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Abstract 

Micro-plasma metal additive manufacturing (µ-PMAM) is a highly precise and energy-

efficient process to fabricate the metallic components. But, achieving consistent deposition 

geometry remains challenging due to the complex interactions among process parameters 

and dynamics of different deposition layers. This thesis presents noble approach of 

employing machine learning (ML) and deep learning (DL) respectively to predict and 

optimize geometry of single-layer and multi-layer depositions fabricated by the µ-PMAM 

process. A high dynamic range (HDR) camera was used to record videos of single-layer 

depositions of Ti6Al4V on the same material base plate and single-layer and multi-layer 

depositions of SS 316L on a mild streel base plate for different combinations of µ-PMAM 

process parameters (such as µ-plasma power, feedstock powder flow rate, worktable feed 

rate for single-layer deposition and additional parameters namely stand-off-distance, 

deposition layer index, height and width of previously deposited layer, and cumulative 

height for multi-layer depositions). Images were extracted from each recorded video at a 

rate of 30 frames per second. The extracted images were annotated and feature scaling was 

performed for the single-layer depositions and the Histogram based Multi‑Mode method 

was used for multi-layer depositions to generate the datasets. The generated datasets were 

split into training, validation, and test data to ensure robust model development. Six ML 

algorithms and three DL algorithms were trained using the generated datasets for single-

layer and multi-layer depositions respectively. The trained algorithms were evaluated using 

the performance matrix involving mean absolute error, root-mean-square error, and 

coefficient of determination to select the top performing ML and DL algorithm. It selected 

the Random Forest (RF) algorithm for predicting height and width of single-layer 

depositions, and Self-Attention Temporal Convolutional Network (SA-TCN) for multi-

layer depositions. The selected ML and DL models were trained, tested and validated. Then 

they were integrated with Non-dominated Sorting Genetic Algorithm II (NSGA-II) to 

perform multi-objective optimization using objective functions as the difference between 

the desired and ML/DL algorithm predicted values for deposition height, deposition width, 

and aspect ratio. The optimized results demonstrate that this integrated approach reduced 

geometric prediction errors below 5% thus offering a systematic alternative to trial-and-

error tuning of µ-PMAM process parameters. The methodology of the present work 

provides a scalable solution for closed-loop control for any AM process and lays the 

foundation for development of its digital twin. It also highlights the transformative potential 

of artificial intelligence in advancing metal additive manufacturing processes. 
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Chapter 1 

Introduction 

This chapter introduces the fundamentals of machine learning (ML) and deep learning 

(DL). It describes the main types of ML and DL algorithms. It highlights applications of 

ML and DL in manufacturing and additive manufacturing (AM) for the detection of defects, 

quality control, and parametric optimization. It provides an overview of different types of 

AM processes, their advantages, limitations, and key industrial applications. It briefly 

introduces directed energy deposition (DED) processes and µ-Plasma Metal Additive 

Manufacturing (µ-PMAM) process, summarizing their principles, key benefits, and major 

applications. It concludes with the thesis organization. 

1.1 Machine Learning 

Machine learning (ML) is a part of artificial intelligence (AI). It helps computers to find 

patterns in data and decide or predict things without detailed instructions for every task. The 

main concept of ML is its capability to adapt when working with new information and get 

better at spotting patterns in data over a time period. The ML allows machines to take care 

of work that used to depend on people, making it possible to solve many difficult challenges. 

In the recent years, growing data and faster computers have made ML as an important and 

effective tool in every aspect of science, engineering, and social science. The ML algorithms 

analyze the past data, known as the training data, to detect patterns and relations. Then the 

ML algorithms undergo a validation phase where a new dataset is used to fine-tune the 

hyperparameters of an ML algorithm and to avoid its overfitting issues. The final step is to 

test an ML algorithm using a new dataset that has not been used in its training and validation 

phases. This step shows whether an ML algorithm works well in real-world scenarios or 

not. The ML draws its strength from its learning capability from the previous data. This lets 

it to organize, predict, group, and explain the information. Deep learning (DL) is a subset 

of ML that uses artificial neural networks (ANN) with multiple layers to process and learn 

from the data. It is inspired by functioning of the human brain, enabling computers to 

recognize complex patterns and make decisions. The DL is widely used for tasks such as 

image and speech recognition, natural language processing, and autonomous systems. 

Fig.1.1 depicts the relationship between AI, ML, and DL showing that the AI encompasses 

both the ML and DL with ML being a subset of AI, and DL being a subset of the ML.   
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Fig. 1.1: Relationship between the AI, ML, and DL. 

1.1.1 Types of Learning for ML Algorithms 

The learning process of ML algorithms can be broadly categorized into three major 

types: supervised learning, unsupervised learning, and reinforcement learning. 

 Supervised Learning: Supervised learning trains an ML algorithm using the labeled 

datasets where each data point has a known output. The goal is to make learn an ML 

algorithm to match input features with the right labels by reducing the difference 

between the predicted and actual values as shown in Fig. 1.2. It demonstrates how a 

supervised learning algorithm learns to classify input features, such as shapes, by 

matching them with their correct labels during training. After the training, an ML 

algorithm is validated to fine-tune its hyperparameters using a new dataset and to avoid 

its overfitting issues. Then the algorithm is tested using on a separate dataset to see how 

well it works in real-world scenarios. Getting the algorithm to handle new data well is 

the main focus here. Training, validation, and testing together make it possible to build 

reliable ML algorithms. Supervised learning is used in the fields such as image 

recognition, improving processes, and predicting maintenance needs. It breaks down 

into two tasks: regression predicts continuous results such as numbers, while 

classification assigns things into categories or labels.  

 

Fig. 1.2: Concept of the supervised learning. 
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 Unsupervised Learning: Unsupervised learning trains an ML algorithm by examining 

unlabelled data and ignoring the predefined outputs. It does not rely on the correct 

answers during the training which is the main difference from the supervised learning. 

It focuses on uncovering hidden structures or trends in raw datasets. It aims to analyse 

data to simplify understanding or group similar items. Fig. 1.3 illustrates concept of the 

unsupervised learning process where an AM algorithm analyzes raw, unlabeled data and 

organizes them into groups based on patterns and similarities without predefined labels. 

Tools such as principal component analysis (PCA) shrink the large datasets to make 

their handling simpler. Whereas, techniques such as K-means and hierarchical clustering 

organize the data into clusters based on their similarities (Abdulhafedh, 2021). This 

learning becomes helpful when labelled data are unavailable or difficult to obtain. In the 

manufacturing field, unsupervised learning finds patterns in sensor readings, spots 

strange behaviour, or links equipment with shared conditions. It provides new insights 

that older methods might overlook and helps make smarter decisions based on data.  

 

Fig. 1.3: Concept of the unsupervised learning. 

 Reinforcement Learning: Training of an ML algorithm in the reinforcement learning 

happens through constant interactions between an autonomous agent and the 

environment. An autonomous agent is a system that can make decisions and act in 

response to its environment and which is independent of direct instruction by a human 

user. The agent performs actions based on the current state, receives feedback as rewards 

or penalties, and relies on this feedback to make better choices in the future as illustrates 

in Fig. 1.4. Initially, the agent might have little knowledge and try different actions but 

it learns from the reward signals which will lead to better results. This cycle continues 

until performance of the agent reaches a stable point with an aim to develop a policy 

that earns the highest possible reward over the time. The testing of an ML algorithm 

requires putting the learned policy into a fresh or unfamiliar environments to see how 

well the agent adapts. The validation in the reinforcement learning is different from the 

supervised learning because ability of the autonomous agent is evaluated to check how 

well it has learned to make decisions tested in a similar environment (Pitis et al., 2021). 
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Fig. 1.4: Concept of the reinforcement learning. 

Besides the above-mentioned learning methods, following are some mixed learning 

approaches for the ML algorithms: (i) Semi-supervised learning: trains the ML algorithms 

by using a mix of some labeled data and lot of more unlabeled data, (ii) Self-supervised 

learning uses patterns in the data itself as a guide to train the ML algorithms. For example, 

algorithms such as Random Forest and Gradient Boosting Machines blend several 

algorithms together to improve performance and make their predictions more reliable.  

1.1.2 Types of ML Algorithms  

Following are the commonly used ML algorithms:   

 Random Forest (RF): It is an ensemble ML algorithm that operates by constructing 

multiple decision trees during its training and generate either mode of the classes (for 

the classification purpose) or predict the mean (for regression purpose) of an individual 

tree. The RF reduces the risk of overfitting by averaging the outputs of individual 

decision trees and ensures that it generalizes well to the unseen data. This is particularly 

important in case of an AM process, where slight variations in process parameters can 

lead to significant changes in the deposition quality. The strength of the RF lies in its 

ability to handle complex and non-linear relationships between the input and output 

parameters. The RF algorithm is particularly useful when numerous interacting features 

exist, for example in case of µ-PMAM process in which multiple deposition parameters 

such as µ-plasma power, deposition head traverse rate, and feedstock powder flow rate 

interact in a non-linear manner to influence the deposition geometry. 

 K-Nearest Neighbours (KNN): It is a simple, instance-based ML algorithm that makes 

predictions based on the proximity of data points. It works by identifying the K-nearest 

neighbours of a test data and then using their values to predict the output. Its output is 

based on either the majority class (for classification purpose) or the average of the 

nearest data points (for regression purpose). The proximity of the specified data points 

allows the KNN algorithm to effectively capture the local variations in deposition height 

and width in an AM process. But, KNN can be computationally expensive for large 

datasets because it requires calculating the distance between training data and test data. 
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 Support Vector Regression (SVR): It is a regression-based ML algorithm that uses 

support vectors to find the best fit curve within a specified margin. It aims to find the 

balance between its complexity and prediction accuracy by minimizing the error within 

a specified margin. This makes it more generalizable algorithm.  

 LASSO Regression: It is a linear regression-based ML algorithm that uses L1 

regularization to shrink the coefficients of less important features to zero thus effectively 

performing feature selection. This algorithm is beneficial when dealing with the large 

datasets that have many features because it helps to identify the most relevant features 

for predicting the targeted output.  

 Ridge Regression (RR): It uses L2 regularization which penalizes large coefficients 

without eliminating any features. This ML algorithm helps to minimize overfitting by 

ensuring that the coefficients remain small and does not fit the noise in the datasets.  

 Gaussian Process Regression (GPR): It is a non-parametric, probabilistic ML 

algorithm that uses a kernel function to capture the underlying function and predict 

outputs with uncertainty estimates. It is particularly useful for complex and non-linear 

relationships between input and output parameters. It is well-suited for scenarios where 

the data are noisy or where uncertainty in the predictions needs to be quantified.  

1.1.3 Applications of ML in Manufacturing 

The ML finds applications in many areas because it adapts well and works. It is used to 

spot the trends in experimental data, simulate complicated physical systems, and speed up 

the simulations. Its µ-plasma power to handle complex, unorganized, and massive datasets 

makes it a very promising alternative when the standard statistical algorithms fail. Following 

are some specific applications in of ML in manufacturing:  

 Industry 4.0: ML can play a major role in Industry 4.0 because it allows intelligent 

automation and uses data to assist in the decision making. As factories and systems 

handle huge data and become more intricate, engineers find ML to boost productivity, 

make systems more reliable, and bring fresh ideas to a company.  

 Predictive maintenance: ML analyzes sensor data from machines to predict potential 

failures before their occurrence. This reduces unexpected downtime, lowers 

maintenance costs, and improves the overall reliability and lifespan of a manufacturing 

equipment. 

 Process optimization: ML can optimize process parameters in real-time by analysing 

the performance data. This results in more efficient production, accurate geometry, 

reduced material wastage, and better use of energy and the resources. This enhances the 

productivity and reduces the cost. 
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 Quality control: The ML can detect the manufacturing defects or irregularities using 

sensor signals or images. This enables automated inspection and ensures that only high-

quality products reach the next stage thus improving consistency and reducing rework 

and scrap. 

 Supply chain management: ML can improve demand forecasting by analyzing 

historical and real-time data thus helping to maintain an optimum inventory levels. This 

enhances planning, reduces storage costs, and increases responsiveness to the 

fluctuations customer demands or the market. 

 Energy management: ML can help manufacturers to adjust operations for better 

efficiency by analyzing an equipment usage and its energy consumption patterns. It 

enables the system to recommend the changes that reduces energy costs maintaining the 

same productivity. 

1.1.4 Applications of ML in Additive Manufacturing 

Following are some major applications of ML in AM processes:  

 Parametric optimization: ML can find the optimum combination of an AM process 

parameters such as µ-plasma power, deposition material supply rate, deposition head 

traverse rate, stand-off-distance, and similar other parameters. Such optimized 

combination results in better surface quality, desired deposition geometry, and more 

consistent properties of the manufactured product. 

 Defect prediction and detection: ML can identify different defects such as porosity, 

warping, cracking, etc. produced by an AM process by using the real-time data or 

thermal imaging. Early detection of such defects reduces the material and energy 

wastage and ensures better quality of the manufactured product.  

 Process monitoring: ML can continuously monitor the important AM process 

parameters such as temperature, layer thickness, and feedstock material flow. This 

ensures that any deviations are quickly addressed which improves an AM process 

performance and consistent quality of the manufactured products.  

 Material characterization: ML can expedite discovery of new materials by identifying 

patterns in its large experimental datasets. It helps to predict material behavior, saving 

time and reducing the number of the required tests. 

 Geometric accuracy enhancement: ML can predict the potential shape distortions 

during in an AM process and can suggest the real-time corrections. This helps to 

maintain the dimensional accuracy of a manufactured product thus reducing necessity 

for its post-processing. It also ensures a product is manufactured as per its original 

design. 
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1.2 Deep Learning 

DL is a subset of ML which relies on the neural networks having many layers to 

recognize the complicated patterns. DL can identify the features from the raw data which 

ML cannot do. The DL algorithms rely on an input layer, several hidden layers, and an 

output layer of the neural networks. Neurons in these layers transform the information and 

send it onward. The term "deep" indicates many hidden layers in the neural networks, which 

help them to learn the complex details. The DL algorithms work well with the supervised 

learning but also work with the semi-supervised and unsupervised learning also. 

Autoencoders and generative adversarial networks are techniques of the unsupervised 

learning (Zhang and Zhang, 2023). Training methods such as backpropagation and 

stochastic gradient descent adjust the weights of the neural networks to improve their 

prediction accuracy. DL is useful for extensive and high-dimensional datasets. It is playing 

a key role in many industries to solve various problems. 

