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Abstract

Micro-plasma metal additive manufacturing (u-PMAM) is a highly precise and energy-
efficient process to fabricate the metallic components. But, achieving consistent deposition
geometry remains challenging due to the complex interactions among process parameters
and dynamics of different deposition layers. This thesis presents noble approach of
employing machine learning (ML) and deep learning (DL) respectively to predict and
optimize geometry of single-layer and multi-layer depositions fabricated by the u-PMAM
process. A high dynamic range (HDR) camera was used to record videos of single-layer
depositions of Ti6Al4V on the same material base plate and single-layer and multi-layer
depositions of SS 316L on a mild streel base plate for different combinations of p-PMAM
process parameters (such as p-plasma power, feedstock powder flow rate, worktable feed
rate for single-layer deposition and additional parameters namely stand-off-distance,
deposition layer index, height and width of previously deposited layer, and cumulative
height for multi-layer depositions). Images were extracted from each recorded video at a
rate of 30 frames per second. The extracted images were annotated and feature scaling was
performed for the single-layer depositions and the Histogram based Multi-Mode method
was used for multi-layer depositions to generate the datasets. The generated datasets were
split into training, validation, and test data to ensure robust model development. Six ML
algorithms and three DL algorithms were trained using the generated datasets for single-
layer and multi-layer depositions respectively. The trained algorithms were evaluated using
the performance matrix involving mean absolute error, root-mean-square error, and
coefficient of determination to select the top performing ML and DL algorithm. It selected
the Random Forest (RF) algorithm for predicting height and width of single-layer
depositions, and Self-Attention Temporal Convolutional Network (SA-TCN) for multi-
layer depositions. The selected ML and DL models were trained, tested and validated. Then
they were integrated with Non-dominated Sorting Genetic Algorithm II (NSGA-II) to
perform multi-objective optimization using objective functions as the difference between
the desired and ML/DL algorithm predicted values for deposition height, deposition width,
and aspect ratio. The optimized results demonstrate that this integrated approach reduced
geometric prediction errors below 5% thus offering a systematic alternative to trial-and-
error tuning of p-PMAM process parameters. The methodology of the present work
provides a scalable solution for closed-loop control for any AM process and lays the
foundation for development of its digital twin. It also highlights the transformative potential

of artificial intelligence in advancing metal additive manufacturing processes.
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Chapter 1

Introduction

This chapter introduces the fundamentals of machine learning (ML) and deep learning
(DL). It describes the main types of ML and DL algorithms. It highlights applications of
ML and DL in manufacturing and additive manufacturing (AM) for the detection of defects,
quality control, and parametric optimization. It provides an overview of different types of
AM processes, their advantages, limitations, and key industrial applications. It briefly
introduces directed energy deposition (DED) processes and p-Plasma Metal Additive
Manufacturing (u-PMAM) process, summarizing their principles, key benefits, and major
applications. It concludes with the thesis organization.

1.1 Machine Learning

Machine learning (ML) is a part of artificial intelligence (Al). It helps computers to find
patterns in data and decide or predict things without detailed instructions for every task. The
main concept of ML is its capability to adapt when working with new information and get
better at spotting patterns in data over a time period. The ML allows machines to take care
of work that used to depend on people, making it possible to solve many difficult challenges.
In the recent years, growing data and faster computers have made ML as an important and
effective tool in every aspect of science, engineering, and social science. The ML algorithms
analyze the past data, known as the training data, to detect patterns and relations. Then the
ML algorithms undergo a validation phase where a new dataset is used to fine-tune the
hyperparameters of an ML algorithm and to avoid its overfitting issues. The final step is to
test an ML algorithm using a new dataset that has not been used in its training and validation
phases. This step shows whether an ML algorithm works well in real-world scenarios or
not. The ML draws its strength from its learning capability from the previous data. This lets
it to organize, predict, group, and explain the information. Deep learning (DL) is a subset
of ML that uses artificial neural networks (ANN) with multiple layers to process and learn
from the data. It is inspired by functioning of the human brain, enabling computers to
recognize complex patterns and make decisions. The DL is widely used for tasks such as
image and speech recognition, natural language processing, and autonomous systems.
Fig.1.1 depicts the relationship between Al, ML, and DL showing that the Al encompasses
both the ML and DL with ML being a subset of Al, and DL being a subset of the ML.



Al

Fig. 1.1: Relationship between the Al, ML, and DL.

1.1.1 Types of Learning for ML Algorithms

The learning process of ML algorithms can be broadly categorized into three major

types: supervised learning, unsupervised learning, and reinforcement learning.

()

Supervised Learning: Supervised learning trains an ML algorithm using the labeled
datasets where each data point has a known output. The goal is to make learn an ML
algorithm to match input features with the right labels by reducing the difference
between the predicted and actual values as shown in Fig. 1.2. It demonstrates how a
supervised learning algorithm learns to classify input features, such as shapes, by
matching them with their correct labels during training. After the training, an ML
algorithm is validated to fine-tune its hyperparameters using a new dataset and to avoid
its overfitting issues. Then the algorithm is tested using on a separate dataset to see how
well it works in real-world scenarios. Getting the algorithm to handle new data well is
the main focus here. Training, validation, and testing together make it possible to build
reliable ML algorithms. Supervised learning is used in the fields such as image
recognition, improving processes, and predicting maintenance needs. It breaks down

into two tasks: regression predicts continuous results such as numbers, while
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Fig. 1.2: Concept of the supervised learning.



Unsupervised Learning: Unsupervised learning trains an ML algorithm by examining
unlabelled data and ignoring the predefined outputs. It does not rely on the correct
answers during the training which is the main difference from the supervised learning.
It focuses on uncovering hidden structures or trends in raw datasets. It aims to analyse
data to simplify understanding or group similar items. Fig. 1.3 illustrates concept of the
unsupervised learning process where an AM algorithm analyzes raw, unlabeled data and
organizes them into groups based on patterns and similarities without predefined labels.
Tools such as principal component analysis (PCA) shrink the large datasets to make
their handling simpler. Whereas, techniques such as K-means and hierarchical clustering
organize the data into clusters based on their similarities (Abdulhafedh, 2021). This
learning becomes helpful when labelled data are unavailable or difficult to obtain. In the
manufacturing field, unsupervised learning finds patterns in sensor readings, spots
strange behaviour, or links equipment with shared conditions. It provides new insights

that older methods might overlook and helps make smarter decisions based on data.

Raw Unlabelled Data Learning Algorithm Output
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Fig. 1.3: Concept of the unsupervised learning.
Reinforcement Learning: Training of an ML algorithm in the reinforcement learning
happens through constant interactions between an autonomous agent and the
environment. An autonomous agent is a system that can make decisions and act in
response to its environment and which is independent of direct instruction by a human
user. The agent performs actions based on the current state, receives feedback as rewards
or penalties, and relies on this feedback to make better choices in the future as illustrates
in Fig. 1.4. Initially, the agent might have little knowledge and try different actions but
it learns from the reward signals which will lead to better results. This cycle continues
until performance of the agent reaches a stable point with an aim to develop a policy
that earns the highest possible reward over the time. The testing of an ML algorithm
requires putting the learned policy into a fresh or unfamiliar environments to see how
well the agent adapts. The validation in the reinforcement learning is different from the
supervised learning because ability of the autonomous agent is evaluated to check how

well it has learned to make decisions tested in a similar environment (Pitis et al., 2021).
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Besides the above-mentioned learning methods, following are some mixed learning
approaches for the ML algorithms: (i) Semi-supervised learning: trains the ML algorithms
by using a mix of some labeled data and lot of more unlabeled data, (ii) Self-supervised
learning uses patterns in the data itself as a guide to train the ML algorithms. For example,
algorithms such as Random Forest and Gradient Boosting Machines blend several
algorithms together to improve performance and make their predictions more reliable.
1.1.2 Types of ML Algorithms

Following are the commonly used ML algorithms:

e Random Forest (RF): It is an ensemble ML algorithm that operates by constructing
multiple decision trees during its training and generate either mode of the classes (for
the classification purpose) or predict the mean (for regression purpose) of an individual
tree. The RF reduces the risk of overfitting by averaging the outputs of individual
decision trees and ensures that it generalizes well to the unseen data. This is particularly
important in case of an AM process, where slight variations in process parameters can
lead to significant changes in the deposition quality. The strength of the RF lies in its
ability to handle complex and non-linear relationships between the input and output
parameters. The RF algorithm is particularly useful when numerous interacting features
exist, for example in case of p-PMAM process in which multiple deposition parameters
such as p-plasma power, deposition head traverse rate, and feedstock powder flow rate
interact in a non-linear manner to influence the deposition geometry.

o K-Nearest Neighbours (KNN): It is a simple, instance-based ML algorithm that makes
predictions based on the proximity of data points. It works by identifying the K-nearest
neighbours of a test data and then using their values to predict the output. Its output is
based on either the majority class (for classification purpose) or the average of the
nearest data points (for regression purpose). The proximity of the specified data points
allows the KNN algorithm to effectively capture the local variations in deposition height
and width in an AM process. But, KNN can be computationally expensive for large

datasets because it requires calculating the distance between training data and test data.



Support Vector Regression (SVR): It is a regression-based ML algorithm that uses
support vectors to find the best fit curve within a specified margin. It aims to find the
balance between its complexity and prediction accuracy by minimizing the error within
a specified margin. This makes it more generalizable algorithm.

LASSO Regression: It is a linear regression-based ML algorithm that uses L1
regularization to shrink the coefficients of less important features to zero thus effectively
performing feature selection. This algorithm is beneficial when dealing with the large
datasets that have many features because it helps to identify the most relevant features
for predicting the targeted output.

Ridge Regression (RR): It uses L2 regularization which penalizes large coefficients
without eliminating any features. This ML algorithm helps to minimize overfitting by
ensuring that the coefficients remain small and does not fit the noise in the datasets.
Gaussian Process Regression (GPR): It is a non-parametric, probabilistic ML
algorithm that uses a kernel function to capture the underlying function and predict
outputs with uncertainty estimates. It is particularly useful for complex and non-linear
relationships between input and output parameters. It is well-suited for scenarios where

the data are noisy or where uncertainty in the predictions needs to be quantified.

1.1.3 Applications of ML in Manufacturing

The ML finds applications in many areas because it adapts well and works. It is used to

spot the trends in experimental data, simulate complicated physical systems, and speed up

the simulations. Its p-plasma power to handle complex, unorganized, and massive datasets

makes it a very promising alternative when the standard statistical algorithms fail. Following

are some specific applications in of ML in manufacturing:

Industry 4.0: ML can play a major role in Industry 4.0 because it allows intelligent
automation and uses data to assist in the decision making. As factories and systems
handle huge data and become more intricate, engineers find ML to boost productivity,
make systems more reliable, and bring fresh ideas to a company.

Predictive maintenance: ML analyzes sensor data from machines to predict potential
failures before their occurrence. This reduces unexpected downtime, lowers
maintenance costs, and improves the overall reliability and lifespan of a manufacturing
equipment.

Process optimization: ML can optimize process parameters in real-time by analysing
the performance data. This results in more efficient production, accurate geometry,
reduced material wastage, and better use of energy and the resources. This enhances the

productivity and reduces the cost.



e Quality control: The ML can detect the manufacturing defects or irregularities using
sensor signals or images. This enables automated inspection and ensures that only high-
quality products reach the next stage thus improving consistency and reducing rework
and scrap.

e Supply chain management: ML can improve demand forecasting by analyzing
historical and real-time data thus helping to maintain an optimum inventory levels. This
enhances planning, reduces storage costs, and increases responsiveness to the
fluctuations customer demands or the market.

e Energy management: ML can help manufacturers to adjust operations for better
efficiency by analyzing an equipment usage and its energy consumption patterns. It
enables the system to recommend the changes that reduces energy costs maintaining the
same productivity.

1.1.4 Applications of ML in Additive Manufacturing
Following are some major applications of ML in AM processes:

o Parametric optimization: ML can find the optimum combination of an AM process
parameters such as p-plasma power, deposition material supply rate, deposition head
traverse rate, stand-off-distance, and similar other parameters. Such optimized
combination results in better surface quality, desired deposition geometry, and more
consistent properties of the manufactured product.

o Defect prediction and detection: ML can identify different defects such as porosity,
warping, cracking, etc. produced by an AM process by using the real-time data or
thermal imaging. Early detection of such defects reduces the material and energy
wastage and ensures better quality of the manufactured product.

e Process monitoring: ML can continuously monitor the important AM process
parameters such as temperature, layer thickness, and feedstock material flow. This
ensures that any deviations are quickly addressed which improves an AM process
performance and consistent quality of the manufactured products.

o Material characterization: ML can expedite discovery of new materials by identifying
patterns in its large experimental datasets. It helps to predict material behavior, saving
time and reducing the number of the required tests.

e Geometric accuracy enhancement: ML can predict the potential shape distortions
during in an AM process and can suggest the real-time corrections. This helps to
maintain the dimensional accuracy of a manufactured product thus reducing necessity
for its post-processing. It also ensures a product is manufactured as per its original

design.



1.2 Deep Learning
DL is a subset of ML which relies on the neural networks having many layers to

recognize the complicated patterns. DL can identify the features from the raw data which

ML cannot do. The DL algorithms rely on an input layer, several hidden layers, and an

output layer of the neural networks. Neurons in these layers transform the information and

send it onward. The term "deep" indicates many hidden layers in the neural networks, which
help them to learn the complex details. The DL algorithms work well with the supervised
learning but also work with the semi-supervised and unsupervised learning also.

