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Abstract 

Deposition defects such as discontinuity, non-uniformity, waviness, under-dilution, 

over-dilution, porosity, balling, spattering, and poor surface quality in the metal additive 

manufacturing (MAM) processes significantly influence properties and performance of the 

fabricated product. Waviness and non-uniformity are characterized by unacceptable 

variations in deposition height and width respectively along the deposition length. The 

deposition defects reduce strength, toughness, fatigue life, and wear resistance thus making 

the product unsuitable for the intended application. They lead to metrological inaccuracies 

in the final product and can even lead to rejection of the entire thus necessitates their 

expensive post-processing. Therefore, real-time detection and elimination or minimization 

of the deposition defects is crucial to performance and service of the MAM products and 

for elimination of the expensive post-processing. This research proposes computer-vision 

based defect detection methodology to detect discontinuity, non-uniformity, waviness, 

under-dilution, and over-dilution in µ-Plasma Metal Additive Manufacturing (µ-PMAM) 

fabricated single-layer depositions of different biocompatible materials using hue saturation 

value (HSV) based color segmentation and centroid distance and the trained YOLO models. 

High-quality videos were recorded of single-layer depositions of Ti6Al4V, 

63Co29Cr4Mo4Ti, and SS 316L materials using a high dynamic range (HDR) camera 

mounted on 5-axis CNC machine of µ-PMAM process for different parametric 

combinations. Images were extracted at rate of one image per second from each recorded 

video. The extracted images were annotated by the Visual Geometry Group (VGG) image 

annotator and deposition height and width were extracted from these images using HSV 

based color segmentation and computation of centroid distance. Discontinuity, non-

uniformity, and waviness were detected by plotting the variations in deposition height and 

width along the deposition length. Subsequently, trained YOLOv8 and YOLOv11 models 

were used to predict deposition height and width from the unannotated images of SS 316L 

after training and validating them using annotated images. These models were trained for 

50 epochs for different combinations of batch size, image size, and hyperparameters (i.e., 

learning rate, momentum, and weight decay). The YOLO model predicted deposition height 

and width were plotted along the deposition length to detect non-uniformity, waviness, 

under-dilution, and over-dilution. A comparative study of the defects detected by the HSV 

based approach and YOLO models found superiority of the YOLO models in deposition 

defect detection of single-layer depositions by µ-PMAM. The proposed defect detection 

methodology is scalable and can be used for any MAM process and any material because it 

does not depend on them.  
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Chapter 1  

Introduction 
This chapter presents brief introduction of computer vision, its advantages and 

applications, YOLO models, additive manufacturing (AM) and classification of different 

AM processes, working principle and applications of µ-PMAM process along with the 

defects produced by it. It ends with providing organization of this thesis.   

1.1 Introduction of Computer Vision (CV) 

Computer vision (CV) is a field of artificial intelligence that enables machines to 

interpret, analyze, and extract meaningful data from the images and videos, mimicking 

human vision and cognitive abilities. It involves high-level understanding, grasping, 

analyzing, and processing the visual data to extract meaningful information and make 

useful decisions. Following typical tasks are performed by the CV: 

 Object Classification: Identification of the defined objects in an image/video, and 

assigning label to each identified object.  

 Object Localization: Finding locations of the identified objects in an image/video by 

enclosing each object in a bounding box. 

 Object Detection: It is a combination of the object classification and object 

localization to recognize and locate the defined objects in an image/video. Fig 1.1 

shows the object classification, localization, detection, and segmentation tasks by 

computer vision in a single and multiple objects images. 

 Object Recognition: It provides an input image to a model through combination of 

the object classification and object localization and gives the likelihood of the 

recognized object belonging to a particular class. 

 
Fig. 1.1: Object classification, localization, detection, and segmentation tasks by computer 

vision in a single and multiple objects images (Diwan et al. 2023). 

Object detection by the CV plays a very important role in many applications, such as 

defect detection in manufacturing, self-driving cars, surveillance, and augmented reality. 
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Vijayakumar and Vairavasundaram (2024) described use of object detection algorithm 

in different applications with a particular emphasis on enhancing efficiency and accuracy. 

State-of-the-art models such as YOLO and Region-based Convolutional Neural Network 

(R-CNN) are widely employed to provide real-time and robust object detection 

capabilities. These algorithms find extensive applications in various domains including 

autonomous vehicles, surveillance systems, smart cities, and healthcare, showcasing their 

versatility and effectiveness in addressing diverse visual recognition challenges.  

1.1.1 Advantages of Computer Vision 

Following are some unique advantages of computer vision which make it an effective 

alternative to the traditional detection techniques: 

 Automated Visual Inspection: This capability of CV helps to detect defects in 

assembly lines without human intervention. The CV based self-checkout systems in 

retail sector are used to automatically identify and bill the products. 

 Speed and Efficiency: Speed and efficiency of CV help in quick analysis of the X-

rays and magnetic resonance imaging (MRI) data aiding in rapid diagnosis of disease 

thus reducing waiting times of patients. Similarly, multiple cameras for surveillance 

purposes aid in real-time detection of intrusions or unusual behavior instantly. 

 Cost Reduction: Automated crop monitoring in large-scale farms using CV decreases 

operational costs by reducing manual labour. Similarly, computer vision based smart 

traffic monitoring systems in place of physical traffic controllers help in cutting down 

the infrastructural expenses. 

 Accuracy and Consistency: Precise object detection by CV helps in reducing road 

accidents caused by human carelessness. It also plays a crucial role in quality control 

of products as it allows consistent quality checks which significantly reduces the 

producer’s and consumer’s risk. 

 Safety: Use of CV systems in the mines act as a safety net to prevent the workers 

from entering unsafe conditions and/or locations.  

1.1.2 Some Domain Specific Applications of Computer Vision 

Researchers have explored applications of computer vision in different domains. 

Following are some examples:  

DeCost and Holm (2015) applied computer vision to develop quantitative 

microstructure descriptors for a diverse collection of microstructure data. For classification 

of microstructures, support vector machine (SVM) was trained with greater than 80% 

accuracy over 5-fold cross validation. The developed real-time microstructure descriptors 
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can capture the meaningful details and define characteristics of microstructural images 

without explicit fine-tuning from human experts. 

Gargiulo et al. (2017) used computed tomography (CT), MRI images, and diffusion 

tensor imaging (DTI) tractography and used image segmentation protocols namely 

MIMICS to develop 3D model of skull base, tumor, and five eloquent fiber tracts. The 

developed 3D models were rapid-prototyped and linked with patient images to develop a 

reported surgical navigation system. 

Lin et al. (2017) proposed a camera-based line-laser obstacle detection system to 

prevent the falls of elderly persons in the indoor environment. This system casts a laser 

line, which passes through a horizontal plane and has a specific height to the ground. A 

camera, whose optical axis has a specific inclined angle to the plane, observes the laser 

pattern to obtain the potential obstacles. When obstacles are detected, the system sounds 

alarm messages to catch the attention of the human beings.  

Wang et al. (2020) developed a deeply supervised object detector to provide 

information about the fatigue crack initiation sites which are crucial for fatigue failure 

investigations of metallic products. They used convolutional neural networks (CNN) to 

improve the training efficiency of their detector. Their results demonstrated that increasing 

training dataset size can improve accuracy of CNN while raising the number of epochs can 

result in its superior ability to recognize the delicate features. Most of the images that 

cannot be recognized possess common characteristics such as poor image quality, unclear 

features, and insufficient training data. 

Cunha et al. (2024) used computer vision to recognize and count dengue mosquito 

eggs in a trap to control mosquitoes and consequently the dengue fever. The other is a 

probabilistic model called physiotherapeutic evaluation platform, in which CV was used to 

aid in visualization of human body balance, by monitoring the center of mass which helps 

to measure a patient’s abdominal strength, assisting the physiotherapist in prescribing 

exercises aimed at muscle strengthening. 

1.2 Introduction of YOLO Model 

 The traditional object detection models often face limitations in terms of speed because 

they require multiple scans over an image to identify the objects. These models are region-

based, and are computationally intensive which hinder their real-time applications. 

Whereas, YOLO (You Only Look Once) is a pretrained model which belongs to a family 

of real-time object detection algorithms. A YOLO model is designed to detect and classify 

objects within an image or video using a unique one-shot detection approach which 

significantly improves its object detection speed. A YOLO model achieves its impressive 
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real-time processing capabilities by dividing the entire image into the small grids and 

making a prediction directly for each grid. This makes it particularly advantageous for the 

applications requiring swift and accurate identification of objects in dynamic 

environments. Twelve versions of YOLO model have been launched since their beginning 

in 2015 as shown in Fig. 1.2. Each version has some improvements over the previous 

version for better detection performance.  

 

Fig. 1.2: Timeline of launch of different versions of YOLO models.  

1.3 Introduction of Additive Manufacturing 

Additive manufacturing (AM) is defined by the joint ISO/ASTM terminology standard 

to be the “process of joining materials to make parts from 3D model data, usually layer 

upon layer, as opposed to subtractive manufacturing and formative manufacturing 

methodologies”. The pertinent part is the use of a computer to translate a solid model into 

a real part (Bourell, 2016). AM, often referred to as 3D printing, is a type of digital 

fabrication technique that builds physical items from a geometrical model through the 

addition of materials. The field of AM is rapidly expanding. It has been a common 

practice around the world in recent years. AM has a wide range of applications across 

various industries such as aerospace, automotive, healthcare, architecture, construction, 

education, and research. Mass customization and manufacture of open-source designs are 

becoming increasingly common uses of AM in agricultural, healthcare, automotive, and 

locomotive industries (Jadhav and Jadhav, 2022).  

1.3.1 Classification of AM Processes 

According to ASTM F42, different AM processes are categorized into the following 

seven categories as shown in Fig. 1.3 (Stavropoulos and Foteinopoulos, 2018): 

1. Powder Bed Fusion  

2. Directed Energy Deposition (DED) 
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3. Sheet Lamination  

4. Binder Jetting 

5. Material Jetting 

6. Material Extrusion 

7. Vat Photopolymerization 

 

Fig. 1.3: Classification of different types of AM processes according to ASTM F42 

(Wiberg, 2021). 

 Powder Bed Fusion (PBF): PBF type AM processes use heat source in the form a 

laser or electron beam to selectively fuse regions of the powdered bed of the feedstock 

material which is either metallic material or a polymer. Electron Beam Melting 

(EBM), Selective Laser Sintering (SLS), Selective Laser Melting (SLM), Direct Metal 

Laser Sintering (DMLS), Selective Heat Sintering (SHS), and Multi Jet Fusion (MJF) 

are common AM processes in this category. They differ based on the materials they 

use and how much melting takes place during the process. The PBF processes have 

ability to integrate at small scale and they are used for AM of relatively large products. 

Their machines are of large size. But, built speed is relative slow, they require high µ-

plasma power, and their surface finish depends on the powder size. 

 Directed Energy Deposition (DED): DED type AM processes use the concentrated 

heat source in the form a laser, electron beam, plasma arc, or µ-plasma arc to melt and 

fuse the feedstock material as is being deposited. The feedstock material is a metallic 

material which can be supplied either in powder form or wire form or combination of 

the both. These AM processes produce high quality functional products, perform 

precise repair of the existing components, add complex features to the pre-fabricated 

parts, produce and restore high-value engineering components, and fabricate near-net-

shape products. Their build speed is often sacrificed for higher accuracy. The DED 

fabricated products require post-processing to achieve the desired quality. Laser 
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Engineering Net Shape (LENS), Laser Metal Deposition (LMD), Wire-arc Additive 

Manufacturing (WAAM), and µ-plasma Metal Additive Manufacturing (µ-PMAM) 

are the commonly used DED type AM processes.  