1.2.1 Types of Deep Learning Algorithms 

Following are the commonly used DL algorithms:   

 Convolutional Neural Networks (CNN): They are used to handle and study the visual 

information by having several hidden layers which make them to learn how to spot the 

patterns, features, and shapes in the images. The CNN works well with the tasks of 

classifying images, detecting objects, and splitting images into parts because they pick 

up the spatial hierarchies. Different filters are used before the CNN which scan the input 

images to locate the edges, form, and detailed patterns. This makes CNN very useful in 

the applications that demand accuracy and speed in the visual datasets.  

 Recurrent Neural Networks (RNN): They are µ-plasma powerful DL algorithm that 

are designed to handle time-series or sequential data. The core idea behind RNN is that 

they maintain an internal state (memory) that is updated at each time step based on the 

input received. The output at each time step depends not only on the current input but 

also on the information retained from previous time steps. It implies that the recurrent 

connections use the previous inputs in a sequence to influence how the RNN process the 

current and future inputs. This cyclic structure allows them to learn the patterns and 

relationships over the different time durations. The RNN rely on time sequential 

updating of the hidden layers at every run. The RNN combine this with the current input 

to generate an output while also updating themselves for the next input. This 

characteristic makes them useful for the manufacturing processes where past inputs 

influence future outputs, such as in multi-layer deposition by an AM process, where the 

deposition parameters of one layer are influenced by those of the previous layer.  
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 Bidirectional Long Short-Term Memory (Bi-LSTM): Bi-LSTM is an advanced 

version of the standard LSTM, which is designed to capture long-term dependencies in 

time-series data in a better manner by processing them both in forward and backward 

passes i.e., input data are processed from the 1st hidden layer to the last hidden layer in 

the forward pass and then the same data are processed from the last hidden layer to the 

1st hidden layer in the backward pass. This lets Bi-LSTM to work with both past and 

future context at the same time which improve the performance. Unlike regular RNN, 

LSTM have a memory cell that can store information for long periods, allowing them to 

retain relevant information over multiple time steps. Bi-LSTM are useful in areas like 

speech recognition, text classification, and machine translation where the meaning of a 

word depends on the words around it. The bidirectional approach of Bi-LSTM allows it 

to learn from both past and future data points thus providing a more comprehensive 

understanding of the temporal patterns in the deposition process. This is particularly 

beneficial in multi-layer deposition, where the relationship between layers is not only 

dependent on previous layers but may also be influenced by subsequent ones.  

 Self-Attention Temporal Convolutional Networks (SA-TCN): They combine 

convolutional layers with a self-attention mechanism, making them highly effective at 

capturing both local and long-range dependencies in time-series data. This hybrid 

approach allows SA-TCN to focus on critical features of the data across different time 

durations regardless of their temporal distances. In the context of multi-layer 

depositions, this means that this algorithm can consider how each layer deposition 

characteristics such as height, width, and deposition material flow affect the 

characteristics of subsequent deposition layer, leading to more accurate predictions. 

1.2.2 Applications of DL in Manufacturing 

 Visual inspection: DL uses computer vision to identify surface defects, scratches, or 

deformations with high accuracy. It automates quality inspection, reduces human error, 

and ensures consistent product quality for large production volumes. 

 Robotics: DL enables robots to adapt to changing environments using visual and sensor 

data. This improves flexibility in tasks like sorting, assembly, and navigation, especially 

in unstructured or unpredictable environment. 

 Predictive modelling: The complex algorithms of DL forecast outcomes such as 

machine failures or product quality. These algorithms handle non-linear relationships 

and large datasets, offering more accurate predictions than traditional ML algorithms. 

 Speech and language processing: DL supports voice-controlled manufacturing 

systems by understanding commands through natural language processing. This 
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improves human-machine interactions, simplifies operations, and increases productivity 

on the shop floor. 

 Fault Diagnosis: DL processes sensor signals to detect patterns that indicate machinery 

faults. It identifies early warning signs of failure, allowing preventive maintenance and 

reducing unexpected downtime in manufacturing systems.  

1.2.3 Applications of DL in Additive Manufacturing 

 Layer-wise Defect Detection: DL algorithms analyse images or sensor data layer-by-

layer during multi-layer deposition by an AM process. It detects defects such as inter-

layer porosity and dimensional inaccuracy on real-time basis, enabling immediate 

corrective actions and improving final quality of a manufactured product.  

 Process optimization: DL optimizes AM process parameters by predicting outcomes, 

reducing defects, improving selection of parameters, and enhancing deposition quality 

through data-driven analysis and real-time process control.  

 Real-time control: DL enables dynamic adjustment of deposition parameters during an 

AM process. This adaptive control improves stability, reduces errors, and ensures 

consistent part geometry and material quality throughout manufacturing process. 

 Prediction of material properties: DL algorithms analyse past process and material 

data to estimate mechanical properties such as strength and hardness. This helps in 

quality confirmation of the manufactured products without excessive testing. 

1.3 Additive Manufacturing 

Additive manufacturing (AM) is revolutionizing the manufacturing world, transforming 

the way products are designed, developed, and made in different industries. This technique 

builds three-dimensional objects by depositing material layer by layer using the bottom-up 

approach unlike the casting processes in which material is deposited in bulk and the 

machining processes which remove the material from a solid block using the top-down 

approach. AM starts with a digital 3D model of a product. Special software then slices it 

into thin horizontal layers. The AM machine gets these layers as instructions. It then it 

deposits the material to match the product design. The raw material can be a polymer, metal, 

alloy, ceramic, composite, or biopolymers. The choice depends on intended application of 

a product. AM gives the designers more freedom and boosts efficiency. 

1.3.1 Classification of AM Processes 

According to ASTM F42, different AM processes are categorized into the following 

seven categories as shown in Fig. 1.5:                             
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Fig. 1.5: Classification of AM processes according to ASTM F42 (Rafiee et. al. 2020). 

 Powder Bed Fusion (PBF): PBF type AM processes use heat source in the form a laser 

or electron beam to selectively fuses regions of the powdered bed of the feedstock 

material which is either metallic material or a polymer. Electron Beam Melting (EBM), 

Selective Laser Sintering (SLS), Selective Laser Melting (SLM), Direct Metal Laser 

Sintering (DMLS), Selective Heat Sintering (SHS), and Multi Jet Fusion (MJF) are 

common AM processes in this category. They differ based on the materials they use and 

how much melting takes place during the process. The PBF processes have ability to 

integrate at small scale and they are used for AM of relatively large products. Their 

machines are of large size. But, built speed is relative slow, they require high µ-plasma 

power, and their surface finish depends on the powder size 

 Directed Energy Deposition (DED): DED type AM processes use the concentrated 

heat source in the form a laser, electron beam, plasma arc, or µ-plasma arc to melt and 

fuse the feedstock material as is being deposited. The feedstock material is a metallic 

material which can be supplied either in powder form or wire form or combination of 

the both. These AM processes produce high quality functional products, perform precise 

repair of the existing components, add complex features to the pre-fabricated parts, 

produce and restore high-value engineering components, and fabricate near-net-shape 

products. Their build speed is often sacrificed for higher accuracy. The DED fabricated 

products require post-processing to achieve the desired quality. Laser Engineering Net 
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Shape (LENS), Laser Metal Deposition (LMD), Wire-arc Additive Manufacturing 

(WAAM), and µ-plasma Metal Additive Manufacturing (µ-PMAM) are the commonly 

used DED type AM processes.  

 Sheet Lamination: Sheet lamination type AM processes bond together the sheets or 

foils of different metallic materials, papers or fabrics using heat, adhesives, or ultrasonic 

waves to supply the required bonding energy. A laser, or milling machine is used to 

make products from the laminated sheets. Laminated Object Manufacturing (LOM) and 

Ultrasonic Additive Manufacturing (UAM) are the commonly used sheet lamination 

type AM processes. These processes offer high build speed, low cost, ease of material 

handling, higher accuracy, and good finish.  

 Binder Jetting: In binder jetting type AM processes, a liquid bonding agent is 

selectively deposited to join powder of feedstock material (either a metallic material or 

a polymer) thus binding them to create a solid layer. When one layer is finished, the 

platform moves down, and new powder is added on top. This cycle repeats until the full 

object is completely built.  Powder Bed and Inkjet Head (PBIH) and Plaster-based 3D 

Printing (PP) are the commonly used binder jetting type AM processes. Advantages of 

these processes include: faster process, high range of materials, allows use of two 

materials, use of different colours. Their major limitations are: not always suitable for 

structural parts due to use of binder material, and higher amount of post processing  

 Material Jetting: Material jetting involves depositing droplets of the feedstock material 

(usually photopolymers or waxes) onto a build platform, where they are immediately 

solidified by UV light. This process is similar inkjet printing in 3D. Advantages of 

material jetting type AM processes include: high accuracy, less wastage of materials, 

ability to fabricate multi-materials and multi-colours products thus making them ideal 

for visual prototypes and biomedical models. But they require support structures and are 

applicable to limited range of materials only. Multi-jet Modelling (MJM) is the most 

commonly used material jetting type AM process. 

 Material Extrusion: This process uses a nozzle or orifice to selectively extruded the 

feedstock material to form its layers. The nozzle moves along the x and y axes to deposit 

material onto a base, while the platform shifts along the z-axis to create the product layer 

by layer. Common materials feedstock materials are thermoplastics or thermoplastic 

composites. It is used to fabricate inexpensive parts from ABS or some other plastics, 

Extrusion type AM processes are relatively inexpensive, suitable for the visual models 

and prototypes. But they have low accuracy, small build speed, limited nozzle radius, 
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requires constant pressure of the feedstock material. Fused Deposition Modelling 

(FDM) is the most commonly used material extrusion type AM process.  

 Vat Photopolymerization: This type AM processes selectively cure a liquid 

photopolymer by exposing it to the light from a laser or projector to produce its solid 

layers via light-activated polymerization process. The build platform begins at the 

bottom of a container filled with liquid photopolymer. A light source hardens it based 

on its cross-section being exposed, solidifying it as it moves up. Stereolithography 

apparatus (SLA) and Digital Light Processing (DLP) are the commonly used vat 

polymerization processes. These processes are relatively quick and typically build large 

areas. But, they relatively expensive, requires support structure, require higher post-

processing time and cost, and are applicable to limited material i.e. photopolymers only. 

1.3.2 Advantages of AM Processes 

AM processes offer a series of distinctive benefits that set them apart from conventional 

manufacturing processes: 

 Geometrical freedom: AM enables the fabrication of highly complex products that are 

unattainable through traditional processes such as casting, forming, powder metallurgy, 

or machining processes. This capability allows for the realization of intricate free-form 

designs with minimal constraints. 

 Digitally driven production: Since AM is governed by digital designs therefore it 

enables precise reproduction of the optimized geometries. The integration of computer-

aided design with automation ensures high precision, dimensional control, and 

repeatability across multiple production cycles. 

 Tailored multi-material fabrication: AM processes support integration of diverse 

materials within a single build cycle, facilitating development of the advanced materials 

such as smart composites, functionally graded materials, and bio-compatible materials. 

This flexibility contributes to innovation in material science. 

 Assembly reduction: The layered deposition mechanism of AM processes permits 

direct fabrication of complicated and integrated assemblies. This eliminates the need to 

manufacture and later assemble multiple parts, thereby improving product integrity and 

reducing the likelihood of mechanical failures due to misalignment caused in the 

assembly process. 

 Autonomous manufacturing: AM equipment can produce intricate, multi-material 

parts with minimal human intervention. This autonomy enhances manufacturing 

efficiency and allows for decentralized on-demand production closer to the point of use. 
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 Material efficiency: In contrast to conventional subtractive manufacturing processes, 

which often remove excess material from a larger stock, AM adds material only where 

it is required. This approach minimizes scrap, reduces material costs, and eliminates the 

need for extensive cutting tools or fixtures. 

 Economical customization: Unlike traditional manufacturing, which relies heavily on 

moulds and dies, AM can produce customized parts directly from a digital file without 

any tooling. This feature is highly valuable in sectors requiring patient-specific implants, 

customized surgical tools, or bespoke heritage restoration components. 

 Environmental sustainability: AM processes contribute positively to environmental 

sustainability by lowering material wastage and energy consumption. Precise deposition 

and reduced reliance on tooling also help in diminishing the carbon footprint associated 

with manufacturing. 

1.3.3 Limitations of AM Processes 

Despite its numerous advantages and potentials, AM continues to face following major 

technological and practical challenges: 

 Material limitations: Current AM systems are typically compatible with a limited 

range of materials. Many machines are optimized for metals, polymers, wax, composites 

with specific thermal and mechanical properties. AM of ceramics, and integration of 

dissimilar materials within a single machine remains a significant hurdle, demanding 

further research in material compatibility and hybrid process development. 

 Production speed and scalability: While AM is well-suited for customized, low-

volume production, it remains less efficient for mass production. The relatively slow 

build speed limits its suitability for large-scale manufacturing applications, especially 

where throughput is critical. 

 Accuracy constraints: The additive nature of AM introduces challenges in achieving 

tight dimensional tolerances and smooth surface finish. Layering artifacts, commonly 

referred to as the “stair-stepping” effect, are particularly evident on curved surfaces and 

intricate geometries. 

 Requirement for post-processing: Parts produced via AM often require secondary 

operations such as machining, heat treatment, or polishing to meet the functional and 

aesthetic standards. These additional steps add to the production time and cost, making 

the overall process less efficient than initially perceived. 

 Data intensity and computational demand: Generating and processing highly 

complex geometries through AM involves big data and intricate toolpath algorithms. 

The demand for robust computational µ-plasma power and efficient slicing software 
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continues to be a significant bottleneck, especially for parts with fine internal features 

or lattice structures. 

1.3.4 Applications of AM Processes  

Since its emergence in late 1990s, AM has undergone significant advancements and has 

been increasingly adopted across various sectors. Following are some of its transformative 

applications: 

 Biomedical engineering: AM is reshaping the biomedical field by enabling the creation 

of accurate anatomical parts, orthopaedic implants, dental restorations, and surgical 

instruments. The ability to produce patient-specific devices using certified bio-

compatible materials is revolutionizing surgical planning, medical education, and 

implantology. 