Autoencoders and generative adversarial networks are techniques of the unsupervised

learning (Zhang and Zhang, 2023). Training methods such as backpropagation and

stochastic gradient descent adjust the weights of the neural networks to improve their
prediction accuracy. DL is useful for extensive and high-dimensional datasets. It is playing

a key role in many industries to solve various problems.

1.2.1 Types of Deep Learning Algorithms
Following are the commonly used DL algorithms:

e Convolutional Neural Networks (CNN): They are used to handle and study the visual
information by having several hidden layers which make them to learn how to spot the
patterns, features, and shapes in the images. The CNN works well with the tasks of
classifying images, detecting objects, and splitting images into parts because they pick
up the spatial hierarchies. Different filters are used before the CNN which scan the input
images to locate the edges, form, and detailed patterns. This makes CNN very useful in
the applications that demand accuracy and speed in the visual datasets.

e Recurrent Neural Networks (RNN): They are p-plasma powerful DL algorithm that
are designed to handle time-series or sequential data. The core idea behind RNN is that
they maintain an internal state (memory) that is updated at each time step based on the
input received. The output at each time step depends not only on the current input but
also on the information retained from previous time steps. It implies that the recurrent
connections use the previous inputs in a sequence to influence how the RNN process the
current and future inputs. This cyclic structure allows them to learn the patterns and
relationships over the different time durations. The RNN rely on time sequential
updating of the hidden layers at every run. The RNN combine this with the current input
to generate an output while also updating themselves for the next input. This
characteristic makes them useful for the manufacturing processes where past inputs
influence future outputs, such as in multi-layer deposition by an AM process, where the

deposition parameters of one layer are influenced by those of the previous layer.
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Bidirectional Long Short-Term Memory (Bi-LSTM): Bi-LSTM is an advanced
version of the standard LSTM, which is designed to capture long-term dependencies in
time-series data in a better manner by processing them both in forward and backward
passes i.e., input data are processed from the 1% hidden layer to the last hidden layer in
the forward pass and then the same data are processed from the last hidden layer to the
1** hidden layer in the backward pass. This lets Bi-LSTM to work with both past and
future context at the same time which improve the performance. Unlike regular RNN,
LSTM have a memory cell that can store information for long periods, allowing them to
retain relevant information over multiple time steps. Bi-LSTM are useful in areas like
speech recognition, text classification, and machine translation where the meaning of a
word depends on the words around it. The bidirectional approach of Bi-LSTM allows it
to learn from both past and future data points thus providing a more comprehensive
understanding of the temporal patterns in the deposition process. This is particularly
beneficial in multi-layer deposition, where the relationship between layers is not only
dependent on previous layers but may also be influenced by subsequent ones.

Self-Attention Temporal Convolutional Networks (SA-TCN): They combine
convolutional layers with a self-attention mechanism, making them highly effective at
capturing both local and long-range dependencies in time-series data. This hybrid
approach allows SA-TCN to focus on critical features of the data across different time
durations regardless of their temporal distances. In the context of multi-layer
depositions, this means that this algorithm can consider how each layer deposition
characteristics such as height, width, and deposition material flow affect the

characteristics of subsequent deposition layer, leading to more accurate predictions.

1.2.2 Applications of DL in Manufacturing

Visual inspection: DL uses computer vision to identify surface defects, scratches, or
deformations with high accuracy. It automates quality inspection, reduces human error,
and ensures consistent product quality for large production volumes.

Robotics: DL enables robots to adapt to changing environments using visual and sensor
data. This improves flexibility in tasks like sorting, assembly, and navigation, especially
in unstructured or unpredictable environment.

Predictive modelling: The complex algorithms of DL forecast outcomes such as
machine failures or product quality. These algorithms handle non-linear relationships
and large datasets, offering more accurate predictions than traditional ML algorithms.
Speech and language processing: DL supports voice-controlled manufacturing

systems by understanding commands through natural language processing. This



improves human-machine interactions, simplifies operations, and increases productivity
on the shop floor.

o Fault Diagnosis: DL processes sensor signals to detect patterns that indicate machinery
faults. It identifies early warning signs of failure, allowing preventive maintenance and
reducing unexpected downtime in manufacturing systems.

1.2.3 Applications of DL in Additive Manufacturing

e Layer-wise Defect Detection: DL algorithms analyse images or sensor data layer-by-
layer during multi-layer deposition by an AM process. It detects defects such as inter-
layer porosity and dimensional inaccuracy on real-time basis, enabling immediate
corrective actions and improving final quality of a manufactured product.

e Process optimization: DL optimizes AM process parameters by predicting outcomes,
reducing defects, improving selection of parameters, and enhancing deposition quality
through data-driven analysis and real-time process control.

¢ Real-time control: DL enables dynamic adjustment of deposition parameters during an
AM process. This adaptive control improves stability, reduces errors, and ensures
consistent part geometry and material quality throughout manufacturing process.

e Prediction of material properties: DL algorithms analyse past process and material
data to estimate mechanical properties such as strength and hardness. This helps in

quality confirmation of the manufactured products without excessive testing.
1.3 Additive Manufacturing

Additive manufacturing (AM) is revolutionizing the manufacturing world, transforming
the way products are designed, developed, and made in different industries. This technique
builds three-dimensional objects by depositing material layer by layer using the bottom-up
approach unlike the casting processes in which material is deposited in bulk and the
machining processes which remove the material from a solid block using the top-down
approach. AM starts with a digital 3D model of a product. Special software then slices it
into thin horizontal layers. The AM machine gets these layers as instructions. It then it
deposits the material to match the product design. The raw material can be a polymer, metal,
alloy, ceramic, composite, or biopolymers. The choice depends on intended application of
a product. AM gives the designers more freedom and boosts efficiency.

1.3.1 Classification of AM Processes
According to ASTM F42, different AM processes are categorized into the following

seven categories as shown in Fig. 1.5:



PY Powder Bed Fusion (PBF)

Fused with fusing agent
SLS MJF and Infrared light
Sheet Lamination PY
., ¢ Fused with
. A laser SLM EBM
LOM | Laminated Object s, £
Manufacturing e &
3 Fused with Fused with electron beam
laser
Directed Energy
Deposition (DED)
S i R R «« f| Additive Manufacturing | %% .ceeeennes .
LENS EBAM Technologies i Vat Photopolymerization
]
Fused with laser  Fysed with electron beam
Cured with laser [ SLA DLP | Cured with
projector
& CDLP
Binder Jetting @ vt 4
: : Cured with LED
. = and oxygen
BJ : o
@t Material Extrusion
Joined with Material Jetting
binding agent
MJ FFF bW
Cured with UV light Extrusion with heat  Direct Writing (extrusion without heat)

Fig. 1.5: Classification of AM processes according to ASTM F42 (Rafiee et. al. 2020).
Powder Bed Fusion (PBF): PBF type AM processes use heat source in the form a laser
or electron beam to selectively fuses regions of the powdered bed of the feedstock
material which is either metallic material or a polymer. Electron Beam Melting (EBM),
Selective Laser Sintering (SLS), Selective Laser Melting (SLM), Direct Metal Laser
Sintering (DMLS), Selective Heat Sintering (SHS), and Multi Jet Fusion (MJF) are
common AM processes in this category. They differ based on the materials they use and
how much melting takes place during the process. The PBF processes have ability to
integrate at small scale and they are used for AM of relatively large products. Their
machines are of large size. But, built speed is relative slow, they require high p-plasma
power, and their surface finish depends on the powder size
Directed Energy Deposition (DED): DED type AM processes use the concentrated
heat source in the form a laser, electron beam, plasma arc, or p-plasma arc to melt and
fuse the feedstock material as is being deposited. The feedstock material is a metallic
material which can be supplied either in powder form or wire form or combination of
the both. These AM processes produce high quality functional products, perform precise
repair of the existing components, add complex features to the pre-fabricated parts,
produce and restore high-value engineering components, and fabricate near-net-shape
products. Their build speed is often sacrificed for higher accuracy. The DED fabricated

products require post-processing to achieve the desired quality. Laser Engineering Net
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Shape (LENS), Laser Metal Deposition (LMD), Wire-arc Additive Manufacturing
(WAAM), and p-plasma Metal Additive Manufacturing (u-PMAM) are the commonly
used DED type AM processes.

Sheet Lamination: Sheet lamination type AM processes bond together the sheets or
foils of different metallic materials, papers or fabrics using heat, adhesives, or ultrasonic
waves to supply the required bonding energy. A laser, or milling machine is used to
make products from the laminated sheets. Laminated Object Manufacturing (LOM) and
Ultrasonic Additive Manufacturing (UAM) are the commonly used sheet lamination
type AM processes. These processes offer high build speed, low cost, ease of material
handling, higher accuracy, and good finish.

Binder Jetting: In binder jetting type AM processes, a liquid bonding agent is
selectively deposited to join powder of feedstock material (either a metallic material or
a polymer) thus binding them to create a solid layer. When one layer is finished, the
platform moves down, and new powder is added on top. This cycle repeats until the full
object is completely built. Powder Bed and Inkjet Head (PBIH) and Plaster-based 3D
Printing (PP) are the commonly used binder jetting type AM processes. Advantages of
these processes include: faster process, high range of materials, allows use of two
materials, use of different colours. Their major limitations are: not always suitable for
structural parts due to use of binder material, and higher amount of post processing
Material Jetting: Material jetting involves depositing droplets of the feedstock material
(usually photopolymers or waxes) onto a build platform, where they are immediately
solidified by UV light. This process is similar inkjet printing in 3D. Advantages of
material jetting type AM processes include: high accuracy, less wastage of materials,
ability to fabricate multi-materials and multi-colours products thus making them ideal
for visual prototypes and biomedical models. But they require support structures and are
applicable to limited range of materials only. Multi-jet Modelling (MJM) is the most
commonly used material jetting type AM process.

Material Extrusion: This process uses a nozzle or orifice to selectively extruded the
feedstock material to form its layers. The nozzle moves along the x and y axes to deposit
material onto a base, while the platform shifts along the z-axis to create the product layer
by layer. Common materials feedstock materials are thermoplastics or thermoplastic
composites. It is used to fabricate inexpensive parts from ABS or some other plastics,
Extrusion type AM processes are relatively inexpensive, suitable for the visual models

and prototypes. But they have low accuracy, small build speed, limited nozzle radius,
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requires constant pressure of the feedstock material. Fused Deposition Modelling
(FDM) is the most commonly used material extrusion type AM process.

Vat Photopolymerization: This type AM processes selectively cure a liquid
photopolymer by exposing it to the light from a laser or projector to produce its solid
layers via light-activated polymerization process. The build platform begins at the
bottom of a container filled with liquid photopolymer. A light source hardens it based
on its cross-section being exposed, solidifying it as it moves up. Stereolithography
apparatus (SLA) and Digital Light Processing (DLP) are the commonly used vat
polymerization processes. These processes are relatively quick and typically build large
areas. But, they relatively expensive, requires support structure, require higher post-

processing time and cost, and are applicable to limited material i.e. photopolymers only.

1.3.2 Advantages of AM Processes

AM processes offer a series of distinctive benefits that set them apart from conventional

manufacturing processes:

Geometrical freedom: AM enables the fabrication of highly complex products that are
unattainable through traditional processes such as casting, forming, powder metallurgy,
or machining processes. This capability allows for the realization of intricate free-form
designs with minimal constraints.

Digitally driven production: Since AM is governed by digital designs therefore it
enables precise reproduction of the optimized geometries. The integration of computer-
aided design with automation ensures high precision, dimensional control, and
repeatability across multiple production cycles.

Tailored multi-material fabrication: AM processes support integration of diverse
materials within a single build cycle, facilitating development of the advanced materials
such as smart composites, functionally graded materials, and bio-compatible materials.
This flexibility contributes to innovation in material science.

Assembly reduction: The layered deposition mechanism of AM processes permits
direct fabrication of complicated and integrated assemblies. This eliminates the need to
manufacture and later assemble multiple parts, thereby improving product integrity and
reducing the likelihood of mechanical failures due to misalignment caused in the
assembly process.

Autonomous manufacturing: AM equipment can produce intricate, multi-material
parts with minimal human intervention. This autonomy enhances manufacturing

efficiency and allows for decentralized on-demand production closer to the point of use.
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Material efficiency: In contrast to conventional subtractive manufacturing processes,
which often remove excess material from a larger stock, AM adds material only where
it is required. This approach minimizes scrap, reduces material costs, and eliminates the
need for extensive cutting tools or fixtures.

Economical customization: Unlike traditional manufacturing, which relies heavily on
moulds and dies, AM can produce customized parts directly from a digital file without
any tooling. This feature is highly valuable in sectors requiring patient-specific implants,
customized surgical tools, or bespoke heritage restoration components.
Environmental sustainability: AM processes contribute positively to environmental
sustainability by lowering material wastage and energy consumption. Precise deposition
and reduced reliance on tooling also help in diminishing the carbon footprint associated

with manufacturing.

1.3.3 Limitations of AM Processes

Despite its numerous advantages and potentials, AM continues to face following major

technological and practical challenges:

Material limitations: Current AM systems are typically compatible with a limited
range of materials. Many machines are optimized for metals, polymers, wax, composites
with specific thermal and mechanical properties. AM of ceramics, and integration of
dissimilar materials within a single machine remains a significant hurdle, demanding
further research in material compatibility and hybrid process development.

