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Abstract

Deposition defects such as discontinuity, non-uniformity, waviness, under-dilution,
over-dilution, porosity, balling, spattering, and poor surface quality in the metal additive
manufacturing (MAM) processes significantly influence properties and performance of the
fabricated product. Waviness and non-uniformity are characterized by unacceptable
variations in deposition height and width respectively along the deposition length. The
deposition defects reduce strength, toughness, fatigue life, and wear resistance thus making
the product unsuitable for the intended application. They lead to metrological inaccuracies
in the final product and can even lead to rejection of the entire thus necessitates their
expensive post-processing. Therefore, real-time detection and elimination or minimization
of the deposition defects is crucial to performance and service of the MAM products and
for elimination of the expensive post-processing. This research proposes computer-vision
based defect detection methodology to detect discontinuity, non-uniformity, waviness,
under-dilution, and over-dilution in p-Plasma Metal Additive Manufacturing (U-PMAM)
fabricated single-layer depositions of different biocompatible materials using hue saturation
value (HSV) based color segmentation and centroid distance and the trained YOLO models.
High-quality videos were recorded of single-layer depositions of Ti6Al4V,
63C029Cr4Mo4Ti, and SS 316L materials using a high dynamic range (HDR) camera
mounted on 5-axis CNC machine of u-PMAM process for different parametric
combinations. Images were extracted at rate of one image per second from each recorded
video. The extracted images were annotated by the Visual Geometry Group (VGG) image
annotator and deposition height and width were extracted from these images using HSV
based color segmentation and computation of centroid distance. Discontinuity, non-
uniformity, and waviness were detected by plotting the variations in deposition height and
width along the deposition length. Subsequently, trained YOLOvV8 and YOLOv11 models
were used to predict deposition height and width from the unannotated images of SS 316L
after training and validating them using annotated images. These models were trained for
50 epochs for different combinations of batch size, image size, and hyperparameters (i.e.,
learning rate, momentum, and weight decay). The YOLO model predicted deposition height
and width were plotted along the deposition length to detect non-uniformity, waviness,
under-dilution, and over-dilution. A comparative study of the defects detected by the HSV
based approach and YOLO models found superiority of the YOLO models in deposition
defect detection of single-layer depositions by p-PMAM. The proposed defect detection
methodology is scalable and can be used for any MAM process and any material because it

does not depend on them.
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Chapter 1
Introduction

This chapter presents brief introduction of computer vision, its advantages and
applications, YOLO models, additive manufacturing (AM) and classification of different
AM processes, working principle and applications of p-PMAM process along with the
defects produced by it. It ends with providing organization of this thesis.

1.1 Introduction of Computer Vision (CV)

Computer vision (CV) is a field of artificial intelligence that enables machines to
interpret, analyze, and extract meaningful data from the images and videos, mimicking
human vision and cognitive abilities. It involves high-level understanding, grasping,
analyzing, and processing the visual data to extract meaningful information and make
useful decisions. Following typical tasks are performed by the CV:

e Object Classification: Identification of the defined objects in an image/video, and
assigning label to each identified object.

e Object Localization: Finding locations of the identified objects in an image/video by
enclosing each object in a bounding box.

e Object Detection: It is a combination of the object classification and object
localization to recognize and locate the defined objects in an image/video. Fig 1.1
shows the object classification, localization, detection, and segmentation tasks by
computer vision in a single and multiple objects images.

e Object Recognition: It provides an input image to a model through combination of
the object classification and object localization and gives the likelihood of the

recognized object belonging to a particular class.

Classification
Classification + Localization Object Detection Instance Segmentation

CAT CAT CAT, DOG CAT, DOG

Sinale obiect Multiple objects
Fig. 1.1: Object classification, localization, detection, and segmentation tasks by computer
vision in a single and multiple objects images (Diwan et al. 2023).
Object detection by the CV plays a very important role in many applications, such as

defect detection in manufacturing, self-driving cars, surveillance, and augmented reality.
1



Vijayakumar and Vairavasundaram (2024) described use of object detection algorithm
in different applications with a particular emphasis on enhancing efficiency and accuracy.
State-of-the-art models such as YOLO and Region-based Convolutional Neural Network
(R-CNN) are widely employed to provide real-time and robust object detection
capabilities. These algorithms find extensive applications in various domains including
autonomous vehicles, surveillance systems, smart cities, and healthcare, showcasing their
versatility and effectiveness in addressing diverse visual recognition challenges.

1.1.1 Advantages of Computer Vision
Following are some unique advantages of computer vision which make it an effective

alternative to the traditional detection techniques:

e Automated Visual Inspection: This capability of CV helps to detect defects in
assembly lines without human intervention. The CV based self-checkout systems in
retail sector are used to automatically identify and bill the products.

e Speed and Efficiency: Speed and efficiency of CV help in quick analysis of the X-
rays and magnetic resonance imaging (MRI) data aiding in rapid diagnosis of disease
thus reducing waiting times of patients. Similarly, multiple cameras for surveillance
purposes aid in real-time detection of intrusions or unusual behavior instantly.

e Cost Reduction: Automated crop monitoring in large-scale farms using CV decreases
operational costs by reducing manual labour. Similarly, computer vision based smart
traffic monitoring systems in place of physical traffic controllers help in cutting down
the infrastructural expenses.

e Accuracy and Consistency: Precise object detection by CV helps in reducing road
accidents caused by human carelessness. It also plays a crucial role in quality control
of products as it allows consistent quality checks which significantly reduces the
producer’s and consumer’s risk.

e Safety: Use of CV systems in the mines act as a safety net to prevent the workers
from entering unsafe conditions and/or locations.

1.1.2 Some Domain Specific Applications of Computer Vision
Researchers have explored applications of computer vision in different domains.

Following are some examples:

DeCost and Holm (2015) applied computer vision to develop quantitative
microstructure descriptors for a diverse collection of microstructure data. For classification

of microstructures, support vector machine (SVM) was trained with greater than 80%

accuracy over 5-fold cross validation. The developed real-time microstructure descriptors



can capture the meaningful details and define characteristics of microstructural images
without explicit fine-tuning from human experts.

Gargiulo et al. (2017) used computed tomography (CT), MRI images, and diffusion
tensor imaging (DTI) tractography and used image segmentation protocols namely
MIMICS to develop 3D model of skull base, tumor, and five eloquent fiber tracts. The
developed 3D models were rapid-prototyped and linked with patient images to develop a
reported surgical navigation system.

Lin et al. (2017) proposed a camera-based line-laser obstacle detection system to
prevent the falls of elderly persons in the indoor environment. This system casts a laser
line, which passes through a horizontal plane and has a specific height to the ground. A
camera, whose optical axis has a specific inclined angle to the plane, observes the laser
pattern to obtain the potential obstacles. When obstacles are detected, the system sounds
alarm messages to catch the attention of the human beings.

Wang et al. (2020) developed a deeply supervised object detector to provide
information about the fatigue crack initiation sites which are crucial for fatigue failure
investigations of metallic products. They used convolutional neural networks (CNN) to
improve the training efficiency of their detector. Their results demonstrated that increasing
training dataset size can improve accuracy of CNN while raising the number of epochs can
result in its superior ability to recognize the delicate features. Most of the images that
cannot be recognized possess common characteristics such as poor image quality, unclear
features, and insufficient training data.

Cunha et al. (2024) used computer vision to recognize and count dengue mosquito
eggs in a trap to control mosquitoes and consequently the dengue fever. The other is a
probabilistic model called physiotherapeutic evaluation platform, in which CV was used to
aid in visualization of human body balance, by monitoring the center of mass which helps
to measure a patient’s abdominal strength, assisting the physiotherapist in prescribing

exercises aimed at muscle strengthening.
1.2 Introduction of YOLO Model

The traditional object detection models often face limitations in terms of speed because
they require multiple scans over an image to identify the objects. These models are region-
based, and are computationally intensive which hinder their real-time applications.
Whereas, YOLO (You Only Look Once) is a pretrained model which belongs to a family
of real-time object detection algorithms. A YOLO model is designed to detect and classify
objects within an image or video using a unique one-shot detection approach which
significantly improves its object detection speed. A YOLO model achieves its impressive

3



real-time processing capabilities by dividing the entire image into the small grids and
making a prediction directly for each grid. This makes it particularly advantageous for the
applications requiring swift and accurate identification of objects in dynamic
environments. Twelve versions of YOLO model have been launched since their beginning
in 2015 as shown in Fig. 1.2. Each version has some improvements over the previous

version for better detection performance.

R YOLO-NAS
YOLOv3 Scaled- YOLOvA YOLOV6 oy Armmon s o e
Joseph Redman @1 al f LW Chuyi Li, Aloxey Bochiowvskiy ot al Chuyi Li ¢1 al / Meituan T i
- YOG ) Gross Stage Bart I e . it danetay Glenn Jocher 01 al | Ultralylies
YOLO is introduced YOLOS YOLOVO
} “_lasen-n R!l?m:ml.et a.l.i uw o YOLOVS Yuxin Fang et al | HUST YOLOvS Chien-¥as Wang et 2l
: N . Glenn Jocher et al { Ullralytics s ———— Glenn Jocher et al [ Ultralytics P
Dec 25, 2016 Apr 23, 2020 Jul 23, 20207 May 10, 2021 Aul 18, 20217 Aul 8, 2022 Jan 13, 2023 Jan 30, 20247 May 23, 2054
Jun B, 2015 Apr B, 2013 | suns, 20200 Hov 16, 20207 Jun 1, 2021 Jun 2022* Jan 10, 2023+ May 2, 20231 | FebZ), 2024° Sep 30, 2024+
YOLOV6 3.0
YOLOv2 aka YOLO9000 PP-YOLO YOLOX YOLOv10
Jnseph Redmen ot al f UW X Long et al f Baidu Zhong Ge et al | Megyii Chayi Li g1 al f Meituan Ao Wang et al | Tsinghua Univ
. YOLOM: Excepding YCLO Sedes in 2021 YOLOWE vEO A Fyll-Seale Reloading YOLOIR: Feaal-Time End-10-En "
YOLOv4 YOLOR YOLOv? YOLO-World

Alexey Bochkovskiy el al Chign-Yao Wang ¢t al Chien-¥ao Wang, Alexey BOChKOVEKIY €831 Tianheng Cheng et al | Tencent

Fig. 1.2: Timeline of launch of different versions of YOLO models.

1.3 Introduction of Additive Manufacturing

Additive manufacturing (AM) is defined by the joint ISO/ASTM terminology standard
to be the “process of joining materials to make parts from 3D model data, usually layer
upon layer, as opposed to subtractive manufacturing and formative manufacturing
methodologies”. The pertinent part is the use of a computer to translate a solid model into
a real part (Bourell, 2016). AM, often referred to as 3D printing, is a type of digital
fabrication technique that builds physical items from a geometrical model through the
addition of materials. The field of AM is rapidly expanding. It has been a common
practice around the world in recent years. AM has a wide range of applications across
various industries such as aerospace, automotive, healthcare, architecture, construction,
education, and research. Mass customization and manufacture of open-source designs are
becoming increasingly common uses of AM in agricultural, healthcare, automotive, and
locomotive industries (Jadhav and Jadhav, 2022).
1.3.1 Classification of AM Processes

According to ASTM F42, different AM processes are categorized into the following
seven categories as shown in Fig. 1.3 (Stavropoulos and Foteinopoulos, 2018):
1. Powder Bed Fusion
2. Directed Energy Deposition (DED)
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Fig. 1.3: Classification of different types of AM processes according to ASTM F42
(Wiberg, 2021).