 Aerospace industry: Aerospace manufacturers have been early adopters of AM, 

utilizing its ability to reduce component weight, consolidate parts, and improve 

performance. Applications include rocket engine components, combustor liners, interior 

cabin parts, and ducting systems for environmental control. AM supports design 

innovation while meeting stringent strength and thermal requirements. 

 Consumer goods: AM is employed in product development for consumer electronics, 

household appliances, and sporting goods. Designers benefit from rapid prototyping 

capabilities, allowing quick iterations and product validation before full-scale 

manufacturing. As the technology matures, it is poised to support larger production runs 

in consumer markets. 

 Energy sector: AM contributes to the energy industry by enabling the production of 

complex, high-performance components such as turbine nozzles, pump manifolds, and 

control-valves. These components are often subjected to extreme operating conditions, 

and AM allows for material and design customization to meet specific environmental 

demands. 

 Transportation: The transportation sector leverages AM to develop lightweight, 

aerodynamic, and heat-resistant components for automotive and rail systems. 

Applications include ductwork, grilles, interior modules, and structural panels that 

reduce vehicle weight and enhance performance at high speeds. 
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1.4 Directed Energy Deposition (DED) Processes 

The DED type AM processes are integral to the field of AM due to their distinct 

advantages and versatile capabilities. These processes stand out for their ability to deposit a 

wide range of materials, such as metals, alloys, composites, and even ceramics, offering 

exceptional adaptability to various industrial applications. This broad material compatibility 

makes DED processes highly relevant in the sectors ranging from aerospace to automotive, 

where customized solutions are essential. A key benefit of DED technology is its ability to 

achieve high deposition rates, which translates to faster build times compared to other AM 

techniques. Particularly when large volumes of material are required, DED processes enable 

more efficient production, significantly reducing manufacturing time. This enhanced 

productivity positions DED as a compelling choice for industries facing stringent production 

deadlines and the need for rapid turnaround times. Moreover, DED processes are especially 

valuable for repair and cladding applications. Sectors such as aerospace, oil and gas, and 

automotive often rely on DED for this purpose, as it allows for the repair of high-value parts 

without the need for complete replacement. The flexibility of DED in these applications 

demonstrates its significant role in prolonging the lifespan of critical components. 

Additionally, DED processes can be easily scaled to produce large components and 

structures. This scalability ensures that DED is not limited to small parts but can also 

accommodate the production of sizable, complex structures. Its capacity to handle large-

scale fabrication further enhances its appeal for industries that require both precision and 

the production of substantial parts. In terms of design flexibility, DED provides engineers 

and designers with the freedom to produce the parts with complex geometries and intricate 

features. This capability fosters innovation and supports the development of custom 

solutions tailored to specific needs, pushing the boundaries of what is possible in modern 

manufacturing. Such flexibility is a significant advantage, enabling the creation of highly 

specialized components that would be difficult or impossible to achieve through traditional 

manufacturing methods. Finally, DED processes are known for their material efficiency. By 

adding material only where it is needed, these processes minimize material wastage and 

reduce associated costs. This level of efficiency is especially advantageous compared to 

other AM techniques and conventional manufacturing processes which often result in higher 

material wastage. Material efficiency of DED aligns with growing emphasis on 

sustainability in manufacturing making these processes as environmentally friendly choice. 

1.4.1 Types of DED Processes 

The DED processes are classified based on type of energy source and feedstock 

material: 
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 Wire Arc Additive Manufacturing (WAAM): These processes use an arc to melt and 

layer metallic wires onto the base surface. It uses different types of arcs such as manual 

metal arc (MMA), gas metal arc (GMA), or gas tungsten arc (GTA) to supply the heat 

for melting the metallic wires. The WAAM processes have high build speed which can 

create large parts from inexpensive metals though they produce poor surface quality. 

Aerospace and marine industries use WAAM to make structural large parts, where cost-

cutting and time-saving are important factors.  

 Laser-Based DED (L-DED):  A laser beam heats and melts the metallic powder or wire 

before adding it to a base surface. This process works by directing the laser beam onto 

the base where it melts the material so it can bond with the surface or with earlier layers. 

L-DED processes (i.e., LENS, LMD) provide great control and accuracy during the 

deposition process. They let manufacturers make complex shapes with precision. Many 

industries such as aerospace, automotive, and tooling use this approach to create 

prototypes, fix broken parts, or produce parts close to their final shape.  

 Plasma Arc Additive Manufacturing (PAAM): These processes use a plasma or µ-

plasma arc to heat and melt metallic powders or wires for their deposition on a base 

surface. Plasma or µ-plasma arc is created through gases such as argon or nitrogen by 

applying direct current (DC) µ-plasma power supply. This produces a high-temperature 

plasma jet that melts the feedstock material. The molten material is then deposited on 

the base surface in layered manner fabricate the desired part. The PAAM allows fast 

material deposition and creates strong metallurgical bonds. It works well for making 

high-performance parts needed in the fields such as aerospace, defence, and energy. 

1.4.2 Advantages of DED Processes 

The primary advantage of DED processes comes from how flexible it is with materials. 

It works with metals, alloys, ceramics, and even composites, making it useful in a variety 

of applications. These processes let users combine materials with different properties in the 

same build. This helps in creating graded materials, smart materials, biocompatible 

materials, high/medium entropy alloys or ones with specific mechanical, thermal, or 

electrical properties. WAAM and PAAM processes give high deposition rates. This makes 

them capable of making large components and lowering both production time and costs. It 

also provides impressive design freedom, making it possible to create complicated parts 

with detailed features. Engineers and designers can use this to deliver unique solutions and 

parts customized for specific needs. DED processes are used to repair or clad the parts, 

which helps extend the life of essential components while cutting down on maintenance 

expenses. 
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1.4.3 Limitations of DED Processes 

The DED processes also suffer from certain drawbacks which need attention. One of the 

challenges is dealing with residual stresses and distortions in the fabricated parts using high-

energy laser beams or plasma arcs. Designers and engineers need to optimize these 

processes to reduce these issues and maintain accuracy in dimensions and part quality. 

Another challenge lies in additional processes such as machining, grinding, or heat 

treatments needed to achieve smooth surfaces, precise dimensions, or the required texture. 

These extra steps slow down the production and increase productions costs. Improvements 

in process monitoring and control are reducing how much post-processing is necessary. 

1.4.4 Applications of DED Processes 

DED processes find applications in many industries such as aerospace, automotive, 

biomedical, defence, oil and gas, chemical, tooling. Aerospace companies rely on DED 

processes to make intricate structural parts, engine components, and fix turbine blades. 

Automotive industries use them to speed up prototyping to create tools and customize the 

parts. Defence industries use DED processes to build lightweight armour, make missile 

parts, and fix military vehicles. Oil and gas industries use DED processes to create tough 

coatings, repair drilling equipment, and produce downhole tools. Dies and mould making 

industries use DED processes to create cores, inserts, and intricated cavity components. 

1.5 Micro-plasma Metal Additive Manufacturing (µ-PMAM) 

µ-PMAM process is a novel and energy-efficient metal AM process that combines the 

principles of µ-plasma arc with the precision of modern material deposition methods. It 

represents a significant advancement in the field of DED, especially in applications that 

demand fine control, and minimal thermal impact. By using µ-plasma arc as low-energy, 

highly concentrated thermal source as the heat source, µ-PMAM is capable of producing 

high-quality components from high-melting point metallic materials. The µ-plasma arc is 

generated inside a specially designed nozzle unlike the PAAM process. The nozzle controls 

the arc size and intensity, ensuring focused heating and efficient material deposition. Unlike 

conventional PAAM process, µ-PMAM operates at lower current and µ-plasma power 

levels, usually up to 20 amperes and 440 Watts DC µ-plasma power. These controlled 

energy settings offer several benefits, such as reduced heat-affected zones, minimized 

thermal distortion, and lower residual stresses within the deposited layers. One of the 

distinguishing features of µ-PMAM process is its integration with 5-axis computer 

numerically controlled (CNC) work table. Fig. 1.5 depicts photograph of the 5-axis CNC 

machine for µ-PMAM process showing the deposition head and formation of µ-plasma arc 

inside the µ-plasma torch in the insets. This configuration allows for the fabrication of 
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geometrically complex parts without any support material. The multi-axis motion enables 

the deposition head to be pregummed for the desired part geometry thus allowing overhangs, 

internal features, and curved geometries to be manufactured more easily. Consequently, µ-

PMAM offers superior flexibility and freedom in part design, reducing the need for post-

processing and support removal. A major advantage of µ-PMAM lies in its compatibility 

with multiple feedstock forms including powders, wires, or their combinations. This 

versatility allows users to select the most appropriate form of feedstock material based on 

part requirements, desired deposition rate, or economic considerations. For instance, powder 

feedstock offers better control over composition and microstructure, while wire feedstock 

provides better material utilization and reduced contamination risk. From a materials 

perspective, µ-PMAM is highly capable of handling a broad range of high-performance and 

high-melting-point alloys many of which are difficult to process by other AM processes. 

The µ-PMAM process has been successfully used for Inconel 625 for high-temperature 

aerospace applications, P20 and H13 tool steels for mould and die production, and Stellite 

alloys for wear-resistant surfaces, Ti6Al4V, Co-Cr-Mo-xTi, Ti-Ta-Zr-W-Mo HEA for 

biomedical implants, and Ti6Al4VxNiyCr for high strength applications. The precise 

control over heat input and deposition rate allows for stable melting and solidification of 

challenging materials which helps to expand its material applications. These materials are 

selected for their mechanical and biological properties, making them ideal for implants, 

surgical instruments, and prosthetic components. 

 

Fig. 1.6: Photograph of the 5-axis CNC machine for µ-PMAM process showing the 

deposition head and formation of µ-plasma arc inside the µ-plasma torch in the insets. 
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In terms of functional outcomes, the parts produced through µ-PMAM often exhibit 

fine-grained microstructures, uniform layer bonding, and high mechanical strength due to 

controlled thermal cycles and precise deposition paths. Its ability to handle custom 

geometries and specialized materials opens new possibilities for repairing, re-

manufacturing, and customizing critical components. This is especially relevant in high-

value sectors namely aerospace, automotive, biomedical, and defence where performance, 

reliability, and material efficiency are critical 

1.5.1 Applications of µ-PMAM Process 

 Aerospace components: µ-PMAM enables fabrication of complex, lightweight parts 

using high-temperature alloys such as Inconel 625, offering superior heat resistance, 

geometric precision, and reduced material waste for turbine blades and aerospace 

brackets. 

 Tools and dies manufacturing: The µ-PMAM process efficiently produces and 

repairs moulds of P20 and H13 materials enhancing their useful life, reducing lead time. 

 Biomedical implants and devices: The µ-PMAM process has been used to process 

biocompatible materials such as Ti6Al4V, Co-Cr-Mo-xTi, Ti-Ta-Zr-W-Mo with 

tailored microstructures, allowing the production of patient-specific implants and 

surgical tools with improved mechanical and biological performance. 

 Development of high-entropy alloy: It µ-PMAM process has been used to develop 

advanced alloys such as Ti6Al4VxNiyCr, Co-Cr-Mo-xTi, Ti-Ta-Zr-W-Mo, enabling 

components with superior strength, corrosion resistance, and biocompatibility for 

demanding structural and biomedical applications. 

 Component repair and remanufacturing: µ-PMAM process can repair worn or 

damaged high-value metallic parts by adding material only where needed, extending 

component life and reducing replacement costs and environmental waste. 

1.6 Organization of thesis 

This thesis is organized into the following five chapters: 

Chapter 1 introduces the fundamentals of machine learning (ML) and deep learning (DL). 

It describes main types of ML and DL algorithms. It highlights applications of ML and 

DL in manufacturing and additive manufacturing (AM) for detection of defects, quality 

control, and parametric optimization. It provides an overview of different types of AM 

processes, their advantages, limitations, and key industrial applications. It briefly 

introduces directed energy deposition (DED) processes and Micro-Plasma Metal 

Additive Manufacturing (µ-PMAM) process, summarizing their principles, key 

benefits, and major applications. 
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Chapter 2 reviews the relevant literature on use of ML and DL in AM, emphasizing previous 

work on process optimization, defect detection, and deposition geometry control in 

DED, WAAM, and µ-PMAM processes. It present the research gaps identified based 

on this review, and research objectives identified based upon the research gap along 

with the methodology used to meet them. 

Chapter 3 details the materials and research methodology used in this study, including the 

selection of deposition materials, data acquisition through video recording, feature 

extraction, and preparation of datasets. It describes the training and evaluation of 

various ML and DL algorithms for predicting deposition geometry and outlines the 

integration of these algorithms with the NSGA-II algorithm for multi-objective 

optimization. 

Chapter 4 presents the results and discussion, including performance of different ML and 

DL algorithms in predicting deposition geometry for single-layer and multi-layer 

depositions respectively. It analyzes performance of the selected ML and DL algorithm, 

the effectiveness of NSGA-II in optimizing process parameters, and the optimized 

parameters for both single-layer and multi-layer depositions. 

Chapter 5 summarizes the outcome of the present research by presenting its significant 

achievements, conclusions, and some directions for the future work. 
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Chapter 2 

Review of Past Work 

This chapter presents review of the past work carried out on application of ML and DL 

to perform different tasks such as detection and minimization of defects, prediction and 

control of deposition geometry, and parametric optimization in metallic AM (MAM) 

processes such as DED, WAAM, and µ-PMAM. It also presents summary of the past work 

review, existing research gaps, identified research objectives along with the methodology 

used in the present work to achieve them.  

2.1 Past Work on ML Usage in AM Processes 

Optimization of a MAM processes involves detection and elimination or minimization 

of deposition defects, achieve accurate deposition geometries, and adjusting its parameters 

to improve the build quality. In recent years, ML and DL have become increasingly popular 

for optimizing the MAM processes, for example, ML and DL have been used for L-DED, 

WAAM, and LPBF processes to enhance their outcomes. Following sections describe the 

review of the past work performed to detect and minimize deposition defects and to optimize 

deposition geometry using ML/DL.   

2.1.1 Detection and Minimization of Deposition Defects Using ML/DL 

Deposition defects such as porosity, lack of fusion, cracks, and delamination in a MAM 

process can severely compromise mechanical properties of the fabricated product therefore 

their early detection and mitigation are crucial. And use of ML/DL for detecting and 

minimizing these defects has been one major research thrust.  

