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Abstract

The objective of this thesis is to implement the spring element-based
homogenization technique to perform periodic unit cell calculations
within the ABAQUS finite element framework. Unit cell
calculations are critical in the context of ductile failure analysis, as
they provide a detailed understanding of localized deformation
mechanisms, such as plastic flow and stress evolution.

A mathematical framework is implemented to represent the elastic—
plastic behaviour of the matrix material, incorporating isotropic
hardening under proportional loading conditions. The governing
equations are formulated using finite strain theory and executed
through finite element modelling using the ABAQUS/Standard
implicit solver. The model utilizes spring elements to enforce
periodic boundary conditions and control stress application,
enabling simulations under controlled multiaxial stress states.

The results show that the accuracy of the unit cell simulation is
primarily influenced by two key parameters: the spring stiffness and
the size of the time increment. Improper calibration of these
parameters can lead to notable deviations from target stress ratios,
especially in the plastic regime. Through performance assessment
and sensitivity analysis, the study identifies optimal ranges for these
parameters, ensuring a balance between numerical accuracy and
computational efficiency.

This work establishes a robust and adaptable approach to
micromechanical simulation, with potential extensions to dynamic

loading conditions and porous materials in future research.
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Chapter 1

Introduction

1.1 Overview: unit cell modeling

In computational mechanics, the need to understand material behaviour
across different scales has led to the development of unit cell modelling. A
unit cell, often referred to as a Representative Volume Element (RVE), is a
small but statistically significant section of a material’s microstructure. It
serves as a bridge between microscopic features (like inclusions or voids)

and the macroscopic properties observed in bulk materials.
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Fig.1.1 Homogenization and characteristic scales length (Gross and seelig, 2018)

The schematic above illustrates the concept of homogenization, where a
microstructural volume with varying properties is mathematically averaged

into an effective continuum representation

In this framework, the RVE (shown at the microscale) captures local
heterogeneities, such as voids or grain boundaries, and the resulting data is
used to derive homogenized material properties like effective stiffness C;jy,

. These properties are then applied at the macroscale to model the overall
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material response without resolving every microstructural detail across the

full structure.

To Perform unit cell calculation, Periodic Boundary Conditions (PBCs) are
applied. These ensure that the displacements and tractions on opposite faces
of the unit cell are matched, mimicking an infinite repetition of the
microstructure. This approach avoids artificial edge effects and ensures

consistent deformation behaviour across the cell.

By leveraging unit cell modelling and PBCs, researchers can perform high-
fidelity micromechanical simulations while keeping computational costs
manageable. This technique is widely used in materials science to evaluate
how microstructural features influence bulk mechanical behaviour under

complex loading scenarios.

1.2 Application in ductile failure analysis

Ductile failure in metals is a multiscale phenomenon typically governed by
void nucleation, void growth, and void coalescence. These mechanisms
evolve progressively under plastic deformation, leading to Plastic strain
localization and eventual fracture. Understanding and predicting these
events require detailed insight into how voids initiate and interact under

various loading conditions.

Unit cell Simulation becomes essential in this context, as it allows direct
simulation of individual voids embedded in a deforming matrix. By
applying appropriate loading and boundary conditions to the unit cell,
researchers can study the onset and evolution of void growth and
coalescence and quantify their contribution to macroscopic failure. For
example, analysing void growth under triaxial or shear loading helps

determine critical conditions for damage initiation and fracture propagation.

Moreover, unit cell-based simulations provide a controlled platform to

study how different factors—such as void shape, spacing, orientation, and



matrix hardening—affect the overall material response. These insights are
crucial for developing and validating continuum-scale damage models used

in large-scale structural simulations.
1.3 Thesis organization

This thesis is structured into seven chapters, each addressing a key

component of the study:
Chapter 2: Literature review

The literature review focuses on existing algorithms for implementing
periodic boundary conditions and proportional loading in unit cell

simulations. Identification of research gap and problem statement.
Chapter 3: Homogenization technique

Overview of Technique used for performing unit cell calculations.
Chapter 4: Unit cell calculations

Description of the unit cell calculation in ABAQUS, including mesh, spring

elements, and loading strategy.
Chapter 5: Results and discussion

Unit Cell calculation results, stress ratio accuracy, and effects of spring

stiffness and increment size.
Chapter 6: Conclusions and future scope

Summary of key findings and future work on dynamic simulations and

porous microstructures.