Powder Bed Fusion (PBF): PBF type AM processes use heat source in the form a
laser or electron beam to selectively fuse regions of the powdered bed of the feedstock
material which is either metallic material or a polymer. Electron Beam Melting
(EBM), Selective Laser Sintering (SLS), Selective Laser Melting (SLM), Direct Metal
Laser Sintering (DMLS), Selective Heat Sintering (SHS), and Multi Jet Fusion (MJF)
are common AM processes in this category. They differ based on the materials they
use and how much melting takes place during the process. The PBF processes have
ability to integrate at small scale and they are used for AM of relatively large products.
Their machines are of large size. But, built speed is relative slow, they require high p-
plasma power, and their surface finish depends on the powder size.

Directed Energy Deposition (DED): DED type AM processes use the concentrated
heat source in the form a laser, electron beam, plasma arc, or p-plasma arc to melt and
fuse the feedstock material as is being deposited. The feedstock material is a metallic
material which can be supplied either in powder form or wire form or combination of
the both. These AM processes produce high quality functional products, perform
precise repair of the existing components, add complex features to the pre-fabricated
parts, produce and restore high-value engineering components, and fabricate near-net-
shape products. Their build speed is often sacrificed for higher accuracy. The DED

fabricated products require post-processing to achieve the desired quality. Laser
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Engineering Net Shape (LENS), Laser Metal Deposition (LMD), Wire-arc Additive
Manufacturing (WAAM), and p-plasma Metal Additive Manufacturing (u-PMAM)
are the commonly used DED type AM processes.
Sheet Lamination: Sheet lamination type AM processes bond together the sheets or
foils of different metallic materials, papers or fabrics using heat, adhesives, or
ultrasonic waves to supply the required bonding energy. A laser, or milling machine is
used to make products from the laminated sheets. Laminated Object Manufacturing
(LOM) and Ultrasonic Additive Manufacturing (UAM) are the commonly used sheet
lamination type AM processes. These processes offer high build speed, low cost, ease
of material handling, higher accuracy, and good finish.
Binder Jetting: In binder jetting type AM processes, a liquid bonding agent is
selectively deposited to join powder of feedstock material (either a metallic material or
a polymer) thus binding them to create a solid layer. When one layer is finished, the
platform moves down, and new powder is added on top. This cycle repeats until the
full object is completely built. Powder Bed and Inkjet Head (PBIH) and Plaster-based
3D Printing (PP) are the commonly used binder jetting type AM processes.
Advantages of these processes include: faster process, high range of materials, allows
use of two materials, use of different colours. Their major limitations are: not always
suitable for structural parts due to use of binder material, and higher amount of post
processing
Material Jetting: Material jetting involves depositing droplets of the feedstock
material (usually photopolymers or waxes) onto a build platform, where they are
immediately solidified by UV light. This process is similar inkjet printing in 3D.
Advantages of material jetting type AM processes include: high accuracy, less wastage
of materials, ability to fabricate multi-materials and multi-colours products thus
making them ideal for visual prototypes and biomedical models. But they require
support structures and are applicable to limited range of materials only. Multi-jet
Modelling (MJM) is the most commonly used material jetting type AM process.
Material Extrusion: This process uses a nozzle or orifice to selectively extrude the
feedstock material to form its layers. The nozzle moves along the x and y axes to
deposit material onto a base, while the platform shifts along the z-axis to create the
product layer by layer. Common materials feedstock materials are thermoplastics or
thermoplastic composites. It is used to fabricate inexpensive parts from ABS or some
other plastics, Extrusion type AM processes are relatively inexpensive, suitable for the
visual models and prototypes. But they have low accuracy, small build speed, limited
6



nozzle radius, requires constant pressure of the feedstock material. Fused Deposition
Modelling (FDM) is the most commonly used material extrusion type AM process.

e Vat Photopolymerization: This type of AM processes selectively cure a liquid
photopolymer by exposing it to the light from a laser or projector to produce its solid
layers via light-activated polymerization process. The build platform begins at the
bottom of a container filled with liquid photopolymer. A light source hardens it based
on its cross-section being exposed, solidifying it as it moves up. Stereolithography
apparatus (SLA) and Digital Light Processing (DLP) are the commonly used vat
polymerization processes. These processes are relatively quick and typically build
large areas. But, they are relatively expensive, requires support structure, require
higher post-processing time and cost, and are applicable to limited material i.e.

photopolymers only.
1.4 Introduction of u-PMAM Process

The p-Plasma Metal Additive Manufacturing (U-PMAM) process is a novel and
energy-efficient metal AM (MAM) process that combines the principles of p-plasma arc
with the precision of modern material deposition methods. It represents a significant
advancement in the field of DED, especially in applications that demand fine control, and
minimal thermal impact. By using p-plasma arc as low-energy, highly concentrated
thermal source as the heat source, p-PMAM is capable of producing high-quality
components from high-melting point metallic materials. The p-plasma arc is generated
inside a specially designed nozzle unlike the plasma arc additive manufacturing (PAAM)
process. The nozzle controls the arc size and intensity, ensuring focused heating and
efficient material deposition. Unlike conventional PAAM process, u-PMAM operates at
lower p-plasma current and p-plasma power levels, usually up to 20 A and 440 W direct
current (DC) p-plasma power. These controlled energy settings offer several benefits, such
as reduced heat-affected zones, minimized thermal distortion, and lower residual stresses
within the deposited layers. One of the distinguishing features of u-PMAM process is its
integration with 5-axis computer numerically controlled (CNC) work table. Fig. 1.4
depicts photograph of the 5-axis CNC machine for p-PMAM process showing the
deposition head and formation of p-plasma arc inside the p-plasma torch in the insets.
This configuration allows for the fabrication of geometrically complex parts without any
support material. The multi-axis motion enables the deposition head to be programmed for
the desired part geometry thus allowing overhangs, internal features, and curved
geometries to be manufactured more easily. Consequently, u-PMAM offers superior
flexibility and freedom in part design, reducing the need for post-processing and support
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removal. A major advantage of ui-PMAM lies in its compatibility with multiple feedstock
forms including powders, wires, or their combinations. This versatility allows users to
select the most appropriate form of feedstock material based on part requirements, desired
deposition rate, or economic considerations. For instance, powder feedstock offers better
control over composition and microstructure, while wire feedstock provides better material
utilization and reduced contamination risk. From a materials perspective, u-PMAM is
highly capable of handling a broad range of high-performance and high-melting-point
alloys, many of which are difficult to process by other AM processes. The u-PMAM
process has been successfully used for Inconel 625 for high-temperature aerospace
applications, P20 and H13 tool steels for mould and die production, and Stellite alloy for
wear-resistant surfaces, Ti6Al4V, Co-Cr-Mo-xTi, Ti-Ta-Zr-W-Mo HEA for biomedical
implants, and Ti6Al4VxNiyCr alloys for high strength applications. The precise control
over heat input and deposition rate allows for stable melting and solidification of
challenging materials which helps to expand its material applications. These materials are
selected for their mechanical and biological properties, making them ideal for implants,

surgical instruments, and prosthetic components.

~ Formationof p-plasma
arc inside the p-plasma
_ torch

CNC

Fﬁoweriﬁbﬁiiﬁlt Power supply unit worktable

for powder feeder for y-plasma
s - —_— arc

INTERFACE

insets showing deposition head and formation of p-plasma arc inside the p-plasma torch
(Aryaet al. 2024).
In terms of functional outcomes, the parts produced through p-PMAM often exhibit
fine-grained microstructures, uniform layer bonding, and high mechanical strength due to
controlled thermal cycles and precise deposition paths. Its ability to handle custom
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geometries and specialized materials opens new possibilities for repairing, re-
manufacturing, and customizing critical components. This is especially relevant in high-
value sectors namely aerospace, automotive, biomedical, and defence where performance,
reliability, and material efficiency are critical.
1.4.1 Applications of ui-PMAM Process

The n-PMAM process has been successfully used for processing many high melting
point materials. The applications of p-PMAM process are as follows:

e Aerospace components: u-PMAM enables fabrication of complex, lightweight parts
using high-temperature alloys such as Inconel 625, offering superior heat resistance,
geometric precision, and reduced material wastage for turbine blades and aerospace
brackets.

e Tools and dies manufacturing: The p-PMAM process efficiently produces and
repairs moulds of P20 and H13 materials enhancing their useful life, reducing lead
time.

e Biomedical implants and devices: The u-PMAM process has been used to process
biocompatible materials such as Ti6Al4V, Co-Cr-Mo-xTi, Ti-Ta-Zr-W-Mo with
tailored microstructures, allowing the production of patient-specific implants and
surgical tools with improved mechanical and biological performance.

e Development of high-entropy alloy: The u-PMAM process has been used to develop
advanced alloys such as Ti6Al4VxNiyCr, Co-Cr-Mo-xTi, Ti-Ta-Zr-W-Mo, enabling
components with superior strength, corrosion resistance, and biocompatibility for
demanding structural and biomedical applications.

e Component repair and remanufacturing: p-PMAM process can repair worn or
damaged high-value metallic parts by adding material only where needed, extending
component life and reducing replacement costs and environmental waste.

1.4.2 Defects in Depositions by u-PMAM Process
Despite several advantages offered by p-PMAM process, Kumar and Jain (2020)
have highlighted occurrence of the following defects in the depositions fabricated by p-
PMAM process. Some of these defects are shown in Fig. 1.5 for different forms of the
feedstock material i.e., powdered form (Fig. 1.5a); wire form (Fig. 1.5b); combined
powder-wire form (Fig. 1.5¢)
e Porosity: It refers to presence of small voids or pores on the surface of the additively
manufacturing metallic component as shown in Figs. 1.5a-1.5c. It can occur between
the deposition layers (inter-layer porosity shown in Fig. 1.5d1), within a deposition

layer (intralayer porosity depicted in Fig. 1.5d2), or between deposition tracks (inter-
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track or inter-run porosity illustrated in Fig. 1.5d3). Porosity is a critical quality
concern especially for the functional or load-bearing components.

Balling: It is a common defect where the molten material forms discrete spherical
droplets instead of a smooth and continuous deposition. It disrupts deposition layer
adhesion and compromises the part quality as shown in Fig. Figs. 1.5a-1.5c.
Spattering: It refers to ejection of small molten material droplets from the melt pool
as depicted in Figs. 1.5a-1.5¢c. These spattered particles can land on nearby surfaces or
the build itself causing surface defects and poor surface quality porosity, or even
delamination in subsequent layers.

Wire Inclusion: This defect is caused when an unmelted or partially melted wire of
the feedstock material is embedded within a deposition as shown in Fig. 1.5b.
Discontinuity: It indicates absence of feedstock material at certain locations along the
deposition length implying that deposition height and/or deposition width being equal
to zero at such locations.

Non-uniformity: It is characterized by unacceptable variations in deposition width
along the deposition length as shown in Fig. 1.5f.

Waviness: It is characterized by unacceptable variations or ripples in deposition
height along the deposition length.

Over-dilution: It occurs when diluted area is much larger than the deposition area as
shown in Fig. 1.5g. It is caused due to the aspect ratio (i.e., ratio of deposition width
to deposition height) being greater than its optimum range.

Under-dilution: It is just opposite to over-dilution. It occurs when diluted area is
much smaller than the deposition area as shown in Fig. 1.5h. It is due to the aspect
ratio (i.e., ratio of deposition width to deposition height) being smaller than its
optimum range.