Some researchers have used ML algorithms in the DED processes for monitoring and 

reducing the deposition defects by exploiting open architecture of DED processes where the 

melt pool is visible during deposition which allows for diverse sensor integration. 

Khanzadeh et al. (2018) applied clustering algorithm to sensor data in L-DED process to 

detect out-of-distribution process events without needing the labelled data. Montazeri et al. 

(2019) combined ML algorithm with optical emission spectroscopy in a DED process and 

showed that spectral patterns of the plume can predict the defects. Liu et al. (2022) used 

high-speed video monitoring of the melt pool in the laser wire additive manufacturing 

(WLAM) process and extracted feature descriptors to train the Naïve Bayes ML algorithm 

for detection of the defects. Their study could identify the defects such as humping (i.e., 

irregular bead formation) and lack-of-fusion on real-time basis. Some researchers have 

utilized vision-based and hybrid ML algorithms to tackle the defects such as pores, cracks, 

and geometric irregularities in the WAAM process. Tang et al. (2020) used ML-DL 
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combined two-stage approach to detect the welding defects such as burn-through and poor 

deposition continuity in the robotic WAAM process. Their approach involved analysis of 

weld pool images by neural networks to identify defect precursors which is supplemented 

by the support vector machine (SVM) classifier for final defect categorization. Zhang et al. 

(2023) used YOLO-based detector to the x-ray images of WAAM fabricated multi-layer 

deposition for identification of pore defects in it.  

Some researchers have leveraged in-situ monitoring data such as optical images, 

infrared thermal videos, acoustic signals in combination with DL algorithms to identify the 

deposition defects on real-time basis or post-MAM process. Scime and Beuth (2018) used 

the CNN to classify anomalous regions on layer images and successfully detected spatter-

induced porosity and other irregularities in the LPBF process. Yuan et al. (2018) 

demonstrated that high-resolution visual imaging of the powder bed in the LPBF process 

can feed the DL algorithms to flag the defects such as recoated blade interference or uneven 

powder distribution. Baumgartl et al. (2020) used infrared thermography data as input to a 

DL algorithm and correlated formation of porosity with the thermal patterns in LPBF 

process. Some researcher used DL-based closed loop control to minimize the defects. Some 

researchers have used DL-based closed loop control to minimize the defects. Kwon et al. 

(2020) implemented closed-loop control in a L-DED process in which DL algorithm was 

trained to recognize the impending defects (like bead misalignment or instability) from real-

time sensor data, and the system automatically adjusted process parameters (e.g., laser µ-

plasma power or deposition head traverse rate) to avoid occurrence of the defects. Their 

study demonstrated feasibility of coupling DL-based diagnostics with immediate corrective 

actions which will reduce defect occurrence. Wang et al. (2023) proposed a real-time defect 

detection framework for LPBF process using a vision-based DL algorithm to monitor each 

deposition layer and to pause process if a serious anomaly is detected.  

2.1.2 Deposition Geometry Optimization Using ML/DL 

Another critical aspect in the MAM processes is achieving the desired deposition 

geometry in terms of optimized deposition width and height, total height, and overall 

dimensional accuracy of a deposition. Controlling these geometrical parameters is 

especially important in DED and WAAM processes where melt pool dynamics and heat 

accumulation can lead to irregular layer profiles. Traditional approaches for parameter 

setting namely trial-and-error method or physics-based algorithms are often time-

consuming or may not capture complex interactions between multiple parameters of an 

MAM process. Thus, researchers are increasingly exploring different ML/DL algorithms to 

predict and optimize deposition geometry through optimization of the process parameters 
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with a goal of identifying optimum settings that yield the target geometry. Such data-driven 

algorithms effectively serve as surrogates for an MAM process, enabling optimization of 

layer geometry without exhaustive physical experimentation. 

Researchers have used ML algorithms in WAAM process for deposition geometry 

prediction due to its relevance in producing large structural components with relatively 

coarse deposition geometry. Chandra et al. (2024) conducted a comparative evaluation of 

multiple ML algorithms to predict the deposition height and width in a WAAM process 

using stainless steel wire. They trained ML algorithms using a dataset comprising of travel 

speed, wire deposition head traverse rate, torch angle, and stand-off distance as inputs. They 

achieved reasonably high accuracy in estimating the deposition dimensions. They reported 

that a simple linear regression ML algorithm performed better for deposition width 

prediction whereas a non-linear ML algorithm was more accurate for deposition height 

prediction. It highlights that the appropriate ML algorithm may be different for different 

geometric features of a deposition. Subadra et al. (2024) utilized ML algorithms to predict 

deposition geometry and recommended process parameter settings for deposition width and 

height of stainless steel depositions by WAAM process by examining the effects of voltage, 

current, travel speed, and wire deposition head traverse rate. They reported that the random 

forest ML algorithm reliably predicted deposition dimensions from the process parameters, 

and an inverse prediction used the KNN to suggest the process parameter settings that are 

likely to produce the desired shape of a deposition. Some researchers have shown that ML 

algorithms can capture the relationship between laser µ-plasma power, scan speed, powder 

deposition head traverse rateand the resulting melt pool dimensions in the LDED process. 

Xiong et al. (2019) developed an ANN to predict total height of multi-layer depositions by 

LDED process which will help to select parameters that yield a uniform height. Zhang et 

al. (2021) integrated a vision system that measured the cross-sectional profile of a deposition 

in real-time and fed these measurements into a controller tuned by ML which adjusted the 

travel speed to maintain a targeted deposition width. These approaches illustrate the 

extension of ML from purely predictive use to active control for geometry stabilization in 

LDED process. 

The layer geometry in the LPBF process is dictated by powder spreading and melt pool 

behaviour at much finer scale therefore the focus of deposition geometry optimization is 

different. ML/DL has been used in LPBF process to ensure uniform layer deposition and to 

predict distortions or dimensional deviations after depositing. Grill et al. (2019) used ML 

to optimize scan path or pattern in LPBF process to achieve uniform energy distribution, 

which indirectly ensures consistent melt track geometry and layer thickness. Ren et al. 
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(2021) applied a DL algorithm to predict the final part distortion in LPBF process for given 

a set of process parameters and scan strategies, thereby guiding parameter selection to 

minimize the warping. Kumar and Jain (2022) employed a KNN algorithm to predict the 

surface roughness of multi-layer depositions built by µ-PMAM process. They used the 

feedstock material in both powder and wire form and the ML algorithm could forecast the 

resulting surface roughness from process inputs with reasonable accuracy (within ~6% 

error). Mukherjee et al. (2020) achieved a reduction in bead height variance in WAAM 

deposition. Liu et al. (2022) demonstrated more uniform build walls in a DED process as 

compared to baseline settings.   

2.2 Summary of Past Work Review 

Following is the summary of the review of past works on usage of ML/DL algorithms 

in MAM processes:  

 There is growing use of ML and DL in AM processes for detection of defects, predicting 

deposition geometry, and process optimization especially in MAM processes such as 

DED, WAAM, and LPBF processes. 

 ML can map subtle process signals such as video, spectra, etc. in the DED processes to 

defect occurrence of defects thus providing early warning for the quality deviations.  

 Supervised DL algorithms, especially CNN, are effective in recognizing the defects 

from the complex sensor data i.e., images and thermal fields in the PBF processes. Even 

for the comparatively coarse features of WAAM (as opposed to fine powder beds), 

modern DL can successfully pinpoint internal and surface defects (including small pores 

or inclusions) with high confidence. 

 ML-based closed-loop or adaptive control are still in early stages but they highlight the 

trend from defect analysis towards in-situ defect minimization using ML.  

 ML/DL algorithm when properly trained and validated can effectively predict how 

changes in parameters of an MAM process will affect the deposition geometry. This 

capability greatly accelerates process optimization, enabling practitioners to attain the 

desired deposition dimensions and mechanical properties linked to geometry also, with 

fewer experimentations. It also leads to a common theme that use of ML as a µ-plasma 

powerful tool to navigate multi-parameter process for desired geometric outcomes. 

 From the initial demonstrations of CNN classifying defects from the images of an MAM 

process, the research is moving towards a sophisticated multi-sensor data fusion and 

even preliminary autonomous control for quality assurance in the AM processes. These 

advances provide a strong foundation for improving reliability in MAM processes via 

intelligent, data-driven monitoring. 
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2.2 Identified Research Gaps 

Following are the research gaps identified from review of the past work:   

 No work is available on ML/DL based geometry prediction of single and multi-layer 

depositions fabricated by µ-PMAM process using their real-time data  

 No work is available on multi-objective optimization of µ-PMAM process parameters 

with conflicting objectives 

 No work is available on real-time, closed-loop systems that will not only detect but also 

minimize or eliminate defects in the µ-PMAM process. 

2.3 Research Objectives  

The following are the research objectives (RO) of the present work based on some of the 

identified research gaps: 

 RO-1: Selection of an appropriate ML algorithm which is capable of accurately 

predicting deposition height and width of single-layer depositions by µ-PMAM process 

on the same material base plate using the real-time data extracted from their high-

resolution video recordings. The selected ML algorithm to be trained, validated and 

tested using the real-time data only. 

 RO-2: Selection of an appropriate DL algorithm which is capable of accurately 

predicting total height and width of multi-layer depositions by µ-PMAM process on the 

mild steel base plate using the real-time data extracted from their high-resolution video 

recordings. The selected DL algorithm should be capable of handling increased 

nonlinearity can capture inter-layer dependency, and spatial and sequential dependencies 

in the multi-layer depositions. 

 RO-3: Multi-objective optimization of µ-PMAM process parameters (i) using the 

selected ML algorithm integrated with the non-dominated sorting genetic algorithm II 

(NSGA-II) for the single-layer depositions to identify optimum combinations of process 

parameters that will yield the desired deposition geometry, and (ii) using the selected DL 

algorithm integrated with NSGA-II for the multi-layer depositions to handle the added 

complexity and to identify optimum combination of process parameters that will achieve 

uniform and defect-free deposition across multiple layers. 

 

 

2.4 Research Methodology  

Fig. 2.1 shows schematic of the research methodology to meet the identified objectives 

of the present work.   
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Fig. 2.1: Research methodology used in the present work. 

The used research methodology involves several key steps, starting from data acquisition 

to training of ML and DL algorithms, followed by multi-objective optimization of process 

parameters for optimum deposition geometry by integrating the selected ML and DL 

algorithm with the NSGA-II. It begins with recording videos of single and multi-layer 

depositions fabricated by µ-PMAM process using a high dynamic range camera. The 

recorded videos were broken down into individual images to extract relevant information 

image-wise. The prepared datasets were split into training, testing, and validation sets for 

the considered ML and DL algorithms. Six ML algorithms and three DL algorithms were 

trained and evaluated for single-layer and multi-layer depositions respectively. All trained 

ML and DL algorithms were evaluated using coefficients of determination, mean average 

error (MAE) to select the appropriate algorithm. The algorithm selection process involved 

evaluating the 6 ML and 3 DL algorithms based on their predictive accuracy, 

generalizability, and suitability for the characteristics of the available datasets. The selected 

ML and DL algorithm were trained, validated and tested using the real-time data. These 

algorithms can quickly predict the height and width of the deposition for any set of input 

parameters. The selected ML  algorithm was integrated with the non-dominated sorting 

genetic algorithm II (NSGA-II) for multi-objective optimization of the single-layer 

depositions to identify optimum combinations of process parameters that will yield the 

desired deposition geometry. While, selected DL algorithm was integrated with NSGA-II 

for multi-objective optimization of the multi-layer depositions to identify optimum 

combination of process parameters that will achieve uniform and defect-free deposition 
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across multiple layers. The ML/DL integrated NSGA-II yielded several sets of optimized 

parameters (i.e., µ-plasma power, deposition head traverse rate, feedstock feedstock powder 

flow rate) that can give desired geometry. 

This chapter presented a review of the relevant literature, identified research gaps, 

research objectives of the present work along with the methodology used to meet them. The 

next chapter describes details of the materials for single layer and multi-layer depositions, 

data acquisition through recording of videos, processing of these videos, training, validation, 

testing and evaluation of the considered ML and DL algorithms, training of the selected ML 

and DL algorithm, and multi-objective optimization of by µ-PMAM process parameters by 

selected ML and DL algorithm integrated with NSGA-II for the single-layer and multi-layer 

depositions. 
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Chapter 3                                                                                  

Materials and Methods 

This chapter details the deposition materials used in this study, data acquisition through 

video recording, feature extraction, and preparation and splitting of the datasets. It also 

describes training, validation, testing and evaluation of the considered ML and DL 

algorithms, training of the selected ML and DL algorithm, and multi-objective optimization 

of by µ-PMAM process parameters by selected ML and DL algorithm integrated with 

NSGA-II for the single-layer and multi-layer depositions. 

3.1 Selection of Deposition and Base Plate Materials 

Table 3.1 presents details of the deposition and base plate materials used for fabricating 

single-layer and multi-layer depositions by µ-PMAM process.  

Table 3.1: Deposition and base plate materials used in single-layer and multi-layer 

depositions by µ-PMAM process. 

Layer Deposition material Base plate material 

Single-layer depositions Ti6Al4V Ti6Al4V 

Multi-layer depositions SS 316L Mild steel 

The SS 316L is an austenitic stainless steel whose composition by wt.% is: 16-18% Cr; 

10-14% Ni; 2-3% Mo; Max. 0.03% C; and small amounts of Manganese, Silicon, and other 

elements. The ‘L’ indicates very less carbon content. It has excellent resistance to 

atmospheric corrosion, moderately oxidizing and reducing environments, chloride-rich 

environments, good strength and toughness, even at cryogenic temperatures, good 

weldability. Its main applications include: (i) Biomedical devices due to its biocompatibility 

and resistance to corrosion, (ii) Marine environments for structural components and 

equipment exposed to seawater, (i) Food processing due to its resistance to corrosion and 

non-toxicity, (iv) Chemical and petrochemical industries for equipment handling corrosive 

chemicals, and (v) Cryogenic applications due to its ability to maintain strength at very low 

temperatures. The Ti-6Al-4V, sometimes also called TC4 or Ti64 , is an alpha-beta titanium 

alloy of ASTM Grade 5. Its composition by wt.% is: 5.5-6.75% Al; 3.5-4.5% V; 0.3% Fe; 

0.2%O; 0.08% C; 0.05% N; 0.015%H; and balance Ti. It has excellent biocompatibility, 

excellent corrosion resistance to seawater, oxidizing acids and rocket propellants, relatively 

low density and thermal conductivity, high strength and modulus of elasticity, and good 

fatigue strength and formability. It is primarily used in various aerospace applications, 

orthopaedic implants because it promotes bone regeneration, and high-temperature 

components. Therefore, these two materials were chosen the deposition materials.  
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3.2 Selection of Input Parameters 

The performance of the µ-PMAM process is highly dependent on the input parameters. 