Chapter 2

Literature review and problem statement

2.1 Literature study

The progression of ductile failure in metallic materials typically follows
three key stages: void nucleation, growth, and coalescence. As discussed in
the work of Wiktor et al., (2016) voids generally form at microstructural
features such as inclusions or second-phase particles where stress
concentration occurs. As the material undergoes plastic deformation, these
voids grows and begin to interact. Eventually, neighbouring voids link up
in a process called coalescence, leading to the formation of localized band,
where the plastic deformation starts accumulating, leading to final fracture.

Experimental studies have offered direct insight into this failure evolution.
For example, Ravichandran et al., (2000). explored ductile fracture
behaviour in high-strength steel under both quasi-static and dynamic
loading conditions. Their findings highlighted how increased strain rates
lead to more concentrated deformation zones, larger voids, and distinct
shear-dominated fracture features. Through microscopy and thermal
imaging, they identified phenomena such as void clustering, localized
heating, and transition from uniform to tunnelled fracture surfaces. These
results underscore the influence of loading rate and stress state on failure

morphology.

To analyse such phenomena more systematically, researchers have turned
to micromechanically motivated unit cell calculations. Most of these
studies, disregards the void nucleation and assume a preexisting voids in the

matrix. By using unit cell calculations, one can better understand how void



growth and localization contribute to macroscopic ductile failure, develop
more accurate material models, and explore the effect of microstructural

features on material performance.

These modelling efforts have led to the formulation of advanced
constitutive models, such as the well-known Gurson (1977) model which
incorporates void volume fraction into the yield criterion to capture damage

accumulation and material softening.

In the context of unit cell calculations, several methods have been
developed to maintain constant stress ratios during deformation, commonly
referred to as proportional loading. In this study, we implement a spring-
element-based approach that differs from the UEL-based formulation
proposed by Chouksey et al., which utilizes auxiliary elements with
displacement degrees of freedom to control generalized stress components.
The UEL framework enables robust enforcement of multiaxial loading
paths and facilitates stress-controlled deformation in periodic unit cells.

Additionally, the work by Vigneshwaran and Benzerga (2024),
demonstrated an effective alternative approach, where spring elements were
used to apply proportional loading in periodic unit cell simulations. This
method simplifies the application of stress states while maintaining control
over the deformation path, particularly in implicit solvers.

Building on these insights, the present study focuses on implementing a
spring-element-based approach to perform unit cell calculations under
proportional loading. The aim is to evaluate the performance of the

algorithm in reproducing desired stress states and to assess how parameters

such as spring stiffness and increment size influence accuracy and

convergence.



2.2 Problem statement

This thesis focuses on Implementing a spring-based stress control
technique, originally proposed by Vigneshwaran and Benzerga (2024), to
simulate periodic unit cell behavior under proportional loading within the
ABAQUS implicit framework. Although the method offers a simplified
setup, its effectiveness in achieving target stress ratios, maintaining
numerical stability, and responding to changes in key parameters like spring
stiffness and increment size has not been systematically studied. This
research aims to evaluate these aspects to establish reliable usage guidelines

for unit cell calculations. Following are the key objectives

e Implement the spring-based stress control method within a periodic
unit cell model using ABAQUS/Implicit.

e Validate the method’s capability to maintain prescribed
macroscopic stress ratios under proportional loading.

e Investigate the influence of spring stiffness and time increment size
on stress accuracy and convergence.

e Determine optimal parameter ranges for achieving stable and
accurate results.

e Provide a framework for extending the method to more complex

loading and material conditions in future studies.



Chapter 3

Homogenization technique

3.1 Problem formulation

3.1.1Stress state dependencies

Macroscopic stress calculations

The macro stress is defined as the volume average over the unit cell of
the microscopic stress

1
<og>= Efﬂ odf (3.1)

Where 2 is volume of unit cell.