 Sheet Lamination: Sheet lamination type AM processes bond together the sheets or 

foils of different metallic materials, papers or fabrics using heat, adhesives, or 

ultrasonic waves to supply the required bonding energy. A laser, or milling machine is 

used to make products from the laminated sheets. Laminated Object Manufacturing 

(LOM) and Ultrasonic Additive Manufacturing (UAM) are the commonly used sheet 

lamination type AM processes. These processes offer high build speed, low cost, ease 

of material handling, higher accuracy, and good finish.  

 Binder Jetting: In binder jetting type AM processes, a liquid bonding agent is 

selectively deposited to join powder of feedstock material (either a metallic material or 

a polymer) thus binding them to create a solid layer. When one layer is finished, the 

platform moves down, and new powder is added on top. This cycle repeats until the 

full object is completely built.  Powder Bed and Inkjet Head (PBIH) and Plaster-based 

3D Printing (PP) are the commonly used binder jetting type AM processes. 

Advantages of these processes include: faster process, high range of materials, allows 

use of two materials, use of different colours. Their major limitations are: not always 

suitable for structural parts due to use of binder material, and higher amount of post 

processing  

 Material Jetting: Material jetting involves depositing droplets of the feedstock 

material (usually photopolymers or waxes) onto a build platform, where they are 

immediately solidified by UV light. This process is similar inkjet printing in 3D. 

Advantages of material jetting type AM processes include: high accuracy, less wastage 

of materials, ability to fabricate multi-materials and multi-colours products thus 

making them ideal for visual prototypes and biomedical models. But they require 

support structures and are applicable to limited range of materials only. Multi-jet 

Modelling (MJM) is the most commonly used material jetting type AM process. 

 Material Extrusion: This process uses a nozzle or orifice to selectively extrude the 

feedstock material to form its layers. The nozzle moves along the x and y axes to 

deposit material onto a base, while the platform shifts along the z-axis to create the 

product layer by layer. Common materials feedstock materials are thermoplastics or 

thermoplastic composites. It is used to fabricate inexpensive parts from ABS or some 

other plastics, Extrusion type AM processes are relatively inexpensive, suitable for the 

visual models and prototypes. But they have low accuracy, small build speed, limited 
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nozzle radius, requires constant pressure of the feedstock material. Fused Deposition 

Modelling (FDM) is the most commonly used material extrusion type AM process.  

 Vat Photopolymerization: This type of AM processes selectively cure a liquid 

photopolymer by exposing it to the light from a laser or projector to produce its solid 

layers via light-activated polymerization process. The build platform begins at the 

bottom of a container filled with liquid photopolymer. A light source hardens it based 

on its cross-section being exposed, solidifying it as it moves up. Stereolithography 

apparatus (SLA) and Digital Light Processing (DLP) are the commonly used vat 

polymerization processes. These processes are relatively quick and typically build 

large areas. But, they are relatively expensive, requires support structure, require 

higher post-processing time and cost, and are applicable to limited material i.e. 

photopolymers only. 

1.4 Introduction of µ-PMAM Process  

The µ-Plasma Metal Additive Manufacturing (µ-PMAM) process is a novel and 

energy-efficient metal AM (MAM) process that combines the principles of µ-plasma arc 

with the precision of modern material deposition methods. It represents a significant 

advancement in the field of DED, especially in applications that demand fine control, and 

minimal thermal impact. By using µ-plasma arc as low-energy, highly concentrated 

thermal source as the heat source, µ-PMAM is capable of producing high-quality 

components from high-melting point metallic materials. The µ-plasma arc is generated 

inside a specially designed nozzle unlike the plasma arc additive manufacturing (PAAM) 

process. The nozzle controls the arc size and intensity, ensuring focused heating and 

efficient material deposition. Unlike conventional PAAM process, µ-PMAM operates at 

lower µ-plasma current and µ-plasma power levels, usually up to 20 A and 440 W direct 

current (DC) µ-plasma power. These controlled energy settings offer several benefits, such 

as reduced heat-affected zones, minimized thermal distortion, and lower residual stresses 

within the deposited layers. One of the distinguishing features of µ-PMAM process is its 

integration with 5-axis computer numerically controlled (CNC) work table. Fig. 1.4 

depicts photograph of the 5-axis CNC machine for µ-PMAM process showing the 

deposition head and formation of µ-plasma arc inside the µ-plasma torch in the insets. 

This configuration allows for the fabrication of geometrically complex parts without any 

support material. The multi-axis motion enables the deposition head to be programmed for 

the desired part geometry thus allowing overhangs, internal features, and curved 

geometries to be manufactured more easily. Consequently, µ-PMAM offers superior 

flexibility and freedom in part design, reducing the need for post-processing and support 
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removal. A major advantage of µ-PMAM lies in its compatibility with multiple feedstock 

forms including powders, wires, or their combinations. This versatility allows users to 

select the most appropriate form of feedstock material based on part requirements, desired 

deposition rate, or economic considerations. For instance, powder feedstock offers better 

control over composition and microstructure, while wire feedstock provides better material 

utilization and reduced contamination risk. From a materials perspective, µ-PMAM is 

highly capable of handling a broad range of high-performance and high-melting-point 

alloys, many of which are difficult to process by other AM processes. The µ-PMAM 

process has been successfully used for Inconel 625 for high-temperature aerospace 

applications, P20 and H13 tool steels for mould and die production, and Stellite alloy for 

wear-resistant surfaces, Ti6Al4V, Co-Cr-Mo-xTi, Ti-Ta-Zr-W-Mo HEA for biomedical 

implants, and Ti6Al4VxNiyCr alloys for high strength applications. The precise control 

over heat input and deposition rate allows for stable melting and solidification of 

challenging materials which helps to expand its material applications. These materials are 

selected for their mechanical and biological properties, making them ideal for implants, 

surgical instruments, and prosthetic components. 

 

Fig. 1.4: Photograph of the 5-axis CNC machine for µ-PMAM process showing with the 

insets showing deposition head and formation of µ-plasma arc inside the µ-plasma torch 

(Arya et al. 2024). 

In terms of functional outcomes, the parts produced through µ-PMAM often exhibit 

fine-grained microstructures, uniform layer bonding, and high mechanical strength due to 

controlled thermal cycles and precise deposition paths. Its ability to handle custom 
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geometries and specialized materials opens new possibilities for repairing, re-

manufacturing, and customizing critical components. This is especially relevant in high-

value sectors namely aerospace, automotive, biomedical, and defence where performance, 

reliability, and material efficiency are critical. 

1.4.1 Applications of µ-PMAM Process  

The µ-PMAM process has been successfully used for processing many high melting 

point materials. The applications of µ-PMAM process are as follows: 

 Aerospace components: µ-PMAM enables fabrication of complex, lightweight parts 

using high-temperature alloys such as Inconel 625, offering superior heat resistance, 

geometric precision, and reduced material wastage for turbine blades and aerospace 

brackets. 

 Tools and dies manufacturing: The µ-PMAM process efficiently produces and 

repairs moulds of P20 and H13 materials enhancing their useful life, reducing lead 

time. 

 Biomedical implants and devices: The µ-PMAM process has been used to process 

biocompatible materials such as Ti6Al4V, Co-Cr-Mo-xTi, Ti-Ta-Zr-W-Mo with 

tailored microstructures, allowing the production of patient-specific implants and 

surgical tools with improved mechanical and biological performance. 

 Development of high-entropy alloy: The µ-PMAM process has been used to develop 

advanced alloys such as Ti6Al4VxNiyCr, Co-Cr-Mo-xTi, Ti-Ta-Zr-W-Mo, enabling 

components with superior strength, corrosion resistance, and biocompatibility for 

demanding structural and biomedical applications. 

 Component repair and remanufacturing: µ-PMAM process can repair worn or 

damaged high-value metallic parts by adding material only where needed, extending 

component life and reducing replacement costs and environmental waste. 

1.4.2 Defects in Depositions by µ-PMAM Process  

Despite several advantages offered by µ-PMAM process, Kumar and Jain (2020) 

have highlighted occurrence of the following defects in the depositions fabricated by µ-

PMAM process. Some of these defects are shown in Fig. 1.5 for different forms of the 

feedstock material i.e., powdered form (Fig. 1.5a); wire form (Fig. 1.5b); combined 

powder-wire form (Fig. 1.5c) 

 Porosity: It refers to presence of small voids or pores on the surface of the additively 

manufacturing metallic component as shown in Figs. 1.5a-1.5c. It can occur between 

the deposition layers (inter-layer porosity shown in Fig. 1.5d1), within a deposition 

layer (intralayer porosity depicted in Fig. 1.5d2), or between deposition tracks (inter-
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track or inter-run porosity illustrated in Fig. 1.5d3). Porosity is a critical quality 

concern especially for the functional or load-bearing components.  

 Balling: It is a common defect where the molten material forms discrete spherical 

droplets instead of a smooth and continuous deposition. It disrupts deposition layer 

adhesion and compromises the part quality as shown in Fig. Figs. 1.5a-1.5c.  

 Spattering: It refers to ejection of small molten material droplets from the melt pool 

as depicted in Figs. 1.5a-1.5c. These spattered particles can land on nearby surfaces or 

the build itself causing surface defects and poor surface quality porosity, or even 

delamination in subsequent layers. 

 Wire Inclusion: This defect is caused when an unmelted or partially melted wire of 

the feedstock material is embedded within a deposition as shown in Fig. 1.5b. 

 Discontinuity: It indicates absence of feedstock material at certain locations along the 

deposition length implying that deposition height and/or deposition width being equal 

to zero at such locations. 

 Non-uniformity: It is characterized by unacceptable variations in deposition width 

along the deposition length as shown in Fig. 1.5f.  

 Waviness: It is characterized by unacceptable variations or ripples in deposition 

height along the deposition length. 

 Over-dilution: It occurs when diluted area is much larger than the deposition area as 

shown in Fig. 1.5g. It is caused due to the aspect ratio (i.e., ratio of deposition width 

to deposition height) being greater than its optimum range.  

 Under-dilution: It is just opposite to over-dilution. It occurs when diluted area is 

much smaller than the deposition area as shown in Fig. 1.5h. It is due to the aspect 

ratio (i.e., ratio of deposition width to deposition height) being smaller than its 

optimum range. 

 Surface Roughness: It is the measured roughness of functional surface of an AM 

fabricated component. There are many measures of surface roughness such as 

arithmetical average roughness ‘Ra’ value concept depicted for a multi-layer 

deposition in Fig. 1.5i), maximum surface roughness ‘Rmax’ or ‘Ry’ value, ten-spot 

average roughness ‘Rz’ value. They can be measured using standard surface 

roughness measuring equipment. Kumar and Jain (2022) used K-nearest neighbors 

(KNN) algorithm to predict the surface roughness of the components manufactured by 

µ-PMAM process.  
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Fig. 1.5: Different deposition defects (a, b, c) porosity, balling, spatter for (a) powder 

form, (b) wire form, (c) combined powder and wire form, (b) wire inclusion in wire form 

of feedstock material (Kumar and Jain, 2020), (d1) inter-layer porosity, (d2) intralayer 

porosity, (d3) inter-track or inter-run porosity, (e) discontinuity, (g) non-uniformity, (g) 

over-dilution, (h) under-dilution (Jhavar et al., 2016), and (i) concept of evaluation of 

average surface roughness ‘Ra’ value for a multi-layer deposition (Kumar and Jain, 

2022). 

1.5 Organization of Thesis 

This thesis is organized into the following five chapters: 

 
(a)    (b)    (c) 

  
(d1)      (d2)          (d3) 

 
(e)     (f)    (g)    (h) 

 
(i) 
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Chapter 1 presents brief introduction of computer vision, its advantages and applications, 

YOLO models, additive manufacturing processes and their classification, 

working principle and applications of µ-PMAM process along with the defects 

produced by it. It ends with providing organization of this thesis. 