These parameters directly influence the deposition geometry, including height, width, and 

consistency of the deposited layers. Different combinations of the following input 

parameters were used during video recording of the single-layer depositions of Ti6Al4V to 

capture their effects on the deposition geometry thus allowing the ML algorithms to learn 

their relationships with the deposition geometry:  

 µ-plasma power: The energy supplied for formation µ-plasma arc inside the µ-plasma 

torch. It affects the time required to melt a deposition material and form a cohesive layer. 

Higher the µ-plasma power, lesser is the time needed to melt a deposition material. 

 Feedstock powder flow rate: It is the rate at which the feedstock or deposition material 

is delivered to the base plate. It influences height and width of a deposition. It depends 

on density, particle size and sticking tendency of feedstock powder. Its value is restricted 

by µ-plasma power i.e., smaller value of µ-plasma power does not allow use of larger 

value of feedstock powder flow rate. 

 Deposition head traverse rate: It is speed at which the deposition head travels over the 

base plate. Its value is affected by melting point of the feedstock material and µ-plasma 

power. Higher melting of the feedstock material and/or smaller value of µ-plasma power 

necessitates small traverse rate of deposition head and vice-versa. It affects geometry of 

a deposition layer and overall deposition quality. 

In addition to the above-mentioned parameters, following additional input parameters, 

as depicted in Fig. 3.2, were used for multi-layer depositions of SS 316L to account for the 

increased complexity:   

 Stand-Off-Distance (SOD): The distance between the nozzle and the substrate, which 

affects the material deposition angle and consistency. 

 Layer Index ‘N’: It indicates which layer is being deposited. 

 Height and width of previous layer (PreLH and PreLW): The height and width of 

the previously deposited layer is important because it provides the immediate context 

for deposition of the next layer. 

 Cumulative deposition height ‘CumH’: The cumulative height of all previously 

deposited layers directly reflects their consistency and quality. A consistent value of 

CumDH indicates that the material is being deposited uniformly, which is essential for 

providing a stable base for the next layer. 
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Fig. 3.1: Additional inpur parameters for a multi-layer depositon. 

3.3 Data Acquisition 

Data acquisition plays an important role in training, validation, testing, and evaluation 

of ML and DL algorithms. The data were acquired by extracting the images from the 

recorded videos by a high dynamic range (HDR) camera (Make: TPS, Model: XVC-1000-

1100) mounted on the CNC machine of the µ-PMAM process as shown in Fig. 3.1. This 

HDR camera was selected for its ability to capture high-resolution video with enhanced 

lighting sensitivity. Video recording of the deposition process at a high image rate made it 

possible to observe the deposition geometry in real-time and capture any subtle variations 

that could influence the final part quality. Following high-quality grey videos were recorded 

for different combination of µ-plasma µ-plasma power and deposition head traverse rate: (i) 

8 videos for single-layer depositions of SS 316L on mild steel base plate, (ii) 2 videos for 

single-layer depositions of Ti6Al4V on mild steel base plate, (iii) 6 videos for single-layer 

depositions of Ti6Al4V on same material base plate, and (iv) 4 videos for multi-layer of SS 

316L on mild steel base plate. Table 3.2 provides details of these recorded videos. They 

provide real-time visual insights into the deposition process allowing for extraction of 

deposition height and width. The data collected through this method was crucial for the data-

driven ML and DL algorithms that can forecast the deposition geometry and optimize the 

process parameters. 
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Fig. 3.2: Photograph of the CNC machine of µ-PMAM process showing mounting of the 

high dynamic range (HDR) camera of make TPS XVC-1000-1100. 

Table 3.2: Details of recorded videos for single-layer and multi-layer depositions by µ-

PMAM process. 

Video 
No. 

Deposition 
material 

Base 
plate 

material

No. of 
layers 

µ-plasma 
power (W) 

Deposition head 
traverse rate 
(mm/min) 

Feedstock 
powder flow 
rate (g/min) 

Duration of the 
recorded video 

(seconds) 

Number of 
extracted 
images 

1 SS 316L Mild 
steel 

Single-
layer 

308 47 1.7 66 60 
2 50 2.1 54 48 
3 53 3.5 62 49 
4 319 47 2.5 71 64 
5 53 2.1 62 52 
6 330 47 1.5 69 59 
7 50 1.7 68 60 
8 53 1.9 61 52 
9 SS 316L Mild 

steel 
4 308 53 1.8 180 120 

10 6 308 53 2.5 348 290 
11 6 308 53 2.3 243 220 
12 6 319 50 1.8 173 160 
13 Ti6Al4V Mild 

steel 
Single-
layer 

330 55 1.5 60 55 
14 330 55 2.1 11 10 
15 Ti6Al4V Ti6Al4V Single-

layer 
330 50 2.7 8 6 

16 330 50 2.9 440 380 
17 330 50 2.1 23 20 
18 330 50 1.7 56 43 
19 330 55 3.5 59 51 
20 374 50 2.3 80 30 

 

3.4 Processing of the Recoded Videos 

Processing of the recoded videos is needed to ensure that ML and DL algorithms receive 

clean and well-structured data that can lead to their accurate predictions. Therefore, the 

recorded videos were processed in the following steps: (i) Extraction of images from each 



33 
 

recorded video, (ii) Scaling of features for single-layer depositions data, (iii) Histogram-

based multi-modal method for multi-layer depositions, and (iv) careful splitting of each 

dataset into training, testing, and validation subsets. 

3.4.1 Extraction of Images from the Recorded Videos 

Image extraction from a recorded video is a key step in transforming the visual data 

into a usable information for the ML and DL algorithms. Therefore, images were extracted 

from each recorded video whose details are provided in Table 3.1. The image extraction 

process was performed using Python-based image processing tool ensuring that the entire 

process is efficiently carried out without human intervention. Each extracted image provides 

details of the deposition geometry at a specific point in time, capturing critical features such 

as deposition height and width. The extracted images were then analysed and processed 

further to extract meaningful features that were used for training the ML and DL algorithms. 

The extracted images were then labelled based on the deposition parameters (i.e., µ-plasma 

µ-plasma power, deposition head traverse rate, and feedstock powder flow rate) used while 

recording a particular video. This labelling allowed for the establishment of a direct 

relationship between the input parameters and the observed deposition geometry.  

3.4.2 Feature Scaling for Single-Layer Depositions Data 

Data having input features or parameters with varying scales affect performance of ML 

algorithms due to their sensitivity towards the scale of input features. Therefore, feature 

scaling was applied to the extracted real-time data of single-layer depositions to standardize 

the input parameters. Standardized scaling was chosen for this study in which standard value 

of an input parameter was computed using the Eq. 1. It transforms the data so that each 

parameter has a mean of 0 and a standard deviation of 1 ensuring that all input parameters 

are treated equally by an ML algorithm regardless of their original scales and prevent it from 

being biased toward parameters with larger magnitudes. For example, µ-plasma power 

ranges from 100 W to 440 W whereas, deposition head traverse rate could vary from 5 to 

20 mm/s, and feedstock powder flow rate might range from 0.2 to 1.5 g/min. Without 

standardization, the ML algorithm could disproportionately focus on µ-plasma power due 

to its wide numerical range than that of the deposition head traverse rate or feedstock powder 

flow rate. But, use of standardized scaling transformed all these input parameters to a 

comparable scale so that an ML algorithm treats them equally regardless of their original 

scales without being biased toward the parameters with larger magnitude. Therefore, 

standardization of input features is crucial for improving the predictive accuracy of an ML 

algorithm because it allows it to effectively learn the relationships between these parameters 

and the resulting deposition geometry. 
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𝑥ᇱ =
𝑥 − 𝜇

𝜎
 (1)  

where, 𝑥ᇱ are ‘x’ are standardized and original value respectively of an input parameter;  

‘µ’ and ‘σ’ are mean and is standard deviation of that parameter. Table 3.3 presents real-

time data generated from the recorded videos of single-layer depositions of Ti6Al4V by µ-

PMAM process after removing all those data which yielded same values of deposition width 

and height. These data were used in training, validation, and testing of six ML algorithms. 

Table 3.3: Real-time data generated from recorded video of single-layer deposition of 

Ti6Al4V and used in training, validation, and testing of the six ML algorithms. 

Data 
no. 

µ-plasma 
power 

(W) 

Feedstock 
powder flow 
rate (g/min) 

Deposition head 
traverse rate 

(mm/min) 

Deposition 
width (mm) 

Deposition 
height (mm) 

Aspect 
ratio 

Quality of 
deposition 

1. 330 1.7 50 2.94 1.65 1.78 CUD 
2. 330 2.1 55 2.96 1.76 1.68 CUD 
3. 330 2.1 55 2.99 2.00 1.50 CUD 
4. 330 1.7 50 2.89 1.42 2.04 NUD 
5. 330 2.1 55 3.12 1.53 2.04 NUD 
6. 330 2.7 50 3.10 1.60 1.94 NUD 
7. 374 2.3 50 4.08 3.13 1.30 NUD 
8. 330 2.1 55 4.23 2.89 1.46 CUD 
9. 330 2.9 50 4.38 3.19 1.37 NUD 
10. 330 1.5 55 4.45 3.31 1.34 NUD 
11. 330 1.5 55 4.29 2.93 1.46 CUD 
12. 330 3.5 50 4.37 3.14 1.39 NUD 
13. 330 2.1 55 4.01 2.63 1.53 CUD 
14. 374 2.3 50 4.11 2.87 1.43 CUD 
15. 330 2.9 50 4.57 2.74 1.67 CUD 
16. 330 3.5 50 4.61 2.97 1.55 CUD 
17. 330 1.5 55 4.37 2.45 1.78 CUD 
18. 330 1.5 55 4.49 2.64 1.70 CUD 
19. 374 2.3 50 4.11 3.37 1.22 NUD 
20. 330 2.1 55 3.94 2.97 1.33 NUD 
21. 330 2.9 50 1.6 3.05 0.53 NUD 
22. 330 3.5 50 1.92 2.83 0.68 CUD 
23. 374 2.3 50 1.54 3.09 0.50 CUD 
24. 374 2.3 50 1.92 3.03 0.63 CUD 
25. 374 2.3 50 1.57 2.81 0.56 CUD 
26. 330 1.5 55 2.97 1.84 1.61 NUD 
27. 330 1.5 55 1.95 3.25 0.60 NUD 
28. 330 2.3 50 1.97 2.83 0.70 NUD 
29. 330 2.9 50 1.66 2.74 0.61 CUD 
30. 330 1.5 55 1.62 2.81 0.58 CUD 
31. 330 1.5 55 1.99 2.99 0.67 CUD 
32. 330 2.1 50 2.69 1.71 1.57 NUD 
33. 330 1.7 50 2.66 1.59 1.67 NUD 
34. 330 2.1 50 2.68 1.72 1.56 NUD 
35. 330 2.1 50 2.67 1.68 1.59 CUD 
36. 330 1.7 50 2.13 2.78 0.77 CUD 
37. 330 2.1 55 2.08 2.73 0.76 CUD 
38. 330 2.1 55 2.18 2.79 0.78 NUD 
39. 330 1.7 50 1.66 2.74 0.61 CUD 
40. 330 1.7 50 3.32 2.05 1.62 CUD 

*NUD: non-uniform deposition; CUD: continuous and uniform deposition 
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3.4.3 Histogram-Based Multi-Modal Method for Multi-Layer Depositions 

The traditional analysis methods for geometry of a multi-layer deposition primarily 

focus on calculating the average height and width over a predefined deposition length. 

Though these methods are simple and efficient but it has a significant limitation that it 

overlooks the local variations within the deposition process. By relying only on average 

values, the traditional methods fail to capture the fluctuations in deposition height and width 

that may occur at various points along the deposition length. These local variations are 

important as they affect quality, uniformity, and performance of multi-layer depositions. 

A new histogram-based multi-modal method introduced in this study in which 

deposition height and width are measured at regular interval of 1 mm along the deposition 

length from the recorded video of a multi-layer deposition. Analysis of the deposition 

geometry data at such a small interval ensures more accurate and comprehensive 

understanding of the deposition process. It will not only identify the average values of 

deposition geometry data but also captures the local variations and inconsistencies that are 

missed in the traditional methods of deposition geometry analysis. Generation of histogram-

based data for a multi-layer deposition requires the following steps to be performed: 

 Normalization of data: Measured values of height and width of a particular layer of a 

multi-layer deposition are normalized by using Eqs. (2) and (3) to ensure that the data 

are comparable for different deposition layers: 

ℎ௜
ᇱ =

ℎ௜ − 𝜇௛

𝜎௛
 (2) 

𝑤௜
ᇱ =

𝑤௜ − 𝜇௪

𝜎௪
 (3) 

where, ‘hi’ and ‘wi’ re the values of height and width of a particular deposition layer 

of a multi-layer deposition measured on the ith location along the deposition length and 

ℎ௜
ᇱ  and  𝑤௜

ᇱ  are their normalized values for i = 1, 2, 3, …. n; ‘n’ is total number of 

measured data for height or width for each deposition layer; ‘ 𝜇௛
ᇱ  and ′𝜎௛′; and 

′𝜇௪′and ′𝜎௪′ are the mean and standard deviation of the dataset for deposition height 

and width of a particular layer of a multi-layer deposition respectively.  

 Histogram generation data: Histogram data are generated for height and width of each 

layer of a multi-layer deposition using their normalized values. The x-axis of a histogram 

represents value of deposition width or height with a tolerance range of ±0.2 mm and its 

y-axis show frequency or occurrence for each value.  
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 Identification of modes: The generated histogram data for height and width of each 

layer of a multi-layer deposition are divided into three regions by calculating % 

distribution of data using Eq. 4.  

