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Abstract 

The motion of any spacecraft is divided into two stages – the launch and the in-orbit motion. 

Consequently, the loads acting on the spacecraft are also of different nature in both these 

motions. Both these loads propagate through the spacecraft structure, which is primarily made 

of honeycomb sandwich panels. These sandwich panels are made of outer face sheet and inner 

honeycomb core. Both these components are made of aluminium of different grades. The loads 

acting on the spacecraft propagate through this structure and are critical for the subsystems 

mounted on these structures.  

The launch loads are characterized by high amplitude (reaching up to 10 g’s) and low 

frequency. These loads are further amplified by the low inherent damping characteristics of the 

sandwich panels. The in-orbit loads are extremely low amplitude and low frequency vibrations, 

known as micro-vibrations. These micro-vibrations are critically responsible for the pointing 

accuracy of the satellites. These have been discussed in detail in the upcoming chapter. 

Several researches have been carried out to study the nature of these micro-vibrations and their 

isolation techniques. These have been discussed in the chapter on literature review. The most 

widely used technique for micro-vibration isolation is the use of Gough Stewart Platform 

(henceforth abbreviated as GSP), for the six degrees of freedom vibration isolation between 

the source and the body, or the body and the vibration sensitive equipment. The most important 

parameter that governs the isolation characteristics of the GSP are the leg stiffness and the leg 

damping characteristics. 

This work focuses on studying the response of a GSP to Negative Stiffness (NS) characteristics 

and consequently Quasi Zero Stiffness (QZS) characteristics in the legs of the GSP. We first 

reproduce the analytical results of the most basic negative stiffness mechanism – the Oblique 

Springs Mechanism. Further, the behaviour of the GSP is studied when oblique springs 

mechanism is introduced in the legs of the GSP. The kinematic and dynamic formulation for 

equations of motion of the GSP have been done. These equations then help to get the analytical 

results.  

Further we introduce three different types of NS mechanisms, two utilizing torsion springs for 

generating NS characteristics, and one with helical compression springs for NS characteristics. 

The static analysis for these configurations is done, and the force-displacement and stiffness-

displacement characteristics are studied. The theoretical conditions for the QZS condition are 

being derived.  
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The scope of this work is limited to the analytical formulation of the motion of a GSP and the 

force and stiffness analysis of the newly introduced NS mechanisms. Further, experimental 

study and verification using software can be done, to verify the results obtained from analytical 

formulation. Also, some corrective measures can be undertaken to correct the deviations of the 

actual characteristics from the analytical results. 
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Chapter 1 – Introduction 

 

1.1 - Introduction to Micro-Vibrations 

Vibration is a mechanical phenomenon characterized by the oscillatory motion of a body or 

particle about its stable equilibrium position, typically resulting from dynamic imbalances, 

external excitations, or internal structural responses. Micro-vibrations refer to extremely low-

amplitude vibrations, generally in the range of a few micro-g’s (µg), where 1 µg equals 9.81 × 

10⁻⁶ m/s². These minute oscillations can occur over a broad frequency spectrum, typically from 

a few hertz (Hz) up to 1 kilohertz (kHz). Although subtle, micro-vibrations can significantly 

impact the performance and precision of high-sensitivity instruments, especially in aerospace, 

optics, and microelectromechanical systems (MEMS) applications. 

 

1.2 - Ill Effects of Micro Vibrations 

Micro-vibrations, though low in amplitude, can have significant adverse effects on sensitive 

systems and human perception. In optical systems, such as telescopes or imaging satellites, 

these vibrations can lead to deviations in the line-of-sight, resulting in image blurring, reduced 

resolution, and degraded data quality. Precision instruments like electron microscopes, mass 

spectrometers, nuclear magnetic resonance (NMR) systems, and magnetic resonance imaging 

(MRI) scanners are particularly susceptible to micro-vibrations. Even minute oscillations can 

disrupt measurements, cause signal noise, or lead to misalignments, ultimately compromising 

the accuracy and reliability of results in laboratory settings. Moreover, individuals with 

hyperacusis—a heightened sensitivity to sound—may find certain low-frequency vibrations 

distressing, as their brain may amplify or misinterpret these mechanical stimuli, leading to 

discomfort, anxiety, or pain. In such cases, micro-vibrations not only interfere with technical 

operations but also negatively affect human well-being. Therefore, effective isolation and 

damping of vibrations are critical in environments requiring high precision and sensory 

comfort. 
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1.3 - Applications of Micro Vibrations 

Micro-vibrations have diverse applications across medical and industrial fields due to their 

controlled and precise nature. In healthcare, micro-vibration therapy is used to manage disuse 

syndrome by promoting muscle relaxation, reducing muscle stiffness, and increasing skin 

blood flow, thereby enhancing patient recovery. In advanced manufacturing, particularly 

semiconductor fabrication, micro-vibration measurement systems play a critical role in 

monitoring and isolating vibrations to protect ultra-sensitive equipment, improve process 

accuracy, and ensure personnel safety. Additionally, syringe micro-vibrating devices have 

shown promise in medical procedures by improving the diffusion of injected anesthesia into 

tissues, resulting in more effective and less painful administration. 

 

1.4 - Micro Vibrations in Spacecrafts 

Satellites are constructed from very lightweight materials and micro-vibrations can be easily 

transmitted through the flexible structure towards sensitive payloads or on-board instruments 

potentially causing severe performance degradation. In observation missions, micro-vibrations 

reduce image quality by introducing jitter motion during the exposure interval of the optical 

instruments. For Example – The line-of-sight jitter on the detector plane shown in Fig. 4a 

introduces the significant distortions visible in Fig. 4b. Image distortions can be corrected on 

the ground by dedicated algorithms 

 

Figure 1. 1 a – Satellite pointing error (blue line) together with requirement (red dot), b – Resulting 
effects on image quality, c – Comparative result with corrective measures and reduced imager motion 

a b c 
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1.4.1 - Sources of Micro-Vibrations in Spacecrafts 

When classified on the basis of origin, micro-vibrations are a result of both external and internal 

disturbances, as shown in the figure below. However, internal disturbances are far more 

important.  

 

Depending on their temporal behaviour, they can be further classified as –  

a) Single disturbance events –  

 Intermittent impulsive disturbances with small dynamic amplitudes 

 Frequent causes – sudden stress release, micro cracking in laminates, buckling 

of foils, etc. 

b) Continuous disturbances –  

 Also known as vibratory loads 

 Either narrowband harmonic disturbances or broadband perturbations 

 Causes – infrared sensors, solar array drive mechanisms, cryocoolers, electric 

motors, data storage devices, rotating equipment such as Momentum/Reaction 

Wheel Assemblies and Gyroscopes. 

Figure 1. 2 - Sources of Micro-Vibrations in Spacecrafts 
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Of all possible sources, the ones generated by Reaction Wheel Assemblies (RWA) or Control 

Moment Gyroscopes (CMG) are the most significant. These RWA or CMG are used for the 

Attitude and Pointing Control of the spacecraft. 

 

1.4.2 - Attitude Control and Spacecraft Flywheel Rotor Systems (SFRS) 

1.4.2.1 - Attitude Control –  

The control of a spacecraft’s angular orientation and rotational motion, whether with respect 

to the celestial reference frame or a target body such as Earth or the Moon, is referred to as 

attitude control. The Attitude Control System (ACS) is responsible for maintaining and 

adjusting this orientation and typically consists of three primary subsystems: attitude sensors, 

which provide real-time measurements of the spacecraft’s orientation; a control algorithm or 

controller, which processes sensor data and determines the required corrective actions; and 

actuators, which execute the necessary torques or forces—such as reaction wheels, control 

moment gyroscopes, or thrusters—to achieve the desired attitude. 

 

1.4.2.2 - Spacecraft Flywheel Rotor Systems (SFRS) – 

A spacecraft flywheel rotor system is a type of momentum exchange device used in attitude 

control to manage the orientation of the spacecraft without expending propellant. It consists of 

a high-speed spinning rotor mounted on a motor, where changes in the wheel’s angular 

momentum produce a reactive torque on the spacecraft due to the conservation of angular 

momentum. By accelerating or decelerating the flywheel, precise control of the spacecraft’s 

attitude can be achieved along a specific axis. 

 

1.4.2.3 - Types of SFRS –   

 Fixed Shaft Type – Reaction Wheel Assemblies (RWA), Momentum Wheel 

Assemblies (MWA) 

 Non-fixed Shaft Type – Control Moment Gyroscope (CMG) 

The Flywheel and the Bearing Systems are the core components of the SFRS.  

The bearing systems have two categories – Mechanical bearings and Magnetic bearings. 

Presently most of the SFRS in service are supported by mechanical rolling bearings. 
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1.4.2.4 - Disturbance Sources of Micro-Vibrations in SFRS 

 

Figure 1. 3 - Disturbance Sources of Micro-Vibrations in SFRS 
The above diagram summarises the different disturbance sources of micro-vibrations, that are 

present in the spacecraft. 

 

1.5 - Motivation – Why are micro-vibrations in spacecraft a concern? 

 The pointing stability of the Hubble Space Telescope (HST) of NASA is required to be 

less than 0.007 arcsec within 24 hr. 

 The Space Interference Mission (SIM) and Advanced Technology Large Space 

Telescope (ATLAST) require pointing stability to reach 0.0016 arcsec, and the 

vibration interference to the platform is required to be below 10-6 g level. 

 For a laser beam with a diameter of 100 mm emitted by a laser communication satellite, 

a jitter of 0.001 radians at a distance of 500 km will reduce the beam intensity received 

by the receiver by 100 times. 

 The James Webb Space Telescope (JWST) requires that the line of sight motion should 

be 4 milli arc seconds. 
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1.6 - Existing Isolation Systems 

The following micro-vibration isolation systems are currently used in the existing spacecrafts. 

1) HST – Viscous Fluid Dampers, to attenuate axial disturbances 

2) Defence Satellite Communication Systems III Spacecraft – Four damped stainless steel 

spring isolator 

3) Chandra X-Ray Observatory – Hexapod isolator to achieve multi dimensional vibration 

isolation. 

 

1.7 - Organization of the Thesis 

Chapter 2 – Literature Review 

Chapter 3 – Concept of Negative Stiffness and Quasi Zero Stiffness 

Chapter 4 – New Possible Configurations for Negative Stiffness 

Chapter 5 – Analytical Formulation of Gough Stewart Platform 

Chapter 6 – Conclusions and Scope for Future Work  
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Chapter 2 – Literature Review and Problem Formulation 

 

2.1 – Introduction 

This chapter highlights previous pivotal investigations into the area of vibration isolation, 

particularly, micro-vibration isolation for spacecrafts. Through the literature review it is known 

that several researchers have worked on this problem statement and have proposed solutions 

that have been on board critical space missions. However, since the space applications are 

dynamic in nature, and owing to several constraints in these difficult missions, different 

missions require different ways of tackling this problem. Hence, this field of research is still 

evolving. 

The use of dynamic stiffness elements, or High Static but Low Dynamic Stiffness (HSLDS) 

configurations have proven to be an effective way to achieve high level of micro-vibration 

isolation. Hence, there is scope in exploring newer and more effective HSLDS configurations 

for varied space applications. These HSLDS configurations are a result of the use of Negative 

Stiffness (NS) elements in vibration isolation systems. 

 

2.2 – The theory of Single Axis Vibration Isolation 

A single-axis isolator is shown in Fig. [2.1], where 𝑴 is the mass of the sensitive equipment, 

and 𝑲 and 𝒄′ are the stiffness and the damping of the isolator, respectively. The transfer 

function of the passive vibration isolator can be written as 

 

Figure 2. 1 - Schematic of a Single Axis Isolator 
 

𝑮(𝒔) =  
𝒄ᇱ𝒔 + 𝑲

𝑴𝒔𝟐 + 𝒄ᇱ𝒔 + 𝑲
 (𝟐. 𝟏) 
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The undamped natural frequency of the transfer function is 𝝎௡, and the damping ratio is 𝜻. 

Substituting 𝒔 = 𝒋𝝎, into Eqn. [2.1] and letting the frequency ratio 𝒈 =  𝝎
𝝎𝒏ൗ , we get Eqn. 

[2.2], to represent the vibration isolation effect. 

𝝁𝑭 =  
|𝒇𝒔|

|𝒇𝒅|
=  ඨ

𝟏 + 𝟒 𝜻𝟐𝒈𝟐

(𝟏 −  𝒈𝟐)𝟐 +  𝟒 𝜻𝟐𝒈𝟐 
 (𝟐. 𝟐) 

In Fig. [2.2], it is evident that if the damping ratio 𝜻′ increases, the resonance amplitude 

decreases. Unfortunately, the high-frequency attenuation decreases as well. Therefore, the 

design of the isolator involves a tradeoff between the resonance amplitude and the high 

frequency attenuation. The ideal isolator should include frequency dependent damping, with 

high damping below the critical frequency √𝟐𝝎𝒏 to reduce the amplification peak and low 

damping above √𝟐𝝎𝒏 to improve the decay rate. 

 

Figure 2. 2 - Frequency response curves of the single axis isolator 

 

 

 

 

 



9 
 

2.3 Previous literature 

2.3.1 – A novel vibration isolation system for reaction wheel on space telescopes 

Zhang, Y., Guo, Z., He, H., Zhang, J., Liu, M., & Zhou, Z. (2014). A novel vibration isolation 

system for reaction wheel on space telescopes. Acta Astronautica, 102, 1-13. [] 

 

• This study aims to validate the feasibility and effectiveness of this new vibration 

isolation system having TMDs and NSS from a theoretical perspective.  

• First, the integrated satellite dynamic model is constructed, including the RWs and the 

vibration isolation systems.  

• Next, its frequency domain characteristics are described, and the application of the 

vibration isolation system for RWs is presented.  

• Finally, the effective attenuation of RW disturbances is illustrated via the new vibration 

isolation system, and its safety performance is verified with numerical simulations.  

 

Figure 2. 3 - Proposed Single Strut with Negative Stiffness Characteristics 

 

Figure 2. 4 - Comparison curves of disturbance attenuation when the damping coefficient 
is 200 Ns/m 
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Figure 2. 5 - Comparison curves of disturbance attenuation when the damping coefficient 
is 130 Ns/m 

 

 

2.3.2 – Dynamically isotropic Gough–Stewart platform for micro-vibration isolation in 

spacecraft 

Singh, Y. P., Ahmad, N., & Ghosal, A. (2024). Dynamically isotropic Gough–Stewart platform 

for micro-vibration isolation in spacecrafts. Mechanism and Machine Theory, 201, 105735. 

 

• This paper deals with the modeling, simulation, and experimental validation of a 

Modified Gough–Stewart Platform (MGSP) i.e. 2 radii Gough–Stewart Platform for 

vibration isolation. 

• Here the first six natural frequencies corresponding to the first six degrees of freedom 

are nearly the same, enabling effective attenuation of the first six modes. 

• The approach accommodates various payload configurations, including variable center 

of mass and mass/inertia properties. 

• The validation of the design is demonstrated using the finite element software ANSYS, 

and the model is further refined to incorporate flexural joints and structural damping. 

• A prototype of the MGSP featuring flexural joints was tested, and it yielded 

experimental outcomes in close agreement with the finite element analysis results. 
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• The first six natural frequencies were close to the expected 29 Hz and vibration isolation 

of about 22 dB/octave.  

• The close agreement among analytical, finite element, and experimental outcomes 

underscores the efficacy of our design approach and the suitability of an MGSP for 

micro-vibration isolation applications in spacecraft. 

 

Figure 2. 6 - (a) Transmissibility curve for a non-isotropic design, (b) Modified Gough-
Stewart platform (MGSP) 

 

 

Figure 2. 7 - Experimental result for translation modes (i.e. X, Y, and Z modes) 
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Chapter 3 – Negative Stiffness and Quasi Zero Stiffness 

 

3.1 – Introduction 

 

Mechanical Stiffness refers to the material’s or a structure’s ability to resist the external force 

acting on it, or resist the deformation caused by the external force. A stiffer material or structure 

undergoes lower deformation or deflection (in case of bending loads). Material stiffness refers 

to the resistance to deformation offered by a material in any form. Material stiffness is a tensor 

quantity and is different for deformations in different directions. The modulus of elasticity is a 

direct measure of the material stiffness in the elastic limit, where the stress is proportional to 

strain. Structural stiffness however refers to the ability to resist deformation, of a structure 

made from a particular material. The structural stiffness can change if the material changes, 

and, also if the geometry of the structure changes. For example, a straight steel rod has different 

bending stiffness as compared to a curved steel rod. 

Since, stiffness is a measure of the material’s or structure’s ability to resist external forces, it 

plays an important role in determining the vibration isolation characteristics of a structure. In 

mechanical structures or machinery, springs are the most widely used stiffness elements to 

counter the effect of unwanted external disturbances. Hence, it is necessary to understand the 

stiffness characteristics of springs.  

In the coming section, we will discuss the stiffness characteristics of helical compression and 

torsion springs. 

 

3.2 – Stiffness Characteristics of Springs 

3.2.1 – Helical Compression Springs. 

Fig [3.1], shows a helical compression spring being subjected to a compressive force. The 

force-deflection relation for the spring is obtained using Castigliano’s theorem, as follows –  

𝒚 =  
𝟖𝑭𝑫𝟑𝑵

𝒅𝟒𝑮
 (𝟑. 𝟏) 
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The stiffness or spring rate of the spring is given by 

𝒌 =  
𝝏𝑭

𝝏𝒚
=  

𝒅𝟒𝑮

𝟖𝑫𝟑𝑵
 (𝟑. 𝟐)  

Where –  

𝑦 = 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

𝐹 = 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 

𝑑 = 𝑤𝑖𝑟𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

𝐺 = 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑅𝑖𝑔𝑖𝑑𝑖𝑡𝑦 𝑜𝑓 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝐷 = 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑆𝑝𝑟𝑖𝑛𝑔 

𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑡𝑢𝑟𝑛𝑠 

 

Figure 3. 1– Helical Compression Spring under compressive force 
 

From Eqn. [3.1], we can see that the force-deflection relation for the helical compression spring 

is linear in nature. And the expression for the spring stiffness is only a function of material and 

geometrical properties of the spring. It does not depend upon the displacement of the point of 

application of force, from the equilibrium position. Thus, the helical compression spring has 

linear stiffness characteristics. 
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3.2.2 – Torsion Springs. 

Fig [3.2], shows a torsion spring being subjected to an external force on its leg, that causes a 

moment about the center O of the spring. The moment-angular deflection relation for the spring 

is obtained using Castigliano’s theorem, as follows – 

𝜽𝒕 =  
𝟔𝟒𝑴𝑫𝑵𝒂

𝒅𝟒𝑬
 (𝟑. 𝟑) 

The stiffness or spring rate of the spring is given by 

𝒌𝒕 =  
𝝏𝑴

𝝏𝜽𝒕
=  

𝒅𝟒𝑬

𝟔𝟒𝑫𝑵𝒂
  (𝟑. 𝟒) 

Where –  

𝜃௧ = 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

𝑀 = 𝑀𝑜𝑚𝑒𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 

𝑑 = 𝑤𝑖𝑟𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

𝐸 = 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑜𝑓 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝐷 = 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑆𝑝𝑟𝑖𝑛𝑔 

𝑁௔ = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑡𝑢𝑟𝑛𝑠 

 

Figure 3. 2– Deflection in Torsion Spring under external force 
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From Eqn. [3.3], we can see that the moment-angular deflection relation for the torsion spring 

is linear in nature. And the expression for the spring stiffness is only a function of material and 

geometrical properties of the spring. It does not depend upon the angular displacement of the 

leg, from the equilibrium position. Thus, the torsion spring has linear stiffness characteristics. 

 

In chapter 2, we discussed the single spring mass damper system for vibration isolation, in 

section [], which uses helical compression spring as stiffness element. This is the most basic 

isolation system that can be used to isolate the disturbances in a single degree of freedom. It 

works in two ways, one is to isolate the base from the internal disturbances in the payload, and 

the second is to isolate sensitive payloads from disturbances coming from the base. This 

isolation system uses only a single positive stiffness element, with constant stiffness.  

