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Abstract

This study proposes a multiscale computational approach that
integrates finite temperature effects into the constitutive modeling for
evaluating the thermal, mechanical, and free-vibration responses of
single-walled boron nitride nanotubes (SWBNNTS). The framework
is built upon a temperature-dependent quadratic Cauchy-Born rule,
with atomic interactions described using the Tersoff-Brenner potential
and various empirical parameter sets. The Helmholtz free energy of
the representative unit cell is formulated as the sum of its interatomic
potential energy and the thermal energy arising from atomic vibrations
at finite temperatures. Stress, moment tensors, and the tangent stiffness
matrix are derived by differentiating the Helmholtz free energy density
with respect to strain and curvature. A finite element model in
cylindrical coordinates is developed using a four-nodded membrane-
consistent (4NMC) element, employing a smoothed interpolation
technique in the circumferential direction to mitigate membrane
locking. The influence of temperature on the natural frequencies of
SWBNNTSs is thoroughly analyzed, considering changes in nanotube

length, radius, and various boundary conditions.
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Chapter 1

Introduction

1. Introduction:

This chapter provides a comprehensive background on boron nitride
nanotubes (BNNTS), emphasizing their unique structural features and
outstanding physical properties. The need for accurate prediction of their
behavior under thermal and mechanical environments is highlighted. The
chapter introduces the simulation approaches used to study nanostructures,
including continuum, atomistic, and multiscale methods, and establishes the
motivation, significance, and objectives of the present work. It concludes with

an overview of the thesis organization.
1.1 Overview:

Boron nitride nanotubes (BNNTS), particularly their single-walled form
(SWBNNTS), have emerged as a subject of intense scientific interest due to
their exceptional combination of structural and functional properties.
Structurally analogous to carbon nanotubes but composed of alternating boron
and nitrogen atoms, BNNTs possess a wide bandgap, high thermal
conductivity, outstanding chemical stability, and remarkable mechanical
strength. These features make them highly suitable for use in extreme

environments and advanced nanotechnological applications.

Despite their potential, a comprehensive understanding of their
behaviour under mechanical and thermal loading especially at the nanoscale
remains a complex task. The discrete atomic structure of BNNTs means that
classical continuum theories alone are insufficient to capture their size-
dependent phenomena. Meanwhile, fully atomistic simulations, while

accurate, are computationally demanding for large systems. This complexity



necessitates a modelling approach that balances accuracy with computational
efficiency.

This research focuses on the development of a multiscale computational
framework that bridges the gap between atomistic detail and continuum
mechanics. The approach integrates temperature-dependent constitutive
modelling with finite element analysis to investigate the thermomechanical
and vibrational responses of SWBNNTs under various conditions. By
incorporating the effects of finite temperature and large deformation, the study
aims to provide a more realistic and predictive model for BNNT behaviour,
thereby contributing to the design and reliability assessment of nanotube-
based materials and devices.

1.2 Application of BNNTSs:

Boron nitride nanotubes possess a unique combination of properties, such as
high thermal conductivity, electrical insulation, chemical inertness, and
mechanical resilience, making them ideal for a wide range of advanced

applications.

(] Aerospace Engineering: Used in high-strength, heat-resistant composite

materials for structural components.

[0 Nanoelectronics: Serve as excellent electrical insulators in nanoscale

electronic devices due to their wide bandgap and stability.

[ Biomedical Field: Potential carriers for drug delivery systems and imaging

agents due to their biocompatibility.

[0 Thermal Management: Employed in heat-dissipating materials for

electronics and high-temperature applications.

0 Nuclear and Space Technology: Suitable for use in extreme environments

due to their resistance to radiation, oxidation, and high temperatures.



[J Sensors and Actuators: Utilized in nanoscale mechanical systems due to

their high stiffness and sensitivity to external stimuli.
1.3 Types of simulation approaches to study BNNTSs:

Understanding the physical behavior of boron nitride nanotubes (BNNTS)
requires simulation techniques that capture phenomena at different length and
time scales. The choice of simulation approach depends on the level of detail
required, computational resources, and the specific property or behavior being
investigated. The primary categories of simulation methods used for studying
BNNTSs include continuum models, atomistic simulations, and multiscale

frameworks. Each offers unique advantages and limitations.

1.3.1 Continuum Simulation

Continuum simulations treat materials as continuous media, ignoring the
discrete nature of atoms. These methods are grounded in classical mechanics
and are well-suited for modelling the mechanical behaviour of nanostructures

at scales larger than individual atoms.

e Principles: The material is represented using field variables like
stress, strain, and displacement. Governing equations derived from
elasticity theory, thermos-elasticity, or shell theories are solved using

numerical methods such as the Finite Element Method (FEM).

e Application to BNNTs: BNNTS, owing to their cylindrical geometry
and high aspect ratio, are often modelled as nanoscale beams or shells
using modified versions of classical shell theory. Continuum models
are particularly useful for predicting deformation, buckling, vibration,

and thermal expansion.

e Limitations: These models do not account for atomic-scale
interactions and may not be accurate when nanoscale effects, such as
surface energy or size-dependent mechanical properties, become

significant.



1.3.2 Atomistic Simulation

Atomistic methods provide detailed insights by considering interactions

between individual atoms. These simulations are essential for capturing

quantum effects, chemical bonding, and thermal vibrations that are not

addressed in continuum models. Two widely used atomistic techniques for

BNNTs are Density Functional Theory (DFT) and Molecular Dynamics

(MD).

a) Density Functional Theory (DFT)

Overview: DFT is a quantum mechanical method used to investigate
the electronic structure of materials. It solves the Schrédinger equation
for electrons under the influence of nuclei using electron density as the

primary variable.

Application to BNNTs: DFT is used to calculate properties like band
structure, electronic density of states, binding energy, and mechanical
constants. It is especially valuable for studying electronic and optical
properties of BNNTs or predicting their behaviour under external
fields.

Strengths and Limitations: DFT offers high accuracy but is
computationally expensive, limiting its use to small systems or unit

cells.

b) Molecular Dynamics (MD)

Overview: MD simulates the time evolution of a system of atoms by
numerically solving Newton’s equations of motion. Interatomic forces

are computed using empirical or semi-empirical potential functions.

Application to BNNTs: MD allows the study of mechanical

deformation, fracture behaviour, thermal conductivity, and vibrational



modes at finite temperatures. It captures dynamic phenomena like
impact, heat transport, and structural transformations.

Strengths and Limitations: MD handles large systems over
nanosecond timescales, but its accuracy depends heavily on the choice
of interatomic potential. It cannot capture quantum effects like

electronic transitions.

1.3.3 Multiscale Simulation

Multiscale simulation bridges the gap between atomistic and continuum

approaches by linking different models across spatial or temporal scales. This

is particularly important for nanostructures like BNNTS, where localized

atomic interactions influence overall mechanical behaviour.