Production speed and scalability: While AM is well-suited for customized, low-
volume production, it remains less efficient for mass production. The relatively slow
build speed limits its suitability for large-scale manufacturing applications, especially
where throughput is critical.

Accuracy constraints: The additive nature of AM introduces challenges in achieving
tight dimensional tolerances and smooth surface finish. Layering artifacts, commonly
referred to as the “stair-stepping” effect, are particularly evident on curved surfaces and
intricate geometries.

Requirement for post-processing: Parts produced via AM often require secondary
operations such as machining, heat treatment, or polishing to meet the functional and
aesthetic standards. These additional steps add to the production time and cost, making
the overall process less efficient than initially perceived.

Data intensity and computational demand: Generating and processing highly
complex geometries through AM involves big data and intricate toolpath algorithms.

The demand for robust computational p-plasma power and efficient slicing software
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continues to be a significant bottleneck, especially for parts with fine internal features

or lattice structures.

1.3.4 Applications of AM Processes

Since its emergence in late 1990s, AM has undergone significant advancements and has

been increasingly adopted across various sectors. Following are some of its transformative

applications:

Biomedical engineering: AM is reshaping the biomedical field by enabling the creation
of accurate anatomical parts, orthopaedic implants, dental restorations, and surgical
instruments. The ability to produce patient-specific devices using certified bio-
compatible materials is revolutionizing surgical planning, medical education, and
implantology.

Aerospace industry: Aecrospace manufacturers have been early adopters of AM,
utilizing its ability to reduce component weight, consolidate parts, and improve
performance. Applications include rocket engine components, combustor liners, interior
cabin parts, and ducting systems for environmental control. AM supports design
innovation while meeting stringent strength and thermal requirements.

Consumer goods: AM is employed in product development for consumer electronics,
household appliances, and sporting goods. Designers benefit from rapid prototyping
capabilities, allowing quick iterations and product validation before full-scale
manufacturing. As the technology matures, it is poised to support larger production runs
in consumer markets.

Energy sector: AM contributes to the energy industry by enabling the production of
complex, high-performance components such as turbine nozzles, pump manifolds, and
control-valves. These components are often subjected to extreme operating conditions,
and AM allows for material and design customization to meet specific environmental
demands.

Transportation: The transportation sector leverages AM to develop lightweight,
aerodynamic, and heat-resistant components for automotive and rail systems.
Applications include ductwork, grilles, interior modules, and structural panels that

reduce vehicle weight and enhance performance at high speeds.
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1.4 Directed Energy Deposition (DED) Processes

The DED type AM processes are integral to the field of AM due to their distinct
advantages and versatile capabilities. These processes stand out for their ability to deposit a
wide range of materials, such as metals, alloys, composites, and even ceramics, offering
exceptional adaptability to various industrial applications. This broad material compatibility
makes DED processes highly relevant in the sectors ranging from aerospace to automotive,
where customized solutions are essential. A key benefit of DED technology is its ability to
achieve high deposition rates, which translates to faster build times compared to other AM
techniques. Particularly when large volumes of material are required, DED processes enable
more efficient production, significantly reducing manufacturing time. This enhanced
productivity positions DED as a compelling choice for industries facing stringent production
deadlines and the need for rapid turnaround times. Moreover, DED processes are especially
valuable for repair and cladding applications. Sectors such as aerospace, oil and gas, and
automotive often rely on DED for this purpose, as it allows for the repair of high-value parts
without the need for complete replacement. The flexibility of DED in these applications
demonstrates its significant role in prolonging the lifespan of critical components.
Additionally, DED processes can be easily scaled to produce large components and
structures. This scalability ensures that DED is not limited to small parts but can also
accommodate the production of sizable, complex structures. Its capacity to handle large-
scale fabrication further enhances its appeal for industries that require both precision and
the production of substantial parts. In terms of design flexibility, DED provides engineers
and designers with the freedom to produce the parts with complex geometries and intricate
features. This capability fosters innovation and supports the development of custom
solutions tailored to specific needs, pushing the boundaries of what is possible in modern
manufacturing. Such flexibility is a significant advantage, enabling the creation of highly
specialized components that would be difficult or impossible to achieve through traditional
manufacturing methods. Finally, DED processes are known for their material efficiency. By
adding material only where it is needed, these processes minimize material wastage and
reduce associated costs. This level of efficiency is especially advantageous compared to
other AM techniques and conventional manufacturing processes which often result in higher
material wastage. Material efficiency of DED aligns with growing emphasis on
sustainability in manufacturing making these processes as environmentally friendly choice.
1.4.1 Types of DED Processes

The DED processes are classified based on type of energy source and feedstock

material:

15



Wire Arc Additive Manufacturing (WAAM): These processes use an arc to melt and
layer metallic wires onto the base surface. It uses different types of arcs such as manual
metal arc (MMA), gas metal arc (GMA), or gas tungsten arc (GTA) to supply the heat
for melting the metallic wires. The WAAM processes have high build speed which can
create large parts from inexpensive metals though they produce poor surface quality.
Aerospace and marine industries use WAAM to make structural large parts, where cost-
cutting and time-saving are important factors.

o Laser-Based DED (L-DED): A laser beam heats and melts the metallic powder or wire
before adding it to a base surface. This process works by directing the laser beam onto
the base where it melts the material so it can bond with the surface or with earlier layers.
L-DED processes (i.e., LENS, LMD) provide great control and accuracy during the
deposition process. They let manufacturers make complex shapes with precision. Many
industries such as aerospace, automotive, and tooling use this approach to create
prototypes, fix broken parts, or produce parts close to their final shape.

e Plasma Arc Additive Manufacturing (PAAM): These processes use a plasma or p-
plasma arc to heat and melt metallic powders or wires for their deposition on a base
surface. Plasma or p-plasma arc is created through gases such as argon or nitrogen by
applying direct current (DC) p-plasma power supply. This produces a high-temperature
plasma jet that melts the feedstock material. The molten material is then deposited on
the base surface in layered manner fabricate the desired part. The PAAM allows fast
material deposition and creates strong metallurgical bonds. It works well for making
high-performance parts needed in the fields such as aerospace, defence, and energy.

1.4.2 Advantages of DED Processes
The primary advantage of DED processes comes from how flexible it is with materials.

It works with metals, alloys, ceramics, and even composites, making it useful in a variety

of applications. These processes let users combine materials with different properties in the

same build. This helps in creating graded materials, smart materials, biocompatible
materials, high/medium entropy alloys or ones with specific mechanical, thermal, or
electrical properties. WAAM and PAAM processes give high deposition rates. This makes
them capable of making large components and lowering both production time and costs. It
also provides impressive design freedom, making it possible to create complicated parts
with detailed features. Engineers and designers can use this to deliver unique solutions and
parts customized for specific needs. DED processes are used to repair or clad the parts,
which helps extend the life of essential components while cutting down on maintenance

expenses.
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1.4.3 Limitations of DED Processes

The DED processes also suffer from certain drawbacks which need attention. One of the
challenges is dealing with residual stresses and distortions in the fabricated parts using high-
energy laser beams or plasma arcs. Designers and engineers need to optimize these
processes to reduce these issues and maintain accuracy in dimensions and part quality.
Another challenge lies in additional processes such as machining, grinding, or heat
treatments needed to achieve smooth surfaces, precise dimensions, or the required texture.
These extra steps slow down the production and increase productions costs. Improvements
in process monitoring and control are reducing how much post-processing is necessary.
1.4.4 Applications of DED Processes

DED processes find applications in many industries such as aerospace, automotive,
biomedical, defence, oil and gas, chemical, tooling. Aerospace companies rely on DED
processes to make intricate structural parts, engine components, and fix turbine blades.
Automotive industries use them to speed up prototyping to create tools and customize the
parts. Defence industries use DED processes to build lightweight armour, make missile
parts, and fix military vehicles. Oil and gas industries use DED processes to create tough
coatings, repair drilling equipment, and produce downhole tools. Dies and mould making
industries use DED processes to create cores, inserts, and intricated cavity components.
1.5 Micro-plasma Metal Additive Manufacturing (u-PMAM)

u-PMAM process is a novel and energy-efficient metal AM process that combines the
principles of p-plasma arc with the precision of modern material deposition methods. It
represents a significant advancement in the field of DED, especially in applications that
demand fine control, and minimal thermal impact. By using p-plasma arc as low-energy,
highly concentrated thermal source as the heat source, p-PMAM is capable of producing
high-quality components from high-melting point metallic materials. The p-plasma arc is
generated inside a specially designed nozzle unlike the PAAM process. The nozzle controls
the arc size and intensity, ensuring focused heating and efficient material deposition. Unlike
conventional PAAM process, p1-PMAM operates at lower current and p-plasma power
levels, usually up to 20 amperes and 440 Watts DC p-plasma power. These controlled
energy settings offer several benefits, such as reduced heat-affected zones, minimized
thermal distortion, and lower residual stresses within the deposited layers. One of the
distinguishing features of p-PMAM process is its integration with 5-axis computer
numerically controlled (CNC) work table. Fig. 1.5 depicts photograph of the 5-axis CNC
machine for u-PMAM process showing the deposition head and formation of p-plasma arc

inside the p-plasma torch in the insets. This configuration allows for the fabrication of
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geometrically complex parts without any support material. The multi-axis motion enables
the deposition head to be pregummed for the desired part geometry thus allowing overhangs,
internal features, and curved geometries to be manufactured more easily. Consequently, p-
PMAM offers superior flexibility and freedom in part design, reducing the need for post-
processing and support removal. A major advantage of u-PMAM lies in its compatibility
with multiple feedstock forms including powders, wires, or their combinations. This
versatility allows users to select the most appropriate form of feedstock material based on
part requirements, desired deposition rate, or economic considerations. For instance, powder
feedstock offers better control over composition and microstructure, while wire feedstock
provides better material utilization and reduced contamination risk. From a materials
perspective, i-PMAM is highly capable of handling a broad range of high-performance and
high-melting-point alloys many of which are difficult to process by other AM processes.
The u-PMAM process has been successfully used for Inconel 625 for high-temperature
aerospace applications, P20 and H13 tool steels for mould and die production, and Stellite
alloys for wear-resistant surfaces, Ti6Al4V, Co-Cr-Mo-xTi, Ti-Ta-Zr-W-Mo HEA for
biomedical implants, and Ti6Al4VxNiyCr for high strength applications. The precise
control over heat input and deposition rate allows for stable melting and solidification of
challenging materials which helps to expand its material applications. These materials are
selected for their mechanical and biological properties, making them ideal for implants,

surgical instruments, and prosthetic components.
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Fig. 1.6: Photograph of the 5-axis CNC machine for p-PMAM process showing the

deposition head and formation of p-plasma arc inside the p-plasma torch in the insets.
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In terms of functional outcomes, the parts produced through p-PMAM often exhibit
fine-grained microstructures, uniform layer bonding, and high mechanical strength due to
controlled thermal cycles and precise deposition paths. Its ability to handle custom
geometries and specialized materials opens new possibilities for repairing, re-
manufacturing, and customizing critical components. This is especially relevant in high-
value sectors namely aerospace, automotive, biomedical, and defence where performance,
reliability, and material efficiency are critical
1.5.1 Applications of pn-PMAM Process
e Aerospace components: 1-PMAM enables fabrication of complex, lightweight parts

using high-temperature alloys such as Inconel 625, offering superior heat resistance,
geometric precision, and reduced material waste for turbine blades and aerospace
brackets.

e Tools and dies manufacturing: The p-PMAM process efficiently produces and
repairs moulds of P20 and H13 materials enhancing their useful life, reducing lead time.

e Biomedical implants and devices: The n-PMAM process has been used to process
biocompatible materials such as Ti6Al4V, Co-Cr-Mo-xTi, Ti-Ta-Zr-W-Mo with
tailored microstructures, allowing the production of patient-specific implants and
surgical tools with improved mechanical and biological performance.

e Development of high-entropy alloy: It u-PMAM process has been used to develop
advanced alloys such as Ti6Al4VxNiyCr, Co-Cr-Mo-xTi, Ti-Ta-Zr-W-Mo, enabling
components with superior strength, corrosion resistance, and biocompatibility for
demanding structural and biomedical applications.

e Component repair and remanufacturing: u-PMAM process can repair worn or
damaged high-value metallic parts by adding material only where needed, extending
component life and reducing replacement costs and environmental waste.

1.6 Organization of thesis

This thesis is organized into the following five chapters:

Chapter 1 introduces the fundamentals of machine learning (ML) and deep learning (DL).
It describes main types of ML and DL algorithms. It highlights applications of ML and
DL in manufacturing and additive manufacturing (AM) for detection of defects, quality
control, and parametric optimization. It provides an overview of different types of AM
processes, their advantages, limitations, and key industrial applications. It briefly
introduces directed energy deposition (DED) processes and Micro-Plasma Metal
Additive Manufacturing (u-PMAM) process, summarizing their principles, key

benefits, and major applications.
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Chapter 2 reviews the relevant literature on use of ML and DL in AM, emphasizing previous
work on process optimization, defect detection, and deposition geometry control in
DED, WAAM, and p-PMAM processes. It present the research gaps identified based
on this review, and research objectives identified based upon the research gap along
with the methodology used to meet them.

Chapter 3 details the materials and research methodology used in this study, including the
selection of deposition materials, data acquisition through video recording, feature
extraction, and preparation of datasets. It describes the training and evaluation of
various ML and DL algorithms for predicting deposition geometry and outlines the
integration of these algorithms with the NSGA-II algorithm for multi-objective
optimization.