Now, for any system to undergo vibrations, the two important properties it should have, are 

stiffness and inertia. The property of inertia comes from the mass present in the system. We 

have also seen in chapter 2 that to have a vibration isolation over a wide range of frequency, it 

is desired to have a lower natural frequency in the system. Also, in micro-vibration isolation 

for spacecraft applications the range of frequencies of loads is quite low. Hence, to avoid 

catastrophic failures at resonant frequencies, the natural frequency of the system should be low. 

In order the have lower natural frequency, the system must have lower stiffness values. 

However, lower values of stiffness can affect the load carrying capacity of the system. Thus, 

the conclusion is that a good vibration isolation system must have high static stiffness to carry 

the desired payloads, and, also lower dynamic stiffness to lower the natural frequency of the 

system. This desire provides us the motivation to study and use isolation systems with variable 

stiffness elements, which can provide very low values of stiffness and consequently natural 

frequency at equilibrium position. A potential way to achieve variable structural stiffness in a 

system is to use negative stiffness configuration. 
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3.3 - Concept of Negative Stiffness and Quasi Zero Stiffness  

In certain mechanisms, there may exist a stiffness element, which is configured in such a way; 

that the force applied by this element on the mass, in response to the deflection of the mass 

from its equilibrium position, is opposite to the restoring force, or in the direction of the 

deflection. This stiffness element tries to reduce the restoring force acting on the mass, and 

subsequently the stiffness of the entire system. The stiffness offered by such an element in the 

system is termed as Negative Stiffness (NS). The use of negative stiffness elements in a system 

is an effective way to achieve lower dynamic stiffness. 

The Negative Stiffness (NS) offered by such an element tries to counter the actual Positive 

Stiffness (PS) present in the system, thereby reducing the system stiffness. In such a case, it 

may so happen that the positive and negative stiffness cancel out each other, to theoretically 

give a net zero stiffness in the system at a certain point, or sufficiently close to zero over a 

range of deflection. This phenomenon is known as the condition of Quasi Zero Stiffness (QZS). 

The mathematical condition of QZS is a function of the stiffness and geometrical parameters 

of the system. If this mathematical condition is met in practical scenarios, the system can have 

absolute zero stiffness at a certain point, or sufficiently close to zero over a range of deflection. 

If the stiffness and geometrical parameters of the system have mathematical values such that 

there is a certain error in the mathematical condition, the system will still have variable stiffness 

characteristics, but may not have absolute QZS characteristics. 

The most basic and widely studied configuration for negative stiffness is the Oblique Springs 

Mechanism. In the following section we reproduce certain results of this configuration as a 

base for our further study of negative stiffness configurations. 
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3.4 – The Oblique Springs Configuration for Negative Stiffness in a system 

 

3.4.1 – Analytical Formulation for Force and Stiffness 

Fig [3.3], shows a schematic diagram of the oblique spring configuration. It consists of a central 

helical spring that takes up the deadweight of the payload mass. Two other springs are also 

connected to the mass. At their natural length, the two other springs are in oblique direction 

(hence the term oblique springs used). However, at the equilibrium position, the oblique springs 

are horizontal with precompression. Due, to this precompression the oblique springs apply 

force on the mass in horizontal direction, with no vertical component at equilibrium position. 

Thus, at the equilibrium position, the net forces acting on the system are zero. 

When, the mass is subjected to an upward vertical displacement of 𝒙 , the central spring offers 

a restoring force in downward direction. However, the oblique springs release some amount of 

their precompression, and a net upward vertical force acts on the mass due to these springs. 

This upward force reduces the restoring force acting on the mass.  

 

Figure 3. 3 – Oblique Springs Configuration 
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From Fig [3.3], the expressions for the forces acting on the mass are –  

𝑭𝒑 =  𝑲𝒗𝒙 (𝟑. 𝟓) 

𝑭𝒏 =  𝒌 ቀ𝑳𝒏 −  ඥ𝜶𝟐 +  𝒙𝟐 ቁ (𝟑. 𝟔) 

Where, 𝑭𝒑 𝒂𝒏𝒅 𝑭𝒏, are forces due to the central and the oblique springs respectively.  

The net vertical force acting on the mass will be 

𝑭 =  𝑭𝒑 −  𝟐𝑭𝒏 𝐬𝐢𝐧 𝜽 

𝑭 = 𝑲𝒗𝒙 − 𝟐𝒌 ቀ𝑳𝒏 −  ඥ𝜶𝟐 +  𝒙𝟐 ቁ .
𝒙

√𝜶𝟐 +  𝒙𝟐 
  

𝑭 = 𝑲𝒗𝒙 − 𝟐𝒌𝒙 ൤
𝑳𝒏

√𝜶𝟐 +  𝒙𝟐 
 − 𝟏൨ (𝟑. 𝟕)  

 

This expression for force can be normalized, by normalizing the displacement 𝒙 by 𝜶, and 𝑭 

by 𝑲𝒗𝜶. Thus, the expression for the normalized force will become –  

𝒇 =  𝒙ഥ −
𝟐𝑲

𝑲𝒗
𝒙 ቎

𝑳𝒏

𝜶

√𝟏 +  𝒙ഥ𝟐 
 − 𝟏቏ (𝟑. 𝟖) 

 

Where, 𝒇 is the normalized force and 𝒙ഥ is the normalized displacement. 

The normalised stiffness of the system can be obtained by differentiating the expression for 𝒇 

w.r.t 𝒙ഥ. Thus, the expression for the normalised stiffness will be –  

𝑲𝒐
തതതത =  

𝝏𝒇

𝝏𝒙
= 𝟏 −

𝟐𝑲

𝑲𝒗
቎

𝑳𝒏

𝜶
(𝟏 +  𝒙ഥ𝟐)𝟏.𝟓

 − 𝟏቏ (𝟑. 𝟗) 

 

From Eqn. [3.8], we see that the expression for the net restoring force acting on the system is 

not a linear function of the displacement. And from Eqn. [3.9], we see that the stiffness of the 

system is not constant, but is now a function of the displacement of the mass from the mean 
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position. Thus, the oblique springs configuration provides us a variable stiffness mechanism 

that can keep the dynamic stiffness of the system low as required. 

The force applied by the oblique springs on the mass is in the direction of the displacement, 

thus providing a negative stiffness in the system. For the system to exhibit quasi zero stiffness 

(QZS) characteristics, the system must have zero stiffness at the equilibrium position. Solving 

the above expression for 𝑲𝒐
തതതത , yields the following condition. 

For QZS characteristics –  

𝑲𝒐
തതതത = 𝟎        𝒂𝒕          𝒙ഥ = 𝟎 

 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒,             𝟏 −
𝟐𝑲

𝑲𝒗
቎

𝑳𝒏

𝜶
(𝟏 +  𝒙ഥ𝟐)𝟏.𝟓

 − 𝟏቏ = 𝟎        𝒂𝒕      𝒙ഥ = 𝟎           

 

yields the condition 

                                             
𝑳𝒏

𝜶
= 𝟏 +  

𝑲𝒗

𝟐𝑲
                 ൜

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝒇𝒐𝒓
𝑸𝒁𝑺 𝒂𝒕 𝑬𝒒𝒖𝒊𝒍𝒊𝒃𝒓𝒊𝒖𝒎 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

    (𝟑. 𝟏𝟎) 

 

Thus, the Eqn. [3.10], gives us the mathematical condition between the geometrical and 

stiffness parameters, which will result into QZS characteristics into the system, at equilibrium 

position. Using Eqn. [3.10], in Eqn. [3.9], we get the expression for the stiffness of the system 

as 

𝑲𝒐 =  ൬
𝟐𝑲

𝑲𝒗
+ 𝟏൰ ൤𝟏 −

𝟏

(𝟏 +  𝒙ഥ𝟐)𝟏.𝟓
൨ (𝟑. 𝟏𝟏) 

 

 From Eqn. [3.11], we see that the stiffness of a system having oblique springs configuration is 

a function of displacement of the mass, and is hence dynamic in nature. Also, the stiffness is a 

function of only one unknown parameter 𝑲
𝑲𝒗

ൗ . An appropriate value of this parameter will 

help us to get desired stiffness characteristics in the system. However, the disadvantage of only 
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one unknown parameter is that we have less control parameters in the system for stiffness 

control. 

 

3.4.2 – Approximation of Oblique Springs Formulation to Duffing’s Non-Linear 

Oscillator 

The term ൬
𝟏

ඥ𝟏ା 𝒙ഥ𝟐 
൰ in the expression for normalized force can be approximated using binomial 

expansion as (𝟏 − 𝟎. 𝟓 𝒙ഥ𝟐). With this approximation, the expression for the normalised force 

will then become  

𝒇 =  𝒙ഥ ൤𝟏 −
𝟐𝑲𝑳𝒏

𝑲𝒗𝜶
+

𝟐𝑲

𝑲𝒗
൨ +

𝑲𝑳𝒏

𝑲𝒗𝜶
𝒙ഥ𝟑 (𝟑. 𝟏𝟐) 

 

Which is of the form of  𝒇 =  𝜶𝒙 +  𝝁𝒙𝟑 , which represents the force in a standard duffing’s 

nonlinear oscillator. Approximating the oblique springs configuration to duffing’s nonlinear 

oscillator will help us in studying the response of the system analytically, since, the duffing’s 

equation can be solved analytically using the harmonic balance method. 

Differentiating Eqn. [3.12], we get the expression for the approximate normalized stiffness of 

the system as 

𝑲𝒐 = 𝟏 −
𝟐𝑲

𝑲𝒗
൤
𝑳𝒏

𝜶
 −

𝟑𝑳𝒏

𝟐𝜶
𝒙ഥ𝟐 − 𝟏൨ (𝟑. 𝟏𝟑) 

 

For the system to exhibit quasi zero stiffness (QZS) characteristics, the system must have zero 

stiffness at the equilibrium position. Solving the above approximate expression for 𝑲𝒐
തതതത , yields 

the following condition. 

For QZS characteristics –  

𝑲𝒐
തതതത = 𝟎        𝒂𝒕          𝒙ഥ = 𝟎 

 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒,             𝟏 −
𝟐𝑲

𝑲𝒗
൤
𝑳𝒏

𝜶
 −

𝟑𝑳𝒏

𝟐𝜶
𝒙ഥ𝟐 − 𝟏൨ = 𝟎        𝒂𝒕      𝒙ഥ = 𝟎           
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yields the condition 

                                             
𝑳𝒏

𝜶
= 𝟏 +  

𝑲𝒗

𝟐𝑲
                ൜

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝒇𝒐𝒓
𝑸𝒁𝑺 𝒂𝒕 𝑬𝒒𝒖𝒊𝒍𝒊𝒃𝒓𝒊𝒖𝒎 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

   (𝟑. 𝟏𝟒) 

 

Thus, the approximate expression for stiffness also yields the same mathematical condition for 

QZS characteristics in the system. And, hence similar comments can be made for the condition 

of QZS as made above.  

An important point to note here is that, this approximation is being used to get the response of 

the system from the result of duffing’s oscillator. However, this approximation is valid for only 

small values of 𝒙ഥ.  At sufficiently large values of 𝒙ഥ, the exact and approximate expressions for 

force and stiffness exhibit large errors, and hence the duffing’s solution may not express the 

true response of the system. 

Using Eqn. [3.14], i.e. the condition for QZS at equilibrium position, in Eqn. [3.13], we get the 

expression for the approximate stiffness of the system as 

𝑲𝒐 =  
𝟑

𝟐
 ൤

𝟐𝑲

𝑲𝒗
+ 𝟏൨  𝒙ഥ𝟐  (𝟑. 𝟏𝟓) 

Again, the stiffness is a function of only one unknown parameter 𝑲
𝑲𝒗

ൗ . The expression for 

approximate stiffness of the system is nonlinear and a quadratic function of  𝒙ഥ. 
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3.4.3 – Comparison of Exact and Approximate Force and Stiffness for Oblique Springs 

Fig [3.4] shows the plot of expression for exact and approximate force as a function of 𝒙ഥ and 

Fig [3.5] shows the plot of expression for exact and approximate stiffness as a function of 𝒙ഥ.  

 

Figure 3. 4 – Normalized Force vs Normalized Displacement 
 

 

Figure 3. 5 – Normalized Stiffness vs Normalized Displacement 
From Fig [3.4], we see that the exact and approximate forces have small amount of error up to 

certain range of the normalized displacement. This range can be increased or decreased 

depending on the values of the unknown control parameters, and, also if we take higher order 

polynomial approximation (binomial expansion), in the force expression. Also, at higher values 

of  𝒙ഥ, the numerical values of approximate force are higher as compared to the exact values. 

This is expected since, the expression for approximate force has cubic polynomial increase 
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(Ref. Eqn. [3.15]), whereas the expression for exact force has linear increase at higher values 

of  𝒙ഥ. Thus, we infer that the system behaves linearly at higher values of  𝒙ഥ. 

From Fig [3.5], we see that the exact and approximate stiffness have small amount of error up 

to certain range of the normalized displacement. This range can be increased or decreased 

depending on the values of the unknown control parameters, and, also if we take higher order 

polynomial approximation (binomial expansion), in the force expression. As expected, the plot 

for stiffness is symmetric w.r.t the normalized displacement. At higher values of  𝒙ഥ, the 

numerical values of approximate stiffness are higher as compared to the exact values. This is 

expected, since at higher values of  𝒙ഥ, the oblique springs release all their precompression after 

a certain value of 𝒙ഥ. After this point the oblique springs also contribute to the stiffness of the 

central spring, thereby making the stiffness of the system constant. This behaviour is seen in 

Fig [3.9], at higher values of  𝒙ഥ. However, the expression for approximate force has quadratic 

polynomial increase. This explains why at higher values of  𝒙ഥ the approximate stiffness is 

significantly higher as compared to exact stiffness. 

However, since we deal with vibrations of amplitudes in µg’s, in spacecraft applications, and 

the normalization parameter 𝜶 is of the order of mm. This approximation can be used in 

practical conditions since, the range of operation of 𝒙ഥ is quite less in these applications. 

 

3.4.4 – Why is Negative Stiffness (NS) important? 

a) From the Fig [3.4], of the normalized force and Fig [3.5], of the normalized stiffness, it 

is seen that the force and stiffness values are very close to zero, in the vicinity of the 

equilibrium position. 

b) This means the system offers very low restoring forces in this region and thus prevents 

the mass from further vibrations. 

c) It is inferred that the combined stiffness elements (PS and NS), provide a softer stiffness 

compared to the PS element. 

d) Consequently, the natural frequency of the system is low, which is desired for low 

frequency vibration isolation. 
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3.4.5 – Solution of the approximate Duffing’s Equation for Oblique Springs. 

After studying the force and stiffness behaviour of the oblique springs configuration, it is 

important to study the response of the system to external excitations. The particular area of 

interest is the transmissibility of the system, when the system is subjected to external 

excitations.  

The equation of motion of the mass in oblique springs configuration can be solved numerically 

to get the response. However, the approximation for the force and stiffness converts the 

equation of motion into standard duffing’s oscillator equation, which can be solved using the 

harmonic balance method. 

 

3.4.5.1 – Harmonic Excitation of the Mass. 

Fig [3.6], shows a mass with oblique springs configuration, subjected to harmonic excitation   

𝑭 = 𝒇 𝐬𝐢𝐧 𝝎𝒕. The differential equation of motion of the mass under harmonic force excitation 

will be –  

𝒙̈ +  𝜹𝒙̇ +  𝜷𝒙 +  𝝁𝒙𝟑 = 𝒇𝒔𝒊𝒏(𝝎𝒕) (𝟑. 𝟏𝟔) 

Where 𝜹, 𝜷 and 𝝁 are the system parameters, in terms of the stiffness and geometrical 

parameters, for the oblique springs configuration. The above equation represents a standard 

duffing’s oscillator.  

Solving the above equation using Harmonic Balance Method, we a get the following 

polynomial equation for the displacement amplitude of the mass under harmonic excitation. 

 

𝟑𝟔𝝁𝟐𝑹𝟔 + 𝟐𝟒𝝁(𝜷 −  𝝎𝟐)𝑹𝟒 + 𝟒[(𝜷 −  𝝎𝟐)𝟐 +  (𝜹𝝎)𝟐]𝑹𝟐 − 𝒇𝟐 = 𝟎 (𝟑. 𝟏𝟕) 

 

The above equation is a cubic polynomial in 𝑹𝟐, where 𝑹 is the amplitude of the displacement 

of the mass. The above polynomial equation is solved for appropriate values 𝜹, 𝜷 and 𝝁, to get 

the frequency response of the system i.e. the variation of 𝑹 w.r.t 𝝎. 
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Figure 3. 6 – Oblique Springs Configuration subjected to harmonic excitation of mass 
 

 

Figure 3. 7 – Displacement Amplitude vs Frequency response for harmonic force 
excitation of the mass 
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Fig [3.7], shows the frequency response of the system for certain values of 𝜹, 𝜷 and 𝝁 over a 

range of 𝝎. The blue plot shows the region of stability whereas the red plot shows the region 

of instability. An important observation in this plot is the jump phenomenon. Initially as the 𝝎 

increases from zero, the response of the system follows the blue curve up to the point from 

where the curve comes back, i.e. the top of the red curve. The red curve is unstable meaning if 

the mass goes into the red region, its unstable and suddenly jumps off to the lower blue curve, 

which is again a stable region. In practical conditions as soon as the mass reaches the top of 

the red curve, it suddenly jumps off to the lower blue curve and then the response of the system 

follows the lower blue curve. This is known as the jump phenomenon.  

 

3.4.5.2 – Base Excitation or Support Motion. 

Fig [3.8], shows a mass with oblique springs configuration, subjected to base excitation               

𝒚 = 𝒀 𝐬𝐢𝐧 𝝎𝒕. The differential equation of motion of the mass under base excitation will be –  

𝒙̈ +  𝜹𝒙̇ +  𝜸𝒙 +  𝝁𝒙𝟑 = 𝒀[𝜹𝝎𝒄𝒐𝒔(𝝎𝒕) +  𝜷𝐬𝐢𝐧 (𝝎𝒕)] (𝟑. 𝟏𝟖) 

 

Where 𝜹, 𝜸 and 𝝁 are the system parameters, in terms of the stiffness and geometrical 

parameters, for the oblique springs configuration. The above equation represents a standard 

duffing’s oscillator.  

Solving the above equation using Harmonic Balance Method, we a get the following 

polynomial equation for the displacement amplitude of the mass under base excitation. 

 

𝟑𝟔𝝁𝟐𝑹𝟔 + 𝟐𝟒𝝁(𝜸 −  𝝎𝟐)𝑹𝟒 + 𝟒[(𝜸 −  𝝎𝟐)𝟐 +  (𝜹𝝎)𝟐]𝑹𝟐 − 𝒀𝟐[(𝜹𝝎)𝟐 + 𝜷𝟐] = 𝟎     (𝟑. 𝟏𝟗) 

 

The above equation is a cubic polynomial in 𝑹𝟐, where 𝑹 is the amplitude of the displacement 

of the mass. The above polynomial equation is solved for appropriate values 𝜹, 𝜸 and 𝝁, to get 

the frequency response of the system i.e. the variation of 𝑻𝑹 w.r.t 𝝎. 

Where, 𝑻𝑹 is the displacement transmissibility which is given by –  

𝑻𝑹 =  
𝟐𝑹

𝒀
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Figure 3. 8 – Oblique Springs Configuration subjected to harmonic excitation of base 
 

 

Figure 3. 9 – Displacement Transmissibility vs Frequency response for harmonic base 
excitation of the mass 
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Fig [3.9], shows the plot of transmissibility of the system for certain values of 𝜹, 𝜷 and 𝝁 over 

a range of 𝝎. The blue plot shows the region of stability whereas the red plot shows the region 

of instability. The plot is similar to the plot discussed in section 3.4.4.1 and shows a similar 

jump phenomenon. 