Chapter 2 describes review of the past work done on using computer vision for detection 

of the defects produced by different AM processes, and detection of defects 

produced by µ-PMAM process, followed by brief review summary of the past 

works, identified research gaps, and research objectives along with methodology 

used to meet them. 

Chapter 3 provides details of data acquisition for the present work through high quality 

recording of videos of single-layer depositions of 63Co29Cr4Mo4Ti, Ti6Al4V, 

and SS 316L by µ-PMAM process using high dynamic range (HDR) camera.  It 

also presents details of extraction of images from each recorded video, 

annotation of clearly visible extracted images, proposed deposition defect 

detection methodology, and methodology for defect detection using HSV based 

color segmentation and centroid distance and YOLO models.    

Chapter 4 provides the results and discussion of this research work by describing the 

analysis of the deposition defects detected by HSV segmentation and centroid 

distance and the trained YOLO models in single-layer depositions of SS 316L, 

Ti6Al4V, and 63Co29Cr4Mo4Ti alloys. It also provides comparison of the 

ranges for deposition height, deposition width, and aspect ratio identified by 

HSV-based approach and the trained YOLO models and µ-PMAM process 

parameters identified by HSV-based approach for continuous, uniform, and non-

wavy depositions of the considered materials.  

Chapter 5 summarizes the outcome of the present research by presenting its significant 

achievements, conclusions, and some directions for the future work. 

This chapter presented brief introduction of computer vision, its advantages and 

applications, YOLO models, additive manufacturing processes and their classification, 

working principle and applications of µ-PMAM process along with the defects produced 

by it, and organization of this thesis. The next chapter review of the past work done on 

using computer vision for detection of the defects produced by different AM processes, 

and detection of defects produced by µ-PMAM process, followed by brief review 

summary of the past works, identified research gaps, and research objectives along with 

methodology used to meet them. 
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Chapter 2 

Review of Past Work 
This chapter describes review of the past work done on using computer vision for 

detection of the defects produced by different AM processes, and detection of defects 

produced by µ-PMAM process, followed by brief review summary of the past works, 

identified research gaps, and research objectives along with methodology used to meet 

them.   

2.1 Use of Computer Vision for Detection of AM Defects 

Additive manufacturing (AM) processes are known for their design and fabrication 

flexibility, cost-effectiveness, and high customization. But products manufactured by the 

AM processes possess many defects such as porosity, balling, discontinuity, non-

uniformity, waviness, over-dilution, under-dilution, spattering, delamination of deposition 

layers in multi-layer deposition, poor surface quality, and poor dimensional and 

geometrical tolerances. These defect causes poor appearance, properties, and performance 

of the AM products which make them unsuitable to meet the efficiency and quality 

requirements of modern production systems. The traditional method to detect these defects 

is the visual inspection and measurement but it is skilled manpower-intensive and time-

consuming process which often results in inaccurate detection of defects and even non-

detection of many defects. This leads sheer wastage of time, efforts, and money. 

Therefore, development of a real-time defect detection methodology for the AM processes 

is urgently needed to realize them as an established manufacturing technology and 

computer vision can play an important role in it. Computer vision is a field of artificial 

intelligence that enables machines to interpret, analyze, and extract meaningful data from 

the images and videos, mimicking human vision and cognitive abilities. It involves high-

level understanding, grasping, analyzing, and processing the visual data to extract 

meaningful information and make useful decisions. Computer vision has potential to 

automate defect detection on real-time basis with improved accuracy and efficiency thus 

making it particularly suitable in large-scale and long-term industrial production 

processes. It only requires a hardware and a high-end camera for deploying on it for 

capturing video/images on real-time basis for any future use. Common defect detection 

methods based on computer vision include thresholding, edge detection, feature extraction, 

and description. Following paragraph describe the past work done on AM defect detection 

using computer vision. 

Scime and Beuth (2018) used computer vision for in-situ monitoring and analysis to 

automatically detect and classify the defects that occurred during the powder spreading 
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while fabricating depositions of SS 316L by laser powder bed fusion (LPBF) process. The 

defect detection and classification were implemented using an unsupervised machine 

learning (ML) algorithm, operating on a moderately-sized training database of images. 

Scime et al. (2020) used the CNN for pixel-wise segmentation of layer-wise powder bed 

image data in (i) deposition of Ti6Al4V, AlSi10Mg, Inconel 718, stainless steel 316L, and 

bronze by LPBF process, (ii) deposition of B4C and SiC by electron powder bed fusion 

(EBPF) process, and (iii) deposition of Ti6Al4V by binder jetting type AM process. They 

detected defects such as porosity spattering, incomplete spreading, and debris. They 

highlighted that key advantage of CNN algorithm is returning segmentation results at the 

native resolution of the imaging sensor, seamlessly transferring learned knowledge 

between different AM machines, as the training data for any individual machine may be 

limited, knowledge learned on data from one AM machine must be rapidly transferrable 

across technologies between entirely different powder bed machines and imaging systems 

and providing real-time performance.  Charalampous et al. (2021) used computer vision-

based method to automatically scan, filter, segment, reconstruct, and correlate high-

resolution point cloud data of a part fabricated by fused filament fabrication (FFF) process 

with its digital 3D model to evaluate the process performance. They also experimentally 

validated effectiveness of their monitoring and defect detection methodology. Zhang et al. 

(2022) reviewed in-situ and real-time monitoring of LPBF and laser directed energy 

deposition (LDED) processes using traditional image processing such as image 

transformation, recognition, segmentation, and enhancement for analysis of monitoring 

and classification of the objects. They proposed a technical route for real-time feedback 

control of metal AM (MAM) processes by combining image processing with AM 

technologies. They also analyzed problems in image processing, algorithm generalization, 

quality, small samples, and image labeling. Nguyen et al. (2023) used a semi-supervised 

ML algorithm to detect defects in deposition of SS 316L by LPBF process. The ML 

algorithm was trained to classify the surface appearances as the post-process 

characteristics, e.g. surface roughness, morphology, or tensile strength in the monitoring 

data. This approach was validated by performing predictions on test samples having 

various geometries. Wang et al. (2023) proposed an enhanced YOLOv8 model to train a 

defect detection model capable of identifying and evaluating defect images based on four 

defect categories namely scratches, holes, over-extrusion, and impurities in an extrusion 

type AM process. 
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2.2 Detection of Defects in µ-PMAM Process 

Kumar and Jain (2020) showed occurrence of porosity, balling, spatter, and wire 

inclusion through microscopic examination of the Stellite depositions by µ-PMAM 

process while it in powder form, wire form, and combined powder-wire form. Kumar and 

Jain (2022) used KNN algorithm to predict the surface roughness produced by µ-PMAM 

process. The surface roughness data for training the KNN algorithm were generated by 

depositing multi-layer single-track depositions of Stellite-6 in powder and wire form. They 

reported that surface roughness increased with an increase in µ-plasma power and 

feedstock material feed rate and decreased with an increase in deposition head traverse 

rate for both powder and wire form of feedstock material. 

2.3 Review Summary of Past Work 

It can be summarized from the review of the limited past work available that (i) 

computer vision has been successfully used via in-situ monitoring to detect the defects in 

the depositions of Ti6Al4V, AlSi10Mg, Inconel 718, SS 316L, bronze, B4C, and SiC 

produced by different AM processes namely LPBF, EPBF, LDED, FFF, and Binder 

Jetting AM processes. The captured videos/images were carefully processed, analyzed and 

used to perform these tasks, (ii) Depositions of Stellite by µ-PMAM process revealed 

occurrence of porosity, balling, spatter, and wire inclusion for its powder, wire, and 

combined powder-wire form, and (iii) Surface roughness produced by µ-PMAM process 

has been successfully predicted by using KNN algorithm.  

2.4 Identified Research Gaps and Research Objectives 

Following are the research gaps identified from the past work review: 

 Some work is available on computer vision based real-time detection of the defects in 

LPBF, EPBF, LDED, FFF, Binder Jetting type AM processes during depositions of 

Ti6Al4V, AlSi10Mg, SS 316L, Inconel 718, Bronze, B4C, and SiC.  

 Limited work is available on post-process detection of defects and KNN based surface 

roughness prediction in the metallic depositions made by the µ-PMAM process.  

 No work is available on computer vision based real-time detection of defects such as 

discontinuity, non-uniformity, waviness, under-dilution, over-dilution in the 

depositions of biocompatible metallic materials (such as 63Co29Cr4Mo4Ti, Ti6Al4V, 

and SS 316L) fabricated by the µ-PMAM process. 

Based upon the review of the past work and its above-mentioned summary, following 

research objectives were identified for the present work:   
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 RO-1: Recording of high-quality videos of single-layer depositions of three 

biocompatible metallic materials (namely 63Co29Cr4Mo4Ti, Ti6Al4V, and SS 316L) 

produced by the µ-PMAM process. Extraction of images from each recorded video 

and making them clearly visible via segregation and preprocessing. Annotation of the 

extracted clearly visible images by the Visual Geometry Group (VGG) annotator. 

 RO-2: Computation of deposition width and deposition height from the annotated 

images using Hue Saturation Value (HSV) based colour segmentation and computing 

the centroid distance. Detection of discontinuity, non-uniformity, waviness, over-

dilution, under-dilution by plotting the variations in computed deposition height, 

deposition width, and aspect ratio along the deposition length. 

 RO-3: Training and validation of YOLOv8 and YOLOv11 models using the annotated 

images and their unannotated version. Testing of the trained YOLOv8 and YOLOv11 

models using the unannotated images. Prediction of deposition height, deposition 

width, and computation of aspect ratio by the trained YOLO models. Detection of non-

uniformity, waviness, over-dilution, under-dilution by plotting the variations in 

predicted deposition height, deposition width, and computed aspect ratio along the 

deposition length 

 RO-4: Comparison of ranges for deposition height, deposition width, and aspect ratio 

identified by HSV and centroid distance approach and the trained YOLO models. 

Identification of µ-PMAM process parameters by HSV and centroid distance approach 

for continuous, uniform, and non-wavy depositions.  

2.5 Research Methodology 

Fig. 2.1. depicts the methodology used to meet to the identified research objectives of 

the present work. It starts with recording of high-quality videos of single-layer depositions 

of 63Co29Cr4Mo4Ti, Ti6Al4V, and SS 316L fabricated by the µ-PMAM process using a 

high dynamic range (HDR) camera that moves along with the deposition head. Images are 

extracted from each recorded video followed by annotation of 90% of the clearly visible 

images (i.e., segregated and pre-processed) by the VGG image annotator. Thereafter, 

following two approaches were used to detect the defects: approach-1 based on HSV 

based color segmentation and centroid distance and approach-2 based on YOLO models. 

Approch-1 computed deposition height, deposition width, and aspect ratio and plots of 

their variations along the deposition length were used to detect discontinuity, non-

uniformity, waviness, over-dilution, and under-dilution of the considered depositions. 

Whereas, approach-2 involved training and validation of YOLOv8 and YOLOv11 models 

using the annotated images and their unannotated version and their testing using the 
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unannotated images. Then the trained YOLO models were used to predict deposition 

height and width. The plots of the variations in the predicted deposition height and width, 

and computed aspect ratio were used to detect non-uniformity, waviness, over-dilution, 

and under-dilution of the considered depositions. The methodology ends with comparison 

of ranges for deposition height, deposition width, and aspect ratio identified by both the 

approaches and identification of µ-PMAM process parameters by the approach-1 for 

continuous, uniform, and non-wavy depositions of the considered materials. 

 

Fig. 2.1: Research methodology used in the present work. 