Concept: In a multiscale framework, the atomic-level information
(e.g., from DFT or MD) is used to inform continuum models. This
might involve computing material parameters like elastic constants or
free energy from atomistic simulations and incorporating them into

finite element models.
Techniques Used:

o Cauchy-Born Rule: Translates atomic displacements into

continuum deformation fields.

o Coarse-Grained MD: Reduces computational load by

grouping atoms into larger units.

o Quasi continuum Method: Couples regions of full atomistic

resolution with continuum descriptions elsewhere.

Application to BNNTs: Multiscale models can simulate large-scale
behaviours such as buckling or wave propagation while still
incorporating nanoscale material characteristics like temperature-

dependent stiffness or anisotropic properties.



e Advantages: Provides a balance between accuracy and efficiency,
making it suitable for analysing large structures with atomic-level

precision in critical regions.

1.4 Significance and objective:

1.4.1 Significance of the Thesis

Single-walled boron nitride nanotubes (SWBNNTS) exhibit remarkable
mechanical strength, thermal stability, and electrical insulation, positioning
them as promising candidates for a variety of advanced engineering and
technological applications. However, accurately predicting their behaviour
under thermal and mechanical loading especially at the nanoscale remains a
complex challenge. This thesis addresses that gap by developing a
temperature-dependent multiscale modelling framework that links atomistic
interactions to continuum mechanics. By capturing both thermal effects and
mechanical responses, the research provides valuable insights into the real-
world performance of SWBNNTs and contributes to the design of more

reliable nanostructured materials.

1.4.2 Objectives of the Thesis

1. To develop a multiscale computational model that integrates finite
temperature effects into the constitutive behaviour of SWBNNTSs

using a temperature-dependent Cauchy-Born rule.

2. To accurately represent atomic interactions through the Tersoff-
Brenner potential using various empirical parameters, enabling precise

evaluation of stress, moment tensors, and stiffness characteristics.

3. Toanalyse the impact of thermal and geometric factors—including
temperature, length, and radius—on the natural frequencies and
vibrational behaviour of SWBNNTs under different boundary

conditions using a finite element framework.



1.5 Thesis outline:

The present thesis is systematically organized into six chapters to
comprehensively address the thermal, mechanical, and vibrational behavior of
single-walled boron nitride nanotubes (SWBNNTSs) using a multiscale

computational framework.

Chapter 1 introduces motivation, background, and research objectives,
highlighting the need for advanced modeling techniques to study

nanostructures.

Chapter 2 provides a detailed literature review, summarizing the existing
experimental and theoretical approaches—namely atomistic, continuum, and
multiscale simulations—used for analyzing the properties of BNNTs and

related nanomaterials.

Chapter 3 develops a finite-temperature constitutive model based on the
temperature-dependent quadratic-type Cauchy-Born rule, incorporating
atomic interactions via the Tersoff-Brenner potential and deriving key

thermomechanical expressions.

Chapter 4 formulates a finite element model capable of capturing large
deformation and vibrational responses, employing a membrane-consistent
element to improve numerical performance and account for temperature

effects.

Chapter 5 presents and discusses simulation results, examining how
geometric and thermal factors influence the constitutive behavior and
vibrational characteristics of SWBNNTSs, with comparisons to previous

studies for validation.

Chapter 6 concludes the work by summarizing the key findings, outlining the
contributions made, and proposing potential directions for future research to

expand the applicability of the developed framework.



Chapter 2

Literature Review

2. Introduction:

An in-depth review of previous research on the modelling and analysis of
carbon and boron-based nanostructures is presented in this chapter. Key
contributions from experimental studies and simulation-based approaches are
discussed. The chapter categorizes past work into atomistic simulations (e.qg.,
DFT and MD), continuum mechanical models, and multiscale techniques,
comparing their advantages, limitations, and suitability for predicting the
thermomechanical response of BNNTs. Gaps in existing literature are
identified to justify the scope of the current study.

Literature Review:

The journey to understand the mechanical behaviour of nanostructures began
with experimental attempts, despite their complexity at the nanoscale. In a
pioneering work, Chopra et al. (1997) used transmission electron microscopy
(TEM) to measure the Young’s modulus of individual multiwalled boron
nitride nanotubes (BNNTS), reporting a value of approximately 1.22 + 0.24
TPa. Around the same time, Krishnan et al. (1998) evaluated the stiffness of
single-walled carbon nanotubes (SWCNTSs) by observing their room-
temperature vibrations through TEM, finding an average Young’s modulus of
1.25 TPa. Although insightful, such experimental studies are extremely
challenging due to the scale and geometry of the specimens, especially for

prismatic, single-walled nanostructures.

To overcome these challenges, researchers began turning to theoretical and
computational methods. These simulation approaches, particularly for
BNNTs, can be broadly categorized into three major types: atomistic
simulations, continuum modelling, and multiscale approaches that combine

the two. As highlighted by Rafiee et al. (2013) in a comprehensive review of



carbon nanotube (CNT) modelling, each method offers distinct advantages
depending on the problem's scale and required accuracy.

Atomistic simulations, such as Density Functional Theory (DFT) and
Molecular Dynamics (MD), are widely used for their ability to capture
interactions at the atomic level with high precision. DFT offers quantum
mechanical insights into electronic structure and bonding, whereas MD
simulations help understand time-dependent behaviour like thermal motion
and mechanical response under various loading conditions. However, both
methods come with a computational cost, limiting their practicality for large

or complex systems.

In contrast, continuum mechanics models simplify the structure into beams,
shells, or plates and apply classical elasticity theory. These models are
computationally efficient and useful for analysing large-scale behaviour, but
they lack atomic-scale resolution. Typically, the choice between beam or shell
modelling depends on the nanotube's aspect ratio. For structures with a length-
to-diameter ratio less than 35, shell models are used; for ratios above 35, beam
models are preferred. Researchers like Yoon et al. (2003), Zhang et al. (2005),
and Natsuki et al. (2010) have employed Euler-Bernoulli and Timoshenko
beam theories to explore the vibrational behaviour of multiwalled CNTSs.
Similarly, Wang et al. (2006) incorporated non-local elasticity into beam

theory to study single and double-walled CNTs.

Another interesting direction emerged with multiscale simulation techniques,
which blend the accuracy of atomistic models with the efficiency of
continuum mechanics. This hybrid approach enables capturing both the
detailed atomic interactions and the overall structural response. For instance,
Hernandez et al. (1995) applied tight-binding and first-principles methods to
compute the mechanical properties and strain energy of single-walled
nanotubes, finding that the Young’s modulus for BNNTSs ranged from 0.837
to 0.912 TPa depending on diameter. Kudin et al. (2001) further explored the



properties of two-dimensional boron nitride and other nanomaterials using ab

initio techniques.

In the realm of temperature-dependent behaviour, Han et al. (2014) examined
how temperature and strain rate affect boron nitride nanosheets using MD
simulations based on the AIREBO potential. Huang and Guo (2014) combined
statistical mechanics and MD simulations to uncover how anharmonic

vibrations contribute to the thermal expansion of monolayer graphene.

