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Abstract

The motion of any spacecraft is divided into two stages — the launch and the in-orbit motion.
Consequently, the loads acting on the spacecraft are also of different nature in both these
motions. Both these loads propagate through the spacecraft structure, which is primarily made
of honeycomb sandwich panels. These sandwich panels are made of outer face sheet and inner
honeycomb core. Both these components are made of aluminium of different grades. The loads
acting on the spacecraft propagate through this structure and are critical for the subsystems

mounted on these structures.

The launch loads are characterized by high amplitude (reaching up to 10 g’s) and low
frequency. These loads are further amplified by the low inherent damping characteristics of the
sandwich panels. The in-orbit loads are extremely low amplitude and low frequency vibrations,
known as micro-vibrations. These micro-vibrations are critically responsible for the pointing

accuracy of the satellites. These have been discussed in detail in the upcoming chapter.

Several researches have been carried out to study the nature of these micro-vibrations and their
isolation techniques. These have been discussed in the chapter on literature review. The most
widely used technique for micro-vibration isolation is the use of Gough Stewart Platform
(henceforth abbreviated as GSP), for the six degrees of freedom vibration isolation between
the source and the body, or the body and the vibration sensitive equipment. The most important
parameter that governs the isolation characteristics of the GSP are the leg stiffness and the leg

damping characteristics.

This work focuses on studying the response of a GSP to Negative Stiffness (NS) characteristics
and consequently Quasi Zero Stiffness (QZS) characteristics in the legs of the GSP. We first
reproduce the analytical results of the most basic negative stiffness mechanism — the Oblique
Springs Mechanism. Further, the behaviour of the GSP is studied when oblique springs
mechanism is introduced in the legs of the GSP. The kinematic and dynamic formulation for
equations of motion of the GSP have been done. These equations then help to get the analytical

results.

Further we introduce three different types of NS mechanisms, two utilizing torsion springs for
generating NS characteristics, and one with helical compression springs for NS characteristics.
The static analysis for these configurations is done, and the force-displacement and stiffness-
displacement characteristics are studied. The theoretical conditions for the QZS condition are

being derived.



The scope of this work is limited to the analytical formulation of the motion of a GSP and the
force and stiffness analysis of the newly introduced NS mechanisms. Further, experimental
study and verification using software can be done, to verify the results obtained from analytical
formulation. Also, some corrective measures can be undertaken to correct the deviations of the

actual characteristics from the analytical results.
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Chapter 1 — Introduction

1.1 - Introduction to Micro-Vibrations

Vibration is a mechanical phenomenon characterized by the oscillatory motion of a body or
particle about its stable equilibrium position, typically resulting from dynamic imbalances,
external excitations, or internal structural responses. Micro-vibrations refer to extremely low-
amplitude vibrations, generally in the range of a few micro-g’s (ng), where 1 pg equals 9.81 x
107¢ m/s?. These minute oscillations can occur over a broad frequency spectrum, typically from
a few hertz (Hz) up to 1 kilohertz (kHz). Although subtle, micro-vibrations can significantly
impact the performance and precision of high-sensitivity instruments, especially in aerospace,

optics, and microelectromechanical systems (MEMS) applications.

1.2 - 11l Effects of Micro Vibrations

Micro-vibrations, though low in amplitude, can have significant adverse effects on sensitive
systems and human perception. In optical systems, such as telescopes or imaging satellites,
these vibrations can lead to deviations in the line-of-sight, resulting in image blurring, reduced
resolution, and degraded data quality. Precision instruments like electron microscopes, mass
spectrometers, nuclear magnetic resonance (NMR) systems, and magnetic resonance imaging
(MRI) scanners are particularly susceptible to micro-vibrations. Even minute oscillations can
disrupt measurements, cause signal noise, or lead to misalignments, ultimately compromising
the accuracy and reliability of results in laboratory settings. Moreover, individuals with
hyperacusis—a heightened sensitivity to sound—may find certain low-frequency vibrations
distressing, as their brain may amplify or misinterpret these mechanical stimuli, leading to
discomfort, anxiety, or pain. In such cases, micro-vibrations not only interfere with technical
operations but also negatively affect human well-being. Therefore, effective isolation and
damping of vibrations are critical in environments requiring high precision and sensory

comfort.



1.3 - Applications of Micro Vibrations

Micro-vibrations have diverse applications across medical and industrial fields due to their
controlled and precise nature. In healthcare, micro-vibration therapy is used to manage disuse
syndrome by promoting muscle relaxation, reducing muscle stiffness, and increasing skin
blood flow, thereby enhancing patient recovery. In advanced manufacturing, particularly
semiconductor fabrication, micro-vibration measurement systems play a critical role in
monitoring and isolating vibrations to protect ultra-sensitive equipment, improve process
accuracy, and ensure personnel safety. Additionally, syringe micro-vibrating devices have
shown promise in medical procedures by improving the diffusion of injected anesthesia into

tissues, resulting in more effective and less painful administration.

1.4 - Micro Vibrations in Spacecrafts

Satellites are constructed from very lightweight materials and micro-vibrations can be easily
transmitted through the flexible structure towards sensitive payloads or on-board instruments
potentially causing severe performance degradation. In observation missions, micro-vibrations
reduce image quality by introducing jitter motion during the exposure interval of the optical
instruments. For Example — The line-of-sight jitter on the detector plane shown in Fig. 4a
introduces the significant distortions visible in Fig. 4b. Image distortions can be corrected on

the ground by dedicated algorithms

Centroid Jitter on Focal Plane [RSS LOS]
60

40 1 pixel
T=5 sec

20

Centroid Y [um]

14.97 pm

IR

Requirement: J,,=5 um
-60 | | |
-60 -40 -20 0 20 40 60

Centroid X [um]

a

Figure 1. 1 a — Satellite pointing error (blue line) together with requirement (red dot), b — Resulting
effects on image quality, c — Comparative result with corrective measures and reduced imager motion



1.4.1 - Sources of Micro-Vibrations in Spacecrafts

When classified on the basis of origin, micro-vibrations are a result of both external and internal
disturbances, as shown in the figure below. However, internal disturbances are far more

important.

Classification based on Origin

External Internal

Quasi-static Subsystems and
perturbations — Devices on-board -

1) Atmospheric drag 1) Attitude control

2)  Earth gravity field 2} Propulsion
gradient 3} Avionics

3) Magnetic field 4}  Electrical power
interactions 5} Thermal control

4)  Solar flux subsystems
5] Earthalbedo

Intermittent transient
load —

1) Micro-meteoroids
2] Debris impact

Figure 1. 2 - Sources of Micro-Vibrations in Spacecrafts

Depending on their temporal behaviour, they can be further classified as —

a) Single disturbance events —
» Intermittent impulsive disturbances with small dynamic amplitudes
» Frequent causes — sudden stress release, micro cracking in laminates, buckling
of foils, etc.
b) Continuous disturbances —
» Also known as vibratory loads
» Either narrowband harmonic disturbances or broadband perturbations
» Causes — infrared sensors, solar array drive mechanisms, cryocoolers, electric
motors, data storage devices, rotating equipment such as Momentum/Reaction

Wheel Assemblies and Gyroscopes.



Of all possible sources, the ones generated by Reaction Wheel Assemblies (RWA) or Control
Moment Gyroscopes (CMQG) are the most significant. These RWA or CMG are used for the
Attitude and Pointing Control of the spacecraft.

1.4.2 - Attitude Control and Spacecraft Flywheel Rotor Systems (SFRS)

1.4.2.1 - Attitude Control —

The control of a spacecraft’s angular orientation and rotational motion, whether with respect
to the celestial reference frame or a target body such as Earth or the Moon, is referred to as
attitude control. The Attitude Control System (ACS) is responsible for maintaining and
adjusting this orientation and typically consists of three primary subsystems: attitude sensors,
which provide real-time measurements of the spacecraft’s orientation; a control algorithm or
controller, which processes sensor data and determines the required corrective actions; and
actuators, which execute the necessary torques or forces—such as reaction wheels, control

moment gyroscopes, or thrusters—to achieve the desired attitude.

1.4.2.2 - Spacecraft Flywheel Rotor Systems (SFRS) —

A spacecraft flywheel rotor system is a type of momentum exchange device used in attitude
control to manage the orientation of the spacecraft without expending propellant. It consists of
a high-speed spinning rotor mounted on a motor, where changes in the wheel’s angular
momentum produce a reactive torque on the spacecraft due to the conservation of angular
momentum. By accelerating or decelerating the flywheel, precise control of the spacecraft’s

attitude can be achieved along a specific axis.

1.4.2.3 - Types of SFRS —

> Fixed Shaft Type — Reaction Wheel Assemblies (RWA), Momentum Wheel
Assemblies (MWA)
> Non-fixed Shaft Type — Control Moment Gyroscope (CMG)

The Flywheel and the Bearing Systems are the core components of the SFRS.

The bearing systems have two categories — Mechanical bearings and Magnetic bearings.

Presently most of the SFRS in service are supported by mechanical rolling bearings.



1.4.2.4 - Disturbance Sources of Micro-Vibrations in SFRS

High-speed rotation ; m
of flywheel rotor |
i e

Torque ripple of the
ﬁ?ving%aotor

Unbalanced magnetic
i pull force”

disturbance

Structural  Electromagnetic =

disturbance

Figure 1. 3 - Disturbance Sources of Micro-Vibrations in SFRS
The above diagram summarises the different disturbance sources of micro-vibrations, that are

present in the spacecratft.

1.5 - Motivation — Why are micro-vibrations in spacecraft a concern?

» The pointing stability of the Hubble Space Telescope (HST) of NASA is required to be
less than 0.007 arcsec within 24 hr.

» The Space Interference Mission (SIM) and Advanced Technology Large Space

Telescope (ATLAST) require pointing stability to reach 0.0016 arcsec, and the

vibration interference to the platform is required to be below 107 g level.

» For alaser beam with a diameter of 100 mm emitted by a laser communication satellite,

a jitter of 0.001 radians at a distance of 500 km will reduce the beam intensity received

by the receiver by 100 times.

» The James Webb Space Telescope (JWST) requires that the line of sight motion should

be 4 milli arc seconds.



1.6 - Existing Isolation Systems

The following micro-vibration isolation systems are currently used in the existing spacecrafts.
1) HST — Viscous Fluid Dampers, to attenuate axial disturbances

2) Defence Satellite Communication Systems III Spacecraft — Four damped stainless steel

spring isolator

3) Chandra X-Ray Observatory — Hexapod isolator to achieve multi dimensional vibration

1solation.

1.7 - Organization of the Thesis

Chapter 2 — Literature Review

Chapter 3 — Concept of Negative Stiffness and Quasi Zero Stiffness
Chapter 4 — New Possible Configurations for Negative Stiffness
Chapter 5 — Analytical Formulation of Gough Stewart Platform

Chapter 6 — Conclusions and Scope for Future Work



Chapter 2 — Literature Review and Problem Formulation

2.1 — Introduction

This chapter highlights previous pivotal investigations into the area of vibration isolation,
particularly, micro-vibration isolation for spacecrafts. Through the literature review it is known
that several researchers have worked on this problem statement and have proposed solutions
that have been on board critical space missions. However, since the space applications are
dynamic in nature, and owing to several constraints in these difficult missions, different
missions require different ways of tackling this problem. Hence, this field of research is still

evolving.