𝑃௝ =
Frequency of Occurrence of 𝑗௧௛ 𝑣𝑎𝑙𝑢𝑒

𝑛
× 100 (4) 

where, ‘Pj’ is percentage of occurrence of jth value of height or width of each layer 

of a multi-layer deposition; and ‘n’ is total number of measured data for height or width 

for each deposition layer. Primary, secondary, and tertiary modes are identified based 

on the computed distribution of values. The primary mode represents the most common 

values of deposition height or width occurring along the deposition length. It 

corresponds to the regions where the deposition process is the most consistent producing 

deposition height and width remaining stable at 60 to 70% of the deposition length. The 

secondary and tertiary modes represent the regions where the local variations in 

deposition height and width occur along the deposition length. These variations may be 

due to slight fluctuations in process parameters such as µ-plasma power, deposition head 

traverse rate, feedstock powder flow rate, and stand-off distance which affect the 

deposition geometry at specific locations. Secondary and tertiary modes together 

represent 30–40% of value of deposition height or width occurring along the deposition 

length. 

Table 3.4 presents the histogram-based data generated from the recorded video number 

10, 11, and 12 (as mentioned in Table 3.2) for 6 layers of 3 multi-layer depositions of SS 

316L by µ-PMAM process. The percentages associated with each value of deposition height 

or width in Table 3.4 represent the percentage of deposition length over which a particular 

value of deposition width or height of deposition layer lies within a tolerance range of ±0.2 

mm. For example, if the primary mode represents 65%, it means that 65% of the deposition 

length has a consistent height and width around this value, indicating a stable deposition 

process. The remaining 35% may consists of fluctuations (represented by secondary or 

tertiary mode) or gaps (zero values) thus revealing the values over which the deposition 

process is less consistent or interrupted. It implies that these data offer valuable insights into 

the deposition characteristics and performance. The data of Table 3.4 will be used for 

training the three DL algorithms.  
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Table 3.4: Histogram-based real-time data generated from the recorded videos of multi-
layer depositions of SS 316L and used in the training, validation, and testing of three DL 
algorithms.  

 

3.3.4 Splitting of Datasets 

The generated real-time data for single-layer deposition (Table 3.3) and multi-layer 

depositions (Table 3.4) were split into three subsets namely training, validation, and testing 

datasets in ratio of 70:20:10. The training data were used to train ML or DL algorithms, 

allowing them to learn the relationships between input parameters and deposition geometry. 

The validation data were used to fine-tune the hyperparameters of ML or DL algorithms and 

ensure that they did not overfit the training data. Finally, the testing data were used to 

Layer 
index 
‘N’ 

µ-
plasma 
power 

Depos
ition 
head 

traver
se rate 

Feed-
stock 

powder 
flow 
rate 

SOD 
(mm) 

CumH 
(mm) 

PreLH 
(mm) 

PreLW 
(mm) 

Height #1 
(% 

occurrence 
along the 
deposition 

length) 

Height #2 
(% 

occurrence 
along the 
deposition 

length) 

Height #3 
(% 

occurrence 
along the 
deposition 

length) 

Width #1 
(% 

occurrence  
along the 
deposition 

length) 

Width #2 
(% 

occurrence 
along the 
deposition 

length) 

Width #3 
(% 

occurrence 
along the 
deposition 

length) 

Video number: 10 
1 308 53 2.5 12 0 0 0 3.71 

(63.91%) 
3.12 

(28.05%) 
4.23 

(8.05%) 
3.96 

(63.87%) 
4.52 

(30.07%) 
5.02 

(6.06%) 
2 308 53 2.5 12 3.71 3.71 4.12 3.74 

(63.49%) 
3.1 

(18.25%) 
4.48 

(18.25%) 
4.10 

(63.27%) 
3.60 

(18.36%) 
5.24 

(18.36%) 
3 308 53 2.5 12 7.45 3.74 4.14 3.67 

(63.44%) 
3.02 

(18.28%) 
4.42 

(18.28%) 
3.90 

(64.44%) 
3.41 

(17.78%) 
5.20 

(17.78%) 
4 308 53 2.5 12 11.12 3.67 4.11 3.46 

(67.41%) 
3.0 

(16.30%) 
4.39 

(16.30%) 
3.95 

(63.64%) 
3.45 

(18.18%) 
5.15 

(18.18%) 
5 308 53 2.5 12 14.64 3.46 4.1 3.70 

(64.71%) 
3.12 

(17.65%) 
4.33 

(17.65%) 
4.10 

(63.7%) 
3.55 

(18.14%) 
5.34 

(18.14%) 
6 308 53 2.5 12 18.1 3.70 4.04 3.70 

(62.16%) 
2.97 

(18.92%) 
4.20 

(18.92%) 
4.18 

(63.72%) 
3.67 

(18.14%) 
4.76 

(18.14%) 

Video number: 11 

1 308 53 2.3. 8 0 0 0 
3.34 

(76.52%) 
2.90 

(11.85%) 
4.46 

(11.63%) 
3.86 

(50.85%) 
4.35 

(39.26%) 
3.16 

(9.89.%) 

2 308 53 2.3 8 3.34 3.34 3.86 
3.35 

(66.93%) 
2.87 

(22.7%) 
4.47 

(10.37%) 
3.82 

(51.37%) 
4.30 

(30.82%) 
3.17 

(17.81%) 

3 308 53 2.3 8 6.69 3.35 3.82 
3.29 

(62.8%) 
3.83 

(25.74%) 
4.43 

(11.46%) 
3.86 

(60.11%) 
4.42 

(30.89%) 
3.17 

(9.0%) 

4 308 53 2.3 8 9.98 3.29 3.86 
3.29 

(59.77%) 
3.78 

(28.12) 
4.44 

(12.11%) 
3.78 

(55.26%) 
4.45 

(24.68%) 
3.08 

(20.06%) 

5 308 53 2.3 8 13.27 3.29 3.78 
3.38 

(66.54%) 
3.98 

(22.57) 
4.51 

(10.89%) 
3.79 

(67.09%) 
4.38 

(20.17%) 
3.18 

(12.74%) 

6 308 53 2.3 8 16.65 3.38 3.79 
3.27 

(72.92%) 
3.76 

(16.21%) 
4.39 

(10.87%) 
3.74 

(62.43%) 
4.49 

(30.94%) 
3.17 

(6.2%) 

Video number: 12 
1 319 50 1.8 10 0 0 0 3.33 

(58.0%8) 
2.80 

(21.0%) 
3.80  

(21.0%) 
3.94 

(70.81%) 
3.24 

(14.59%) 
4.66 

(14.59%) 

2 319 50 1.8 10 3.33 3.33 3.94 3.45 
(71.53%) 

3.02 
(14.23%) 

3.98 
(14.23%) 

3.94 
(70.17%) 

3.34 
(14.91%) 

4.98 
(14.91%) 

3 319 50 1.8 10 6.78 3.45 3.94 3.41 
(66.27%) 

2.98 
(16.87%) 

4.12 
(16.87%) 

3.87 
(71.41%) 

3.25 
(14.3%) 

4.82 
(14.3%) 

4 319 50 1.8 10 10.19 3.41 3.96 3.54 
(59.54%) 

3.05 
(20.23%) 

4.10 
(20.23%) 

3.87 
(70.89%) 

3.20 
(14.55%) 

4.92 
(14.55%) 

5 319 50 1.8 10 13.73 3.54 3.87 3.46 
(60.28%) 

2.95 
(19.86%) 

3.97 
(19.86%) 

3.96 
(70.89%) 

3.50 
(14.55%) 

4.78 
(14.55%) 

6 319 50 1.8 10 17.19 3.46 3.96 3.43 
(58.77%) 

2.99 
(20.61%) 

3.96 
(20.61%) 

3.93 
(71.08%) 

3.40 
(14.46%) 

4.99 
(14.46%) 



38 
 

evaluate performance of ML or DL algorithms by providing an unbiased assessment of their 

predictive accuracy. 

3.5 Selection and Training of ML Algorithms for Single-Layer Depositions 

Six ML algorithms namely Random Forest (RF), K-Nearest Neighbours (KNN), 

Support Vector Regression (SVR), Gaussian Process Regression (GPR), LASSO 

Regression, and Ridge Regression were chosen for prediction of deposition geometry for 

single-layer depositions. Following are justifications for their selection: (i) Strength of the 

RF algorithm lies in its ability to handle complex and non-linear relationships between the 

input and output parameters. It is particularly useful when numerous interacting features 

exist, for example, the µ-PMAM process in which multiple deposition parameters such as 

µ-plasma power, deposition head traverse rate, and feedstock powder flow rate interact in a 

non-linear manner to influence the deposition geometry, (ii) Proximity of the specified data 

points allows the KNN algorithm to effectively capture the local variations in deposition 

height and width in an AM process such as µ-PMAM process, (iii) Key advantage of SVR 

is its ability to effectively capture non-linear relationships between the input parameters 

and the targeted output parameters, (iv) GPR algorithm is particularly useful for complex 

and non-linear relationships between input and output parameters. It is well-suited for 

scenarios where the data are noisy or where uncertainty in the predictions needs to be 

quantified, (v) LASSO and Ridge regression algorithms are useful in dealing with the large 

datasets that have many features because they identify the most relevant features for 

predicting the targeted output.  The selected ML algorithms were trained and validated using 

the earmarked 70% and 20% of the real-time data respectively (presented in Table 3.3) for 

single-layer deposition of Ti6Al4V by µ-PMAM process and algorithm-specific parameters 

as presented in Table 3.5. The real-time data of Table 3.3 possess diverse deposition 

scenarios with variations in key process parameters whereas parameters in Table 3.5 offer 

valuable insights into the configurations used for each ML algorithm for its best 

performance.  

Table 3.5: Parameters related to the six ML algorithms used in the present study.  

ML Algorithm name Parameter Value 
Random Forest n_estimators 500 
K-Nearest Neighbours K 5 
Support Vector Regression Kernel RBF 

C 1000 
Gaussian Process Regression Kernel C [1, (0.01, 0.1)] x RBF [1, (10-3, 103)] 
LASSO Regression Alpha 0.02 
Ridge Regression Alpha 1 
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Number of estimators used for the training of RF algorithm was 500 using real-time data 

for single-layer deposition, capturing a broad range of deposition scenarios. Value of ‘K’ as 

5 was used training the KNN algorithm implying that it considered the 5 nearest neighbours 

to predict the deposition geometry. The SVR algorithm employed radial basis function 

(RBF) as kernel with a regularization parameter C as 1000. This parameter controls trade-

off between fitting the data and maintaining simplicity of the algorithm. It helps to prevent 

overfitting by penalizing the excessively complex algorithms that fit the noise in the data 

rather than the true underlying trend. The kernel used in GPR is a combination of C [1, 

(0.01, 0.1)] and RBF kernel with a parameter range from 10-3 to 103. This kernel choice 

allows this algorithm to capture both smooth variations and sharp changes in the deposition 

process. The alpha parameter for the LASSO algorithm was set to be as 0.02 which controls 

strength of the regularization. A larger value of alpha would result in more features being 

eliminated whereas its smaller value would allow more features to contribute to the LASSO 

algorithm. The alpha parameter for Ridge Regression algorithm was set equal to 1, 

balancing the trade-off between fitting the data and maintaining algorithm simplicity.  

3.6 Selection and Training of DL Algorithms for Multi-Layer Deposition 

Three DL algorithms namely Recurrent Neural Network (RNN), Bidirectional Long 

Short-Term Memory (BiLSTM), and Self-Attention Temporal Convolutional Network (SA-

TCN) were chosen for predicting the deposition geometry of multi-layer deposition. These 

algorithms were chosen because they are adept at capturing the complex temporal 

dependencies between deposition layers in a multi-layer deposition, where the 

characteristics of a previously deposited layer influence the next deposition layer. The 

chosen DL algorithms were trained via the Adam optimizer with a learning rate of 0.001 

and a batch size of 32 for 100 epochs using the earmarked 70% and 20% of the histogram-

based data respectively (presented in Table 3.4) for multi-layer depositions of SS 316L by 

the µ-PMAM process. Two hidden layers with 128 nodes in each hidden layer were used in 

the training of RNN algorithm along with a dropout rate of 0.2 to prevent the overfitting. 

The BiLSTM algorithm, which demonstrates improved performance in capturing long-

range dependencies, was trained using 64 nodes in each direction. Training of the SA-TCN 

algorithm employed 4 temporal convolutional layers with kernel size of 3, 64 filters per 

layer, and a multi-head self-attention mechanism having 4 heads to enhance the learning of 

contextual dependencies.  

3.7 Evaluation of the Trained ML and DL Algorithms  

The trained ML and DL algorithms were evaluated or tested by predicting deposition 

height and deposition width for single-layer and multi-layer depositions by feeding the 
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earmarked 10% of input data of Table 3.3 and Table 3.4 respectively having different 

parametric combinations of µ-plasma power, deposition head traverse rate, and feedstock 

powder flow rate. The predictions by the ML and DL algorithms offer valuable insights into 

their ability to generalize across different deposition conditions. It reveals how accurately 

the algorithms could predict the deposition height and width, as well as other critical 

parameters, for both known and new data. Furthermore, they help to identify any patterns 

or systematic errors, enabling further refinement of the ML and DL algorithms for improved 

prediction accuracy. This process is critical in understanding the limitations and strengths 

of each algorithm, guiding selection of the most suitable ML and DL algorithm for future 

optimizations of the µ-PMAM process. 

The predicted values of deposition height and deposition width were then compared 

with their corresponding values in Tables 3.3 and 3.4. This comparison enables evaluation 

of prediction accuracy of an ML or DL algorithm and how well it could replicate the 

observed deposition geometry under various process parametric combinations. Such 

evaluation helps to assess the performance of ML or DL algorithms and identify the areas 

where the algorithms are either overfitting or underperforming. Performance of the trained, 

validated, and tested ML and DL algorithms was evaluated in terms of coefficient of 

determination ‘R²’ and mean absolute error (MAE) as detailed below. These evaluation 

criteria provide insights into how well predictions of an ML or DL algorithm align with the 

corresponding experimental values. 

 Coefficient of Determination ‘R²’: Value of coefficient of determination ‘R²’ indicates 

closeness of the predicted value of an output parameter with its corresponding 

experimental value. It provides a measure of the proportion of the variance in a 

dependent or output parameter predictable from the independent or input parameters. It 

is computed using Eq. 5. 