Stress triaxiality: triaxiality is defined as the ratio of hydrostatic

stress to equivalent (von Mises) stress.
T =2 where (3.2)

Oeq

3 <01>+<0,>+<03> 1
Oy = |=0":0", 0, = — z 3 o'=<ao>—-tr <o >.
eq 2 m 3 3

Lode parameter: It characterizes the effect of the third invariant of

the deviatoric stress tensor and helps differentiate between stress

states and is defined as:

2<0y>—<01>—<03>
I = 2> 1> 3 (33)
<O'3>—<0'1>

Where < g; >, < 0, >, < g3 > are the principal stresses.

3.1.2 Deformation gradient tensor, F

The deformation gradient tensor, denoted by F, is a fundamental quantity in

continuum mechanics used to describe how a material body deforms from
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its original configuration to its current state. It captures both rigid body
motion (rotation and translation) and local stretching or shearing of material

elements. Mathematically, the deformation gradient is defined as

dx
F=2 (3.4)

Where X is the position vector in the reference (undeformed) configuration

and x is the position vector in the current (deformed) configuration.
3.1.3 Eulerian strain tensor, E

The Eulerian strain tensor, often referred to as the logarithmic strain tensor,
IS a strain measure used in finite deformation analysis. It is mathematically

defined as

E =1InV,where V = FFT.Overall equivalent strain tensor is defined as

Eeq = /%E’: E’. Where E' is deviatoric strain tensor. (3.5

Unit cell in this study is subjected to one shear and three normal stress
components. Hence, the non-zero components of E which can be derived

from Wong and Guo, (2015) are as follows

By = In(Fyy Fyp) + 2050ty (128), (36)
Ejp = %ln(Fanz) + %Wln (g)’ (3.7)
E33 = InF33, (3.8)
Ep, = % In (;f—g) (3.9)

Whel’e y == \/F]_ZZ + (F]_z + F22)2, 6 == \/Flzz + (FIZ + Fzz)z. (310)



3.2 Implementation

3-D finite deformation calculations are carried out using the voided cell
model. This framework was given by Vigneshwaran and Benzerga (2024).

Initial dimension of unit cell is 24,, 24, 2B,.

Fig. 3.1 Schematic of unit cell with master nodes and dummy nodes.
Vigneshwaran and Benzerga (2024)

3.2.1 Boundary conditions

Fully periodic boundary conditions are applied on the unit cell. Relative
displacements of points on opposite faces can be written as:

u(Ag, x2, x3) — u(—=Ag, x,x3) = 24¢(F — ey,
u(xy, Bo, x3) —u(xy, =By, x3) = 2Bo(F — Dey,,

u(xl,xZ,Ao) - u(xl, X2, _Ao) = 2A0(F - 1)33. (311)



Where F is the macro deformation gradient which is taken as the volume
average of microscopic counterpart and x; denotes coordinates in the
initial configuration.

3.2.2 Loading condition

Proportional loading refers to a loading condition where the direction of the
stress ratios remains constant.

In this study, proportional loading is characterized using two independent
stress ratios, typically denoted as T and L. Proportional loading is
considered using two stress ratios

p =21 =758, =22 (3.12)

022 022 022

Stress Triaxiality and Lode Parameter can be expressed in terms of these

stress ratios given by Vigneshwaran and Benzerga (2024) as

T = (1+2p)sgn (022), — _ (1-p)sgn (023) (3 13)
3/(1-p)2+3x2’ J(A=p)2+4r2’ '

The periodic boundary condition has been imposed using the master nodes

where the displacements of the master nodes are defined as

uM = 24,(F — Dey,

uMz = 2B, (F — De,, (3.14)
uMs = 24,(F — Des.