Multiscale modelling approaches continued to gain traction as they evolved.
Researchers like Guo et al. (2006), Wang et al. (2006), and Huang et al. (2006)
adopted various forms of the Cauchy-Born rule—such as higher-order and
quadratic types—to bridge atomistic information with continuum deformation
fields. Arroyo and Belytschko (2002, 2004) introduced the exponential
Cauchy-Born rule to incorporate curvature effects in graphene and CNTSs. Yan
et al. (2015) implemented a higher-order Cauchy-Born rule, calibrated with
Oh's empirical parameters, to predict BNNTs’ elastic properties at zero
temperature. More recent studies (e.g., Jiang et al., 2005; Guo et al., 2012;
Raikwar and Singh, 2024) included temperature effects in multiscale

frameworks using temperature-dependent versions of the Cauchy-Born rule.

The accuracy of interatomic potentials plays a critical role in MD simulations.
Singh et al. (2020) evaluated eight different parameter sets for the Tersoff-
Brenner potential for two-dimensional boron nitride structures and compared
their results against theoretical predictions. Singh et al. (2021) further refined
the attractive and repulsive parameters for nitride- and phosphide-based
nanomaterials to improve predictions of elastic constants, nonlinear

behaviour, and bending properties.

When applying continuum mechanics in vibrational studies, geometry heavily
influences model selection. Structural studies by Kitipornchai et al. (2005),
Rouhi et al. (2012), and Singh & Arghavan (2011) used Kirchhoff plate and

space frame models to evaluate the vibrational response of graphene sheets.

10



Giannopoulos et al. (2016) utilized structural mechanics-based finite element
modelling to investigate the resonance characteristics of SWBNNTSs. Panchal
et al. (2013) treated SWBNNTSs as thin-walled cylindrical shells in FEM-
based simulations to analyse their natural frequencies under different

constraints.

Nonetheless, continuum methods fall short when capturing intricate
interatomic forces, particularly in higher vibration modes. For instance, \Wang
et al. (2010) compared results from MD and beam models for CNTs, finding
good agreement in lower modes, but divergence in higher ones—highlighting
the value of Timoshenko beam theory for accuracy.

Further studies by Chaudhary et al. (2010) used molecular mechanics to
explore the vibrational modes (radial, torsional, transverse) of zigzag and
armchair BNNTs. Ansari et al. (2014, 2015) focused on how boundary
conditions and nanotube length influence the transverse vibration of pure
BNNTs and hybrid carbon-boron tubes. Darvishi et al. (2024) delved into

coiled CNTs’ free vibration response via MD.

To overcome the trade-off between accuracy and computational load,
multiscale frameworks continue to be the method of choice. Sun et al. (2008a,
2008b) investigated buckling and vibration of CNTs using higher-order
Cauchy-Born methods. Yan et al. (2013, 2014, 2017) extended these
approaches using gradient theory and mesh-free methods to examine
vibrational behaviour in carbon nano-cones and BNNTs with various

chirality’s and boundary conditions.

Building on this foundation, Singh and Patel (2018) explored the nonlinear
static and dynamic responses of CNTs and graphene using multiscale FEM,
introducing a 4-noded membrane-consistent element to mitigate membrane
locking issues. Singh et al. (2023) expanded this to evaluate the large
deformation behaviour of nitride and phosphide nanotubes at zero Kelvin.

Most recently, Qi et al. (2023) combined higher-order Cauchy-Born rules with

11



a meshless Petrov-Galerkin scheme to analyse the buckling patterns and
vibration characteristics of SWBNNTSs under finite temperature conditions.

12



Chapter 3

Finite Temperature Constitutive Model

3. Introduction:

This chapter outlines the theoretical foundation for modeling
thermomechanical behavior at the nanoscale. A temperature-dependent
quadratic Cauchy-Born rule is used in combination with the Tersoff-Brenner
potential to derive the constitutive relations. The Helmholtz free energy is
formulated by accounting for interatomic potential energy and thermal
vibrations based on the local harmonic approximation. Expressions for stress,
moment tensors, and tangent stiffness matrices are derived, forming the core

of the constitutive model for further finite element implementation.

3.1 Helmholtz free energy and local harmonic approximation:

Helmholtz free energy:
At finite temperature the Helmholtz free energy (A,) is written as sum of total

interatomic potential and kinetic energy due to thermal vibration of atoms,
based on Quasi-harmonic approximation, the Helmholtz free energy of a

system of size N is written as (Guo et al., 2012):

3 3 _ h @,
A, =V, + KBT;;In {Zsmh [M"TBTH (1)
where Vit is the total interatomic potential energy due to interatomic
interaction, Kg is Boltzmann constant, h, is planks constant, T is the absolute
temperature , @, is the vibration frequency of atom i (i=1,2,3...N) for & (

o =1,2,3) degree of freedom and it can calculated from below characteristics

equation:

L % - I3N><3Na)i2a =0 (2)
m,m, \ OX;0X; X2, (T)
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where M, is mass of boron atom and M, mass of nitrogen atom, lsy.3y is

identity matrix of 3N x 3N size, solution of Eq. (2) requires computation of all
eigen values associated with matrix of 3Nx3N size, this is computationally
expensive for large system, this can overcome through local harmonic
approximation (LHA) (Guo et al., 2012)

Local Harmonic approximation (LHA):

In the representative unit cell as shown in the figure, the central atom i
vibrates about their position and other atoms are kept fixed at their equilibrium
position, based on this assumption Eq. (2) is modified and written as follows

Figure 3.1. Unit cell with central vibrating atoms A and Surrounding atoms B

The modified form of Eq. (2) is written as:

=0 (3)

1 oV, L
3x3"a
mm, { oX;0%; ) _ ™

Where @, (& =1,2,3) represents frequency of vibration of central atom (i=1),

LHA employed for acceptable agreement between accuracy and

computational cost. Based on LHA assumption Eq. (1) is modified as follows

14



A =V, + KBTiIn{Zsinh [fp&ﬂ (4)

KT

3.2 Temperature related Cauchy-Born rule:

Cauchy-Born rule relates atomistic scale deformation with continuum scale
deformation through deformation gradient: ;(T)=Fry (T) (Jiang et

al.,2005)

Reference Deformed
configuration configuration

Figure 3.2. Deformation mapping from atomic level to the continuum level
using Cauchy Born Rule

Quadratic type Cauchy-Born rule for non-centrosymmetric material including
curvature effect (Huang et al., 2006), second term in deformed bond length

equation accounts curvature effect

rij:ro(T)\/(”ou+")‘('+2E)(”0ij“1)‘ 0(12)) [(nOiﬁ")'K(nou*")T (%)

—
=
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3.3 Constitutive Modelling based on Finite Temperature:

Strain energy density based on Helmholtz free energy can be written as

33

follows (Jiang et a., 2005) where €2 is area of the unit cell == =(1;(T))’

W(EKT) =2V, + KT In| 2sinh| % 6
Ol B e 47K, T (%2

W =W (E K n(EK),T) (6b)

The second Piola-Kirchhoff stress tensor S and moment tensor M are obtained
by differentiating the strain energy with respect to E and K, respectively

h & h |
S= W _ 1)V +—2% coth (—pw" 0w, J (7a)