The use of dynamic stiffness elements, or High Static but Low Dynamic Stiffness (HSLDS)
configurations have proven to be an effective way to achieve high level of micro-vibration
isolation. Hence, there is scope in exploring newer and more effective HSLDS configurations
for varied space applications. These HSLDS configurations are a result of the use of Negative

Stiffness (NS) elements in vibration isolation systems.

2.2 — The theory of Single Axis Vibration Isolation

A single-axis isolator is shown in Fig. [2.1], where M is the mass of the sensitive equipment,
and K and ¢’ are the stiffness and the damping of the isolator, respectively. The transfer

function of the passive vibration isolator can be written as

fa M
X

Figure 2. 1 - Schematic of a Single Axis Isolator

c's+K

G = —
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The undamped natural frequency of the transfer function is w,,, and the damping ratio is ¢.
Substituting § = jw, into Eqn. [2.1] and letting the frequency ratio g = “’/wn, we get Eqn.

[2.2], to represent the vibration isolation effect.

Afsl 1+4§%g?
Be = 1fal = j A~ g7+ 407 ®2)

In Fig. [2.2], it is evident that if the damping ratio {' increases, the resonance amplitude
decreases. Unfortunately, the high-frequency attenuation decreases as well. Therefore, the
design of the isolator involves a tradeoff between the resonance amplitude and the high
frequency attenuation. The ideal isolator should include frequency dependent damping, with
high damping below the critical frequency V2w, to reduce the amplification peak and low

damping above V2w, to improve the decay rate.
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Figure 2. 2 - Frequency response curves of the single axis isolator



2.3 Previous literature

2.3.1 — A novel vibration isolation system for reaction wheel on space telescopes

Zhang, Y., Guo, Z., He, H., Zhang, J., Liu, M., & Zhou, Z. (2014). A novel vibration isolation

system for reaction wheel on space telescopes. Acta Astronautica, 102, 1-13.[]

* This study aims to validate the feasibility and effectiveness of this new vibration

isolation system having TMDs and NSS from a theoretical perspective.

» First, the integrated satellite dynamic model is constructed, including the RWs and the

vibration isolation systems.

* Next, its frequency domain characteristics are described, and the application of the

vibration isolation system for RWs is presented.

* Finally, the effective attenuation of RW disturbances is illustrated via the new vibration

isolation system, and its safety performance is verified with numerical simulations.
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Figure 2. 4 - Comparison curves of disturbance attenuation when the damping coefficient
is 200 Ns/m
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Figure 2. 5 - Comparison curves of disturbance attenuation when the damping coefficient
is 130 Ns/m

2.3.2 — Dynamically isotropic Gough—Stewart platform for micro-vibration isolation in

spacecraft

Singh, Y. P., Ahmad, N., & Ghosal, A. (2024). Dynamically isotropic Gough—Stewart platform

for micro-vibration isolation in spacecrafts. Mechanism and Machine Theory, 201, 105735.

* This paper deals with the modeling, simulation, and experimental validation of a
Modified Gough—Stewart Platform (MGSP) i.e. 2 radii Gough—Stewart Platform for

vibration isolation.

* Here the first six natural frequencies corresponding to the first six degrees of freedom

are nearly the same, enabling effective attenuation of the first six modes.

* The approach accommodates various payload configurations, including variable center

of mass and mass/inertia properties.

* The validation of the design is demonstrated using the finite element software ANSYS,

and the model is further refined to incorporate flexural joints and structural damping.

* A prototype of the MGSP featuring flexural joints was tested, and it yielded

experimental outcomes in close agreement with the finite element analysis results.
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* The first six natural frequencies were close to the expected 29 Hz and vibration isolation

of about 22 dB/octave.

* The close agreement among analytical, finite element, and experimental outcomes
underscores the efficacy of our design approach and the suitability of an MGSP for

micro-vibration isolation applications in spacecraft.
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Figure 2. 6 - (a) Transmissibility curve for a non-isotropic design, (b) Modified Gough-
Stewart platform (MGSP)
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Chapter 3 — Negative Stiffness and Quasi Zero Stiffness

3.1 — Introduction

Mechanical Stiffness refers to the material’s or a structure’s ability to resist the external force
acting on it, or resist the deformation caused by the external force. A stiffer material or structure
undergoes lower deformation or deflection (in case of bending loads). Material stiffness refers
to the resistance to deformation offered by a material in any form. Material stiffness is a tensor
quantity and is different for deformations in different directions. The modulus of elasticity is a
direct measure of the material stiffness in the elastic limit, where the stress is proportional to
strain. Structural stiffness however refers to the ability to resist deformation, of a structure
made from a particular material. The structural stiffness can change if the material changes,
and, also if the geometry of the structure changes. For example, a straight steel rod has different

bending stiffness as compared to a curved steel rod.

Since, stiffness is a measure of the material’s or structure’s ability to resist external forces, it
plays an important role in determining the vibration isolation characteristics of a structure. In
mechanical structures or machinery, springs are the most widely used stiffness elements to
counter the effect of unwanted external disturbances. Hence, it is necessary to understand the

stiffness characteristics of springs.

In the coming section, we will discuss the stiffness characteristics of helical compression and

torsion springs.

3.2 — Stiffness Characteristics of Springs

3.2.1 — Helical Compression Springs.
Fig [3.1], shows a helical compression spring being subjected to a compressive force. The

force-deflection relation for the spring is obtained using Castigliano’s theorem, as follows —

_ 8FD3N
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The stiffness or spring rate of the spring is given by

oF d*G

dy 8D3N

Where —

y = deflection from the mean position
F = External force applied

d = wire diameter

G = Modulus of Rigidity of Material
D = Nominal Diameter of Spring

N = Number of active turns

L1077 7777777777777/ /7777777777777

Figure 3. 1- Helical Compression Spring under compressive force

(3.2)

From Eqn. [3.1], we can see that the force-deflection relation for the helical compression spring

is linear in nature. And the expression for the spring stiffness is only a function of material and

geometrical properties of the spring. It does not depend upon the displacement of the point of

application of force, from the equilibrium position. Thus, the helical compression spring has

linear stiffness characteristics.
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3.2.2 — Torsion Springs.

Fig [3.2], shows a torsion spring being subjected to an external force on its leg, that causes a

moment about the center O of the spring. The moment-angular deflection relation for the spring

is obtained using Castigliano’s theorem, as follows —

64MDN,,
=T @E

The stiffness or spring rate of the spring is given by

_ oM d'E
96, 64DN,

ke,

Where —

0, = angular deflection from the mean position
M = Moment due to external force applied

d = wire diameter

E = Modulus of Elasticity of Material

D = Nominal Diameter of Spring

N, = Number of active turns

Figure 3. 2— Deflection in Torsion Spring under external force
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From Eqn. [3.3], we can see that the moment-angular deflection relation for the torsion spring
is linear in nature. And the expression for the spring stiffness is only a function of material and
geometrical properties of the spring. It does not depend upon the angular displacement of the

leg, from the equilibrium position. Thus, the torsion spring has linear stiffness characteristics.

In chapter 2, we discussed the single spring mass damper system for vibration isolation, in
section [], which uses helical compression spring as stiffness element. This is the most basic
isolation system that can be used to isolate the disturbances in a single degree of freedom. It
works in two ways, one is to isolate the base from the internal disturbances in the payload, and
the second is to isolate sensitive payloads from disturbances coming from the base. This

isolation system uses only a single positive stiffness element, with constant stiffness.

Now, for any system to undergo vibrations, the two important properties it should have, are
stiffness and inertia. The property of inertia comes from the mass present in the system. We
have also seen in chapter 2 that to have a vibration isolation over a wide range of frequency, it
is desired to have a lower natural frequency in the system. Also, in micro-vibration isolation
for spacecraft applications the range of frequencies of loads is quite low. Hence, to avoid
catastrophic failures at resonant frequencies, the natural frequency of the system should be low.
In order the have lower natural frequency, the system must have lower stiffness values.
However, lower values of stiffness can affect the load carrying capacity of the system. Thus,
the conclusion is that a good vibration isolation system must have high static stiffness to carry
the desired payloads, and, also lower dynamic stiffness to lower the natural frequency of the
system. This desire provides us the motivation to study and use isolation systems with variable
stiffness elements, which can provide very low values of stiffness and consequently natural
frequency at equilibrium position. A potential way to achieve variable structural stiffness in a

system is to use negative stiffness configuration.

15



3.3 - Concept of Negative Stiffness and Quasi Zero Stiffness

In certain mechanisms, there may exist a stiffness element, which is configured in such a way;
that the force applied by this element on the mass, in response to the deflection of the mass
from its equilibrium position, is opposite to the restoring force, or in the direction of the
deflection. This stiffness element tries to reduce the restoring force acting on the mass, and
subsequently the stiffness of the entire system. The stiffness offered by such an element in the
system is termed as Negative Stiffness (NS). The use of negative stiffness elements in a system

is an effective way to achieve lower dynamic stiffness.

The Negative Stiffness (NS) offered by such an element tries to counter the actual Positive
Stiffness (PS) present in the system, thereby reducing the system stiffness. In such a case, it
may so happen that the positive and negative stiffness cancel out each other, to theoretically
give a net zero stiffness in the system at a certain point, or sufficiently close to zero over a
range of deflection. This phenomenon is known as the condition of Quasi Zero Stiffness (QZS).
The mathematical condition of QZS is a function of the stiffness and geometrical parameters
of the system. If this mathematical condition is met in practical scenarios, the system can have
absolute zero stiffness at a certain point, or sufficiently close to zero over a range of deflection.
If the stiffness and geometrical parameters of the system have mathematical values such that
there is a certain error in the mathematical condition, the system will still have variable stiffness

characteristics, but may not have absolute QZS characteristics.

The most basic and widely studied configuration for negative stiffness is the Oblique Springs
Mechanism. In the following section we reproduce certain results of this configuration as a

base for our further study of negative stiffness configurations.
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3.4 — The Oblique Springs Configuration for Negative Stiffness in a system

3.4.1 — Analytical Formulation for Force and Stiffness

Fig[3.3], shows a schematic diagram of the oblique spring configuration. It consists of a central
helical spring that takes up the deadweight of the payload mass. Two other springs are also
connected to the mass. At their natural length, the two other springs are in oblique direction
(hence the term oblique springs used). However, at the equilibrium position, the oblique springs
are horizontal with precompression. Due, to this precompression the oblique springs apply
force on the mass in horizontal direction, with no vertical component at equilibrium position.

Thus, at the equilibrium position, the net forces acting on the system are zero.

When, the mass is subjected to an upward vertical displacement of x , the central spring offers
a restoring force in downward direction. However, the oblique springs release some amount of
their precompression, and a net upward vertical force acts on the mass due to these springs.

This upward force reduces the restoring force acting on the mass.

Ln ’,' o
T
AT x
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Figure 3. 3 — Oblique Springs Configuration
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From Fig [3.3], the expressions for the forces acting on the mass are —

F,= K,x (3.5)

F, = k(Ln— Jaz + xz) (3.6)

Where, Fj, and F,,, are forces due to the central and the oblique springs respectively.
The net vertical force acting on the mass will be

F = F,— 2F,sin0

F=K,,x—2k(Ln— va2+ xz) ﬁ

F=K,x — ka[ 3.7)

L,
S
vaz + x2

This expression for force can be normalized, by normalizing the displacement x by «, and F

by K, a. Thus, the expression for the normalized force will become —

f=% ——x|—2— -1 (3.8)

Where, f is the normalized force and X is the normalized displacement.