Chapter 4 presents the results and discussion, including performance of different ML and
DL algorithms in predicting deposition geometry for single-layer and multi-layer
depositions respectively. It analyzes performance of the selected ML and DL algorithm,
the effectiveness of NSGA-II in optimizing process parameters, and the optimized
parameters for both single-layer and multi-layer depositions.

Chapter 5 summarizes the outcome of the present research by presenting its significant

achievements, conclusions, and some directions for the future work.
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Chapter 2
Review of Past Work

This chapter presents review of the past work carried out on application of ML and DL
to perform different tasks such as detection and minimization of defects, prediction and
control of deposition geometry, and parametric optimization in metallic AM (MAM)
processes such as DED, WAAM, and u-PMAM. It also presents summary of the past work
review, existing research gaps, identified research objectives along with the methodology
used in the present work to achieve them.

2.1 Past Work on ML Usage in AM Processes

Optimization of a MAM processes involves detection and elimination or minimization
of deposition defects, achieve accurate deposition geometries, and adjusting its parameters
to improve the build quality. In recent years, ML and DL have become increasingly popular
for optimizing the MAM processes, for example, ML and DL have been used for L-DED,
WAAM, and LPBF processes to enhance their outcomes. Following sections describe the
review of the past work performed to detect and minimize deposition defects and to optimize
deposition geometry using ML/DL.

2.1.1 Detection and Minimization of Deposition Defects Using ML/DL

Deposition defects such as porosity, lack of fusion, cracks, and delamination in a MAM
process can severely compromise mechanical properties of the fabricated product therefore
their early detection and mitigation are crucial. And use of ML/DL for detecting and
minimizing these defects has been one major research thrust.

Some researchers have used ML algorithms in the DED processes for monitoring and
reducing the deposition defects by exploiting open architecture of DED processes where the
melt pool is visible during deposition which allows for diverse sensor integration.
Khanzadeh et al. (2018) applied clustering algorithm to sensor data in L-DED process to
detect out-of-distribution process events without needing the labelled data. Montazeri et al.
(2019) combined ML algorithm with optical emission spectroscopy in a DED process and
showed that spectral patterns of the plume can predict the defects. Liu et al. (2022) used
high-speed video monitoring of the melt pool in the laser wire additive manufacturing
(WLAM) process and extracted feature descriptors to train the Naive Bayes ML algorithm
for detection of the defects. Their study could identify the defects such as humping (i.e.,
irregular bead formation) and lack-of-fusion on real-time basis. Some researchers have
utilized vision-based and hybrid ML algorithms to tackle the defects such as pores, cracks,

and geometric irregularities in the WAAM process. Tang et al. (2020) used ML-DL
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combined two-stage approach to detect the welding defects such as burn-through and poor
deposition continuity in the robotic WAAM process. Their approach involved analysis of
weld pool images by neural networks to identify defect precursors which is supplemented
by the support vector machine (SVM) classifier for final defect categorization. Zhang et al.
(2023) used YOLO-based detector to the x-ray images of WAAM fabricated multi-layer
deposition for identification of pore defects in it.

Some researchers have leveraged in-situ monitoring data such as optical images,
infrared thermal videos, acoustic signals in combination with DL algorithms to identify the
deposition defects on real-time basis or post-MAM process. Scime and Beuth (2018) used
the CNN to classify anomalous regions on layer images and successfully detected spatter-
induced porosity and other irregularities in the LPBF process. Yuan et al. (2018)
demonstrated that high-resolution visual imaging of the powder bed in the LPBF process
can feed the DL algorithms to flag the defects such as recoated blade interference or uneven
powder distribution. Baumgartl et al. (2020) used infrared thermography data as input to a
DL algorithm and correlated formation of porosity with the thermal patterns in LPBF
process. Some researcher used DL-based closed loop control to minimize the defects. Some
researchers have used DL-based closed loop control to minimize the defects. Kwon et al.
(2020) implemented closed-loop control in a L-DED process in which DL algorithm was
trained to recognize the impending defects (like bead misalignment or instability) from real-
time sensor data, and the system automatically adjusted process parameters (e.g., laser p-
plasma power or deposition head traverse rate) to avoid occurrence of the defects. Their
study demonstrated feasibility of coupling DL-based diagnostics with immediate corrective
actions which will reduce defect occurrence. Wang et al. (2023) proposed a real-time defect
detection framework for LPBF process using a vision-based DL algorithm to monitor each
deposition layer and to pause process if a serious anomaly is detected.

2.1.2 Deposition Geometry Optimization Using ML/DL

Another critical aspect in the MAM processes is achieving the desired deposition
geometry in terms of optimized deposition width and height, total height, and overall
dimensional accuracy of a deposition. Controlling these geometrical parameters is
especially important in DED and WAAM processes where melt pool dynamics and heat
accumulation can lead to irregular layer profiles. Traditional approaches for parameter
setting namely trial-and-error method or physics-based algorithms are often time-
consuming or may not capture complex interactions between multiple parameters of an
MAM process. Thus, researchers are increasingly exploring different ML/DL algorithms to

predict and optimize deposition geometry through optimization of the process parameters
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with a goal of identifying optimum settings that yield the target geometry. Such data-driven
algorithms effectively serve as surrogates for an MAM process, enabling optimization of
layer geometry without exhaustive physical experimentation.

Researchers have used ML algorithms in WAAM process for deposition geometry
prediction due to its relevance in producing large structural components with relatively
coarse deposition geometry. Chandra et al. (2024) conducted a comparative evaluation of
multiple ML algorithms to predict the deposition height and width in a WAAM process
using stainless steel wire. They trained ML algorithms using a dataset comprising of travel
speed, wire deposition head traverse rate, torch angle, and stand-off distance as inputs. They
achieved reasonably high accuracy in estimating the deposition dimensions. They reported
that a simple linear regression ML algorithm performed better for deposition width
prediction whereas a non-linear ML algorithm was more accurate for deposition height
prediction. It highlights that the appropriate ML algorithm may be different for different
geometric features of a deposition. Subadra et al. (2024) utilized ML algorithms to predict
deposition geometry and recommended process parameter settings for deposition width and
height of stainless steel depositions by WAAM process by examining the effects of voltage,
current, travel speed, and wire deposition head traverse rate. They reported that the random
forest ML algorithm reliably predicted deposition dimensions from the process parameters,
and an inverse prediction used the KNN to suggest the process parameter settings that are
likely to produce the desired shape of a deposition. Some researchers have shown that ML
algorithms can capture the relationship between laser p-plasma power, scan speed, powder
deposition head traverse rateand the resulting melt pool dimensions in the LDED process.
Xiong et al. (2019) developed an ANN to predict total height of multi-layer depositions by
LDED process which will help to select parameters that yield a uniform height. Zhang et
al. (2021) integrated a vision system that measured the cross-sectional profile of a deposition
in real-time and fed these measurements into a controller tuned by ML which adjusted the
travel speed to maintain a targeted deposition width. These approaches illustrate the
extension of ML from purely predictive use to active control for geometry stabilization in
LDED process.

The layer geometry in the LPBF process is dictated by powder spreading and melt pool
behaviour at much finer scale therefore the focus of deposition geometry optimization is
different. ML/DL has been used in LPBF process to ensure uniform layer deposition and to
predict distortions or dimensional deviations after depositing. Grill et al. (2019) used ML
to optimize scan path or pattern in LPBF process to achieve uniform energy distribution,

which indirectly ensures consistent melt track geometry and layer thickness. Ren et al.
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(2021) applied a DL algorithm to predict the final part distortion in LPBF process for given
a set of process parameters and scan strategies, thereby guiding parameter selection to
minimize the warping. Kumar and Jain (2022) employed a KNN algorithm to predict the
surface roughness of multi-layer depositions built by p-PMAM process. They used the
feedstock material in both powder and wire form and the ML algorithm could forecast the
resulting surface roughness from process inputs with reasonable accuracy (within ~6%
error). Mukherjee et al. (2020) achieved a reduction in bead height variance in WAAM
deposition. Liu et al. (2022) demonstrated more uniform build walls in a DED process as
compared to baseline settings.

2.2 Summary of Past Work Review
Following is the summary of the review of past works on usage of ML/DL algorithms

in MAM processes:

e There is growing use of ML and DL in AM processes for detection of defects, predicting
deposition geometry, and process optimization especially in MAM processes such as
DED, WAAM, and LPBF processes.

e ML can map subtle process signals such as video, spectra, etc. in the DED processes to
defect occurrence of defects thus providing early warning for the quality deviations.

e Supervised DL algorithms, especially CNN, are effective in recognizing the defects
from the complex sensor data i.e., images and thermal fields in the PBF processes. Even
for the comparatively coarse features of WAAM (as opposed to fine powder beds),
modern DL can successfully pinpoint internal and surface defects (including small pores
or inclusions) with high confidence.

e ML-based closed-loop or adaptive control are still in early stages but they highlight the
trend from defect analysis towards in-situ defect minimization using ML.

e ML/DL algorithm when properly trained and validated can effectively predict how
changes in parameters of an MAM process will affect the deposition geometry. This
capability greatly accelerates process optimization, enabling practitioners to attain the
desired deposition dimensions and mechanical properties linked to geometry also, with
fewer experimentations. It also leads to a common theme that use of ML as a p-plasma
powerful tool to navigate multi-parameter process for desired geometric outcomes.

e From the initial demonstrations of CNN classifying defects from the images of an MAM
process, the research is moving towards a sophisticated multi-sensor data fusion and
even preliminary autonomous control for quality assurance in the AM processes. These
advances provide a strong foundation for improving reliability in MAM processes via

intelligent, data-driven monitoring.
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2.2 Identified Research Gaps

Following are the research gaps identified from review of the past work:

No work is available on ML/DL based geometry prediction of single and multi-layer
depositions fabricated by u-PMAM process using their real-time data

No work is available on multi-objective optimization of p-PMAM process parameters
with conflicting objectives

No work is available on real-time, closed-loop systems that will not only detect but also

minimize or eliminate defects in the p-PMAM process.

2.3 Research Objectives

The following are the research objectives (RO) of the present work based on some of the

identified research gaps:

RO-1: Selection of an appropriate ML algorithm which is capable of accurately
predicting deposition height and width of single-layer depositions by u-PMAM process
on the same material base plate using the real-time data extracted from their high-
resolution video recordings. The selected ML algorithm to be trained, validated and
tested using the real-time data only.

RO-2: Selection of an appropriate DL algorithm which is capable of accurately
predicting total height and width of multi-layer depositions by u-PMAM process on the
mild steel base plate using the real-time data extracted from their high-resolution video
recordings. The selected DL algorithm should be capable of handling increased
nonlinearity can capture inter-layer dependency, and spatial and sequential dependencies
in the multi-layer depositions.

RO-3: Multi-objective optimization of p-PMAM process parameters (i) using the
selected ML algorithm integrated with the non-dominated sorting genetic algorithm II
(NSGA-II) for the single-layer depositions to identify optimum combinations of process
parameters that will yield the desired deposition geometry, and (ii) using the selected DL
algorithm integrated with NSGA-II for the multi-layer depositions to handle the added
complexity and to identify optimum combination of process parameters that will achieve

uniform and defect-free deposition across multiple layers.

2.4 Research Methodology

Fig. 2.1 shows schematic of the research methodology to meet the identified objectives

of the present work.
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Fig. 2.1: Research methodology used in the present work.

The used research methodology involves several key steps, starting from data acquisition
to training of ML and DL algorithms, followed by multi-objective optimization of process
parameters for optimum deposition geometry by integrating the selected ML and DL
algorithm with the NSGA-II. It begins with recording videos of single and multi-layer
depositions fabricated by p-PMAM process using a high dynamic range camera. The
recorded videos were broken down into individual images to extract relevant information
image-wise. The prepared datasets were split into training, testing, and validation sets for
the considered ML and DL algorithms. Six ML algorithms and three DL algorithms were
trained and evaluated for single-layer and multi-layer depositions respectively. All trained
ML and DL algorithms were evaluated using coefficients of determination, mean average
error (MAE) to select the appropriate algorithm. The algorithm selection process involved
evaluating the 6 ML and 3 DL algorithms based on their predictive accuracy,
generalizability, and suitability for the characteristics of the available datasets. The selected
ML and DL algorithm were trained, validated and tested using the real-time data. These
algorithms can quickly predict the height and width of the deposition for any set of input
parameters. The selected ML algorithm was integrated with the non-dominated sorting
genetic algorithm II (NSGA-II) for multi-objective optimization of the single-layer
depositions to identify optimum combinations of process parameters that will yield the
desired deposition geometry. While, selected DL algorithm was integrated with NSGA-II
for multi-objective optimization of the multi-layer depositions to identify optimum

combination of process parameters that will achieve uniform and defect-free deposition
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across multiple layers. The ML/DL integrated NSGA-II yielded several sets of optimized
parameters (i.e., p-plasma power, deposition head traverse rate, feedstock feedstock powder
flow rate) that can give desired geometry.

This chapter presented a review of the relevant literature, identified research gaps,
research objectives of the present work along with the methodology used to meet them. The
next chapter describes details of the materials for single layer and multi-layer depositions,
data acquisition through recording of videos, processing of these videos, training, validation,
testing and evaluation of the considered ML and DL algorithms, training of the selected ML
and DL algorithm, and multi-objective optimization of by p-PMAM process parameters by
selected ML and DL algorithm integrated with NSGA-II for the single-layer and multi-layer

depositions.
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Chapter 3
Materials and Methods

This chapter details the deposition materials used in this study, data acquisition through
video recording, feature extraction, and preparation and splitting of the datasets. It also
describes training, validation, testing and evaluation of the considered ML and DL
algorithms, training of the selected ML and DL algorithm, and multi-objective optimization
of by u-PMAM process parameters by selected ML and DL algorithm integrated with
NSGA-II for the single-layer and multi-layer depositions.