 

3.5 – Conclusion. 

1) Structural stiffness is an important parameter that governs the dynamic behaviour of 

the system. 

 

2) For isolation over a wide frequency range, it is desired to have low stiffness in the 

system. 

 

 

3) Negative Stiffness mechanisms can give us a system with low dynamic stiffness, 

without compromising the static stiffness of the system. 

 

4) The oblique springs mechanism is a simple and effective mechanism to get NS in the 

system. However, it has only one unknown control parameter to control the behaviour 

of the system. 

 

 

5) The response of the system can be studied for small values of the normalized 

displacement, by approximating the oblique springs mechanism to standard duffing’s 

oscillator.  

 

6) The response obtained from the duffing’s approximation shows that the system exhibits 

the jump phenomenon at certain frequency. This sudden change in the mass 

displacement can cause system failure, and need to be handled appropriately. 
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Chapter 4 – New Possible Configurations for Quasi Zero Stiffness 

 

4.1 – Introduction 

In chapter 3, we saw the role of stiffness in vibration isolation in a system and, also, the 

importance of NS and QZS to improve the vibration isolation characteristics over a wide 

frequency range. We discussed the static analysis and frequency response of the Oblique 

Springs configuration.  

In this chapter we will look at new possible configurations that can help achieve negative 

stiffness characteristics in a system. In all the configurations the main positive stiffness 

element, which is also responsible for the static stiffness of the system is a helical compression 

spring which has linear characteristics. Different structural elements can be used to generate 

the required negative stiffness characteristics. Examples being a cantilever beam, a fixed 

curved beam, torsion springs etc.  

Here we present three different configurations. Two of which use torsion springs in different 

configuration, and one which uses vertical helical compression spring, to generate the desired 

negative stiffness characteristics in the system. The static force and stiffness analysis is done 

for all configurations and expressions for the nonlinear stiffness of the system are obtained. 

The variation of the stiffness is studied for varying unknown control parameters of the system. 

Refer to section 3.2 of chapter 3, for the stiffness characteristics of helical compression springs 

and torsion springs. 

 

4.2 – Torsion Spring Configuration 1 

 

4.2.1 – Analytical Formulation for Force and Stiffness 

Fig [4.1], shows a schematic diagram of the Torsion Spring Configuration 1. It consists of a 

central helical spring that takes up the deadweight of the payload mass. Three torsion springs 

are also connected to the mass, which are at 120° from each other when viewed from the top. 

However, only one is shown in the diagram. The other two have similar contribution in the 

expressions and the appropriate multiplication factor of 3 is considered. At the equilibrium 

position, the torsion springs have initial outer angular deflection, as shown in Fig [4.2]. The 
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horizontal motion of the torsion spring is restricted by the outer sleeve and the circular cam 

profile (hereafter referred to as cam profile 1), present on the vertical rod attached to the central 

spring. Due to this restriction the spring cannot release its deflection and remains stressed. Due 

to this pre stress the three torsion springs apply forces of equal magnitude in the horizontal 

plane on the cam profile 1, via the circular profile of the torsion spring (hereafter referred to as 

cam profile 2). These force vectors cancel out each other in the horizontal plane with no vertical 

component, and hence, there is no net force applied by the torsion springs on the central rod 

(consequently the mass), at the equilibrium position. Thus, at the equilibrium position, the net 

forces acting on the system are zero. 

           

When, the mass is subjected to an upward vertical displacement of 𝒙 , the central spring offers 

a restoring force in downward direction. However, the torsion springs release some amount of 

their pre stress, due to the horizontal movement of the cam profile 2. Here it is assumed that 

the cam profile 2 is constrained to move in horizontal direction only. Thus, due this vertical 

movement of cam profile 1 and the resulting horizontal movement of cam profile 2, the line of 

action between the two cam profiles change, and a net upward vertical force acts on the mass 

due to these torsion springs. This upward force reduces the restoring force acting on the mass.  

Figure 4. 1– Torsion Spring Configuration 1, Free State (FS), Intermediate State (IS), and 
Pre-stressed State (PCS at equilibrium position) of the torsion spring 
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Figure 4. 2 – Intermediate State (displaced state), and Pre-stressed State (equilibrium 
position) of the torsion spring configuration 1 
 

From Fig [4.3], the expressions for the forces acting on the mass are –  

𝑭𝒑 =  𝑲𝒗𝒙 (𝟒. 𝟏) 

   𝑭𝒏 =  
𝟐𝒌𝜸

𝐜𝐨𝐬 𝜽. 𝐬𝐢𝐧(𝝁 +  𝜸). 𝒍
             ൜

𝑹𝒆𝒇𝒆𝒓 𝑨𝒑𝒑𝒆𝒏𝒅𝒊𝒙 (𝑨. 𝟏)

𝒇𝒐𝒓 𝒕𝒉𝒆 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒐𝒏
 (𝟒. 𝟐) 
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Where, 𝑭𝒑 𝒂𝒏𝒅 𝑭𝒏, are forces due to the central and the torsion springs respectively.  

The net vertical force acting on the mass will be 

𝑭 =  𝑭𝒑 −  𝟑𝑭𝒏 𝐬𝐢𝐧 𝜽 

𝑭 = 𝑲𝒗𝒙 − 𝟑 .  
𝟐 𝒌 𝜸

𝒍 𝐬𝐢𝐧(𝝁 +  𝜸)
 .  

𝒙

√𝑹𝟐 −  𝒙𝟐
 (𝟒. 𝟑) 

 

Substituting the expression for 𝜸 , 

             𝜸 =  𝜶 −  𝝁 − ቊ
𝑹 − √𝑹𝟐 −  𝒙𝟐 

𝒍 𝐬𝐢𝐧 𝜶
ቋ             ൜

𝑹𝒆𝒇𝒆𝒓 𝑨𝒑𝒑𝒆𝒏𝒅𝒊𝒙 (𝑨. 𝟐)

𝒇𝒐𝒓 𝒕𝒉𝒆 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒐𝒏
 (𝟒. 𝟒) 

 

We get the expression for the net vertical force acting on the mass as 

𝑭 = 𝑲𝒗𝒙 − 𝟑 .  
𝟐𝒌

𝒍
 .  

𝜶 −  𝝁 −  ቈ
𝑹 − √𝑹𝟐 −  𝒙𝟐

𝒍 𝐬𝐢𝐧 𝜶 ቉

𝐬𝐢𝐧 ቈ𝜶 −  ቆ
𝑹 − √𝑹𝟐 −  𝒙𝟐

𝒍 𝒔𝒊𝒏 𝜶 ቇ቉

 .  
𝒙

√𝑹𝟐 −  𝒙𝟐
 (𝟒. 𝟓) 

 

This expression for force can be normalized, by normalizing the displacement 𝒙 by 𝑹, and 𝑭 

by 𝑲𝒗𝑹. Thus, the expression for the normalized force will become –  

 

𝒇 = 𝒙ഥ − 𝟑 .  
𝟐𝒌

𝒍𝑲𝒗𝑹
 .  

𝜶 −  𝝁 −  
𝑹

𝒍 𝐬𝐢𝐧 𝜶 ൣ𝟏 − √𝟏 −  𝒙ഥ𝟐൧

𝐬𝐢𝐧 ቂ𝜶 −  ቀ
𝑹

𝒍 𝐬𝐢𝐧 𝜶 ൣ𝟏 − √𝟏 −  𝒙ഥ𝟐൧ቁቃ
 .  

𝒙ഥ

√𝟏 −  𝒙ഥ𝟐
 (𝟒. 𝟔) 

 

Where, 𝒇 is the normalized force and 𝒙ഥ is the normalized displacement. 

The normalised stiffness of the system can be obtained by differentiating the expression for 𝒇 

w.r.t 𝒙ഥ. Thus, the expression for the normalised stiffness will be –  

𝑲𝒐
തതതത = 𝟏 −  

𝟔𝒌

𝑲𝒗𝒍𝑹
 .  

𝝏𝚷

𝝏𝒙
  (𝟒. 𝟕) 
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Where, 

  𝚷 =  𝚲− 𝝁
𝐬𝐢𝐧 𝚲

 . 𝒙ഥ

ට𝟏− 𝒙ഥ𝟐
 (𝟒. 𝟖) 

𝚲 =  𝛂 −  
𝑹

𝒍. 𝐬𝐢𝐧 𝜶
 ቀ𝟏 − ඥ𝟏 −  𝒙ഥ𝟐ቁ (𝟒. 𝟗) 

 

From Eqn. [4.6], we see that the expression for the net restoring force acting on the system is 

not a linear function of the displacement. And from Eqn. [4.7, 4.8, 4.9], we see that the stiffness 

of the system is not constant, but is now a function of the displacement of the mass from the 

mean position. 

For the system to exhibit quasi zero stiffness (QZS) characteristics, the system must have zero 

stiffness at the equilibrium position. Solving the above expression for 𝑲𝒐
തതതത , yields the following 

condition. 

For QZS characteristics –  

𝑲𝒐
തതതത = 𝟎        𝒂𝒕          𝒙ഥ = 𝟎 

 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒,             𝟏 −  
𝟔𝒌

𝑲𝒗𝒍𝑹
 .  

𝝏𝚷

𝝏𝒙
 = 𝟎        𝒂𝒕      𝒙ഥ = 𝟎           

 

𝚲(𝒙ഥ = 𝟎) =  𝜶 

𝝏𝚲

𝝏𝒙
 (𝒙ഥ = 𝟎) = 𝟎 

𝝏𝚷

𝝏𝒙
 (𝒙ഥ = 𝟎) =

𝜶 − 𝝁

𝐬𝐢𝐧 𝜶
 

 

Using the above results, in the preceding equation, yields the mathematical condition for QZS 

in this system as 

                         
𝟔𝒌

𝑲𝒗𝒍𝑹
=  

𝐬𝐢𝐧 𝜶

𝜶 −  𝝁
                       ൜

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝒇𝒐𝒓
𝑸𝒁𝑺 𝒂𝒕 𝑬𝒒𝒖𝒊𝒍𝒊𝒃𝒓𝒊𝒖𝒎 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

(𝟒. 𝟏𝟎) 
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Thus, the Eqn. [4.10], gives us the mathematical condition between the geometrical and 

stiffness parameters, which will result into QZS characteristics into the system, at equilibrium 

position. Using Eqn. [4.10], in Eqn. [4.7], we get the expression for the stiffness of the system 

as 

 

𝑲𝒐
തതതത = 𝟏 −

𝝏𝚷

𝝏𝒙
 .  ൤

sin 𝜶

𝜶 −  𝝁
൨ (𝟒. 𝟏𝟏) 

𝚷 =  
𝚲 −  𝝁

𝐬𝐢𝐧 𝚲
 .

𝒙ഥ

√𝟏 −  𝒙ഥ𝟐
  (𝟒. 𝟏𝟐) 

𝚲 =  𝛂 −  
𝑹

𝒍. 𝐬𝐢𝐧 𝜶
 ቀ𝟏 − ඥ𝟏 −  𝒙ഥ𝟐ቁ (𝟒. 𝟏𝟑) 

 

From Eqn. [4.11, 4.12, 4.13], we see that the stiffness of a system having torsion spring 

configuration 1, is a function of displacement of the mass, and is hence dynamic in nature. 

Also, the stiffness is a function of four unknown parameters viz.  𝑹, 𝒍, 𝜶, 𝝁. Appropriate values 

of these parameters will help us to get desired stiffness characteristics in the system. The 

advantage of four unknown parameters is that we have higher number of control parameters in 

the system for stiffness control. Changing one or more than one parameter will change the 

behavior of the system and desired stiffness characteristics can be obtained. However, higher 

number of unknown parameters makes the analytical equation more complex. Also, a slight 

deviation in even one parameter from the value required for QZS condition, can cause 

considerable changes in the system’s behavior. In practical conditions, not all parameters can 

always have the exact numerical values as required for QZS condition. 
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4.2.2 – Stiffness plot for Torsion Spring Configuration 1, for different values of control 

parameters. 

 

Figure 4. 3 –  Normalized Stiffness vs Normalized Displacement for varying l 
 

 

Figure 4. 4 –  Normalized Stiffness vs Normalized Displacement for varying α 
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Figure 4. 5 –  Normalized Stiffness vs Normalized Displacement for varying R 

 

Figure 4. 6 –  Normalized Stiffness vs Normalized Displacement for varying μ 
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4.3 – Torsion Spring Configuration 2 

 

4.3.1 – Analytical Formulation for Force and Stiffness 

    

Fig [4.7], shows a schematic diagram of the Torsion Spring Configuration 1. It consists of a 

central helical spring that takes up the deadweight of the payload mass. Three torsion springs 

are also connected to the mass as shown, which are at 120° from each other when viewed from 

the top. However, only one is shown in the diagram. The other two have similar contribution 

in the expressions and the appropriate multiplication factor of 3 is considered. At the 

equilibrium position, the torsion springs have initial inner angular deflection, as shown in Fig 

[4.7] The motion of the torsion spring is restricted by the outer sleeve and the circular cam 

profile (hereafter referred to as cam profile 1), present on the vertical rod attached to the central 

spring. Due to this restriction the spring cannot release its deflection and remains stressed. Due 

to this pre stress the three torsion springs apply forces of equal magnitude in the horizontal 

plane on the cam profile 1, via the circular mechanical element (hereafter referred to as cam 

profile 2), present on one of the legs of the torsion spring. These force vectors cancel out each 

other in the horizontal plane with no vertical component, and hence, there is no net force 

Figure 4. 7 – Torsion Spring Configuration 2, Free State (FS), Intermediate State (IS), and 
Pre-stressed State (PCS at equilibrium position) of the torsion spring 
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applied by the torsion springs on the central rod (consequently the mass), at the equilibrium 

position. Thus, at the equilibrium position, the net forces acting on the system are zero. 

 

Figure 4. 8 – Intermediate State (displaced state), and Pre-stressed State (equilibrium 
position) of the torsion spring configuration 2 

 

When, the mass is subjected to an upward vertical displacement of 𝒙 , the central spring offers 

a restoring force in downward direction. However, the torsion springs release some amount of 

their pre stress, due to the horizontal movement of the cam profile 2. Here it is assumed that 

the cam profile 2 is constrained to move in horizontal direction only. Thus, due this vertical 

movement of cam profile 1 and the resulting horizontal movement of cam profile 2, the line of 

action between the two cam profiles change, and a net upward vertical force acts on the mass 

due to these torsion springs. This upward force reduces the restoring force acting on the mass.  
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From Fig [4.8], the expressions for the forces acting on the mass are –  

𝑭𝒑 =  𝑲𝒗𝒙 (𝟒. 𝟏𝟒) 

 

𝑭𝒏 =  𝒌 
൜𝜶 − ൬𝟐 𝒔𝒊𝒏ି𝟏 𝑩 +  

(𝒓𝟏 +  𝒓𝟐)
𝒍 ൣ𝟏 − √𝟏 −  𝒙ഥ𝟐൧൰ൠ

𝒍 .  ൫𝑪 .  √𝟏 −  𝑩𝟐൯ ൫√𝟏 −  𝒙ഥ𝟐൯
       ൜

𝑹𝒆𝒇𝒆𝒓 𝑨𝒑𝒑𝒆𝒏𝒅𝒊𝒙 (𝑨. 𝟑)

𝒇𝒐𝒓 𝒕𝒉𝒆 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒐𝒏
 (𝟒. 𝟏𝟓) 

 

Where, 𝑭𝒑 𝒂𝒏𝒅 𝑭𝒏, are forces due to the central and the torsion springs respectively.  

The net vertical force acting on the mass will be 

𝑭 =  𝑭𝒑 −  𝟑𝑭𝒏 𝐬𝐢𝐧 𝜽 

 

𝑭 =  𝑲𝒗𝒙 − 𝟑𝒌 
൜𝜶 − ൬𝟐 𝒔𝒊𝒏ି𝟏 𝑩 +  

(𝒓𝟏 +  𝒓𝟐)
𝒍 ൣ𝟏 − √𝟏 −  𝒙ഥ𝟐൧൰ൠ

𝒍 .  ൫𝑪 .  √𝟏 −  𝑩𝟐൯ ൫√𝟏 −  𝒙ഥ𝟐൯
 .

𝒙

(𝒓𝟏 +  𝒓𝟐)
 (𝟒. 𝟏𝟔) 

 

This expression for force is normalized, by normalizing the displacement 𝒙 by (𝒓𝟏 +  𝒓𝟐), and 

𝑭 by 𝑲𝒗(𝒓𝟏 +  𝒓𝟐). Thus, the expression for the normalized force will become – 

 

𝒇 =  𝒙ഥ − 𝟑𝑸. 𝒙ഥ .  
൜𝟏 − ൬𝟐

sinି𝟏 𝑩
𝜶

+ 𝑨. ൣ𝟏 − √𝟏 −  𝒙ഥ𝟐൧൰ൠ

൫𝑪 .  √𝟏 −  𝑩𝟐൯ ൫√𝟏 −  𝒙ഥ𝟐൯
 (𝟒. 𝟏𝟕) 

 

Where, 𝑸, 𝑨, 𝑩, 𝑪 are non-dimensional parameters as follows. 

𝑸 =  
𝒌𝜶

𝑲𝒗𝒍(𝒓𝟏 +  𝒓𝟐)
   ,        𝑨 =  

(𝒓𝟏 +  𝒓𝟐)

𝒍𝜶
   ,        𝑩 =  

𝑷 − 𝑫

𝟐𝒍
,        𝐂 = 𝟏 −

𝒍

𝟑𝝅𝑵𝒂𝑫
 

The normalised stiffness of the system can be obtained by differentiating the expression for 𝒇 

w.r.t  𝒙ഥ. Thus, the expression for the normalised stiffness will be –  
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𝑲𝒐
തതതത = 𝟏 −

𝝏𝚲

𝝏𝒙
 (𝟒. 𝟏𝟖) 

Where, the term 𝚲 is given by,  

𝚲 =  𝟑𝑸. 𝒙ഥ .  
൜𝟏 − ൬𝟐

sinି𝟏 𝑩
𝜶

+ 𝑨. ൣ𝟏 − √𝟏 −  𝒙ഥ𝟐൧൰ൠ

൫𝑪 .  √𝟏 −  𝑩𝟐൯ ൫√𝟏 −  𝒙ഥ𝟐൯
 (𝟒. 𝟏𝟗) 

 

From Eqn. [4.17], we see that the expression for the net restoring force acting on the system is 

not a linear function of the displacement. And from Eqn. [4.18, 4.19], we see that the stiffness 

of the system is not constant, but is now a function of the displacement of the mass from the 

mean position. 

For the system to exhibit quasi zero stiffness (QZS) characteristics, the system must have zero 

stiffness at the equilibrium position. Solving the above expression for 𝑲𝒐
തതതത , yields the following 

condition. 