By comparing eq. (3.14) with eq. (3.10) we get

u(Ag, X2, x3) — u(=Ay, x2,x3) = 2u™,

u(xq, By, x3) — u(xy, —Bg, x3) = 2uMz, (3.14)
u(xy, x5, 40) — u(xy, x5, —Ay) = 2uMs,

Macro deformation gradient is related to master nodes through

10



— — 0
Ao Bo
B
=| 0 Bo 0. (3.15)
0 £
Ao

Where the current dimensions of the deformed unit cell can be calculated as
A=Ay+u, A=Ay +u,, A=Ay +u; and u,™M = uy, u,M =u,,

uzM = uz, u,M2 = v,The rate of deformation is then obtained as

Uq 1,0 VU,
[ 3G 0
D = Sym(FF~1)=|= (Z - 22 = 0l (3.16)
R R

Proportional stressing is applied by introducing nodal forces, which are
related to the master displacement. If P;; denotes the generalized force

corresponding to degree of freedom 7 of master node /, the external power
§

Wext = Plllil + P22u2+ P33u.3+ Plz‘l.]. (317)

The Hill-Mandel lemma is adopted to write the internal power of the cell
as

Wine = 2(011D11+ 022025 + 011 D33 + 201,D13), (3.18)
o] (22200 s (s (20 + ()] 019

Where 2 is volume of the unit cell, using the principle of virtual work,

using eq. (3.17) and eq. (3.19) gives

Pu=0 (%= %2), P =0(%)
Py = 0 (%) P, =10 (%) (3.20)

11



To achieve constant average stress ratios, direct application of forces to the
master nodes is restricted by the constraint represented in Eq. (3.14). As a
workaround, a penalty-based method is implemented where four spring
elements are introduced to link the displacements of the master nodes with

corresponding dummy nodes. Forces in springs are given by

Py = k(U; —uy), Py, = k(U; — uyp),
P33 = k(U3 — u3), P, =k(V —v). (3.21)

Where K is stiffness of the spring. If the forces are normalized by a force
P,,, following constraints are obtained.

KV

Up—u = (%—7) Uz —up),

Us s = (%) (U2 = wa), (3:22)
V—-—v=x(U,—u,).

If the forces are normalized by a normal force P, ,, following constraints
are obtained

Us —uy = () (v - v), (3.23)

3.3 Displacement control strategy

The formulation involves solving a nonlinear system of equations that
includes eight unknown displacements, U;, U,, U3, V,uq, u,, us, v . These
variables consist of four master nodes displacements and four dummy

node displacements.

To enable numerical stability and ensure convergence, one of these

displacement components is selected as a pilot or dummy variable. This

12



pilot displacement acts as a reference point for the iterative solution process,
allowing the solver to anchor the system while calculating the remaining
unknowns. As discussed by the Vigneshwaran and Benzerga (2024) choice
of this control variable depends on the magnitude of the applied shear stress
ratio, denoted as k. When k < 0.7, indicating that the loading is not
predominantly shear-driven, the model utilizes Equation (3.27), assigning
U,the vertical displacement as the pilot. In cases where k > 0.7, where
shear dominates the loading scenario, Equation (3.28) is applied, and the
tangential displacement V' is used instead. This adaptive strategy ensures
that the deformation applied to the unit cell closely mirrors realistic stress

states, avoiding artificial constraints or instability in the numerical scheme.

This displacement control strategy is integral to the implementation of
periodic boundary conditions, which simulate the effect of the unit cell
being part of a larger, repeating structure. The control algorithm enables
constant implementation of stress ratios in the unit cell, regardless of
whether the dominant mode of loading is tension, compression, or shear. As
a result, the model can accurately capture key micromechanical phenomena
such as void elongation, rotation, and eventual coalescence, which are

critical to predicting failure in porous and ductile materials.

13



Chapter 4

Unit cell calculations

4.1 Simulation setup and methodology

To numerically evaluate the mechanical response of the unit cell under
multiaxial loading, a finite element model was developed using
ABAQUS/CAE Standard 2017, as shown in Fig. 4.1. The unit cell was
modeled with 27 eight-noded hexahedral elements (C3D8), and the

discretization resulted in a total of 64 nodes.

N3

Fig. 4.1 Finite element mesh of the 3D unit cell with spring
elements.