3.1 Selection of Deposition and Base Plate Materials

Table 3.1 presents details of the deposition and base plate materials used for fabricating
single-layer and multi-layer depositions by u-PMAM process.

Table 3.1: Deposition and base plate materials used in single-layer and multi-layer

depositions by u-PMAM process.

Layer Deposition material Base plate material
Single-layer depositions Ti6Al4V Ti6Al4V
Multi-layer depositions SS 316L Mild steel

The SS 316L is an austenitic stainless steel whose composition by wt.% is: 16-18% Cr;
10-14% Ni; 2-3% Mo; Max. 0.03% C; and small amounts of Manganese, Silicon, and other
elements. The ‘L’ indicates very less carbon content. It has excellent resistance to
atmospheric corrosion, moderately oxidizing and reducing environments, chloride-rich
environments, good strength and toughness, even at cryogenic temperatures, good
weldability. Its main applications include: (i) Biomedical devices due to its biocompatibility
and resistance to corrosion, (ii) Marine environments for structural components and
equipment exposed to seawater, (i) Food processing due to its resistance to corrosion and
non-toxicity, (iv) Chemical and petrochemical industries for equipment handling corrosive
chemicals, and (v) Cryogenic applications due to its ability to maintain strength at very low
temperatures. The Ti-6Al-4V, sometimes also called TC4 or Ti64 , is an alpha-beta titanium
alloy of ASTM Grade 5. Its composition by wt.% is: 5.5-6.75% Al; 3.5-4.5% V; 0.3% Fe;
0.2%0; 0.08% C; 0.05% N; 0.015%H; and balance Ti. It has excellent biocompatibility,
excellent corrosion resistance to seawater, oxidizing acids and rocket propellants, relatively
low density and thermal conductivity, high strength and modulus of elasticity, and good
fatigue strength and formability. It is primarily used in various aerospace applications,
orthopaedic implants because it promotes bone regeneration, and high-temperature

components. Therefore, these two materials were chosen the deposition materials.
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3.2 Selection of Input Parameters

The performance of the u-PMAM process is highly dependent on the input parameters.

These parameters directly influence the deposition geometry, including height, width, and

consistency of the deposited layers. Different combinations of the following input

parameters were used during video recording of the single-layer depositions of Ti6Al4V to

capture their effects on the deposition geometry thus allowing the ML algorithms to learn

their relationships with the deposition geometry:

p-plasma power: The energy supplied for formation p-plasma arc inside the p-plasma
torch. It affects the time required to melt a deposition material and form a cohesive layer.
Higher the p-plasma power, lesser is the time needed to melt a deposition material.
Feedstock powder flow rate: It is the rate at which the feedstock or deposition material
is delivered to the base plate. It influences height and width of a deposition. It depends
on density, particle size and sticking tendency of feedstock powder. Its value is restricted
by p-plasma power i.e., smaller value of p-plasma power does not allow use of larger
value of feedstock powder flow rate.

Deposition head traverse rate: It is speed at which the deposition head travels over the
base plate. Its value is affected by melting point of the feedstock material and p-plasma
power. Higher melting of the feedstock material and/or smaller value of p-plasma power
necessitates small traverse rate of deposition head and vice-versa. It affects geometry of
a deposition layer and overall deposition quality.

In addition to the above-mentioned parameters, following additional input parameters,

as depicted in Fig. 3.2, were used for multi-layer depositions of SS 316L to account for the

increased complexity:

Stand-Off-Distance (SOD): The distance between the nozzle and the substrate, which
affects the material deposition angle and consistency.

Layer Index ‘N’: It indicates which layer is being deposited.

Height and width of previous layer (PreLH and PreLW): The height and width of
the previously deposited layer is important because it provides the immediate context
for deposition of the next layer.

Cumulative deposition height ‘CumH’: The cumulative height of all previously
deposited layers directly reflects their consistency and quality. A consistent value of
CumDH indicates that the material is being deposited uniformly, which is essential for

providing a stable base for the next layer.
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Fig. 3.1: Additional inpur parameters for a multi-layer depositon.

3.3 Data Acquisition

Data acquisition plays an important role in training, validation, testing, and evaluation
of ML and DL algorithms. The data were acquired by extracting the images from the
recorded videos by a high dynamic range (HDR) camera (Make: TPS, Model: XVC-1000-
1100) mounted on the CNC machine of the p-PMAM process as shown in Fig. 3.1. This
HDR camera was selected for its ability to capture high-resolution video with enhanced
lighting sensitivity. Video recording of the deposition process at a high image rate made it
possible to observe the deposition geometry in real-time and capture any subtle variations
that could influence the final part quality. Following high-quality grey videos were recorded
for different combination of p-plasma p-plasma power and deposition head traverse rate: (i)
8 videos for single-layer depositions of SS 316L on mild steel base plate, (ii) 2 videos for
single-layer depositions of Ti6Al4V on mild steel base plate, (iii) 6 videos for single-layer
depositions of Ti6Al4V on same material base plate, and (iv) 4 videos for multi-layer of SS
316L on mild steel base plate. Table 3.2 provides details of these recorded videos. They
provide real-time visual insights into the deposition process allowing for extraction of
deposition height and width. The data collected through this method was crucial for the data-
driven ML and DL algorithms that can forecast the deposition geometry and optimize the

process parameters.

31



INTERFACE

p—

Fig. 3.2: Photograph of the CNC machine of u-PMAM process showing mounting of the
high dynamic range (HDR) camera of make TPS XVC-1000-1100.
Table 3.2: Details of recorded videos for single-layer and multi-layer depositions by p-

PMAM process.

Video Deposition Base No.of p-plasma Deposition head Feedstock Duration of the Number of
No. material plate layers power (W) traverse rate  powder flow recorded video extracted

materia. (mm/min) rate (g/min) (seconds) images

1 SS316L Mild Single- 308 47 1.7 66 60
2 steel  layer 50 2.1 54 48
3 53 3.5 62 49
4 319 47 2.5 71 64
5 53 2.1 62 52
6 330 47 1.5 69 59
7 50 1.7 68 60
8 53 1.9 61 52
9 SS316L  Mild 4 308 53 1.8 180 120
10 steel 6 308 53 2.5 348 290
11 6 308 53 2.3 243 220

6 319 50 1.8 173 160
13 Ti6Al4V  Mild Single- 330 55 1.5 60 55
14 steel  layer 330 55 2.1 11 10
15 Ti6Al4V Ti6Al4V Single- 330 50 2.7 8 6
16 layer 330 50 2.9 440 380
17 330 50 2.1 23 20
18 330 50 1.7 56 43
19 330 55 3.5 59 51
20 374 50 2.3 80 30

3.4 Processing of the Recoded Videos

Processing of the recoded videos is needed to ensure that ML and DL algorithms receive
clean and well-structured data that can lead to their accurate predictions. Therefore, the

recorded videos were processed in the following steps: (i) Extraction of images from each
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recorded video, (ii) Scaling of features for single-layer depositions data, (iii) Histogram-
based multi-modal method for multi-layer depositions, and (iv) careful splitting of each
dataset into training, testing, and validation subsets.
3.4.1 Extraction of Images from the Recorded Videos

Image extraction from a recorded video is a key step in transforming the visual data
into a usable information for the ML and DL algorithms. Therefore, images were extracted
from each recorded video whose details are provided in Table 3.1. The image extraction
process was performed using Python-based image processing tool ensuring that the entire
process is efficiently carried out without human intervention. Each extracted image provides
details of the deposition geometry at a specific point in time, capturing critical features such
as deposition height and width. The extracted images were then analysed and processed
further to extract meaningful features that were used for training the ML and DL algorithms.
The extracted images were then labelled based on the deposition parameters (i.e., u-plasma
u-plasma power, deposition head traverse rate, and feedstock powder flow rate) used while
recording a particular video. This labelling allowed for the establishment of a direct
relationship between the input parameters and the observed deposition geometry.
3.4.2 Feature Scaling for Single-Layer Depositions Data

Data having input features or parameters with varying scales affect performance of ML
algorithms due to their sensitivity towards the scale of input features. Therefore, feature
scaling was applied to the extracted real-time data of single-layer depositions to standardize
the input parameters. Standardized scaling was chosen for this study in which standard value
of an input parameter was computed using the Eq. 1. It transforms the data so that each
parameter has a mean of 0 and a standard deviation of 1 ensuring that all input parameters
are treated equally by an ML algorithm regardless of their original scales and prevent it from
being biased toward parameters with larger magnitudes. For example, p-plasma power
ranges from 100 W to 440 W whereas, deposition head traverse rate could vary from 5 to
20 mm/s, and feedstock powder flow rate might range from 0.2 to 1.5 g/min. Without
standardization, the ML algorithm could disproportionately focus on p-plasma power due
to its wide numerical range than that of the deposition head traverse rate or feedstock powder
flow rate. But, use of standardized scaling transformed all these input parameters to a
comparable scale so that an ML algorithm treats them equally regardless of their original
scales without being biased toward the parameters with larger magnitude. Therefore,
standardization of input features is crucial for improving the predictive accuracy of an ML
algorithm because it allows it to effectively learn the relationships between these parameters

and the resulting deposition geometry.
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X = (1)

where, x" are x’ are standardized and original value respectively of an input parameter;
‘0’ and ‘o’ are mean and is standard deviation of that parameter. Table 3.3 presents real-
time data generated from the recorded videos of single-layer depositions of Ti6Al4V by p-
PMAM process after removing all those data which yielded same values of deposition width
and height. These data were used in training, validation, and testing of six ML algorithms.
Table 3.3: Real-time data generated from recorded video of single-layer deposition of

Ti6Al4V and used in training, validation, and testing of the six ML algorithms.

Data p-plasma  Feedstock Deposition head Deposition Deposition Aspect Quality of

no. power  powder flow traverse rate  width (mm) height (mm) ratio deposition
W) rate (g/min) (mm/min)
1. 330 1.7 50 2.94 1.65 1.78 CUD
2. 330 2.1 55 2.96 1.76 1.68 CUD
3. 330 2.1 55 2.99 2.00 1.50 CUD
4. 330 1.7 50 2.89 1.42 2.04 NUD
5. 330 2.1 55 3.12 1.53 2.04 NUD
6. 330 2.7 50 3.10 1.60 1.94 NUD
7. 374 2.3 50 4.08 3.13 1.30 NUD
8. 330 2.1 55 4.23 2.89 1.46 CUD
9. 330 2.9 50 4.38 3.19 1.37 NUD
10. 330 1.5 55 4.45 3.31 1.34 NUD
11. 330 1.5 55 4.29 2.93 1.46 CUD
12. 330 3.5 50 4.37 3.14 1.39 NUD
13. 330 2.1 55 4.01 2.63 1.53 CUD
14. 374 2.3 50 4.11 2.87 1.43 CUD
15. 330 2.9 50 4.57 2.74 1.67 CUD
16. 330 3.5 50 4.61 2.97 1.55 CUD
17. 330 1.5 55 4.37 2.45 1.78 CUD
18. 330 1.5 55 4.49 2.64 1.70 CUD
19. 374 2.3 50 4.11 3.37 1.22 NUD
20. 330 2.1 55 3.94 2.97 1.33 NUD
21. 330 2.9 50 1.6 3.05 0.53 NUD
22. 330 3.5 50 1.92 2.83 0.68 CUD
23. 374 2.3 50 1.54 3.09 0.50 CUD
24. 374 2.3 50 1.92 3.03 0.63 CUD
25. 374 2.3 50 1.57 2.81 0.56 CUD
26. 330 1.5 55 2.97 1.84 1.61 NUD
27. 330 1.5 55 1.95 3.25 0.60 NUD
28. 330 2.3 50 1.97 2.83 0.70 NUD
29. 330 2.9 50 1.66 2.74 0.61 CUD
30. 330 1.5 55 1.62 2.81 0.58 CUD
31. 330 1.5 55 1.99 2.99 0.67 CUD
32. 330 2.1 50 2.69 1.71 1.57 NUD
33. 330 1.7 50 2.66 1.59 1.67 NUD
34. 330 2.1 50 2.68 1.72 1.56 NUD
35. 330 2.1 50 2.67 1.68 1.59 CUD
36. 330 1.7 50 2.13 2.78 0.77 CUD
37. 330 2.1 55 2.08 2.73 0.76 CUD
38. 330 2.1 55 2.18 2.79 0.78 NUD
39. 330 1.7 50 1.66 2.74 0.61 CUD
40. 330 1.7 50 3.32 2.05 1.62 CUD

*NUD: non-uniform deposition; CUD: continuous and uniform deposition
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3.4.3 Histogram-Based Multi-Modal Method for Multi-Layer Depositions

The traditional analysis methods for geometry of a multi-layer deposition primarily
focus on calculating the average height and width over a predefined deposition length.
Though these methods are simple and efficient but it has a significant limitation that it
overlooks the local variations within the deposition process. By relying only on average
values, the traditional methods fail to capture the fluctuations in deposition height and width
that may occur at various points along the deposition length. These local variations are
important as they affect quality, uniformity, and performance of multi-layer depositions.