The normalised stiffness of the system can be obtained by differentiating the expression for f

w.r.t X. Thus, the expression for the normalised stiffness will be —

L,
=Y 1 2K @ 1 3.9
° ax K,|(1+ x2)15 (3.9)

From Eqn. [3.8], we see that the expression for the net restoring force acting on the system is
not a linear function of the displacement. And from Eqn. [3.9], we see that the stiffness of the

system is not constant, but is now a function of the displacement of the mass from the mean
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position. Thus, the oblique springs configuration provides us a variable stiffness mechanism

that can keep the dynamic stiffness of the system low as required.

The force applied by the oblique springs on the mass is in the direction of the displacement,
thus providing a negative stiffness in the system. For the system to exhibit quasi zero stiffness
(QZS) characteristics, the system must have zero stiffness at the equilibrium position. Solving

the above expression for K, , yields the following condition.

For QZS characteristics —

L
2K o« _
Therefore, l—K—vm—l =0 at x=0
yields the condition
bn 14 % { Condition for 4 44
a 2K QZS at Equilibrium position

Thus, the Eqn. [3.10], gives us the mathematical condition between the geometrical and
stiffness parameters, which will result into QZS characteristics into the system, at equilibrium
position. Using Eqn. [3.10], in Eqn. [3.9], we get the expression for the stiffness of the system

as

K, = (j{—f+ 1) [1 —ﬁ] (3.11)

From Eqn. [3.11], we see that the stiffness of a system having oblique springs configuration is

a function of displacement of the mass, and is hence dynamic in nature. Also, the stiffness is a

function of only one unknown parameter K / k.- An appropriate value of this parameter will
v

help us to get desired stiffness characteristics in the system. However, the disadvantage of only
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one unknown parameter is that we have less control parameters in the system for stiffness

control.

3.4.2 — Approximation of Oblique Springs Formulation to Duffing’s Non-Linear

Oscillator

The term (—) in the expression for normalized force can be approximated using binomial
V1+ x2

expansion as (1 — 0.5 x2). With this approximation, the expression for the normalised force

will then become

2KL, 2K KL
= ] = x3 (3.12)
K,

— +
K,a

ez [1- 2 2K

Which is of the form of f = ax + ux3, which represents the force in a standard duffing’s
nonlinear oscillator. Approximating the oblique springs configuration to duffing’s nonlinear
oscillator will help us in studying the response of the system analytically, since, the duffing’s

equation can be solved analytically using the harmonic balance method.
Differentiating Eqn. [3.12], we get the expression for the approximate normalized stiffness of
the system as

K,=1-—|2 "%

— 2K L, 3L,_, ]
-1 3.13
K,lx 2a ( )

For the system to exhibit quasi zero stiftness (QZS) characteristics, the system must have zero
stiffness at the equilibrium position. Solving the above approximate expression for K, , yields

the following condition.

For QZS characteristics —

K,=0 at x=0

2K L, 3Ln_2 _
Therefore, 1 - —|— ——x° — 1] =0 at x=0

K,la 2a
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yields the condition

L, K, { Condition for (3.14)

w1t 2k QZS at Equilibrium position

Thus, the approximate expression for stiffness also yields the same mathematical condition for
QZS characteristics in the system. And, hence similar comments can be made for the condition

of QZS as made above.

An important point to note here is that, this approximation is being used to get the response of
the system from the result of duffing’s oscillator. However, this approximation is valid for only
small values of x. At sufficiently large values of X, the exact and approximate expressions for
force and stiffness exhibit large errors, and hence the duffing’s solution may not express the

true response of the system.

Using Eqn. [3.14], i.e. the condition for QZS at equilibrium position, in Eqn. [3.13], we get the

expression for the approximate stiffness of the system as

K, = 3 [2K+1] x2 3.15
o — 2 Kv x (' )

Again, the stiffness is a function of only one unknown parameter K / k.- The expression for
v

approximate stiffness of the system is nonlinear and a quadratic function of Xx.
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3.4.3 — Comparison of Exact and Approximate Force and Stiffness for Oblique Springs

Fig [3.4] shows the plot of expression for exact and approximate force as a function of X and

Fig [3.5] shows the plot of expression for exact and approximate stiffness as a function of x.
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Figure 3. 4 — Normalized Force vs Normalized Displacement
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Figure 3. 5 — Normalized Stiffness vs Normalized Displacement

From Fig [3.4], we see that the exact and approximate forces have small amount of error up to
certain range of the normalized displacement. This range can be increased or decreased
depending on the values of the unknown control parameters, and, also if we take higher order
polynomial approximation (binomial expansion), in the force expression. Also, at higher values
of X, the numerical values of approximate force are higher as compared to the exact values.

This is expected since, the expression for approximate force has cubic polynomial increase
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(Ref. Eqgn. [3.15]), whereas the expression for exact force has linear increase at higher values

of X. Thus, we infer that the system behaves linearly at higher values of Xx.

From Fig [3.5], we see that the exact and approximate stiffness have small amount of error up
to certain range of the normalized displacement. This range can be increased or decreased
depending on the values of the unknown control parameters, and, also if we take higher order
polynomial approximation (binomial expansion), in the force expression. As expected, the plot
for stiffness is symmetric w.r.t the normalized displacement. At higher values of X, the
numerical values of approximate stiffness are higher as compared to the exact values. This is
expected, since at higher values of X, the oblique springs release all their precompression after
a certain value of X. After this point the oblique springs also contribute to the stiffness of the
central spring, thereby making the stiffness of the system constant. This behaviour is seen in
Fig [3.9], at higher values of Xx. However, the expression for approximate force has quadratic
polynomial increase. This explains why at higher values of X the approximate stiffness is

significantly higher as compared to exact stiffness.

However, since we deal with vibrations of amplitudes in png’s, in spacecraft applications, and
the normalization parameter a is of the order of mm. This approximation can be used in

practical conditions since, the range of operation of X is quite less in these applications.

3.4.4 — Why is Negative Stiffness (NS) important?

a) From the Fig [3.4], of the normalized force and Fig [3.5], of the normalized stiffness, it
is seen that the force and stiffness values are very close to zero, in the vicinity of the

equilibrium position.

b) This means the system offers very low restoring forces in this region and thus prevents

the mass from further vibrations.

c) Itisinferred that the combined stiffness elements (PS and NS), provide a softer stiffness

compared to the PS element.

d) Consequently, the natural frequency of the system is low, which is desired for low

frequency vibration isolation.

23



3.4.5 — Solution of the approximate Duffing’s Equation for Oblique Springs.

After studying the force and stiffness behaviour of the oblique springs configuration, it is
important to study the response of the system to external excitations. The particular area of
interest is the transmissibility of the system, when the system is subjected to external

excitations.

The equation of motion of the mass in oblique springs configuration can be solved numerically
to get the response. However, the approximation for the force and stiffness converts the
equation of motion into standard duffing’s oscillator equation, which can be solved using the

harmonic balance method.

3.4.5.1 —- Harmonic Excitation of the Mass.

Fig [3.6], shows a mass with oblique springs configuration, subjected to harmonic excitation
F = f sin wt. The differential equation of motion of the mass under harmonic force excitation

will be —
X+ 6x+ Bx+ ux3 = fsin(wt) (3.16)

Where 6, B and p are the system parameters, in terms of the stiffness and geometrical
parameters, for the oblique springs configuration. The above equation represents a standard

duffing’s oscillator.

Solving the above equation using Harmonic Balance Method, we a get the following

polynomial equation for the displacement amplitude of the mass under harmonic excitation.

36u*R® + 24u(f — w?»)R* +4[(B — w?)? + (bw)?*]R? —f2 =0 (3.17)

The above equation is a cubic polynomial in R%, where R is the amplitude of the displacement
of the mass. The above polynomial equation is solved for appropriate values &, § and u, to get

the frequency response of the system i.e. the variation of R w.r.t w.
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Figure 3. 6 — Oblique Springs Configuration subjected to harmonic excitation of mass
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Figure 3. 7 — Displacement Amplitude vs Frequency response for harmonic force
excitation of the mass
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Fig [3.7], shows the frequency response of the system for certain values of &, B and p over a
range of w. The blue plot shows the region of stability whereas the red plot shows the region
of instability. An important observation in this plot is the jump phenomenon. Initially as the w
increases from zero, the response of the system follows the blue curve up to the point from
where the curve comes back, i.e. the top of the red curve. The red curve is unstable meaning if
the mass goes into the red region, its unstable and suddenly jumps off to the lower blue curve,
which is again a stable region. In practical conditions as soon as the mass reaches the top of
the red curve, it suddenly jumps off to the lower blue curve and then the response of the system

follows the lower blue curve. This is known as the jump phenomenon.

3.4.5.2 — Base Excitation or Support Motion.

Fig [3.8], shows a mass with oblique springs configuration, subjected to base excitation

y =Y sin wt. The differential equation of motion of the mass under base excitation will be —

X+ 8x+ yx + ux® =Y[6wcos(wt) + Bsin (wt)] (3.18)

Where 6, ¥ and p are the system parameters, in terms of the stiffness and geometrical
parameters, for the oblique springs configuration. The above equation represents a standard

duffing’s oscillator.

Solving the above equation using Harmonic Balance Method, we a get the following

polynomial equation for the displacement amplitude of the mass under base excitation.

36u*R® + 24u(y — w®)R* +4[(y — w*»)?* + (bw)?]R?> —Y?[(6w)?> + %] =0 (3.19)

The above equation is a cubic polynomial in R%, where R is the amplitude of the displacement
of the mass. The above polynomial equation is solved for appropriate values &, y and u, to get

the frequency response of the system i.e. the variation of TR w.r.t w.

Where, TR is the displacement transmissibility which is given by —
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Figure 3. 8 — Oblique Springs Configuration subjected to harmonic excitation of base
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Figure 3. 9 — Displacement Transmissibility vs Frequency response for harmonic base
excitation of the mass
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Fig [3.9], shows the plot of transmissibility of the system for certain values of §, # and p over

a range of w. The blue plot shows the region of stability whereas the red plot shows the region

of instability. The plot is similar to the plot discussed in section 3.4.4.1 and shows a similar

jump phenomenon.

3.5 — Conclusion.

1))

2)

3)

4)

3)

6)

Structural stiffness is an important parameter that governs the dynamic behaviour of

the system.

For isolation over a wide frequency range, it is desired to have low stiffness in the

system.

Negative Stiffness mechanisms can give us a system with low dynamic stiffness,

without compromising the static stiffness of the system.

The oblique springs mechanism is a simple and effective mechanism to get NS in the
system. However, it has only one unknown control parameter to control the behaviour

of the system.

The response of the system can be studied for small values of the normalized
displacement, by approximating the oblique springs mechanism to standard duffing’s

oscillator.
The response obtained from the duffing’s approximation shows that the system exhibits

the jump phenomenon at certain frequency. This sudden change in the mass

displacement can cause system failure, and need to be handled appropriately.
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Chapter 4 — New Possible Configurations for Quasi Zero Stiffness

4.1 — Introduction

In chapter 3, we saw the role of stiffness in vibration isolation in a system and, also, the
importance of NS and QZS to improve the vibration isolation characteristics over a wide
frequency range. We discussed the static analysis and frequency response of the Oblique

Springs configuration.