A structured hexahedral mesh was adopted due to its superior performance
in capturing stress gradients compared to tetrahedral elements. Spring

14



elements were introduced along specific boundaries to simulate compliant

loading and to control displacement transmission across the unit cell.
4.2 Boundary conditions and constraint implementation

To simulate the mechanical behaviour of the unit cell as part of a periodic
microstructure, periodic boundary conditions (PBCs) were applied. These
boundary conditions ensure that opposite faces of the unit cell deform in
accordance with the displacement continuity condition (Eq. 3.11), enabling
the model to represent the behaviour of an infinite, repeating material

domain.

The displacement constraint in eq. 3.11 were implemented using the
*Equation option available in ABAQUS. To streamline and automate this
process, the Matlab scripting package, developed by Chouksey et al. (2019),
was used. Matlab simplifies the generation of equation constraints across
node sets on opposing faces, greatly reducing manual workload and

improving accuracy in constraint application.

In addition to the periodic boundary condition, a user-defined multi-point
constraint (MPC) subroutine was developed to control the stress ratios
during the deformation. This subroutine adapts to the applied stress ratio
(p & k), eq. 3.12, switching between Equation (3.21) and Equation (3.22)
to determine the appropriate control displacement using either the vertical
component U, or the tangential displacement V as the pilot variable as
suggested by Vigneshwaran and Benzerga (2024). This adaptive
enforcement is critical for maintaining numerical stability, particularly

under varied multiaxial loading conditions.

To monitor and record the material response throughout the simulation, the
URDFIL subroutine was used to extract key output variables such as
displacement of the master nodes at each increment. This procedure, in line

with the methodology described by Chouksey et al., (2019), allows for

15



detailed analysis of evolving deformation patterns, void geometry, and

porosity evolution.

Moreover, the implementation of the UHARD subroutine enabled the
incorporation of a custom strain hardening law, allowing the model to
update the material's yield stress in response to accumulated plastic strain.
This subroutine plays a vital role in capturing the nonlinear material
behaviour, ensuring that the hardening response is accurately reflected in

the constitutive framework.

Collectively, these tools *Equation constraints, the MPC subroutine, and
the URDFIL and UHARD routines provided a robust and flexible
foundation for applying complex boundary conditions and tracking the
micromechanical response of the unit cell under proportional loading

conditions.

4.3 Spring stiffness and numerical stability

SPRINGA elements were used in ABAQUS to model compliant boundary
loading conditions, allowing precise control over displacement application.
Their implementation follows guidelines provided in the ABAQUS User
Manual (2017) for spring-based interactions.

The use of spring elements in the finite element model plays a crucial role
in stabilizing the simulation, particularly by controlling the pilot
displacement and ensuring consistent deformation across the unit cell.
Although the spring stiffness constant (k) does not appear directly in the
normalized governing equations (Equations 3.27 and 3.28), its impact on
iterative convergence is substantial. These springs are placed to facilitate
smooth displacement transmission across boundaries while avoiding

numerical instability.

In this study, a series of simulations were performed by varying the spring

stiffness over a wide range—from 0.01 to 0.5 times of the value of E, where

16



E is the elastic modulus of the material. This range was selected to
investigate the effect of spring stiffness on solution stability, convergence
rate, and deformation accuracy. It was observed that very low stiffness
value, 0.01 times the value of E, led to poor constraint control, while higher
value, 0.5 times the value of E, introduced artificial stiffness that suppressed
realistic deformation. Based on this analysis, a spring stiffness of
approximately 0.1 times the value of E was found to provide optimal
convergence and is adopted in simulations. Mesh refinement is necessary
when inhomogeneities are present, as they cause local stress and strain
variations that require a finer mesh for accurate results. The detailed
influence of spring stiffness on simulation outcomes is presented in Chapter

5: Results and Discussion.

17



Chapter 5

Results and discussion

5.1 Constitutive behaviour of material

The mechanical response of the matrix is assumed to follow the rate
independent isotropic J2 plasticity framework., where the elastic behavior
has been defined with two elastic constants, modulus of elasticity,
E=210GPa, and Poisson’s ratio, v=0.3.