CE Q

0E  4rs | 4rK,T OE

K Q

h & h
m-W_1 FV —2 % coth L—pw‘l oo, (7b)

fot | Y%
oK drio ArK T oK

L 1

The incremental stress resultant tensor AS and incremental moment resultant
tensor AM are related to the incremental strain tensor AE and incremental

curvature tensor AK as :

AS A B||AE . _ A B
= . ,and denoting D=| __ (8)
AM B D|lAK B D

The tangent stiffness coefficient ( A, B and D ) matrices are obtained
through the double derivative of strain energy (W) with respect to E and K,
respectively (Singh and Patel, 2015)

A D [awj_ oW (W ) ow ) ow .
"DE\ E ) 0EGE | oEn )\ onen ) | oncE (%)
5. D (awj_ oW (ow ) aw ) dw o
" DK\ 6E ) 0EoK | oEéem )\ onen) | ook (%b)
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5.0 (aw]: oW _( oW ]( oW Jl( oW j 0
DK{oK ) o0KoK {oKon /)l onon) (onoK
The matrix A represents the tangent extensional stiffness, B denotes the
bending-stretching coupling stiffness, and D stands for the tangent bending
stiffness. Both the extensional stiffness matrix (A) and the bending stiffness
matrix (D) are symmetric with respect to their main diagonals, reflecting the
physical nature of pure stretching and bending responses. In contrast, the
coupling stiffness matrix (B) is generally asymmetric, as it arises from mixed
partial derivatives of the strain energy function with respect to strain and

curvature, capturing the interaction between stretching and bending

deformations.

So, to find residual strain and shift vectors we minimize strain energy density

function with respect to residual strain and shift vectors.

W =W (771’7721E11’E22!E12) (10)

Solving the five nonlinear equations given below simultaneously by using
newton- Raphson method until convergence criteria satisfied, res (5,1)
represents five nonlinear equations and Tanmat (5,5) represents Jacobian or
derivatives of 5 nonlinear equations. We have developed in-house FORTRAN

subroutine to solve these five non-linear equations simultaneously.

oW ] ow W 0w o'W o'W

(3_771 omom — omon, OB Om OBu0n,  OEL0m,

oW ow o Aw o dw ow aw

5_772 onon, ondn,  OE,Om, OE,0m  OE,0n,

oW ow AW dw o ow aw

D)= 8?11 fenma (5 ’ 5) i ok, 0m  OF,0m, OE, 0, OE, 0B, OE.0E, (112)

an AW AW AW oW

0By, 0BpOm  OE,0m, OE,0E, OE,0R, OEu0E,

W wW_odwW o AW Aw o aw
s | | OE0my  0E,0m, OEL0E,  OEL0E, OE,dE, |
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BNNT tries to relax to their equilibrium state, that’s why it is essential to solve

these five non-linear equations to find out residual shift vector and strain
Solution using newton-Raphson method:

[Tanmat];xl5 x[res], , =[Incresol], (11b)
Solution after satisfying convergence criteria:

i

Sol(5,1)=| E,, (12)

The convergence criteria ensure that the computed residual strain and shift
vectors correspond to a physically meaningful relaxed configuration of the
BNNT structure.

A (T)and A, (T )also represents the stretches in axial and circumferential

direction and can be calculated from residual strain, curvature ( K;; ) can a be

calculated from residual strain.

A =1+ 2E,

A, =1+ 2E,, (13)
1+2E

Kll R 11

By putting values of residual shift vector, strains and curvature in equation

(7), the tangent stiffness matrix at reference configuration is calculated
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ASlZ — A?»l ASZ ASS BSl BSZ BS3 2AE12 (14)
AMll Bll BZl BBl Dll D12 D13 A1<1I.1

AMZZ BlZ BZZ BSZ D21 D22 D23 AI<22

AM 12 L BlS BZS BSS D31 D32 D33 a 2AK12

Youngs modulus, Poisson ratio and shear modulus can be obtained from
components of extensional stiffness coefficient matrix A as:

E, =%[Al—%) (15

" :% (15b)
— Azz — A12

Gy, =~ (15c)
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Chapter 4

Finite Element Formulation

4. Introduction:

Building on the constitutive framework, this chapter focuses on the
development of a nonlinear finite element model to capture large deformation
behavior and vibrational characteristics of SWBNNTs. A four-nodded
membrane-consistent shell element is used to accurately represent the
cylindrical geometry of nanotubes and to overcome numerical issues like
membrane locking. The finite element formulation is presented in cylindrical
coordinates, and the model is used to perform free vibration analysis under

various thermal and geometric conditions.

4.1 Finite Element Formulation for free vibration analysis:

s P
- —_—

Figure 4.1. Schematic diagram of armchair SWBNNT and co-ordinate
system used for multiscale-shell model

For thin cylindrical shells strain-displacement and curvature-displacement

relations are expressed as
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Hamilton principle is used to obtain equation of motion for the system

1]

[(3T —8W +5L)dt =0 (17)

I’}

The first variation of kinetic energy, strain energy and virtual work due to

transverse load

8T = [ pdd’ddTy; oW = [ (SE'S+8K'M)dTy; sL= [sw'Qdr,  (18)

Iy Ty o

By putting first variation of kinetic energy, strain energy and virtual work in

equation and by invoking the arbitrariness of 6d the equation can be expressed

as

~ [ p3d™ddT, - [ (SETS +3K™M)dI, + [ 8w QdI, =0 (19)
Iy Ty o

For interpolation of in-plane displacements u and v lagrangian interpolation

function is used and for interpolation of transverse displacement w bi-cubic

Hermite interpolation function is used

u=> Nu;v=> Nv;w=>Y Hd, (20)
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The membrane locking coming from interpolation of circumferential strain,

the first term of linear part of circumferential strain is constant and second
term is cubic in natural co-ordinates, this inconsistency leads to membrane

locking.
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N W oN. d,.
Ey=—t==) —V+) H2 (23)
@ R T o -~ R
The smoothed interpolation functions Hi for w in linear part of circumferential
strain are derived through least square procedure are expressed as follows

11
[ [(H ~(a+b&)) dedy (24)
-1-1
By minimizing this equation with respect to a and b we obtain the following
expression
1 3 1 1)1
ST

- 1 1 )\l — 1 1 N\
Ho=|-——+—¢&|2L; Hy=|-—+—¢&|XL
15 ( 12 1o§j2 18 ( 36 605) 4 (25)
By putting the values of nodal variables and interpolation function in equation
. S

~[od] pUTUd,dT, - [ 5d] [B+B,, | {M}drﬁ [ 6d;H™QUT, +5d]F} =0

Fe Fe rE
(26)
Where B is linear strain/curvature displacement matrix, Bnc is non-linear
strain curvature displacement matrix, U is interpolation matrix for
displacement field, H is transverse displacement interpolation vector, Kre is

the elemental tangent stiffness matrix, Kee is elemental geometric stiffness
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matrix, Fe is elemental external load vector, F.® is force vector due
stressy/moment resultants along boundary of element.