In this chapter we will look at new possible configurations that can help achieve negative
stiffness characteristics in a system. In all the configurations the main positive stiffness
element, which is also responsible for the static stiffness of the system is a helical compression
spring which has linear characteristics. Different structural elements can be used to generate
the required negative stiffness characteristics. Examples being a cantilever beam, a fixed

curved beam, torsion springs etc.

Here we present three different configurations. Two of which use torsion springs in different
configuration, and one which uses vertical helical compression spring, to generate the desired
negative stiffness characteristics in the system. The static force and stiffness analysis is done
for all configurations and expressions for the nonlinear stiffness of the system are obtained.

The variation of the stiffness is studied for varying unknown control parameters of the system.

Refer to section 3.2 of chapter 3, for the stiffness characteristics of helical compression springs

and torsion springs.

4.2 — Torsion Spring Configuration 1

4.2.1 — Analytical Formulation for Force and Stiffness

Fig [4.1], shows a schematic diagram of the Torsion Spring Configuration 1. It consists of a
central helical spring that takes up the deadweight of the payload mass. Three torsion springs
are also connected to the mass, which are at 120° from each other when viewed from the top.
However, only one is shown in the diagram. The other two have similar contribution in the
expressions and the appropriate multiplication factor of 3 is considered. At the equilibrium

position, the torsion springs have initial outer angular deflection, as shown in Fig [4.2]. The
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horizontal motion of the torsion spring is restricted by the outer sleeve and the circular cam
profile (hereafter referred to as cam profile 1), present on the vertical rod attached to the central
spring. Due to this restriction the spring cannot release its deflection and remains stressed. Due
to this pre stress the three torsion springs apply forces of equal magnitude in the horizontal
plane on the cam profile 1, via the circular profile of the torsion spring (hereafter referred to as
cam profile 2). These force vectors cancel out each other in the horizontal plane with no vertical
component, and hence, there is no net force applied by the torsion springs on the central rod
(consequently the mass), at the equilibrium position. Thus, at the equilibrium position, the net

forces acting on the system are zero.
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Figure 4. 1- Torsion Spring Configuration 1, Free State (FS), Intermediate State (1S), and
Pre-stressed State (PCS at equilibrium position) of the torsion spring

When, the mass is subjected to an upward vertical displacement of x , the central spring offers
a restoring force in downward direction. However, the torsion springs release some amount of
their pre stress, due to the horizontal movement of the cam profile 2. Here it is assumed that
the cam profile 2 is constrained to move in horizontal direction only. Thus, due this vertical
movement of cam profile 1 and the resulting horizontal movement of cam profile 2, the line of
action between the two cam profiles change, and a net upward vertical force acts on the mass

due to these torsion springs. This upward force reduces the restoring force acting on the mass.
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Figure 4. 2 — Intermediate State (displaced state), and Pre-stressed State (equilibrium
position) of the torsion spring configuration 1

From Fig [4.3], the expressions for the forces acting on the mass are —

F,= K,x (4.1)

_ 2ky {Refer Appendix (A.1) @.2)

" cos@.sin(u+ y).1 for the derivation
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Where, F,, and F,, are forces due to the central and the torsion springs respectively.

The net vertical force acting on the mass will be

F = F,— 3F,sin0

FeKyx -3, — XY ad (4.3)
- X “Isin(u+ y)  JVRZ — x2 '
Substituting the expression for y ,
ey R — VR? — xZ {ReferAppendix (A.2) 4.4)
y= H I sina for the derivation '

We get the expression for the net vertical force acting on the mass as

. |R —VR% — x?
2k a-Hu l sina x
F=K,x —3. (4.5)

L [ <R—w/R2—x2)]'\/R2—x2
sin|ja —

l sina

This expression for force can be normalized, by normalizing the displacement x by R, and F

by K, R. Thus, the expression for the normalized force will become —

2k @ - - T [1 —V1- %] x

— l sina
f=x-3. . L — (4.6)
HOR  sin [a N (l slizna[1 —Vvi- yZ])] 1-x

Where, f is the normalized force and X is the normalized displacement.

The normalised stiffness of the system can be obtained by differentiating the expression for f

w.r.t X. Thus, the expression for the normalised stiffness will be —

K,=1 6k on 4.7
o K IR ox *.7)
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Where,

_ A—pu X
Il = SHA 'J1— = (4.8)
R —
A= a— ;o (1 ~J1- xz) (4.9)

From Eqn. [4.6], we see that the expression for the net restoring force acting on the system is
not a linear function of the displacement. And from Eqn. [4.7, 4.8, 4.9], we see that the stiffness
of the system is not constant, but is now a function of the displacement of the mass from the

mean position.

For the system to exhibit quasi zero stiffness (QZS) characteristics, the system must have zero
stiffness at the equilibrium position. Solving the above expression for K, , yields the following

condition.

For QZS characteristics —

Therefore, 1

Using the above results, in the preceding equation, yields the mathematical condition for QZS

in this system as

6k sina { Condition for (4.10)

K,lR T a- u QZS at Equilibrium position
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Thus, the Eqn. [4.10], gives us the mathematical condition between the geometrical and
stiffness parameters, which will result into QZS characteristics into the system, at equilibrium
position. Using Eqn. [4.10], in Eqn. [4.7], we get the expression for the stiffness of the system

as

K - dall [sina] 11

o — ax a_” ( . )
A— x

-2k (4.12)

sinA "1 _ x2
As a— —2 (1—\/1—22) (4.13)

l.sina

From Eqn. [4.11, 4.12, 4.13], we see that the stiffness of a system having torsion spring
configuration 1, is a function of displacement of the mass, and is hence dynamic in nature.
Also, the stiffness is a function of four unknown parameters viz. R,l, a, u. Appropriate values
of these parameters will help us to get desired stiffness characteristics in the system. The
advantage of four unknown parameters is that we have higher number of control parameters in
the system for stiffness control. Changing one or more than one parameter will change the
behavior of the system and desired stiffness characteristics can be obtained. However, higher
number of unknown parameters makes the analytical equation more complex. Also, a slight
deviation in even one parameter from the value required for QZS condition, can cause
considerable changes in the system’s behavior. In practical conditions, not all parameters can

always have the exact numerical values as required for QZS condition.
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4.2.2 — Stiffness plot for Torsion Spring Configuration 1, for different values of control

parameters.
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Figure 4. 3 — Normalized Stiffness vs Normalized Displacement for varying |
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Figure 4. 4 — Normalized Stiffness vs Normalized Displacement for varying a
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Figure 4. 5 — Normalized Stiffness vs Normalized Displacement for varying R
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Figure 4. 6 — Normalized Stiffness vs Normalized Displacement for varying u
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4.3 — Torsion Spring Configuration 2

4.3.1 — Analytical Formulation for Force and Stiffness

Figure 4. 7 — Torsion Spring Configuration 2, Free State (FS), Intermediate State (IS), and
Pre-stressed State (PCS at equilibrium position) of the torsion spring

Fig [4.7], shows a schematic diagram of the Torsion Spring Configuration 1. It consists of a
central helical spring that takes up the deadweight of the payload mass. Three torsion springs
are also connected to the mass as shown, which are at 120° from each other when viewed from
the top. However, only one is shown in the diagram. The other two have similar contribution
in the expressions and the appropriate multiplication factor of 3 is considered. At the
equilibrium position, the torsion springs have initial inner angular deflection, as shown in Fig
[4.7] The motion of the torsion spring is restricted by the outer sleeve and the circular cam
profile (hereafter referred to as cam profile 1), present on the vertical rod attached to the central
spring. Due to this restriction the spring cannot release its deflection and remains stressed. Due
to this pre stress the three torsion springs apply forces of equal magnitude in the horizontal
plane on the cam profile 1, via the circular mechanical element (hereafter referred to as cam
profile 2), present on one of the legs of the torsion spring. These force vectors cancel out each

other in the horizontal plane with no vertical component, and hence, there is no net force
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applied by the torsion springs on the central rod (consequently the mass), at the equilibrium

position. Thus, at the equilibrium position, the net forces acting on the system are zero.

Kv

p

S/ S

Figure 4. 8 — Intermediate State (displaced state), and Pre-stressed State (equilibrium
position) of the torsion spring configuration 2

When, the mass is subjected to an upward vertical displacement of x , the central spring offers
a restoring force in downward direction. However, the torsion springs release some amount of
their pre stress, due to the horizontal movement of the cam profile 2. Here it is assumed that
the cam profile 2 is constrained to move in horizontal direction only. Thus, due this vertical
movement of cam profile 1 and the resulting horizontal movement of cam profile 2, the line of
action between the two cam profiles change, and a net upward vertical force acts on the mass

due to these torsion springs. This upward force reduces the restoring force acting on the mass.
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From Fig [4.8], the expressions for the forces acting on the mass are —

F,= K,x (4.14)

{a - (2 sin"1B + M[l —ﬁ])}

_ Refer Appendix (A.3)
Fn=k 1. (C.V1 - B®) (Vi- x?) { for the derivation (4-15)
Where, F,, and F,, are forces due to the central and the torsion springs respectively.
The net vertical force acting on the mass will be
F = F,— 3F,sin0
{a —<2sin—1B+ s RaLE )Y PR fz])} X
F= K,x -3k . (4.16)
’ L. (€. V1 - BY) (V1- %) (ri+ 12)

This expression for force is normalized, by normalizing the displacement x by (r; + r;), and

F by K,,(r{ + 13). Thus, the expression for the normalized force will become —

) {1 - (z sinB |, [1-Vi- EZD}

(14

f=x-3Q.x (4.17)
(c. V1 - B2) (V1— *?)
Where, Q, A, B, C are non-dimensional parameters as follows.
ka ri+r P —-D l
Q= o777 - a= 1t 2), B= , C=1-
K, l(ri+ 13) la 21 3nN,D

The normalised stiffness of the system can be obtained by differentiating the expression for f

w.r.t X. Thus, the expression for the normalised stiffness will be —
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K,=1-— (4.18)

Where, the term A is given by,

(44

(c.V1 - B2) (V1- x?)

{1 - (2 sin”" B |, [1-Vi- EZ])}

A= 3Q.%.

(4.19)

From Eqn. [4.17], we see that the expression for the net restoring force acting on the system is
not a linear function of the displacement. And from Eqn. [4.18, 4.19], we see that the stiffness
of the system is not constant, but is now a function of the displacement of the mass from the

mean position.

For the system to exhibit quasi zero stiffness (QZS) characteristics, the system must have zero
stiffness at the equilibrium position. Solving the above expression for K, , yields the following

condition.

For QZS characteristics —

Th , 1-——=0 t x=0
erefore Fre at X
oA F=0)= 3Q X zsin‘1B
Fr V1 - B2 a

Using the above result, in the preceding equation, yields the mathematical condition for QZS

in this system as

Q_ V1 — B? { Condition for 4.20)
c 3 (1 _9 sin~1 B) QZS at Equilibrium position '
a

Thus, the Eqn. [4.20], gives us the mathematical condition between the geometrical and

stiffness parameters, which will result into QZS characteristics into the system, at equilibrium
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position. Using Eqn. [4.20], in Eqn. [4.18, 4.19], we get the expression for the stiffness of the

system as

A
1—E A

K,=1-1. |—&_ =2
° 1-x°2 R

(4.21)

Where, after certain simplifications in the expression for K,, we get the non-dimensional

parameters A and R as

r+r
A= (r1 2)
la
sin"1B
R=1-2
a

Although, the final expression for K,, has two unknown non-dimensional parameters, these
two parameters appear in a ratio as A/R. This ultimately makes only one unknown parameter
in the expression for K. Thus, in this configuration of torsion spring, we have only one control
parameter, to control the stiffness behavior of the system. Appropriate value of this parameter

will help us to get desired stiffness characteristics in the system.