Surface Roughness: It is the measured roughness of functional surface of an AM
fabricated component. There are many measures of surface roughness such as
arithmetical average roughness ‘Ra’ value concept depicted for a multi-layer
deposition in Fig. 1.5i), maximum surface roughness ‘Rmax’ or ‘Ry’ value, ten-spot
average roughness ‘Rz’ value. They can be measured using standard surface
roughness measuring equipment. Kumar and Jain (2022) used K-nearest neighbors
(KNN) algorithm to predict the surface roughness of the components manufactured by

H-PMAM process.
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Fig. 1.5: Different deposition defects (a, b, ¢) porosity, balling, spatter for (a) powder
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form, (b) wire form, (c) combined powder and wire form, (b) wire inclusion in wire form
of feedstock material (Kumar and Jain, 2020), (d1) inter-layer porosity, (d2) intralayer
porosity, (d3) inter-track or inter-run porosity, (e) discontinuity, (g) non-uniformity, (g)
over-dilution, (h) under-dilution (Jhavar et al., 2016), and (i) concept of evaluation of
average surface roughness ‘Ra’ value for a multi-layer deposition (Kumar and Jain,
2022).
1.5 Organization of Thesis

This thesis is organized into the following five chapters:
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Chapter 1 presents brief introduction of computer vision, its advantages and applications,
YOLO models, additive manufacturing processes and their classification,
working principle and applications of p-PMAM process along with the defects
produced by it. It ends with providing organization of this thesis.

Chapter 2 describes review of the past work done on using computer vision for detection
of the defects produced by different AM processes, and detection of defects
produced by p-PMAM process, followed by brief review summary of the past
works, identified research gaps, and research objectives along with methodology
used to meet them.

Chapter 3 provides details of data acquisition for the present work through high quality
recording of videos of single-layer depositions of 63C029Cr4Mo4Ti, Ti6Al4V,
and SS 316L by p-PMAM process using high dynamic range (HDR) camera. It
also presents details of extraction of images from each recorded video,
annotation of clearly visible extracted images, proposed deposition defect
detection methodology, and methodology for defect detection using HSV based
color segmentation and centroid distance and YOLO models.

Chapter 4 provides the results and discussion of this research work by describing the
analysis of the deposition defects detected by HSV segmentation and centroid
distance and the trained YOLO models in single-layer depositions of SS 316L,
Ti6Al4V, and 63C029Cr4Mo4Ti alloys. It also provides comparison of the
ranges for deposition height, deposition width, and aspect ratio identified by
HSV-based approach and the trained YOLO models and p-PMAM process
parameters identified by HSV-based approach for continuous, uniform, and non-
wavy depositions of the considered materials.

Chapter 5 summarizes the outcome of the present research by presenting its significant
achievements, conclusions, and some directions for the future work.

This chapter presented brief introduction of computer vision, its advantages and
applications, YOLO models, additive manufacturing processes and their classification,
working principle and applications of u-PMAM process along with the defects produced
by it, and organization of this thesis. The next chapter review of the past work done on
using computer vision for detection of the defects produced by different AM processes,
and detection of defects produced by p-PMAM process, followed by brief review
summary of the past works, identified research gaps, and research objectives along with

methodology used to meet them.
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Chapter 2
Review of Past Work

This chapter describes review of the past work done on using computer vision for
detection of the defects produced by different AM processes, and detection of defects
produced by p-PMAM process, followed by brief review summary of the past works,
identified research gaps, and research objectives along with methodology used to meet
them.
2.1 Use of Computer Vision for Detection of AM Defects

Additive manufacturing (AM) processes are known for their design and fabrication
flexibility, cost-effectiveness, and high customization. But products manufactured by the
AM processes possess many defects such as porosity, balling, discontinuity, non-
uniformity, waviness, over-dilution, under-dilution, spattering, delamination of deposition
layers in multi-layer deposition, poor surface quality, and poor dimensional and
geometrical tolerances. These defect causes poor appearance, properties, and performance
of the AM products which make them unsuitable to meet the efficiency and quality
requirements of modern production systems. The traditional method to detect these defects
is the visual inspection and measurement but it is skilled manpower-intensive and time-
consuming process which often results in inaccurate detection of defects and even non-
detection of many defects. This leads sheer wastage of time, efforts, and money.
Therefore, development of a real-time defect detection methodology for the AM processes
is urgently needed to realize them as an established manufacturing technology and
computer vision can play an important role in it. Computer vision is a field of artificial
intelligence that enables machines to interpret, analyze, and extract meaningful data from
the images and videos, mimicking human vision and cognitive abilities. It involves high-
level understanding, grasping, analyzing, and processing the visual data to extract
meaningful information and make useful decisions. Computer vision has potential to
automate defect detection on real-time basis with improved accuracy and efficiency thus
making it particularly suitable in large-scale and long-term industrial production
processes. It only requires a hardware and a high-end camera for deploying on it for
capturing video/images on real-time basis for any future use. Common defect detection
methods based on computer vision include thresholding, edge detection, feature extraction,
and description. Following paragraph describe the past work done on AM defect detection
using computer vision.

Scime and Beuth (2018) used computer vision for in-situ monitoring and analysis to

automatically detect and classify the defects that occurred during the powder spreading
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while fabricating depositions of SS 316L by laser powder bed fusion (LPBF) process. The
defect detection and classification were implemented using an unsupervised machine
learning (ML) algorithm, operating on a moderately-sized training database of images.
Scime et al. (2020) used the CNN for pixel-wise segmentation of layer-wise powder bed
image data in (i) deposition of Ti6Al4V, AlSi10Mg, Inconel 718, stainless steel 316L, and
bronze by LPBF process, (ii) deposition of B4C and SiC by electron powder bed fusion
(EBPF) process, and (iii) deposition of Ti6Al4V by binder jetting type AM process. They
detected defects such as porosity spattering, incomplete spreading, and debris. They
highlighted that key advantage of CNN algorithm is returning segmentation results at the
native resolution of the imaging sensor, seamlessly transferring learned knowledge
between different AM machines, as the training data for any individual machine may be
limited, knowledge learned on data from one AM machine must be rapidly transferrable
across technologies between entirely different powder bed machines and imaging systems
and providing real-time performance. Charalampous et al. (2021) used computer vision-
based method to automatically scan, filter, segment, reconstruct, and correlate high-
resolution point cloud data of a part fabricated by fused filament fabrication (FFF) process
with its digital 3D model to evaluate the process performance. They also experimentally
validated effectiveness of their monitoring and defect detection methodology. Zhang et al.
(2022) reviewed in-situ and real-time monitoring of LPBF and laser directed energy
deposition (LDED) processes using traditional image processing such as image
transformation, recognition, segmentation, and enhancement for analysis of monitoring
and classification of the objects. They proposed a technical route for real-time feedback
control of metal AM (MAM) processes by combining image processing with AM
technologies. They also analyzed problems in image processing, algorithm generalization,
quality, small samples, and image labeling. Nguyen et al. (2023) used a semi-supervised
ML algorithm to detect defects in deposition of SS 316L by LPBF process. The ML
algorithm was trained to classify the surface appearances as the post-process
characteristics, e.g. surface roughness, morphology, or tensile strength in the monitoring
data. This approach was validated by performing predictions on test samples having
various geometries. Wang et al. (2023) proposed an enhanced YOLOv8 model to train a
defect detection model capable of identifying and evaluating defect images based on four
defect categories namely scratches, holes, over-extrusion, and impurities in an extrusion

type AM process.
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2.2 Detection of Defects in ui-PMAM Process
Kumar and Jain (2020) showed occurrence of porosity, balling, spatter, and wire

inclusion through microscopic examination of the Stellite depositions by p-PMAM
process while it in powder form, wire form, and combined powder-wire form. Kumar and
Jain (2022) used KNN algorithm to predict the surface roughness produced by u-PMAM
process. The surface roughness data for training the KNN algorithm were generated by
depositing multi-layer single-track depositions of Stellite-6 in powder and wire form. They
reported that surface roughness increased with an increase in p-plasma power and
feedstock material feed rate and decreased with an increase in deposition head traverse
rate for both powder and wire form of feedstock material.

2.3 Review Summary of Past Work
It can be summarized from the review of the limited past work available that (i)

computer vision has been successfully used via in-situ monitoring to detect the defects in

the depositions of Ti6Al4V, AISil0Mg, Inconel 718, SS 316L, bronze, B4C, and SiC
produced by different AM processes namely LPBF, EPBF, LDED, FFF, and Binder

Jetting AM processes. The captured videos/images were carefully processed, analyzed and

used to perform these tasks, (ii) Depositions of Stellite by p-PMAM process revealed

occurrence of porosity, balling, spatter, and wire inclusion for its powder, wire, and
combined powder-wire form, and (iii) Surface roughness produced by p-PMAM process
has been successfully predicted by using KNN algorithm.

2.4 ldentified Research Gaps and Research Objectives

Following are the research gaps identified from the past work review:

e Some work is available on computer vision based real-time detection of the defects in
LPBF, EPBF, LDED, FFF, Binder Jetting type AM processes during depositions of
Ti6AI4V, AlISi10Mg, SS 316L, Inconel 718, Bronze, B4C, and SiC.

e Limited work is available on post-process detection of defects and KNN based surface
roughness prediction in the metallic depositions made by the p-PMAM process.

e No work is available on computer vision based real-time detection of defects such as
discontinuity, non-uniformity, waviness, under-dilution, over-dilution in the
depositions of biocompatible metallic materials (such as 63C029Cr4MoA4Ti, Ti6Al4V,
and SS 316L) fabricated by the u-PMAM process.

Based upon the review of the past work and its above-mentioned summary, following

research objectives were identified for the present work:
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e RO-1: Recording of high-quality videos of single-layer depositions of three
biocompatible metallic materials (namely 63C029Cr4Mo4Ti, Ti6Al4V, and SS 316L)
produced by the p-PMAM process. Extraction of images from each recorded video
and making them clearly visible via segregation and preprocessing. Annotation of the
extracted clearly visible images by the Visual Geometry Group (VGG) annotator.

e RO-2: Computation of deposition width and deposition height from the annotated
images using Hue Saturation Value (HSV) based colour segmentation and computing
the centroid distance. Detection of discontinuity, non-uniformity, waviness, over-
dilution, under-dilution by plotting the variations in computed deposition height,
deposition width, and aspect ratio along the deposition length.

e RO-3: Training and validation of YOLOvV8 and YOLOv11 models using the annotated
images and their unannotated version. Testing of the trained YOLOv8 and YOLOv11
models using the unannotated images. Prediction of deposition height, deposition
width, and computation of aspect ratio by the trained YOLO models. Detection of non-
uniformity, waviness, over-dilution, under-dilution by plotting the variations in
predicted deposition height, deposition width, and computed aspect ratio along the
deposition length

e RO-4: Comparison of ranges for deposition height, deposition width, and aspect ratio
identified by HSV and centroid distance approach and the trained YOLO models.
Identification of u-PMAM process parameters by HSV and centroid distance approach
for continuous, uniform, and non-wavy depositions.

2.5 Research Methodology
Fig. 2.1. depicts the methodology used to meet to the identified research objectives of

the present work. It starts with recording of high-quality videos of single-layer depositions

of 63C029Cr4Mo4Ti, Ti6Al4V, and SS 316L fabricated by the u-PMAM process using a

high dynamic range (HDR) camera that moves along with the deposition head. Images are

extracted from each recorded video followed by annotation of 90% of the clearly visible
images (i.e., segregated and pre-processed) by the VGG image annotator. Thereafter,
following two approaches were used to detect the defects: approach-1 based on HSV
based color segmentation and centroid distance and approach-2 based on YOLO models.

