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                                         Abstract 

This study proposes a multiscale computational approach that 

integrates finite temperature effects into the constitutive modeling for 

evaluating the thermal, mechanical, and free-vibration responses of 

single-walled boron nitride nanotubes (SWBNNTs). The framework 

is built upon a temperature-dependent quadratic Cauchy-Born rule, 

with atomic interactions described using the Tersoff-Brenner potential 

and various empirical parameter sets. The Helmholtz free energy of 

the representative unit cell is formulated as the sum of its interatomic 

potential energy and the thermal energy arising from atomic vibrations 

at finite temperatures. Stress, moment tensors, and the tangent stiffness 

matrix are derived by differentiating the Helmholtz free energy density 

with respect to strain and curvature. A finite element model in 

cylindrical coordinates is developed using a four-nodded membrane-

consistent (4NMC) element, employing a smoothed interpolation 

technique in the circumferential direction to mitigate membrane 

locking. The influence of temperature on the natural frequencies of 

SWBNNTs is thoroughly analyzed, considering changes in nanotube 

length, radius, and various boundary conditions. 

   

  



V 
 

                           TABLE OF CONTENTS 

        Particulars                                           Page No. 

AKNOWLEDEMENT                                                 III    

ABSTRACT                                                               IV 

TABLE OF CONTENTS                                         V 

LIST OF FIGURES                                                 VII 

LIST OF TABLES                                                      X 

Chapter 1: Introduction                                                               1 

1.1 Overview                                                                               1 

1.2 Application                                                                            2 

1.3 Types of simulations (approaches)                                       3 

1.4 Significance and Objective                                                   6 

1.5 Thesis Outline                                                                       7 

Chapter 2: Literature Review                                                  8 

Chapter 3: Finite Temperature-based Constitutive              13 

Model    

3.1 Helmholtz free energy and Local harmonic                       13 

approximation 

3.2 Temperature related Cauchy-Born rule                                15 

3.3 Constitutive modelling Based on Finite temperature          16 



VI 
 

Chapter 4: Finite Element Formulation                                20 

4.1 Finite Element Formulation for free vibration analysis      20 

4.2 Mass Participation Factor                                                    25 

Chapter 5: Results and Discussion                                          28 

5.1 Finite Temperature Constitutive Modelling Results           28 

5.2 Free Vibration Analysis Results                                         38 

Chapter 6: Conclusion and Future Scope                             51 

REFERENCES                                                                        54 

 

 

 

 

 

 

 

 

         

   

   

   

   



VII 
 

                             LIST OF FIGURES 

Figure 3.1 Unit cell with central vibrating atoms A and surrounding 

atoms B 

14 

Figure 3.2 Deformation mapping from atomic level to the 

continuum level using Cauchy Born Rule 

15 

Figure 4.1 Schematic diagram of armchair SWBNNT and co-

ordinate system used for multiscale-shell model 

20 

Figure 5.1 Specific heat variation of BNNT with temperature by 

using different potential parameters and compared with 

DFT result of (Xiao et al.,2004) 

29 

Figure 5.2 Coefficient of thermal expansion variation with 

temperature for BNNTs and BN sheet using Los 

parameter 

31 

Figure 5.3 Coefficient of thermal expansion (radial and axial) of 

armchair BNNT with radius at 300 K temperature using 

Los parameter 

31 

Figure 5.4 Normalized young’s modulus of BNNTs and BN Sheet 

obtained through current finite temperature based 

constitutive model by using different potential 

parameters 

32 

Figure 5.5 Youngs modulus variation of BNNT with radius at finite 

temperature by using different potential parameters and 

compared with BN sheet DFT results at 0 K (Kudin et 

al.,2001) 

33 

Figure 5.6 Poisson ratio variation of BNNT with radius at finite 

temperature by using different potential parameters and 

34 



VIII 
 

compared with BN sheet DFT results at 0 K (Kudin et 

al.,2001) 

Figure 5.7 Shear modulus variation of BNNT with radius at finite 

temperature by using different potential parameters and 

compared with BN sheet DFT results at 0 K (Kudin et 

al.,2001) 

35 

Figure 5.8 Strain energy variation of armchair BNNT with radius by 

using different potential parameters and compared with 

DFT results (Hernandez et al.,1998) 

36 

Figure 5.9 Cohesive energy variation of BNNT with radius at finite 

temperature by using different potential parameters and 

compared with results given by Neumann et al. (1995) 

37 

Figure 5.10 First six fundamental frequencies of armchair BNNT at 

finite temperature for clamped-clamped boundary 

conditions 

39 

Figure 5.11 First six fundamental frequencies of zigzag BNNT at 

finite temperature for clamped-clamped boundary 

conditions 

39 

Figure 5.12 First six fundamental frequencies at 0 K for (10,0) BNNT 

for camped-clamped boundary conditions and results 

compared with MD simulation results. (Singh et al.,2023) 

40 

Figure 5.13 First natural frequency variation of armchair BNNT with 

radius at finite temperature 

41 

Figure 5.14 First natural frequency variation of zigzag BNNT with 

radius at finite temperature 

42 



IX 
 

Figure 5.15 First natural frequency of variation of armchair BNNT 

with radius by using oh parameter and results compared 

with other theoretical results (Yan et al.,2017) 

42 

Figure 5.16 First natural frequency of variation of zigzag BNNT with 

radius by using oh parameter and results compared with 

other theoretical results (Yan et al.,2017) 

43 

Figure 5.17 First fundamental natural variation of armchair BNNT 

with length at finite temperature for simply supported and 

clamped-clamped boundary conditions 

44 

Figure 5.18 First fundamental frequency variation of zigzag BNNT 

with length at finite temperature for simply supported and 

clamped-clamped boundary conditions 

44 

Figure 5.19 First six modes of vibration of (8,8) BNNT of 

Length=6nm, with clamped-clamped boundary condition 

at 300 K Temperature 

49 

Figure 5.20 First six modes of vibration of (8,8) BNNT of 

Length=6nm, with clamped-clamped boundary condition 

at 1500 K Temperature. 

49 

Figure 5.21 First six modes of vibration of (10,0) BNNT of 

Length=3.7666nm, with clamped-clamped boundary 

condition at 300 K Temperature. 

50 

Figure 5.22 First six modes of vibration of (10,0) BNNT of 

Length=3.7666nm, with clamped-clamped boundary 

condition at 1500 K Temperature. 

50 

   

   



X 
 

                       LIST OF TABLES 

Table 4.1 Empirical parameters are used in attractive and repulsive 

terms in Tersoff-Brenner potential  

25 

Table 4.2 Modal mass participation for BNNT (8,8) with length 

6nm and for clamped-clamped boundary condition at 900 

K temperature. 

26 

Table 5.1 Natural frequencies of first six modes of armchair BNNT 

with and without residual strain at finite temperature 

46 

Table 5.2 Natural frequencies of first six modes of zigzag BNNT 

with and without residual strain at finite temperature 

47 

 

 

 



1 
 

Chapter 1  

Introduction 

1. Introduction: 

This chapter provides a comprehensive background on boron nitride 

nanotubes (BNNTs), emphasizing their unique structural features and 

outstanding physical properties. The need for accurate prediction of their 

behavior under thermal and mechanical environments is highlighted. The 

chapter introduces the simulation approaches used to study nanostructures, 

including continuum, atomistic, and multiscale methods, and establishes the 

motivation, significance, and objectives of the present work. It concludes with 

an overview of the thesis organization. 

1.1 Overview: 

Boron nitride nanotubes (BNNTs), particularly their single-walled form 

(SWBNNTs), have emerged as a subject of intense scientific interest due to 

their exceptional combination of structural and functional properties. 