This chapter described review of the past work done on using computer vision for 

detection of the defects produced by different AM processes, and detection of defects 

produced by µ-PMAM process, followed by brief review summary of the past works, 

identified research gaps, and research objectives along with methodology used to meet 

them. The next chapter highlights the different details with regards to the materials and 

methodologies employed in the analysis of µ-PMAM process.  
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Chapter 3 

Materials and Methods  
This chapter provides details of data acquisition for the present work through high 

quality recording of videos of single-layer depositions of 63Co29Cr4Mo4Ti, Ti6Al4V, 

and SS 316L by µ-PMAM process using high dynamic range (HDR) camera.  It also 

presents details of extraction of images from each recorded video, annotation of clearly 

visible extracted images, proposed deposition defect detection methodology, and 

methodology for defect detection using HSV based color segmentation and centroid 

distance and YOLO models.    

3.1 Data Acquisition 

Data in the present work were acquired through recording of high-quality videos of 

single-layer depositions of three biocompatible materials namely 63Co29Cr4Mo4Ti, 

Ti6Al4V, and SS 316L by the µ-PMAM process using a HDR camera. Following sections 

describe details of associated with the data acquisition in the present work.  

3.1.1 Selection of Materials 

Table 3.1 presents details of the feedstock and base plate materials used for fabricating 

single-layer depositions by µ-PMAM process.  

Table 3.1: Feedstock and base plate materials used in single-layer depositions by µ-

PMAM process. 

Feedstock material Base plate material 

63Co29Cr4Mo4Ti Ti6Al4V  

Ti6Al4V Ti6Al4V and mild steel 

SS 316L Mild steel (MS) 

 

Following are justifications for selection of the feedstock materials. The 

63Co29Cr4Mo4Ti alloy is known for excellent mechanical strength, corrosion resistance, 

wear resistance, and biocompatibility making it particularly useful in biomedical 

engineering applications. Following are its main applications: (i) Knee and hip implants, 

(ii) Customized dental implants, (ii) Biomedical accessories such as plates, screws, and 

joining parts, and (iv) Bio-functional coatings due to its improved oxide layer formation 

which enhances surface stability. The Ti6Al4V, sometimes also called TC4 or Ti64 , is an 

alpha-beta titanium alloy of ASTM Grade 5. Its composition by wt.% is: 5.5-6.75% Al; 

3.5-4.5% V; 0.3% Fe; 0.2%O; 0.08% C; 0.05% N; 0.015%H; and balance Ti. It 

has excellent biocompatibility, excellent corrosion resistance to seawater, oxidizing acids 

https://en.wikipedia.org/wiki/Titanium_alloy
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and rocket propellants, relatively low density and thermal conductivity, high strength and 

modulus of elasticity, and good fatigue strength and formability. It is primarily used in 

various aerospace applications, orthopaedic implants because it promotes bone 

regeneration, and high-temperature components. The SS 316L is an austenitic stainless 

steel whose composition by wt.% is: 16-18% Cr; 10-14% Ni; 2-3% Mo; Max. 0.03% C; 

and small amounts of manganese, silicon, and other elements. The ‘L’ indicates very less 

carbon content. It has excellent resistance to atmospheric corrosion, moderately oxidizing 

and reducing environments, chloride-rich environments, good strength and toughness, 

even at cryogenic temperatures, good weldability. Its main applications include: (i) 

Biomedical devices due to its biocompatibility and resistance to corrosion, (ii) Marine 

environments for structural components and equipment exposed to seawater, (iii) Food 

processing equipment due to its resistance to corrosion and non-toxicity, (iv) Chemical 

and petrochemical industries for equipment handling corrosive chemicals, and (v) 

Cryogenic applications due to its ability to maintain strength at very low temperatures.  

The received powders of SS 316L and Ti6Al4V were used for their single-layer 

depositions whereas powder of 63Co29Cr4Mo4Ti was prepared by mixing the procured 

powders of Co, Cr, Mo, and Ti in a planetary ball milling machine (Pulverisette 6 from 

Fritsch, Germany) in the desired ratio by wt.%. The as received powders had purity of 

99.5% and particle size in the range of 45 to 105 µm. The mixing was carried out for 20 

hours at 250 rpm using tungsten carbide balls of 15 mm diameter and maintaining ball to 

powder ratio as 10:1. The powders of 63Co29Cr4Mo4Ti, Ti6Al4V, and SS 316L were de-

moisturized for 2 hours in an oven at 80ºC and then were vacuum sealed before their 

depositions by µ-PMAM process.  

3.1.2 Selection of Input Parameters of µ-PMAM Process 

Performance of the µ-PMAM process depends on its input parameters. These 

parameters directly influence the deposition height and width, and consistency of the 

depositions. Different combinations of the following input parameters were used during 

video recording of the single-layer depositions of the three materials:   

 µ-plasma power: It is the energy supplied for formation µ-plasma arc inside the µ-

plasma torch. It affects the time required to melt a feedstock material and form a 

cohesive deposition layer. Higher the µ-plasma power, lesser is the time needed to 

melt a feedstock material. 

 Feedstock powder flow rate: It is the rate at which the feedstock material is delivered 

to the base plate. It influences height and width of a deposition. It depends on density, 

particle size and sticking tendency of the feedstock powder. Its value is restricted by µ-
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plasma power i.e., smaller value of µ-plasma power does not allow use of larger value 

of feedstock powder flow rate. 

 Deposition head traverse rate: It is speed at which the deposition head travels over 

the base plate. Its value is affected by melting point of the feedstock material and µ-

plasma power. Higher melting of the feedstock material and/or smaller value of µ-

plasma power necessitates small traverse rate of deposition head and vice-versa. It 

affects geometry of a deposition layer and overall deposition quality. 

3.1.3 Recording Videos of Single-Layer Depositions 

Fig. 3.1 shows the HDR camera (Make: TPS; Model:  XVC-1000) mounted on the in-

house built 5-axis CNC machine for µ-PMAM process such that it moves along with the 

deposition head. This HDR camera was selected for its ability to capture high-resolution 

video which enhances the lighting sensitivity. Video recording of the deposition process at 

a high image rate made it possible to observe the deposition geometry parameters in real-

time and capture any variations that influence the defects. Following 27 black and white 

videos were recorded using the XIRIS software: (i) 15 videos of single-layer depositions of 

63Co29Cr4Mo4Ti on Ti6Al4V base plate, (ii) 3 videos of single-layer deposition of 

Ti6Al4V on same material base plate and 1 video of its single-layer deposition on MS 

base plate and, (iii) 8 videos for single-layer depositions of SS 316L on MS base plate. 

Table 3.2 presents details of the recorded videos along with values of µ-PMAM process 

parameters used in them and number of clearly visible extracted images from each 

recorded video.  

 
Fig. 3.1: Photograph of the 5-axis CNC machine of µ-PMAM process showing mounting 

of the HDR camera for recording videos of single-layer depositions. 



22 

 

Table 3.2: Details of the recorded videos for single-layer depositions of 

63Co29Cr4Mo4Ti, Ti6Al4V, and SS 316L along with values of µ-PMAM process 

parameters used in them and number of extracted images from each recorded video.  

 

3.2 Extraction of Images from the Recorded Videos 

The algorithm OpenCV was used to extract the images at the rate of 10 images per 

second (ips) from a recorded video of a deposition. It starts with opening of the recorded 

video file, and finding out its duration and its speed in terms of its ips. Then it computes 

the time interval between the two consecutive images i.e., an extraction rate of 10 ips will 

extract an image after every 0.1 second. It is followed by saving the extracted images in an 

output folder by naming them according to the sequence of their extraction. It ensures that 

the files of the extracted images are distinguishable and traceable. Image extraction 

process continues till the algorithm extracts all the images of from a recorded video till its 

end. Figs. 3.2a and 3.3a depict the clearly visible extracted images for deposition height 

and width respectively. 

Video 

No. 

Feedstock material Substrate 

material 

µ-plasma 

current (A) 

Deposition head 

traverse speed 

(mm/min) 

Feedstock 

powder feed 

rate (g/min) 

Video 

duration 

(s) 

No. of clearly 

visible extracted 

images 

1 63Co29Cr4Mo4Ti Ti6Al4V 12 40 2.0 66 470 

2 12 45 2.0 71 570 

3 12 50 3.0 72 410 

4 13 40 2.0 70 510 

5 13 45 2.5 48 360 

6 13 50 2.0 47 290 

7 14 40 2.5 75 430 

8 17 30 2.5 93 720 

9 17 35 3.0 53 300 

10 17 45 2.0 73 530 

11 17.5 30 2.0 105 810 

12 17.5 35 2.5 86 710 

13 18 35 2.0 70 520 

14 18 40 3.0 76 640 

15 18 45 2.0 60 460 

1 Ti6Al4V Ti6Al4V 15 50 1.7 56 430 

2 15 55 3.5 59 510 

3 17 50 2.3 80 300 

4 Mild steel 15 55 1.5 60 310 

1 SS 316L Mild steel 14 47 1.7 66 600 

2 14 50 2.1 54 480 

3 14 53 3.5 62 490 

4 14.5 47 2.5 71 640 

5 14.5 53 2.1 62 520 

6 15 47 1.5 69 590 

7 15 50 1.7 68 600 

8 15 53 1.9 61 520 
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3.3 Annotation of Extracted Images  

The extracted images were segregated and pre-processed by applying the sharpening 

kernel and convolutional filter to make them clearly visible. Last column of Table 3.2 

presents number of clearly visible extracted images for each recorded video. It is evident 

from the last and 2nd last column of Table 3.2 that segregation and preprocessing of the 

extracted images reduce the number extracted images which are clearly visible as 

compared to the product of a recorded video duration and used image extraction rate i.e., 

for the recorded video no. 1, this product is 660 whereas no. of clearly visible extracted 

images is 470. 90% of the clearly visible extracted images were used as unannotated 

dataset for training and validation. Then these images were annotated using VGG image 

annotator which were used as labelled dataset for training and validation and the 

remaining 10% images were unannotated which were used in testing of the YOLO 

models. Figs. 3.2b and 3.3b depict annotated images for deposition height and width 

respectively. Each annotated image was used to compute (or predict) its deposition width, 

deposition height, and aspect ratio by hue saturation value (HSV) based color 

segmentation and centroid distance approach (or trained YOLO models) for each single-

layer deposition. Subsequently, Origin Pro 2024b software was used to plot the variations 

in deposition width, height, and aspect ratio along the deposition length to detect the 

deposition defects namely discontinuity, non-uniformity, waviness, under-dilution and 

over-dilution in a single-layer deposition.  

3.4 Deposition Defect Detection Methodology 

Table 3.3 presents the conceptualized noble methodology for detecting different 

single-deposition defects in terms of discontinuous, non-uniform, wavy depositions and 

their different combinations (i.e., all defective depositions), their opposite combinations 

(i.e., all defect-free depositions), and for detecting under-dilution and over-dilution giving 

criterial for both their ideal and practical case. For example, in ideal case of uniform 

deposition, the deposition width ‘w’ should remain constant along the entire deposition 

length ‘l’ (i.e., 𝑑𝑤 𝑑𝑙⁄ = 0). Similarly, for non-wavy and continuous depositions, change 

in deposition height with respect to deposition length should be equal to zero (i.e., 

𝑑ℎ 𝑑𝑙⁄ = 0 ), provided deposition height ‘h’ is non-zero. Achieving such a level of 

accuracy in any AM process is not feasible. Therefore, the conceptualized methodology 

prescribes different criteria for ideal case and practical case of each defective and non-

defective deposition. Since practical case criteria is of greater significance in solving real 

world problems therefore a certain level of relaxation needs to be provided to make 

practical defect detection approach realistic. Consequently, a variation zone of ±10% and 
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±5% is provided in proposed methodology for deposition width and height respectively 

i.e., if deposition width is 2 mm, then any variation in deposition width from 1.8 to 2.2 

will be considered to be uniform deposition for all the practical purposes.  Though, it is 

not true for discontinuous deposition because its practical and ideal criteria are same i.e., 

h=0; and/or w=0. Figs. 3.2c and 3.3c illustrate extracted image of discontinuous 

deposition and Figs. 3.2d and 3.3d show detection of discontinuous deposition when 

deposition width or deposition height become zero respectively. 