600 =+

500 +

400 +

300 +

Stress(MPa)

200 +

100 +

0 0.002 0.004 0.006 0.008 0.01

Strain

Fig 5.1 True stress versus True strain curve of material.

The power law isotropic hardening law has been considered as
n
oy =05 (1+5) (5.1)

Here, a,=420MPa represents the initial yield strength, £,=0.002 is the

reference plastic strain, and n=0.05, strain hardening exponent.

The stress-strain curve of the considered matrix material has been shown in

Fig. 5.1. Since the unit cell contains no voids, the deformation response

18



remains homogeneous and primarily influenced by the intrinsic material

properties rather than microstructural discontinuities.

5.2 Results

The results obtained from finite element unit cell calculations were analyzed
based on the input stress ratios for two distinct loading conditions. Each
case was evaluated, and any observed deviations are discussed in Section
5.3 under error analysis.

Case1l: p=0.625,k=0
(Equivalentto T=2,L =-1)

In this case, the loading corresponds to a triaxial stress state with no shear
contribution. Since k = 0, the shear component < g;, > is expected to be
zero, eq. 3.12(b). In Fig. 5.2, stress field contours have been superimposed
on the unit cell deformed configuration for different stresses at the same
strain level. Contour plot shown in Fig. 5.2 (a) confirms this, showing

negligible values of < a;, >, thereby validating the absence of shear.
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(c) (d)

Fig. 5.2 The stress field contours have been superimposed on the unit cell
deformed configuration for p = 0.625, and k =0 (a) < g4, >, (b) < 741 >,
(€) <0y > (d) < g353 >.

The prescribed loading condition enforced equal axial stresses, < g;; > =
< 033 >. The stress fields for < g,; > and < o33 > are near-identical,

indicating axisymmetric deformation behavior with < 0;; > =< 033 >.

20



Theratios < g,; > /< g,, > and < g33 > /< g,, > were prescribed to be
equal and correspond to p = 0.625. While the output shows these ratios to
be nearly identical, there is a slight deviation from the input values—this
variation is attributed to numerical discretization and convergence
tolerances, and is further discussed in Section 5.3.

c = - = L
Case2.p-1,;c-z<—J§

(Correspondingto T=1,L =0)

Second loading condition has been chosen with non-zero k value. The

1
chosen value of p =1 and k = NG corresponds to, < g1 > =< 0y, > =<

033 > along with < gy, >+ 0. In Fig. 5.3, stress field contours have been

superimposed on the deformed configuration of the unit cell for different
L
=
stress level and < a;, > level corresponding to k value.

stresses corresponds to p = 1 and k = —. The contours show same normal

Overall, the results from the second case also demonstrate that both the
normal and shear stress components align well with input. The small
variations observed in the output ratios are attributed to discretization and

numerical approximations, which are further analyzed in Section 5.3.
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5.3 Algorithm calibration

The accuracy of the homogenization technique is evaluated by comparing
the input stress ratios to the actual output stress ratios obtained from unit
cell calculations. Deviations between these values are quantified as a
percentage error and plotted against equivalent strain. It should be noted

that since the void or inhomogeneity has not been considered in the unit
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cell, there is no difference between micro and macro response of the unit
cell. Two primary parameters influencing the performance are identified:
spring stiffness (K) and finite element calculation increment size used
during proportional loading.

5.3.1 Effect of time increment

Case: p =0.625, k = 0, K = 0.05E

In this case, simulations were performed with moderate spring stiffness (K
=0.5 times the value of E) and constant increment size. The fig. 5.4 shows
the percentage error in stress ratio as a function of equivalent strain. This
setup helps evaluate the ability of the algorithm to maintain accurate stress

ratio throughout both elastic and plastic loading regimes.