Structurally analogous to carbon nanotubes but composed of alternating boron 

and nitrogen atoms, BNNTs possess a wide bandgap, high thermal 

conductivity, outstanding chemical stability, and remarkable mechanical 

strength. These features make them highly suitable for use in extreme 

environments and advanced nanotechnological applications. 

 

Despite their potential, a comprehensive understanding of their 

behaviour under mechanical and thermal loading especially at the nanoscale 

remains a complex task. The discrete atomic structure of BNNTs means that 

classical continuum theories alone are insufficient to capture their size-

dependent phenomena. Meanwhile, fully atomistic simulations, while 

accurate, are computationally demanding for large systems. This complexity 
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necessitates a modelling approach that balances accuracy with computational 

efficiency. 

This research focuses on the development of a multiscale computational 

framework that bridges the gap between atomistic detail and continuum 

mechanics. The approach integrates temperature-dependent constitutive 

modelling with finite element analysis to investigate the thermomechanical 

and vibrational responses of SWBNNTs under various conditions. By 

incorporating the effects of finite temperature and large deformation, the study 

aims to provide a more realistic and predictive model for BNNT behaviour, 

thereby contributing to the design and reliability assessment of nanotube-

based materials and devices. 

1.2 Application of BNNTs: 

Boron nitride nanotubes possess a unique combination of properties, such as 

high thermal conductivity, electrical insulation, chemical inertness, and 

mechanical resilience, making them ideal for a wide range of advanced 

applications. 

 Aerospace Engineering: Used in high-strength, heat-resistant composite 

materials for structural components. 

 Nanoelectronics: Serve as excellent electrical insulators in nanoscale 

electronic devices due to their wide bandgap and stability. 

 Biomedical Field: Potential carriers for drug delivery systems and imaging 

agents due to their biocompatibility. 

 Thermal Management: Employed in heat-dissipating materials for 

electronics and high-temperature applications. 

 Nuclear and Space Technology: Suitable for use in extreme environments 

due to their resistance to radiation, oxidation, and high temperatures. 
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 Sensors and Actuators: Utilized in nanoscale mechanical systems due to 

their high stiffness and sensitivity to external stimuli. 

1.3 Types of simulation approaches to study BNNTs: 

Understanding the physical behavior of boron nitride nanotubes (BNNTs) 

requires simulation techniques that capture phenomena at different length and 

time scales. The choice of simulation approach depends on the level of detail 

required, computational resources, and the specific property or behavior being 

investigated. The primary categories of simulation methods used for studying 

BNNTs include continuum models, atomistic simulations, and multiscale 

frameworks. Each offers unique advantages and limitations. 

1.3.1 Continuum Simulation 

Continuum simulations treat materials as continuous media, ignoring the 

discrete nature of atoms. These methods are grounded in classical mechanics 

and are well-suited for modelling the mechanical behaviour of nanostructures 

at scales larger than individual atoms. 

 Principles: The material is represented using field variables like 

stress, strain, and displacement. Governing equations derived from 

elasticity theory, thermos-elasticity, or shell theories are solved using 

numerical methods such as the Finite Element Method (FEM). 

 Application to BNNTs: BNNTs, owing to their cylindrical geometry 

and high aspect ratio, are often modelled as nanoscale beams or shells 

using modified versions of classical shell theory. Continuum models 

are particularly useful for predicting deformation, buckling, vibration, 

and thermal expansion. 

 Limitations: These models do not account for atomic-scale 

interactions and may not be accurate when nanoscale effects, such as 

surface energy or size-dependent mechanical properties, become 

significant. 
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1.3.2 Atomistic Simulation 

Atomistic methods provide detailed insights by considering interactions 

between individual atoms. These simulations are essential for capturing 

quantum effects, chemical bonding, and thermal vibrations that are not 

addressed in continuum models. Two widely used atomistic techniques for 

BNNTs are Density Functional Theory (DFT) and Molecular Dynamics 

(MD). 

a) Density Functional Theory (DFT) 

 Overview: DFT is a quantum mechanical method used to investigate 

the electronic structure of materials. It solves the Schrödinger equation 

for electrons under the influence of nuclei using electron density as the 

primary variable. 

 Application to BNNTs: DFT is used to calculate properties like band 

structure, electronic density of states, binding energy, and mechanical 

constants. It is especially valuable for studying electronic and optical 

properties of BNNTs or predicting their behaviour under external 

fields. 

 Strengths and Limitations: DFT offers high accuracy but is 

computationally expensive, limiting its use to small systems or unit 

cells. 

b) Molecular Dynamics (MD) 

 Overview: MD simulates the time evolution of a system of atoms by 

numerically solving Newton’s equations of motion. Interatomic forces 

are computed using empirical or semi-empirical potential functions. 

 Application to BNNTs: MD allows the study of mechanical 

deformation, fracture behaviour, thermal conductivity, and vibrational 
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modes at finite temperatures. It captures dynamic phenomena like 

impact, heat transport, and structural transformations. 

 Strengths and Limitations: MD handles large systems over 

nanosecond timescales, but its accuracy depends heavily on the choice 

of interatomic potential. It cannot capture quantum effects like 

electronic transitions. 

1.3.3 Multiscale Simulation 

Multiscale simulation bridges the gap between atomistic and continuum 

approaches by linking different models across spatial or temporal scales. This 

is particularly important for nanostructures like BNNTs, where localized 

atomic interactions influence overall mechanical behaviour. 

 Concept: In a multiscale framework, the atomic-level information 

(e.g., from DFT or MD) is used to inform continuum models. This 

might involve computing material parameters like elastic constants or 

free energy from atomistic simulations and incorporating them into 

finite element models. 

 Techniques Used: 

o Cauchy-Born Rule: Translates atomic displacements into 

continuum deformation fields. 

o Coarse-Grained MD: Reduces computational load by 

grouping atoms into larger units. 

o Quasi continuum Method: Couples regions of full atomistic 

resolution with continuum descriptions elsewhere. 

 Application to BNNTs: Multiscale models can simulate large-scale 

behaviours such as buckling or wave propagation while still 

incorporating nanoscale material characteristics like temperature-

dependent stiffness or anisotropic properties. 
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 Advantages: Provides a balance between accuracy and efficiency, 

making it suitable for analysing large structures with atomic-level 

precision in critical regions. 

1.4 Significance and objective: 

1.4.1 Significance of the Thesis 

Single-walled boron nitride nanotubes (SWBNNTs) exhibit remarkable 

mechanical strength, thermal stability, and electrical insulation, positioning 

them as promising candidates for a variety of advanced engineering and 

technological applications. However, accurately predicting their behaviour 

under thermal and mechanical loading especially at the nanoscale remains a 

complex challenge. This thesis addresses that gap by developing a 

temperature-dependent multiscale modelling framework that links atomistic 

interactions to continuum mechanics. By capturing both thermal effects and 

mechanical responses, the research provides valuable insights into the real-

world performance of SWBNNTs and contributes to the design of more 

reliable nanostructured materials. 

1.4.2 Objectives of the Thesis 

1. To develop a multiscale computational model that integrates finite 

temperature effects into the constitutive behaviour of SWBNNTs 

using a temperature-dependent Cauchy-Born rule. 

2. To accurately represent atomic interactions through the Tersoff-

Brenner potential using various empirical parameters, enabling precise 

evaluation of stress, moment tensors, and stiffness characteristics. 

3. To analyse the impact of thermal and geometric factors—including 

temperature, length, and radius—on the natural frequencies and 

vibrational behaviour of SWBNNTs under different boundary 

conditions using a finite element framework. 
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1.5  Thesis outline: 

The present thesis is systematically organized into six chapters to 

comprehensively address the thermal, mechanical, and vibrational behavior of 

single-walled boron nitride nanotubes (SWBNNTs) using a multiscale 

computational framework. 