Approch-1 computed deposition height, deposition width, and aspect ratio and plots of

their variations along the deposition length were used to detect discontinuity, non-

uniformity, waviness, over-dilution, and under-dilution of the considered depositions.

Whereas, approach-2 involved training and validation of YOLOv8 and YOLOv11 models

using the annotated images and their unannotated version and their testing using the
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unannotated images. Then the trained YOLO models were used to predict deposition
height and width. The plots of the variations in the predicted deposition height and width,
and computed aspect ratio were used to detect non-uniformity, waviness, over-dilution,
and under-dilution of the considered depositions. The methodology ends with comparison
of ranges for deposition height, deposition width, and aspect ratio identified by both the
approaches and identification of u-PMAM process parameters by the approach-1 for

continuous, uniform, and non-wavy depositions of the considered materials.

Recording High-Quality Videos of p-PMAM fabricated Single-layer
Depositions of Ti-6Al-4V, Co-Cr-Mo-4Ti, and §S 316L by HDR Camera

¥
I Extraction of Images from each Recorded Video I
1
Annotation of Clearly Visible (i.e., Segregated and Pre-
processed) Images by VGG Image Annotator
——m -msms - m m - e 0 0 0
Approach 2: Use of Annotated Images and their Approach 1: Computation of Deposition Width and

Unannotated versions for Training and Validation of YOLOv8
and YOLOv11 Models and Unannotated Images for their
Testing. Prediction of Deposition Height and Width, and

I
I
: computation of Aspect Ratio by the trained YOLO Models
I
I

Height from the Annotated Images using Hue Saturation
Value (HSV) based color segmentation and computed
centroid distance

|

Detection of Discontinuity, Non-uniformity, Waviness,
Over-Dilution, and Under-Dilution by plotting the
variations in Computed Deposition Height, Width and

l_ Aspect Ratio along the deposition length

Detection of Non-uniformity, Waviness, Under-dilution, and
Over-dilution by plotting variation in Predicted Deposition
Height and Width, and Computed Aspect Ratio along the

Comparison of Ranges for Deposition Width, Height and Aspect
Ratio Identified from Approach 1 and Approach 2

Identification of y-PMAM Process Parameters by Approach-1
for Continuous, Uniform, and Non-wavy Depositions of the
Considered Materials

Fig. 2.1: Research methodology used in the present work.

This chapter described review of the past work done on using computer vision for
detection of the defects produced by different AM processes, and detection of defects
produced by p-PMAM process, followed by brief review summary of the past works,
identified research gaps, and research objectives along with methodology used to meet
them. The next chapter highlights the different details with regards to the materials and
methodologies employed in the analysis of u1-PMAM process.
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Chapter 3

Materials and Methods

This chapter provides details of data acquisition for the present work through high
quality recording of videos of single-layer depositions of 63C029Cr4Mo4Ti, Ti6Al4V,
and SS 316L by p-PMAM process using high dynamic range (HDR) camera. It also
presents details of extraction of images from each recorded video, annotation of clearly
visible extracted images, proposed deposition defect detection methodology, and
methodology for defect detection using HSV based color segmentation and centroid
distance and YOLO models.

3.1 Data Acquisition

Data in the present work were acquired through recording of high-quality videos of
single-layer depositions of three biocompatible materials namely 63C029Cr4Mo4Ti,
Ti6Al4V, and SS 316L by the u-PMAM process using a HDR camera. Following sections
describe details of associated with the data acquisition in the present work.

3.1.1 Selection of Materials

Table 3.1 presents details of the feedstock and base plate materials used for fabricating
single-layer depositions by u-PMAM process.

Table 3.1: Feedstock and base plate materials used in single-layer depositions by p-
PMAM process.

Feedstock material Base plate material
63C029Cr4Mo4Ti Ti6Al4V

Ti6Al4V Ti6Al4V and mild steel
SS 316L Mild steel (MS)

Following are justifications for selection of the feedstock materials. The
63C029Cr4Mo4Ti alloy is known for excellent mechanical strength, corrosion resistance,
wear resistance, and biocompatibility making it particularly useful in biomedical
engineering applications. Following are its main applications: (i) Knee and hip implants,
(if) Customized dental implants, (ii) Biomedical accessories such as plates, screws, and
joining parts, and (iv) Bio-functional coatings due to its improved oxide layer formation
which enhances surface stability. The Ti6Al4V, sometimes also called TC4 or Ti64 , is an
alpha-beta titanium alloy of ASTM Grade 5. Its composition by wt.% is: 5.5-6.75% Al,
3.5-45% V; 0.3% Fe; 0.2%0; 0.08% C; 0.05% N; 0.015%H; and balance Ti. It

has excellent biocompatibility, excellent corrosion resistance to seawater, oxidizing acids
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and rocket propellants, relatively low density and thermal conductivity, high strength and

modulus of elasticity, and good fatigue strength and formability. It is primarily used in

various aerospace applications, orthopaedic implants because it promotes bone
regeneration, and high-temperature components. The SS 316L is an austenitic stainless

steel whose composition by wt.% is: 16-18% Cr; 10-14% Ni; 2-3% Mo; Max. 0.03% C;

and small amounts of manganese, silicon, and other elements. The ‘L’ indicates very less

carbon content. It has excellent resistance to atmospheric corrosion, moderately oxidizing
and reducing environments, chloride-rich environments, good strength and toughness,

even at cryogenic temperatures, good weldability. Its main applications include: (i)

Biomedical devices due to its biocompatibility and resistance to corrosion, (ii) Marine

environments for structural components and equipment exposed to seawater, (iii) Food

processing equipment due to its resistance to corrosion and non-toxicity, (iv) Chemical

and petrochemical industries for equipment handling corrosive chemicals, and (v)

Cryogenic applications due to its ability to maintain strength at very low temperatures.
The received powders of SS 316L and Ti6Al4V were used for their single-layer

depositions whereas powder of 63C029Cr4Mo4Ti was prepared by mixing the procured

powders of Co, Cr, Mo, and Ti in a planetary ball milling machine (Pulverisette 6 from

Fritsch, Germany) in the desired ratio by wt.%. The as received powders had purity of

99.5% and particle size in the range of 45 to 105 um. The mixing was carried out for 20

hours at 250 rpm using tungsten carbide balls of 15 mm diameter and maintaining ball to

powder ratio as 10:1. The powders of 63C029CrdMo4Ti, Ti6Al4V, and SS 316L were de-
moisturized for 2 hours in an oven at 80°C and then were vacuum sealed before their
depositions by u-PMAM process.

3.1.2 Selection of Input Parameters of u-PMAM Process
Performance of the YU-PMAM process depends on its input parameters. These

parameters directly influence the deposition height and width, and consistency of the

depositions. Different combinations of the following input parameters were used during
video recording of the single-layer depositions of the three materials:

e p-plasma power: It is the energy supplied for formation p-plasma arc inside the p-
plasma torch. It affects the time required to melt a feedstock material and form a
cohesive deposition layer. Higher the p-plasma power, lesser is the time needed to
melt a feedstock material.

e Feedstock powder flow rate: It is the rate at which the feedstock material is delivered
to the base plate. It influences height and width of a deposition. It depends on density,

particle size and sticking tendency of the feedstock powder. Its value is restricted by p-
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plasma power i.e., smaller value of p-plasma power does not allow use of larger value
of feedstock powder flow rate.

e Deposition head traverse rate: It is speed at which the deposition head travels over
the base plate. Its value is affected by melting point of the feedstock material and p-
plasma power. Higher melting of the feedstock material and/or smaller value of p-
plasma power necessitates small traverse rate of deposition head and vice-versa. It
affects geometry of a deposition layer and overall deposition quality.

3.1.3 Recording Videos of Single-Layer Depositions
Fig. 3.1 shows the HDR camera (Make: TPS; Model: XVC-1000) mounted on the in-

house built 5-axis CNC machine for u-PMAM process such that it moves along with the

deposition head. This HDR camera was selected for its ability to capture high-resolution
video which enhances the lighting sensitivity. Video recording of the deposition process at

a high image rate made it possible to observe the deposition geometry parameters in real-

time and capture any variations that influence the defects. Following 27 black and white

videos were recorded using the XIRIS software: (i) 15 videos of single-layer depositions of
63C029CrdMo4Ti on Ti6Al4V base plate, (ii) 3 videos of single-layer deposition of

Ti6Al4V on same material base plate and 1 video of its single-layer deposition on MS

base plate and, (iii) 8 videos for single-layer depositions of SS 316L on MS base plate.

Table 3.2 presents details of the recorded videos along with values of p-PMAM process

parameters used in them and number of clearly visible extracted images from each

recorded video.

Fig. 3.1: Photograph of the 5-axis CNC machine of u-PMAM process showing mounting
of the HDR camera for recording videos of single-layer depositions.
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Table 3.2: Details of the recorded videos for single-layer depositions of
63C029Cr4Mo4Ti, Ti6Al4V, and SS 316L along with values of u-PMAM process

parameters used in them and number of extracted images from each recorded video.

Video Feedstock material Substrate p-plasma Deposition head Feedstock Video No. of clearly
No. material current (A) traverse speed powder feed  duration visible extracted
(mm/min) rate (g/min) (s) images
1 63C029CrdMo4Ti  Ti6AI4V 12 40 2.0 66 470
2 12 45 2.0 71 570
3 12 50 3.0 72 410
4 13 40 2.0 70 510
5 13 45 25 48 360
6 13 50 2.0 47 290
7 14 40 25 75 430
8 17 30 25 93 720
9 17 35 3.0 53 300
10 17 45 2.0 73 530
11 175 30 2.0 105 810
12 175 35 25 86 710
13 18 35 2.0 70 520
14 18 40 3.0 76 640
15 18 45 2.0 60 460
1 Ti6AlI4V Ti6Al4V 15 50 1.7 56 430
2 15 55 35 59 510
3 17 50 2.3 80 300
4 Mild steel 15 55 15 60 310
1 SS 316L Mild steel 14 47 1.7 66 600
2 14 50 21 54 480
3 14 53 35 62 490
4 145 47 25 71 640
5 145 53 2.1 62 520
6 15 47 15 69 590
7 15 50 1.7 68 600
8 15 53 1.9 61 520

3.2 Extraction of Images from the Recorded Videos

The algorithm OpenCV was used to extract the images at the rate of 10 images per
second (ips) from a recorded video of a deposition. It starts with opening of the recorded
video file, and finding out its duration and its speed in terms of its ips. Then it computes
the time interval between the two consecutive images i.e., an extraction rate of 10 ips will
extract an image after every 0.1 second. It is followed by saving the extracted images in an
output folder by naming them according to the sequence of their extraction. It ensures that
the files of the extracted images are distinguishable and traceable. Image extraction
process continues till the algorithm extracts all the images of from a recorded video till its
end. Figs. 3.2a and 3.3a depict the clearly visible extracted images for deposition height
and width respectively.
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3.3 Annotation of Extracted Images

The extracted images were segregated and pre-processed by applying the sharpening
kernel and convolutional filter to make them clearly visible. Last column of Table 3.2
presents number of clearly visible extracted images for each recorded video. It is evident
from the last and 2" last column of Table 3.2 that segregation and preprocessing of the
extracted images reduce the number extracted images which are clearly visible as
compared to the product of a recorded video duration and used image extraction rate i.e.,
for the recorded video no. 1, this product is 660 whereas no. of clearly visible extracted
images is 470. 90% of the clearly visible extracted images were used as unannotated
dataset for training and validation. Then these images were annotated using VGG image
annotator which were used as labelled dataset for training and validation and the
remaining 10% images were unannotated which were used in testing of the YOLO
models. Figs. 3.2b and 3.3b depict annotated images for deposition height and width
respectively. Each annotated image was used to compute (or predict) its deposition width,
deposition height, and aspect ratio by hue saturation value (HSV) based color
segmentation and centroid distance approach (or trained YOLO models) for each single-
layer deposition. Subsequently, Origin Pro 2024b software was used to plot the variations
in deposition width, height, and aspect ratio along the deposition length to detect the
deposition defects namely discontinuity, non-uniformity, waviness, under-dilution and
over-dilution in a single-layer deposition.
3.4 Deposition Defect Detection Methodology