An interesting thing about this configuration is that when the value of the parameter A/R equals

one, or when A = R, the value of K, is zero, for all values of X.

Thus, theoretically the stiffness of the system becomes zero if R = A. This means that there
will be no dynamic stiffness in the system for any amount of displacement of the mass from its
mean position. However, in practical scenarios, it may be very difficult to satisfy this condition
due to restrictions on the numerical values of the geometrical and stiffness parameters of the
system, which govern the values of A and R. The disadvantage of only one unknown

parameter is that we have less control parameters in the system for stiffness control.
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4.3.2 — Stiffness plot for Torsion Spring Configuration 2, for different values of control

parameters.
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Figure 4. 9 — Normalized Stiffness vs Normalized Displacement for varying A/R
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4.4 — Helical Compression Spring Configuration

4.4.1 — Analytical Formulation for Force and Stiffness

Fig [4.10], shows a schematic diagram of the Helical Compression Spring Configuration. It
consists of a central helical spring that takes up the deadweight of the payload mass. Six pre-
compressed helical springs are also connected to the mass as shown, which are at 60° from
each other when viewed from the top. However, only one is shown in the diagram. The other
five have similar contribution in the expressions and the appropriate multiplication factor of 6
is considered. At the equilibrium position, the pre-compressed helical springs (hereafter
referred to as Negative Helical Springs) have initial pre-compression, as shown in Fig [4.10].
The negative helical spring is connected to piston which is inside a hydraulic fluid filled
cylinder, which has a bypass tube at right angles with it. A similar piston is connected to the
end of the tube. The other end of this piston has a circular element (hereafter referred to as cam
profile 2). This cam profile 2 is in point connection (higher pair), with another circular element
(hereafter referred to as cam profile 1), attached to the rod of the central spring. The hydraulic
fluid cylinder arrangement helps us to transfer the vertical force exerted by the negative helical
spring, in a horizontal direction. During this force transfer, it is assumed that there is negligible
change in the fluid velocity between points 1 and 2. Also, that the difference in height of points
between 1 and 2 is negligible, hence the change in static pressure due to fluid column is

neglected. Therefore, the pressure at both the points 1 and 2 is same.

Due to the pre compression, the negative helical springs apply forces of equal magnitude in the
vertical direction on the piston 2. It tries to push the fluid, but the fluid’s motion is restricted
by the perfectly horizontal contact between the two cam profiles. These horizontal contact force
vectors between the cam profiles cancel out each other in the horizontal plane with no vertical
component, and hence, there is no net force applied by the negative helical springs on the
central rod (consequently the mass), at the equilibrium position. Thus, at the equilibrium

position, the net forces acting on the system are zero.

When, the mass is subjected to an upward vertical displacement of x , the central spring offers
a restoring force in downward direction. However, the negative helical springs release some
amount of their pre compression, due to the horizontal movement of the cam profile 2, since
the cam profile 2 is constrained to move in horizontal direction only. Here it is assumed that

the cam profile 2 is constrained to move in horizontal direction only. Thus, due this vertical
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movement of cam profile 1 and the resulting horizontal movement of cam profile 2, the line of
action between the two cam profiles change, and a net upward vertical force acts on the mass
due to these negative helical springs. This upward force reduces the restoring force acting on

the mass.

Kv

P
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i

Figure 4. 10 — Helical Compression Spring Configuration, Initial State and Displaced
State

From Fig [4.10], the expressions for the forces acting on the mass are —

F,= K,x (4.22)
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A4

a1 _4 _ 2 _ ,2
o Azk { A, [(r1 + 1) = V4 )t - x ]} Refer Appendix (A.4) (4.23)
n J1 + 1) — «2 { for the derivation :
(r1+ 12)
Where, F,, and F,, are forces due to the central and the torsion springs respectively.
The net vertical force acting on the mass will be
F = F,— 6F,sin0
A A
A—lk {d—A—l[(r1+ ry) — J(ry + 13)% — xZ]} X
F= K,x — 6k =2 z . (4.24)
Jy + 1)% — %2 (ry+ 12)
(ry+ 12)

This expression for force is normalized, by normalizing the displacement x by (rq; + 73), and

F by K, (r{ + 13). Thus, the expression for the normalized force will become —

Ak fa —%[1 -V1- %}
aK, " (Vi- %)

(4.25)

The normalised stiffness of the system can be obtained by differentiating the expression for f

w.r.t X. Thus, the expression for the normalised stiffness will be —

K,=1 oA 4.26
o — a} (' )

Where, the term A is given by,

L 6k (@ -3t —vi-=|)
—AZKv.x. =)

(4.27)

From Eqn. [4.25], we see that the expression for the net restoring force acting on the system is

not a linear function of the displacement. And from Eqn. [4.26, 4.27], we see that the stiffness
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of the system is not constant, but is now a function of the displacement of the mass from the

mean position.

For the system to exhibit quasi zero stiffness (QZS) characteristics, the system must have zero
stiffness at the equilibrium position. Solving the above expression for K, , yields the following

condition.

For QZS characteristics —

Th 1 9A =0 t x=0
erefore, T a X =
IN 6A.k _
— (x=0) = d

Using the above result, in the preceding equation, yields the mathematical condition for QZS

in this system as

64,k

{ Condition for
AZK‘U

QZS at Equilibrium position (4.28)

Ul =

Thus, the Eqn. [4.28], gives us the mathematical condition between the geometrical and
stiffness parameters, which will result into QZS characteristics into the system, at equilibrium
position. Using Eqn. [4.28], in Eqn. [4.26, 4.27], we get the expression for the stiffness of the

system as

1 B+ B N Bx?
(1 — 72)°/2 Vi— 2 1 -3

(4.29)

Where, after certain simplifications in the expression for K,, we get the non-dimensional

parameter B as

Ay
B=—L
Ayd
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This makes only one unknown parameter in the expression for K,. Thus, in this configuration
of negative helical spring, we have only one control parameter, to control the stiffness behavior
of the system. Appropriate value of this parameter will help us to get desired stiffness

characteristics in the system.

An interesting thing about this configuration is that when the value of the parameter B equals

one, or when B = 1, the value of K, is zero, for all values of X.

Thus, theoretically the stiffness of the system becomes zero if B = 1. This means that there
will be no dynamic stiffness in the system for any amount of displacement of the mass from its
mean position. However, in practical scenarios, it may be very difficult to satisfy this condition
due to restrictions on the numerical values of the geometrical and stiffness parameters of the
system, which govern the values of B.The disadvantage of only one unknown parameter is that

we have less control parameters in the system for stiffness control.

4.4.2 — Stiffness plot for Negative Helical Spring Configuration, for different values of
control parameter.
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Figure 4. 11 — Normalized Stiffness vs Normalized Displacement for varying B
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4.5 — Conclusion.

1)

2)

3)

4)

Three different configurations for generating negative stiffness in a simple spring mass
system are discussed and their force and stiffness formulation is done.

Torsion springs are used in two different configurations as the negative stiffness
element.

Torsion spring Configuration 1 has four control parameters, which provide higher level
of control over the stiffness behaviour. However, higher number of control parameters
may lead to higher deviation from QZS condition.

Torsion spring Configuration 2 and Negative Helical Spring Configuration has only
one control parameter. It is theoretically possible to get zero dynamic stiffness in the

system under certain mathematical condition on this control parameter.
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Chapter S — Analytical formulation of Gough Stewart Platform

5.1 — Introduction

In chapter 3 and chapter 4, we have thoroughly discussed how certain configurations of
mechanical stiffness elements, help us achieve negative stiffness in a structure. Consequently,
it provides the condition of high static stiffness but low dynamic stiffness, which helps in
reducing the natural frequency of a vibration isolation system and, also, to increase the
frequency range over which isolation is required. However, these configurations discussed
excitations in only one degree of freedom. The micro-vibrations in spacecrafts are of multi-
degree of freedom nature. Hence, a complete 6 degrees of freedom vibration isolation system

is required in these applications.

Gough Stewart Platforms (hereafter referred to as GSP) are the most widely used vibration
isolation systems for six degrees of freedom vibration isolation due to its high stiffness,
precision, and load-bearing capabilities. Each of the six legs can extend or contract
independently, allowing the platform to move in all six degrees of freedom: three translational
(X, Y, Z) and three rotational (pitch, roll, yaw). The GSP can be used for both active and

passive vibration isolation.

In active vibration isolation applications, the Gough-Stewart platform acts as an active or semi-
active system to counteract unwanted motion. Sensors detect vibrations in real-time, and
control algorithms adjust the length of the struts accordingly to compensate for the
disturbances. This dynamic response effectively isolates the payload—such as sensitive
scientific instruments, optical equipment, or spacecraft components—from environmental or

mechanical vibrations.

The platform’s closed-loop kinematic structure offers advantages like high responsiveness and
stability. Its compact and symmetrical design also supports uniform distribution of forces,
enhancing performance. Overall, the Gough-Stewart platform provides a robust solution for

precision vibration isolation in critical high-tech and aerospace applications.
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5.2 — The Geometry of Gough Stewart Platform

Fig [5.1], shows the schematic diagram of a 6-6 GSP. It consists of mainly 3 components. A
fixed base, a movable platform and 6 identical legs connecting the base and the platform. The
legs or limbs are usually connected to the base and the platform in a circle of constant radius.
However, in Modified Gough Stewart Platform (MGSP), three legs are connected on an inner
radius and three on outer radius. The advantage of MGSP is higher number of control
parameters. This kinematic structure allows the moving platform of the GSP to have a six

degrees of freedom motion, three translations in x,y,z axes and three rotations ¢, 9, .

;L SJ-(k): spherical joint .
" 0\‘|l|g
Ty

Platform
< Body-(2k): upper leg

. ATI-(K):
actuated translational joint

~~B ody-(2k-1): lower leg

. Ai
Fixed
Base

UJ-(k): universal joint

Figure 5. 1 — The components of a GSP and the joints that are present in its legs

Fig [5.1], shows the joints which are present between the base and legs and the platform and
legs. The base is connected with the legs via universal joints or spherical joints. Also, the
moving platform is connected with the legs via universal joints or spherical joints. The legs
consist of two components viz part 1 and part 2. The parts 1 and 2 are connected via prismatic
joints. The possible combinations of joints are universal-prismatic-spherical (UPS joint),
spherical-prismatic-universal (SPU joint), or spherical-prismatic-spherical (SPS joint). The
legs cannot have universal joints at both of its ends, otherwise it will restrict the motion of the
moving platform in certain degrees of freedom. In GSP, the prismatic joint is the active joint,

whereas the spherical and universal joints are passive joints.
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In applications where GSP’s are used parallel robots for position and orientation control, the
parts 1 and 2 of the legs are connected via a linear actuator. This actuator which is externally
powered, helps achieve the desired position and orientation of the moving platform w.r.t the
base, by changing the lengths of the legs. As a result of the extension or contraction of the legs,
each of the legs have different lengths and consequently the platform achieves the desired

position and orientation.