Table 3.3: Proposed methodology for detecting defects in the single-layer depositions.  

Deposition type Deposition defect detection criteria Examples 

Ideal case Practical case  

Discontinuous 

deposition 

ℎ = 0; 𝑎𝑛𝑑 𝑜𝑟⁄ 𝑤 = 0 ℎ = 0; 𝑎𝑛𝑑 𝑜𝑟⁄ 𝑤 = 0 
 

Continuous non-

uniform 

deposition  

h ≠ 0;  𝑤 ≠ 0; and  
𝜕𝑤

𝜕𝑙
≠ 0 

h ≠ 0; w≠0; 𝑎𝑛𝑑 
𝜕𝑤

𝜕𝑙
< 0.9w; 𝑂𝑅

𝜕𝑤

𝜕𝑙
> 1.1𝑤  

 

Continuous wavy 

deposition 

h ≠ 0;  𝑤 ≠ 0; and  

 
𝜕ℎ

𝜕𝑙
≠ 0 

h ≠ 0;  𝑤 ≠ 0; and  

 
𝜕ℎ

𝜕𝑙
< 0.95ℎ; 𝑂𝑅 

𝜕ℎ

𝜕𝑙
> 1.05ℎ  

 

Continuous wavy 

non-uniform 

deposition 

h ≠ 0;  𝑤 ≠ 0;  
𝜕ℎ

𝜕𝑙
≠ 0;  𝑎𝑛𝑑

𝜕𝑤

𝜕𝑙
≠ 0 

ℎ ≠ 0;  w ≠ 0; and  
𝜕ℎ

𝜕𝑙
< 0.95ℎ;  𝑂𝑅 

𝜕ℎ

𝜕𝑙
> 1.05ℎ  

𝜕𝑤

𝜕𝑙
< 0.9w;  𝑂𝑅 

𝜕𝑤

𝜕𝑙
 > 1.1w 

 

Continuous wavy 

uniform 

deposition 

h ≠ 0;  𝑤 ≠ 0;  

 
𝜕ℎ

𝜕𝑙
≠ 0; 𝑎𝑛𝑑 

𝜕𝑤

𝜕𝑙
= 0 

h≠ 0;  w ≠ 0; and 
𝜕ℎ

𝜕𝑙
< 0.95ℎ; 𝑂𝑅 

𝜕ℎ

𝜕𝑙
> 1.05ℎ ; 

0.9𝑤 <
𝜕𝑤

𝜕𝑙
< 1.1𝑤 

 

Continuous, non-

wavy and non- 

uniform 

deposition 

h ≠ 0;  𝑤 ≠ 0;   

 
𝜕ℎ

𝜕𝑙
= 0;  𝑎𝑛𝑑 

𝜕𝑤

𝜕𝑙
≠ 0 

h ≠ 0;  w ≠ 0;  

0.95ℎ <
𝜕ℎ

𝜕𝑙
< 1.05ℎ; and 

𝜕𝑤

𝜕𝑙
< 0.9w;  𝑂𝑅 

𝜕𝑤

𝜕𝑙
 > 1.1w 

 

Continuous non-

wavy uniform 

deposition 

h ≠ 0;  𝑤 ≠ 0;  
𝜕ℎ

𝜕𝑙
= 0; 𝑎𝑛𝑑

𝜕𝑤

𝜕𝑙
= 0 

h ≠ 0;  𝑤 ≠ 0;  

0.95ℎ <
𝜕ℎ

𝜕𝑙
< 1.05ℎ; and 

0.9𝑤 <
𝜕𝑤

𝜕𝑙
< 1.1𝑤 

 

Under-dilution 𝐴𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝑤

ℎ
< 1.3 𝐴𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 =

𝑤

ℎ
< 1.1 

 
Over-dilution 𝐴𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 =

𝑤

ℎ
> 1.8 𝐴𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 =

𝑤

ℎ
> 2.2 

 
where, ‘w’, ‘h’, and ‘l’ are the width, height, and length of a deposition respectively 
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                           (a)                                                        (b) 

          
                             (c)                                                                       (d) 

Fig. 3.2: Processing of a recorded video of single-layer deposition: (a) extracted image 

showing deposition height, (b) annotated image for computing deposition height (c) 

extracted image of discontinuous deposition, and (d) detection of discontinuity when 

deposition height becomes zero. 

        
                          (a)                                                                       (b) 

      
                         (c)                                                                       (d) 

Fig. 3.3: Processing of a recorded video of single-layer deposition: (a) extracted image 

showing deposition width, (b) annotated image for computing deposition width, (c) 

extracted image of discontinuous deposition, and (d) detection of discontinuity when 

deposition width becomes zero. 
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3.5 Detection of Defects by HSV Segmentation and Centroid Distance  

Following two approaches were used to detect the defects in single-layer depositions: 

approach-1 using HSV based color segmentation and centroid distance to compute 

deposition height, deposition width, and aspect ratio and approach-2 using trained YOLO 

models to predict deposition height and deposition width and compute aspect ratio. 

Variation in the computed/predicted values along the deposition length were used to detect 

discontinuity, non-uniformity, waviness, over-dilution, and under-dilution of the 

considered depositions.  

The HSV process begins by resizing each annotated image to 830×664 pixels for 

better consistency and converting it to HSV color space for better red color segmentation 

or to detect the two red reference points as shown in Figs. 3.2b and 3.3b. The HSV color 

thresholds helps in finding specific colors in an image and creating the binary masks i.e., 

black and white contrast followed by contour analysis by figuring out shapes and edges in 

this contrast. Yellow line and its 2 red color end points were used to indicate the 

boundaries of deposition height or width in an annotated image in the present work. Then 

centroid of the yellow color line is found and the annotated distance between two red color 

boundary points having coordinates as P (x1, y1) and Q (x2, y2) is computed as the 

Euclidean distance using Eq. 3.1.  

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2                                                           (3.1) 

The computed distance is converted into mm using the pixel-to-mm ratio which is 

defined as ratio of an image resolution (usually specified in pixels e.g., 1920x1080 pixels) 

to camera sensor size (usually given in mm) and is given by Eq.3.2.  

𝑃𝑖𝑥𝑒𝑙 𝑡𝑜 𝑚𝑚 𝑟𝑎𝑡𝑖𝑜 =  
𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑛 𝑖𝑚𝑎𝑔𝑒  (𝑝𝑖𝑥𝑒𝑙𝑠)

  𝐶𝑎𝑚𝑒𝑟𝑎 𝑠𝑒𝑛𝑠𝑜𝑟 𝑠𝑖𝑧𝑒 (𝑚𝑚)
                     (3.2) 

For the HDR camera used in the present work, values of pixel-to-mm ratio as 0.0375 

and 0.075 were used for deposition height and width respectively. The distance found in 

mm is measure of deposition height or width as the case may be. Absence of yellow color 

line and presence of only red points is recorded as zero deposition height or width thus 

detecting it as discontinuous deposition. Values of deposition height obtained from all the 

annotated images from a recorded video are plotted as the function of time. Thereafter, 

deposition length is plotted as a function of time by analyzing the series of annotated 

images and tracking movements of red points over them for each recorded video. Length 

of each single-layer deposition in the present study was 50 mm and pixel to mm ratio of 

the HDR camera was callibrated accordingly. Then a graph showing variation in 

deposition height as a function of deposition length is constructed by correlating their 
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temporal variation graphs. Same procedure was used to construct the graph showing 

variation in deposition width as a function of deposition length. 

3.6 Detection of Defects by YOLO Models 

Detection of deposition defects by YOLO models comprises of two-step process: (i) 

preparation of dataset for training, validation, and testing, and (ii) use of the prepared 

dataset in training of YOLOv8 and YOLOv11 models and testing of the trained models.   

3.6.1 Preparation of the Dataset  

The annotated image and their unannotated versions were segregated into two separate 

folders named as ‘labels’ and ‘images’ respectively. Each folder contained two subfolders 

named as ‘train’ and ‘val’ which have 70% image data for training and 20% image data 

for validation of the YOLOv8 and YOLOv11 model respectively. Another folder named 

as ‘test’ contained the testing data (i.e., unannotated images) for the trained YOLO models 

to predict deposition height and width for different single-layer depositions. Table 3.4 

provides details of the images used in training, validation, and testing of YOLOv8 and 

YOLOv11 models for different deposition materials. The Yet Another Markup Language 

(YAML) file was used for classifying the training data into two classes for detecting 

deposition height and discontinuity images. Similarly, training data were classified as 

width and discontinuity for detecting deposition width and discontinuity images. This is a 

crucial step for defect detection as it takes into account information about the images and 

definition of classes. 

Table 3.4: Details of the images used in training, validation, and testing of YOLOv8 and 

YOLOv11 models for different deposition materials. 

 

3.6.2 Training and Validation of YOLO Models 

Following parameters were used in the training of YOLOv8 and YOLOv11 models 

and their values are presented in Table 3.5:   

 Epochs: One epoch indicates a complete reading of the entire training dataset by a 

YOLO model therefore number of epochs determines number of times a YOLO model 

reads the entire training data. Less number of epochs lead to underfitting (i.e., model is 

too simple to learn the underlying patterns in the training data) whereas, large number 

Sr. 

No. 

Feedstock material and its 

deposition geometry 

parameter   

No. of images 

used in 

training  

No. of 

images used 

in validation 

No. of 

images used 

in testing 

Total 

number of 

images 

1. Height of SS 316L 3529 1045 59 4633 

2. Width of 63Co29Cr4Mo4Ti 1020 280 72 1372 

3. Height of 63Co29Cr4Mo4Ti 2961 1085 53 4099 

4. Height of Ti6Al4V 1445 415 43 1903 
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of epochs lead to overfitting (i.e., model learns the training data too well, including 

noise and random fluctuations, and fails to generalize to the unseen data). 

 Batch size: The number of images processed by a YOLO model before its weights are 

updated. For example, if batch size is 32 then YOLO model will process 32 images, 

computes loss, and update its weights. Smaller batch size leads to more frequent 

weight updates and less stability whereas, larger batch size results in lesser number of 

weight updates and usage of more memory. 

 Image resolution: The input resolution of an image (usually in 640 × 640 pixels 

format) fed to a YOLO model. Larger image resolution gives better detection of 

smaller objects but leads to slower training of a YOLO model whereas, smaller image 

resolution captures less details but provides faster training to a YOLO model. 

 Learning rate: It is the step size used in updating the weights of a YOLO model 

based on its training losses. Smaller learning rate leads to a slower training whereas, 

higher learning rate results in faster training of a YOLO model with no convergence 

during or at the end of the training. 

 Momentum: It indicates the acceleration used in gradient descent by considering past 

gradients while updating weights of a YOLO model. It helps to avoid oscillation and 

speeds up the convergence. Its value is usually between 0.8 and 0.999.  

 Weight decay: It is a regularization parameter that penalizes large weights by adding 

their squared values to the loss function. It prevents overfitting by constraining 

complexity of a YOLO model.  

Table 3.5: Parameters used in the training of YOLOv8 and YOLOv11 models. 