A new histogram-based multi-modal method introduced in this study in which
deposition height and width are measured at regular interval of 1 mm along the deposition
length from the recorded video of a multi-layer deposition. Analysis of the deposition
geometry data at such a small interval ensures more accurate and comprehensive
understanding of the deposition process. It will not only identify the average values of
deposition geometry data but also captures the local variations and inconsistencies that are
missed in the traditional methods of deposition geometry analysis. Generation of histogram-
based data for a multi-layer deposition requires the following steps to be performed:

e Normalization of data: Measured values of height and width of a particular layer of a
multi-layer deposition are normalized by using Eqgs. (2) and (3) to ensure that the data
are comparable for different deposition layers:

_hi—
Ohp
' Wi — Uy

wp=——— (3)
O-W

hi (2)

where, ‘4;” and ‘w;’ re the values of height and width of a particular deposition layer

of a multi-layer deposition measured on the i location along the deposition length and

h; and wj are their normalized values for i = I, 2, 3, .... n; n’ is total number of

measured data for height or width for each deposition layer;  u; and’oy’; and

'u,,'and 'o,," are the mean and standard deviation of the dataset for deposition height
and width of a particular layer of a multi-layer deposition respectively.

e Histogram generation data: Histogram data are generated for height and width of each

layer of a multi-layer deposition using their normalized values. The x-axis of a histogram

represents value of deposition width or height with a tolerance range of 0.2 mm and its

y-axis show frequency or occurrence for each value.
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Identification of modes: The generated histogram data for height and width of each
layer of a multi-layer deposition are divided into three regions by calculating %
distribution of data using Eq. 4.

_ Frequency of Occurrence of, it value

’; - x 100 (4)

where, ‘P;’ is percentage of occurrence of j value of height or width of each layer
of a multi-layer deposition; and ‘%’ is total number of measured data for height or width
for each deposition layer. Primary, secondary, and tertiary modes are identified based
on the computed distribution of values. The primary mode represents the most common
values of deposition height or width occurring along the deposition length. It
corresponds to the regions where the deposition process is the most consistent producing
deposition height and width remaining stable at 60 to 70% of the deposition length. The
secondary and tertiary modes represent the regions where the local variations in
deposition height and width occur along the deposition length. These variations may be
due to slight fluctuations in process parameters such as p-plasma power, deposition head
traverse rate, feedstock powder flow rate, and stand-off distance which affect the
deposition geometry at specific locations. Secondary and tertiary modes together
represent 30—40% of value of deposition height or width occurring along the deposition

length.

Table 3.4 presents the histogram-based data generated from the recorded video number

10, 11, and 12 (as mentioned in Table 3.2) for 6 layers of 3 multi-layer depositions of SS

316L by u-PMAM process. The percentages associated with each value of deposition height

or width in Table 3.4 represent the percentage of deposition length over which a particular

value of deposition width or height of deposition layer lies within a tolerance range of +0.2

mm. For example, if the primary mode represents 65%, it means that 65% of the deposition

length has a consistent height and width around this value, indicating a stable deposition

process. The remaining 35% may consists of fluctuations (represented by secondary or

tertiary mode) or gaps (zero values) thus revealing the values over which the deposition

process is less consistent or interrupted. It implies that these data offer valuable insights into

the deposition characteristics and performance. The data of Table 3.4 will be used for

training the three DL algorithms.
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Table 3.4: Histogram-based real-time data generated from the recorded videos of multi-
layer depositions of SS 316L and used in the training, validation, and testing of three DL

algorithms.

Layer
index plasma ition

n-

Depos Feed- SOD CumH PreLH PreLW Height #1 Height #2 Height #3 Width #1 Width #2 Width #3
stock (mm) (mm)

(mm)

(mm)

(% (%

(%

(%

(%

(%

‘N’ power head powder occurrence occurrence occurrence occurrence occurrence occurrence
traver flow along the along the along the alongthe along the along the
se rate rate deposition deposition deposition deposition deposition deposition

length) length) length) length) length) length)
Video number: 10
1 308 53 25 12 0 0 0 3.71 3.12 4.23 3.96 4.52 5.02
(6391%) (28.05%)  (8.05%)  (63.87%) (30.07%)  (6.06%)
2 308 53 25 12 371 371 412 374 3.1 4.48 4.10 3.60 5.24
(63.49%) (18.25%) (18.25%) (63.27%) (18.36%) (18.36%)
3 308 53 25 12 745 374 414 367 3.02 442 3.90 3.41 5.20
(63.44%) (18.28%) (18.28%) (64.44%) (17.78%) (17.78%)
4 308 53 25 12 11.12 3.67 4.11 3.46 3.0 4.39 3.95 3.45 5.15
(67.41%) (16.30%) (16.30%) (63.64%) (18.18%) (18.18%)
5 308 53 25 12 1464 346 4.1 3.70 3.12 4.33 4.10 3.55 5.34
(64.71%)  (17.65%) (17.65%)  (63.7%) (18.14%) (18.14%)
6 308 53 25 12 181 3.70 4.04 3.70 2.97 420 418 3.67 4.76
(62.16%)  (18.92%) (18.92%) (63.72%) (18.14%) (18.14%)
Video number: 11
3.34 2.90 4.46 3.86 4.35 3.16
1 308 53  2.3. 8 0 0 0 (76.52%) (11.85%) (11.63%) (50.85%) (39.26%) (9.89.%)
3.35 2.87 4.47 3.82 4.30 3.17
2 308 53 2.3 8 334 334 3.86 (66.93%) (22.7%) (1037%) (51.37%) (30.82%) (17.81%)
3.29 3.83 443 3.86 4.42 3.17
3 308 53 2.3 8 6.69 335 3.82 (62.8%) (25.74%) (11.46%) (60.11%) (30.89%)  (9.0%)
3.29 3.78 4.44 3.78 4.45 3.08
4 308 53 2.3 8 998 329 386 (59.77%) (28.12) (12.11%) (55.26%) (24.68%) (20.06%)
3.38 3.98 4.51 3.79 4.38 3.18
5 308 53 2.3 8 1327 329 3.78 (66.54%) (22.57)  (10.89%) (67.09%) (20.17%) (12.74%)
3.27 3.76 4.39 3.74 4.49 3.17
6 308 53 2.3 8 16.65 338 3.79 (72.92%) (1621%) (10.87%) (62.43%) (30.94%)  (62%)
Video number: 12
1 319 50 1.8 10 0 0 0 333 2.80 3.80 3.94 3.24 4.66
(58.0%8)  (21.0%)  (21.0%)  (70.81%) (14.59%) (14.59%)
2 319 50 1.8 10 333 333 394 3.45 3.02 3.98 3.94 3.34 4.98
(71.53%)  (14.23%) (14.23%) (70.17%) (14.91%) (14.91%)
3 319 50 1.8 10 6.78 345 394 3.41 2.98 4.12 3.87 3.25 4.82
(66.27%) (16.87%) (16.87%) (71.41%) (143%) (14.3%)
4 319 50 1.8 10 10.19 3.41 396 354 3.05 4.10 3.87 3.20 492
(59.54%)  (20.23%) (20.23%)  (70.89%) (14.55%) (14.55%)
5 319 50 1.8 10 13.73 3.54 3.87 3.46 2.95 3.97 3.96 3.50 4.78
(60.28%)  (19.86%) (19.86%) (70.89%) (14.55%) (14.55%)
6 319 50 1.8 10 17.19 3.46 3.96 3.43 2.99 3.96 3.93 3.40 4.99
(58.77%) (20.61%) (20.61%) (71.08%) (14.46%) (14.46%)

3.3.4 Splitting of Datasets

The generated real-time data for single-layer deposition (Table 3.3) and multi-layer

depositions (Table 3.4) were split into three subsets namely training, validation, and testing

datasets in ratio of 70:20:10. The training data were used to train ML or DL algorithms,

allowing them to learn the relationships between input parameters and deposition geometry.

The validation data were used to fine-tune the hyperparameters of ML or DL algorithms and

ensure that they did not overfit the training data. Finally, the testing data were used to
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evaluate performance of ML or DL algorithms by providing an unbiased assessment of their
predictive accuracy.
3.5 Selection and Training of ML Algorithms for Single-Layer Depositions
Six ML algorithms namely Random Forest (RF), K-Nearest Neighbours (KNN),
Support Vector Regression (SVR), Gaussian Process Regression (GPR), LASSO
Regression, and Ridge Regression were chosen for prediction of deposition geometry for
single-layer depositions. Following are justifications for their selection: (i) Strength of the
RF algorithm lies in its ability to handle complex and non-linear relationships between the
input and output parameters. It is particularly useful when numerous interacting features
exist, for example, the p-PMAM process in which multiple deposition parameters such as
p-plasma power, deposition head traverse rate, and feedstock powder flow rate interact in a
non-linear manner to influence the deposition geometry, (ii) Proximity of the specified data
points allows the KNN algorithm to effectively capture the local variations in deposition
height and width in an AM process such as p-PMAM process, (iii) Key advantage of SVR
is its ability to effectively capture non-linear relationships between the input parameters
and the targeted output parameters, (iv) GPR algorithm is particularly useful for complex
and non-linear relationships between input and output parameters. It is well-suited for
scenarios where the data are noisy or where uncertainty in the predictions needs to be
quantified, (v) LASSO and Ridge regression algorithms are useful in dealing with the large
datasets that have many features because they identify the most relevant features for
predicting the targeted output. The selected ML algorithms were trained and validated using
the earmarked 70% and 20% of the real-time data respectively (presented in Table 3.3) for
single-layer deposition of Ti6Al4V by u-PMAM process and algorithm-specific parameters
as presented in Table 3.5. The real-time data of Table 3.3 possess diverse deposition
scenarios with variations in key process parameters whereas parameters in Table 3.5 offer
valuable insights into the configurations used for each ML algorithm for its best
performance.

Table 3.5: Parameters related to the six ML algorithms used in the present study.

ML Algorithm name Parameter Value
Random Forest n_estimators 500
K-Nearest Neighbours K 5
Support Vector Regression Kernel RBF
C 1000
Gaussian Process Regression  Kernel C[1,(0.01,0.1)] x RBF [1, (107, 10%)]
LASSO Regression Alpha 0.02
Ridge Regression Alpha 1
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Number of estimators used for the training of RF algorithm was 500 using real-time data
for single-layer deposition, capturing a broad range of deposition scenarios. Value of ‘K’ as
5 was used training the KNN algorithm implying that it considered the 5 nearest neighbours
to predict the deposition geometry. The SVR algorithm employed radial basis function
(RBF) as kernel with a regularization parameter C as 1000. This parameter controls trade-
off between fitting the data and maintaining simplicity of the algorithm. It helps to prevent
overfitting by penalizing the excessively complex algorithms that fit the noise in the data
rather than the true underlying trend. The kernel used in GPR is a combination of C [1,
(0.01, 0.1)] and RBF kernel with a parameter range from 10~ to 10°. This kernel choice
allows this algorithm to capture both smooth variations and sharp changes in the deposition
process. The alpha parameter for the LASSO algorithm was set to be as 0.02 which controls
strength of the regularization. A larger value of alpha would result in more features being
eliminated whereas its smaller value would allow more features to contribute to the LASSO
algorithm. The alpha parameter for Ridge Regression algorithm was set equal to 1,
balancing the trade-off between fitting the data and maintaining algorithm simplicity.

3.6 Selection and Training of DL Algorithms for Multi-Layer Deposition

Three DL algorithms namely Recurrent Neural Network (RNN), Bidirectional Long
Short-Term Memory (BiLSTM), and Self-Attention Temporal Convolutional Network (SA-
TCN) were chosen for predicting the deposition geometry of multi-layer deposition. These
algorithms were chosen because they are adept at capturing the complex temporal
dependencies between deposition layers in a multi-layer deposition, where the
characteristics of a previously deposited layer influence the next deposition layer. The
chosen DL algorithms were trained via the Adam optimizer with a learning rate of 0.001
and a batch size of 32 for 100 epochs using the earmarked 70% and 20% of the histogram-
based data respectively (presented in Table 3.4) for multi-layer depositions of SS 316L by
the u-PMAM process. Two hidden layers with 128 nodes in each hidden layer were used in
the training of RNN algorithm along with a dropout rate of 0.2 to prevent the overfitting.
The BiLSTM algorithm, which demonstrates improved performance in capturing long-
range dependencies, was trained using 64 nodes in each direction. Training of the SA-TCN
algorithm employed 4 temporal convolutional layers with kernel size of 3, 64 filters per
layer, and a multi-head self-attention mechanism having 4 heads to enhance the learning of
contextual dependencies.

3.7 Evaluation of the Trained ML and DL Algorithms
The trained ML and DL algorithms were evaluated or tested by predicting deposition

height and deposition width for single-layer and multi-layer depositions by feeding the
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earmarked 10% of input data of Table 3.3 and Table 3.4 respectively having different
parametric combinations of p-plasma power, deposition head traverse rate, and feedstock
powder flow rate. The predictions by the ML and DL algorithms offer valuable insights into
their ability to generalize across different deposition conditions. It reveals how accurately
the algorithms could predict the deposition height and width, as well as other critical
parameters, for both known and new data. Furthermore, they help to identify any patterns
or systematic errors, enabling further refinement of the ML and DL algorithms for improved
prediction accuracy. This process is critical in understanding the limitations and strengths
of each algorithm, guiding selection of the most suitable ML and DL algorithm for future
optimizations of the u-PMAM process.