For QZS characteristics –  

𝑲𝒐
തതതത = 𝟎        𝒂𝒕          𝒙ഥ = 𝟎 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,             𝟏 −
𝝏𝚲

𝝏𝒙
 = 𝟎        𝒂𝒕      𝒙ഥ = 𝟎           

 

𝝏𝚲

𝝏𝒙
 (𝒙ഥ = 𝟎) =  

𝟑𝑸

𝑪√𝟏 −  𝑩𝟐
 . ቊ𝟏 −  𝟐

sinି𝟏 𝑩

𝜶
ቋ 

 

Using the above result, in the preceding equation, yields the mathematical condition for QZS 

in this system as 

     
𝑸

𝑪
=  

√𝟏 −  𝑩𝟐

𝟑 ൬𝟏 − 𝟐
𝒔𝒊𝒏ି𝟏 𝑩

𝜶 ൰

                  ൜
𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝒇𝒐𝒓

𝑸𝒁𝑺 𝒂𝒕 𝑬𝒒𝒖𝒊𝒍𝒊𝒃𝒓𝒊𝒖𝒎 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏
 (𝟒. 𝟐𝟎) 

Thus, the Eqn. [4.20], gives us the mathematical condition between the geometrical and 

stiffness parameters, which will result into QZS characteristics into the system, at equilibrium 



41 
 

position. Using Eqn. [4.20], in Eqn. [4.18, 4.19], we get the expression for the stiffness of the 

system as 

𝑲𝒐
തതതത = 𝟏 − 𝟏 .  ቎

𝟏 −
𝑨
𝑹

(𝟏 −  𝒙ഥ𝟐)
𝟑

𝟐ൗ
+

𝑨

𝑹
቏ (𝟒. 𝟐𝟏) 

 

Where, after certain simplifications in the expression for 𝑲𝒐
തതതത, we get the non-dimensional 

parameters 𝑨 𝒂𝒏𝒅 𝑹 as  

𝑨 =  
(𝒓𝟏 +  𝒓𝟐)

𝒍𝜶
 

𝑹 = 𝟏 − 𝟐
sinି𝟏 𝑩

𝜶
 

 

Although, the final expression for 𝑲𝒐
തതതത, has two unknown non-dimensional parameters, these 

two parameters appear in a ratio as 𝑨/𝑹. This ultimately makes only one unknown parameter 

in the expression for 𝑲𝒐
തതതത. Thus, in this configuration of torsion spring, we have only one control 

parameter, to control the stiffness behavior of the system. Appropriate value of this parameter 

will help us to get desired stiffness characteristics in the system. 

An interesting thing about this configuration is that when the value of the parameter 𝑨/𝑹 equals 

one, or when 𝑨 = 𝑹, the value of 𝑲𝒐
തതതത is zero, for all values of  𝒙ഥ. 

 

𝑲𝒐
തതതത = 𝟎      ∀ 𝒙ഥ      𝒊𝒇     𝑹 = 𝑨 

 

Thus, theoretically the stiffness of the system becomes zero if  𝑹 = 𝑨. This means that there 

will be no dynamic stiffness in the system for any amount of displacement of the mass from its 

mean position. However, in practical scenarios, it may be very difficult to satisfy this condition 

due to restrictions on the numerical values of the geometrical and stiffness parameters of the 

system, which govern the values of 𝑨 𝒂𝒏𝒅 𝑹. The disadvantage of only one unknown 

parameter is that we have less control parameters in the system for stiffness control. 
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4.3.2 – Stiffness plot for Torsion Spring Configuration 2, for different values of control 

parameters. 

 

 

Figure 4. 9 –  Normalized Stiffness vs Normalized Displacement for varying A/R 
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4.4 – Helical Compression Spring Configuration 

 

4.4.1 – Analytical Formulation for Force and Stiffness 

Fig [4.10], shows a schematic diagram of the Helical Compression Spring Configuration. It 

consists of a central helical spring that takes up the deadweight of the payload mass. Six pre-

compressed helical springs are also connected to the mass as shown, which are at 60° from 

each other when viewed from the top. However, only one is shown in the diagram. The other 

five have similar contribution in the expressions and the appropriate multiplication factor of 6 

is considered. At the equilibrium position, the pre-compressed helical springs (hereafter 

referred to as Negative Helical Springs) have initial pre-compression, as shown in Fig [4.10]. 

The negative helical spring is connected to piston which is inside a hydraulic fluid filled 

cylinder, which has a bypass tube at right angles with it. A similar piston is connected to the 

end of the tube. The other end of this piston has a circular element (hereafter referred to as cam 

profile 2). This cam profile 2 is in point connection (higher pair), with another circular element 

(hereafter referred to as cam profile 1), attached to the rod of the central spring. The hydraulic 

fluid cylinder arrangement helps us to transfer the vertical force exerted by the negative helical 

spring, in a horizontal direction. During this force transfer, it is assumed that there is negligible 

change in the fluid velocity between points 1 and 2. Also, that the difference in height of points 

between 1 and 2 is negligible, hence the change in static pressure due to fluid column is 

neglected. Therefore, the pressure at both the points 1 and 2 is same.  

Due to the pre compression, the negative helical springs apply forces of equal magnitude in the 

vertical direction on the piston 2. It tries to push the fluid, but the fluid’s motion is restricted 

by the perfectly horizontal contact between the two cam profiles. These horizontal contact force 

vectors between the cam profiles cancel out each other in the horizontal plane with no vertical 

component, and hence, there is no net force applied by the negative helical springs on the 

central rod (consequently the mass), at the equilibrium position. Thus, at the equilibrium 

position, the net forces acting on the system are zero. 

When, the mass is subjected to an upward vertical displacement of 𝒙 , the central spring offers 

a restoring force in downward direction. However, the negative helical springs release some 

amount of their pre compression, due to the horizontal movement of the cam profile 2, since 

the cam profile 2 is constrained to move in horizontal direction only. Here it is assumed that 

the cam profile 2 is constrained to move in horizontal direction only. Thus, due this vertical 
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movement of cam profile 1 and the resulting horizontal movement of cam profile 2, the line of 

action between the two cam profiles change, and a net upward vertical force acts on the mass 

due to these negative helical springs. This upward force reduces the restoring force acting on 

the mass.  

 

 

Figure 4. 10 – Helical Compression Spring Configuration, Initial State and Displaced 
State 

   

From Fig [4.10], the expressions for the forces acting on the mass are –  

𝑭𝒑 =  𝑲𝒗𝒙 (𝟒. 𝟐𝟐) 
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𝑭𝒏  =   

𝑨𝟏
𝑨𝟐

𝒌 ቄ𝒅 −  
𝑨𝟏
𝑨𝟐

ቂ(𝒓𝟏 +  𝒓𝟐) − ඥ(𝒓𝟏 +  𝒓𝟐)𝟐 −  𝒙𝟐ቃ ቅ

ඥ(𝒓𝟏 +  𝒓𝟐)𝟐 −  𝒙𝟐

(𝒓𝟏 +  𝒓𝟐)

      ൜
𝑹𝒆𝒇𝒆𝒓 𝑨𝒑𝒑𝒆𝒏𝒅𝒊𝒙 (𝑨. 𝟒)

𝒇𝒐𝒓 𝒕𝒉𝒆 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒐𝒏
 (𝟒. 𝟐𝟑) 

Where, 𝑭𝒑 𝒂𝒏𝒅 𝑭𝒏, are forces due to the central and the torsion springs respectively.  

The net vertical force acting on the mass will be 

𝑭 =  𝑭𝒑 −  𝟔𝑭𝒏 𝐬𝐢𝐧 𝜽 

 

𝑭 =  𝑲𝒗𝒙 −  𝟔𝒌 

𝑨𝟏
𝑨𝟐

𝒌 ቄ𝒅 −  
𝑨𝟏
𝑨𝟐

ቂ(𝒓𝟏 +  𝒓𝟐) −  ඥ(𝒓𝟏 +  𝒓𝟐)𝟐 −  𝒙𝟐ቃ ቅ

ඥ(𝒓𝟏 +  𝒓𝟐)𝟐 −  𝒙𝟐

(𝒓𝟏 +  𝒓𝟐)

 .
𝒙

(𝒓𝟏 +  𝒓𝟐)
 (𝟒. 𝟐𝟒) 

 

This expression for force is normalized, by normalizing the displacement 𝒙 by (𝒓𝟏 +  𝒓𝟐), and 

𝑭 by 𝑲𝒗(𝒓𝟏 +  𝒓𝟐). Thus, the expression for the normalized force will become – 

 

𝒇 =  𝒙ഥ −  
𝟔𝑨𝟏𝒌

𝑨𝟐𝑲𝒗
 . 𝒙ഥ .  

ቄ𝒅ഥ −
𝑨𝟏
𝑨𝟐

ൣ𝟏 − √𝟏 −  𝒙ഥ𝟐൧ቅ

൫√𝟏 −  𝒙ഥ𝟐൯
 (𝟒. 𝟐𝟓) 

 

The normalised stiffness of the system can be obtained by differentiating the expression for 𝒇 

w.r.t  𝒙ഥ. Thus, the expression for the normalised stiffness will be –  

𝑲𝒐
തതതത = 𝟏 −

𝝏𝚲

𝝏𝒙
 (𝟒. 𝟐𝟔) 

Where, the term 𝚲 is given by,  

𝚲 =  
𝟔𝑨𝟏𝒌

𝑨𝟐𝑲𝒗
 . 𝒙ഥ .  

ቄ𝒅ഥ −
𝑨𝟏

𝑨𝟐
ൣ𝟏 − √𝟏 −  𝒙ഥ𝟐൧ቅ

൫√𝟏 −  𝒙ഥ𝟐൯
 (𝟒. 𝟐𝟕) 

 

From Eqn. [4.25], we see that the expression for the net restoring force acting on the system is 

not a linear function of the displacement. And from Eqn. [4.26, 4.27], we see that the stiffness 
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of the system is not constant, but is now a function of the displacement of the mass from the 

mean position. 

For the system to exhibit quasi zero stiffness (QZS) characteristics, the system must have zero 

stiffness at the equilibrium position. Solving the above expression for 𝑲𝒐
തതതത , yields the following 

condition. 

For QZS characteristics –  

𝑲𝒐
തതതത = 𝟎        𝒂𝒕          𝒙ഥ = 𝟎 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,             𝟏 −
𝝏𝚲

𝝏𝒙
 = 𝟎        𝒂𝒕      𝒙ഥ = 𝟎           

 

𝝏𝚲

𝝏𝒙
 (𝒙ഥ = 𝟎)   =   

𝟔𝑨𝟏𝒌

𝑨𝟐𝑲𝒗
 𝒅ഥ 

 

Using the above result, in the preceding equation, yields the mathematical condition for QZS 

in this system as 

            
𝟔𝑨𝟏𝒌

𝑨𝟐𝑲𝒗
=  

𝟏

𝒅ഥ
                 ൜

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝒇𝒐𝒓
𝑸𝒁𝑺 𝒂𝒕 𝑬𝒒𝒖𝒊𝒍𝒊𝒃𝒓𝒊𝒖𝒎 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

 (𝟒. 𝟐𝟖) 

 

Thus, the Eqn. [4.28], gives us the mathematical condition between the geometrical and 

stiffness parameters, which will result into QZS characteristics into the system, at equilibrium 

position. Using Eqn. [4.28], in Eqn. [4.26, 4.27], we get the expression for the stiffness of the 

system as 

𝑲𝒐
തതതത = 𝟏 −

𝟏

(𝟏 −  𝒙ഥ𝟐)
𝟑

𝟐ൗ
 − 𝑩 +  

𝑩

√𝟏 −  𝒙ഥ𝟐
+

𝑩𝒙ഥ𝟐

(𝟏 −  𝒙ഥ𝟐)
𝟑

𝟐ൗ
 (𝟒. 𝟐𝟗) 

 

Where, after certain simplifications in the expression for 𝑲𝒐
തതതത, we get the non-dimensional 

parameter 𝑩 as  

𝑩 =
𝑨𝟏

𝑨𝟐𝒅
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This makes only one unknown parameter in the expression for 𝑲𝒐
തതതത. Thus, in this configuration 

of negative helical spring, we have only one control parameter, to control the stiffness behavior 

of the system. Appropriate value of this parameter will help us to get desired stiffness 

characteristics in the system. 

An interesting thing about this configuration is that when the value of the parameter 𝑩 equals 

one, or when 𝑩 = 𝟏, the value of 𝑲𝒐
തതതത is zero, for all values of  𝒙ഥ. 

 

𝑲𝒐
തതതത = 𝟎      ∀ 𝒙ഥ      𝒊𝒇     𝑩 = 𝟏 

Thus, theoretically the stiffness of the system becomes zero if  𝑩 = 𝟏. This means that there 

will be no dynamic stiffness in the system for any amount of displacement of the mass from its 

mean position. However, in practical scenarios, it may be very difficult to satisfy this condition 

due to restrictions on the numerical values of the geometrical and stiffness parameters of the 

system, which govern the values of 𝑩.The disadvantage of only one unknown parameter is that 

we have less control parameters in the system for stiffness control. 

 

4.4.2 – Stiffness plot for Negative Helical Spring Configuration, for different values of 

control parameter. 

 

Figure 4. 11 –  Normalized Stiffness vs Normalized Displacement for varying B 
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4.5 – Conclusion. 

1) Three different configurations for generating negative stiffness in a simple spring mass 

system are discussed and their force and stiffness formulation is done.  

2) Torsion springs are used in two different configurations as the negative stiffness 

element. 

3) Torsion spring Configuration 1 has four control parameters, which provide higher level 

of control over the stiffness behaviour. However, higher number of control parameters 

may lead to higher deviation from QZS condition.  

4) Torsion spring Configuration 2 and Negative Helical Spring Configuration has only 

one control parameter. It is theoretically possible to get zero dynamic stiffness in the 

system under certain mathematical condition on this control parameter. 
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Chapter 5 – Analytical formulation of Gough Stewart Platform 

 

5.1 – Introduction 

In chapter 3 and chapter 4, we have thoroughly discussed how certain configurations of 

mechanical stiffness elements, help us achieve negative stiffness in a structure. Consequently, 

it provides the condition of high static stiffness but low dynamic stiffness, which helps in 

reducing the natural frequency of a vibration isolation system and, also, to increase the 

frequency range over which isolation is required. However, these configurations discussed 

excitations in only one degree of freedom. The micro-vibrations in spacecrafts are of multi-

degree of freedom nature. Hence, a complete 6 degrees of freedom vibration isolation system 

is required in these applications. 

Gough Stewart Platforms (hereafter referred to as GSP) are the most widely used vibration 

isolation systems for six degrees of freedom vibration isolation due to its high stiffness, 

precision, and load-bearing capabilities. Each of the six legs can extend or contract 

independently, allowing the platform to move in all six degrees of freedom: three translational 

(X, Y, Z) and three rotational (pitch, roll, yaw). The GSP can be used for both active and 

passive vibration isolation. 

In active vibration isolation applications, the Gough-Stewart platform acts as an active or semi-

active system to counteract unwanted motion. Sensors detect vibrations in real-time, and 

control algorithms adjust the length of the struts accordingly to compensate for the 

disturbances. This dynamic response effectively isolates the payload—such as sensitive 

scientific instruments, optical equipment, or spacecraft components—from environmental or 

mechanical vibrations. 

The platform’s closed-loop kinematic structure offers advantages like high responsiveness and 

stability. Its compact and symmetrical design also supports uniform distribution of forces, 

enhancing performance. Overall, the Gough-Stewart platform provides a robust solution for 

precision vibration isolation in critical high-tech and aerospace applications. 
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5.2 – The Geometry of Gough Stewart Platform 

Fig [5.1], shows the schematic diagram of a 6-6 GSP. It consists of mainly 3 components. A 

fixed base, a movable platform and 6 identical legs connecting the base and the platform. The 

legs or limbs are usually connected to the base and the platform in a circle of constant radius. 

However, in Modified Gough Stewart Platform (MGSP), three legs are connected on an inner 

radius and three on outer radius. The advantage of MGSP is higher number of control 

parameters. This kinematic structure allows the moving platform of the GSP to have a six 

degrees of freedom motion, three translations in  𝒙, 𝒚, 𝒛  axes and three rotations 𝝓, 𝜽, 𝝍. 

 

       

 

Fig [5.1], shows the joints which are present between the base and legs and the platform and 

legs. The base is connected with the legs via universal joints or spherical joints. Also, the 

moving platform is connected with the legs via universal joints or spherical joints. The legs 

consist of two components viz part 1 and part 2. The parts 1 and 2 are connected via prismatic 

joints. The possible combinations of joints are universal-prismatic-spherical (UPS joint), 

spherical-prismatic-universal (SPU joint), or spherical-prismatic-spherical (SPS joint). The 

legs cannot have universal joints at both of its ends, otherwise it will restrict the motion of the 

moving platform in certain degrees of freedom. In GSP, the prismatic joint is the active joint, 

whereas the spherical and universal joints are passive joints. 

Figure 5. 1 – The components of a GSP and the joints that are present in its legs 
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In applications where GSP’s are used parallel robots for position and orientation control, the 

parts 1 and 2 of the legs are connected via a linear actuator. This actuator which is externally 

powered, helps achieve the desired position and orientation of the moving platform w.r.t the 

base, by changing the lengths of the legs. As a result of the extension or contraction of the legs, 

each of the legs have different lengths and consequently the platform achieves the desired 

position and orientation. 

In vibration isolation applications, the base is subjected to harmonic excitations and the 

sensitive payloads are mounted on the moving platforms. The parts 1 and 2 of the legs are 

connected via stiffness and damping elements. These elements are responsible for the transfer 

of vibrations from the base to the platform. When the base is subjected to harmonic excitations 

in six degrees of freedom, the platform will also have harmonic response in all six degrees of 

freedom. The goal is to achieve minimum transmissibility possible. In micro-vibration isolation 

for spacecraft applications, the GSP can be used between the source and the spacecraft bus, for 

source isolation; or between the payload and the spacecraft bus, for payload isolation.  

In the coming sections we will discuss the kinematic and dynamic formulation of the base, the 

platform, and the legs. 

 

5.3 – Co-ordinate System Assignment 

Fig [5.2], shows the schematic diagram of a 6-6 GSP with a base (bottom hexagon), a platform 

(top hexagon) and six legs (represented by solid lines between the base and the platform). The 

circles on the vertices of the hexagons represent the joints between the components. Here it is 

assumed that the base and legs are connected via a universal joint and the platform and the legs 

are connected via a spherical joint. 

The top platform is assigned a coordinate frame with its origin 𝒐 at its geometrical center. It is 

represented by lower case letters (𝒙, 𝒚, 𝒛). The 𝒙 and 𝒚 axes lie in the plane of the platform, 

as seen in the top view Fig [5.2], whereas the  𝒛 axis is perpendicular to the plane of the 

platform.  

The base is also assigned a coordinate frame, similar to the platform frame, with its origin  𝑶 at 

its geometrical center. It is represented by upper case letters (𝑿, 𝒀, 𝒁). All other details 

regarding the frame remain same as that of the platform frame. 
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Since, in vibration isolation applications, the base is subjected to excitations. Hence, the frame 

attached to the base is not a fixed frame but a non-inertial frame of reference. To write the 

equations of motion using newton’s laws, it is important to define a fixed inertial frame of 

reference known as the world frame. We define a world coordinate system represented by upper 

case primed letters (𝑿′, 𝒀′, 𝒁′). The origin of this frame 𝑶′ lies at the initial location of the 

COM of the base, and the axes are aligned with the axes of the base frame. The motion of the 

base and the platform frames are defined w.r.t this world frame.  

 

Figure 5. 2 – Frames of reference in a GSP 
 

The terms {𝑾} represents world frame, {𝑩} represents base frame, and {𝑷} represents platform 

frame. 

For the kinematic and dynamic formulation of the legs, a leg frame connected to each leg also 

needs to be defined. This frame is defined in the section 5.6.2. 
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5.4 – Position and Orientation of the Base and the Platform. 

 

5.4.1 – Position and Orientation of the Base. 

Fig [5.3], shows the coordinate frames of the GSP and the associated vectors. 

𝑶ഥ  =   𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓 𝒐𝒇  𝑶  𝒘. 𝒓. 𝒕  𝑶ᇱ 

𝑶ഥ  =   (𝑿𝑩
ᇱ ,   𝒀𝑩

ᇱ ,   𝒁′𝑩)𝑻 

 

Figure 5. 3 – Frames of reference and vector diagram for kinematic study 
 

The orientation of the {𝑩}  w.r.t  {𝑾},  is defined using the three 𝒙𝒚𝒛 euler angles 

𝝓𝑩
ᇱ ,   𝜽𝑩

ᇱ ,   𝝍′𝑩. 