The plot shows that the error remains low during the elastic phase of
loading, which indicates good stability and proper control of stress values

at small strains. As the material transitions into the plastic regime, the error

increases.
40
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Fig. 5.4 Error (%) vs equivalent strain for K = 0.5 times the value of E
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Further evaluation revealed that increasing the number of increments, in
other words decreasing the time incitement improves stress control and
reduces error. However, this improvement introduces a tradeoff: more
increments significantly increase computational time, particularly in
simulations involving complex or non-uniform material behaviour and finer
meshes. After conducting several trials, it was found that smaller time
increment, which is specific problem dependent provide a reasonable

compromise between simulation accuracy and computational efficiency.
5.3.2 Effect of spring stiffness

Figure 5.5 shows the comparison between errors in stress ratio for different
values of spring stiffness (0.5, 0.1, 0.05 and 0.01 times the value of E) as a
function of equivalent strain. The errors have been plotted for proportional
loading corresponding to p = 0.625, and k = 0.

—EK=03E E=)IE E=0.03E E=0.01E
40

ERROR(%:)

0 0.002 0.004 0.006 0.008 0.01
EQUIVALENT STRAIN

Fig. 5.5 Error (%) versus equivalent strain for different spring stiffness

values, for proportional loading corresponding to p = 0.625, and k = 0.

From the plot, it is evident that reducing the value of K leads to a noticeable
decrease in error, particularly in the plastic deformation range. Among all

cases, the lowest stiffness (K = 0.1 times the value of E) provides the best
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accuracy, especially at higher strain levels where material behavior

becomes increasingly nonlinear.

However, there is a computational tradeoff. For the same equivalent strain,
smaller values of K require applying greater displacements and higher
number of increments to reach the same strain level. This results in
increased solver effort, more iterations, and higher computational time,
especially when extended to complex models with refined meshes or

inhomogeneous unit cell.

Therefore, while reducing K improves accuracy, it also increases the
computational cost. A balance must be maintained, and the selection of K
should consider both the required precision and available computational
resources. Based on the trends observed, K = 0.05 times the value of E or
0.1 times the value of E may serve as a practical middle ground for most

simulation setups.
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Chapter 6

Conclusion and future scope

.6.1 Conclusion

In this study, a robust algorithm was successfully implemented the
homogenization technique into the ABAQUS finite element framework to
perform periodic unit cell calculations. The implementation allowed for
accurate enforcement of periodic boundary conditions and flexible stress
control through the use of custom subroutines and spring elements. A
detailed performance assessment revealed that the accuracy of the algorithm
is highly dependent on two critical parameters: spring stiffness and time
increment size. Unit cell calculations showed that improper selection of
these parameters leads to noticeable errors, especially in the plastic regime,
while appropriate tuning significantly improves numerical stability and

stress ratio accu racy.

To maintain this balance, each microstructural setup requires individual
calibration to determine optimal stiffness and increment configurations. The
results demonstrated for axisymmetric stress states. Furthermore, the
methodology is not limited to symmetric conditions; it is readily extendable
to general multiaxial loading scenarios, offering broad applicability in
micromechanical studies of heterogeneous materials. Overall, the work
establishes a practical and adaptable unit cell calculations framework that
can support advanced material modelling and future investigations into

complex microstructural behaviour.
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6.2 Future scope

Building on the current work, future efforts are focused on developing a
custom algorithm for periodic unit cell simulations under general loading
conditions, including high strain rate scenarios, using the
ABAQUS/Explicit framework. While the present study has been conducted
using the implicit solver for quasi-static conditions, extending the
methodology to explicit dynamics will allow for the simulation of complex,

time-dependent material behaviour.

The upcoming implementation is specifically designed to model the
dynamic response of porous materials under proportional and multiaxial
loading, enabling detailed investigation into critical micromechanical
phenomena such as void growth, interaction, and coalescence. These
simulations will be further enhanced by considering variations in void
geometry, spatial distribution, and porosity, offering a more comprehensive

understanding of failure mechanisms at the microscale.

By integrating this capability into the explicit solver environment, the
framework will be able to handle large deformations and high strain rate
effects more efficiently, making it suitable for applications such as impact
analysis, crash simulations, and dynamic fracture of ductile materials. This
advancement will significantly broaden the applicability of the algorithm
and contribute to predictive modelling of complex material behaviour under

realistic service conditions.
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