 Chapter 1 introduces motivation, background, and research objectives, 

highlighting the need for advanced modeling techniques to study 

nanostructures. 

 Chapter 2 provides a detailed literature review, summarizing the existing 

experimental and theoretical approaches—namely atomistic, continuum, and 

multiscale simulations—used for analyzing the properties of BNNTs and 

related nanomaterials.  

Chapter 3 develops a finite-temperature constitutive model based on the 

temperature-dependent quadratic-type Cauchy-Born rule, incorporating 

atomic interactions via the Tersoff-Brenner potential and deriving key 

thermomechanical expressions.  

Chapter 4 formulates a finite element model capable of capturing large 

deformation and vibrational responses, employing a membrane-consistent 

element to improve numerical performance and account for temperature 

effects.  

Chapter 5 presents and discusses simulation results, examining how 

geometric and thermal factors influence the constitutive behavior and 

vibrational characteristics of SWBNNTs, with comparisons to previous 

studies for validation.  

Chapter 6 concludes the work by summarizing the key findings, outlining the 

contributions made, and proposing potential directions for future research to 

expand the applicability of the developed framework. 
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Chapter 2 

Literature Review 

2. Introduction: 

An in-depth review of previous research on the modelling and analysis of 

carbon and boron-based nanostructures is presented in this chapter. Key 

contributions from experimental studies and simulation-based approaches are 

discussed. The chapter categorizes past work into atomistic simulations (e.g., 

DFT and MD), continuum mechanical models, and multiscale techniques, 

comparing their advantages, limitations, and suitability for predicting the 

thermomechanical response of BNNTs. Gaps in existing literature are 

identified to justify the scope of the current study. 

Literature Review: 

The journey to understand the mechanical behaviour of nanostructures began 

with experimental attempts, despite their complexity at the nanoscale. In a 

pioneering work, Chopra et al. (1997) used transmission electron microscopy 

(TEM) to measure the Young’s modulus of individual multiwalled boron 

nitride nanotubes (BNNTs), reporting a value of approximately 1.22 ± 0.24 

TPa. Around the same time, Krishnan et al. (1998) evaluated the stiffness of 

single-walled carbon nanotubes (SWCNTs) by observing their room-

temperature vibrations through TEM, finding an average Young’s modulus of 

1.25 TPa. Although insightful, such experimental studies are extremely 

challenging due to the scale and geometry of the specimens, especially for 

prismatic, single-walled nanostructures. 

To overcome these challenges, researchers began turning to theoretical and 

computational methods. These simulation approaches, particularly for 

BNNTs, can be broadly categorized into three major types: atomistic 

simulations, continuum modelling, and multiscale approaches that combine 

the two. As highlighted by Rafiee et al. (2013) in a comprehensive review of 
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carbon nanotube (CNT) modelling, each method offers distinct advantages 

depending on the problem's scale and required accuracy. 

Atomistic simulations, such as Density Functional Theory (DFT) and 

Molecular Dynamics (MD), are widely used for their ability to capture 

interactions at the atomic level with high precision. DFT offers quantum 

mechanical insights into electronic structure and bonding, whereas MD 

simulations help understand time-dependent behaviour like thermal motion 

and mechanical response under various loading conditions. However, both 

methods come with a computational cost, limiting their practicality for large 

or complex systems. 

In contrast, continuum mechanics models simplify the structure into beams, 

shells, or plates and apply classical elasticity theory. These models are 

computationally efficient and useful for analysing large-scale behaviour, but 

they lack atomic-scale resolution. Typically, the choice between beam or shell 

modelling depends on the nanotube's aspect ratio. For structures with a length-

to-diameter ratio less than 35, shell models are used; for ratios above 35, beam 

models are preferred. Researchers like Yoon et al. (2003), Zhang et al. (2005), 

and Natsuki et al. (2010) have employed Euler-Bernoulli and Timoshenko 

beam theories to explore the vibrational behaviour of multiwalled CNTs. 

Similarly, Wang et al. (2006) incorporated non-local elasticity into beam 

theory to study single and double-walled CNTs. 

Another interesting direction emerged with multiscale simulation techniques, 

which blend the accuracy of atomistic models with the efficiency of 

continuum mechanics. This hybrid approach enables capturing both the 

detailed atomic interactions and the overall structural response. For instance, 

Hernandez et al. (1995) applied tight-binding and first-principles methods to 

compute the mechanical properties and strain energy of single-walled 

nanotubes, finding that the Young’s modulus for BNNTs ranged from 0.837 

to 0.912 TPa depending on diameter. Kudin et al. (2001) further explored the 
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properties of two-dimensional boron nitride and other nanomaterials using ab 

initio techniques. 

In the realm of temperature-dependent behaviour, Han et al. (2014) examined 

how temperature and strain rate affect boron nitride nanosheets using MD 

simulations based on the AIREBO potential. Huang and Guo (2014) combined 

statistical mechanics and MD simulations to uncover how anharmonic 

vibrations contribute to the thermal expansion of monolayer graphene. 

Multiscale modelling approaches continued to gain traction as they evolved. 

Researchers like Guo et al. (2006), Wang et al. (2006), and Huang et al. (2006) 

adopted various forms of the Cauchy-Born rule—such as higher-order and 

quadratic types—to bridge atomistic information with continuum deformation 

fields. Arroyo and Belytschko (2002, 2004) introduced the exponential 

Cauchy-Born rule to incorporate curvature effects in graphene and CNTs. Yan 

et al. (2015) implemented a higher-order Cauchy-Born rule, calibrated with 

Oh's empirical parameters, to predict BNNTs’ elastic properties at zero 

temperature. More recent studies (e.g., Jiang et al., 2005; Guo et al., 2012; 

Raikwar and Singh, 2024) included temperature effects in multiscale 

frameworks using temperature-dependent versions of the Cauchy-Born rule. 

The accuracy of interatomic potentials plays a critical role in MD simulations. 

Singh et al. (2020) evaluated eight different parameter sets for the Tersoff-

Brenner potential for two-dimensional boron nitride structures and compared 

their results against theoretical predictions. Singh et al. (2021) further refined 

the attractive and repulsive parameters for nitride- and phosphide-based 

nanomaterials to improve predictions of elastic constants, nonlinear 

behaviour, and bending properties. 

When applying continuum mechanics in vibrational studies, geometry heavily 

influences model selection. Structural studies by Kitipornchai et al. (2005), 

Rouhi et al. (2012), and Singh & Arghavan (2011) used Kirchhoff plate and 

space frame models to evaluate the vibrational response of graphene sheets. 
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Giannopoulos et al. (2016) utilized structural mechanics-based finite element 

modelling to investigate the resonance characteristics of SWBNNTs. Panchal 

et al. (2013) treated SWBNNTs as thin-walled cylindrical shells in FEM-

based simulations to analyse their natural frequencies under different 

constraints. 

Nonetheless, continuum methods fall short when capturing intricate 

interatomic forces, particularly in higher vibration modes. For instance, Wang 

et al. (2010) compared results from MD and beam models for CNTs, finding 

good agreement in lower modes, but divergence in higher ones—highlighting 

the value of Timoshenko beam theory for accuracy. 

Further studies by Chaudhary et al. (2010) used molecular mechanics to 

explore the vibrational modes (radial, torsional, transverse) of zigzag and 

armchair BNNTs. Ansari et al. (2014, 2015) focused on how boundary 

conditions and nanotube length influence the transverse vibration of pure 

BNNTs and hybrid carbon-boron tubes. Darvishi et al. (2024) delved into 

coiled CNTs’ free vibration response via MD. 