The elemental equation of motion for BNNT can be written as:

_ . S

Mede+.|'5dl[B+BNL]{M}dFe -F +F° (27)
Fe

The linearized form of equation using Taylor series expansion is expressed as:

Md, +Ky |, A" +F | =F +F (28)

Kr = [[B+By ] [D][B+By ]dI, +K,,

Fe
Kee = ,[ E_3T§I§d1"e, Fe = .”B + BNL]T L\S/Jdl"e, F. = .[ HTere’ (29)
T, Te

Fe

The components of matrix S is expressed as:

S S, 0 0 0 0
S, S, 0 0 0 0
_ o o s, 0 0
S = XX Xy (30)
0o 0 S, S, 0 O
0 0 0 0 S, S,
(0 0 0 0 S, S|

By assembling the element level equation of motion, the global equation of

motion is expressed as:

Md+K.Ad+F, =F (31)
Eigen value problem for free vibration analysis is expressed as:

[K, —oiM]{d;} =0 (32)

Boundary conditions for the analysis:

Clamped - Clamped (C-C): u=v:w:a—W:a_W:
oX oy  oxoy

ow (33)
Simply supported (S-S): u=v =W=§= M, =0

XX



Table 4.1. Empirical parameters are used in attractive and repulsive terms in

Tersoff-Brenner potential

Parameters Singh Los Oh

Do (eV) 5.99015 6.36 6.36

B (1/nm) 20.52903 19.932 22

S 1.13625 1.0953 1.0769
n 1 0.6577 1

ao (x10%) 2.0813 27.024851 2.0813
Co 330 306.5866 330

do 3.5 10 3.5

h -1 -0.7218 -1

re (Nm) 0.1352 0.13254 0.133
0 1/2n 1/2n 0.3820
ro (nm) (T = 300 K) | 0.144872258 0.14456496 0.14489399

4.2 Modal mass participation:

Modal mass is the effective mass associated with a particular mode shape of
a vibrating structure. It quantifies how much of the systems mass participate
in a given mode of vibration. Each structure has multiple natural modes of
vibration. In each mode, different parts of the structure move differently,
modal mass tells us how much of the total mass participates in specific mode.
It is important in deciding how many modes shapes are to be included in our
analysis, modal mass participation tells how much of the total system mass is
captured by each mode

Cumulative modal mass participation includes enough modes until 80-85% of
the total mass captured

For a mode shape vector ¢;, the modal mass M; is computed as:
M =4'Mg, (34)
Where,
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@i : mode shape vector for mode i
M: mass matrix of the system
Mi : Modal mass of mode i

By normalizing modal mass of mode i by total mass of the system modal mass

fraction is computed as:

M.
Modal mass percentage = ——x100

total

(35)

Table 4.2. Modal mass participation for BNNT (8,8) with length 6nm and for
clamped-clamped boundary condition at 900 K temperature.

Number of modes

Modal mass participation (%)

Mode 1 35.3060
Mode 2 14.8625
Mode 3 10.1434
Mode 4 7.4543
Mode 5 7.0876
Mode 6 5.7688
Cumulative modal mass participation | 80.6226

In the current analysis, it was observed that the first six modes together

account for a cumulative modal mass participation of approximately 80.62%.

This indicates that the dominant dynamic behavior of the structure is

sufficiently represented within these six modes. Extending the extraction to

ten modes increases the cumulative participation to around 90.56%, but it was

noted that individual contributions beyond the sixth mode fall below 5%,

which means they have relatively minor influence. Hence, for the purpose of

efficiency and relevance, only the first six modes are considered in this study.
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This selection not only reduces computational effort but also ensures that the
most dynamically significant modes are accurately included in the finite

element analysis, leading to meaningful results in vibration characterization
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Chapter 5

Results and Discussion

5. Introduction:

This chapter presents and interprets the results obtained from the proposed
multiscale model. Thermal properties such as specific heat and thermal
expansion, and mechanical properties including Young’s modulus, Poisson’s
ratio, and shear modulus are evaluated. Vibration analysis is carried out to
assess the influence of temperature, radius, and length on the natural
frequencies of SWBNNTs. Mode shapes are analyzed at different
temperatures, and modal mass participation is used to determine the
significance of each vibrational mode. Comparisons with available DFT and

molecular simulation data validate the accuracy of the model.

5.1 Multiscale constitutive modelling results:
5.1.1 Thermal properties of BNNTSs:
(a) Specific heat:

In this study, the specific heat of single-walled boron nitride nanotubes
(SWBNNTSs) was evaluated over a range of temperatures using a finite
temperature-based multiscale framework. The specific heat represents the
material’s capacity to absorb thermal energy, and its variation with
temperature provides key insights into the thermal behavior of BNNTSs at the
atomic scale. based on local harmonic approximation (LHA) specific heat of

BNNT is expressed by following expression (Guo et al., 2012)

2 2

- (35)
TREY k‘lslnh{ hay, }
2k,T
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The results show that the specific heat increases rapidly at lower
temperatures and then gradually approaches a saturation point as
temperature continues to rise.

This trend is typical for crystalline solids and reflects the anharmonic
nature of atomic vibrations. At low temperatures, the vibrational
modes are not fully activated, so specific heat rises sharply. As
temperature increases, more modes become active until most are
excited, leading to a gradual levelling off.

At high temperatures (beyond 1500 K), the specific heat tends to reach
a nearly constant value, in agreement with the classical Dulong—Petit
law. This indicates that all degrees of freedom are thermally activated.

30
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Figure 5.1. Specific heat variation of BNNT with temperature by using
different potential parameters and compared with DFT result of (Xiao et

al.,2004)

The computed results using different empirical potential parameter
sets (such as Los, Oh, and Singh) all show the same overall behavior.
Minor variations exist in absolute values, which are attributed to how
each parameter set models atomic interactions and vibrational
contributions
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The predicted specific heat values from this study align closely with
available DFT-based results and previously published theoretical
findings, supporting the reliability of the local harmonic

approximation used in the model.

(b) coefficient of thermal expansion:

Radial and Axial CTE for BNNT and CTE for BN sheet is expressed by
following expression (Guo et al.,2012)

1 d(4(T)R(T))
Uit (T) = 2R pre (36a)
d(%(T)n(T))
Aot (T) = ) pre (36h)
oz(T):r (lT)d(:;_I(_T)) (36¢)

The Coefficient of Thermal Expansion (CTE) quantifies how much a material

expands when subjected to an increase in temperature. In the case of

SWBNNTSs, both the radial and axial CTEs were analysed using the multiscale

framework incorporating finite temperature effects.

At lower temperatures, the CTE values are relatively small and
gradually increase, displaying a rise in curve as temperature
approaches higher ranges (e.g., above 1000 K). upward trend arises
due to anharmonic effects in atomic interactions becoming more

pronounced at elevated temperatures.