Parameters Values 

Epochs 50 

Batch size 16 

Image resolution 640 

Learning rate 0.003 

Momentum 0.94 

Weight decay 0.0005 

 

3.6.3 Concept of the Confusion Matrix  

Confusion matrix is a performance evaluation tool for a YOLO model which is very 

useful for the classification problems. Fig. 3.4 depicts its concept. A confusion matrix 

consists of 4 quadrants and allocation of the dataset to these quadrants depends on the 

match between the predictions and labels.  Positive and negative are the two classes, for 

example in the present work, deposition height and width are taken as the positive class 
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and discontinuity is taken as the negative class. If a positive class is predicted for a 

labelled negative class (i.e., height or width is predicted for discontinuity) implying false 

indication of a positive class therefore it is referred to as false positive (FP) and it is 

located in the 1st quadrant of the confusion matrix. If a positive class is predicted for a 

labelled positive class (i.e., height or width is predicted for height or width) then it is 

called as true positive (TP) and it is in the 2nd quadrant of the confusion matrix. If a 

negative class is predicted for a labelled positive class (i.e., discontinuity is predicted for 

height or width) then it gives a false indication of negative class therefore it is referred to 

as false negative (FN) and is located in 3rd quadrant of the confusion matrix. If a negative 

class is predicted for a labelled negative class i.e., discontinuity is predicted for 

discontinuity, it is referred to as true negative (TN) and it is in 4th quadrant of the 

confusion matrix. 

 

Fig. 3.4: Concept of a confusion matrix used in performance evaluation of a YOLO 

model. 

3.6.4 Performance of the Trained YOLO Models 

Following parameters were used to evaluate performance of a YOLO model: 

 Accuracy: It indicates proportion of the correct predictions by a YOLO model. It is 

the ratio of sum of true positives and true negatives to the sum of true positives, true 

negatives, false positives, and false negatives. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                       (3.3)  
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 Precision: It measures the proportion of positive identifications that are actually 

correct. It is defined as the ratio of true positives to the sum of true positives and false 

positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃 
                                        (3.4) 

 Recall: It is also known as true positive rate (TPR) or sensitivity. It expresses how 

many actual positive instances identified by a YOLO model correctly as positive or it 

shows how well a YOLO model can identify all positive cases. It is expressed as the 

ratio of true positives to the sum of true positives and false negatives.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁 
                                                (3.5)  

 F1 score: It is also called balanced F-score or F-measure. It is the most commonly 

used performance evaluation criterion of a classification model especially while 

dealing with the imbalanced datasets (i.e., where the difference between the dataset of 

positive and negative class is very high). It is expressed as the harmonic mean of 

precision and recall thus combining the two important evaluation criteria helping it to 

give a more comprehensive picture of a YOLO model accuracy. 

                  𝐹1 𝑆𝑐𝑜𝑟𝑒 =   
2 x Precision x  Recall

Precision + Recall
                               (3.6) 

3.6.5 Testing of the Trained YOLO Models 

The trained YOLO models were tested using only unannotated images of a single-layer 

deposition video (i.e., 10% of clearly visible extracted images) to predict image-wise 

deposition height and width. The testing process starts with a trained YOLO model 

accessing the file containing the trained weights for deposition height and width and 

processing the unannotated images from a folder named as ‘test’. Then the trained YOLO 

model detects the objects (i.e., deposition height or width), encloses each detected object 

in a green colour bounding box, predicts deposition height (or width) in pixels, and 

converts them to mm using pixel-to-mm a conversion factor of 0.0375 for deposition 

height and 0.075 for deposition width. The predicted value of deposition height (or width) 

is displayed in red colour text and place above the green colour bounding box. Each output 

image containing the bounding box and predicted value of deposition height (or width), is 

saved in a separate folder for further analysis. The predicted values of deposition height 

(or width) are plotted as the function of time and deposition length is also plotted as a 

function of time by analyzing the series of unannotated images. Then a graph showing 

variation in deposition height (or width) as a function of deposition length is constructed 

by correlating their temporal variation graphs.                                  
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This chapter presented details of data acquisition for the present work through high 

quality recording of videos of single-layer depositions of 63Co29Cr4Mo4Ti, Ti6Al4V, 

and SS 316L by µ-PMAM process using HDR camera.  It also presented details of 

extraction of images from each recorded video, annotation of clearly visible extracted 

images, deposition defect detection methodology, and defect detection using HSV based 

color segmentation and centroid distance and YOLO models. The next chapter provides 

the results and discussion of this research work by describing the analysis of the 

deposition defects detected by HSV segmentation and centroid distance and the trained 

YOLO models in single-layer depositions of 63Co29Cr4Mo4Ti, Ti6Al4V, and SS 316L 

alloys. It also provides comparison of the ranges for deposition height, deposition width, 

and aspect ratio identified by HSV-based approach and the trained YOLO models and µ-

PMAM process parameters identified by HSV-based approach for continuous, uniform, 

and non-wavy depositions of the considered materials. 
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Chapter 4 

Results and Discussion 

This chapter provides the results and discussion of this research work by describing the 

analysis of the deposition defects detected by HSV segmentation and centroid distance and 

the trained YOLO models in single-layer depositions of 63Co29Cr4Mo4Ti, Ti6Al4V, and 

SS 316L alloys. It also provides comparison of the ranges for deposition height, deposition 

width, and aspect ratio identified by HSV-based approach and the trained YOLO models 

and µ-PMAM process parameters identified by HSV-based approach for continuous, 

uniform, and non-wavy depositions of the considered materials. 

4.1 Results for Single-Layer Depositions 

This section presents the results and their analyses for defect detection in μ-PMAM 

process fabricated fifteen single-layer depositions of 63Co29Cr4Mo4Ti, four single-layer 

depositions of Ti6Al4V, and eight single-layer depositions of SS 316L. Discontinuity, 

non-uniformity, waviness, under-dilution and over-dilution have been detected using HSV 

colour segmentation and centroid distance-based approach and YOLO models-based 

approach by plotting variations in computed and predicted values of deposition height, 

deposition width, and aspect ratio along the deposition length. Following paragraphs 

describe these results.  

4.1 Analysis of Defects in 63Co29Cr4Mo4Ti Depositions 

15 videos were used for the analysis of defects in single-layer depositions of 63Co-

29Cr-4Mo-4Ti. There were 2 approaches which were employed for the detection of 

defects: HSV segmentation and centroid distance, and YOLO model approach.   

4.1.1 Detection of Defects by HSV Segmentation Method 

Fig. 4.1 present graphs for detection of non-uniform deposition through unacceptable 

variation in deposition width (i.e., beyond the upper and the lower bound values of 1.38 

and 1.13 mm respectively) in single-layer deposition of 63Co29Cr4Mo4Ti for 17A µ-

plasma current (Fig. 4.1a) along with photographs of the obtained depositions for 

deposition head traverse speed of 30 mm/min (Fig. 4.1b), and 35 mm/min (Fig. 4.1c). 

Whereas, Fig. 4.2. shows detection of wavy deposition through unacceptable variations in 

63Co29Cr4Mo4Ti single-layer depositions for different values of deposition head traverse 

speed and for µ-plasma current of 12A (Fig. 4.2a), 13A (Fig. 4.2b), 18A (Fig. 4.2b), 17.5A 

(Fig. 4.2d), and 14A and 17A for deposition head traverse speed of 40 and 45 mm/min 

(Fig. 4.2e). 
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                                    (a)                                                (b)                     (c)                                                     

Fig. 4.1: (a) Detection of non-uniform deposition through unacceptable variation in 

deposition width in 63Co29Cr4Mo4Ti single-layer deposition for 17A µ-plasma current, 

and photograph of obtained deposition for deposition head traverse speed of (b) 30 

mm/min, and (c) 35 mm/min. 

  
                           (a)                                                                     (b)                                                                

               
                      (c)                                                                      (d)        
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                                                               (e)                                            

Fig. 4.2. Detection of wavy deposition through unacceptable variation in deposition 

height in 63Co29Cr4Mo4Ti single-layer depositions for different values of deposition 

head traverse speed and for µ-plasma current of (a) 12A, (b) 13A, (c) 18A, (d) 17.5A, and 

(e) 14A and 17A for deposition head traverse speed of 40 and 45 mm/min. 

Following are the observations for detection of non-uniformity caused by variation in 

deposition width beyond its lower and upper bound values of 1.13 and 1.38 mm as shown 

in Fig. 4.1 and detection of waviness due to variation in deposition height beyond its lower 

and upper bound values of 0.95 and 1.05 mm as shown in Fig. 4.2:  

 Traverse speed of deposition head of 30 mm/min gives more uniform deposition of 

63Co29Cr4Mo4Ti than the deposition corresponding to 35 mm/min. It is confirmed by 

the corresponding deposition photographs shown in Figs. 4.1b and 4.1c. It happens 

because smaller traverse speed of deposition head allows the µ-plasma arc spending 

more interaction time with the feedstock material which results in its better melting 

and solidification thus giving more uniform deposition.  

 Occurrence of discontinuities are observed at start of a deposition i.e., 5 mm 

deposition length for 17.5A µ-plasma current and 30 mm/min deposition head traverse 

speed (Fig. 4.2d), at 10 mm deposition length for 17A µ-plasma current and 35 

mm/min traverse speed of deposition head (Fig 4.1a), and also towards the end of 

deposition i.e., at 40 mm deposition length for 12A µ-plasma current and 40 mm/min 

deposition head traverse speed (Fig. 4.2a), at 45 mm deposition length for 18A µ-

plasma current and 45 mm/min deposition head traverse speed (Fig. 4.2c), and during 

40-45 mm deposition length for 17A µ-plasma current and 45 mm/min deposition head 

traverse speed (Fig. 4.2e). It implies that proper µ-plasma arc is not formed at the start 

and end of single-layer depositions which may be due to (a) interrupted powder supply 

of feedstock material, (b) use of randomly selected process parameters, and (c) use of 
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dissimilar materials for feedstock and base plate. Difference in their properties cause 

poor metallurgical bonding between them.   

 Most of the depositions are wavy for majority of their deposition length as evident 

form Figs. 4.2a to 4.2e. It is due to very small value of deposition height obtained in 

single-layer depositions of 63Co29Cr4Mo4Ti alloy which has some high melting point 

constituents such as Cr and Mo which cause uneven depositions.  

 Waviness decreases with an increase in deposition head traverse speed for smaller µ-

plasma current (Fig. 4.2a) but this trend reverses for higher µ-plasma current as shown 

in Figs. 4.2c 4.2b for µ-plasma current of 18A and 13A respectively.  

4.1.2 Defects Detected by YOLO Models  

Fig. 4.3 depicts the confusion matrix used for detection of deposition width and 

discontinuity images and for detection of deposition height and discontinuity images by 

the YOLOv8 model (Figs. 4.3a and 4.3b) and YOLOv11 (Figs. 4.3c and 4.3d) models. 

     
                                (a)                                                                       (b) 

      
                                 (c)                                                                      (d) 

Fig. 4.3: Confusion matrix to detect deposition width and discontinuity images and 

deposition height and discontinuity images by (a, b) YOLOv8, and (c, d) YOLOv11.   
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Confusion matrix evaluates performance of a YOLO model on the basis of number of 

true positives, true negatives, false positives, and false negatives shown in its four 

quadrants. As the number of images in a quadrant increase, its color intensity also 

increases. It can be observed from Fig. 4.3 that both YOLOv8 and YOLOv11 models give 

much higher number of true positives for detecting both deposition width and 

discontinuity images and deposition height and discontinuity images. This proves their 

prediction capabilities. It can also be seen that the YOLOv11 model gives higher number 

of true positives for predicting both deposition width and deposition height (i.e., 1015 and 

3584 images) than that given by the YOLOv8 model (i.e., 942 and 3178 images). This 

clearly indicates superior prediction performance of YOLOv11 than YOLOv8 model. 