In vibration isolation applications, the base is subjected to harmonic excitations and the
sensitive payloads are mounted on the moving platforms. The parts 1 and 2 of the legs are
connected via stiffness and damping elements. These elements are responsible for the transfer
of vibrations from the base to the platform. When the base is subjected to harmonic excitations
in six degrees of freedom, the platform will also have harmonic response in all six degrees of
freedom. The goal is to achieve minimum transmissibility possible. In micro-vibration isolation
for spacecraft applications, the GSP can be used between the source and the spacecraft bus, for

source isolation; or between the payload and the spacecraft bus, for payload isolation.

In the coming sections we will discuss the kinematic and dynamic formulation of the base, the

platform, and the legs.

5.3 — Co-ordinate System Assignment

Fig [5.2], shows the schematic diagram of a 6-6 GSP with a base (bottom hexagon), a platform
(top hexagon) and six legs (represented by solid lines between the base and the platform). The
circles on the vertices of the hexagons represent the joints between the components. Here it is
assumed that the base and legs are connected via a universal joint and the platform and the legs

are connected via a spherical joint.

The top platform is assigned a coordinate frame with its origin o at its geometrical center. It is
represented by lower case letters (x, ¥, z). The x and y axes lie in the plane of the platform,
as seen in the top view Fig [5.2], whereas the z axis is perpendicular to the plane of the

platform.

The base is also assigned a coordinate frame, similar to the platform frame, with its origin O at
its geometrical center. It is represented by upper case letters (X, ¥, Z). All other details

regarding the frame remain same as that of the platform frame.
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Since, in vibration isolation applications, the base is subjected to excitations. Hence, the frame
attached to the base is not a fixed frame but a non-inertial frame of reference. To write the
equations of motion using newton’s laws, it is important to define a fixed inertial frame of
reference known as the world frame. We define a world coordinate system represented by upper
case primed letters (X', Y', Z'). The origin of this frame O’ lies at the initial location of the
COM of the base, and the axes are aligned with the axes of the base frame. The motion of the

base and the platform frames are defined w.r.t this world frame.

Figure 5. 2 — Frames of reference in a GSP

The terms {W} represents world frame, {B} represents base frame, and { P} represents platform

frame.

For the kinematic and dynamic formulation of the legs, a leg frame connected to each leg also

needs to be defined. This frame is defined in the section 5.6.2.
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5.4 — Position and Orientation of the Base and the Platform.

5.4.1 — Position and Orientation of the Base.

Fig [5.3], shows the coordinate frames of the GSP and the associated vectors.

0 = positionvector of 0 w.r.t O’

0 = (Xp Y5 Z'p)'

Figure 5. 3 — Frames of reference and vector diagram for kinematic study

The orientation of the {B} w.rt {W}, is defined using the three xyz eculer angles
¢p O ¥'p.

The position and orientation of {B} w.r.t {W}, is given by the vector

B = position and orientation of {B} w.r.t {W}

B = (Xp, Yp, Zp, ¢ 05 ¥'p)"
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The rotation matrix from {B} frame to {W} frame, is represented by Wg,, and is given for the

xyz euler angles ¢p, 05, P'pas—

cOp.cy'p —cOp.sYP'p s0p
Wg,=| sdp.s0g.c's + cop.sP'y —sPpp.s0p.5¢P'p + cPpp.cp'y —sPpp.cOp
—cpp .50 .cP's + s¢pp.sY'ps  cPpp.s0p.5Y'g + spp.cP’p  cPp.cOp

The terms b;; (i = 1 to 6) represent the joints between the base and the legs.
‘b, = position vector of b; w.r.t {W}

‘B,, = position vector of b; w.r.t {B}

By, = (Xbi' Y Zbi)T

5.4.2 — Position and Orientation of the Platform.

Fig [5.3], shows the coordinate frames of the GSP and the associated vectors.
0 = positionvector of o w.r.t O’

0= (Xp, Yp, Z'p)'

The orientation of the {P} w.r.t {W}, is defined using the three xyz euler angles
®p, Op, P'p.

The position and orientation of {P} w.r.t {W}, is given by the vector

P = position and orientation of {P} w.r.t {W}

P = (Xp, Yp, Zp, &p, 0p, ¥'p)T

The rotation matrix from {P} frame to {W} frame, is represented by W, and is given for the

xyz euler angles ¢p, O0p, P'pas—
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cOp.cy'p —cOp .sYP'p s0p
Wg,=| spp.50p.c'p + cdp.s¢P'p —s¢p.s50p.s¢P'p + cPp.c’p —sdp.cOp
—cp.SO0p.cP'p + spp.sY'p  cPp.sOp.sYp + sPpp.cP’'p  cPpp.cOp

The terms a; ; (i = 1 to 6) represent the joints between the platform and the legs.

‘a, = positionvector of a; w.r.t {W}

P,, = positionvector of a; w.r.t {P}

P, = (xal. s Yay» zai)T

5.5 — Kinematics of the Base and the Platform.

5.5.1 — Kinematics of the Base.

The position and orientation of {B} w.r.t {W}, is given by the vector

B = position and orientation of {B} w.r.t {W}

B = (Xp Yp, Zp, ¢ 05 ¥'p)7

The skew symmetric angular velocity tensor of the base, in world frame, or {B} w.r.t {W}, will

be given by
(l)%s = WRB . WRBT (5 1)

Where, W, represents the time derivative of the rotation matrix from {B} frame to {W} frame. The

matrix wy is 3 X 3 skew symmetric matrix, having the form —

0 —wBZ, wBy,
SSs __ —
(‘)B = wBZI 0 (A)BX,
_wBy, (DBX, 0
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Therefore, the angular velocity vector of the base in world frame, or {B} w.r.t {W}, will be
given by
—wp (2,3)

@5 = | wF1,3) (5.2)
_w?‘?s (11 2)

The angular acceleration vector of the the base in world frame, or {B} w.r.t {W}, will then be

given by
ap = Wg (5.3)

Where, wp represents the time derivative of wpg.

5.5.1 — Kinematics of the Platform.

The position and orientation of {P} w.r.t {W}, is given by the vector

P = position and orientation of {P} w.r.t {W}

[_, = (X;" Y;,, Z;" ¢;’: 0;7' II),P)T

The skew symmetric angular velocity tensor of the platform, in world frame, or {P} w.r.t

{W}, will be given by
w;s = WRP . WRPT (54‘)

Where, Wpg, represents the time derivative of the rotation matrix from {P} frame to {W} frame. The

matrix wp’ is 3 X 3 skew symmetric matrix, having the form —

0 —pr, wPY’
SS __ —
Wp = | Wpy, 0 @py,
—wpy, pr, 0

Therefore, the angular velocity vector of the base in world frame, or {P} w.r.t {W}, will be

given by
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—wp (2,3)
o (1,3) (5.5)
_w;S (11 2)

§
[

The angular acceleration vector of the the base in world frame, or {P} w.r.t {W}, will then be

given by
ap = Wp (5.6)

Where, wp represents the time derivative of wp.

5.6 — Kinematics of the Leg.

5.6.1 — Expressions for the Leg Length and its time derivatives.

Fig [5.3] — Frames of reference and vector diagram for kinematic study

Refer Fig [5.3]. The position vectors of the points b;; (i = 1 to 6) i.c. the joints between the

base and legs, in the world frame {W} is given by
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b, = positionvector of b; w.r.t {W}
b, = 0 + Wg, By, (5.7)

Therefore, the time derivative of b, , which represents the rate of change of position vector of

b;; (i =1to6), will be
b,= 0 + wg x (Wg, Bp,) (5.8)

b,= 0 + wj (Wg, By,) (5.9)

The acceleration of the position vector b, will be —

b,= 0 + ag x (Wg, Bp,) + wg X [@g X (Wg, By,)] (5.10)

Similar formulation can be done for the joints between the platform and the legs.

The position vectors of the points a;; (i = 1 to 6) i.e. the joints between the platform and
legs, in the world frame {W} is given by
‘a, = positionvector of a; w.r.t {W}

@ = 0+ Wg, P, (5.11)

Therefore, the time derivative of “a@, , which represents the rate of change of position vector of

a;; (i =1to6), will be
a,= 0 + @p x (Wg, Pg)) (5.12)

a,= 0 + wp (Wg, P,) (5.13)

The acceleration of the position vector @, will be —

G, =0+ @ X (Wg, P,,) + @p x[wp x (Wg, Pyg,)| (5.14)

Where, " X ' represents the cross product of the vectors.
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From Fig [5.3], we see
L ="a—- b, (5.15)
Where, L, is a vector along the axis of the leg, expressed in world frame.

Therefore,

lin, = "a,— b, (5.16)

Where, [; is the length of the leg at any instant and 7, is the unit vector along the axis of the

leg.

The leg length can be found from Eqn. [5.15] by

I, = \/L_l- L (5.17)

Where, "." represents the dot product of the vectors.

Therefore,
n=——— (5.18)

We can write from Eqn. [5.16]
L= (@-B). ™ (5.19)

Therefore, the time rate of change of leg length is the component of the time rate of change of

L, along the axis of the leg.
I,=1L,. m
l,= (da,— b,). 7, (5.20)

The term [, represents the leg length extension rate, or the velocity of the prismatic joint

between the parts 1 and 2 of the leg.

The acceleration of the prismatic joint between the parts 1 and 2 of the leg will be given by.
I,= (qi,— b,).m, + (d,— b,). n, (5.21)

Where, n, is the time rate of change of the unit vector m,. Since, it is a unit vector, its time

rate of change will only be because of the angular velocity of the legs. Therefore,
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n,=w Xn (5.22)

I,=(q@,- b).m + (d,— b). (@, x W) (5.23)

The expression for the angular velocity vector of the legs w, will be derived in the section
5.6.3.

5.6.2 — Leg Coordinate Frame.

Refer Fig [5.4]. A right-handed orthogonal coordinate frame is defined for each of the legs.
This i** coordinate frame, (i = 1 to 6), is attached to the universal joint between the base and
the leg. The origin of the frame is located at the anchor points b;; (i = 1 to 6). The three
axes of the frame are represented by {L;} = (ui v ci). Where u; is aligned along the fixed
axis of the universal joint, and v; is aligned along the second axis (rotating axis) of the
universal joint. Here we assume that for each leg, the u; axis is aligned with the unit vector,
along the position vectors of the anchor points b;; (i = 1 to 6) measured in {B} frame and

expressed in {W} frame, i.e. Wg, By,

Figure 5. 4 — Frame of reference attached to the universal joint
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Therefore,

Wg, By,

W, B, |

u;

Where,

|WRB Bb,” is the norm of the vector Wy, By, .

From Fig [5.4], we see that the axis v; is orthogonal to both the vectors u; and n,. Therefore,

the axis v; is given by

u; X n,
p = X M) (5.25)
l(u; x m)l
The axis c; is defined an axis orthogonal to both the vectors u; and v;. Therefore,
Ci= u; X v; (5 26)

Thus, a coordinate frame attached to each of the six legs, defined by the {L;} = (ui v ci) as

above is attached to the anchor points b;; (i = 1to 6).

5.6.3 — Kinematics of the Universal Joint between the Base and the Legs.