To overcome the trade-off between accuracy and computational load, 

multiscale frameworks continue to be the method of choice. Sun et al. (2008a, 

2008b) investigated buckling and vibration of CNTs using higher-order 

Cauchy-Born methods. Yan et al. (2013, 2014, 2017) extended these 

approaches using gradient theory and mesh-free methods to examine 

vibrational behaviour in carbon nano-cones and BNNTs with various 

chirality’s and boundary conditions. 

Building on this foundation, Singh and Patel (2018) explored the nonlinear 

static and dynamic responses of CNTs and graphene using multiscale FEM, 

introducing a 4-noded membrane-consistent element to mitigate membrane 

locking issues. Singh et al. (2023) expanded this to evaluate the large 

deformation behaviour of nitride and phosphide nanotubes at zero Kelvin. 

Most recently, Qi et al. (2023) combined higher-order Cauchy-Born rules with 
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a meshless Petrov-Galerkin scheme to analyse the buckling patterns and 

vibration characteristics of SWBNNTs under finite temperature conditions. 
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Chapter 3 

Finite Temperature Constitutive Model 

3. Introduction: 

This chapter outlines the theoretical foundation for modeling 

thermomechanical behavior at the nanoscale. A temperature-dependent 

quadratic Cauchy-Born rule is used in combination with the Tersoff-Brenner 

potential to derive the constitutive relations. The Helmholtz free energy is 

formulated by accounting for interatomic potential energy and thermal 

vibrations based on the local harmonic approximation. Expressions for stress, 

moment tensors, and tangent stiffness matrices are derived, forming the core 

of the constitutive model for further finite element implementation. 

3.1 Helmholtz free energy and local harmonic approximation: 

Helmholtz free energy: 

At finite temperature the Helmholtz free energy ( HA ) is written as sum of total 

interatomic potential and kinetic energy due to thermal vibration of atoms, 

based on Quasi-harmonic approximation, the Helmholtz free energy of a 

system of size N is written as (Guo et al., 2012): 

3 3

1 1

ln 2sinh
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i B
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A V K T

K T
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where Vtot is the total interatomic potential energy due to interatomic 

interaction, KB is Boltzmann constant, hp is planks constant, T  is the absolute 

temperature , i is the vibration frequency of atom i ( i = 1,2,3…N) for  ( 

 =1,2,3) degree of freedom and it can calculated from below characteristics 

equation: 

 

 

2
2

3 3

1 2

1
0

i i

tot
N N i

i i T

V

m m




 
  

  x x

I
x x

                                                                      (2) 



14 
 

where 1m is mass of boron atom and 2m mass of nitrogen atom, 3 3N NI  is 

identity matrix of 3N × 3N size, solution of Eq. (2) requires computation of all 

eigen values associated with  matrix of 3N×3N size, this is computationally 

expensive for large system, this can overcome through local harmonic 

approximation (LHA) (Guo et al., 2012) 

Local Harmonic approximation (LHA): 

In the representative unit cell as shown in the figure, the central atom i  

vibrates about their position and other atoms are kept fixed at their equilibrium 

position, based on this assumption Eq. (2) is modified and written as follows 

 

Figure 3.1. Unit cell with central vibrating atoms A and Surrounding atoms B 

The modified form of Eq. (2) is written as: 

 

2
2

3 3

1 2

1
0

i i

tot

i i T

V

m m




 
  

  x x

I
x x

                                                                           (3) 

Where  ( = 1,2,3) represents frequency of vibration of central atom ( i =1), 

LHA employed for acceptable agreement between accuracy and 

computational cost. Based on LHA assumption Eq. (1) is modified as follows 
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







  
    

  
                                                (4) 

 

3.2 Temperature related Cauchy-Born rule: 

Cauchy-Born rule relates atomistic scale deformation with continuum scale 

deformation through deformation gradient:    0rij ijT TFr (Jiang et 

al.,2005) 

 

Figure 3.2. Deformation mapping from atomic level to the continuum level 

using Cauchy Born Rule 

Quadratic type Cauchy-Born rule for non-centrosymmetric material including 

curvature effect (Huang et al., 2006), second term in deformed bond length 

equation accounts curvature effect 

      
  

   
2

2
0

0 0 0 0 02
12

ij ij ij ij ij

r T
r r T          

 
n I E n n K n          (5) 
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3.3  Constitutive Modelling based on Finite Temperature:  

Strain energy density based on Helmholtz free energy can be written as 

follows. (Jiang et al., 2005) where   is area of the unit cell   
2

0

3 3

2
r T   

 
3

1

1
, , ln 2sinh

4

p

tot B

B

h
W T V K T

K T









    
    
     

E K                                      (6a) 

  , , , ,W W T E K E K                                                                                          (6b) 

The second Piola-Kirchhoff stress tensor S and moment tensor M are obtained 

by differentiating the strain energy with respect to E and K, respectively 

3

1

1
coth

4 4

p ptot

B

h hVW

K T

 



 

 

   
    
     

S
E E E

                                           (7a) 

3

1

1
coth

4 4

p ptot

B

h hVW

K T

 



 

 

   
    
     

M
K K K

                                    (7b) 

The incremental stress resultant tensor S and incremental moment resultant 

tensor M  are related to the incremental strain tensor E and incremental 

curvature tensor K as : 

T

      
    

      

S A B E

M B D K
, and denoting  

T

 
 
 

A B
D =

B D
                             (8) 

The tangent stiffness coefficient ( A , B and D ) matrices are obtained 

through the double derivative of strain energy (W) with respect to E and K, 

respectively (Singh and Patel, 2015) 

1
2 2 2 2D W W W W W

D



         
       

              
A

E E E E E E   
                          (9a) 

1
2 2 2 2D W W W W W

D



         
       

              
B

K E E K E K   
                             (9b) 
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2 2 2 2D W W W W W

D



         
        

              
D

K K K K K K   
                             (9c) 

The matrix A represents the tangent extensional stiffness, B denotes the 

bending-stretching coupling stiffness, and D stands for the tangent bending 

stiffness. Both the extensional stiffness matrix (A) and the bending stiffness 

matrix (D) are symmetric with respect to their main diagonals, reflecting the 

physical nature of pure stretching and bending responses. In contrast, the 

coupling stiffness matrix (B) is generally asymmetric, as it arises from mixed 

partial derivatives of the strain energy function with respect to strain and 

curvature, capturing the interaction between stretching and bending 

deformations. 

So, to find residual strain and shift vectors we minimize strain energy density 

function with respect to residual strain and shift vectors. 

 1 2 11 22 12, , , ,W W E E E                                                                                       (10) 

Solving the five nonlinear equations given below simultaneously by using 

newton- Raphson method until convergence criteria satisfied, res (5,1) 

represents five nonlinear equations and Tanmat (5,5) represents Jacobian or 

derivatives of 5 nonlinear equations. We have developed in-house FORTRAN 

subroutine to solve these five non-linear equations simultaneously.

 

2 2 2 2 2

1 1 1 2 11 1 22 1 12 11

2 2 2 2 2

1 2 1 1 11 2 22 1 12 12

2 2 2
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  (11a) 
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BNNT tries to relax to their equilibrium state, that’s why it is essential to solve 

these five non-linear equations to find out residual shift vector and strain 

Solution using newton-Raphson method: 

     
1

5 5 5 1 5 1
Tanmat res Incre sol



  
                                                                       (11b) 

Solution after satisfying convergence criteria: 

 

1

2

11

22

12

Sol 5,1 E

E

E





 
 
 
 
 
 
  

                                                                                                           (12) 

The convergence criteria ensure that the computed residual strain and shift 

vectors correspond to a physically meaningful relaxed configuration of the 

BNNT structure. 

 1 T and  2 T also represents the stretches in axial and circumferential 

direction and can be calculated from residual strain, curvature ( 11K ) can a be 

calculated from residual strain. 

