 

5.3 Algorithm calibration 

The accuracy of the homogenization technique is evaluated by comparing 

the input stress ratios to the actual output stress ratios obtained from unit 

cell calculations. Deviations between these values are quantified as a 

percentage error and plotted against equivalent strain. It should be noted 

that since the void or inhomogeneity has not been considered in the unit 
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cell, there is no difference between micro and macro response of the unit 

cell. Two primary parameters influencing the performance are identified: 

spring stiffness (K) and finite element calculation increment size used 

during proportional loading.  

5.3.1 Effect of time increment  

Case: 𝜌 = 0.625, 𝜅 = 0, K = 0.05𝐸 

In this case, simulations were performed with moderate spring stiffness (K 

=0.5 times the value of E) and constant increment size. The fig. 5.4 shows 

the percentage error in stress ratio as a function of equivalent strain. This 

setup helps evaluate the ability of the algorithm to maintain accurate stress 

ratio throughout both elastic and plastic loading regimes. 

The plot shows that the error remains low during the elastic phase of 

loading, which indicates good stability and proper control of stress values 

at small strains. As the material transitions into the plastic regime, the error 

increases.  

 

 

Fig. 5.4 Error (%) vs equivalent strain for K = 0.5 times the value of E 
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Further evaluation revealed that increasing the number of increments, in 

other words decreasing the time incitement improves stress control and 

reduces error. However, this improvement introduces a tradeoff: more 

increments significantly increase computational time, particularly in 

simulations involving complex or non-uniform material behaviour and finer 

meshes. After conducting several trials, it was found that smaller time 

increment, which is specific problem dependent provide a reasonable 

compromise between simulation accuracy and computational efficiency.  

5.3.2 Effect of spring stiffness  

Figure 5.5 shows the comparison between errors in stress ratio for different 

values of spring stiffness (0.5, 0.1, 0.05 and 0.01 times the value of E) as a 

function of equivalent strain. The errors have been plotted for proportional 

loading corresponding to ρ = 0.625, and κ = 0. 

 

Fig. 5.5 Error (%) versus equivalent strain for different spring stiffness 

values, for proportional loading corresponding to ρ = 0.625, and κ = 0. 

From the plot, it is evident that reducing the value of K leads to a noticeable 

decrease in error, particularly in the plastic deformation range. Among all 

cases, the lowest stiffness (K = 0.1 times the value of E) provides the best 
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accuracy, especially at higher strain levels where material behavior 

becomes increasingly nonlinear. 

However, there is a computational tradeoff. For the same equivalent strain, 

smaller values of K require applying greater displacements and higher 

number of increments to reach the same strain level. This results in 

increased solver effort, more iterations, and higher computational time, 

especially when extended to complex models with refined meshes or 

inhomogeneous unit cell. 

Therefore, while reducing K improves accuracy, it also increases the 

computational cost. A balance must be maintained, and the selection of K 

should consider both the required precision and available computational 

resources. Based on the trends observed, K = 0.05 times the value of E or 

0.1 times the value of E may serve as a practical middle ground for most 

simulation setups.  
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Chapter 6 

Conclusion and future scope 

 

.6.1 Conclusion  

In this study, a robust algorithm was successfully implemented the 

homogenization technique into the ABAQUS finite element framework to 

perform periodic unit cell calculations. The implementation allowed for 

accurate enforcement of periodic boundary conditions and flexible stress 

control through the use of custom subroutines and spring elements. A 

detailed performance assessment revealed that the accuracy of the algorithm 

is highly dependent on two critical parameters: spring stiffness and time 

increment size. Unit cell calculations showed that improper selection of 

these parameters leads to noticeable errors, especially in the plastic regime, 

while appropriate tuning significantly improves numerical stability and 

stress ratio accuracy. 

To maintain this balance, each microstructural setup requires individual 

calibration to determine optimal stiffness and increment configurations. The 

results demonstrated for axisymmetric stress states. Furthermore, the 

methodology is not limited to symmetric conditions; it is readily extendable 

to general multiaxial loading scenarios, offering broad applicability in 

micromechanical studies of heterogeneous materials. Overall, the work 

establishes a practical and adaptable unit cell calculations framework that 

can support advanced material modelling and future investigations into 

complex microstructural behaviour. 
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6.2 Future scope 

Building on the current work, future efforts are focused on developing a 

custom algorithm for periodic unit cell simulations under general loading 

conditions, including high strain rate scenarios, using the 

ABAQUS/Explicit framework. While the present study has been conducted 

using the implicit solver for quasi-static conditions, extending the 

methodology to explicit dynamics will allow for the simulation of complex, 

time-dependent material behaviour. 

The upcoming implementation is specifically designed to model the 

dynamic response of porous materials under proportional and multiaxial 

loading, enabling detailed investigation into critical micromechanical 

phenomena such as void growth, interaction, and coalescence. These 

simulations will be further enhanced by considering variations in void 

geometry, spatial distribution, and porosity, offering a more comprehensive 

understanding of failure mechanisms at the microscale. 

By integrating this capability into the explicit solver environment, the 

framework will be able to handle large deformations and high strain rate 

effects more efficiently, making it suitable for applications such as impact 

analysis, crash simulations, and dynamic fracture of ductile materials. This 

advancement will significantly broaden the applicability of the algorithm 

and contribute to predictive modelling of complex material behaviour under 

realistic service conditions. 
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