𝑅ଶ = 1 −
∑ (𝑦௜ − 𝑦ො௜)

ଶ௡
௜ୀଵ

෌ (𝑦௜ − 𝑦̄)ଶ௡

௜ୀଵ

 (5) 

where, ′𝑦௜′ and ′𝑦෡ ௜′ are the experimental and predicted values of an output parameter 

respectively for the ith data point; ′𝑦̄′ is the mean of all the experimental values of that 

output parameter; and ‘n’ is the number of data points. Higher value of ‘R²’ is preferable. 

Its value close to 1 indicates that an ML or DL algorithm is able to capture most of the 

variance in the data whereas its value close to 0 indicates its poor predictive accuracy. 

 Mean Absolute Error (MAE): The MAE measures the average magnitude of the errors 

between predicted and experimental values of all the output parameters. It calculates the 

average of the absolute differences between predicted values and experimental values 
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of an output parameter providing a measure of predictive accuracy of an ML and DL 

algorithm for that parameter. Value of MAE is computed by the Eq. (6). 

MAE =
1

𝑛
෍ ∣ 𝑦௜ − 𝑦ො௜ ∣

௡

௜ୀଵ

(6) 

MAE values of all the output parameters are combined to get overall MAE value of 

an ML/DL algorithm for its training phase and similarly for its testing phase. A smaller 

value of overall MAE is preferred because it indicates better predictive performance of 

an ML or DL algorithm i.e., closeness of the predicted values to the experimental values. 

3.8 Selection of Appropriate ML and DL Algorithm  

Fig. 3.3 shows comparion of performance of six ML algorihms (Fig. 3.3a) and three DL 

algorithms (Fig. 3.3b) in terms of computed values of their overall MAE and R². Based upon 

the computed values of ‘R²’and MAE for the six ML algorithms and three DL algorithms as 

shown in Fig. 3, (i) RF algorithm was selected for predicting geometry of single-layer 

depositions because its ‘R²’ value is maximum for both deposition height and width (i.e., 

0.96 and 0.98 respectively), and its overall MAE values during training and testing are 

minimum among all the six ML algorithms. These results suggest that the RF algorithm was 

able to generalize well to various deposition scenarios, making it the ideal choice for 

predicting the geometry of single-layer depositions, and (ii) SA-TCN algorithm was 

selected for predicting geometry of multi-layer depositions because its ‘R²’ value was 

highest (i.e., 0.977), and MAE value is the lowest (i.e., 0.08) among all the three DL 

algorithm. It reflects its superior performance in handling the time-series or temporal data, 

capturing the complicated dependencies between different deposition layers, and in 

integrating the local and global temporal patterns in the µ-PMAM process. 

 
(a) 
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(b) 

Fig. 3.3: Performance measures for the (a) six ML algorithms; and (b) three DL 

algorithms, used in the present study. 

3.9 Training of the Selected ML and DL Algorithm 

3.9.1 Random Forest Algorithm for Single-Layer Depositions 

The RF algorithm is a supervised learning algorithm that builds multiple decision trees 

during the training process. Each tree is constructed by randomly selecting subsets of both 

the data and features ensuring diversity in the individual trees. Prediction of particular output 

parameter is average of the predictions from all the trees and computed using Eq. (7): 

𝑦ො =
1

𝑇
෍.

்

௧ୀଵ

𝑦ො௧  (7) 

where, 𝑦ො is the predicted value of an output parameter (i.e., deposition height or width 

in the present case); ‘𝑦ො௧ is the prediction made by the tth tree; and T’ is the total number of 

trees. By averaging the predictions of multiple trees, the RF algorithm smooths out errors 

and makes it less sensitive to fluctuations in the data that could otherwise lead to inaccurate 

predictions. Such aggregation also helps to reduce variance and minimizes overfitting which 

are common problems in a decision a tree-based algorithm. The RF algorithm provides 

valuable information by highlighting which input parameters have the most significant 

influence on the deposition geometry. This allows identification of key input parameters 

affecting deposition quality and optimizing them for the better results. The selected RF 

algorithm was trained using the real-time data of Table 3.3 for single-layer depositions of 

Ti6Al4V. It was able to learn from a wide range of deposition conditions so as to ensure 

making accurate predictions under new and unseen conditions. Achieving optimum 

performance of the RF algorithm requires tuning of its hyperparameters such as number of 

trees ‘T’, maximum depth of trees, and minimum samples per leaf. These hyperparameters 
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were optimized during its validation. It helps to prevent overfitting, ensuring that the 

algorithm generalizes well across various deposition scenarios. 

3.9.2 SA-TCN Algorithm for Multi-Layer Depositions 

The architecture of SA-TCN consists of convolutional layers that extract local features 

from the data and a self-attention mechanism that enables it to focus on important time steps, 

effectively capturing the influence of previously deposited layers on the present deposition 

layer. This self-attention mechanism is especially crucial for multi-layer depositions, where 

earlier deposition layers play a significant role in shaping the deposition of subsequent 

layers. By attending to the most relevant time steps, the SA-TCN algorithm makes more 

informed predictions about the deposition geometry for each layer.  Mathematically, the 

self-attention mechanism is represented by Eq. (8): 

Attention = softmax ቆ
𝑄𝐾்

ඥ𝑑௞

ቇ 𝑉 (8) 

where, ‘Q’ is the query vector; ‘K’ is the key vector; ‘V’ is the value vector; 𝑑௞ is the 

dimensions of the key vector. The attention mechanism computes a weighted sum of the 

values ‘V’ based on the similarity between the query vector ‘Q’ and key vector ‘K’ allowing 

the algorithm to focus on the most relevant parts of the input data. The selected SA-TCN 

algorithm was trained using the real-time data of Table 3.4 for multi-layer depositions of SS 

316L by feeding the layer index ‘N, µ-plasma power, deposition head traverse rate, 

feedstock powder flow rate, SOD, height and width of the previously deposited layer 

‘PreLH’ and ‘PreLW’, and cumulative height ‘CumH’ as the input parameters and the 

weighted multi-modal values of height and width as output parameters. The weighted multi-

modal value of deposition height (or width) was computed as summation of product of 

primary, secondary, and tertiary modal values and their corresponding percentage of 

occurrence along the deposition length (shown inside the parenthesis for each height or 

width value). Use of such multi-modal values of deposition height or width helps in better 

understanding of deposition geometry across deposition length and enables the SA-TCN 

algorithm to capture both global trends and local variations in the µ-PMAM process. Use of 

real-time data for training allowed the SA-TCN algorithm to adapt to real-time deposition 

conditions, ensuring that it could accurately predict the geometry in a variety of practical 

scenarios. 

3.10 Multi-Objective Optimization using NSGA-II 

Non-dominated sorting genetic algorithm II (NSGA-II) is widely used powerful 

evolutionary algorithm that excels in solving multi-objective optimization problems with 

conflicting objectives. It provides a Pareto front which contains all the non-dominated 
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solutions ensuring that no single objective is overly prioritized at the expense of others. 

NSGA-II was used for multi-objective optimization of µ-PMAM process parameters 

namely µ-plasma power, deposition head traverse rate, and feedstock powder flow rate.  

From the real-time training data for single and multi-layer depositions (Tables 3.3 and 3.4), 

those combinations of deposition height and deposition width which have yielded 

continuous uniform deposition and have the desired aspect ratio, were used as the objective 

functions for the NSGA-II. Following NSGA-II parameters were used in the multi-objective 

optimization: 100 as population size; 200 as number of generations; 0.6 as probability of 

simulated binary crossover; and polynomial mutation probability as 0.2. These parameters 

define the behaviour of the NSGA-II algorithm and are crucial for ensuring faster 

convergence to an optimum solution. The population size and number of generations 

determine how many potential solutions are evaluated and refined over time, while the total 

function evaluations represent the total number of objective function calculations during the 

optimization process. The probability of simulated binary crossover and probability of 

polynomial mutation control how new solutions are generated and varied during the 

evolutionary process. They contribute to maintain diversity and effectiveness NSGA-II in 

search of optimum solutions.  

Subsequently, NSGA-II was integrated with the RF and SA-TCN algorithm by feeding 

them with the NSGA-II optimized µ-PMAM process parameters for single-layer and multi-

layer depositions respectively. This integration leverages prediction capabilities of RF and 

SA-TCN algorithm to predict more accurate objective functions. It will help to efficiently 

evaluate evolutionary solutions particularly when the deposition process is complicated and 

time-consuming to simulate directly. The objective function 𝑓(P௜)  for ith deposition 

parameter (i.e., deposition height, deposition width, or aspect ratio) was defined as 

difference between its desired value and its predicted value by RF or SA-TCN algorithm. It 

was computed using the Eq. 9 and the overall objective function f(P) was computed through 

summation of 𝑓(P௜) values for deposition height, deposition width, and aspect ratio using 

Eq. 10. Use of such an objective function help NSGA-II to converge to an optimum solution 

faster with higher accuracy because it reflects absolute error between the predicted and 

desired values for each deposition parameter.  

𝑓(P௜) = ∣∣ 𝑦pred,௜
 − 𝑦desired,௜ ∣∣                                         (9) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑃) = ෍ 𝑓(P𝑖)

𝑖=𝑛 

𝑖=1

                                      (10) 

where, ypred,i and ydesired,i  are respectively ML/DL predicted value and desired value of 

the ith deposition parameter. The goal of the NSGA-II is to provide a Paero-front between 
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prediction error in deposition height and deposition width and to identify that optimum 

combination of µ-PMAM process parameters which will minimize the objective function 

defined by Eq. 10 which in turn will minimize the overall discrepancy between the predicted 

and desired values of the deposition geometry parameters.  

This chapter presented details of selection of deposition material, base plate material 

and input parameters, real-time data acquisition through video recordings, extraction of 

images from each recorded video, feature scaling for single-layer depositions, histogram-

based multi-modal data preparation for multi-layer depositions, and selection and training of 

6 ML and 3 DL algorithms and their evaluation to select the appropriate ML and DL 

algorithm. It also described training of the selected ML and DL algorithm, and multi-

objective optimization of µ-PMAM process parameters by NSGA-II and then by NSGA-II 

integrated with RF and SA-TCN algorithms for single-layer and multi-layer depositions 

respectively. The next chapter presents the results for predictions by the selected ML and 

DL algorithm, optimized process parameters by NSGA-II and by NSGA-II integrated with 

RF and SA-TCN algorithms for single-layer and multi-layer depositions respectively. 
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Chapter 4  

Results and Discussion 

This chapter presents the results for predictions by the selected ML and DL algorithm, 

optimized process parameters by NSGA-II and by NSGA-II integrated with RF and SA-

TCN algorithms for single-layer and multi-layer depositions respectively. 

4.1 Performance of the Selected ML and DL Algorithms  

This section presents prediction performance of the selected ML and DL algorithm for 

single-layer deposition of Ti6Al4V and multi-layer deposition of SS 316L respectively.  Fig. 

4.1 depicts comparison of RF algorithm predicted height (Fig. 4.1a) and width (Fig. 4.1b) 

for single-layer depositions with their corresponding experimental values for validation and 

testing data (as presented in Table 3.3). Similarly, Fig. 4.2 shows comparison of SA-TCN 

algorithm predicted height (Fig. 4.2a) and width (Fig. 4.2b) for different layers of a multi-

layer deposition with their corresponding experimental values taken from the video No. 9 

(mentioned in Table 3.2).  

 
(a)     (b) 

Fig. 4.1: Comparison the RF algorithm predicted single-layer deposition (a) height, and 

(b) width, with their corresponding experimental values for the validation and testing data. 

Graphs of Fig. 4.1 display close agreement the between RF algorithm predicted values 

of single-layer deposition height and width with their experimental values for all the 

validation and testing data. This demonstrates high prediction accuracy of the RF algorithm 

due to its ensemble learning approach, which combines multiple decision trees to minimize 

overfitting and enhances the generalization. Its robustness to noise and ability to capture 

non-linear relationships contribute to its precise estimation of single-layer deposition 

geometry parameters. 
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(a)             (b) 

Fig. 4.2: Comparison of the SA-TCN algorithm predicted (a) deposition height, and (b) 

deposition width for each layer of a multi-layer deposition with their corresponding 

experimental values taken from their testing data. 

Graphs of Fig. 4.2 reveal closeness between SA-TCN predicted values of deposition 

height and width for all the four layers of a multi-layer deposition corresponding to video 

no. 9 which is test data in this case. It indicates that the SA-TCN algorithm exhibits very 

good prediction performance by leveraging both temporal patterns and attention 

mechanisms. This enables it to capture complex dependencies in the data resulting in highly 

accurate predictions of deposition height and width. 

4.3 Multi-Objective Optimization Results 

This section presents results of multi-objective optimization by NSGA-II, and NSGA-

II integrated with RF algorithm for the single-layer depositions and NSGA-II integrated 

with SA-TCN algorithm for the multi-layer depositions.  

4.2.1 Results of NSGA-II 

Pareto front graphs indicate effectiveness of NSGA-II in multi-objective optimization 

with the conflicting objectives. Present work focussed on ability of NSGA-II to minimize 

the prediction error for deposition width and height (i.e., difference between their desired 

value and NSGA-II optimized value) and its ability to balance the trade-offs between 

conflicting objectives i.e., deposition height, deposition width. Fig. 4.3a depicts Pareto front 

graph showing differences between the desired and optimized deposition width on X-axis 

and differences between the desired and optimized height on Y-axis for single-layer 

depositions and Fig 4.3b shows the same for the multi-layer depositions.  
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(a) 

 
(b) 

Fig. 4.3: Pareto fronts for multi-objective optimization by NSGA-II using training data for 

(a) single-layer depositions, and (b) multi-layer depositions. 

The Pareto front graphs of Fig. 4.3 also depict the optimized combination of µ-PMAM 

process parameters for each plotted feasible point shown in red color and the optimized 

solution selected by NSGA-II shown in blue color. It can be observed from these Pareto 

front graphs that (i) decrease in prediction error for deposition width increases prediction 

error for deposition height and vice-versa for both single and multi-layer depositions. It is 
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due to the fact that for a given amount of deposition material, deposition width will decrease 

with increase in deposition height and vice-versa, (ii) the optimized values of µ-plasma 

power, deposition head traverse rate, and feedstock powder flow rate increase with increase 

in prediction error for deposition width (or with decrease in prediction error for deposition 

height), (iii) NSGA-II is able to identify an optimum solution that minimizes the prediction 

error in both deposition height and width simultaneously through the best trade-off between 

them. These Pareto front graphs demonstrate effectiveness of NSGA-II in simultaneous 

optimization of conflicting objectives of deposition width and height.   