1 11

2 22

11
11

1 2

1 2

1 2

E

E

E
K

R





 

 




                                                                                                                (13) 

By putting values of residual shift vector, strains and curvature in equation 

(7), the tangent stiffness matrix at reference configuration is calculated 
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Youngs modulus, Poisson ratio and shear modulus can be obtained from 

components of extensional stiffness coefficient matrix A as: 

2

12
1 11

22

1 A
E A

h A

 
  

 

                                                                                                      (15a)                                             

12
12

11

A

A
                                                                                                                          (15b) 

22 12
12

2

A A
G

h


                                                                                                              (15c) 
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Chapter 4 

Finite Element Formulation 

4. Introduction: 

Building on the constitutive framework, this chapter focuses on the 

development of a nonlinear finite element model to capture large deformation 

behavior and vibrational characteristics of SWBNNTs. A four-nodded 

membrane-consistent shell element is used to accurately represent the 

cylindrical geometry of nanotubes and to overcome numerical issues like 

membrane locking. The finite element formulation is presented in cylindrical 

coordinates, and the model is used to perform free vibration analysis under 

various thermal and geometric conditions. 

4.1  Finite Element Formulation for free vibration analysis: 

 

Figure 4.1. Schematic diagram of armchair SWBNNT and co-ordinate 

system used for multiscale-shell model 

For thin cylindrical shells strain-displacement and curvature-displacement 

relations are expressed as  
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2 2 2

2 2
; ;

2
xx yy xy

w w v w v
K K K

x y R y x y R x

    
    
     

                                  (16b) 

Hamilton principle is used to obtain equation of motion for the system 

 
2

1

0

t

t

T W L dt                                                                                                    (17) 

The first variation of kinetic energy, strain energy and virtual work due to 

transverse load  

 
0 0 0

0 0 0; ;T T T TT d W d L w Q d  
  

             d d E S K M        (18) 

By putting first variation of kinetic energy, strain energy and virtual work in 

equation and by invoking the arbitrariness of δd the equation can be expressed 

as 

 
0 0 0

0 0 0 0T T T Td d w Q d
  

            d d E S + K M                              (19) 

For interpolation of in-plane displacements u and v lagrangian interpolation 

function is used and for interpolation of transverse displacement w bi-cubic 

Hermite interpolation function is used 

; ;i i i i i wi

i i i

u N u v N v w H d                                                               (20) 
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d    (22) 

The membrane locking coming from interpolation of circumferential strain, 

the first term of linear part of circumferential strain is constant and second 

term is cubic in natural co-ordinates, this inconsistency leads to membrane 

locking. 
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The smoothed interpolation functions Hi for w in linear part of circumferential 

strain are derived through least square procedure are expressed as follows 
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By minimizing this equation with respect to a and b we obtain the following 

expression 
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By putting the values of nodal variables and interpolation function in equation  

  0

e e e

TT T T T T T b

e e e e NL e e e e ed d Qd    
  

 
        

 
  

S
d U Ud d B + B d H d F

M
     

(26) 

Where B is linear strain/curvature displacement matrix, BNL is non-linear 

strain curvature displacement matrix, U is interpolation matrix for 

displacement field, H is transverse displacement interpolation vector, KTe is 

the elemental tangent stiffness matrix, KGe is elemental geometric stiffness 
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matrix, Fe is elemental external load vector, Fe
b is force vector due 

stress/moment resultants along boundary of element. 

The elemental equation of motion for BNNT can be written as: 

 
e

TT b

e e e NL e e ed


 
    

 


S
M d d B + B F F

M
                                                       (27) 

The linearized form of equation using Taylor series expansion is expressed as: 

1| |n b

e e Te n e ine n e e

    M d K d F F F                                                                       (28) 

   
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e e e
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Ge e ine NL e e e

d

d d Qd
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  

    

 
      

 



  

K B + B D B + B K

S
K B SB F B + B F H

M
         (29) 

The components of matrix 𝐒 is expressed as: 

0 0 0 0

0 0 0 0
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xx xy
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 
 
 
 
 
  

S =                                                                      (30)                               

By assembling the element level equation of motion, the global equation of 

motion is expressed as: 

T in Md + K d + F F                                                                                                   (31) 

Eigen value problem for free vibration analysis is expressed as:   

 2 0L ni i   K M d                                                                                                   (32) 

Boundary conditions for the analysis: 

 

 

2

Clamped - Clamped C - C : 0

Simply supported S-S : 0xx

w w w
u v w

x y x y

w
u v w M

y

  
     

   


    



                       (33) 
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Table 4.1. Empirical parameters are used in attractive and repulsive terms in 

Tersoff-Brenner potential 

Parameters Singh Los Oh 

D0 (eV) 5.99015 6.36 6.36 

β (1/nm) 20.52903 19.932 22 

S 1.13625 1.0953 1.0769 

n 1 0.6577 1 

a0 (×10-4) 2.0813 27.024851 2.0813 

c0 330 306.5866 330 

d0 3.5 10 3.5 

h -1 -0.7218 -1 

re (nm) 0.1352 0.13254 0.133 

δ 1/2n 1/2n 0.3820 

r0 (nm) (T = 300 K) 0.144872258 0.14456496 0.14489399 

 

 

4.2 Modal mass participation: 

Modal mass is the effective mass associated with a particular mode shape of 

a vibrating structure. It quantifies how much of the systems mass participate 

in a given mode of vibration. Each structure has multiple natural modes of 

vibration. In each mode, different parts of the structure move differently, 

modal mass tells us how much of the total mass participates in specific mode.  

It is important in deciding how many modes shapes are to be included in our 

analysis, modal mass participation tells how much of the total system mass is 

captured by each mode  

Cumulative modal mass participation includes enough modes until 80-85% of 

the total mass captured 

For a mode shape vector φi, the modal mass Mi  is computed as: 

T

i i iM M                                                                                                                     (34)                                                  

Where, 
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φi : mode shape vector for mode i  

M: mass matrix of the system 

Mi : Modal mass of mode i 

By normalizing modal mass of mode i by total mass of the system modal mass 

fraction is computed as: 

Modalmass percentage 100i

total

M

M
                                                           (35) 

 

Table 4.2. Modal mass participation for BNNT (8,8) with length 6nm and for 

clamped-clamped boundary condition at 900 K temperature. 

Number of modes Modal mass participation (%) 

Mode 1 35.3060 

Mode 2 14.8625 

Mode 3 10.1434 

Mode 4  7.4543 

Mode 5 7.0876 

Mode 6 5.7688 

Cumulative modal mass participation 80.6226 

 

 

In the current analysis, it was observed that the first six modes together 

account for a cumulative modal mass participation of approximately 80.62%. 

This indicates that the dominant dynamic behavior of the structure is 

sufficiently represented within these six modes. Extending the extraction to 

ten modes increases the cumulative participation to around 90.56%, but it was 

noted that individual contributions beyond the sixth mode fall below 5%, 

which means they have relatively minor influence. Hence, for the purpose of 

efficiency and relevance, only the first six modes are considered in this study. 
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This selection not only reduces computational effort but also ensures that the 

most dynamically significant modes are accurately included in the finite 

element analysis, leading to meaningful results in vibration characterization  
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Chapter 5 

Results and Discussion 

5. Introduction: 

This chapter presents and interprets the results obtained from the proposed 

multiscale model. Thermal properties such as specific heat and thermal 

expansion, and mechanical properties including Young’s modulus, Poisson’s 

ratio, and shear modulus are evaluated. Vibration analysis is carried out to 

assess the influence of temperature, radius, and length on the natural 

frequencies of SWBNNTs. Mode shapes are analyzed at different 

temperatures, and modal mass participation is used to determine the 

significance of each vibrational mode. Comparisons with available DFT and 

molecular simulation data validate the accuracy of the model. 