The predicted values of deposition height and deposition width were then compared
with their corresponding values in Tables 3.3 and 3.4. This comparison enables evaluation
of prediction accuracy of an ML or DL algorithm and how well it could replicate the
observed deposition geometry under various process parametric combinations. Such
evaluation helps to assess the performance of ML or DL algorithms and identify the areas
where the algorithms are either overfitting or underperforming. Performance of the trained,
validated, and tested ML and DL algorithms was evaluated in terms of coefficient of
determination ‘R*’ and mean absolute error (MAE) as detailed below. These evaluation
criteria provide insights into how well predictions of an ML or DL algorithm align with the
corresponding experimental values.

e Coefficient of Determination ‘R?’: Value of coefficient of determination ‘R?’ indicates
closeness of the predicted value of an output parameter with its corresponding
experimental value. It provides a measure of the proportion of the variance in a
dependent or output parameter predictable from the independent or input parameters. It

is computed using Eq. 5.
g = 1 S0 =90 )
Y i = )2

where, 'y;" and '/3\/1-’ are the experimental and predicted values of an output parameter
respectively for the i data point; 'y’ is the mean of all the experimental values of that
output parameter; and ‘%’ is the number of data points. Higher value of ‘R?’is preferable.
Its value close to 1 indicates that an ML or DL algorithm is able to capture most of the

variance in the data whereas its value close to 0 indicates its poor predictive accuracy.
e Mean Absolute Error (MAE): The MAE measures the average magnitude of the errors

between predicted and experimental values of all the output parameters. It calculates the

average of the absolute differences between predicted values and experimental values
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of an output parameter providing a measure of predictive accuracy of an ML and DL

algorithm for that parameter. Value of MAE is computed by the Eq. (6).
1% X
MAE=EZIyi—in (6)
i=1

MAE values of all the output parameters are combined to get overall MAE value of
an ML/DL algorithm for its training phase and similarly for its testing phase. A smaller
value of overall MAE is preferred because it indicates better predictive performance of
an ML or DL algorithm i.e., closeness of the predicted values to the experimental values.

3.8 Selection of Appropriate ML and DL Algorithm

Fig. 3.3 shows comparion of performance of six ML algorihms (Fig. 3.3a) and three DL
algorithms (Fig. 3.3b) in terms of computed values of their overall MAE and R?. Based upon
the computed values of ‘R?’and MAE for the six ML algorithms and three DL algorithms as
shown in Fig. 3, (i) RF algorithm was selected for predicting geometry of single-layer
depositions because its ‘R?’ value is maximum for both deposition height and width (i.e.,
0.96 and 0.98 respectively), and its overall MAE values during training and testing are
minimum among all the six ML algorithms. These results suggest that the RF algorithm was
able to generalize well to various deposition scenarios, making it the ideal choice for
predicting the geometry of single-layer depositions, and (ii) SA-TCN algorithm was
selected for predicting geometry of multi-layer depositions because its ‘R?’ value was
highest (i.e., 0.977), and MAE value is the lowest (i.e., 0.08) among all the three DL
algorithm. It reflects its superior performance in handling the time-series or temporal data,
capturing the complicated dependencies between different deposition layers, and in

integrating the local and global temporal patterns in the i-PMAM process.
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Fig. 3.3: Performance measures for the (a) six ML algorithms; and (b) three DL

algorithms, used in the present study.
3.9 Training of the Selected ML and DL Algorithm
3.9.1 Random Forest Algorithm for Single-Layer Depositions

The RF algorithm is a supervised learning algorithm that builds multiple decision trees
during the training process. Each tree is constructed by randomly selecting subsets of both
the data and features ensuring diversity in the individual trees. Prediction of particular output

parameter is average of the predictions from all the trees and computed using Eq. (7):

1 T
§=7 .3 @
t=1

where, ¥ is the predicted value of an output parameter (i.e., deposition height or width

" tree; and T is the total number of

in the present case); ‘J; is the prediction made by the
trees. By averaging the predictions of multiple trees, the RF algorithm smooths out errors
and makes it less sensitive to fluctuations in the data that could otherwise lead to inaccurate
predictions. Such aggregation also helps to reduce variance and minimizes overfitting which
are common problems in a decision a tree-based algorithm. The RF algorithm provides
valuable information by highlighting which input parameters have the most significant
influence on the deposition geometry. This allows identification of key input parameters
affecting deposition quality and optimizing them for the better results. The selected RF
algorithm was trained using the real-time data of Table 3.3 for single-layer depositions of
Ti6Al4V. It was able to learn from a wide range of deposition conditions so as to ensure
making accurate predictions under new and unseen conditions. Achieving optimum

performance of the RF algorithm requires tuning of its hyperparameters such as number of

trees ‘T’, maximum depth of trees, and minimum samples per leaf. These hyperparameters
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were optimized during its validation. It helps to prevent overfitting, ensuring that the
algorithm generalizes well across various deposition scenarios.
3.9.2 SA-TCN Algorithm for Multi-Layer Depositions

The architecture of SA-TCN consists of convolutional layers that extract local features
from the data and a self-attention mechanism that enables it to focus on important time steps,
effectively capturing the influence of previously deposited layers on the present deposition
layer. This self-attention mechanism is especially crucial for multi-layer depositions, where
earlier deposition layers play a significant role in shaping the deposition of subsequent
layers. By attending to the most relevant time steps, the SA-TCN algorithm makes more
informed predictions about the deposition geometry for each layer. Mathematically, the

self-attention mechanism is represented by Eq. (8):

. QK"
Attention = softmax %4 (8)

Ve

where, ‘Q’ is the query vector; ‘K’ is the key vector; ‘V” is the value vector; d, is the
dimensions of the key vector. The attention mechanism computes a weighted sum of the
values ‘¥’ based on the similarity between the query vector ‘Q’ and key vector ‘K’ allowing
the algorithm to focus on the most relevant parts of the input data. The selected SA-TCN
algorithm was trained using the real-time data of Table 3.4 for multi-layer depositions of SS
316L by feeding the layer index ‘N, u-plasma power, deposition head traverse rate,
feedstock powder flow rate, SOD, height and width of the previously deposited layer
‘PreLH’ and ‘PrelLW’, and cumulative height ‘CumH’ as the input parameters and the
weighted multi-modal values of height and width as output parameters. The weighted multi-
modal value of deposition height (or width) was computed as summation of product of
primary, secondary, and tertiary modal values and their corresponding percentage of
occurrence along the deposition length (shown inside the parenthesis for each height or
width value). Use of such multi-modal values of deposition height or width helps in better
understanding of deposition geometry across deposition length and enables the SA-TCN
algorithm to capture both global trends and local variations in the u-PMAM process. Use of
real-time data for training allowed the SA-TCN algorithm to adapt to real-time deposition
conditions, ensuring that it could accurately predict the geometry in a variety of practical
scenarios.

3.10 Multi-Objective Optimization using NSGA-II
Non-dominated sorting genetic algorithm II (NSGA-II) is widely used powerful

evolutionary algorithm that excels in solving multi-objective optimization problems with

conflicting objectives. It provides a Pareto front which contains all the non-dominated
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solutions ensuring that no single objective is overly prioritized at the expense of others.
NSGA-II was used for multi-objective optimization of p-PMAM process parameters
namely p-plasma power, deposition head traverse rate, and feedstock powder flow rate.
From the real-time training data for single and multi-layer depositions (Tables 3.3 and 3.4),
those combinations of deposition height and deposition width which have yielded
continuous uniform deposition and have the desired aspect ratio, were used as the objective
functions for the NSGA-II. Following NSGA-II parameters were used in the multi-objective
optimization: 100 as population size; 200 as number of generations; 0.6 as probability of
simulated binary crossover; and polynomial mutation probability as 0.2. These parameters
define the behaviour of the NSGA-II algorithm and are crucial for ensuring faster
convergence to an optimum solution. The population size and number of generations
determine how many potential solutions are evaluated and refined over time, while the total
function evaluations represent the total number of objective function calculations during the
optimization process. The probability of simulated binary crossover and probability of
polynomial mutation control how new solutions are generated and varied during the
evolutionary process. They contribute to maintain diversity and effectiveness NSGA-II in
search of optimum solutions.

Subsequently, NSGA-II was integrated with the RF and SA-TCN algorithm by feeding
them with the NSGA-II optimized u-PMAM process parameters for single-layer and multi-
layer depositions respectively. This integration leverages prediction capabilities of RF and
SA-TCN algorithm to predict more accurate objective functions. It will help to efficiently
evaluate evolutionary solutions particularly when the deposition process is complicated and
time-consuming to simulate directly. The objective function f(P;) for i deposition
parameter (i.e., deposition height, deposition width, or aspect ratio) was defined as
difference between its desired value and its predicted value by RF or SA-TCN algorithm. It
was computed using the Eq. 9 and the overall objective function f{P) was computed through
summation of f(P;) values for deposition height, deposition width, and aspect ratio using
Eq. 10. Use of such an objective function help NSGA-II to converge to an optimum solution
faster with higher accuracy because it reflects absolute error between the predicted and
desired values for each deposition parameter.

f(P) = | Ypredi—Ydesired,i | 9)

i=n

Minimize f(P) = Z FP) (10)
i=1

where, Vpredi and Vdesiredi are respectively ML/DL predicted value and desired value of

the i deposition parameter. The goal of the NSGA-II is to provide a Paero-front between
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prediction error in deposition height and deposition width and to identify that optimum
combination of ui-PMAM process parameters which will minimize the objective function
defined by Eq. 10 which in turn will minimize the overall discrepancy between the predicted
and desired values of the deposition geometry parameters.

This chapter presented details of selection of deposition material, base plate material
and input parameters, real-time data acquisition through video recordings, extraction of
images from each recorded video, feature scaling for single-layer depositions, histogram-
based multi-modal data preparation for multi-layer depositions, and selection and training of
6 ML and 3 DL algorithms and their evaluation to select the appropriate ML and DL
algorithm. It also described training of the selected ML and DL algorithm, and multi-
objective optimization of u-PMAM process parameters by NSGA-II and then by NSGA-II
integrated with RF and SA-TCN algorithms for single-layer and multi-layer depositions
respectively. The next chapter presents the results for predictions by the selected ML and
DL algorithm, optimized process parameters by NSGA-II and by NSGA-II integrated with
RF and SA-TCN algorithms for single-layer and multi-layer depositions respectively.
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Chapter 4

Results and Discussion

This chapter presents the results for predictions by the selected ML and DL algorithm,
optimized process parameters by NSGA-II and by NSGA-II integrated with RF and SA-
TCN algorithms for single-layer and multi-layer depositions respectively.

4.1 Performance of the Selected ML and DL Algorithms

This section presents prediction performance of the selected ML and DL algorithm for
single-layer deposition of Ti6Al4V and multi-layer deposition of SS 316L respectively. Fig.
4.1 depicts comparison of RF algorithm predicted height (Fig. 4.1a) and width (Fig. 4.1b)
for single-layer depositions with their corresponding experimental values for validation and
testing data (as presented in Table 3.3). Similarly, Fig. 4.2 shows comparison of SA-TCN
algorithm predicted height (Fig. 4.2a) and width (Fig. 4.2b) for different layers of a multi-
layer deposition with their corresponding experimental values taken from the video No. 9

(mentioned in Table 3.2).
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Fig. 4.1: Comparison the RF algorithm predicted single-layer deposition (a) height, and

(b) width, with their corresponding experimental values for the validation and testing data.

Graphs of Fig. 4.1 display close agreement the between RF algorithm predicted values
of single-layer deposition height and width with their experimental values for all the
validation and testing data. This demonstrates high prediction accuracy of the RF algorithm
due to its ensemble learning approach, which combines multiple decision trees to minimize
overfitting and enhances the generalization. Its robustness to noise and ability to capture
non-linear relationships contribute to its precise estimation of single-layer deposition

geometry parameters.
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Fig. 4.2: Comparison of the SA-TCN algorithm predicted (a) deposition height, and (b)
deposition width for each layer of a multi-layer deposition with their corresponding
experimental values taken from their testing data.

Graphs of Fig. 4.2 reveal closeness between SA-TCN predicted values of deposition
height and width for all the four layers of a multi-layer deposition corresponding to video
no. 9 which is test data in this case. It indicates that the SA-TCN algorithm exhibits very
good prediction performance by leveraging both temporal patterns and attention
mechanisms. This enables it to capture complex dependencies in the data resulting in highly

accurate predictions of deposition height and width.
4.3 Multi-Objective Optimization Results

This section presents results of multi-objective optimization by NSGA-II, and NSGA-
IT integrated with RF algorithm for the single-layer depositions and NSGA-II integrated
with SA-TCN algorithm for the multi-layer depositions.
4.2.1 Results of NSGA-II
Pareto front graphs indicate effectiveness of NSGA-II in multi-objective optimization
with the conflicting objectives. Present work focussed on ability of NSGA-II to minimize
the prediction error for deposition width and height (i.e., difference between their desired
value and NSGA-II optimized value) and its ability to balance the trade-offs between
conflicting objectives i.e., deposition height, deposition width. Fig. 4.3a depicts Pareto front
graph showing differences between the desired and optimized deposition width on X-axis
and differences between the desired and optimized height on Y-axis for single-layer

depositions and Fig 4.3b shows the same for the multi-layer depositions.
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Fig. 4.3: Pareto fronts for multi-objective optimization by NSGA-II using training data for
(a) single-layer depositions, and (b) multi-layer depositions.