 

The position and orientation of {𝑩}  w.r.t  {𝑾},  is given by the vector 

𝑩ഥ  =   𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒂𝒏𝒅 𝒐𝒓𝒊𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 𝒐𝒇  {𝑩}  𝒘. 𝒓. 𝒕  {𝑾} 

𝑩ഥ  =  (𝑿𝑩
ᇱ ,   𝒀𝑩

ᇱ ,   𝒁𝑩
ᇱ ,   𝝓𝑩

ᇱ ,   𝜽𝑩
ᇱ ,   𝝍′𝑩 ) 𝑻  
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The rotation matrix from {𝑩} frame to {𝑾} frame, is represented by 𝑾𝑹𝑩
, and is given for the 

𝒙𝒚𝒛 euler angles   𝝓𝑩
ᇱ ,   𝜽𝑩

ᇱ ,   𝝍′𝑩 as –  

 

𝑾𝑹𝑩
=  ቎

𝒄𝜽𝑩
ᇱ  . 𝒄𝝍′𝑩 −𝒄𝜽𝑩

ᇱ  . 𝒔𝝍′𝑩  𝒔𝜽𝑩
ᇱ

  𝒔𝝓𝑩
ᇱ  . 𝒔𝜽𝑩

ᇱ  . 𝒄𝝍′𝑩  +   𝒄𝝓𝑩
ᇱ  . 𝒔𝝍′𝑩  −𝒔𝝓𝑩

ᇱ  . 𝒔𝜽𝑩
ᇱ  . 𝒔𝝍′𝑩  +   𝒄𝝓𝑩

ᇱ  . 𝒄𝝍′𝑩 −𝒔𝝓𝑩
ᇱ  . 𝒄𝜽𝑩

ᇱ

 −𝒄𝝓𝑩
ᇱ  . 𝒔𝜽𝑩

ᇱ  . 𝒄𝝍′𝑩  +   𝒔𝝓𝑩
ᇱ  . 𝒔𝝍′𝑩  𝒄𝝓𝑩

ᇱ  . 𝒔𝜽𝑩
ᇱ  . 𝒔𝝍′𝑩  +   𝒔𝝓𝑩

ᇱ  . 𝒄𝝍′𝑩 𝒄𝝓𝑩
ᇱ  . 𝒄𝜽𝑩

ᇱ
቏ 

 

The terms  𝒃𝒊 ;  (𝒊 = 𝟏 𝒕𝒐 𝟔) represent the joints between the base and the legs.  

 𝒃ଙ
തതതത  =   𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓 𝒐𝒇   𝒃𝒊  𝒘. 𝒓. 𝒕  {𝑾}   

 𝑩𝒃ଙ
തതതതത  =   𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓 𝒐𝒇   𝒃𝒊  𝒘. 𝒓. 𝒕  {𝑩} 

 𝑩𝒃ଙ
തതതതത  = ൫ 𝑿𝒃𝒊

 ,  𝒀𝒃𝒊
 ,  𝒁𝒃𝒊൯

𝑻
  

 

5.4.2 – Position and Orientation of the Platform. 

Fig [5.3], shows the coordinate frames of the GSP and the associated vectors. 

𝒐ഥ  =   𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓 𝒐𝒇  𝒐  𝒘. 𝒓. 𝒕  𝑶ᇱ 

𝒐ഥ  =   (𝑿𝑷
ᇱ ,   𝒀𝑷

ᇱ ,   𝒁′𝑷)𝑻 

 

The orientation of the {𝑷}  w.r.t  {𝑾},  is defined using the three 𝒙𝒚𝒛 euler angles 

𝝓𝑷
ᇱ ,   𝜽𝑷

ᇱ ,   𝝍′𝑷. 

 

The position and orientation of {𝑷}  w.r.t  {𝑾},  is given by the vector 

𝑷ഥ  =   𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒂𝒏𝒅 𝒐𝒓𝒊𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 𝒐𝒇  {𝑷}  𝒘. 𝒓. 𝒕  {𝑾} 

𝑷ഥ  =  (𝑿𝑷
ᇱ ,   𝒀𝑷

ᇱ ,   𝒁𝑷
ᇱ ,   𝝓𝑷

ᇱ ,   𝜽𝑷
ᇱ ,   𝝍′𝑷 ) 𝑻  

 

The rotation matrix from {𝑷} frame to {𝑾} frame, is represented by 𝑾𝑹𝑷
, and is given for the 

𝒙𝒚𝒛 euler angles   𝝓𝑷
ᇱ ,   𝜽𝑷

ᇱ ,   𝝍′𝑷 as –  
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𝑾𝑹𝑷
=  ቎

𝒄𝜽𝑷
ᇱ  . 𝒄𝝍′𝑷 −𝒄𝜽𝑷

ᇱ  . 𝒔𝝍′𝑷  𝒔𝜽𝑷
ᇱ

  𝒔𝝓𝑷
ᇱ  . 𝒔𝜽𝑷

ᇱ  . 𝒄𝝍′𝑷  +   𝒄𝝓𝑷
ᇱ  . 𝒔𝝍′𝑷  −𝒔𝝓𝑷

ᇱ  . 𝒔𝜽𝑷
ᇱ  . 𝒔𝝍′𝑷  +   𝒄𝝓𝑷

ᇱ  . 𝒄𝝍′𝑷 −𝒔𝝓𝑷
ᇱ  . 𝒄𝜽𝑷

ᇱ

 −𝒄𝝓𝑷
ᇱ  . 𝒔𝜽𝑷

ᇱ  . 𝒄𝝍′𝑷  +   𝒔𝝓𝑷
ᇱ  . 𝒔𝝍′𝑷  𝒄𝝓𝑷

ᇱ  . 𝒔𝜽𝑷
ᇱ  . 𝒔𝝍′𝑷  +   𝒔𝝓𝑷

ᇱ  . 𝒄𝝍′𝑷 𝒄𝝓𝑷
ᇱ  . 𝒄𝜽𝑷

ᇱ
቏ 

 

The terms  𝒂𝒊 ;  (𝒊 = 𝟏 𝒕𝒐 𝟔) represent the joints between the platform and the legs.  

 𝒂ଙതതതത  =   𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓 𝒐𝒇   𝒂𝒊  𝒘. 𝒓. 𝒕  {𝑾}   

 𝑷𝒂ଙ
തതതതത  =   𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓 𝒐𝒇   𝒂𝒊  𝒘. 𝒓. 𝒕  {𝑷} 

 𝑷𝒂ଙ
തതതതത  = ൫ 𝒙𝒂𝒊

 ,  𝒚𝒂𝒊
 ,  𝒛𝒂𝒊൯

𝑻
  

 

 

5.5 – Kinematics of the Base and the Platform. 

 

5.5.1 – Kinematics of the Base. 

The position and orientation of {𝑩}  w.r.t  {𝑾},  is given by the vector 

𝑩ഥ  =   𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒂𝒏𝒅 𝒐𝒓𝒊𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 𝒐𝒇  {𝑩}  𝒘. 𝒓. 𝒕  {𝑾} 

𝑩ഥ  =  ൫𝑿𝑩
ᇱ ,   𝒀𝑩

ᇱ ,   𝒁𝑩
ᇱ ,   𝝓𝑩

ᇱ ,   𝜽𝑩
ᇱ ,   𝝍ᇱ

𝑩
 ൯ 𝑻 

 

The skew symmetric angular velocity tensor of the base, in world frame, or {𝑩}  w.r.t  {𝑾}, will 

be given by 

𝝎𝑩
𝒔𝒔 =  𝑾𝑹𝑩

̇  .  𝑾𝑹𝑩

𝑻 (𝟓. 𝟏) 

Where,  𝑾𝑹𝑩
̇  represents the time derivative of the rotation matrix from {𝑩} frame to {𝑾} frame. The 

matrix  𝝎𝑩
𝒔𝒔  is 𝟑 × 𝟑 skew symmetric matrix, having the form –  

𝝎𝑩
𝒔𝒔 =  ቎

0 −𝝎𝑩𝒁ᇲ
𝝎𝑩𝒀ᇲ

𝝎𝑩𝒁ᇲ
0 −𝝎𝑩𝑿ᇲ

−𝝎𝑩𝒀ᇲ
𝝎𝑩𝑿ᇲ

0
቏ 
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Therefore, the angular velocity vector of the base in world frame, or {𝑩}  w.r.t  {𝑾}, will be 

given by 

𝝎𝑩തതതത =  ቎

−𝝎𝑩
𝒔𝒔 (𝟐, 𝟑)

   𝝎𝑩
𝒔𝒔 (𝟏, 𝟑)

−𝝎𝑩
𝒔𝒔 (𝟏, 𝟐)

቏ (𝟓. 𝟐) 

 

The angular acceleration vector of the the base in world frame, or {𝑩}  w.r.t  {𝑾}, will then be 

given by 

𝜶𝑩തതതത =  𝝎𝑩̇ (𝟓. 𝟑) 

Where,  𝝎𝑩̇ represents the time derivative of  𝝎𝑩തതതത. 

 

5.5.1 – Kinematics of the Platform. 

The position and orientation of {𝑷}  w.r.t  {𝑾},  is given by the vector 

𝑷ഥ  =   𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒂𝒏𝒅 𝒐𝒓𝒊𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 𝒐𝒇  {𝑷}  𝒘. 𝒓. 𝒕  {𝑾} 

𝑷ഥ  =  (𝑿𝑷
ᇱ ,   𝒀𝑷

ᇱ ,   𝒁𝑷
ᇱ ,   𝝓𝑷

ᇱ ,   𝜽𝑷
ᇱ ,   𝝍′𝑷 ) 𝑻  

 

The skew symmetric angular velocity tensor of the platform, in world frame, or {𝑷}  w.r.t 

 {𝑾}, will be given by 

𝝎𝑷
𝒔𝒔 =  𝑾𝑹𝑷

̇  .  𝑾𝑹𝑷

𝑻 (𝟓. 𝟒) 

Where,  𝑾𝑹𝑷
̇  represents the time derivative of the rotation matrix from {𝑷} frame to {𝑾} frame. The 

matrix  𝝎𝑷
𝒔𝒔  is 𝟑 × 𝟑 skew symmetric matrix, having the form –  

𝝎𝑷
𝒔𝒔 =  ቎

0 −𝝎𝑷𝒁ᇲ
𝝎𝑷𝒀ᇲ

𝝎𝑷𝒁ᇲ
0 −𝝎𝑷𝑿ᇲ

−𝝎𝑷𝒀ᇲ
𝝎𝑷𝑿ᇲ

0
቏ 

Therefore, the angular velocity vector of the base in world frame, or {𝑷}  w.r.t  {𝑾}, will be 

given by 
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𝝎𝑷തതതത =  ቎

−𝝎𝑷
𝒔𝒔 (𝟐, 𝟑)

   𝝎𝑷
𝒔𝒔 (𝟏, 𝟑)

−𝝎𝑷
𝒔𝒔 (𝟏, 𝟐)

቏ (𝟓. 𝟓) 

 

The angular acceleration vector of the the base in world frame, or {𝑷}  w.r.t  {𝑾}, will then be 

given by 

𝜶𝑷തതതത =  𝝎𝑷̇  (𝟓. 𝟔) 

Where,  𝝎𝑷̇  represents the time derivative of  𝝎𝑷തതതത. 

 

 

5.6 – Kinematics of the Leg. 

 

5.6.1 – Expressions for the Leg Length and its time derivatives. 

 

Fig [5.3] – Frames of reference and vector diagram for kinematic study 

Refer Fig [5.3]. The position vectors of the points  𝒃𝒊 ;  (𝒊 = 𝟏 𝒕𝒐 𝟔) i.e. the joints between the 

base and legs, in the world frame {𝑾} is given by 
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 𝒃ଙ
തതതത  =   𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓 𝒐𝒇   𝒃𝒊  𝒘. 𝒓. 𝒕  {𝑾} 

 𝒃ଙ
തതതത  =   𝑶ഥ  +  𝑾𝑹𝑩

 𝑩𝒃ଙ
തതതതത  (𝟓. 𝟕) 

Therefore, the time derivative of  𝒃ଙ
തതതത , which represents the rate of change of position vector of 

 𝒃𝒊 ;  (𝒊 = 𝟏 𝒕𝒐 𝟔), will be 

 𝒃ଙ
̇ =  𝑶̇  + 𝝎𝑩തതതത  × ൫𝑾𝑹𝑩

 𝑩𝒃ଙ
തതതതത൯ (𝟓. 𝟖) 

 𝒃ଙ
̇ =  𝑶̇  +   𝝎𝑩

𝒔𝒔 ൫𝑾𝑹𝑩
 𝑩𝒃ଙ
തതതതത൯ (𝟓. 𝟗) 

 

The acceleration of the position vector  𝒃ଙ
തതതത will be –  

𝒃ଙ
̈ =  𝑶̈  +   𝜶𝑩തതതത  × ൫𝑾𝑹𝑩

 𝑩𝒃ଙ
തതതതത൯  +   𝝎𝑩തതതത  × ൣ𝝎𝑩തതതത  × ൫𝑾𝑹𝑩

 𝑩𝒃ଙ
തതതതത൯൧ (𝟓. 𝟏𝟎) 

 

Similar formulation can be done for the joints between the platform and the legs.  

The position vectors of the points  𝒂𝒊 ;  (𝒊 = 𝟏 𝒕𝒐 𝟔) i.e. the joints between the platform and 

legs, in the world frame {𝑾} is given by 

 𝒂ଙതതതത  =   𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓 𝒐𝒇   𝒂𝒊  𝒘. 𝒓. 𝒕  {𝑾} 

 𝒂ଙതതതത  =   𝒐ഥ  + 𝑾𝑹𝑷
 𝑷𝒂ଙ
തതതതത  (𝟓. 𝟏𝟏) 

Therefore, the time derivative of  𝒂ଙതതതത , which represents the rate of change of position vector of 

 𝒂𝒊 ;  (𝒊 = 𝟏 𝒕𝒐 𝟔), will be 

 𝒂ଙ̇ =  𝒐̇  +  𝝎𝑷തതതത  × ൫𝑾𝑹𝑷
 𝑷𝒂ଙ
തതതതത൯ (𝟓. 𝟏𝟐) 

 𝒂ଙ̇ =  𝒐̇  +  𝝎𝑷
𝒔𝒔 ൫𝑾𝑹𝑷

 𝑷𝒂ଙ
തതതതത൯ (𝟓. 𝟏𝟑) 

 

The acceleration of the position vector  𝒂ଙതതതത will be –  

𝒂ଙ̈ =  𝒐̈  +   𝜶𝑷തതതത  × ൫𝑾𝑹𝑷
 𝑷𝒂ଙ
തതതതത൯  +  𝝎𝑷തതതത  × ൣ𝝎𝑷തതതത  × ൫𝑾𝑹𝑷

 𝑷𝒂ଙ
തതതതത൯൧ (𝟓. 𝟏𝟒)  

 

Where, ′ × ′ represents the cross product of the vectors. 
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From Fig [5.3], we see 

𝑳ଙ
ഥ =   𝒂ଙതതതത −   𝒃ଙ

തതതത  (𝟓. 𝟏𝟓) 

Where, 𝑳ଙ
ഥ  is a vector along the axis of the leg, expressed in world frame. 

Therefore,

   𝒍𝒊𝒏ଙതതത =   𝒂ଙതതതത −   𝒃ଙ
തതതത (𝟓. 𝟏𝟔) 

Where,  𝒍𝒊 is the length of the leg at any instant and  𝒏ଙതതത  is the unit vector along the axis of the 

leg. 

The leg length can be found from Eqn. [5.15] by 

 𝒍𝒊 =  ට𝑳ଙ
ഥ  .  𝑳ଙ

ഥ  (𝟓. 𝟏𝟕) 

Where, ′. ′ represents the dot product of the vectors. 

Therefore,                                                

  𝒏ଙതതത =  
 𝒂ଙതതതത −   𝒃ଙ

തതതത

 𝒍𝒊
 (𝟓. 𝟏𝟖) 

We can write from Eqn. [5.16] 

 𝒍𝒊 =  ൫ 𝒂ଙതതതത −   𝒃ଙ
തതതത൯ .  𝒏ଙതതത (𝟓. 𝟏𝟗) 

Therefore, the time rate of change of leg length is the component of the time rate of change of  

𝑳ଙ
ഥ  along the axis of the leg. 

𝒍ଙ̇ =  𝑳ଙ
̇  .  𝒏ଙതതത  

𝒍ଙ̇ =  ൫𝒂ଙ̇ −  𝒃ଙ
̇ ൯ .  𝒏ଙതതത (𝟓. 𝟐𝟎) 

The term 𝒍ଙ̇ represents the leg length extension rate, or the velocity of the prismatic joint 

between the parts 1 and 2 of the leg. 

The acceleration of the prismatic joint between the parts 1 and 2 of the leg will be given by. 

𝒍ଙ̈ =  ൫𝒂ଙ̈ −  𝒃ଙ
̈ ൯ . 𝒏ଙതതത  +  ൫𝒂ଙ̇ −  𝒃ଙ

̇ ൯ .  𝒏ଙ̇  (𝟓. 𝟐𝟏)  

Where,  𝒏ଙ̇  is the time rate of change of the unit vector  𝒏ଙതതത. Since, it is a unit vector, its time 

rate of change will only be because of the angular velocity of the legs. Therefore, 
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𝒏ଙ̇ =  𝝎ଙതതതത  ×  𝒏ଙതതത (𝟓. 𝟐𝟐) 

𝒍ଙ̈ =  ൫𝒂ଙ̈ −  𝒃ଙ
̈ ൯ . 𝒏ଙതതത  + ൫𝒂ଙ̇ −  𝒃ଙ

̇ ൯ .  ( 𝝎ଙതതതത  × 𝒏ଙതതത) (𝟓. 𝟐𝟑)   

 

The expression for the angular velocity vector of the legs  𝝎ଙതതതത will be derived in the section 

5.6.3. 

 

5.6.2 – Leg Coordinate Frame. 

Refer Fig [5.4]. A right-handed orthogonal coordinate frame is defined for each of the legs. 

This  𝒊𝒕𝒉 coordinate frame, (𝒊 = 𝟏 𝒕𝒐 𝟔), is attached to the universal joint between the base and 

the leg. The origin of the frame is located at the anchor points  𝒃𝒊 ;  (𝒊 = 𝟏 𝒕𝒐 𝟔). The three 

axes of the frame are represented by {𝑳𝒊} = ൫𝒖𝒊  , 𝒗𝒊  , 𝒄𝒊൯. Where  𝒖𝒊 is aligned along the fixed 

axis of the universal joint, and  𝒗𝒊 is aligned along the second axis (rotating axis) of the 

universal joint. Here we assume that for each leg, the 𝒖𝒊 axis is aligned with the unit vector, 

along the position vectors of the anchor points  𝒃𝒊 ;  (𝒊 = 𝟏 𝒕𝒐 𝟔) measured in {𝑩} frame and 

expressed in {𝑾} frame, i.e. 𝑾𝑹𝑩
 𝑩𝒃ଙ
തതതതത.  

 

 

 

Figure 5. 4 – Frame of reference attached to the universal joint 
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Therefore,  

𝒖𝒊 =  
𝑾𝑹𝑩

 𝑩𝒃ଙ
തതതതത

ฮ𝑾𝑹𝑩
 𝑩𝒃ଙ
തതതതതฮ

 (𝟓. 𝟐𝟒) 

Where,  ฮ𝑾𝑹𝑩
 𝑩𝒃ଙ
തതതതതฮ  is the norm of the vector  𝑾𝑹𝑩

 𝑩𝒃ଙ
തതതതത. 

 

From Fig [5.4], we see that the axis 𝒗𝒊 is orthogonal to both the vectors 𝒖𝒊 and  𝒏ଙതതത. Therefore, 

the axis  𝒗𝒊 is given by 

𝒗𝒊 =  
(𝒖𝒊  ×  𝒏ଙതതത)

‖(𝒖𝒊  ×  𝒏ଙതതത)‖
 (𝟓. 𝟐𝟓) 

 

The axis  𝒄𝒊 is defined an axis orthogonal to both the vectors 𝒖𝒊 and  𝒗𝒊. Therefore,  

𝒄𝒊 =  𝒖𝒊  ×  𝒗𝒊 (𝟓. 𝟐𝟔) 

Thus, a coordinate frame attached to each of the six legs, defined by the {𝑳𝒊} =  ൫𝒖𝒊  , 𝒗𝒊  , 𝒄𝒊൯  as 

above is attached to the anchor points  𝒃𝒊 ;  (𝒊 = 𝟏 𝒕𝒐 𝟔). 