5.1 Multiscale constitutive modelling results: 

5.1.1  Thermal properties of BNNTs: 

(a) Specific heat: 

In this study, the specific heat of single-walled boron nitride nanotubes 

(SWBNNTs) was evaluated over a range of temperatures using a finite 

temperature-based multiscale framework. The specific heat represents the 

material’s capacity to absorb thermal energy, and its variation with 

temperature provides key insights into the thermal behavior of BNNTs at the 

atomic scale. based on local harmonic approximation (LHA) specific heat of 

BNNT is expressed by following expression (Guo et al., 2012) 

22 3

2
1 214

sinh
2

k
V

kB k

B

h
C

k T h

k T






  

 
 

                                                                                   (35) 
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 The results show that the specific heat increases rapidly at lower 

temperatures and then gradually approaches a saturation point as 

temperature continues to rise. 

 This trend is typical for crystalline solids and reflects the anharmonic 

nature of atomic vibrations. At low temperatures, the vibrational 

modes are not fully activated, so specific heat rises sharply. As 

temperature increases, more modes become active until most are 

excited, leading to a gradual levelling off. 

 At high temperatures (beyond 1500 K), the specific heat tends to reach 

a nearly constant value, in agreement with the classical Dulong–Petit 

law. This indicates that all degrees of freedom are thermally activated. 

 

Figure 5.1. Specific heat variation of BNNT with temperature by using 

different potential parameters and compared with DFT result of (Xiao et 

al.,2004) 

 The computed results using different empirical potential parameter 

sets (such as Los, Oh, and Singh) all show the same overall behavior. 

Minor variations exist in absolute values, which are attributed to how 
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 The predicted specific heat values from this study align closely with 

available DFT-based results and previously published theoretical 

findings, supporting the reliability of the local harmonic 

approximation used in the model. 

(b) coefficient of thermal expansion: 

Radial and Axial CTE for BNNT and CTE for BN sheet is expressed by 

following expression (Guo et al.,2012) 

 
   

    1

1

1
radial

d T R T
T

T R T dT





                                                             (36a)                                                                          

 
   

    2 0

2 0

1
axial

d T r T
T

T r T dT





                                                             (36b) 

 
 

  0

0

1 d r T
T

r T dT
                                                                                             (36c) 

The Coefficient of Thermal Expansion (CTE) quantifies how much a material 

expands when subjected to an increase in temperature. In the case of 

SWBNNTs, both the radial and axial CTEs were analysed using the multiscale 

framework incorporating finite temperature effects. 

 At lower temperatures, the CTE values are relatively small and 

gradually increase, displaying a rise in curve as temperature 

approaches higher ranges (e.g., above 1000 K). upward trend arises 

due to anharmonic effects in atomic interactions becoming more 

pronounced at elevated temperatures. 

 When comparing across different empirical parameter sets (e.g., Oh, 

Los, Singh), the overall trend of increasing CTE with temperature 

remains consistent. However, there are slight differences in the 

predicted values, reflecting the sensitivity of thermal behaviour to the 

choice of interatomic potential. 
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 The axial CTE values were generally smaller than the radial ones, 

suggesting anisotropic thermal expansion, where the tube expands 

more in the radial direction than along its axis. This directional 

dependence is due to the curvature and cylindrical structure of 

SWBNNTs. 

 

Figure 5.2. Coefficient of thermal expansion variation with temperature for 

BNNTs and BN sheet using Los parameter

 

Figure 5.3. Coefficient of thermal expansion (radial and axial) of armchair 

BNNT with radius at 300 K temperature using Los parameter 
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5.1.2 Elastic properties of BNNTs: 

(a) Normalized young’s modulus: 

To better understand how temperature affects the stiffness of SWBNNTs, the 

Young’s modulus was normalized by its value at 0 K. This allows for a clearer 

comparison of stiffness reduction across a range of temperatures, regardless 

of the initial modulus value. 

 The normalized Young’s modulus decreases with rising temperature, 

indicating that the nanotube becomes softer as thermal energy 

increases. This thermal softening is due to increased atomic vibrations 

weakening the effective stiffness of atomic bonds. 

 Across different radii, larger diameter nanotubes showed less 

sensitivity to temperature, meaning their normalized modulus dropped 

more slowly compared to smaller-radius tubes. This indicates that 

curvature effects amplify the impact of temperature on stiffness in 

smaller nanotubes. 

 

Figure 5.4. Normalized young’s modulus of BNNTs and BN Sheet obtained 

through current finite temperature based constitutive model by using 

different potential parameters 
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(b) Youngs modulus: 

The study evaluated the variation of Young’s modulus of SWBNNTs as a 

function of radius and temperature using different sets of empirical potential 

parameters (Los, Singh). The simulation results demonstrated that: 

Young’s modulus decreases as the radius of the BNNT increases. This 

trend is attributed to the curvature effects becoming less significant in 

larger diameter nanotubes, causing their mechanical response to gradually 

approach that of a flat boron nitride sheet. 

 The modulus values predicted by these two potential parameter sets 

are in close agreement with each other and align reasonably well with 

previously reported DFT results at 0 K, validating the accuracy of the 

multiscale model. 

 Temperature has a softening effect on the stiffness of BNNTs, as 

thermal agitation reduces atomic bonding strength, thereby lowering 

Young’s modulus. 

 

Figure 5.5. Youngs modulus variation of BNNT with radius at finite 

temperature by using different potential parameters and compared with BN 

sheet DFT results at 0 K (Kudin et al.,2001) 
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(c) Poisson ratio: 

The Poisson’s ratio, which reflects the extent of transverse contraction in 

response to axial stretching, also exhibited a clear dependence on radius and 

temperature: 

 As the radius increased, a decrease in Poisson’s ratio was observed. 

This trend reflects the diminishing curvature-induced distortion at 

higher radii, leading to more stable and predictable deformation 

behaviour. 

 The predicted values were consistent with DFT reference data, 

reinforcing the model’s capability to reproduce realistic mechanical 

behaviour under varying geometric conditions. 

 Slight variations were noted across different parameter sets, but the 

overall trend remained consistent, showing reliable and robust 

predictions 

 

Figure 5.6. Poisson ratio variation of BNNT with radius at finite temperature 

by using different potential parameters and compared with BN sheet DFT 

results at 0 K (Kudin et al.,2001) 
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(d) Shear modulus: 

The shear modulus characterizes the nanotube's resistance to shape 

deformation (shearing) and was computed from the components of the tangent 

stiffness matrix: 

 Similar to Young’s modulus, the shear modulus decreased with 

increasing radius, confirming the influence of curvature in smaller 

tubes, which enhances stiffness. 

 Temperature-dependent results indicated a gradual reduction in shear 

modulus as temperature increased, consistent with expected thermal 

softening effects in nanostructured materials. 

 All three parameter sets used in the model predicted comparable 

trends, and the results fell within the expected theoretical range 

derived from prior quantum and continuum studies. 

 

Figure 5.7. Shear modulus variation of BNNT with radius at finite 

temperature by using different potential parameters and compared with BN 

sheet DFT results at 0 K (Kudin et al.,2001) 

60

70

80

90

100

110

120

0 0.5 1 1.5 2

S
h
e
a
r 

M
o
d
u
lu

s
(n

N
/n

m
)

Radius(nm)

0 K

300 K

1500 K

DFT-BN Sheet

Black:Los
Blue:Singh



36 
 

5.1.3 Energy calculations of BNNTs: 

(a) Strain energy: 

Strain energy is defined as difference of the energy per atom of tube to the 

corresponding flat Sheet, strain energy variation with radius calculated with 

radius using Los and Singh parameter and compare with DFT results of 

(Hernandez et al., 1998) and it is in close agreement with results obtained 

through Singh parameter. 