The Pareto front graphs of Fig. 4.3 also depict the optimized combination of u-PMAM
process parameters for each plotted feasible point shown in red color and the optimized
solution selected by NSGA-II shown in blue color. It can be observed from these Pareto
front graphs that (i) decrease in prediction error for deposition width increases prediction

error for deposition height and vice-versa for both single and multi-layer depositions. It is
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due to the fact that for a given amount of deposition material, deposition width will decrease
with increase in deposition height and vice-versa, (ii) the optimized values of p-plasma
power, deposition head traverse rate, and feedstock powder flow rate increase with increase
in prediction error for deposition width (or with decrease in prediction error for deposition
height), (iii)) NSGA-II is able to identify an optimum solution that minimizes the prediction
error in both deposition height and width simultaneously through the best trade-off between
them. These Pareto front graphs demonstrate effectiveness of NSGA-II in simultaneous
optimization of conflicting objectives of deposition width and height.

NSGA-II optimized parameters for single-layer and multi-layer deposition were cross-
checked by feeding them to the trained RF and SA-TCN algorithm respectively along with
one additional data (taken from real-time training data) which was not used by NSGA-II in
the Pareto front graphs of Fig. 4.3. The predicted values of deposition height and width by
RF and SA-TCN were used to compute their prediction errors with respect to their desired
values. These data are shown in Table 4.1 for single-layer and in Table 4.2 for multi-layer
depositions. The predicted values of deposition height and width closely match with their
desire values with very low prediction errors. This reflects NSGA-II’s strength in handling
multi-objective optimization problems where it efficiently balances competing objectives
without overly compromising either. This capability is particularly useful in real-time
environment of an AM process where consistent and precise control over geometric

outcomes directly impacts the structural integrity and surface finish of the fabricated part.

Table 4.1: Percentage error between the desired and the RF predicted geometry parameters

for single-layer depositions using the NSGA-II optimized process parameters.

Sr.  Desired deposition NSGA-II optimized process parameters ~ RF predicted deposition ~ Absolute difference

No. parameters taken real- parameters using NSGA- between the desired and
time training data IT optimized parameter  predicted value (mm)
Deposition Deposition p-plasma Deposition head Feedstock  Deposition Deposition For For
height width  power (W) traverse rate  powder flow height width  deposition deposition
(mm) (mm) (mm/min) rate (g/min) (mm) (mm) height width
1 2.13 2.78 396 51 2.6 2.095 2.7760 0.035 0.004
2 2.08 2.73 412 58 2.0 2.0752 2.7305 0.0048  -0.0005

Table 4.2: Percentage error between the desired and the SA-TCN predicted geometry

parameters for multi-layer depositions using the NSGA-II optimized process parameters.

Sr.  Desired deposition NSGA-II optimized process parameters SA-TCN predicted Absolute difference
No. parameters taken real- deposition parameters between the desired and
time training data predicted value (mm)
Deposition Deposition p-plasma Deposition  Feedstock Stand- Deposition Deposition For  For deposition
height width power head traverse powder flow off- height width  deposition width
(mm) (mm) (W) rate (mm/min) rate (g/min) distance (mm) (mm) height
1 341 3.87 320 45 2.0 8 336 3.745 0.05 0.125
2 3.46 3.95 300 49 2.4 10 3.4427 3.9263 0.0173 0.0237
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4.2.2 Results by NSGA-II Integrated with RF Algorithm for Single-Layer Depositions
Table 4.3 presents the optimized process parameters for seven desired combinations of
deposition height and width that have yielded continuous and uniform single-layer
depositions of Ti6Al4V. The absolute difference between the desired and predicted value
of deposition width and height were used as the objective functions in the NSGA-IL, and its
optimized parameters for each desired combination were fed to the trained RF algorithm to
predict their values. The desired and predicted values used to compute prediction error. Only
those optimized parameters are presented in Table 4.3 that yielded absolute value of
difference between the desired and predicted deposition height and width less than 0.1 mm
thus ensuring best possible match between the predicted and desired deposition geometry.
Actual values of the optimized process parameters were rounded-off to get those values of
u-plasma power, deposition head traverse rate, and feedstock powder flow rate which can
be set on the CNC machine of u-PMAM process.
Table 4.3: Optimized process parameters by NSGA-II integrated with the RF algorithm for

different combinations of height and width of single-layer depositions.

Desired geometry NSGA-II optimized process parameters Absolute difference
parameters between the desired and
predicted value (mm)
Deposition  Deposition p-plasma  Deposition head Feedstock  For deposition For deposition
height (mm) width (mm) power (W) traverse rate powder flow height width
(mm/min) rate (g/min)
1.6 2.7 418 62 1.5 0.023 0.033
420 62 1.7 0.039 0.045
1.7 2.7 420 60 1.7 0.045 0.045
418 62 1.5 0.021 0.098
420 65 1.9 0.019 0.055
1.7 2.8 426 62 2.7 0.098 0.092
1.9 3.1 434 60 2.7 0.044 0.023
438 58 2.5 0.022 0.012
430 60 2.5 0.067 0.086
430 52 1.7 0.088 0.094
2.0 33 438 52 1.5 0.028 0.022
438 52 1.9 0.084 0.094
440 56 2.1 0.097 0.092
440 56 2.3 0.099 0.077
1.8 3.0 434 56 2.7 0.076 0.098
438 56 1.5 0.092 0.023
1.8 2.8 426 58 2.5 0.012 0.019
420 62 1.5 0.091 0.065

It can be observed from Table 4.3 that NSGA-II yielded multiple optimum combinations
of u-PMAM process parameters for some desired combinations of deposition height and
width, with each optimum solution meeting the optimization criteria. It highlights its

multiple optimum solutions, providing capability due to its evolutionary nature. The result
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of this integration was a set of optimized process parameters that maximized the accuracy

of the deposition geometry for single-layer deposition of Ti6Al4V. These optimized

parameters are critical for achieving uniform layer deposition, controlling dimensional

accuracy, and ensuring consistent quality throughout the layer deposition process.

4.2.3 Results of NSGA-II Integrated with SA-TCN Algorithm for Multi-Layer Depositions
Table 4.4 presents the optimized process parameters for the desired combinations of

deposition height and width that have yielded four continuous and uniform multi-layer

depositions of SS 316L.

Table 4.4: Optimized process parameters by the NSGA-II integrated with the SA-TCN

algorithm for different combinations of deposition height and width of multi-layer

depositions.
Desired geometry o Absolute diffe.rence
NAGA-II optimized process parameters between the desired and
Layer parameters predicted value (mm)
No. Deposition Deposition SOD p-plasma Deposition Feedstock powder Fo.r. For deposition
. . head traverse . deposition width
height (mm) width (mm) (mm) power (W) rate (mm/min) flow rate (g/min) height
Deposition # 1
1 3.61 4.08 0.12 0.10
2 3.64 4.10 0.19 0.11
3 3.64 4.12 0.20 0.18
4 3.66 4.13 8 304 3 23 0.19 0.12
5 3.68 4.14 0.14 0.19
6 3.68 4.16 0.09 0.12
Deposition # 2
1 3.44 3.97 0.09 0.09
2 3.47 4.01 0.08 0.08
3 3.49 4.05 12 290 47 2.8 0.17 0.13
4 3.52 4.10 0.18 0.11
5 3.55 4.14 0.12 0.19
6 3.58 4.19 0.14 0.15
Deposition # 3
1 3.37 4.03 0.07 0.18
2 3.39 4.07 0.14 0.11
3 3.40 4.12 10 300 46 33 0.19 0.14
4 3.40 4.17 0.2 0.09
5 3.42 4.22 0.12 0.11
6 343 4.26 0.11 0.19
Deposition # 4
1 3.66 4.09 0.09 0.07
2 3.68 4.10 0.11 0.18
3 3.71 4.13 0.18 0.15
4 3.73 4.14 8 318 33 33 0.12 0.19
5 3.76 4.14 0.16 0.11
6 3.78 4.17 0.12 0.17
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The absolute difference between the desired and predicted values of deposition width
and height were used as the objective functions in the NSGA-II, and its optimized
parameters for each desired combination were fed to train the SA-TCN algorithm to predict
their values. The desired and predicted values used to compute prediction error. Only those
optimized parameters are presented in Table 4.4 that produced absolute value of difference
between the desired and predicted deposition height and width less than £0.2 mm to ensure
the best possible match between the predicted and desired deposition geometry. Actual
values of the optimized process parameters were rounded-off to get those values of p-plasma
power, deposition head traverse rate, feedstock powder flow rate and stand-off distance
which can be set on the CNC machine of u-PMAM process. The result of this integration
was a set of optimized process parameters that maximized the accuracy of the deposition
geometry for multi-layer deposition of SS316L. These optimized parameters are critical for
achieving uniform layer deposition, controlling dimensional accuracy, and ensuring
consistent quality throughout the multi-layer deposition process.

This chapter presented the results for predictions by the selected ML and DL algorithm
(i.e., RF and SA-TCN), optimized process parameters by NSGA-II and by NSGA-II
integrated with RF and SA-TCN algorithms for single-layer and multi-layer depositions

respectively. The last chapter summarizes the outcome of the present research in terms of

significant achievements, conclusions, and some directions for the future work.
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Chapter 5

Conclusions and Scope for Future Work

This chapter presents a summary of the outcome of the present research by presenting
its significant achievements, conclusions, and some directions for future works

5.1 Significant Achievements

The work presented in this thesis led to several key achievements in the field of p-

PMAM. The most notable of these are as follows:

e Development of Optimized Single-Layer Deposition of Ti6Al4V: The use of ML
algorithms, specifically RF, combined with NSGA-II optimization, for the identification
of the most effective process parameters for single-layer deposition of Ti6Al4V. This
approach successfully minimized the error between the predicted and desired deposition
geometries.

e Multi-Layer Deposition Optimization for SS316L: By integrating Self-Attention
Temporal Convolutional Networks (SA-TCN) with NSGA-II, optimized parameters for
multi-layer deposition of SS316L were determined, improving deposition accuracy and
part consistency over multiple layers.

e Enhanced Deposition Geometry Prediction: The integration of ML and DL
algorithms with optimization algorithms allowed for the precise prediction of deposition
height, width, and aspect ratio, enhancing both the quality and reproducibility of the
parts produced by the u-PMAM process.

5.2 Conclusions

This research was aimed to predict deposition geometry of single-layer and multi-layer
depositions using ML and DL algorithms respectively and multi-objective optimization of

p-PMAM process parameters by NSGA-II integrated with the selection ML and DL

algorithm. Following are key conclusions that can be drawn from this study:

e Accurate Prediction of Deposition Geometry Parameters: Both the RF and SA-TCN
algorithm demonstrated excellent performance in predicting deposition height and width
of single-layer and multi-layer depositions respectively.

e Capturing Inter-layer Interactions: The SA-TCN algorithm effectively captured the
temporal and layer-to-layer dependencies in multi-layer depositions. It offered valuable
insights into how previous layers influence the deposition of subsequent layers. This
ability to solve for these interactions played a crucial role in optimizing multi-layer

depositions.

55



Multi-Objective Optimization of Process Parameters: Use of NSGA-II integrated
with RF and SA-TCN enabled multi-objective optimization of p-PMAM process
parameters (e.g., u-plasma power, deposition head traverse rate, feedstock powder flow
rate) to achieve the desired deposition geometry parameters with minimal error. This led
to accurate and consistent results for single-layer and multi-layer deposition of Ti6Al4V
and SS316L respectively.

Improvements in Part Quality and Consistency: Using integration of NSGA-II
optimized process parameters with predictions by the RF and SA-TCN algorithm
represents a significant advancement in optimizing the p-PMAM process because it
ensures that process parameters are fine-tuned to minimize geometry errors and achieve
consistent, high-quality deposition. It also reduces need for trial-and-error
experimentation thus saving time and resources while ensuring best possible deposition
geometry. The optimized parameters not only improve the geometric accuracy of the

deposition but also enhance the consistency along the entire deposition length.

5.3 Scope for Future Work

Though the present research has helped significant advancements in optimization of the

u-PMAM process but there lot of scope for the future work on the following aspects:

Development of Real-Time Control System: The integration of real-time process
monitoring by computer vision system and feedback loops with ML/DL algorithms
could further enhance the optimum performance of u-PMAM process. It would allow
for online adjustment of its process parameters during deposition, leading to even more
precise and adaptive manufacturing.

Scalability to Complex Geometries: The current algorithms and optimization
strategies could be adapted for predicting and optimizing deposition for more
complicated geometries such as multi-axis or overhang structures. This would open new
opportunities for creating more intricate and customized parts with enhanced
geometrical accuracy.

Exploring Additional Materials: Future research could investigate the application of
the methodology of the present work to other materials such as Inconel, Co-Cr-Mo-Ti
alloys, and titanium alloys, to assess its generalizability.

Wear and Corrosion Testing: Performance of the optimized deposition geometries
could be tested for wear resistance and corrosion behaviour, particularly for applications
in aerospace or biomedical devices, where material durability and performance under

harsh conditions are critical.
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Automated Quality Assurance: The use of Al-based automation systems to conduct
post-process quality checks could further reduce manual inspection efforts and improve
throughput in production settings. Additionally, automating defect detection and
elimination during the deposition process would contribute to higher part consistency
and reliability.

Development of robust ML/DL Algorithms: Current ML/DL algorithms are often
trained on single-material, single-layer data. Therefore, robust ML/DL algorithms need
to developed that generalize across different materials, multi-layer depositions, and
more complex geometries.

Achieving high dimensional accuracy directly from CAD models is still a challenge
in powder-based AM processes including u-PMAM process due to process variability

and insufficient predictive modelling.
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