When comparing across different empirical parameter sets (e.g., Oh,
Los, Singh), the overall trend of increasing CTE with temperature
remains consistent. However, there are slight differences in the
predicted values, reflecting the sensitivity of thermal behaviour to the

choice of interatomic potential.
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e The axial CTE values were generally smaller than the radial ones,
suggesting anisotropic thermal expansion, where the tube expands
more in the radial direction than along its axis. This directional

dependence is due to the curvature and cylindrical structure of

SWBNNTSs.
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Figure 5.2. Coefficient of thermal expansion variation with temperature for
BNNTs and BN sheet using Los parameter
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Figure 5.3. Coefficient of thermal expansion (radial and axial) of armchair
BNNT with radius at 300 K temperature using Los parameter
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5.1.2 Elastic properties of BNNTSs:

(a) Normalized young’s modulus:

To better understand how temperature affects the stiffness of SWBNNTS, the
Young’s modulus was normalized by its value at 0 K. This allows for a clearer
comparison of stiffness reduction across a range of temperatures, regardless

of the initial modulus value.

e The normalized Young’s modulus decreases with rising temperature,
indicating that the nanotube becomes softer as thermal energy
increases. This thermal softening is due to increased atomic vibrations

weakening the effective stiffness of atomic bonds.

e Across different radii, larger diameter nanotubes showed less
sensitivity to temperature, meaning their normalized modulus dropped
more slowly compared to smaller-radius tubes. This indicates that
curvature effects amplify the impact of temperature on stiffness in

smaller nanotubes.
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0-82IIIII:IIII:IIII:IIII
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Temperature(K)

Figure 5.4. Normalized young’s modulus of BNNTs and BN Sheet obtained
through current finite temperature based constitutive model by using
different potential parameters
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(b) Youngs modulus:

The study evaluated the variation of Young’s modulus of SWBNNTs as a
function of radius and temperature using different sets of empirical potential
parameters (Los, Singh). The simulation results demonstrated that:

Young’s modulus decreases as the radius of the BNNT increases. This
trend is attributed to the curvature effects becoming less significant in
larger diameter nanotubes, causing their mechanical response to gradually
approach that of a flat boron nitride sheet.

e The modulus values predicted by these two potential parameter sets
are in close agreement with each other and align reasonably well with
previously reported DFT results at 0 K, validating the accuracy of the

multiscale model.

o Temperature has a softening effect on the stiffness of BNNTSs, as
thermal agitation reduces atomic bonding strength, thereby lowering

Young’s modulus.
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Figure 5.5. Youngs modulus variation of BNNT with radius at finite
temperature by using different potential parameters and compared with BN
sheet DFT results at 0 K (Kudin et al.,2001)
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(c) Poisson ratio:

The Poisson’s ratio, which reflects the extent of transverse contraction in
response to axial stretching, also exhibited a clear dependence on radius and

temperature:

o As the radius increased, a decrease in Poisson’s ratio was observed.
This trend reflects the diminishing curvature-induced distortion at
higher radii, leading to more stable and predictable deformation

behaviour.

e The predicted values were consistent with DFT reference data,
reinforcing the model’s capability to reproduce realistic mechanical

behaviour under varying geometric conditions.

o Slight variations were noted across different parameter sets, but the

overall trend remained consistent, showing reliable and robust

predictions
0.35 1
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Figure 5.6. Poisson ratio variation of BNNT with radius at finite temperature
by using different potential parameters and compared with BN sheet DFT
results at 0 K (Kudin et al.,2001)
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(d) Shear modulus:

The shear modulus characterizes the nanotube's resistance to shape
deformation (shearing) and was computed from the components of the tangent

stiffness matrix:

e Similar to Young’s modulus, the shear modulus decreased with
increasing radius, confirming the influence of curvature in smaller

tubes, which enhances stiffness.

o Temperature-dependent results indicated a gradual reduction in shear
modulus as temperature increased, consistent with expected thermal

softening effects in nanostructured materials.

o All three parameter sets used in the model predicted comparable
trends, and the results fell within the expected theoretical range

derived from prior quantum and continuum studies.
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Figure 5.7. Shear modulus variation of BNNT with radius at finite

temperature by using different potential parameters and compared with BN
sheet DFT results at 0 K (Kudin et al.,2001)
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5.1.3 Energy calculations of BNNTS:

(a) Strain energy:

Strain energy is defined as difference of the energy per atom of tube to the
corresponding flat Sheet, strain energy variation with radius calculated with
radius using Los and Singh parameter and compare with DFT results of
(Hernandez et al., 1998) and it is in close agreement with results obtained
through Singh parameter.

e Theresults revealed that strain energy decreases with increasing radius
of the nanotube. This behaviour is expected because curvature-induced
distortion is more prominent in smaller-diameter tubes, which
increases the amount of energy stored under strain. As the diameter
grows, the curvature effect diminishes, and the structure behaves more

like a flat sheet, resulting in lower strain energy.
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Figure 5.8. Strain energy variation of armchair BNNT with radius by using
different potential parameters and compared with DFT results (Hernandez et
al.,1998)

e Across all tested empirical parameter sets (Los and Singh), this

decreasing trend remains consistent, though the exact numerical values
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vary slightly. These variations reflect differences in how each potential

captures the interatomic interactions under strain.

o Additionally, the strain energy values obtained in this study were
found to be in good agreement with existing DFT data, which validates

the accuracy of the multiscale modelling approach used.
(b) Cohesive energy:

Cohesive energy is a measure of the total energy required to disassemble a
material into its individual atoms. It reflects the strength of the atomic bonds
within the structure and serves as a key indicator of thermodynamic stability.

_ Black:Los
55 i Blue:Singh

Cohesive Energy(ev/atom)

Radius(nm)

Figure 5.9. Cohesive energy variation of BNNT with radius at finite
temperature by using different potential parameters and compared with
results given by Neumann et al. (1995)

e The computed cohesive energy values for SWBNNTS were negative,
indicating that the structure is energetically stable. The magnitude of
cohesive energy increases (i.e., becomes less negative) with increasing
radius. This means that smaller-radius nanotubes are more tightly

bound due to higher curvature-induced stress, while larger-radius
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tubes are slightly less bound, approaching the energy state of flat boron
nitride sheets.

o This trend implies that as the nanotube becomes wider, its cohesive
energy converges toward that of a monolayer BN sheet, where atoms

experience minimal out-of-plane distortion.

o Like strain energy, cohesive energy values showed minor variations
across different potential parameter sets, but the overall trend

remained consistent

5.2 Free vibration analysis results of BNNTSs:

5.2.1 Temperature Effect on first six modes of BNNTSs:

The vibrational behavior of SWBNNTs is significantly influenced by
temperature, as observed through the variation in their first six natural
frequencies. These frequencies correspond to the fundamental modes of
vibration that characterize how the nanotube deforms under dynamic
excitation. The analysis was conducted for both (6,6), (8,8) armchair and
(10,0), (14,0) zigzag nanotube configurations under clamped—-clamped
boundary conditions, evaluated at 300 K, 900 K, and 1500 K using the

developed finite temperature-based multiscale model.

e For both armchair and zigzag SWBNNTSs, a systematic decrease in the
first six natural frequencies was observed as temperature increased
from 300 K to 1500 K.

e This is primarily due to thermal softening, where increased atomic
vibrations at higher temperatures reduce bond stiffness, resulting in a

lower resistance to dynamic deformation.

e The frequency reduction is more pronounced in higher-order modes,
particularly those involving radial deformation, reflecting their greater

sensitivity to thermal effects.
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Figure 5.10. First six fundamental frequencies of armchair BNNT at finite
temperature for clamped-clamped boundary conditions
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Figure 5.11. First six fundamental frequencies of zigzag BNNT at finite
temperature for clamped-clamped boundary conditions
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The trends obtained from this analysis closely match with available molecular
dynamics (MD) simulation results at 0 K, as shown in Figure 15 validating
the accuracy of the multiscale model for capturing temperature-dependent

dynamic properties.