 The results revealed that strain energy decreases with increasing radius 

of the nanotube. This behaviour is expected because curvature-induced 

distortion is more prominent in smaller-diameter tubes, which 

increases the amount of energy stored under strain. As the diameter 

grows, the curvature effect diminishes, and the structure behaves more 

like a flat sheet, resulting in lower strain energy. 

 

Figure 5.8. Strain energy variation of armchair BNNT with radius by using 

different potential parameters and compared with DFT results (Hernandez et 

al.,1998) 
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vary slightly. These variations reflect differences in how each potential 

captures the interatomic interactions under strain. 

 Additionally, the strain energy values obtained in this study were 

found to be in good agreement with existing DFT data, which validates 

the accuracy of the multiscale modelling approach used. 

(b) Cohesive energy: 

Cohesive energy is a measure of the total energy required to disassemble a 

material into its individual atoms. It reflects the strength of the atomic bonds 

within the structure and serves as a key indicator of thermodynamic stability. 

 

Figure 5.9. Cohesive energy variation of BNNT with radius at finite 

temperature by using different potential parameters and compared with 

results given by Neumann et al. (1995) 
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tubes are slightly less bound, approaching the energy state of flat boron 

nitride sheets. 

 This trend implies that as the nanotube becomes wider, its cohesive 

energy converges toward that of a monolayer BN sheet, where atoms 

experience minimal out-of-plane distortion. 

 Like strain energy, cohesive energy values showed minor variations 

across different potential parameter sets, but the overall trend 

remained consistent 

5.2 Free vibration analysis results of BNNTs: 

5.2.1  Temperature Effect on first six modes of BNNTs: 

The vibrational behavior of SWBNNTs is significantly influenced by 

temperature, as observed through the variation in their first six natural 

frequencies. These frequencies correspond to the fundamental modes of 

vibration that characterize how the nanotube deforms under dynamic 

excitation. The analysis was conducted for both (6,6), (8,8) armchair and 

(10,0), (14,0) zigzag nanotube configurations under clamped–clamped 

boundary conditions, evaluated at 300 K, 900 K, and 1500 K using the 

developed finite temperature-based multiscale model. 

 For both armchair and zigzag SWBNNTs, a systematic decrease in the 

first six natural frequencies was observed as temperature increased 

from 300 K to 1500 K. 

 This is primarily due to thermal softening, where increased atomic 

vibrations at higher temperatures reduce bond stiffness, resulting in a 

lower resistance to dynamic deformation. 

 The frequency reduction is more pronounced in higher-order modes, 

particularly those involving radial deformation, reflecting their greater 

sensitivity to thermal effects. 
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Figure 5.10. First six fundamental frequencies of armchair BNNT at finite 

temperature for clamped-clamped boundary conditions 

 

Figure 5.11. First six fundamental frequencies of zigzag BNNT at finite 

temperature for clamped-clamped boundary conditions 
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The trends obtained from this analysis closely match with available molecular 

dynamics (MD) simulation results at 0 K, as shown in Figure 15 validating 

the accuracy of the multiscale model for capturing temperature-dependent 

dynamic properties. 

 

Figure 5.12. First six fundamental frequencies at 0 K for (10,0) BNNT for 

camped-clamped boundary conditions and results compared with MD 

simulation results. (Singh et al.,2023) 
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Figure 5.13. First natural frequency variation of armchair BNNT with radius 

at finite temperature 
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Figure 5.14. First natural frequency variation of zigzag BNNT with radius at 

finite temperature 

The computed natural frequencies using Oh parameter show good agreement 

with existing theoretical data from literature (Yan et al.,2017), validating the 

robustness of the model. 

 

Figure 5.15. First natural frequency of variation of armchair BNNT with 

radius by using oh parameter and results compared with other theoretical 

results (Yan et al.,2017) 
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Figure 5.16. First natural frequency of variation of zigzag BNNT with radius 

by using oh parameter and results compared with other theoretical results 

(Yan et al.,2017) 
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leading to reduced vibrational frequencies. 

 The clamped–clamped (C–C) condition consistently results in higher 

natural frequencies compared to the simply supported (S–S) case for 

lower length and greater radius. This is due to local shell modes 

dominates at lower length and greater radius, but at higher length and 
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lower radius beam modes dominates in that case boundary condition 

effect diminishes 

 

Figure 5.17. First fundamental natural variation of armchair BNNT with 

length at finite temperature for simply supported and clamped-clamped 

boundary conditions 

 

Figure 5.18. First fundamental frequency variation of zigzag BNNT with 

length at finite temperature for simply supported and clamped-clamped 

boundary conditions 
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 The armchair SWBNNT exhibits nearly same natural frequencies as 

like zigzag SWBNNT for same size and boundary condition.  

5.2.4 Effect of residual strain on natural frequency at finite 

temperature: 

Residual Strain Leads to Higher Frequencies: 

 Across all modes and temperatures, the frequencies obtained with 

residual strain (FW) are slightly higher than those without residual 

strain (FW/O). 

 This indicates that residual strain increases the effective stiffness of 

the nanotube, resulting in higher vibrational frequencies. 

 Residual strain particularly tensile residual strain introduces an initial 

pre-stress in the nanotube along its axial direction. Here's why that 

leads to increased natural frequencies 

 Percentage difference between frequencies with and without residual 

effect is greater for small diameter BNNT, because at low radius 

curvature induce more residual strain. 

 While the influence of residual strain is present at all temperatures, its 

effect becomes slightly more pronounced at higher temperatures. This 

could be due to the interplay between thermal softening and 

mechanical pre-strain, which leads to a more balanced stiffness 

configuration at elevated temperatures. 

 Despite the quantitative changes in frequency values, the 

corresponding mode shapes (as discussed later in mode shape section) 

remain qualitatively unchanged. This reinforces that residual strain 

affects the stiffness magnitude but does not induce instability or mode 

coupling. 

 For tubes with larger radii, the relative impact of residual strain 

diminishes. This suggests a curvature-dependent strain energy 
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relaxation, where flatter geometries inherently possess lower stored 

energy and hence less pronounced residual effects. 

 Solving residual strain improved accuracy and closer match with 

realistic behavior justify this inclusion in multiscale simulations. 

The table shows the effect of residual strain on natural frequencies for a (3,3) 

BNNT, under clamped–clamped (C–C) boundary conditions, at three 

temperatures (300 K, 900 K, 1500 K) using the Singh (2020) potential 

parameters 

Table 5.1. Natural frequencies of first six modes of armchair BNNT with 

and without residual strain at finite temperature 

BNNT Configuration: BNNT (3,3); Length:3.763892nm-CC 

Parameter: Singh (2020) 

Temperature 300 K 900 K 1500 K 

Sr. No FW/O FW 
% 

DIFF 
FW/O FW 

%         

DIFF 
FW/O FW 

% 

DIFF 

1 0.61 0.63 1.69 0.61 0.62 1.76 0.60 0.62 1.83 

2 0.61 0.63 1.69 0.61 0.62 1.76 0.60 0.62 1.83 

3 1.46 1.49 1.63 1.45 1.48 1.69 1.44 1.47 1.76 

4 1.46 1.49 1.63 1.45 1.48 1.69 1.44 1.47 1.76 

5 1.60 1.62 1.21 1.60 1.62 1.25 1.59 1.61 1.29 

6 2.49 2.53 1.80 2.47 2.52 1.88 2.44 2.49 1.97 

7 2.50 2.54 1.59 2.49 2.53 1.65 2.47 2.51 1.72 

8 2.50 2.54 1.59 2.49 2.53 1.65 2.47 2.51 1.72 

9 3.21 3.25 1.21 3.20 3.24 1.25 3.19 3.23 1.29 
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The table shows the effect of residual strain on natural frequencies for a (5,0) 