4.1.2.1 Performance of the Trained YOLO Models  

Fig. 4.4 presents the bar diagrams showing comparison of four performance parameters 

namely accuracy, precision, recall, and F1 score for YOLOv8 and YOLOv11 models for 

the dataset of deposition width (Fig. 4.4a) and deposition height (Fig. 4.4b) of 

63Co29Cr4Mo4Ti single-layer depositions. It is evident from Fig. 4.4 that the trained 

YOLOv11 model has higher values accuracy, precision, recall, and F1 score for the 

deposition width dataset (i.e., 86%; 88%; 96%; and 92% respectively) and deposition 

height dataset (i.e., 93%; 93%; 98%; and 95% respectively) of 63Co29Cr4Mo4Ti single-

layer depositions than those corresponding to the trained YOLOv8 model (i.e., 80%; 82%; 

94%; and 88% respectively for deposition width dataset and 85%; 89%; 94%; and 91% 

respectively for deposition height dataset). It proves superiority of YOLOv11 model than 

YOLOv8 model in the training performance.  

 
(a) 
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(b) 

Fig. 4.4: Comparison of accuracy, precision, recall, and F1 score for YOLOv8 and 

YOLOv11 for 63Co29Cr4Mo4Ti single-layer deposition dataset for its (a) deposition 

width, and (b) deposition height. 

4.1.2.2 Detection of Defects by the YOLO Models  

Fig. 4.5 depicts detection of non-uniform deposition by YOLOv8 and YOLOv11 

models through variation in predicted width for 63Co29Cr4Mo4Ti single-layer deposition 

along with computed width by HSV segmentation method. Fig. 4.6 shows photograph of 

an extracted image for deposition width of 63Co29Cr4Mo4Ti single-layer deposition at 

54th second (Fig. 4.6a) and the width bounded by YOLOv8 model (Fig. 4.6b), and 

YOLOv11 model (Fig. 4.6c).  

 

Fig. 4.5: Detection of non-uniform deposition by YOLOv8 and YOLOv11 models through 

variation in predicted width for 63Co29Cr4Mo4Ti single-layer deposition along with 

computed width by HSV segmentation method. 
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Fig. 4.6: (a) Photograph of an extracted image for deposition width of 63Co29Cr4Mo4Ti 

single-layer deposition at 54th second and the width bounded by (b) YOLOv8 model, and 

(c) YOLOv11 model. 

The set of parameters that are used for predicting width are 17A current and 30 

mm/min traverse speed. The upper and the lower bounds for predicted width of 

63Co29Cr4Mo4Ti are 1.29 mm and 1.06 mm respectively. Width predictions generated 

using YOLOv8 and YOLOv11 at 54th sec are 1.12 mm and 1.20 mm respectively as 

shown in Fig. 4.6.  

Fig. 4.7 depicts the detection of wavy deposition by YOLOv8, and YOLOv11 models 

through variation in predicted height for 63Co29Cr4Mo4Ti single-layer deposition height 

along with computed height by HSV segmentation method. Fig. 4.8 shows the (a) 

Photograph of (a) extracted image for deposition height of SS 316L single-layer 

deposition at 17th second (Fig. 4.8a) and the height bounded by (b) YOLOv8 model (Fig. 

4.8b), and (c) YOLOv11 model (Fig. 4.8c). 

 
Fig. 4.7: Detection of wavy deposition by YOLOv8, and YOLOv11 models through 

variation in predicted height for 63Co29Cr4Mo4Ti single-layer deposition height along 

with computed height by HSV segmentation method. 
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Fig. 4.8: (a) Photograph of an extracted image for deposition height of SS 316L single-

layer deposition at 17th second and the height bounded by (b) YOLOv8 model, and (c) 

YOLOv11 model.  

The set of parameters that are used for these predictions are 17A Current and 45 

mm/min Traverse Speed. The upper and the lower bounds for predicted width of 

63Co29Cr4Mo4Ti are 1.47 mm and 1.33 mm respectively. Height predictions generated 

using YOLOv8 and YOLOv11 at 17th sec are 1.69 mm and 1.50 mm respectively as 

shown in fig. 4.8.                

4.2 Analysis of Defects in Ti6Al4V Depositions 

4 videos were used for the analysis of defects in single-layer depositions of Ti6Al4V. 

There were 2 approaches which were employed for the detection of defects: HSV 

segmentation and centroid distance, and YOLO model approach.  

4.2.1 Defects Detected by HSV Segmentation and Centroid Distance 

Fig. 4.9. shows graphical representation for variation in deposition height along 

deposition length in single-layer depositions of Ti6Al4V for different set of process 

parameters. 
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Fig. 4.9: Graphical representation for variations in deposition height along deposition 

length in single-layer depositions of Ti6Al4V for different set of process parameters. 

Following are the observations for graphical representation for variation in deposition 

height along deposition length in single-layer depositions of Ti6Al4V for different set of 

process parameters as shown in Fig. 4.9:  

 Occurrence of discontinuity is observed at 20 mm length at 15A µ-plasma current 

and 50 mm/min deposition head traverse speed. It can be noted that, it is found in 

the middle of the deposition. The possible causes for this could be (a)interrupted 

powder supply of the feedstock material (b) use of randomly selected process 

parameters. 

 Due to lack of geometrical consistency, it was not possible to assign any height 

range for Ti6Al4V depositions. The reasons for this could be (a) random selection 

of process parameters i.e., unoptimized parameters. 

 Maximum variation in deposition height is observed at 15A µ-plasma current and 

50 mm/min deposition head traverse speed on Ti6Al4V substrate and 15A µ-plasma 

current and 55 mm/min deposition head traverse speed on mild steel substrate. (a) 

Higher µ-plasma current and traverse speed of deposition head might have led to 

spreading of the powder which caused this unevenness in the deposition. (b) 

Dissimilar materials could have caused less interaction and led to poor 

metallurgical bonding between the material and the substrate. 

 Minimum variation in deposition height is observed at 15A µ-plasma current and 

55 mm/min deposition head traverse speed on Ti6Al4V substrate. The probable 

causes for this could be (a) Use of similar materials for feedstock and base plate. 
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Similarity in their properties give proper interaction time which leads to good 

metallurgical bonding between them.  

4.2.2 Defects Detected by YOLO Models  

Fig. 4.10 depicts the confusion matrix used for detection of deposition height and 

discontinuity images by the YOLOv8 model (Fig. 4.10a) and YOLOv11 model (Fig. 

4.10b) models. 

     

                         (a)                                                                             (b) 

Fig. 4.10: Confusion matrix for detection of height and discontinuity images through (a) 

YOLOv8 and (b) YOLOv11. 

It can be observed from Fig. 4.10 that both YOLOv8 and YOLOv11 models give much 

higher number of true positives for detecting deposition height and discontinuity images. 

This proves their prediction capabilities. It can also be seen that the YOLOv11 model 

gives higher number of true positives and true negatives for predicting deposition height 

(i.e., 1179, 281 images) than given by the YOLOv8 model (i.e., 1088, 305 images). This 

clearly indicates superior prediction performance of YOLOv11 than YOLOv8 model. 

4.2.2.1 Performance of the Trained YOLO Models  

Fig. 4.11 presents the bar diagrams showing comparison of four performance 

parameters namely accuracy, precision, recall, and F1 score for YOLOv8 and YOLOv11 

models for the dataset of deposition height of Ti6Al4V single-layer depositions. 
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Fig. 4.11: Comparison of accuracy, precision, recall, and F1 score for YOLOv8 and 

YOLOv11. 

It is evident from Fig. 4.11 that the trained YOLOv11 model has higher values 

accuracy, precision, recall, and F1 score for the deposition height dataset (i.e., 78%; 77%; 

94%; and 85% respectively) of Ti6Al4V single-layer depositions than the trained 

YOLOv8 model (i.e., 72%; 68%; 98%; and 80%) respectively for deposition height 

dataset. It proves superiority of YOLOv11 model than YOLOv8 model in the training 

performance. 

Similar observation in recall was made by Sharma et al. (2024). They found that the 

recall value for YOLOv8 is greater than YOLOv11. They investigated the comparative 

performance of speed and accuracy for YOLOv8, YOLOv9, YOLOv10, YOLOv11 and 

faster R-CNN algorithms. They found that large dataset could be a cause for this reverse 

trend in recall performance metric. 

4.2.2.2 Detection of defects by the YOLO Models  

Fig. 4.12 depicts the detection of waviness through annotated and predicted variation in 

deposition height along deposition length of Ti6Al4V single-layer depositions using HSV 

segmentation and centroid distance, YOLOv8, and YOLOv11. Fig 4.13 depicts the 

photograph of (a) extracted image for deposition height of Ti6Al4V single-layer 

deposition at 21st second (Fig. 4.13a) and the height bounded by (b) YOLOv8 model (Fig. 

4.13b), and (c) YOLOv11 model (Fig. 4.13c). 
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Fig. 4.12: Detection of waviness through annotated and predicted variation in deposition 

height along deposition length in single-layer depositions of Ti6Al4V using HSV 

segmentation and centroid distance, YOLOv8, and YOLOv11. 

 
Fig. 4.13: Photograph of (a) extracted image for deposition height of Ti6Al4V single-

layer deposition at 21st second and the height bounded by (b) YOLOv8 model, and (c) 

YOLOv11 model. 

The set of parameters that are used for predicting height are 15A current and 50 

mm/min traverse speed. Height predictions generated using YOLOv8 and YOLOv11 at 

21st sec are 4.76 mm and 4.99 mm respectively as shown in fig. 4.13.  

4.3 Analysis of defects in SS 316L depositions 

8 videos were used for the analysis of defects in single-layer depositions of SS 316L. 

There were 2 approaches which were employed for the detection of defects: HSV 

segmentation and centroid distance, and YOLO model approach.  
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4.3.1 Defects detected by HSV segmentation and centroid distance 

Fig. 4.14. depicts the detection of wavy deposition through unacceptable variation in 

deposition height in SS 316L single-layer depositions for different values of deposition 

head traverse speed and for µ-plasma current of (a) 14A, (b) 14.5A, and(c) 15A. Fig. 4.15 

shows the detection of non-uniform deposition through unacceptable variation in 

deposition width in SS 316L single-layer deposition for different values of deposition head 

traverse speed and for µ-plasma current of (a) 14A, (b) 14.5A, and(c) 15A. 

 
                                  (a)                                                                 (b) 

 
(c) 

Fig. 4.14: Detection of wavy deposition through unacceptable variation in deposition height 

in SS 316L single-layer depositions for different values of deposition head traverse speed 

and for µ-plasma current of (a) 14A, (b) 14.5A, and(c) 15A.  
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(a)                                                               (b) 

 
(c) 

Fig. 4.15: Detection of non-uniform deposition through unacceptable variation in 

deposition width in SS 316L single-layer deposition for different values of deposition head 

traverse speed and for µ-plasma current of (a) 14A, (b) 14.5A, and(c) 15A.  

Following are the observations for detection of waviness due to variation in deposition 

height beyond its lower and upper bound values of 2.14 and 2.36 mm as shown in Fig. 

4.14 and  

 At 14A and 14.5A current, deposition profile became more continuous with the 

increase in traverse speed as shown [fig. 4.14a, fig 4.14b]. Continuous deposition with 

least waviness was observed at 14.5A Current and 53 mm/min traverse speed as shown 

in fig. 4.14c.  

 At 15A current, discontinuities were observed along with high waviness at 47 (at 20 

mm length) and 50 mm/min (25 mm length). It implies that proper µ-plasma arc is not 

formed in the mid-deposition of single-layer depositions which may be due to (a) 

interrupted powder supply of feedstock material, (b) use of randomly selected process 
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parameters, and (c) use of dissimilar materials for feedstock and base plate. Difference 

in their properties cause poor metallurgical bonding between them.   

 Trends clearly show that low current (14A) with moderate to high traverse speed (50 

mm/min, 53 mm/min) and, high current (14.5A, 15A) with high traverse speed (53 

mm/min) is essential for non-wavy depositions of SS 316L.  