BNNT (10,0)-CC

Singh Parameter

With Residue

Vibration Frequency (THz)

1 2 3 45 6 7 8 91011

Vibration Mode Number

Figure 5.12. First six fundamental frequencies at 0 K for (10,0) BNNT for
camped-clamped boundary conditions and results compared with MD
simulation results. (Singh et al.,2023)

5.2.2 First natural frequency variation with radius at finite
temperature:

This section examines how the first natural frequency of single-walled boron
nitride nanotubes (SWBNNTS) varies with tube radius at finite temperature.
The study is conducted using (7,7) to (16,16) armchair and (12,0) to (26,0)
zigzag configurations of length 6nm. Frequencies are computed for a range of
radii using the developed finite temperature-based multiscale model, and the
trends are analyzed in terms of mechanical behavior and geometric

dependence.
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Figure 5.13. First natural frequency variation of armchair BNNT with radius
at finite temperature

e With increase in radius, first natural frequency increases up to a certain
radius then decreases after that, for all finite temperatures

e The critical radius exists from where trend of curve changes due to
swapping of modes, up to critical radius beam bending mode will
dominate and after critical radius that mode swap to shell modes due
to which frequency decreases after critical radius

e At higher temperatures due to thermal softening the stiffness of the
tube reduces results in decrease in first natural frequency

e Chirality effect is on natural frequency variation with radius is
insignificant as size of the tube is same

e While frequency values decrease with temperature, the corresponding
mode shapes remain unchanged. This indicates that the temperature
affects the energy landscape but not the fundamental vibration

mechanism of the nanotube.
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Figure 5.14. First natural frequency variation of zigzag BNNT with radius at
finite temperature

The computed natural frequencies using Oh parameter show good agreement
with existing theoretical data from literature (Yan et al.,2017), validating the

robustness of the model.
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Figure 5.15. First natural frequency of variation of armchair BNNT with
radius by using oh parameter and results compared with other theoretical
results (Yan et al.,2017)
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Figure 5.16. First natural frequency of variation of zigzag BNNT with radius
by using oh parameter and results compared with other theoretical results
(Yan et al.,2017)

5.2.3 First natural frequency variation with length at finite
temperature:

This section investigates how the first natural frequency of single-walled
boron nitride nanotubes (SWBNNTSs) changes with variation in tube length,
The analysis is carried out at a constant temperature of 300 K, using two
different boundary conditions: clamped—clamped (C-C) and simply supported
(S-S), for both (8,8), (10,10), (12,12) armchair and (14,0), (18,0), (21,0)

zigzag configurations.

e For both chirality’s and boundary conditions, the first natural
frequency decreases as the length of the nanotube increases. This trend
is expected, as longer tubes have lower structural stiffness in bending,

leading to reduced vibrational frequencies.

e The clamped-clamped (C-C) condition consistently results in higher
natural frequencies compared to the simply supported (S-S) case for
lower length and greater radius. This is due to local shell modes

dominates at lower length and greater radius, but at higher length and
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lower radius beam modes dominates in that case boundary condition

effect diminishes
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Figure 5.17. First fundamental natural variation of armchair BNNT with
length at finite temperature for simply supported and clamped-clamped
boundary conditions
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Figure 5.18. First fundamental frequency variation of zigzag BNNT with
length at finite temperature for simply supported and clamped-clamped
boundary conditions
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e The armchair SWBNNT exhibits nearly same natural frequencies as
like zigzag SWBNNT for same size and boundary condition.

5.2.4 Effect of residual strain on natural frequency at finite
temperature:

Residual Strain Leads to Higher Frequencies:

e Across all modes and temperatures, the frequencies obtained with
residual strain (Fw) are slightly higher than those without residual

strain (Fwo).

e This indicates that residual strain increases the effective stiffness of

the nanotube, resulting in higher vibrational frequencies.

o Residual strain particularly tensile residual strain introduces an initial
pre-stress in the nanotube along its axial direction. Here's why that

leads to increased natural frequencies

e Percentage difference between frequencies with and without residual
effect is greater for small diameter BNNT, because at low radius

curvature induce more residual strain.

e While the influence of residual strain is present at all temperatures, its
effect becomes slightly more pronounced at higher temperatures. This
could be due to the interplay between thermal softening and
mechanical pre-strain, which leads to a more balanced stiffness

configuration at elevated temperatures.

o Despite the quantitative changes in frequency values, the
corresponding mode shapes (as discussed later in mode shape section)
remain qualitatively unchanged. This reinforces that residual strain
affects the stiffness magnitude but does not induce instability or mode

coupling.

e For tubes with larger radii, the relative impact of residual strain

diminishes. This suggests a curvature-dependent strain energy
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relaxation, where flatter geometries inherently possess lower stored

energy and hence less pronounced residual effects.

e Solving residual strain improved accuracy and closer match with

realistic behavior justify this inclusion in multiscale simulations.

The table shows the effect of residual strain on natural frequencies for a (3,3)
BNNT, under clamped-clamped (C—C) boundary conditions, at three
temperatures (300 K, 900 K, 1500 K) using the Singh (2020) potential

parameters

Table 5.1. Natural frequencies of first six modes of armchair BNNT with
and without residual strain at finite temperature

BNNT Configuration: BNNT (3,3); Length:3.763892nm-CC
Parameter: Singh (2020)

Temperature 300 K 900 K 1500 K
Sr. No Fwio | Fw D(I)/IZF Fwio | Fw D(:/IiF Fwio | Fw D(I)/I(;F
1 0.61 |{0.63| 1.69 | 0.61 | 0.62 | 1.76 | 0.60 | 0.62| 1.83
2 0.61 |{0.63| 1.69 | 0.61 | 0.62 | 1.76 | 0.60 | 0.62 | 1.83
3 146 1149|1163 | 145 (148|169 | 1.44 (147]| 1.76
4 146 1149|1163 | 145 (148|169 | 1.44 (147]| 1.76
5 160 [1.62]1.21 | 160 | 1.62 | 1.25 | 1.59 [1.61| 1.29
6 249 (253|180 | 2.47 | 252 | 1.88 | 2.44 |2.49( 1.97
7 250 (254|159 | 249 | 253 | 1.65 | 247 |251| 1.72
8 250 (254|159 | 249 | 253 | 1.65 | 247 |251| 1.72
9 3.21 |3.25( 1211320324125 (319 |3.23]| 1.29
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The table shows the effect of residual strain on natural frequencies for a (5,0)

BNNT, under clamped-clamped (C—C) boundary conditions, at three
temperatures (300 K, 900 K, 1500 K) using the Singh (2020) potential.