BNNT, under clamped–clamped (C–C) boundary conditions, at three 

temperatures (300 K, 900 K, 1500 K) using the Singh (2020) potential. 

parameters 

Table 5.2. Natural frequencies of first six modes of zigzag BNNT with and 

without residual strain at finite temperature 

BNNT Configuration: BNNT (5,0); Length:3.7666nm-CC 

Parameter: Singh (2020) 

Temperature 300 K  900 K 1500 K 

Sr. No FW/O FW 
% 

DIFF 
FW/O FW 

% 

DIFF 
FW/O FW 

% 

DIFF 

1 0.60 0.61 2.21 0.60 0.61 2.29 0.59 0.60 2.40 

2 0.60 0.61 2.21 0.60 0.61 2.29 0.59 0.60 2.40 

3 1.43 1.46 2.13 1.42 1.46 2.21 1.41 1.44 2.31 

4 1.43 1.46 2.13 1.42 1.46 2.21 1.41 1.44 2.31 

5 1.60 1.63 1.58 1.60 1.63 1.63 1.59 1.62 1.69 

6 2.46 2.51 2.08 2.45 2.50 2.16 2.43 2.48 2.25 

7 2.46 2.51 2.08 2.45 2.50 2.16 2.43 2.48 2.25 

8 2.49 2.55 2.35 2.47 2.53 2.45 2.44 2.50 2.56 

9 3.21 3.26 1.58 3.20 3.25 1.63 3.18 3.24 1.69 

 

5.2.5 Mode shapes of BNNTs at finite temperature: 

The mode shapes of single-walled boron nitride nanotubes (SWBNNTs) 

reflect the deformation patterns the structure undergoes when vibrating at its 

natural frequencies. This study presents the first six fundamental modes for 

both armchair (8,8) and zigzag (10,0) configurations under clamped-clamped 
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boundary conditions at two distinct temperatures: 300 K and 1500 K. The aim 

is to understand how thermal effects influence these vibrational behaviours. 

Despite significant changes in temperature, the qualitative nature of the mode 

shapes remains stable, despite this softening, the qualitative nature of the 

vibrational modes, such as axial bending, torsional, or radial modes, remains 

unaffected. though the associated frequencies decrease due to thermal 

softening. The thermal environment leads to increased atomic vibration and 

reduced bond stiffness, which lowers the resistance to deformation and hence 

the vibrational frequencies. However, this indicates that the geometric 

configuration and boundary constraints dominate the deformation pattern, 

while temperature primarily influences the dynamic response magnitude (i.e., 

frequency values). 

These results demonstrate that the developed multiscale model accurately 

captures the thermally induced changes in vibrational behavior without 

compromising the structural integrity of the mode shape profiles. It 

underscores the reliability of the model in predicting vibration behavior of 

BNNTs in environments where thermal effects are significant, which is vital 

for applications in nano resonators, sensors, or thermally active nanodevices. 

the structural integrity of the mode shape profiles. It underscores the reliability 

of the model in predicting vibration behavior of BNNTs in environments 

where thermal effects are significant, which is vital for applications in nano 

resonators, sensors, or thermally active nanodevices. The study highlights that 

while higher temperatures may reduce vibrational frequencies due to bond 

weakening, they do not cause mode switching or significant distortion of 

vibrational patterns. This stability is essential for the reliable design of BNNT-

based nanodevices operating in extreme environments. 

First six mode shapes of armchair and zigzag BNNTs at finite temperature is 

presented on the next page. 
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300 K

 

Figure 5.19. First six modes of vibration of (8,8) BNNT of Length=6nm, 

with clamped-clamped boundary condition at 300 K Temperature. 

1500 K 

 

Figure 5.20. First six modes of vibration of (8,8) BNNT of Length=6nm, 

with clamped-clamped boundary condition at 1500 K Temperature. 
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300 K 

 

Figure 5.21. First six modes of vibration of (10,0) BNNT of 

Length=3.7666nm, with clamped-clamped boundary condition at 300 K 

Temperature. 

1500 K 

 

Figure 5.22. First six modes of vibration of (10,0) BNNT of 

Length=3.7666nm, with clamped-clamped boundary condition at 1500 K 

Temperature. 
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Chapter 6 

Conclusion and Future scope 

6. Introduction: 

The final chapter summarizes the main findings and contributions of the 

research. It emphasizes the effectiveness of the multiscale modeling 

framework in capturing the coupled thermal-mechanical-vibrational response 

of SWBNNTs. The chapter also discusses potential directions for future work, 

including extension to multi-walled nanotubes, buckling and post-buckling 

analysis, dynamic and impact loading, and coupling with electrical fields for 

multifunctional applications. Suggestions are made to enhance computational 

tools and explore experimental validation. 

6.1 Conclusion 

The present study focused on the development and implementation of a 

multiscale computational framework to investigate the thermal, mechanical, 

and vibrational properties of single-walled boron nitride nanotubes 

(SWBNNTs) under finite temperature conditions. The key conclusions drawn 

from this research are as follows: 

1. A finite temperature-based multiscale constitutive model was 

successfully developed using a temperature-dependent quadratic-type 

Cauchy-Born rule. The Tersoff–Brenner potential was incorporated 

with various parameter sets, and thermal vibrations were captured 

through the local harmonic approximation (LHA), providing a realistic 

representation of atomic interactions at elevated temperatures. 

2. Thermal properties such as specific heat and coefficient of thermal 

expansion (CTE) were evaluated. The predicted results showed good 

agreement with available DFT data. Specific heat showed asymptotic 

behaviour beyond 1500 K, while both radial and axial CTE varied 

consistently with radius and temperature. 
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3. Elastic properties including Young’s modulus, Poisson’s ratio, and 

shear modulus were extracted from the tangent stiffness matrix. These 

properties were found to be sensitive to temperature and radius, with 

the modulus values approaching those of flat BN sheets as radius 

increased. 

4. Free vibration characteristics were evaluated through a finite element 

framework incorporating a four-nodded membrane-consistent 

element. This approach effectively captured free vibration 

characteristics while avoiding membrane locking. 

5. Modal analysis results showed that the first six vibration modes 

account for approximately 80.62% of the total modal mass 

participation, confirming that these modes are dominant in the 

dynamic response of SWBNNTs. Higher modes contribute less than 

5% each and were excluded to ensure computational efficiency 

without compromising accuracy. 

6. The influence of temperature, radius, and length on the natural 

frequencies of SWBNNTs was studied under various boundary 

conditions. Increasing temperature was observed to reduce natural 

frequencies, while both radius and length variations significantly 

altered vibrational responses. 

7. Mode shape evolution across temperature ranges revealed that 

fundamental vibration patterns are preserved at elevated temperatures, 

although the frequency values shift due to thermal softening effects. 

6.2 Future Scope 

While this research establishes a strong foundation for modelling and 

analysing SWBNNTs at finite temperatures, several avenues remain open for 

future exploration: 
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 Extension to multi-walled BNNTs: The current work focuses on 

single-walled structures. Investigating multi-walled BNNTs could 

provide insights into interlayer interactions, which are critical for real-

world applications where such structures are more common. 

 Dynamic and impact loading: Future studies may include the analysis 

of time-dependent and impact-based load conditions to understand the 

response of BNNTs in real-time dynamic applications such as sensors, 

actuators, or aerospace components. 

 Extension of the developed framework to analyze buckling behavior 

and nonlinear static response of SWBNNTs under combined thermal 

and mechanical loading would provide deeper insights into stability 

limits and post-buckling deformation patterns, especially for large 

deformation regimes and complex boundary conditions. 

 Thermo-electromechanical coupling: A promising extension would be 

to integrate electrical properties into the model, enabling the study of 

BNNTs in multifunctional devices subjected to coupled thermal and 

electrical fields. 
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