Table 3.3 presents the conceptualized noble methodology for detecting different
single-deposition defects in terms of discontinuous, non-uniform, wavy depositions and
their different combinations (i.e., all defective depositions), their opposite combinations
(i.e., all defect-free depositions), and for detecting under-dilution and over-dilution giving
criterial for both their ideal and practical case. For example, in ideal case of uniform
deposition, the deposition width ‘w’ should remain constant along the entire deposition
length ‘7’ (i.e., dw/dl = 0). Similarly, for non-wavy and continuous depositions, change
in deposition height with respect to deposition length should be equal to zero (i.e.,
dh/dl = 0), provided deposition height ‘4’ is non-zero. Achieving such a level of
accuracy in any AM process is not feasible. Therefore, the conceptualized methodology
prescribes different criteria for ideal case and practical case of each defective and non-
defective deposition. Since practical case criteria is of greater significance in solving real
world problems therefore a certain level of relaxation needs to be provided to make

practical defect detection approach realistic. Consequently, a variation zone of £10% and
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+5% is provided in proposed methodology for deposition width and height respectively
i.e., if deposition width is 2 mm, then any variation in deposition width from 1.8 to 2.2
will be considered to be uniform deposition for all the practical purposes. Though, it is
not true for discontinuous deposition because its practical and ideal criteria are same i.e.,
h=0; and/or w=0. Figs. 3.2c and 3.3c illustrate extracted image of discontinuous
deposition and Figs. 3.2d and 3.3d show detection of discontinuous deposition when
deposition width or deposition height become zero respectively.

Table 3.3: Proposed methodology for detecting defects in the single-layer depositions.

Deposition type Deposition defect detection criteria Examples
Ideal case Practical case
Discontinuous h=0;and/orw=0 h=0;and/orw =20
deposition
Continuous non- A # 0; w # 0; and h+ 0; w#0, and
uniform W _ 9 2 < 0.9w;0RZ: > 11w
deposition al
Continuous wavy h =+ 0; w # 0; and h=+0;,w=+ 0 and
" oh oh oh
deposition =#0 =< 0.95h;0R = > 1.05h
Continuous wavy A+ 0; w # 0; h=+0; w# 0;,and
non-uniform dh ow dh oh
deposition E * 0; andﬁ *0 a < 095h, OR E > 1.05h
adw adw
F < 0.9w;, OR o > 11w
Continuous wavy h+ 0; w # 0; h# 0; w=+ 0;and
i oh ow
Zrel;t;j)gtrilon 5 7 0and - =0 % < 0.95h; OR % > 1.05h ;
ow
09w < 3l <1liw
Continuous, non- A+ 0; w # 0; h+0;, w=# 0;

wavyandnon- 9 _ . 0ng M o g g95h <2 < 1.05k; and
uniform ol o o

depositi W pow; 0rR Y > 11
eposition Al X7 =7 Aw

Continuous non- A+ 0; w # 0; h+0;, w=+0;

wavy uniform  0h _ 0w _ - 095n <2 < 1.05k; and

deposition al 0; and al 0 oL

0w < <14

. . W W
Under-dilution Aspect ratio = W < 1.3 Aspectratio = N <11

. . W W
Over-dilution Aspect ratio = W > 1.8 Aspect ratio = N > 2.2

where, ‘w’, ‘h’, and ‘I’ are the width, height, and length of a deposition respectively
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(d)

Fig. 3.2: Processing of a recorded video of single-layer deposition: (a) extracted image

showing deposition height, (b) annotated image for computing deposition height (c)
extracted image of discontinuous deposition, and (d) detection of discontinuity when

deposition height becomes zero.

(d)

Fig. 3.3: Processing of a recorded video of single-layer deposition: (a) extracted image
showing deposition width, (b) annotated image for computing deposition width, (c)
extracted image of discontinuous deposition, and (d) detection of discontinuity when
deposition width becomes zero.
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3.5 Detection of Defects by HSV Segmentation and Centroid Distance

Following two approaches were used to detect the defects in single-layer depositions:
approach-1 using HSV based color segmentation and centroid distance to compute
deposition height, deposition width, and aspect ratio and approach-2 using trained YOLO
models to predict deposition height and deposition width and compute aspect ratio.
Variation in the computed/predicted values along the deposition length were used to detect
discontinuity, non-uniformity, waviness, over-dilution, and under-dilution of the
considered depositions.

The HSV process begins by resizing each annotated image to 830x664 pixels for
better consistency and converting it to HSV color space for better red color segmentation
or to detect the two red reference points as shown in Figs. 3.2b and 3.3b. The HSV color
thresholds helps in finding specific colors in an image and creating the binary masks i.e.,
black and white contrast followed by contour analysis by figuring out shapes and edges in
this contrast. Yellow line and its 2 red color end points were used to indicate the
boundaries of deposition height or width in an annotated image in the present work. Then
centroid of the yellow color line is found and the annotated distance between two red color
boundary points having coordinates as P (x1, y1) and Q (X2, y2) is computed as the
Euclidean distance using Eq. 3.1.

d =(xz = %)% + (v, — y1)? (3.1)
The computed distance is converted into mm using the pixel-to-mm ratio which is

defined as ratio of an image resolution (usually specified in pixels e.g., 1920x1080 pixels)
to camera sensor size (usually given in mm) and is given by EQ.3.2.

, ] Resolution of an image (pixels)
Pixel to mmratio = - (3.2)
Camera sensor size (mm)

For the HDR camera used in the present work, values of pixel-to-mm ratio as 0.0375
and 0.075 were used for deposition height and width respectively. The distance found in
mm is measure of deposition height or width as the case may be. Absence of yellow color
line and presence of only red points is recorded as zero deposition height or width thus
detecting it as discontinuous deposition. Values of deposition height obtained from all the
annotated images from a recorded video are plotted as the function of time. Thereafter,
deposition length is plotted as a function of time by analyzing the series of annotated
images and tracking movements of red points over them for each recorded video. Length
of each single-layer deposition in the present study was 50 mm and pixel to mm ratio of
the HDR camera was callibrated accordingly. Then a graph showing variation in
deposition height as a function of deposition length is constructed by correlating their
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temporal variation graphs. Same procedure was used to construct the graph showing

variation in deposition width as a function of deposition length.
3.6 Detection of Defects by YOLO Models

Detection of deposition defects by YOLO models comprises of two-step process: (i)
preparation of dataset for training, validation, and testing, and (ii) use of the prepared
dataset in training of YOLOV8 and YOLOvV11 models and testing of the trained models.
3.6.1 Preparation of the Dataset

The annotated image and their unannotated versions were segregated into two separate
folders named as ‘labels” and ‘images’ respectively. Each folder contained two subfolders
named as ‘train’ and ‘val” which have 70% image data for training and 20% image data
for validation of the YOLOv8 and YOLOv11 model respectively. Another folder named
as ‘test’ contained the testing data (i.e., unannotated images) for the trained YOLO models
to predict deposition height and width for different single-layer depositions. Table 3.4
provides details of the images used in training, validation, and testing of YOLOvV8 and
YOLOv11 models for different deposition materials. The Yet Another Markup Language
(YAML) file was used for classifying the training data into two classes for detecting
deposition height and discontinuity images. Similarly, training data were classified as
width and discontinuity for detecting deposition width and discontinuity images. This is a
crucial step for defect detection as it takes into account information about the images and
definition of classes.

Table 3.4: Details of the images used in training, validation, and testing of YOLOv8 and
YOLOv11 models for different deposition materials.

Sr. Feedstock material and its No. of images No. of No. of Total
No. deposition geometry used in images used images used number of
parameter training in validation in testing images
1. Height of SS 316L 3529 1045 59 4633
2. Width of 63C029Cr4Mo4Ti 1020 280 72 1372
3. Height of 63C029Cr4Mo4Ti 2961 1085 53 4099
4. Height of Ti6Al4V 1445 415 43 1903

3.6.2 Training and Validation of YOLO Models
Following parameters were used in the training of YOLOvV8 and YOLOv11 models

and their values are presented in Table 3.5:

e Epochs: One epoch indicates a complete reading of the entire training dataset by a
YOLO model therefore number of epochs determines number of times a YOLO model
reads the entire training data. Less number of epochs lead to underfitting (i.e., model is

too simple to learn the underlying patterns in the training data) whereas, large number
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of epochs lead to overfitting (i.e., model learns the training data too well, including
noise and random fluctuations, and fails to generalize to the unseen data).

Batch size: The number of images processed by a YOLO model before its weights are
updated. For example, if batch size is 32 then YOLO model will process 32 images,
computes loss, and update its weights. Smaller batch size leads to more frequent
weight updates and less stability whereas, larger batch size results in lesser number of
weight updates and usage of more memory.

Image resolution: The input resolution of an image (usually in 640 x 640 pixels
format) fed to a YOLO model. Larger image resolution gives better detection of
smaller objects but leads to slower training of a YOLO model whereas, smaller image
resolution captures less details but provides faster training to a YOLO model.
Learning rate: It is the step size used in updating the weights of a YOLO model
based on its training losses. Smaller learning rate leads to a slower training whereas,
higher learning rate results in faster training of a YOLO model with no convergence
during or at the end of the training.

Momentum: It indicates the acceleration used in gradient descent by considering past
gradients while updating weights of a YOLO model. It helps to avoid oscillation and
speeds up the convergence. Its value is usually between 0.8 and 0.999.

Weight decay: It is a regularization parameter that penalizes large weights by adding
their squared values to the loss function. It prevents overfitting by constraining

complexity of a YOLO model.

Table 3.5: Parameters used in the training of YOLOv8 and YOLOv11 models.

Parameters Values
Epochs 50
Batch size 16
Image resolution 640
Learning rate 0.003
Momentum 0.94
Weight decay 0.0005

3.6.3 Concept of the Confusion Matrix

Confusion matrix is a performance evaluation tool for a YOLO model which is very

useful for the classification problems. Fig. 3.4 depicts its concept. A confusion matrix

consists of 4 quadrants and allocation of the dataset to these quadrants depends on the

match between the predictions and labels. Positive and negative are the two classes, for

example in the present work, deposition height and width are taken as the positive class
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and discontinuity is taken as the negative class. If a positive class is predicted for a
labelled negative class (i.e., height or width is predicted for discontinuity) implying false
indication of a positive class therefore it is referred to as false positive (FP) and it is
located in the 1% quadrant of the confusion matrix. If a positive class is predicted for a
labelled positive class (i.e., height or width is predicted for height or width) then it is
called as true positive (TP) and it is in the 2" quadrant of the confusion matrix. If a
negative class is predicted for a labelled positive class (i.e., discontinuity is predicted for
height or width) then it gives a false indication of negative class therefore it is referred to
as false negative (FN) and is located in 3™ quadrant of the confusion matrix. If a negative
class is predicted for a labelled negative class i.e., discontinuity is predicted for
discontinuity, it is referred to as true negative (TN) and it is in 4" quadrant of the

confusion matrix.