parameters

Table 5.2. Natural frequencies of first six modes of zigzag BNNT with and
without residual strain at finite temperature

BNNT Configuration: BNNT (5,0); Length:3.7666nm-CC
Parameter: Singh (2020)
Temperature 300 K 900 K 1500 K
Sr.No- | Fwio | Fw D(;/I(;F Fwio | Fw D(:/;F Fwio | Fw D(;/;F
1 0.60 | 061221060 (|061(229]|059]|0.60] 240
2 0.60 | 061221 (060|061 (229|059 0.60]| 240
3 143|146 (213|142 | 146|221 |1.41]1.44 ] 231
4 143|146 (213|142 | 146|221 |1.41]|1.44 ] 231
5 160|163 158|160 (163|163 |159|1.62 | 1.69
6 246 | 251 (208 | 245 | 250 | 216 | 243 | 248 | 2.25
7 246 | 251 (208 | 245 | 250 | 216 | 243 | 248 | 2.25
8 249 | 255 | 235 | 247 | 253 | 245 | 2.44 | 250 | 2.56
9 3211326158 |320]3.25]1.63(3.18 | 3.24 | 1.69

5.2.5 Mode shapes of BNNTSs at finite temperature:

The mode shapes of single-walled boron nitride nanotubes (SWBNNTS)

reflect the deformation patterns the structure undergoes when vibrating at its

natural frequencies. This study presents the first six fundamental modes for

both armchair (8,8) and zigzag (10,0) configurations under clamped-clamped
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boundary conditions at two distinct temperatures: 300 K and 1500 K. The aim
is to understand how thermal effects influence these vibrational behaviours.

Despite significant changes in temperature, the qualitative nature of the mode
shapes remains stable, despite this softening, the qualitative nature of the
vibrational modes, such as axial bending, torsional, or radial modes, remains
unaffected. though the associated frequencies decrease due to thermal
softening. The thermal environment leads to increased atomic vibration and
reduced bond stiffness, which lowers the resistance to deformation and hence
the vibrational frequencies. However, this indicates that the geometric
configuration and boundary constraints dominate the deformation pattern,
while temperature primarily influences the dynamic response magnitude (i.e.,

frequency values).

These results demonstrate that the developed multiscale model accurately
captures the thermally induced changes in vibrational behavior without
compromising the structural integrity of the mode shape profiles. It
underscores the reliability of the model in predicting vibration behavior of
BNNTSs in environments where thermal effects are significant, which is vital

for applications in nano resonators, sensors, or thermally active nanodevices.

the structural integrity of the mode shape profiles. It underscores the reliability
of the model in predicting vibration behavior of BNNTs in environments
where thermal effects are significant, which is vital for applications in nano
resonators, sensors, or thermally active nanodevices. The study highlights that
while higher temperatures may reduce vibrational frequencies due to bond
weakening, they do not cause mode switching or significant distortion of
vibrational patterns. This stability is essential for the reliable design of BNNT -

based nanodevices operating in extreme environments.

First six mode shapes of armchair and zigzag BNNTSs at finite temperature is

presented on the next page.
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Figure 5.19. First six modes of vibration of (8,8) BNNT of Length=6nm,
with clamped-clamped boundary condition at 300 K Temperature.
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Figure 5.20. First six modes of vibration of (8,8) BNNT of Length=6nm,
with clamped-clamped boundary condition at 1500 K Temperature.
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Figure 5.21. First six modes of vibration of (10,0) BNNT of
Length=3.7666nm, with clamped-clamped boundary condition at 300 K
Temperature.
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Figure 5.22. First six modes of vibration of (10,0) BNNT of
Length=3.7666nm, with clamped-clamped boundary condition at 1500 K
Temperature.
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Chapter 6

Conclusion and Future scope

6. Introduction:

The final chapter summarizes the main findings and contributions of the
research. It emphasizes the effectiveness of the multiscale modeling
framework in capturing the coupled thermal-mechanical-vibrational response
of SWBNNTS. The chapter also discusses potential directions for future work,
including extension to multi-walled nanotubes, buckling and post-buckling
analysis, dynamic and impact loading, and coupling with electrical fields for
multifunctional applications. Suggestions are made to enhance computational

tools and explore experimental validation.

6.1 Conclusion

The present study focused on the development and implementation of a
multiscale computational framework to investigate the thermal, mechanical,
and vibrational properties of single-walled boron nitride nanotubes
(SWBNNTS) under finite temperature conditions. The key conclusions drawn

from this research are as follows:

1. A finite temperature-based multiscale constitutive model was
successfully developed using a temperature-dependent quadratic-type
Cauchy-Born rule. The Tersoff-Brenner potential was incorporated
with various parameter sets, and thermal vibrations were captured
through the local harmonic approximation (LHA), providing a realistic

representation of atomic interactions at elevated temperatures.

2. Thermal properties such as specific heat and coefficient of thermal
expansion (CTE) were evaluated. The predicted results showed good
agreement with available DFT data. Specific heat showed asymptotic
behaviour beyond 1500 K, while both radial and axial CTE varied

consistently with radius and temperature.
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3. Elastic properties including Young’s modulus, Poisson’s ratio, and
shear modulus were extracted from the tangent stiffness matrix. These
properties were found to be sensitive to temperature and radius, with
the modulus values approaching those of flat BN sheets as radius

increased.

4. Free vibration characteristics were evaluated through a finite element
framework incorporating a four-nodded membrane-consistent
element. This approach effectively captured free vibration

characteristics while avoiding membrane locking.

5. Modal analysis results showed that the first six vibration modes
account for approximately 80.62% of the total modal mass
participation, confirming that these modes are dominant in the
dynamic response of SWBNNTSs. Higher modes contribute less than
5% each and were excluded to ensure computational efficiency

without compromising accuracy.

6. The influence of temperature, radius, and length on the natural
frequencies of SWBNNTs was studied under various boundary
conditions. Increasing temperature was observed to reduce natural
frequencies, while both radius and length variations significantly

altered vibrational responses.

7. Mode shape evolution across temperature ranges revealed that
fundamental vibration patterns are preserved at elevated temperatures,

although the frequency values shift due to thermal softening effects.

6.2 Future Scope

While this research establishes a strong foundation for modelling and
analysing SWBNNTS at finite temperatures, several avenues remain open for

future exploration:
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Extension to multi-walled BNNTSs: The current work focuses on
single-walled structures. Investigating multi-walled BNNTSs could
provide insights into interlayer interactions, which are critical for real-

world applications where such structures are more common.

Dynamic and impact loading: Future studies may include the analysis
of time-dependent and impact-based load conditions to understand the
response of BNNTS in real-time dynamic applications such as sensors,

actuators, or aerospace components.

Extension of the developed framework to analyze buckling behavior
and nonlinear static response of SWBNNTSs under combined thermal
and mechanical loading would provide deeper insights into stability
limits and post-buckling deformation patterns, especially for large

deformation regimes and complex boundary conditions.

Thermo-electromechanical coupling: A promising extension would be
to integrate electrical properties into the model, enabling the study of
BNNTSs in multifunctional devices subjected to coupled thermal and

electrical fields.
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