  

5.6.3 – Kinematics of the Universal Joint between the Base and the Legs. 

The kinematic formulation for the universal joint between the base and the legs, will help us 

find the expressions for the angular velocity vector and the angular acceleration vector of the 

legs. 

Since, we have now defined a frame attached to the universal joint of the leg where the unit 

vectors along the axes of this frame are expressed in world frame {𝑾}, we can now define a 

rotation matrix from the {𝑳𝒊} frame to the {𝑾} frame. 

𝑾𝑹𝑳𝒊
=  [(𝒖𝒊) (𝒗𝒊) (𝒄𝒊)] (𝟓. 𝟐𝟕) 

Where, (𝒖𝒊) , (𝒗𝒊) , (𝒄𝒊) represent the column vectors 𝒖𝒊  , 𝒗𝒊  , 𝒄𝒊  respectively. 

The skew symmetric angular velocity tensor of the 𝒊𝒕𝒉 leg, in world frame, or {𝑳𝒊}  w.r.t 

 {𝑾}, will be given by 
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𝝎𝑳𝒊
𝒔𝒔 =  𝑾𝑹𝑳ଙ

̇  .  𝑾𝑹𝑳𝒊

𝑻 (𝟓. 𝟐𝟖) 

Where, 𝑾𝑹𝑳ଙ
̇  represents the time derivative of the rotation matrix from {𝑳𝒊}  frame to {𝑾} frame. 

The matrix  𝝎𝑳𝒊
𝒔𝒔  is 𝟑 × 𝟑 skew symmetric matrix, having the form –  

𝝎𝑳𝒊
𝒔𝒔 =  ൦

0 −𝝎𝑳𝒊
𝒁ᇲ

𝝎𝑳𝒊
𝒀ᇲ

𝝎𝑳𝒊
𝒁ᇲ

0 −𝝎𝑳𝒊
𝑿ᇲ

−𝝎𝑳𝒊
𝒀ᇲ

𝝎𝑳𝒊
𝑿ᇲ

0

൪ (𝟓. 𝟐𝟗) 

 

Therefore, the angular velocity vector of the 𝒊𝒕𝒉 leg, in world frame, or {𝑳𝒊}  w.r.t  {𝑾}, will be 

given by 

𝝎ଙതതതത =  ቎

−𝝎𝑳𝒊
𝒔𝒔 (𝟐, 𝟑)

   𝝎𝑳𝒊
𝒔𝒔 (𝟏, 𝟑)

−𝝎𝑳𝒊
𝒔𝒔 (𝟏, 𝟐)

቏ (𝟓. 𝟑𝟎) 

 

The angular acceleration vector of the the 𝒊𝒕𝒉 leg, in world frame, or {𝑳𝒊}  w.r.t  {𝑾}, will then 

be given by 

𝜶ଙതതത =  𝝎ଙ̇  (𝟓. 𝟑𝟏) 

Where,  𝝎ଙ̇  represents the time derivative of  𝝎ଙതതതത. 
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5.7 – Dynamics of the Base, the Platform, and the Leg. 

 

Fig [5.5], shows the free body diagrams of the base, the leg, and the platform of a GSP. The 

base is subjected to the gravity force, and the reaction force and moment between the legs and 

the base. Since, the base is assumed to be moving because of the external excitations, we do 

not consider any reaction force between the base and the spacecraft bus. The legs are acted 

upon by the gravity forces of parts 1 and 2, the reaction force and moment between the legs 

and the base, and the reaction force between the legs and the platform. A reaction moment 

exists between the base and the legs because of the universal joint. However, since a spherical 

joint is present between the legs and the platform, there will be no reaction moment at the top 

end of the leg. The platform is acted upon by the gravity force, and the reaction force between 

the legs and the platform. 

 

Figure 5. 5 – Free body diagram of the base, the leg and the platform 
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5.7.1 – Dynamics of the Base. 

Fig [5.6], shows the forces and moments acting on the base, and, also the position vectors of 

the points of application of these forces and moments. The reaction forces and the moment is 

shown for only one anchor point of the joint. Similar terminology is applicable for each  𝒊𝒕𝒉 

joint, (𝒊 = 𝟏 𝒕𝒐 𝟔).  

 

Figure 5. 6 – Forces and moments on the base, in world frame 
 

The position vector of the COM  𝑩𝑮  of the base, in the world frame {𝑾} is given by 

 𝑩𝑮
തതതതത  =   𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓 𝒐𝒇   𝑩𝑮  𝒘. 𝒓. 𝒕  {𝑾} 

 𝑩𝑮
തതതതത  =   𝑶ഥ  + 𝑾𝑹𝑩

 𝑩𝑩𝑮
തതതതതത  (𝟓. 𝟑𝟐) 

Where,  𝑩𝑩𝑮
തതതതതത is the position vector of  𝑩𝑮 in base frame {𝑩}. 
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The velocity  𝒗𝑩𝑮
തതതതത  of the COM of base is given by the time derivative of the position vector 

 𝑩𝑮
തതതതത. 

𝒗𝑩𝑮
തതതതത =   𝑩𝑮

̇ =  𝑶̇  +  𝝎𝑩തതതത  ×  ൫𝑾𝑹𝑩
 𝑩𝑩𝑮
തതതതതത൯ (𝟓. 𝟑𝟑) 

 

The acceleration  𝒂𝑩𝑮
തതതതത  of the COM of base is given by the time derivative of the velocity vector 

𝒗𝑩𝑮
തതതതത. 

𝒂𝑩𝑮
തതതതത =   𝑩𝑮

̈ = 𝑶̈  +   𝜶𝑩തതതത  × ൫𝑾𝑹𝑩
 𝑩𝑩𝑮
തതതതതത൯  +   𝝎𝑩തതതത  × ൣ𝝎𝑩തതതത  ×  ൫𝑾𝑹𝑩

 𝑩𝑩𝑮
തതതതതത൯൧ (𝟓. 𝟑𝟒) 

 

The force balance equation for the base will be –  

− ෍ 𝑹𝒊
𝒂  − ෍ 𝑹𝒊

𝒏 +  𝒎𝑩𝑮 = 𝒎𝑩𝑩𝑮̈ (𝟓. 𝟑𝟓) 

 

The expression for the angular momentum of the base will be 

𝑳ത𝑩 = 𝑰ത𝑩𝝎𝑩തതതത + 𝒎𝑩൫ 𝑩𝑮
തതതതത ×  𝒗𝑩𝑮

തതതതത൯ (𝟓. 𝟑𝟔) 

 

Where,  𝑰ത𝑩 is the inertia tensor of the base in the world frame {𝑾} and is given by –  

𝑰ത𝑩 =  𝑾𝑹𝑩 𝑩𝑰ത𝑩
 𝑾𝑹𝑩

𝑻 (𝟓. 𝟑𝟕) 

Where,  𝑩𝑰ത𝑩
 is the inertia tensor of the base in the base frame {𝑩}. 

 

The expression for the time rate of change of angular momentum of the base will be 

𝑳̇𝑩 = 𝑰ത𝑩𝜶𝑩തതതത   +   𝝎ഥ 𝑩 × (𝑰ത𝑩𝝎𝑩തതതത)   +  𝒎𝑩൫ 𝑩𝑮
തതതതത ×  𝒂𝑩𝑮

തതതതത൯ (𝟓. 𝟑𝟖) 

 

The moment balance equation for the base will be –  

 𝑩𝑮
തതതതത  × 𝒎𝑩𝑮   − ෍ 𝒃ഥ𝒊 ×  𝑹𝒊

𝒂   − ෍ 𝒃ഥ𝒊 ×  𝑹𝒊
𝒏  − ෍ 𝑴𝒊 =  𝑳̇𝑩  (𝟓. 𝟑𝟗) 
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𝑩ഥ𝑮 × 𝒎𝑩𝑮  − ෍ 𝒃ഥ𝒊 × 𝑹𝒊
𝒂   − ෍ 𝒃ഥ𝒊 × 𝑹𝒊

𝒏  − ෍ 𝑴𝒊 =  𝑰ത𝑩𝜶𝑩തതതത   +   𝝎ഥ 𝑩 × (𝑰ത𝑩𝝎𝑩തതതത)  +  𝒎𝑩൫ 𝑩𝑮
തതതതത ×  𝒂𝑩𝑮

തതതതത൯ 

 

Therefore,  

෍ 𝒃ഥ𝒊 × 𝑹𝒊
𝒂   =   𝑩ഥ𝑮 × 𝒎𝑩𝑮 −  𝑰ത𝑩𝜶𝑩തതതത   −  𝝎ഥ 𝑩 × (𝑰ത𝑩𝝎𝑩തതതത) −  𝒎𝑩൫ 𝑩𝑮

തതതതത ×  𝒂𝑩𝑮
തതതതത൯ − ෍ 𝒃ഥ𝒊 × 𝑹𝒊

𝒏  − ෍ 𝑴𝒊 

 

Let, 

            𝑽𝑩 =  𝑩ഥ𝑮 × 𝒎𝑩𝑮 –  𝑰ത𝑩𝜶𝑩തതതത    −   𝝎ഥ 𝑩 × (𝑰ത𝑩𝝎𝑩തതതത) –  𝒎𝑩൫ 𝑩𝑮
തതതതത ×  𝒂𝑩𝑮

തതതതത൯ (𝟓. 𝟒𝟎)  

 

Therefore,                        

 ෍ 𝒃ഥ𝒊 × 𝑹𝒊
𝒂   =    𝑽𝑩  − ෍ 𝒃ഥ𝒊 × 𝑹𝒊

𝒏  − ෍ 𝑴𝒊  (𝟓. 𝟒𝟏) 

 

 

5.7.2 – Dynamics of the Platform. 

Fig [5.7], shows the forces acting on the platform, and, also the position vectors of the points 

of application of these forces. The reaction forces are shown for only one anchor point of the 

joint. Similar terminology is applicable for each  𝒊𝒕𝒉 joint, (𝒊 = 𝟏 𝒕𝒐 𝟔).  

The position vector of the COM  𝑷𝑮  of the platform, in the world frame {𝑾} is given by 

 𝑷𝑮
തതതത  =   𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓 𝒐𝒇   𝑷𝑮  𝒘. 𝒓. 𝒕  {𝑾} 

 𝑷𝑮
തതതത  =   𝒐ഥ  + 𝑾𝑹𝑷

 𝑷𝑷𝑮
തതതതതത  (𝟓. 𝟒𝟐) 

 

Where,  𝑷𝑷𝑮
തതതതതത is the position vector of  𝑷𝑮 in platform frame {𝑷}. 
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The velocity  𝒗𝑷𝑮
തതതതത  of the COM of platform is given by the time derivative of the position vector 

 𝑷𝑮
തതതത. 

𝒗𝑷𝑮
തതതതത =   𝑷𝑮

̇ =  𝒐̇  +  𝝎𝑷തതതത  ×  ൫𝑾𝑹𝑷
 𝑷𝑷𝑮
തതതതതത൯ (𝟓. 𝟒𝟑) 

 

Figure 5. 7 – Forces and moments on the platform, in world frame 
 

The acceleration  𝒂𝑷𝑮
തതതതത  of the COM of platform is given by the time derivative of the velocity 

vector 𝒗𝑷𝑮
തതതതത. 

𝒂𝑷𝑮
തതതതത =   𝑷𝑮

̈ = 𝒐̈  +   𝜶𝑷തതതത  ×  ൫𝑾𝑹𝑷
 𝑷𝑷𝑮
തതതതതത൯  +   𝝎𝑷തതതത  × ൣ𝝎𝑷തതതത  ×  ൫𝑾𝑹𝑷

 𝑷𝑷𝑮
തതതതതത൯൧ (𝟓. 𝟒𝟒) 

 

The force balance equation for the base will be –  

− ෍ 𝑭𝒊
𝒂  − ෍ 𝑭𝒊

𝒏 +  𝒎𝑷𝑮 = 𝒎𝑷𝑷𝑮̈ (𝟓. 𝟒𝟓) 
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The expression for the angular momentum of the base will be 

𝑳ത𝑷 = 𝑰ത𝑷𝝎𝑷തതതത + 𝒎𝑷൫ 𝑷𝑮
തതതത ×  𝒗𝑷𝑮

തതതതത൯ (𝟓. 𝟒𝟔) 

 

Where,  𝑰ത𝑷 is the inertia tensor of the platform in the world frame {𝑾} and is given by –  

𝑰ത𝑷 =  𝑾𝑹𝑷 𝑷𝑰ത𝑷
 𝑾𝑹𝑷

𝑻 (𝟓. 𝟒𝟕) 

Where,  𝑷𝑰ത𝑷
 is the inertia tensor of the platform in the platform frame {𝑷}. 

 

The expression for the time rate of change of angular momentum of the platform will be 

𝑳̇𝑷 = 𝑰ത𝑷𝜶𝑷തതതത + 𝝎𝑷തതതത × (𝑰ത𝑷𝝎𝑷തതതത) +  𝒎𝑷൫ 𝑷𝑮
തതതത ×  𝒂𝑷𝑮

തതതതത൯ (𝟓. 𝟒𝟖) 

  

The moment balance equation for the platform will be –  

𝑷ഥ𝑮 × 𝒎𝑷𝑮 −  ෍ 𝒂ഥ𝒊 ×  𝑭𝒊
𝒂 − ෍ 𝒂ഥ𝒊 ×  𝑭𝒊

𝒏 =  𝑳̇𝑷 (𝟓. 𝟒𝟗) 

 

𝑷ഥ𝑮 × 𝒎𝑷𝑮 −  ෍ 𝒂ഥ𝒊 ×  𝑭𝒊
𝒂 − ෍ 𝒂ഥ𝒊 ×  𝑭𝒊

𝒏 = 𝑰ത𝑷𝜶𝑷തതതത  + 𝝎𝑷തതതത × (𝑰ത𝑷𝝎𝑷തതതത) +  𝒎𝑷( 𝑷𝑮
തതതത ×  𝒂𝑷𝑮

തതതതത) 

 

Therefore,  

෍ 𝒂ഥ𝒊 × 𝑭𝒊
𝒂   =   𝑷ഥ𝑮 × 𝒎𝑷𝑮 − 𝑰ത𝑷𝜶𝑷തതതത − 𝝎𝑷തതതത × (𝑰ത𝑷𝝎𝑷തതതത)  −  𝒎𝑷( 𝑷𝑮

തതതത ×  𝒂𝑷𝑮
തതതതത)  − ෍ 𝒂ഥ𝒊 × 𝑭𝒊

𝒏   

 

Let, 

            𝑽𝑷 =  𝑷ഥ𝑮 × 𝒎𝑷𝑮 – 𝑰ത𝑷𝜶𝑷തതതത − 𝝎𝑷തതതത × (𝑰ത𝑷𝝎𝑷തതതത) –  𝒎𝑷൫ 𝑷𝑮
തതതത ×  𝒂𝑷𝑮

തതതതത൯ (𝟓. 𝟓𝟎) 

 

Therefore,                        

 ෍ 𝒂ഥ𝒊 × 𝑭𝒊
𝒂   =    𝑽𝑷  − ෍ 𝒂ഥ𝒊 × 𝑭𝒊

𝒏 (𝟓. 𝟓𝟏) 
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5.7.3 – Dynamics of the Leg. 

Fig [5.8], shows the forces and moments acting on the 𝒊𝒕𝒉 leg, and, also the position vectors of 

the points of application of these forces and moments. Similar terminology is applicable for 

each  𝒊𝒕𝒉 leg, (𝒊 = 𝟏 𝒕𝒐 𝟔). 

 

Figure 5. 8 – Forces and moments on the leg, in world frame 
 

 

The position vector of the COM  𝒍𝟏𝑮  of the part 1 of the 𝒊𝒕𝒉 leg, in the world frame {𝑾} is 

given by 

 𝒍ଙ𝟏𝑮
തതതതതത  =   𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓 𝒐𝒇   𝒍𝒊𝟏𝑮  𝒘. 𝒓. 𝒕  {𝑾} 

 𝒍ଙ𝟏𝑮
തതതതതത  =   𝒃ଙ

ഥ  + (𝒍𝒊 −  𝒍𝒊𝟏 ) 𝒏ଙതതത (𝟓. 𝟓𝟐) 
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The velocity  𝒗𝒍ଙ𝟏𝑮
തതതതതതത  of the COM of part 1 of the leg is given by the time derivative of the 

position vector  𝒍ଙ𝟏𝑮
തതതതതത . 

𝒗𝒍ଙ𝟏𝑮
തതതതതതത =   𝒍ଙ𝟏𝑮

̇   =    𝒃ଙ
̇   +   𝒍ଙ̇ 𝒏ଙതതത  + (𝒍𝒊 − 𝒍𝒊𝟏 )( 𝝎ଙതതതത  × 𝒏ଙതതത)  (𝟓. 𝟓𝟑)  

 

The acceleration  𝒂𝒍ଙ𝟏𝑮
തതതതതതത  of the COM of part 1 of the leg is given by the time derivative of the 

velocity vector 𝒗𝒍ଙ𝟏𝑮
തതതതതതത. 

𝒂𝒍𝒊𝟏𝑮
തതതതതത =   𝒍𝒊𝟏𝑮

̈   =   𝒃𝒊
̈  +   𝒍𝒊̈ 𝒏𝒊ഥ  +  𝒍𝒊̇ ( 𝝎𝒊തതത  ×  𝒏𝒊ഥ ) +  𝒍𝒊̇ ( 𝝎𝒊തതത  ×  𝒏𝒊ഥ ) + 

(𝒍𝒊 −  𝒍𝒊𝟏 )( 𝜶𝒊ഥ  ×  𝒏𝒊ഥ )     + 

          (𝒍𝒊 −  𝒍𝒊𝟏 ) [𝝎𝒊തതത  ×  (𝝎𝒊തതത  ×  𝒏𝒊ഥ )]  (𝟓. 𝟓𝟒)

 

 

Similarly, we find the velocity and acceleration of the part 2 of the leg. 

The position vector of the COM  𝒍𝒊𝟐𝑮  of the part 2 of the 𝒊𝒕𝒉 leg, in the world frame {𝑾} is 

given by 

 𝒍ଙ𝟐𝑮
തതതതതത  =   𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓 𝒐𝒇   𝒍𝒊𝟐𝑮  𝒘. 𝒓. 𝒕  {𝑾} 

 𝒍ଙ𝟐𝑮
തതതതതത  =   𝒃ଙ

ഥ  +  𝒍𝒊𝟐 𝒏ଙതതത (𝟓. 𝟓𝟓) 

 

The velocity  𝒗𝒍ଙ𝟐𝑮
തതതതതതത  of the COM of part 2 of the leg is given by the time derivative of the 

position vector  𝒍ଙ𝟐𝑮
തതതതതത . 

𝒗𝒍ଙ𝟐𝑮
തതതതതതത =   𝒍ଙ𝟐𝑮

̇   =    𝒃ଙ
̇   +    𝒍𝒊𝟐( 𝝎ଙതതതത  ×  𝒏ଙതതത) (𝟓. 𝟓𝟔)    

 

The acceleration  𝒂𝒍ଙ𝟐𝑮
തതതതതതത  of the COM of part 2 of the leg is given by the time derivative of the 

velocity vector 𝒗𝒍ଙ𝟐𝑮
തതതതതതത. 