E= True Positive False Positive
2 (TP) (FP)
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Fig. 3.4: Concept of a confusion matrix used in performance evaluation of a YOLO
model.
3.6.4 Performance of the Trained YOLO Models
Following parameters were used to evaluate performance of a YOLO model:
e Accuracy: It indicates proportion of the correct predictions by a YOLO model. It is
the ratio of sum of true positives and true negatives to the sum of true positives, true

negatives, false positives, and false negatives.

TP+TN
TP+TN+ FP+FN

Accuracy = (3.3)
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e Precision: It measures the proportion of positive identifications that are actually
correct. It is defined as the ratio of true positives to the sum of true positives and false

positives.

procision — 1T
recision = TP + FP

e Recall: It is also known as true positive rate (TPR) or sensitivity. It expresses how

(3.4)

many actual positive instances identified by a YOLO model correctly as positive or it
shows how well a YOLO model can identify all positive cases. It is expressed as the

ratio of true positives to the sum of true positives and false negatives.

TP

Recall = TP+—F1V (35)

e F1 score: It is also called balanced F-score or F-measure. It is the most commonly
used performance evaluation criterion of a classification model especially while
dealing with the imbalanced datasets (i.e., where the difference between the dataset of
positive and negative class is very high). It is expressed as the harmonic mean of
precision and recall thus combining the two important evaluation criteria helping it to
give a more comprehensive picture of a YOLO model accuracy.

F1s B 2 x Precision x Recall 16
core = Precision + Recall (3:6)

3.6.5 Testing of the Trained YOLO Models
The trained YOLO models were tested using only unannotated images of a single-layer

deposition video (i.e., 10% of clearly visible extracted images) to predict image-wise
deposition height and width. The testing process starts with a trained YOLO model
accessing the file containing the trained weights for deposition height and width and
processing the unannotated images from a folder named as ‘est’. Then the trained YOLO
model detects the objects (i.e., deposition height or width), encloses each detected object
in a green colour bounding box, predicts deposition height (or width) in pixels, and
converts them to mm using pixel-to-mm a conversion factor of 0.0375 for deposition
height and 0.075 for deposition width. The predicted value of deposition height (or width)
is displayed in red colour text and place above the green colour bounding box. Each output
image containing the bounding box and predicted value of deposition height (or width), is
saved in a separate folder for further analysis. The predicted values of deposition height
(or width) are plotted as the function of time and deposition length is also plotted as a
function of time by analyzing the series of unannotated images. Then a graph showing
variation in deposition height (or width) as a function of deposition length is constructed
by correlating their temporal variation graphs.
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This chapter presented details of data acquisition for the present work through high
quality recording of videos of single-layer depositions of 63C029Cr4Mo4Ti, Ti6Al4V,
and SS 316L by p-PMAM process using HDR camera. It also presented details of
extraction of images from each recorded video, annotation of clearly visible extracted
images, deposition defect detection methodology, and defect detection using HSV based
color segmentation and centroid distance and YOLO models. The next chapter provides
the results and discussion of this research work by describing the analysis of the
deposition defects detected by HSV segmentation and centroid distance and the trained
YOLO models in single-layer depositions of 63C029Cr4Mo4Ti, Ti6Al4V, and SS 316L
alloys. It also provides comparison of the ranges for deposition height, deposition width,
and aspect ratio identified by HSV-based approach and the trained YOLO models and p-
PMAM process parameters identified by HSV-based approach for continuous, uniform,

and non-wavy depositions of the considered materials.
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Chapter 4
Results and Discussion

This chapter provides the results and discussion of this research work by describing the
analysis of the deposition defects detected by HSV segmentation and centroid distance and
the trained YOLO models in single-layer depositions of 63C029Cr4Mo4Ti, Ti6Al4V, and
SS 316L alloys. It also provides comparison of the ranges for deposition height, deposition
width, and aspect ratio identified by HSV-based approach and the trained YOLO models
and n-PMAM process parameters identified by HSV-based approach for continuous,
uniform, and non-wavy depositions of the considered materials.

4.1 Results for Single-Layer Depositions

This section presents the results and their analyses for defect detection in u-PMAM
process fabricated fifteen single-layer depositions of 63C029Cr4Mo4Ti, four single-layer
depositions of Ti6AI4V, and eight single-layer depositions of SS 316L. Discontinuity,
non-uniformity, waviness, under-dilution and over-dilution have been detected using HSV
colour segmentation and centroid distance-based approach and YOLO models-based
approach by plotting variations in computed and predicted values of deposition height,
deposition width, and aspect ratio along the deposition length. Following paragraphs

describe these results.

4.1 Analysis of Defects in 63C029Cr4Mo4Ti Depositions
15 videos were used for the analysis of defects in single-layer depositions of 63Co-

29Cr-4Mo-4Ti. There were 2 approaches which were employed for the detection of
defects: HSV segmentation and centroid distance, and YOLO model approach.
4.1.1 Detection of Defects by HSV Segmentation Method

Fig. 4.1 present graphs for detection of non-uniform deposition through unacceptable
variation in deposition width (i.e., beyond the upper and the lower bound values of 1.38
and 1.13 mm respectively) in single-layer deposition of 63C029Cr4Mo4Ti for 17A pu-
plasma current (Fig. 4.1a) along with photographs of the obtained depositions for
deposition head traverse speed of 30 mm/min (Fig. 4.1b), and 35 mm/min (Fig. 4.1c).
Whereas, Fig. 4.2. shows detection of wavy deposition through unacceptable variations in
63C029Cr4Mo4Ti single-layer depositions for different values of deposition head traverse
speed and for p-plasma current of 12A (Fig. 4.2a), 13A (Fig. 4.2b), 18A (Fig. 4.2b), 17.5A
(Fig. 4.2d), and 14A and 17A for deposition head traverse speed of 40 and 45 mm/min
(Fig. 4.2e).

33



= 30 mm/min

225+ * 35 mm/min
200{ *
Ll

1754 Non-Uniform Deposition

1.50 4 M L] 9 - 1.38 mm
£ e T T e =
E:.zs-_ T e o
g 1.004 e 1.13 mm

0.754 Non-Uniform Deposition

0.50

0254

0.00 . . : . J

0 10 20 30 40 50
Length (mm)

(@)

(b)

Fig. 4.1: (a) Detection of non-uniform deposition through unacceptable variation in
deposition width in 63C029Cr4Mo4Ti single-layer deposition for 17A p-plasma current,
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Fig. 4.2. Detection of wavy deposition through unacceptable variation in deposition

height in 63C029Cr4Mo4Ti single-layer depositions for different values of deposition

head traverse speed and for p-plasma current of (a) 12A, (b) 13A, (c) 18A, (d) 17.5A, and

(e) 14A and 17A for deposition head traverse speed of 40 and 45 mm/min.

Following are the observations for detection of non-uniformity caused by variation in

deposition width beyond its lower and upper bound values of 1.13 and 1.38 mm as shown

in Fig. 4.1 and detection of waviness due to variation in deposition height beyond its lower

and upper bound values of 0.95 and 1.05 mm as shown in Fig. 4.2:

Traverse speed of deposition head of 30 mm/min gives more uniform deposition of
63C029Cr4Mo4Ti than the deposition corresponding to 35 mm/min. It is confirmed by
the corresponding deposition photographs shown in Figs. 4.1b and 4.1c. It happens
because smaller traverse speed of deposition head allows the p-plasma arc spending
more interaction time with the feedstock material which results in its better melting
and solidification thus giving more uniform deposition.

Occurrence of discontinuities are observed at start of a deposition i.e., 5 mm
deposition length for 17.5A p-plasma current and 30 mm/min deposition head traverse
speed (Fig. 4.2d), at 10 mm deposition length for 17A p-plasma current and 35
mm/min traverse speed of deposition head (Fig 4.1a), and also towards the end of
deposition i.e., at 40 mm deposition length for 12A p-plasma current and 40 mm/min
deposition head traverse speed (Fig. 4.2a), at 45 mm deposition length for 18A u-
plasma current and 45 mm/min deposition head traverse speed (Fig. 4.2c), and during
40-45 mm deposition length for 17A p-plasma current and 45 mm/min deposition head
traverse speed (Fig. 4.2e). It implies that proper p-plasma arc is not formed at the start
and end of single-layer depositions which may be due to (a) interrupted powder supply

of feedstock material, (b) use of randomly selected process parameters, and (c) use of
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dissimilar materials for feedstock and base plate. Difference in their properties cause
poor metallurgical bonding between them.

e Most of the depositions are wavy for majority of their deposition length as evident
form Figs. 4.2a to 4.2e. It is due to very small value of deposition height obtained in
single-layer depositions of 63C029Cr4Mo4Ti alloy which has some high melting point
constituents such as Cr and Mo which cause uneven depositions.

e Waviness decreases with an increase in deposition head traverse speed for smaller p-
plasma current (Fig. 4.2a) but this trend reverses for higher p-plasma current as shown
in Figs. 4.2c 4.2b for p-plasma current of 18A and 13A respectively.

4.1.2 Defects Detected by YOLO Models
Fig. 4.3 depicts the confusion matrix used for detection of deposition width and

discontinuity images and for detection of deposition height and discontinuity images by

the YOLOvV8 model (Figs. 4.3a and 4.3b) and YOLOvV11 (Figs. 4.3c and 4.3d) models.
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Fig. 4.3: Confusion matrix to detect deposition width and discontinuity images and
deposition height and discontinuity images by (a, b) YOLOvVS, and (c, d) YOLOv11.
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Confusion matrix evaluates performance of a YOLO model on the basis of number of
true positives, true negatives, false positives, and false negatives shown in its four
quadrants. As the number of images in a quadrant increase, its color intensity also
increases. It can be observed from Fig. 4.3 that both YOLOv8 and YOLOv11 models give
much higher number of true positives for detecting both deposition width and
discontinuity images and deposition height and discontinuity images. This proves their
prediction capabilities. It can also be seen that the YOLOv11 model gives higher number
of true positives for predicting both deposition width and deposition height (i.e., 1015 and
3584 images) than that given by the YOLOvV8 model (i.e., 942 and 3178 images). This
clearly indicates superior prediction performance of YOLOv11 than YOLOv8 model.
4.1.2.1 Performance of the Trained YOLO Models

Fig. 4.4 presents the bar diagrams showing comparison of four performance parameters
namely accuracy, precision, recall, and F1 score for YOLOv8 and YOLOv11 models for
the dataset of deposition width (Fig. 4.4a) and deposition height (Fig. 4.4b) of
63C029Cr4Mo4Ti single-layer depositions. It is evident from Fig. 4.4 that the trained
YOLOv11l model has higher values accuracy, precision, recall, and F1 score for the
deposition width dataset (i.e., 86%; 88%; 96%; and 92% respectively) and deposition
height dataset (i.e., 93%; 93%; 98%; and 95% respectively) of 63C029Cr4Mo4Ti single-
layer depositions than those corresponding to the trained YOLOv8 model (i.e., 80%; 82%;
94%; and 88% respectively for deposition width dataset and 85%; 89%; 94%; and 91%
respectively for deposition height dataset). It proves superiority of YOLOv11 model than

YOLOvV8 model in the training performance.
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Fig. 4.4: Comparison of accuracy, precision, recall, and F1 score for YOLOv8 and
YOLOv11 for 63C029Cr4Mo4Ti single-layer deposition dataset for its (a) deposition
width, and (b) deposition height.