NSGA-II optimized parameters for single-layer and multi-layer deposition were cross-

checked by feeding them to the trained RF and SA-TCN algorithm respectively along with 

one additional data (taken from real-time training data) which was not used by NSGA-II in 

the Pareto front graphs of Fig. 4.3. The predicted values of deposition height and width by 

RF and SA-TCN were used to compute their prediction errors with respect to their desired 

values. These data are shown in Table 4.1 for single-layer and in Table 4.2 for multi-layer 

depositions. The predicted values of deposition height and width closely match with their 

desire values with very low prediction errors. This reflects NSGA-II’s strength in handling 

multi-objective optimization problems where it efficiently balances competing objectives 

without overly compromising either. This capability is particularly useful in real-time 

environment of an AM process where consistent and precise control over geometric 

outcomes directly impacts the structural integrity and surface finish of the fabricated part.  

Table 4.1: Percentage error between the desired and the RF predicted geometry parameters 

for single-layer depositions using the NSGA-II optimized process parameters. 

Sr. 
No. 

Desired deposition 
parameters taken real-

time training data 

NSGA-II optimized process parameters RF predicted deposition 
parameters using NSGA-
II optimized parameter 

Absolute difference 
between the desired and 

predicted value (mm) 

Deposition 
height 
(mm) 

Deposition 
width 
(mm) 

µ-plasma 
power (W) 

Deposition head 
traverse rate 
(mm/min) 

Feedstock 
powder flow 
rate (g/min) 

Deposition 
height 
(mm) 

Deposition 
width 
(mm) 

For 
deposition 

height 

For 
deposition 

width 
1 2.13 2.78 396 51 2.6 2.095 2.7760 0.035 0.004 
2 2.08 2.73 412 58 2.0 2.0752 2.7305 0.0048 -0.0005 

 

Table 4.2: Percentage error between the desired and the SA-TCN predicted geometry 

parameters for multi-layer depositions using the NSGA-II optimized process parameters. 
 

Sr. 
No. 

Desired deposition 
parameters taken real-

time training data 

NSGA-II optimized process parameters SA-TCN predicted 
deposition parameters 

Absolute difference 
between the desired and 

predicted value (mm) 
 Deposition 

height 
(mm) 

Deposition 
width 
(mm) 

µ-plasma 
power 
(W) 

Deposition 
head traverse 
rate (mm/min) 

Feedstock 
powder flow 
rate (g/min) 

Stand-
off-

distance 

Deposition 
height 
(mm) 

Deposition 
width 
(mm) 

For 
deposition 

height 

For deposition 
width 

1 3.41 3.87 320 45 2.0 8 3.36 3.745 0.05 0.125 
2 3.46 3.95 300 49 2.4 10 3.4427 3.9263 0.0173 0.0237 
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4.2.2 Results by NSGA-II Integrated with RF Algorithm for Single-Layer Depositions 

Table 4.3 presents the optimized process parameters for seven desired combinations of 

deposition height and width that have yielded continuous and uniform single-layer 

depositions of Ti6Al4V. The absolute difference between the desired and predicted value 

of deposition width and height were used as the objective functions in the NSGA-II, and its 

optimized parameters for each desired combination were fed to the trained RF algorithm to 

predict their values. The desired and predicted values used to compute prediction error. Only 

those optimized parameters are presented in Table 4.3 that yielded absolute value of 

difference between the desired and predicted deposition height and width less than ±0.1 mm 

thus ensuring best possible match between the predicted and desired deposition geometry. 

Actual values of the optimized process parameters were rounded-off to get those values of 

µ-plasma power, deposition head traverse rate, and feedstock powder flow rate which can 

be set on the CNC machine of µ-PMAM process.  

Table 4.3: Optimized process parameters by NSGA-II integrated with the RF algorithm for 

different combinations of height and width of single-layer depositions. 

Sr. 
No. 

Desired geometry 
parameters 

NSGA-II optimized process parameters Absolute difference 
between the desired and 

predicted value (mm) 
Deposition 

height (mm) 
Deposition 
width (mm) 

µ-plasma 
power (W) 

Deposition head 
traverse rate 

(mm/min) 

Feedstock 
powder flow 
rate (g/min) 

For deposition 
height 

For deposition 
width 

1. 1.6 2.7 418 62 1.5 0.023 0.033 
420 62 1.7 0.039 0.045 

2. 1.7 2.7 420 60 1.7 0.045 0.045 
418 62 1.5 0.021 0.098 
420 65 1.9 0.019 0.055 

3. 1.7 2.8 426 62 2.7 0.098 0.092 
4. 1.9 3.1 434 60 2.7 0.044 0.023 

438 58 2.5 0.022 0.012 
430 60 2.5 0.067 0.086 
430 52 1.7 0.088 0.094 

5. 2.0 3.3 438 52 1.5 0.028 0.022 
438 52 1.9 0.084 0.094 
440 56 2.1 0.097 0.092 
440 56 2.3 0.099 0.077 

6. 1.8 3.0 434 56 2.7 0.076 0.098 
438 56 1.5 0.092 0.023 

7. 1.8 2.8 426 58 2.5 0.012 0.019 
420 62 1.5 0.091 0.065 

 

It can be observed from Table 4.3 that NSGA-II yielded multiple optimum combinations 

of µ-PMAM process parameters for some desired combinations of deposition height and 

width, with each optimum solution meeting the optimization criteria. It highlights its 

multiple optimum solutions, providing capability due to its evolutionary nature. The result 
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of this integration was a set of optimized process parameters that maximized the accuracy 

of the deposition geometry for single-layer deposition of Ti6Al4V. These optimized 

parameters are critical for achieving uniform layer deposition, controlling dimensional 

accuracy, and ensuring consistent quality throughout the layer deposition process. 

4.2.3 Results of NSGA-II Integrated with SA-TCN Algorithm for Multi-Layer Depositions 

Table 4.4 presents the optimized process parameters for the desired combinations of 

deposition height and width that have yielded four continuous and uniform multi-layer 

depositions of SS 316L.  

Table 4.4: Optimized process parameters by the NSGA-II integrated with the SA-TCN 

algorithm for different combinations of deposition height and width of multi-layer 

depositions. 

Layer 
No. 

Desired geometry 
parameters 

NAGA-II optimized process parameters 
Absolute difference 

between the desired and 
predicted value (mm) 

Deposition 
height (mm) 

Deposition 
width (mm) 

SOD  
(mm) 

µ-plasma 
power (W) 

Deposition 
head traverse 
rate (mm/min) 

Feedstock powder 
flow rate (g/min) 

For 
deposition 

height 

For deposition 
width 

Deposition # 1 
1 3.61 4.08 

8 304 45 2.3 

0.12 0.10 
2 3.64 4.10 0.19 0.11 
3 3.64 4.12 0.20 0.18 
4 3.66 4.13 0.19 0.12 

5 3.68 4.14 0.14 0.19 
6 3.68 4.16 0.09 0.12 

Deposition # 2 
1 3.44 3.97 

12 
 

290 
 

47 
 

2.8 
 

0.09 0.09 
2 3.47 4.01 0.08 0.08 
3 3.49 4.05 0.17 0.13 
4 3.52 4.10 0.18 0.11 
5 3.55 4.14 0.12 0.19 
6 3.58 4.19 0.14 0.15 

Deposition # 3 
1 3.37 4.03 

10 
 

300 
 

46 
 

3.3 

0.07 0.18 
2 3.39 4.07 0.14 0.11 
3 3.40 4.12 0.19 0.14 
4 3.40 4.17 0.2 0.09 
5 3.42 4.22 0.12 0.11 
6 3.43 4.26 0.11 0.19 

Deposition # 4 
1 3.66 4.09 

8 318 53 3.5 

0.09 0.07 
2 3.68 4.10 0.11 0.18 

3 3.71 4.13 0.18 0.15 
4 3.73 4.14 0.12 0.19 
5 3.76 4.14 0.16 0.11 
6 3.78 4.17 0.12 0.17 
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The absolute difference between the desired and predicted values of deposition width 

and height were used as the objective functions in the NSGA-II, and its optimized 

parameters for each desired combination were fed to train the SA-TCN algorithm to predict 

their values. The desired and predicted values used to compute prediction error. Only those 

optimized parameters are presented in Table 4.4 that produced absolute value of difference 

between the desired and predicted deposition height and width less than ±0.2 mm to ensure 

the best possible match between the predicted and desired deposition geometry. Actual 

values of the optimized process parameters were rounded-off to get those values of µ-plasma 

power, deposition head traverse rate, feedstock powder flow rate and stand-off distance 

which can be set on the CNC machine of µ-PMAM process. The result of this integration 

was a set of optimized process parameters that maximized the accuracy of the deposition 

geometry for multi-layer deposition of SS316L. These optimized parameters are critical for 

achieving uniform layer deposition, controlling dimensional accuracy, and ensuring 

consistent quality throughout the multi-layer deposition process. 

This chapter presented the results for predictions by the selected ML and DL algorithm 

(i.e., RF and SA-TCN), optimized process parameters by NSGA-II and by NSGA-II 

integrated with RF and SA-TCN algorithms for single-layer and multi-layer depositions 

respectively. The last chapter summarizes the outcome of the present research in terms of 

significant achievements, conclusions, and some directions for the future work. 
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Chapter 5 

Conclusions and Scope for Future Work 

This chapter presents a summary of the outcome of the present research by presenting 

its significant achievements, conclusions, and some directions for future works 
5.1 Significant Achievements 

The work presented in this thesis led to several key achievements in the field of µ-

PMAM. The most notable of these are as follows: 

 Development of Optimized Single-Layer Deposition of Ti6Al4V: The use of ML 

algorithms, specifically RF, combined with NSGA-II optimization, for the identification 

of the most effective process parameters for single-layer deposition of Ti6Al4V. This 

approach successfully minimized the error between the predicted and desired deposition 

geometries. 

 Multi-Layer Deposition Optimization for SS316L: By integrating Self-Attention 

Temporal Convolutional Networks (SA-TCN) with NSGA-II, optimized parameters for 

multi-layer deposition of SS316L were determined, improving deposition accuracy and 

part consistency over multiple layers. 

 Enhanced Deposition Geometry Prediction: The integration of ML and DL 

algorithms with optimization algorithms allowed for the precise prediction of deposition 

height, width, and aspect ratio, enhancing both the quality and reproducibility of the 

parts produced by the µ-PMAM process. 

5.2 Conclusions 

This research was aimed to predict deposition geometry of single-layer and multi-layer 

depositions using ML and DL algorithms respectively and multi-objective optimization of 

µ-PMAM process parameters by NSGA-II integrated with the selection ML and DL 

algorithm. Following are key conclusions that can be drawn from this study: 

 Accurate Prediction of Deposition Geometry Parameters: Both the RF and SA-TCN 

algorithm demonstrated excellent performance in predicting deposition height and width 

of single-layer and multi-layer depositions respectively.  

 Capturing Inter-layer Interactions: The SA-TCN algorithm effectively captured the 

temporal and layer-to-layer dependencies in multi-layer depositions. It offered valuable 

insights into how previous layers influence the deposition of subsequent layers. This 

ability to solve for these interactions played a crucial role in optimizing multi-layer 

depositions. 
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 Multi-Objective Optimization of Process Parameters: Use of NSGA-II integrated 

with RF and SA-TCN enabled multi-objective optimization of µ-PMAM process 

parameters (e.g., µ-plasma power, deposition head traverse rate, feedstock powder flow 

rate) to achieve the desired deposition geometry parameters with minimal error. This led 

to accurate and consistent results for single-layer and multi-layer deposition of Ti6Al4V 

and SS316L respectively.  

 Improvements in Part Quality and Consistency: Using integration of NSGA-II 

optimized process parameters with predictions by the RF and SA-TCN algorithm 

represents a significant advancement in optimizing the µ-PMAM process because it 

ensures that process parameters are fine-tuned to minimize geometry errors and achieve 

consistent, high-quality deposition. It also reduces need for trial-and-error 

experimentation thus saving time and resources while ensuring best possible deposition 

geometry. The optimized parameters not only improve the geometric accuracy of the 

deposition but also enhance the consistency along the entire deposition length.  

5.3 Scope for Future Work 

Though the present research has helped significant advancements in optimization of the 

µ-PMAM process but there lot of scope for the future work on the following aspects: 

 Development of Real-Time Control System: The integration of real-time process 

monitoring by computer vision system and feedback loops with ML/DL algorithms 

could further enhance the optimum performance of µ-PMAM process. It would allow 

for online adjustment of its process parameters during deposition, leading to even more 

precise and adaptive manufacturing. 

 Scalability to Complex Geometries: The current algorithms and optimization 

strategies could be adapted for predicting and optimizing deposition for more 

complicated geometries such as multi-axis or overhang structures. This would open new 

opportunities for creating more intricate and customized parts with enhanced 

geometrical accuracy. 

 Exploring Additional Materials: Future research could investigate the application of 

the methodology of the present work to other materials such as Inconel, Co-Cr-Mo-Ti 

alloys, and titanium alloys, to assess its generalizability. 

 Wear and Corrosion Testing: Performance of the optimized deposition geometries 

could be tested for wear resistance and corrosion behaviour, particularly for applications 

in aerospace or biomedical devices, where material durability and performance under 

harsh conditions are critical. 
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 Automated Quality Assurance: The use of AI-based automation systems to conduct 

post-process quality checks could further reduce manual inspection efforts and improve 

throughput in production settings. Additionally, automating defect detection and 

elimination during the deposition process would contribute to higher part consistency 

and reliability. 

 Development of robust ML/DL Algorithms: Current ML/DL algorithms are often 

trained on single-material, single-layer data. Therefore, robust ML/DL algorithms need 

to developed that generalize across different materials, multi-layer depositions, and 

more complex geometries. 

 Achieving high dimensional accuracy directly from CAD models is still a challenge 

in powder-based AM processes including µ-PMAM process due to process variability 

and insufficient predictive modelling. 
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