The kinematic formulation for the universal joint between the base and the legs, will help us
find the expressions for the angular velocity vector and the angular acceleration vector of the

legs.

Since, we have now defined a frame attached to the universal joint of the leg where the unit
vectors along the axes of this frame are expressed in world frame {W}, we can now define a

rotation matrix from the {L;} frame to the {W} frame.
W, = [(u) () (cp)] (5.27)
Where, (u;), (v;), (¢;) represent the column vectors u; v; ¢; respectively.

The skew symmetric angular velocity tensor of the i** leg, in world frame, or {L;} w.r.t

{W3}, will be given by
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Wi = Wy, . Wg," (5.28)

Where, Wy ., Tepresents the time derivative of the rotation matrix from {L;} frame to {W} frame.

The matrix wj; is 3 X 3 skew symmetric matrix, having the form —

0 Wi, O,
wif = wLiZl 0 _wLin (5 29)
Wi, O, 0

Therefore, the angular velocity vector of the i*" leg, in world frame, or {L;} w.r.t {W}, will be
given by
-wi; (2,3)

w,=| o (1,3) (5.30)
—wi; (1,2)

The angular acceleration vector of the the it" leg, in world frame, or {L;} w.r.t {W}, will then

be given by
a, = w 5.31
L L (

Where, @, represents the time derivative of ,.
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5.7 — Dynamics of the Base, the Platform, and the Leg.

Fig [5.5], shows the free body diagrams of the base, the leg, and the platform of a GSP. The
base is subjected to the gravity force, and the reaction force and moment between the legs and
the base. Since, the base is assumed to be moving because of the external excitations, we do
not consider any reaction force between the base and the spacecraft bus. The legs are acted
upon by the gravity forces of parts 1 and 2, the reaction force and moment between the legs
and the base, and the reaction force between the legs and the platform. A reaction moment
exists between the base and the legs because of the universal joint. However, since a spherical
joint is present between the legs and the platform, there will be no reaction moment at the top
end of the leg. The platform is acted upon by the gravity force, and the reaction force between

the legs and the platform.

Rin

Ria

-
-
~

_d)’

Figure 5. 5 — Free body diagram of the base, the leg and the platform
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5.7.1 — Dynamics of the Base.

Fig [5.6], shows the forces and moments acting on the base, and, also the position vectors of
the points of application of these forces and moments. The reaction forces and the moment is
shown for only one anchor point of the joint. Similar terminology is applicable for each it*

joint, (i = 1 to 6).

Figure 5. 6 — Forces and moments on the base, in world frame

The position vector of the COM B of the base, in the world frame {W} is given by
B¢ = positionvector of Bg w.r.t {W}
TG = 6 + WRB BBG (532)

Where, Bpg, is the position vector of B in base frame {B}.
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The velocity vg, of the COM of base is given by the time derivative of the position vector

Bg.

Vp

.= Bc= 0+ g x (Wg, Bg,) (5.33)

The acceleration ap; of the COM of base is given by the time derivative of the velocity vector

vBG.

Gg;= Bg=0 + @5 x (Wg, Bgg) + @p x[wp x (Wg, Bgg)] (5.34)

The force balance equation for the base will be —

The expression for the angular momentum of the base will be

Lp = Ipwg + mp(Bg X Vg) (5.36)

Where, I is the inertia tensor of the base in the world frame {W?} and is given by —
Ig = Wg, Bj, Wg," (5.37)

Where, Bj, is the inertia tensor of the base in the base frame {B}.

The expression for the time rate of change of angular momentum of the base will be

Lp =Ipag + @p X (Igwp) + mp(Bg X ag) (5.38)

The moment balance equation for the base will be —

‘B xmgG —ZE,-X R? —ZE,-X R? _zMi: Lg (5.39)
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By x myG _Zzing —EEixR’i‘ _ZMF Is@; + @5 x (Ig@p) + my(B; x agy)

Therefore,

ZExR‘; = Bg xmpG — Iyaty — g X (Igwg) — mp(Bg X Gp,) —Zﬁixk? —ZMi

Let,

VB = EG X mBG— TBa_B — (T)B X (TB(D—B) - mB(TG X m) (54’0)

Therefore,

inxR? = Vg —inxR? —zM,- (5.41)

5.7.2 — Dynamics of the Platform.

Fig [5.7], shows the forces acting on the platform, and, also the position vectors of the points
of application of these forces. The reaction forces are shown for only one anchor point of the

joint. Similar terminology is applicable for each i*" joint, (i = 1 to 6).
The position vector of the COM P of the platform, in the world frame {W} is given by
P; = positionvector of Pg; w.r.t {W}

Pg = 0 + Wg, Pp, (5.42)

Where, Pp, is the position vector of Pg in platform frame {P}.

66



The velocity vp of the COM of platform is given by the time derivative of the position vector

Pg.

(5.43)

Figure 5. 7 — Forces and moments on the platform, in world frame

The acceleration @p, of the COM of platform is given by the time derivative of the velocity

vector Vp..

Grg= Bo=0+ @ x (Wa,Prg) + @ x[@5 x (Wa, Prg)] (5.4

The force balance equation for the base will be —
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The expression for the angular momentum of the base will be

Lp = Ipywp + mp( P X Tpy) (5.46)

Where, Ip is the inertia tensor of the platform in the world frame {W?} and is given by —
Ip = Wg, P, We,” (5.47)

Where, Pj, is the inertia tensor of the platform in the platform frame {P}.

The expression for the time rate of change of angular momentum of the platform will be

Lp = Ipap + @p X (Ipwp) + mp( Pg X Gpy) (5.48)

The moment balance equation for the platform will be —

[_’G meG - zﬁix F:l —Zﬁix F:l = Lp (54‘9)
Py xmpG — Zaix Fo —zaix F* =T, +wp x (Ip@p) + mp(Pg X Gpg)

Therefore,

ZaiXF? = FG meG - ipa_p—w_p X(ipw_p) - mp(P_G X a_pG) —zﬁle:’

Let,

Vp = P¢ xmpG - Ipttp — @p X (Ip@p) - mp( Pg X Tpy) (5.50)

Therefore,
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5.7.3 — Dynamics of the Leg.

Fig [5.8], shows the forces and moments acting on the i*? leg, and, also the position vectors of
the points of application of these forces and moments. Similar terminology is applicable for

each i*" leg, (i = 1to 6).

Figure 5. 8 — Forces and moments on the leg, in world frame

The position vector of the COM 1, of the part 1 of the i*" leg, in the world frame {W} is

given by

liig = positionvector of ljyg w.r.t {W}

lig = b+ (li— L)W, (5.52)
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The velocity v;,,. of the COM of part 1 of the leg is given by the time derivative of the

position vector 1,1 .

V= lic = b, + L, + (li— ln)(®w, x 1) (5.53)

The acceleration a; ;. of the COM of part 1 of the leg is given by the time derivative of the

velocity vector vy, ..

liig = by + i + [; (w; x ) + [; (@; x @) +
(i — L) x )+
(i = liy) [0; x (w; x 1y)] (5.54)

A6 =

Similarly, we find the velocity and acceleration of the part 2 of the leg.

The position vector of the COM I, of the part 2 of the it? leg, in the world frame {W} is

given by

lo¢ = positionvector of lje w.r.t (W}

lp¢ = by + lpn, (5.55)

The velocity vy, of the COM of part 2 of the leg is given by the time derivative of the

position vector I,5¢ .

Vlae = lag = by + lp(®; x ) (5.56)

The acceleration @, of the COM of part 2 of the leg is given by the time derivative of the

velocity vector Uy, ..

q log = b+ lp(w xm) + e, X (@, x )] (5.57)

1226 =
The force balance equation for the it* leg will be —
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Fi + Ri = my lllG + m, llZG — m1G — m2G
Let, Ni = my lllG + m, llZG - mlG — mZG
Therefore,

The force balance equation for part 1 of the i*? leg will be —
Fi=m1 lllG - mlG + F12 (560)

Where, F; = F} + F} is the total reaction force, and Fq, is the interaction force between

parts 1 and 2.

The force balance equation for part 2 of the i*? leg will be —
R; = my l;6 — myG — Fyy (5.61)

Where, R; = R} + R} is the total reaction force, and Fq, is the interaction force between

parts 1 and 2.

The expression for the angular momentum of the i" leg will be

ili = 71@ + TZE + m1( lllG X vlllc) + mz( llZG X vllza (562)

Where, I is the inertia tensor of the part 1 of the leg in the world frame {W?} and is given by

71 = WRLi L WRLiT (5 63)

L
Where, L"TL- is the inertia tensor of the part 1 of the leg in the leg frame {L;}. Similarly, we

can find the inertia tensor I, of the part 2 of the frame.
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The expression for the time rate of change of angular momentum of the platform will be

Ly = i+ L)@, + o; x[(I1 + L)w;] + ml(liIG x alilg) +
my (Tizg X alizc) (5.64)

The moment balance equation for the it? leg will be —
Ly = (@xF{) + (@xF}) + (b; xRY) +

Therefore,
(ﬁi X Fl) + (El X Rl) + Mi = Lli - (E X m1G) - (E X mzc)

Let,
Ei = l"li_ (memlG)—(TZGXmZG) (566)

Therefore,

(ﬁiXFi)+ (BiXRi) + Mi = Ei (567)

5.7.4 — Expressions for the Reaction Forces and the Moments.

In this section we find the expressions for the F{ , F{ , R{ , R} , M; .

Fi: Ni_ Ri
(ﬁiX(Nl-— Rl))+ (BixRi) + Mi = Ei

(ﬁi XNi) + ((Bl_ ﬁ,) XRi) + Mi = Ei (568)

The moment M; is along the c; axis, and can therefore be written as M; = m,; c;
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Dot product Eqn. [5.68] with (b; — @;) and after certain simplifications, we get the expression for

m; as
E;.(b;— @;) — (@;XN;).b;
m; = (b= @) - (_’ )b (5.69)
Ci.(bi—ai)
Therefore,
E;.(b a;) — (a;xN;).b
M, = i ( i z)_ (_z z) i ; (5.70)
C; (bi_al)
Now,
bj—a;, = -7
(E,-—ﬁi)XRi:Ei—M,-—(ﬁixNi)
—liW,XRizE,-—Ml-—(ﬁiXNi) (571)

Cross product Eqn. [5.71] with 1, and after certain simplifications, we get the expression for R} as

—(E; —M; — (@; xN)) x 7,

R = (5.72)
l;
Similarly, we find the expression for F}
Ri = Ni_ Fi
(aiXFi)‘l'(EiX(Ni—Fi))‘l'Mi :Ei
(EiXNi) + ((ﬁl— El) XFi) + Mi = Ei
(ﬁi—Ei)XF,-= E;, — M; — (EiXNi)
lin_lXFi: Ei _Mi - (EiXNi) (573)
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Cross product Eqn. [5.73] with i, and after certain simplifications, we get the expression for F}' as

o (Ei —M; — (b xNi)) X T,
i — li

(5.74)

To find the expression for R{ . From the force and moment balance equation of the base we have,

zRg =mpG — mgB; —zRy
ZEiXR? = VB —ZELXR? _le

The axial force R{ can be written as, R{ = r§ n; , where r{ is the magnitude of the axial force.