4.1.2.2 Detection of Defects by the YOLO Models

Fig. 4.5 depicts detection of non-uniform deposition by YOLOvV8 and YOLOv1l
models through variation in predicted width for 63C029Cr4Mo4Ti single-layer deposition
along with computed width by HSV segmentation method. Fig. 4.6 shows photograph of
an extracted image for deposition width of 63C029Cr4Mo4Ti single-layer deposition at

54" second (Fig. 4.6a) and the width bounded by YOLOv8 model (Fig. 4.6b), and
YOLOv11 model (Fig. 4.6c).
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Fig. 4.5: Detection of non-uniform deposition by YOLOv8 and YOLOv11 models through
variation in predicted width for 63C029Cr4Mo4Ti single-layer deposition along with
computed width by HSV segmentation method.
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Fig. 4.6: (a) Photograph of an extracted image for deposition width of 63C029Cr4Mo4Ti
single-layer deposition at 54" second and the width bounded by (b) YOLOv8 model, and
(c) YOLOv11 model.

The set of parameters that are used for predicting width are 17A current and 30
mm/min traverse speed. The upper and the lower bounds for predicted width of
63C029Crd4Mo4Ti are 1.29 mm and 1.06 mm respectively. Width predictions generated
using YOLOV8 and YOLOv11 at 54™ sec are 1.12 mm and 1.20 mm respectively as
shown in Fig. 4.6.

Fig. 4.7 depicts the detection of wavy deposition by YOLOV8, and YOLOv11 models
through variation in predicted height for 63C029Cr4Mo4Ti single-layer deposition height
along with computed height by HSV segmentation method. Fig. 4.8 shows the (a)
Photograph of (a) extracted image for deposition height of SS 316L single-layer
deposition at 17" second (Fig. 4.8a) and the height bounded by (b) YOLOv8 model (Fig.
4.8b), and (c) YOLOv11 model (Fig. 4.8c).
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Fig. 4.7: Detection of wavy deposition by YOLOv8, and YOLOv11 models through
variation in predicted height for 63C029Cr4Mo4Ti single-layer deposition height along
with computed height by HSV segmentation method.
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Fig. 4.8: (a) Photograph of an extracted image for deposition height of SS 316L single-
layer deposition at 17" second and the height bounded by (b) YOLOv8 model, and (c)
YOLOvV11 model.

The set of parameters that are used for these predictions are 17A Current and 45
mm/min Traverse Speed. The upper and the lower bounds for predicted width of
63C029Cr4dMo4Ti are 1.47 mm and 1.33 mm respectively. Height predictions generated
using YOLOV8 and YOLOv11 at 17" sec are 1.69 mm and 1.50 mm respectively as
shown in fig. 4.8.

4.2 Analysis of Defects in Ti6Al4V Depositions

4 videos were used for the analysis of defects in single-layer depositions of Ti6AI4V.
There were 2 approaches which were employed for the detection of defects: HSV
segmentation and centroid distance, and YOLO model approach.

4.2.1 Defects Detected by HSV Segmentation and Centroid Distance

Fig. 4.9. shows graphical representation for variation in deposition height along

deposition length in single-layer depositions of Ti6Al4V for different set of process

parameters.
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Fig. 4.9: Graphical representation for variations in deposition height along deposition

length in single-layer depositions of Ti6Al4V for different set of process parameters.

Following are the observations for graphical representation for variation in deposition

height along deposition length in single-layer depositions of Ti6Al4V for different set of

process parameters as shown in Fig. 4.9:

Occurrence of discontinuity is observed at 20 mm length at 15A p-plasma current
and 50 mm/min deposition head traverse speed. It can be noted that, it is found in
the middle of the deposition. The possible causes for this could be (a)interrupted
powder supply of the feedstock material (b) use of randomly selected process
parameters.

Due to lack of geometrical consistency, it was not possible to assign any height
range for Ti6AI4V depositions. The reasons for this could be (a) random selection
of process parameters i.e., unoptimized parameters.

Maximum variation in deposition height is observed at 15A p-plasma current and
50 mm/min deposition head traverse speed on Ti6Al4V substrate and 15A p-plasma
current and 55 mm/min deposition head traverse speed on mild steel substrate. (a)
Higher p-plasma current and traverse speed of deposition head might have led to
spreading of the powder which caused this unevenness in the deposition. (b)
Dissimilar materials could have caused less interaction and led to poor
metallurgical bonding between the material and the substrate.

Minimum variation in deposition height is observed at 15A p-plasma current and
55 mm/min deposition head traverse speed on Ti6Al4V substrate. The probable

causes for this could be (a) Use of similar materials for feedstock and base plate.
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Similarity in their properties give proper interaction time which leads to good
metallurgical bonding between them.
4.2.2 Defects Detected by YOLO Models
Fig. 4.10 depicts the confusion matrix used for detection of deposition height and
discontinuity images by the YOLOv8 model (Fig. 4.10a) and YOLOv11l model (Fig.
4.10b) models.
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Fig. 4.10: Confusion matrix for detection of height and discontinuity images through (a)
YOLOv8 and (b) YOLOvV11.

It can be observed from Fig. 4.10 that both YOLOV8 and YOLOv11 models give much
higher number of true positives for detecting deposition height and discontinuity images.
This proves their prediction capabilities. It can also be seen that the YOLOv11l model
gives higher number of true positives and true negatives for predicting deposition height
(i.e., 1179, 281 images) than given by the YOLOv8 model (i.e., 1088, 305 images). This
clearly indicates superior prediction performance of YOLOv11 than YOLOv8 model.
4.2.2.1 Performance of the Trained YOLO Models

Fig. 4.11 presents the bar diagrams showing comparison of four performance
parameters namely accuracy, precision, recall, and F1 score for YOLOv8 and YOLOv11

models for the dataset of deposition height of Ti6AI4V single-layer depositions.
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Fig. 4.11: Comparison of accuracy, precision, recall, and F1 score for YOLOvVS8 and
YOLOv11.

It is evident from Fig. 4.11 that the trained YOLOv1l model has higher values
accuracy, precision, recall, and F1 score for the deposition height dataset (i.e., 78%; 77%;
94%; and 85% respectively) of Ti6Al4V single-layer depositions than the trained
YOLOv8 model (i.e., 72%; 68%; 98%; and 80%) respectively for deposition height
dataset. It proves superiority of YOLOv11l model than YOLOv8 model in the training
performance.

Similar observation in recall was made by Sharma et al. (2024). They found that the
recall value for YOLOVS is greater than YOLOv11. They investigated the comparative
performance of speed and accuracy for YOLOv8, YOLOvV9, YOLOv10, YOLOv11 and
faster R-CNN algorithms. They found that large dataset could be a cause for this reverse
trend in recall performance metric.
4.2.2.2 Detection of defects by the YOLO Models

Fig. 4.12 depicts the detection of waviness through annotated and predicted variation in
deposition height along deposition length of Ti6AI4V single-layer depositions using HSV
segmentation and centroid distance, YOLOv8, and YOLOv1l. Fig 4.13 depicts the
photograph of (a) extracted image for deposition height of Ti6Al4V single-layer
deposition at 21% second (Fig. 4.13a) and the height bounded by (b) YOLOvV8 model (Fig.
4.13b), and (c) YOLOv11 model (Fig. 4.13c).
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Fig. 4.12: Detection of waviness through annotated and predicted variation in deposition
height along deposition length in single-layer depositions of Ti6AlI4V using HSV

segmentation and centroid distance, YOLOvV8, and YOLOv11.

c)

Fig. 4.13: Photograph of (a) extracted image for deposition height of Ti6AI4V single-
layer deposition at 21% second and the height bounded by (b) YOLOv8 model, and (c)
YOLOvV11 model.

The set of parameters that are used for predicting height are 15A current and 50
mm/min traverse speed. Height predictions generated using YOLOv8 and YOLOv11 at
21t sec are 4.76 mm and 4.99 mm respectively as shown in fig. 4.13.

4.3 Analysis of defects in SS 316L depositions

8 videos were used for the analysis of defects in single-layer depositions of SS 316L.

There were 2 approaches which were employed for the detection of defects: HSV

segmentation and centroid distance, and YOLO model approach.
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4.3.1 Defects detected by HSV segmentation and centroid distance

Fig. 4.14. depicts the detection of wavy

deposition through unacceptable variation in

deposition height in SS 316L single-layer depositions for different values of deposition
head traverse speed and for p-plasma current of (a) 14A, (b) 14.5A, and(c) 15A. Fig. 4.15

shows the detection of non-uniform deposition through unacceptable variation in

deposition width in SS 316L single-layer deposition for different values of deposition head
traverse speed and for p-plasma current of (a) 14A, (b) 14.5A, and(c) 15A.
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Fig. 4.14: Detection of wavy deposition through unacceptable variation in deposition height

in SS 316L single-layer depositions for different values of deposition head traverse speed
and for p-plasma current of (a) 14A, (b) 14.5A, and(c) 15A.
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Fig. 4.15: Detection of non-uniform deposition through unacceptable variation in
deposition width in SS 316L single-layer deposition for different values of deposition head
traverse speed and for p-plasma current of (a) 14A, (b) 14.5A, and(c) 15A.
Following are the observations for detection of waviness due to variation in deposition
height beyond its lower and upper bound values of 2.14 and 2.36 mm as shown in Fig.
4.14 and
e At 14A and 14.5A current, deposition profile became more continuous with the
increase in traverse speed as shown [fig. 4.14a, fig 4.14b]. Continuous deposition with
least waviness was observed at 14.5A Current and 53 mm/min traverse speed as shown
in fig. 4.14c.

e At 15A current, discontinuities were observed along with high waviness at 47 (at 20

mm length) and 50 mm/min (25 mm length). It implies that proper p-plasma arc is not

formed in the mid-deposition of single-layer depositions which may be due to (a)

interrupted powder supply of feedstock material, (b) use of randomly selected process
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parameters, and (c) use of dissimilar materials for feedstock and base plate. Difference
in their properties cause poor metallurgical bonding between them.

e Trends clearly show that low current (14A) with moderate to high traverse speed (50
mm/min, 53 mm/min) and, high current (14.5A, 15A) with high traverse speed (53
mm/min) is essential for non-wavy depositions of SS 316L.

Post-deposition measurement of width for SS 316L depositions was done using digital
vernier. Following are the observations for detection of non-uniformity caused by variation
in deposition width beyond its lower and upper bound values of 3.83 and 4.68 mm as
shown in Fig. 4.15:

e Depositions with least non uniform nature was observed for 14A current and 53
mm/min traverse speed (fig. 4.15a), and 15A current and 53 mm/min traverse speed
(fig. 4.15c). At 14.5A current, uniformity is observed for lower traverse speed (47
mm/min) (fig. 4.15b). All currents (14A, 14.5A and 15A) with high traverse speed (53
mm/min) gave comparatively uniform depositions. These trends are supported by
investigation of Kotoban et al. (2017). They found that low traverse speed causes
increased particle erosion, low deposition efficiency, excessive heat input, deposition
defects whereas high traverse speed gives reduced erosion, higher deposition
efficiency, and improved deposition quality.

Table 4.1 shows the dataset used for computation of aspect ratio variations for different
combinations of p-plasma current and deposition head traverse speed. Fig. 4.16. shows
graphical representation of variations in aspect ratio of single-layer depositions of SS
316L (a) along deposition length for three values of p-plasma current, (b) along deposition
length for the entire dataset of Table 4.1, and (c) along deposition length for different
combinations of p-plasma current and deposition head traverse speed.

Table 4.1: Dataset used to compute variations in aspect ratio of single-layer
depositions of SS 316L for different combinations of p-plasma current and deposition
head traverse speed.

p-plasma current (A) and deposition head traverse speed (mm/min.)