𝒂𝒍ଙ𝟐𝑮
തതതതതതത =   𝒍ଙ𝟐𝑮

̈   =   𝒃ଙ
̈  +     𝒍𝒊𝟐( 𝜶ଙതതത  × 𝒏ଙതതത)     +   𝒍𝒊𝟐 [𝝎ଙതതതത  × (𝝎ଙതതതത  × 𝒏ଙതതത)] (𝟓. 𝟓𝟕)   

 

The force balance equation for the 𝒊𝒕𝒉 leg will be –  

𝑭𝒊
𝒂  +  𝑭𝒊

𝒏  +  𝑹𝒊
𝒂  +  𝑹𝒊

𝒏  +  𝒎𝟏𝑮 +  𝒎𝟐𝑮  =   𝒎𝟏 𝒍ଙ𝟏𝑮
̈  +  𝒎𝟐 𝒍ଙ𝟐𝑮

̈  (𝟓. 𝟓𝟖) 
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𝑭𝒊 +  𝑹𝒊   =    𝒎𝟏 𝒍ଙ𝟏𝑮
̈   +  𝒎𝟐 𝒍ଙ𝟐𝑮

̈  −  𝒎𝟏𝑮 −  𝒎𝟐𝑮   

Let,                                          𝑵𝒊 =  𝒎𝟏 𝒍ଙ𝟏𝑮
̈   +  𝒎𝟐 𝒍ଙ𝟐𝑮

̈  −  𝒎𝟏𝑮 −  𝒎𝟐𝑮 

Therefore, 

𝑭𝒊 +  𝑹𝒊   =  𝑵𝒊  (𝟓. 𝟓𝟗)  

 

The force balance equation for part 1 of the 𝒊𝒕𝒉 leg will be –  

𝑭𝒊 = 𝒎𝟏 𝒍ଙ𝟏𝑮
̈  −  𝒎𝟏𝑮 +  𝑭𝟏𝟐 (𝟓. 𝟔𝟎) 

Where,  𝑭𝒊 =  𝑭𝒊
𝒂  +  𝑭𝒊

𝒏  is the total reaction force, and  𝑭𝟏𝟐  is the interaction force between 

parts 1 and 2. 

 

The force balance equation for part 2 of the 𝒊𝒕𝒉 leg will be –  

𝑹𝒊 = 𝒎𝟐 𝒍ଙ𝟐𝑮
̈  −  𝒎𝟐𝑮 −  𝑭𝟏𝟐 (𝟓. 𝟔𝟏) 

Where,  𝑹𝒊 =  𝑹𝒊
𝒂  +  𝑹𝒊

𝒏  is the total reaction force, and  𝑭𝟏𝟐  is the interaction force between 

parts 1 and 2. 

 

The expression for the angular momentum of the 𝒊𝒕𝒉 leg will be 

𝑳ത𝒍𝒊   =   𝑰ത𝟏𝝎ଙതതതത   +   𝑰ത𝟐𝝎ଙതതതത   +   𝒎𝟏൫ 𝒍ଙ𝟏𝑮
തതതതതത ×  𝒗𝒍ଙ𝟏𝑮

തതതതതതത൯   +  𝒎𝟐൫ 𝒍ଙ𝟐𝑮
തതതതതത ×  𝒗𝒍ଙ𝟐𝑮

തതതതതതത൯ (𝟓. 𝟔𝟐) 

 

Where,  𝑰ത𝟏 is the inertia tensor of the part 1 of the leg in the world frame {𝑾} and is given by 

–  

𝑰ത𝟏 =  𝑾𝑹𝑳𝒊 𝑳𝒊𝑰ത𝑳𝒊
 𝑾𝑹𝑳𝒊

𝑻 (𝟓. 𝟔𝟑) 

Where,  𝑳𝒊𝑰ത𝑳𝒊
 is the inertia tensor of the part 1 of the leg in the leg frame {𝑳𝒊}. Similarly, we 

can find the inertia tensor  𝑰ത𝟐  of the part 2 of the frame. 
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The expression for the time rate of change of angular momentum of the platform will be 

𝑳̇𝒍𝒊   =   (𝑰̅𝟏 +  𝑰̅𝟐)𝜶𝒊ഥ   +  𝝎𝒊തതത × [(𝑰̅𝟏 +  𝑰̅𝟐)𝝎𝒊തതത]   +   𝒎𝟏൫ 𝒍𝒊𝟏𝑮
തതതതത ×  𝒂𝒍𝒊𝟏𝑮

തതതതതത൯   + 

𝒎𝟐൫ 𝒍𝒊𝟐𝑮
തതതതത ×  𝒂𝒍𝒊𝟐𝑮

തതതതതത൯ (𝟓. 𝟔𝟒)
 

 

The moment balance equation for the  𝒊𝒕𝒉 leg will be –  

𝑳̇𝒍𝒊 = (𝒂ഥ𝒊 × 𝑭𝒊
𝒂)  + (𝒂ഥ𝒊 × 𝑭𝒊

𝒏)  +  (𝒃ഥ𝒊 × 𝑹𝒊
𝒂)  +  

                                             ൫𝒃ഥ𝒊 × 𝑹𝒊
𝒏൯ + ൫ 𝒍ଙ𝟏𝑮

തതതതതത × 𝒎𝟏𝑮൯ + ൫ 𝒍ଙ𝟐𝑮
തതതതതത × 𝒎𝟐𝑮൯ + 𝑴𝒊 (𝟓. 𝟔𝟓)   

 

Therefore,  

(𝒂ഥ𝒊 × 𝑭𝒊) + ൫𝒃ഥ𝒊 × 𝑹𝒊൯  + 𝑴𝒊  =   𝑳̇𝒍𝒊 −   ൫ 𝒍ଙ𝟏𝑮
തതതതതത × 𝒎𝟏𝑮൯ − ൫ 𝒍ଙ𝟐𝑮

തതതതതത × 𝒎𝟐𝑮൯ 

Let,  

                                        𝑬𝒊 =  𝑳̇𝒍𝒊 −   ൫ 𝒍ଙ𝟏𝑮
തതതതതത × 𝒎𝟏𝑮൯ − ൫ 𝒍ଙ𝟐𝑮

തതതതതത × 𝒎𝟐𝑮൯ (𝟓. 𝟔𝟔)  

Therefore, 

(𝒂ഥ𝒊 × 𝑭𝒊) +  ൫𝒃ഥ𝒊 × 𝑹𝒊൯  +  𝑴𝒊  =  𝑬𝒊 (𝟓. 𝟔𝟕) 

 

 

5.7.4 – Expressions for the Reaction Forces and the Moments. 

In this section we find the expressions for the 𝑭𝒊
𝒂  , 𝑭𝒊

𝒏  , 𝑹𝒊
𝒂  , 𝑹𝒊

𝒏  , 𝑴𝒊 . 

 

𝑭𝒊 =  𝑵𝒊 −  𝑹𝒊   

൫𝒂ഥ𝒊 × (𝑵𝒊 −  𝑹𝒊)൯ +  ൫𝒃ഥ𝒊 × 𝑹𝒊൯  + 𝑴𝒊  =  𝑬𝒊 

(𝒂ഥ𝒊 × 𝑵𝒊) +  ቀ൫𝒃ഥ𝒊 −  𝒂ഥ𝒊൯ × 𝑹𝒊ቁ  +  𝑴𝒊  =  𝑬𝒊 (𝟓. 𝟔𝟖) 

 

The moment 𝑴𝒊 is along the 𝒄𝒊 axis, and can therefore be written as 𝑴𝒊 =  𝒎𝒊 𝒄𝒊 
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Dot product Eqn. [5.68] with ൫𝒃ഥ𝒊 −  𝒂ഥ𝒊൯ and after certain simplifications, we get the expression for 

𝒎𝒊 as 

𝒎𝒊 =  
𝑬𝒊 . ൫𝒃ഥ𝒊 − 𝒂ഥ𝒊൯  −   (𝒂ഥ𝒊 × 𝑵𝒊) . 𝒃ഥ𝒊  

𝒄𝒊 .  ൫𝒃ഥ𝒊 −  𝒂ഥ𝒊൯
 (𝟓. 𝟔𝟗) 

Therefore,  

𝑴𝒊 =  
𝑬𝒊 . ൫𝒃ഥ𝒊 − 𝒂ഥ𝒊൯  −   (𝒂ഥ𝒊 × 𝑵𝒊) . 𝒃ഥ𝒊  

𝒄𝒊 .  ൫𝒃ഥ𝒊 −  𝒂ഥ𝒊൯
  𝒄𝒊 (𝟓. 𝟕𝟎)  

 

Now,  

𝒃ഥ𝒊 − 𝒂ഥ𝒊  =  − 𝒍𝒊  𝒏ଙതതത 

൫𝒃ഥ𝒊 −  𝒂ഥ𝒊൯ × 𝑹𝒊  =  𝑬𝒊  −  𝑴𝒊  −  (𝒂ഥ𝒊 × 𝑵𝒊) 

− 𝒍𝒊  𝒏ଙതതത × 𝑹𝒊  =  𝑬𝒊  −  𝑴𝒊  −  (𝒂ഥ𝒊 × 𝑵𝒊) (𝟓. 𝟕𝟏) 

 

Cross product Eqn. [5.71] with 𝒏ଙതതത and after certain simplifications, we get the expression for 𝑹𝒊
𝒏 as 

𝑹𝒊
𝒏 =  

−൫𝑬𝒊 − 𝑴𝒊 − (𝒂ഥ𝒊 × 𝑵𝒊)൯ ×  𝒏ଙതതത

𝒍𝒊
 (𝟓. 𝟕𝟐) 

 

Similarly, we find the expression for 𝑭𝒊
𝒏  

𝑹𝒊 =  𝑵𝒊 − 𝑭𝒊   

(𝒂ഥ𝒊 × 𝑭𝒊) +  ቀ𝒃ഥ𝒊 × (𝑵𝒊 −  𝑭𝒊)ቁ  + 𝑴𝒊  =  𝑬𝒊 

൫𝒃ഥ𝒊 × 𝑵𝒊൯ + ቀ൫𝒂ഥ𝒊 −  𝒃ഥ𝒊൯ × 𝑭𝒊ቁ  +  𝑴𝒊  =  𝑬𝒊  

൫𝒂ഥ𝒊 −  𝒃ഥ𝒊൯ × 𝑭𝒊 =  𝑬𝒊  − 𝑴𝒊  −   ൫𝒃ഥ𝒊 × 𝑵𝒊൯ 

𝒍𝒊  𝒏ଙതതത × 𝑭𝒊 =  𝑬𝒊  −  𝑴𝒊  −   ൫𝒃ഥ𝒊 × 𝑵𝒊൯ (𝟓. 𝟕𝟑) 
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Cross product Eqn. [5.73] with 𝒏ଙതതത and after certain simplifications, we get the expression for 𝑭𝒊
𝒏 as 

𝑭𝒊
𝒏 =  

ቀ𝑬𝒊 − 𝑴𝒊 − ൫𝒃ഥ𝒊 × 𝑵𝒊൯ቁ  × 𝒏ଙതതത

𝒍𝒊
 (𝟓. 𝟕𝟒) 

 

To find the expression for 𝑹𝒊
𝒂 . From the force and moment balance equation of the base we have, 

 

෍ 𝑹𝒊
𝒂   = 𝒎𝑩𝑮 −  𝒎𝑩𝑩𝑮̈   − ෍ 𝑹𝒊

𝒏 

෍ 𝒃ഥ𝒊 × 𝑹𝒊
𝒂   =    𝑽𝑩  − ෍ 𝒃ഥ𝒊 × 𝑹𝒊

𝒏  − ෍ 𝑴𝒊 

 

The axial force 𝑹𝒊
𝒂 can be written as, 𝑹𝒊

𝒂 =  𝒓𝒊
𝒂  𝒏𝒊തതത , where 𝒓𝒊

𝒂 is the magnitude of the axial force. 

Substituting 𝑹𝒊
𝒂 =  𝒓𝒊

𝒂  𝒏𝒊തതത  in above equations and writing the summation terms in the LHS of the 

equations, as a matrix multiplication, we get 

ൣ൫𝒃ഥ𝟏 ×  𝒏𝟏തതതത൯ ൫𝒃ഥ𝟐 ×  𝒏𝟐തതതത൯ … ൫𝒃ഥ𝟔 ×  𝒏𝟔തതതത൯൧  ൦

𝒓𝟏
𝒂

𝒓𝟐
𝒂

⋮
𝒓𝟔

𝒂

൪  =   ቂ𝑽𝑩  − ෍ 𝒃ഥ𝒊 × 𝑹𝒊
𝒏  − ෍ 𝑴𝒊ቃ (𝟓. 𝟕𝟓) 

 

[𝒏𝟏തതതത 𝒏𝟐തതതത … 𝒏𝟔തതതത]  ൦

𝒓𝟏
𝒂

𝒓𝟐
𝒂

⋮
𝒓𝟔

𝒂

൪  =   ቂ𝒎𝑩𝑮 −   𝒎𝑩𝑩𝑮̈   − ෍ 𝑹𝒊
𝒏ቃ (𝟓. 𝟕𝟔) 

 

Combining the above two equations, we get the matrix of the values of  𝒓𝒊
𝒂  as, 

൦

𝒓𝟏
𝒂

𝒓𝟐
𝒂

⋮
𝒓𝟔

𝒂

൪  =   ൤
൫𝒃ഥ𝟏 ×  𝒏𝟏തതതത൯

𝒏𝟏തതതത

൫𝒃ഥ𝟐 ×  𝒏𝟐തതതത൯

𝒏𝟐തതതത

…
…

൫𝒃ഥ𝟔 ×  𝒏𝟔തതതത൯

𝒏𝟔തതതത
൨

ିଵ

 ൦
𝑽𝑩  − ෍ 𝒃ഥ𝒊 × 𝑹𝒊

𝒏  − ෍ 𝑴𝒊

𝒎𝑩𝑮 −  𝒎𝑩𝑩𝑮̈   − ෍ 𝑹𝒊
𝒏

൪ (𝟓. 𝟕𝟕) 

 

The axial force 𝑹𝒊
𝒂 can be written as, 𝑹𝒊

𝒂 =  𝒓𝒊
𝒂  𝒏𝒊തതത , for each 𝒊𝒕𝒉 leg. 
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To find the expression for 𝑭𝒊
𝒂 . From the force and moment balance equation of the base we 

have, 

෍ 𝑭𝒊
𝒂   = 𝒎𝑷𝑮 −   𝒎𝑷𝑷𝑮̈   − ෍ 𝑭𝒊

𝒏 

෍ 𝒂ഥ𝒊 × 𝑭𝒊
𝒂   =    𝑽𝑷  − ෍ 𝒂ഥ𝒊 × 𝑭𝒊

𝒏 

The axial force 𝑭𝒊
𝒂 can be written as, 𝑭𝒊

𝒂 =  𝒇𝒊
𝒂  𝒏𝒊തതത , where 𝒓𝒊

𝒂 is the magnitude of the axial force. 

Substituting 𝑭𝒊
𝒂 =  𝒇𝒊

𝒂  𝒏𝒊തതത  in above equations and writing the summation terms in the LHS of the 

equations, as a matrix multiplication, we get 

[(𝒂ഥ𝟏 ×  𝒏𝟏തതതത) (𝒂ഥ𝟐 ×  𝒏𝟐തതതത) … (𝒂ഥ𝟔 ×  𝒏𝟔തതതത)]  ൦

𝒇𝟏
𝒂

𝒇𝟐
𝒂

⋮
𝒇𝟔

𝒂

൪  =   ቂ𝑽𝑷  − ෍ 𝒂ഥ𝒊 × 𝑭𝒊
𝒏ቃ (𝟓. 𝟕𝟕) 

[𝒏𝟏തതതത 𝒏𝟐തതതത … 𝒏𝟔തതതത]  ൦

𝒇𝟏
𝒂

𝒇𝟐
𝒂

⋮
𝒇𝟔

𝒂

൪  =   ቂ𝒎𝑷𝑮 −   𝒎𝑷𝑷𝑮̈   − ෍ 𝑭𝒊
𝒏ቃ (𝟓. 𝟕𝟖) 

 

Combining the above two equations, we get the matrix of the values of  𝒓𝒊
𝒂  as, 

൦

𝒇𝟏
𝒂

𝒇𝟐
𝒂

⋮
𝒇𝟔

𝒂

൪  =   ൤
(𝒂ഥ𝟏 ×  𝒏𝟏തതതത)

𝒏𝟏തതതത
(𝒂ഥ𝟐 ×  𝒏𝟐തതതത)

𝒏𝟐തതതത

…
…

(𝒂ഥ𝟔 ×  𝒏𝟔തതതത)
𝒏𝟔തതതത

൨
ିଵ

 ൦
𝑽𝑷  − ෍ 𝒂ഥ𝒊 × 𝑭𝒊

𝒏

𝒎𝑷𝑮 −   𝒎𝑷𝑷𝑮̈   − ෍ 𝑭𝒊
𝒏

൪ (𝟓. 𝟕𝟗) 

 

The axial force 𝑭𝒊
𝒂 can be written as, 𝑭𝒊

𝒂 =  𝒇𝒊
𝒂  𝒏𝒊തതത , for each 𝒊𝒕𝒉 leg. 
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5.8 – Differential Equation of Motion to be solved to get platform position and orientation. 

From the force balance equation for part 1 of the leg, we get 

𝑭𝒊 = 𝒎𝟏 𝒍ଙ𝟏𝑮
̈  −  𝒎𝟏𝑮 +  𝑭𝟏𝟐 (𝟓. 𝟖𝟎) 

 

From the force balance equation for the platform, we have, 

−𝒎𝑷𝑷𝑮̈ +  𝒎𝑷𝑮  =  ෍ 𝑭𝒊  =  ෍   ൣ𝒎𝟏 𝒍ଙ𝟏𝑮
̈ −  𝒎𝟏𝑮 + 𝑭𝟏𝟐൧  (𝟓. 𝟖𝟏) 

 

Combining the above two equations, substituting the expression for  𝒍ଙ𝟏𝑮
̈  , and performing 

certain simplifications we get the following equation 

−𝒎𝑷𝑷𝑮̈ +  𝒎𝑷𝑮 =  𝒎𝟏 ෍ ൝𝒂ଙ̈  −  
𝒍𝒊𝟏

𝒍𝒊
൫𝒂ଙ̇  − 𝒃ଙ

̇ ൯ ቈ𝟏 −  
𝟐𝒍ଙ̇

𝒍𝒊
቉  −

𝒍𝒊𝟏

𝒍𝒊
𝒍ଙ̈𝒏𝒊 − 𝟐𝒍𝒊𝟏

𝒍ଙ̇
𝟐

𝒍𝒊
𝟐 𝒏𝒊ൡ  −

෍ 𝒎𝟏𝑮 + 𝑭𝟏𝟐 (𝟓. 𝟖𝟐)

 

 

In vibration isolation applications, the interaction force 𝑭𝟏𝟐 is characterised by the stiffness 

and damping elements that are used inside the legs.  

For example, suppose that a negative stiffness mechanism having Torsion Spring 

Configuration 1 is used as the stiffness element. Then the expression for 𝑭𝟏𝟐 will be, (Refer 

Chapter 4, section 4.2.1) 

𝑭𝟏𝟐 = 𝑲𝒗𝒙 − 𝟑 .  
𝟐𝒌

𝒍
 .  

𝜶 −  𝝁 −  ቈ
𝑹 − √𝑹𝟐 −  𝒙𝟐

𝒍 𝐬𝐢𝐧 𝜶 ቉

𝐬𝐢𝐧 ቈ𝜶 −  ቆ
𝑹 − √𝑹𝟐 −  𝒙𝟐

𝒍 𝒔𝒊𝒏 𝜶 ቇ቉

 .  
𝒙

√𝑹𝟐 −  𝒙𝟐
 (𝟓. 𝟖𝟑) 

 

Where, the displacement 𝒙 will be given by. 

𝒙 =  (𝒍𝒊 −  𝒍𝒐) (𝟓. 𝟖𝟒) 
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Where, 𝒍𝒊 is the instantaneous leg length and 𝒍𝒐 is the initial leg length. 