Substituting R} = r{ 7; in above equations and writing the summation terms in the LHS of the

equations, as a matrix multiplication, we get

i
— — — a f—
[(Bs x ) (b x W) . (Be x )| |'Z| = [Vo =D BixRY =) M| (5.75)
e
ri
a
i . el || = [msG - myB, —ZR}'] (5.76)
e

Combining the above two equations, we get the matrix of the values of r{ as,

e b *—
AL [E ) Gxm) - Goxm) o 2Eem M

nq n, > n
- 1 2 mpG — mgBg _ZRi
6

The axial force RY can be written as, R¢ = r¢ 7; , for each i leg.
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To find the expression for F{ . From the force and moment balance equation of the base we

have,

ZF? =mpG — mpP'G —ZF?
ZﬁixF? = Vp —ZELXF:[

The axial force F{ can be written as, Fif = fi n; , where r{ is the magnitude of the axial force.

Substituting F{ = f{ m; in above equations and writing the summation terms in the LHS of the

equations, as a matrix multiplication, we get

i
(@ x 7)) @ xR . @ x el [[2| = [vo =Y axr] 677
I
i
[y Tz .. T f:z _ [m,,a— mpPy —ZF?] (5.78)
I

Combining the above two equations, we get the matrix of the values of r{ as,

n, n; ng

4 -
f; _ [(51 Xm) (@ Xnz) - (@ in_e)]_l l Ve _Zai *Fi
It

The axial force F¢ can be written as, F¢ = f¢ 7; , for each i*? leg.
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5.8 — Differential Equation of Motion to be solved to get platform position and orientation.

From the force balance equation for part 1 of the leg, we get

Fi =my lllG - m1G + FlZ (580)

From the force balance equation for the platform, we have,

—mpP"G + mPG = ZFl = z [ml lllG — mIG+F12] (581)

Combining the above two equations, substituting the expression for 1, , and performing

certain simplifications we get the following equation

. l; . 21 liq . l
—mPPG + mPG = mlz dl — Ll(al _bl) 1 - = —Llllni —Zlill—zni
; l; l; l;
Z mlG + FlZ (582)

In vibration isolation applications, the interaction force Fq, is characterised by the stiffness

and damping elements that are used inside the legs.

For example, suppose that a negative stiffness mechanism having Torsion Spring
Configuration 1 is used as the stiffness element. Then the expression for Fq, will be, (Refer

Chapter 4, section 4.2.1)

R_m]

“_”_[ [ sina x

Fi,=K,x —3. —. . 5.83
wen Lo [ (R—\/Rz—x2>] VRZ — x? (5.83)
sin |a — -
l sina
Where, the displacement x will be given by.
x= ;- 1,) (5.84)
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Where, [; is the instantaneous leg length and [, is the initial leg length.

In Eqn. [5.82], the terms P¢ , d, , d, [, I,,1;,n;are all functions of the platform position and
orientation. Hence the equation becomes an implicit differential equation and needs to be

solved in the form

Eqn =0 (5.85)

From the above force balance equation Eqn. [5.82], we will get three differential equations.
Similarly, three more differential equations are obtained from the moment balance equation.
These six differential equations are then solved to get the solution for the platform position and

orientation, as a response of the platform of the GSP to the base excitations.

5.9 — Conclusion.

1) We have derived the analytical formulation of a 6-6 GSP, when its base is subjected to
external excitations, or considering a moving base.

2) The expressions for the base velocity and acceleration, platform velocity and
acceleration, leg extension rate, and the angular velocity and acceleration of the legs,
have been discussed in the section on kinematics.

3) In dynamics section, we have applied newtons laws to formulate the equations of
motion of the base, the platform, and the legs. These equations are used to derive the
expressions for the reaction forces and moments.

4) Finally, we have seen the analytical formulation of the differential equation that needs

to be solved to get the solution for the platform position and orientation.
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Chapter 6 — Conclusion and Scope for Future Work.

6.1 — Conclusions

1)

2)

3)

4)

5)

6)

7)

8)

9)

Negative Stiffness mechanisms can give us a system with low dynamic stiffness,
without compromising the static stiffness of the system.

The oblique springs mechanism is a simple and effective mechanism to get NS in
the system. However, it has only one unknown control parameter to control the
behaviour of the system.

The response of the oblique springs system can be studied for small values of the
normalized displacement, by approximating the oblique springs mechanism to
standard duffing’s oscillator.

The response obtained from the duffing’s approximation shows that the system
exhibits the jump phenomenon at certain frequency. This sudden change in the mass
displacement can cause system failure, and need to be handled appropriately.
Three different configurations for generating negative stiffness in a simple spring
mass system are discussed and their force and stiffness formulation is done.
Torsion springs are used in two different configurations as the negative stiffness
element.

Torsion spring Configuration 1 has four control parameters, which provide higher
level of control over the stiffness behaviour. However, higher number of control
parameters may lead to higher deviation from QZS condition.

Torsion spring Configuration 2 and Negative Helical Spring Configuration has only
one control parameter. It is theoretically possible to get zero dynamic stiffness in
the system under certain mathematical condition on this control parameter.

We have derived the analytical formulation of a 6-6 GSP, when its base is subjected

to external excitations, or considering a moving base.

10) The expressions for the base velocity and acceleration, platform velocity and

acceleration, leg extension rate, and the angular velocity and acceleration of the

legs, have been discussed in the section on kinematics.
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11) In dynamics section, we have applied newtons laws to formulate the equations of
motion of the base, the platform, and the legs. These equations are used to derive
the expressions for the reaction forces and moments.

12) Finally, we have seen the analytical formulation of the differential equation that

needs to be solved to get the solution for the platform position and orientation.

6.2 — Scope for Future Work.

1)

2)

3)
4)

5)

6)
7)

Experimental and software validation of the stiffness behavior of the newly introduced
NS configurations.

To find the deviation in the stiffness values of the system, if the values of the control
parameters deviate from their ideal values, as required to satisfy the QZS condition.
The effect of the deviation of each control parameter, on the error in the stiffness of the
system.

To find the dynamic response of a vibration isolation system, consisting these NS
configurations, as the stiffness elements, when excited in a single degree of freedom.
To study the dynamic response of the GSP for six degree of freedom vibration isolation.
To analytically find the response of the platform of the GSP, when the base is excited
in six degrees of freedom, for both conventional GSP and MGSP, when the prismatic
joints in the legs have the NS configurations discussed in chapter 4.

To perform experimental and software validation of the response of the GSP.

To invent newer configurations for NS characteristics, to get the dynamic stiffness and

natural frequency of the vibration isolation system as low as possible.
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Appendix A

A.1 — Derivation of Eqn. [4.2]

In this section we derive the following equation.

2ky

n=

cosO.sin(u+ y).l

Refer Fig [4.2],

_ Fncos6

F,cos0=2f ; f 2

(A.1)

M= fsinf .1 (A.2)

Where, M is the moment about the center of the torsion spring, due to the force f on its legs.
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F, cos@

> sinff .l = ky
2ky
F,= ————— A.3
" cos@sinf .1 (4.3)
From the figure,
B=pn+vy
Therefore,
2k
F, = L4 (4.4)

cosO.sin(u+ y).1l

A.2 — Derivation of Eqn. [4.4]

In this section we derive the following equation.

R—ﬁﬁt7?

l sina

y=a—u—{

Kv
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Refer Fig [4.2], and Fig [4.3].

) o
sina =
l.(a—p—vy)
B o
Cal it l sina
= 8 A5
y=a-H l sina (4.5)

From Fig [4.2], and Fig [4.3], we see that the & is the horizontal displacement of the ends of
the legs of the torsion springs, which is same as the horizontal displacement of the center of

the torsion springs.

Therefore,
8= (ri+ 1) — Jr1+ 1ry)2 — x2 (A.6)
_ (ri+ 13) — J(ri+ 12)2 — %2 L7
y=a-H l sina (4.7)
Let, (rl + rz) =R
Therefore,
B R — VR? — x? s
y=a—H l sina (4.8a)
R — VR? — x?
sin(u+ y) = sinja — - (A.8b)
l sina
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A.3 — Derivation of Eqn. [4.15]

In this section we derive the following equation.

{a - (2 sin"1B + M[l - WD}
k

fn = L. (c.V1 - B?)(V1- x2)

Refer Fig [4.9], and Fig [4.10].

M =F,cos0 . h

(A.9)

m "l
‘e
Ke F, Fs’ 1sf .pcs :
P
6

Forverysmalle, h =1 cos (ﬁ/z)

(4.10)

(A.11)



0, = + +64ML A.12
(= a—(B+ &+ 3 (4.12)

For, the expressions of 6;and 0, , refer the chapter on torsion springs from the book

Shigley’s Mechanical Design.

2 21

P—D
= 2 si ‘1<—) A.13
B=2sin"" (—; (4.13)

yields )
o0=le — e=7 (A.14)
L (P-D\ &) 64ML

0= a— {2 s () + 7 |+ 3o (4.15)

(ri+ 1)% = (r{+ rp, — 6% + x?

8= (ri+ 1) — Jri+ 1r)2— 22

s e s w16

(ri+ 72) -

P—D\ &) 64ML
M=k0, =kija—{2 '—1( ) —} —}
t {“ { sin 1)t 757 3natE

Therefore,
. 1 (P—D o)
k{a— {2 sin ( 2T )+T
M= { B 64kL} (4.17)
3wd*E
Therefore,
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o Popy k{a—{Zsin'l(Pz_lD)+%}}
o oo (5) —

"~ 3nd*E

é x 2
cosf = 1-— = 1—( ) (A.18)
Trq + T, 1 + T,

F, = (A.19)

Substitute the expression for k for torsion springs in the term {1 - 361::)9}
{ 64kL } _ l
3md4E) 3mN,D
Therefore,
. /P-D\ &
k{a—{Zsm ( 2T )+T
F, = (A.20)

Substituting the expression for &

o {2 Gy 2 - -G
[t st} (1 C22} (- )

Fy

(A4.21)
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For,

{a - (2 sinipy T T2y g EZ])}
F,=k (A.22)
" L. (€.V1 - B?) (V1- %2
A.4 — Derivation of Eqn. [4.23]
In this section we derive the following equation.
A g (g- A _ 2_ 52
. Azk{ AZ[(r1+ T3) \/(r1+ T3) x]}
" J@r1 + 1)? — 2
(ri+ 12)
Refer Fig [4.12].
Fnc050: iz k(d—-y) (4.23)

A1 6 = Al y
_Aig A.24
y= 2, (4.24)
Therefore,
A, Ay
F, cos® = A—Zk(d—A—Z(S) (A4.25)
(ri+ ry— 9)
cosf= ———— A.26
(ri+ 732) ( )
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'3\\"}

KV =
P

NNNVNNNANNNNNNN

Y sissyiiiiiiiiiiiiiiiiiiidids

(ri+ 1)% = (r1+ ry — 8%+ x?

6= (ri+ 1y — \/(r1+ ry)? — x2

é X 2
SLERS S
(r1+ 732) rit+r;

\/(Tl + 1)% — x?

cos O =
(ri1+ 732)
Therefore,
T+ 1y)%2 — x2 A A
Fn‘/(1 2) =—1k(d——16)
(ri+ 13) A; A,
Therefore,

- j—;k {d- ﬁ—;[(rl t 1)~ gt 2 - 2]

Jr+ )2 — x2
(r1+ 13)
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(A.28)

(A.29)

(4.30)
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