Data pointno. 1 2 3 4 5 6 7 8
Deposition 14/47  14/50 14/53  14.5/47 14.5/53 15/47 15/50  15/53
length (mm)

5 1.9 1.8 1.4 2.2 2.4 2 2 2
10 1.1 1.6 1.3 1.9 1.6 1.8 1.3 1.5
15 1.5 1.9 1.4 1.3 1.6 1.5 1.3 1.7
20 1.8 1.7 1.8 1.2 1.9 1.8 1.5 1.6
25 1.9 1.7 1.8 1.9 1.6 1.8 1.7 1.7
30 1.9 1.9 1.9 1.9 1.6 1.8 1.9 1.6
35 1.8 2.1 1.8 1.8 1.7 2 1.7 1.7
40 2 1.9 2 2 1.7 1.9 1.8 1.8

45 1.7 2.2 1.7 1.9 2 1.6 2.1 1.8
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Fig. 4.16: Graphical representation of variations in aspect ratio of single-layer depositions
of SS 316L (a) along deposition length for three values of p-plasma current, (b) along
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deposition length for the entire dataset of Table 4.1, and (c) along deposition length for
different combinations of p-plasma current and deposition head traverse speed.
Aspect ratio was calculated by dividing the width measured post-deposition with the
height computed through HSV segmentation and centroid distance. Confidence level of

95% (z=1.96) was assumed to calculate the aspect ratios.

Width Computed through Ex—Situ Measurement

Aspect Ratio = (4.1)

Height Calculated using VGG Annotator

The dotted bounding boxes in fig. 4.16b and fig. 4.16¢ show that variation in aspect
ratio is minimum as compared to other points in the graph. So, for fig. 4.16a, it is found
that at 14A current, variation in aspect ratio is minimum at the middle of the deposition
and at the end. It is found that for 14.5A current, variation in aspect ratio is lowest at a
single point. It is found that for 15A current, variation in aspect ratio is least in the middle
and at ends. So, for fig. 4.16b, it is found that aspect ratio variation is comparatively less
for almost latter half of the deposition length. So, from fig. 4.16c, it is evident that
variation in aspect ratio is minimum at random points.

Fig. 4.17 shows the detection of under-dilution and over-dilution through variation in

aspect along deposition length of SS 316L single-layer depositions for a p-plasma current

of (a)14A; (b) 14.5A; and (c) 15A.
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Fig. 4.17: Detection of under-dilution and over-dilution using the variation in aspect ratio
along the deposition length of SS 316L single-layer depositions for a p-plasma current of
(@)14A, (b) 14.5A, and (c) 15A.

The upper and the lower bounds for aspect ratio computed using HSV segmentation
and centroid distance for SS 316L are 2.2 and 1.6 respectively as show in Fig. 4.17.
4.3.2 Defects Detected by YOLO Models

Fig. 4.18. depicts the confusion matrix used for detection of deposition height and
discontinuity images by the YOLOv8 model (Fig. 4.18a) and YOLOv11l model (Fig.
4.18b) models.
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Fig. 4.18: Confusion matrix for detection of height and discontinuity images through (a)
YOLOvV8 and (b) YOLOV11.
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It can be observed from Fig. 4.18 that both YOLOvV8 and YOLOv11 models give much
higher number of true positives for detecting deposition height and discontinuity images.
This proves their prediction capabilities. It can also be seen that the YOLOv11 model
gives higher number of true positives and true negatives for predicting deposition height
(i.e., 3371, 675 images) than given by the YOLOv8 model (i.e., 3525, 714 images). This
clearly indicates superior prediction performance of YOLOv11 than YOLOv8 model.

4.3.2.1 Performance of the Trained YOLO Models

Fig. 4.19 presents the bar diagrams showing comparison of four performance
parameters namely accuracy, precision, recall, and F1 score for YOLOv8 and YOLOv11

models for the dataset of deposition height of SS 316L single-layer depositions.

10 "-_mLovs 0.97
BN YOLOVIL 095 0.94

0.87

Accuracy Precision Recall F1 Score

Fig. 4.19: Comparison of Accuracy, Precision, Recall, and F1 Score for YOLOvV8 and
YOLOv11.

It is evident from Fig. 4.19 that the trained YOLOv11l model has higher values
accuracy, precision, recall, and F1 score for the deposition height dataset (i.e., 91%; 97%;
92%; and 94% respectively) of Ti6Al4V single-layer depositions than the trained
YOLOV8 model (i.e., 87%; 89%; 95%; and 92%) respectively for deposition height
dataset. It proves superiority of YOLOv11l model than YOLOv8 model in the training
performance.

But, a reverse trend in recall metric is observed. Similar observation in recall metric
was made by Sharma et al. (2024). They found that the recall value for YOLOVS is
greater than YOLOv11. They investigated the comparative performance of speed and
accuracy for YOLOv8, YOLOV9, YOLOv10, YOLOv11 and faster R-CNN algorithms.
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They found that large dataset could be a cause for this reverse trend in recall performance
metric.
4.3.2.2 Detection of defects by the YOLO Models

Fig. 4.20 depicts the detection of waviness, under-dilution and over-dilution through
variation in deposition height and aspect along deposition length of SS 316L single-layer
depositions using HSV segmentation and centroid distance, YOLOvVS8, and YOLOvV11. Fig
4.21 depicts the photograph of (a) extracted image for deposition height of SS 316L
single-layer deposition at 44" second (Fig. 4.21a) and the height bounded by (b) YOLOVS
model (Fig. 4.21b), and (c¢) YOLOv11 model (Fig. 4.21c).
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Fig. 4.20: Detection of waviness, under-dilution, and over-dilution through variation in
deposition height and aspect along deposition length of SS 316L single-layer depositions
using HSV segmentation and centroid distance, YOLOvVS, and YOLOv11.

Fig. 4.21: Photograph of (a) extracted image for deposition height of SS 316L single-layer
deposition at 44" second and the height bounded by (b) YOLOv8 model, and (c)

YOLOv11 model.
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The upper and the lower bounds for height of SS 316L are 2.89 mm and 2.62 mm
respectively. The upper and the lower bounds for aspect ratio of SS 316L are 1.8 mm and
1.3 mm respectively. The set of parameters that are used for these predictions are 15A p-
plasma current and 47 mm/min traverse speed. Height predictions generated using
YOLOvV8 and YOLOvV11 at 44" sec are 3.82 mm and 3.86 mm respectively as shown in
fig. 4.21.

4.5 Comparison of Identified Process Parameters and Deposition
Geometry Ranges by HSV and YOLO Models

Table 4.2 presents comparison of ranges for deposition width, deposition height, and
aspect ratio identified by HSV and centroid distance-based approach and YOLO models
for single-layer depositions of SS 316L and 63C029Cr4Mo4Ti along with p-PMAM
process parameters identified HSV and centroid distance-based approach for their
continuous and non-wavy, and uniform depositions.

Table 4.2: HSV and YOLO models identified ranges for deposition geometry parameters
for SS 316L and 63C029Cr4Mo4Ti single-layer depositions and along with p-PMAM
process parameters identified by HSV approach for their continuous and non-wavy, and
uniform depositions.

Feedstock Defect Identified Identified Identified Identified parameters of u-PMAM
material detection range for range for range for process

approach — width  height  aspect -plasma Deposition p-plasma Deposition
ratio current head traverse current head traverse

(A) speed (A) speed
(mm/min) (mm/min)
SS 316L HSV and 3.83-4.68 2.14-2.36 1.6-2.2 For non-wavy and For uniform
centroid continuous deposition deposition
distance- 14.5 53 14.5 53
based
approach
YOLO 3.83-4.68 2.62-2.89 1.3-1.8 NA NA NA NA
models
63C029Cr4Mo4Ti HSVand 1.13-1.38 0.95-1.05 1.1-1.5 For non-wavy and For uniform
centroid continuous deposition deposition
distance- 13 45 17 30
based 14 20
approach
YOLO 1.06-1.29 1.33-1.47 0.7-1.0 NA NA NA NA
models

This chapter presented the results and discussion of this research work by describing
the analysis of the deposition defects detected by HSV segmentation and centroid distance
and the trained YOLO models in single-layer depositions of SS 316L, Ti6Al4V, and
63C029Cr4Mo4Ti alloys. It also provides comparison of the ranges for deposition height,
deposition width, and aspect ratio identified by HSV-based approach and the trained
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YOLO models and p-PMAM process parameters identified by HSV-based approach for
continuous, uniform, and non-wavy depositions of the considered materials. The next
chapter will summarize the outcome of the present research by presenting its significant

achievements, conclusions, and some directions for the future work.
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Chapter 5

Conclusions and Scope for Future Work

This chapter summarizes the outcome of the present research by presenting its

significant achievements, conclusions, and some directions for the future work.

5.1 Significant Achievements

Significant achievements of the present work that are worth mentioning include:

Implementation of computer vision techniques, specifically using HSV segmentation
and centroid distance, YOLOvV8, and YOLOvV11 for real-time defect detection in the p-
PMAM process.

Detection and classification of key deposition defects such as discontinuity, waviness,
non-uniformity, under-dilution, and over-dilution using HSV segmentation and
centroid distance.

Detection and classification of key deposition defects such as waviness, non-
uniformity, under-dilution, and over-dilution using YOLOv8 and YOLOv1l1.
Prediction of deposition width and deposition height using YOLOv8 and YOLOv11.
Computation of width, height, and aspect ratio ranges using HSV segmentation and
centroid distance, YOLOVS8, and YOLOv11 for single-layer depositions of SS 316L
and 63C029Cr4MoA4Ti.

5.2 Conclusions

Comparative analysis across SS 316L, 63C029Cr4Mo4Ti, and Ti6Al4V materials
provided valuable insights into process parameters for uniform and continuous
depositions. In case of Ti6Al4V, as the deposition height lacked consistency, it was
not possible to assign any range for it.

Trends clearly show that low p-plasma current (14A) with moderate to high traverse
speed (50 mm/min, 53 mm/min) and, high p-plasma current (14.5A, 15A) with high
traverse speed (53 mm/min) of deposition head is essential for non-wavy depositions
of SS 316L. All currents (14A, 14.5A and 15A) with high deposition head traverse
speed (53 mm/min) gave comparatively uniform depositions.

Low p-plasma current and high deposition head traverse speed are essential for
uniform 63C029Cr4Mo4Ti depositions. Upon increasing the current, low to moderate

deposition head traverse speed parameters yielded non- wavy 63C029Cr4Mo4Ti
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depositions. So, it can be concluded that low to moderate deposition head traverse
speed is essential for fabricating 63C029Cr4Mo4Ti non- wavy depositions.

Highest accuracy was obtained for height detection of 63C029Cr4Mo4Ti material
(93%) using YOLOvV11. Highest precision was achieved for height detection of SS
316L material (97%) on YOLOV11. Highest recall was obtained for height detection of
Ti6Al4V material (98%) using YOLOV11 and height detection of 63C029Cr4Mo4Ti
material (98%) on YOLOVS. Highest F1 score was achieved for height detection of
63C029Cr4Mo4Ti material (95%) through YOLOv11.

5.3 Scope for Future Work

This research can be taken further to study various defects that occur between the
layers and, between layer and substrate for multi-layer and multi-track depositions.

For single-layer depositions, this study can be extended to different kinds of materials
deposited using additive manufacturing processes.

The scope of defect detection can also be broadened to different defects such as
surface roughness and delamination.

Different models such as R-CNN can be used to train the dataset to analyze the
depositions.

A digital twin system can be developed by integrating the defect detection system with
the parameter optimization techniques. Currently, it is in the digital shadow phase of

development.
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