In Eqn. [5.82], the terms 𝑷𝑮̈ , 𝒂ଙ̈  , 𝒂ଙ̇  , 𝒍ଙ̈ ,  𝒍ଙ̇ , 𝒍𝒊 , 𝒏𝒊 are all functions of the platform position and 

orientation. Hence the equation becomes an implicit differential equation and needs to be 

solved in the form 

𝑬𝒒𝒏 = 𝟎 (𝟓. 𝟖𝟓) 

 

From the above force balance equation Eqn. [5.82], we will get three differential equations. 

Similarly, three more differential equations are obtained from the moment balance equation. 

These six differential equations are then solved to get the solution for the platform position and 

orientation, as a response of the platform of the GSP to the base excitations. 

 

5.9 – Conclusion. 

1) We have derived the analytical formulation of a 6-6 GSP, when its base is subjected to 

external excitations, or considering a moving base. 

2) The expressions for the base velocity and acceleration, platform velocity and 

acceleration, leg extension rate, and the angular velocity and acceleration of the legs, 

have been discussed in the section on kinematics. 

3) In dynamics section, we have applied newtons laws to formulate the equations of 

motion of the base, the platform, and the legs. These equations are used to derive the 

expressions for the reaction forces and moments. 

4) Finally, we have seen the analytical formulation of the differential equation that needs 

to be solved to get the solution for the platform position and orientation. 
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Chapter 6 – Conclusion and Scope for Future Work. 

 

6.1 – Conclusions  

 

1) Negative Stiffness mechanisms can give us a system with low dynamic stiffness, 

without compromising the static stiffness of the system. 

2) The oblique springs mechanism is a simple and effective mechanism to get NS in 

the system. However, it has only one unknown control parameter to control the 

behaviour of the system. 

3) The response of the oblique springs system can be studied for small values of the 

normalized displacement, by approximating the oblique springs mechanism to 

standard duffing’s oscillator.  

4) The response obtained from the duffing’s approximation shows that the system 

exhibits the jump phenomenon at certain frequency. This sudden change in the mass 

displacement can cause system failure, and need to be handled appropriately. 

5) Three different configurations for generating negative stiffness in a simple spring 

mass system are discussed and their force and stiffness formulation is done.  

6) Torsion springs are used in two different configurations as the negative stiffness 

element. 

7) Torsion spring Configuration 1 has four control parameters, which provide higher 

level of control over the stiffness behaviour. However, higher number of control 

parameters may lead to higher deviation from QZS condition.  

8) Torsion spring Configuration 2 and Negative Helical Spring Configuration has only 

one control parameter. It is theoretically possible to get zero dynamic stiffness in 

the system under certain mathematical condition on this control parameter. 

9) We have derived the analytical formulation of a 6-6 GSP, when its base is subjected 

to external excitations, or considering a moving base. 

10) The expressions for the base velocity and acceleration, platform velocity and 

acceleration, leg extension rate, and the angular velocity and acceleration of the 

legs, have been discussed in the section on kinematics. 
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11) In dynamics section, we have applied newtons laws to formulate the equations of 

motion of the base, the platform, and the legs. These equations are used to derive 

the expressions for the reaction forces and moments. 

12) Finally, we have seen the analytical formulation of the differential equation that 

needs to be solved to get the solution for the platform position and orientation. 

 

6.2 – Scope for Future Work. 

 

1) Experimental and software validation of the stiffness behavior of the newly introduced 

NS configurations. 

2) To find the deviation in the stiffness values of the system, if the values of the control 

parameters deviate from their ideal values, as required to satisfy the QZS condition. 

The effect of the deviation of each control parameter, on the error in the stiffness of the 

system. 

3) To find the dynamic response of a vibration isolation system, consisting these NS 

configurations, as the stiffness elements, when excited in a single degree of freedom. 

4) To study the dynamic response of the GSP for six degree of freedom vibration isolation.  

5) To analytically find the response of the platform of the GSP, when the base is excited 

in six degrees of freedom, for both conventional GSP and MGSP, when the prismatic 

joints in the legs have the NS configurations discussed in chapter 4. 

6) To perform experimental and software validation of the response of the GSP. 

7) To invent newer configurations for NS characteristics, to get the dynamic stiffness and 

natural frequency of the vibration isolation system as low as possible.  
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Appendix A 

 

A.1 – Derivation of Eqn. [4.2] 

In this section we derive the following equation. 

 𝑭𝒏 =  
𝟐𝒌𝜸

𝐜𝐨𝐬 𝜽. 𝐬𝐢𝐧(𝝁 +  𝜸). 𝒍
 

 

Refer Fig [4.2], 

𝑭𝒏 𝐜𝐨𝐬 𝜽 = 𝟐𝒇    ;      𝒇 =  
𝑭𝒏 𝐜𝐨𝐬 𝜽

𝟐
 (𝑨. 𝟏)  

𝑴 = 𝒇 𝐬𝐢𝐧 𝜷  .  𝒍 (𝑨. 𝟐) 

Where, 𝑴 is the moment about the center of the torsion spring, due to the force 𝒇 on its legs. 
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𝑭𝒏 𝐜𝐨𝐬 𝜽

𝟐
  𝐬𝐢𝐧 𝜷  .  𝒍 =   𝒌𝜸  

𝑭𝒏 =  
𝟐𝒌𝜸

𝐜𝐨𝐬 𝜽 𝐬𝐢𝐧 𝜷  .  𝒍
 (𝑨. 𝟑) 

From the figure,  

𝜷 =  𝝁 +  𝜸 

Therefore,  

 𝑭𝒏 =  
𝟐𝒌𝜸

𝐜𝐨𝐬 𝜽. 𝐬𝐢𝐧(𝝁 +  𝜸). 𝒍
 (𝑨. 𝟒) 

 

 

A.2 – Derivation of Eqn. [4.4] 

In this section we derive the following equation. 

𝜸 =  𝜶 −  𝝁 − ቊ
𝑹 −  √𝑹𝟐 −  𝒙𝟐 

𝒍 𝐬𝐢𝐧 𝜶
ቋ 
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Refer Fig [4.2], and Fig [4.3]. 

𝐬𝐢𝐧 𝜶 =  
𝜹

𝒍 .  (𝜶 − 𝝁 − 𝜸)
 

 (𝜶 − 𝝁 − 𝜸) =  
𝜹

𝒍 𝐬𝐢𝐧 𝜶
 

𝜸 =  𝜶 − 𝝁 −  
𝜹

𝒍 𝐬𝐢𝐧 𝜶
 (𝑨. 𝟓) 

From Fig [4.2], and Fig [4.3], we see that the 𝜹 is the horizontal displacement of the ends of 

the legs of the torsion springs, which is same as the horizontal displacement of the center of 

the torsion springs. 

Therefore,  

𝜹 =  (𝒓𝟏 +  𝒓𝟐) −  ඥ(𝒓𝟏 +  𝒓𝟐)𝟐 − 𝒙𝟐 (𝑨. 𝟔) 

𝜸 =  𝜶 − 𝝁 −  ൥
(𝒓𝟏 +  𝒓𝟐) −  ඥ(𝒓𝟏 +  𝒓𝟐)𝟐 − 𝒙𝟐 

𝒍 𝐬𝐢𝐧 𝜶
൩ (𝑨. 𝟕) 

Let,  (𝒓𝟏 +  𝒓𝟐) = 𝑹 

Therefore, 

𝜸 =  𝜶 − 𝝁 − ቈ
𝑹 − √𝑹𝟐 −  𝒙𝟐 

𝒍 𝐬𝐢𝐧 𝜶
቉ (𝑨. 𝟖𝒂) 

𝐬𝐢𝐧(𝝁 +  𝜸) =  𝐬𝐢𝐧 ቊ𝜶 − ቈ
𝑹 −  √𝑹𝟐 −  𝒙𝟐 

𝒍 𝐬𝐢𝐧 𝜶
቉ ቋ (𝑨. 𝟖𝒃) 
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A.3 – Derivation of Eqn. [4.15] 

In this section we derive the following equation. 

    𝑭𝒏 =  𝒌 
൜𝜶 − ൬𝟐 𝒔𝒊𝒏ି𝟏 𝑩 +  

(𝒓𝟏 +  𝒓𝟐)
𝒍 ൣ𝟏 − √𝟏 −  𝒙ഥ𝟐൧൰ൠ

𝒍 .  ൫𝑪 .  √𝟏 −  𝑩𝟐൯ ൫√𝟏 −  𝒙ഥ𝟐൯
 

 

Refer Fig [4.9], and Fig [4.10]. 

𝑴 = 𝑭𝒏 𝐜𝐨𝐬 𝜽  .  𝒉 (𝑨. 𝟗) 

    

For very small 𝜺 ,      𝒉 = 𝒍 𝐜𝐨𝐬 ቀ
𝜷

𝟐ൗ ቁ  

𝒉 =  ඨ𝒍𝟐 −  ൬
𝑷 − 𝑫

𝟐
൰

𝟐

(𝑨. 𝟏𝟎) 

𝑴 = 𝑭𝒏 𝐜𝐨𝐬 𝜽 .  ඨ𝒍𝟐 −  ൬
𝑷 − 𝑫

𝟐
൰

𝟐

 =   𝒌𝜽𝒕 (𝑨. 𝟏𝟏) 

𝜽𝒕 =  𝜸 +  𝜽𝒆 
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𝜽𝒕 =  𝜶 −  (𝜷 +  𝜺) +  
𝟔𝟒𝑴𝑳

𝟑𝝅𝒅𝟒𝑬
 (𝑨. 𝟏𝟐) 

 

For, the expressions of  𝜽𝒕 𝒂𝒏𝒅 𝜽𝒆 , refer the chapter on torsion springs from the book 

Shigley’s Mechanical Design. 

𝐬𝐢𝐧 ൬
𝜷

𝟐
൰   =   

𝑷 − 𝑫

𝟐𝒍
 

𝜷 = 𝟐 𝐬𝐢𝐧−𝟏 ൬
𝑷 − 𝑫

𝟐𝒍
൰ (𝑨. 𝟏𝟑) 

𝜹 = 𝒍 𝜺    
𝒚𝒊𝒆𝒍𝒅𝒔
ሳልልሰ    𝜺 =  

𝜹

𝒍
 (𝑨. 𝟏𝟒)  

𝜽𝒕 =  𝜶 −  ൜ 𝟐 𝐬𝐢𝐧−𝟏 ൬
𝑷 − 𝑫

𝟐𝒍
൰ + 

𝜹

𝒍
  ൠ + 

𝟔𝟒𝑴𝑳

𝟑𝝅𝒅𝟒𝑬
 (𝑨. 𝟏𝟓) 

 

(𝒓𝟏 + 𝒓𝟐)𝟐  =  (𝒓𝟏 +  𝒓𝟐 − 𝜹)𝟐 +  𝒙𝟐 

𝜹 =  (𝒓𝟏 +  𝒓𝟐) −  ඥ(𝒓𝟏 +  𝒓𝟐)𝟐 − 𝒙𝟐   

𝜹

(𝒓𝟏 +  𝒓𝟐)
= 𝟏 −  ඨ𝟏 −  ൬

𝒙

𝒓𝟏 +  𝒓𝟐
൰

𝟐

 (𝑨. 𝟏𝟔) 

 

𝑴 = 𝒌𝜽𝒕 = 𝒌 ൜𝜶 −  ൜ 𝟐 𝐬𝐢𝐧−𝟏 ൬
𝑷 − 𝑫

𝟐𝒍
൰ +  

𝜹

𝒍
  ൠ +  

𝟔𝟒𝑴𝑳

𝟑𝝅𝒅𝟒𝑬
 ൠ 

Therefore, 

𝑴 =  

𝒌 ቊ𝜶 − ൜ 𝟐 𝐬𝐢𝐧−𝟏 ቀ
𝑷 − 𝑫

𝟐𝒍 ቁ + 
𝜹
𝒍

  ൠቋ

൜𝟏 −  
𝟔𝟒𝒌𝑳

𝟑𝝅𝒅𝟒𝑬
ൠ

 (𝑨. 𝟏𝟕) 

Therefore, 
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𝑭𝒏 𝐜𝐨𝐬 𝜽 .  ඨ𝒍𝟐 −  ൬
𝑷 − 𝑫

𝟐
൰

𝟐

  =    

𝒌 ቊ𝜶 −  ൜ 𝟐 𝐬𝐢𝐧−𝟏 ቀ
𝑷 − 𝑫

𝟐𝒍 ቁ +  
𝜹
𝒍

  ൠቋ

൜𝟏 −  
𝟔𝟒𝒌𝑳

𝟑𝝅𝒅𝟒𝑬
ൠ

 

 

𝐜𝐨𝐬 𝜽  =   𝟏 −  
𝜹

𝒓𝟏 +  𝒓𝟐
  =   ඨ𝟏 −  ൬

𝒙

𝒓𝟏 +  𝒓𝟐
൰

𝟐

 (𝑨. 𝟏𝟖) 

 

𝑭𝒏    =    

𝒌 ቊ𝜶 −  ൜ 𝟐 𝐬𝐢𝐧−𝟏 ቀ
𝑷 − 𝑫

𝟐𝒍 ቁ +  
𝜹
𝒍

  ൠቋ

൜𝟏 −  
𝟔𝟒𝒌𝑳

𝟑𝝅𝒅𝟒𝑬
ൠ ቊට𝒍𝟐 −  ቀ

𝑷 − 𝑫
𝟐 ቁ

𝟐

ቋ ቊට𝟏 −  ቀ
𝒙

𝒓𝟏 +  𝒓𝟐
ቁ

𝟐

ቋ

 (𝑨. 𝟏𝟗) 

 

Substitute the expression for 𝒌  for torsion springs in the term ቄ𝟏 − 
𝟔𝟒𝒌𝑳

𝟑𝝅𝒅𝟒𝑬
ቅ 

൜𝟏 −  
𝟔𝟒𝒌𝑳

𝟑𝝅𝒅𝟒𝑬
ൠ =  𝟏 −

𝒍

𝟑𝝅𝑵𝒂𝑫
 

Therefore, 

𝑭𝒏    =    

𝒌 ቊ𝜶 −  ൜ 𝟐 𝐬𝐢𝐧−𝟏 ቀ
𝑷 − 𝑫

𝟐𝒍 ቁ +  
𝜹
𝒍

  ൠቋ

൜𝟏 −
𝒍

𝟑𝝅𝑵𝒂𝑫
ൠ ቊට𝒍𝟐 −  ቀ

𝑷 − 𝑫
𝟐 ቁ

𝟐

ቋ ቊට𝟏 −  ቀ
𝒙

𝒓𝟏 + 𝒓𝟐
ቁ

𝟐

ቋ

 (𝑨. 𝟐𝟎) 

 

Substituting the expression for 𝜹 

𝑭𝒏    =    

𝒌 ൝𝜶 − ቊ 𝟐 𝐬𝐢𝐧−𝟏 ቀ
𝑷 − 𝑫

𝟐𝒍 ቁ +  
(𝒓𝟏 +  𝒓𝟐)

𝒍
 ቆ𝟏 − ට𝟏 −  ቀ

𝒙
𝒓𝟏 + 𝒓𝟐

ቁ
𝟐

ቇ  ቋൡ

൜𝟏 −
𝒍

𝟑𝝅𝑵𝒂𝑫ൠ ቊ𝒍 ට𝟏 −  ቀ
𝑷 − 𝑫

𝟐𝒍 ቁ
𝟐

ቋ ቊට𝟏 − ቀ
𝒙

𝒓𝟏 +  𝒓𝟐
ቁ

𝟐

ቋ

 (𝑨. 𝟐𝟏) 
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For,  

𝒙ഥ  =   
𝒙

𝒓𝟏 +  𝒓𝟐
   ,   𝑩 =  

𝑷 − 𝑫

𝟐𝒍
   ,   𝑪 = 𝟏 −

𝒍

𝟑𝝅𝑵𝒂𝑫
 

 

    𝑭𝒏 =  𝒌 
൜𝜶 − ൬𝟐 𝒔𝒊𝒏ି𝟏 𝑩 +  

(𝒓𝟏 +  𝒓𝟐)
𝒍 ൣ𝟏 − √𝟏 −  𝒙ഥ𝟐൧൰ൠ

𝒍 .  ൫𝑪 .  √𝟏 −  𝑩𝟐൯ ൫√𝟏 −  𝒙ഥ𝟐൯
 (𝑨. 𝟐𝟐) 

 

 

A.4 – Derivation of Eqn. [4.23] 

In this section we derive the following equation. 

𝑭𝒏  =   

𝑨𝟏

𝑨𝟐
𝒌 ቄ𝒅 − 

𝑨𝟏

𝑨𝟐
ቂ(𝒓𝟏 + 𝒓𝟐) − ඥ(𝒓𝟏 +  𝒓𝟐)𝟐 − 𝒙𝟐ቃ ቅ

ඥ(𝒓𝟏 +  𝒓𝟐)𝟐 − 𝒙𝟐

(𝒓𝟏 +  𝒓𝟐)

 

Refer Fig [4.12]. 

𝑭𝒏  𝐜𝐨𝐬 𝜽

𝑨𝟏
 =   

𝑭

𝑨𝟐
 =   

𝒌 (𝒅 − 𝒚)

𝑨𝟐
 (𝑨. 𝟐𝟑) 

 

Also, by volume conservation for the hydraulic fluid in the cylinder and tube assembly, 

𝑨𝟏 𝜹 =   𝑨𝟏 𝒚 

𝒚 =  
𝑨𝟏

𝑨𝟐
 𝜹 (𝑨. 𝟐𝟒) 

Therefore, 

𝑭𝒏  𝐜𝐨𝐬 𝜽  =   
𝑨𝟏

𝑨𝟐
 𝒌 ൬𝒅 −

𝑨𝟏

𝑨𝟐
 𝜹൰ (𝑨. 𝟐𝟓)   

𝐜𝐨𝐬 𝜽 =  
(𝒓𝟏 +  𝒓𝟐 −  𝜹)

(𝒓𝟏 +  𝒓𝟐)
 (𝑨. 𝟐𝟔) 
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(𝒓𝟏 +  𝒓𝟐)𝟐  =  (𝒓𝟏 +  𝒓𝟐 − 𝜹)𝟐 +  𝒙𝟐 

𝜹 =  (𝒓𝟏 +  𝒓𝟐) −  ඥ(𝒓𝟏 +  𝒓𝟐)𝟐 − 𝒙𝟐   

𝜹

(𝒓𝟏 +  𝒓𝟐)
= 𝟏 −  ඨ𝟏 −  ൬

𝒙

𝒓𝟏 +  𝒓𝟐
൰

𝟐

 (𝑨. 𝟐𝟕) 

𝐜𝐨𝐬 𝜽 =  
ඥ(𝒓𝟏 +  𝒓𝟐)𝟐 − 𝒙𝟐

(𝒓𝟏 +  𝒓𝟐)
 (𝑨. 𝟐𝟖) 

Therefore, 

𝑭𝒏  
ඥ(𝒓𝟏 + 𝒓𝟐)𝟐 −  𝒙𝟐

(𝒓𝟏 +  𝒓𝟐)
 =   

𝑨𝟏

𝑨𝟐
 𝒌 ൬𝒅 −

𝑨𝟏

𝑨𝟐
 𝜹൰ (𝑨. 𝟐𝟗) 

Therefore, 

𝑭𝒏  =   

𝑨𝟏

𝑨𝟐
𝒌 ቄ𝒅 −  

𝑨𝟏

𝑨𝟐
ቂ(𝒓𝟏 +  𝒓𝟐) −  ඥ(𝒓𝟏 + 𝒓𝟐)𝟐 −  𝒙𝟐ቃ ቅ

ඥ(𝒓𝟏 +  𝒓𝟐)𝟐 −  𝒙𝟐

(𝒓𝟏 +  𝒓𝟐)

 (𝑨. 𝟑𝟎) 
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