Post-deposition measurement of width for SS 316L depositions was done using digital 

vernier. Following are the observations for detection of non-uniformity caused by variation 

in deposition width beyond its lower and upper bound values of 3.83 and 4.68 mm as 

shown in Fig. 4.15: 

 Depositions with least non uniform nature was observed for 14A current and 53 

mm/min traverse speed (fig. 4.15a), and 15A current and 53 mm/min traverse speed 

(fig. 4.15c). At 14.5A current, uniformity is observed for lower traverse speed (47 

mm/min) (fig. 4.15b). All currents (14A, 14.5A and 15A) with high traverse speed (53 

mm/min) gave comparatively uniform depositions. These trends are supported by 

investigation of Kotoban et al. (2017). They found that low traverse speed causes 

increased particle erosion, low deposition efficiency, excessive heat input, deposition 

defects whereas high traverse speed gives reduced erosion, higher deposition 

efficiency, and improved deposition quality.  

Table 4.1 shows the dataset used for computation of aspect ratio variations for different 

combinations of µ-plasma current and deposition head traverse speed. Fig. 4.16. shows 

graphical representation of variations in aspect ratio of single-layer depositions of SS 

316L (a) along deposition length for three values of µ-plasma current, (b) along deposition 

length for the entire dataset of Table 4.1, and (c) along deposition length for different 

combinations of µ-plasma current and deposition head traverse speed. 

Table 4.1: Dataset used to compute variations in aspect ratio of single-layer 

depositions of SS 316L for different combinations of µ-plasma current and deposition 

head traverse speed. 

 

 

 

 

 

 

 

 

 

 

µ-plasma current (A) and deposition head traverse speed (mm/min.) 

Data point no. 1 2 3 4 5 6 7 8 

Deposition 

length (mm) 

14/47 14/50 14/53 14.5/47 14.5/53 15/47 15/50 15/53 

5 1.9 1.8 1.4 2.2 2.4 2 2 2 

10 1.1 1.6 1.3 1.9 1.6 1.8 1.3 1.5 

15 1.5 1.9 1.4 1.3 1.6 1.5 1.3 1.7 

20 1.8 1.7 1.8 1.2 1.9 1.8 1.5 1.6 

25 1.9 1.7 1.8 1.9 1.6 1.8 1.7 1.7 

30 1.9 1.9 1.9 1.9 1.6 1.8 1.9 1.6 

35 1.8 2.1 1.8 1.8 1.7 2 1.7 1.7 

40 2 1.9 2 2 1.7 1.9 1.8 1.8 

45 1.7 2.2 1.7 1.9 2 1.6 2.1 1.8 
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(a) 

 
(b) 

 
(c) 

Fig. 4.16:  Graphical representation of variations in aspect ratio of single-layer depositions 

of SS 316L (a) along deposition length for three values of µ-plasma current, (b) along 
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deposition length for the entire dataset of Table 4.1, and (c) along deposition length for 

different combinations of µ-plasma current and deposition head traverse speed. 

 Aspect ratio was calculated by dividing the width measured post-deposition with the 

height computed through HSV segmentation and centroid distance. Confidence level of 

95% (z=1.96) was assumed to calculate the aspect ratios.  

𝐴𝑠𝑝𝑒𝑐𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝑊𝑖𝑑𝑡ℎ 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝐸𝑥−𝑆𝑖𝑡𝑢 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

𝐻𝑒𝑖𝑔ℎ𝑡 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝑉𝐺𝐺 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑜𝑟 
                       (4.1)  

    The dotted bounding boxes in fig. 4.16b and fig. 4.16c show that variation in aspect 

ratio is minimum as compared to other points in the graph. So, for fig. 4.16a, it is found 

that at 14A current, variation in aspect ratio is minimum at the middle of the deposition 

and at the end. It is found that for 14.5A current, variation in aspect ratio is lowest at a 

single point. It is found that for 15A current, variation in aspect ratio is least in the middle 

and at ends. So, for fig. 4.16b, it is found that aspect ratio variation is comparatively less 

for almost latter half of the deposition length. So, from fig. 4.16c, it is evident that 

variation in aspect ratio is minimum at random points.  

Fig. 4.17 shows the detection of under-dilution and over-dilution through variation in 

aspect along deposition length of SS 316L single-layer depositions for a µ-plasma current 

of (a)14A; (b) 14.5A; and (c) 15A. 

  
(a)                                                                (b) 
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(c) 

Fig. 4.17: Detection of under-dilution and over-dilution using the variation in aspect ratio 

along the deposition length of SS 316L single-layer depositions for a µ-plasma current of 

(a)14A, (b) 14.5A, and (c) 15A. 

The upper and the lower bounds for aspect ratio computed using HSV segmentation 

and centroid distance for SS 316L are 2.2 and 1.6 respectively as show in Fig. 4.17.  

4.3.2 Defects Detected by YOLO Models 

Fig. 4.18. depicts the confusion matrix used for detection of deposition height and 

discontinuity images by the YOLOv8 model (Fig. 4.18a) and YOLOv11 model (Fig. 

4.18b) models. 

       

                             (a)                                                                     (b) 

Fig. 4.18: Confusion matrix for detection of height and discontinuity images through (a) 

YOLOv8 and (b) YOLOv11. 
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It can be observed from Fig. 4.18 that both YOLOv8 and YOLOv11 models give much 

higher number of true positives for detecting deposition height and discontinuity images. 

This proves their prediction capabilities. It can also be seen that the YOLOv11 model 

gives higher number of true positives and true negatives for predicting deposition height 

(i.e., 3371, 675 images) than given by the YOLOv8 model (i.e., 3525, 714 images). This 

clearly indicates superior prediction performance of YOLOv11 than YOLOv8 model. 

4.3.2.1 Performance of the Trained YOLO Models  

Fig. 4.19 presents the bar diagrams showing comparison of four performance 

parameters namely accuracy, precision, recall, and F1 score for YOLOv8 and YOLOv11 

models for the dataset of deposition height of SS 316L single-layer depositions. 

 

Fig. 4.19: Comparison of Accuracy, Precision, Recall, and F1 Score for YOLOv8 and 

YOLOv11. 

It is evident from Fig. 4.19 that the trained YOLOv11 model has higher values 

accuracy, precision, recall, and F1 score for the deposition height dataset (i.e., 91%; 97%; 

92%; and 94% respectively) of Ti6Al4V single-layer depositions than the trained 

YOLOv8 model (i.e., 87%; 89%; 95%; and 92%) respectively for deposition height 

dataset. It proves superiority of YOLOv11 model than YOLOv8 model in the training 

performance. 

But, a reverse trend in recall metric is observed. Similar observation in recall metric 

was made by Sharma et al. (2024). They found that the recall value for YOLOv8 is 

greater than YOLOv11. They investigated the comparative performance of speed and 

accuracy for YOLOv8, YOLOv9, YOLOv10, YOLOv11 and faster R-CNN algorithms. 
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They found that large dataset could be a cause for this reverse trend in recall performance 

metric. 

4.3.2.2 Detection of defects by the YOLO Models  

Fig. 4.20 depicts the detection of waviness, under-dilution and over-dilution through 

variation in deposition height and aspect along deposition length of SS 316L single-layer 

depositions using HSV segmentation and centroid distance, YOLOv8, and YOLOv11. Fig 

4.21 depicts the photograph of (a) extracted image for deposition height of SS 316L 

single-layer deposition at 44th second (Fig. 4.21a) and the height bounded by (b) YOLOv8 

model (Fig. 4.21b), and (c) YOLOv11 model (Fig. 4.21c). 

                                    

                                  (a)                                                                     (b)  

Fig. 4.20: Detection of waviness, under-dilution, and over-dilution through variation in 

deposition height and aspect along deposition length of SS 316L single-layer depositions 

using HSV segmentation and centroid distance, YOLOv8, and YOLOv11. 

 
Fig. 4.21: Photograph of (a) extracted image for deposition height of SS 316L single-layer 

deposition at 44th second and the height bounded by (b) YOLOv8 model, and (c) 

YOLOv11 model. 
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The upper and the lower bounds for height of SS 316L are 2.89 mm and 2.62 mm 

respectively. The upper and the lower bounds for aspect ratio of SS 316L are 1.8 mm and 

1.3 mm respectively. The set of parameters that are used for these predictions are 15A µ-

plasma current and 47 mm/min traverse speed. Height predictions generated using 

YOLOv8 and YOLOv11 at 44th sec are 3.82 mm and 3.86 mm respectively as shown in 

fig. 4.21.           

4.5 Comparison of Identified Process Parameters and Deposition 

Geometry Ranges by HSV and YOLO Models  

Table 4.2 presents comparison of ranges for deposition width, deposition height, and 

aspect ratio identified by HSV and centroid distance-based approach and YOLO models 

for single-layer depositions of SS 316L and 63Co29Cr4Mo4Ti along with µ-PMAM 

process parameters identified HSV and centroid distance-based approach for their 

continuous and non-wavy, and uniform depositions.  

Table 4.2: HSV and YOLO models identified ranges for deposition geometry parameters 

for SS 316L and 63Co29Cr4Mo4Ti single-layer depositions and along with µ-PMAM 

process parameters identified by HSV approach for their continuous and non-wavy, and 

uniform depositions. 

 

This chapter presented the results and discussion of this research work by describing 

the analysis of the deposition defects detected by HSV segmentation and centroid distance 

and the trained YOLO models in single-layer depositions of SS 316L, Ti6Al4V, and 

63Co29Cr4Mo4Ti alloys. It also provides comparison of the ranges for deposition height, 

deposition width, and aspect ratio identified by HSV-based approach and the trained 

Feedstock 

material 

Defect 

detection 

approach 

Identified 

range for 

width 

Identified 

range for 

height 

Identified 

range for 

aspect 

ratio 

Identified parameters of µ-PMAM 

process 
µ-plasma 

current 

(A) 

Deposition 

head traverse 

speed 

(mm/min) 

µ-plasma 

current 

(A) 

Deposition 

head traverse 

speed 

(mm/min) 

SS 316L HSV and 

centroid 

distance-

based 

approach 

3.83-4.68 2.14-2.36 1.6-2.2 For non-wavy and 

continuous deposition 

For uniform 

deposition 

14.5 53 14.5 53 

YOLO 

models 

3.83-4.68 2.62-2.89 1.3-1.8 NA NA NA NA 

63Co29Cr4Mo4Ti HSV and 

centroid 

distance-

based 

approach 

1.13-1.38 0.95-1.05 1.1–1.5 For non-wavy and 

continuous deposition 

For uniform 

deposition 

13 45 17 30 

14 40 

YOLO 

models 

1.06-1.29 1.33-1.47 0.7- 1.0 NA NA NA NA 
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YOLO models and µ-PMAM process parameters identified by HSV-based approach for 

continuous, uniform, and non-wavy depositions of the considered materials. The next 

chapter will summarize the outcome of the present research by presenting its significant 

achievements, conclusions, and some directions for the future work. 
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Chapter 5 

Conclusions and Scope for Future Work 

This chapter summarizes the outcome of the present research by presenting its 

significant achievements, conclusions, and some directions for the future work. 

5.1 Significant Achievements 

Significant achievements of the present work that are worth mentioning include: 

• Implementation of computer vision techniques, specifically using HSV segmentation 

and centroid distance, YOLOv8, and YOLOv11 for real-time defect detection in the µ-

PMAM process. 

• Detection and classification of key deposition defects such as discontinuity, waviness, 

non-uniformity, under-dilution, and over-dilution using HSV segmentation and 

centroid distance. 

• Detection and classification of key deposition defects such as waviness, non-

uniformity, under-dilution, and over-dilution using YOLOv8 and YOLOv11. 

Prediction of deposition width and deposition height using YOLOv8 and YOLOv11. 

• Computation of width, height, and aspect ratio ranges using HSV segmentation and 

centroid distance, YOLOv8, and YOLOv11 for single-layer depositions of SS 316L 

and 63Co29Cr4Mo4Ti.   

5.2 Conclusions 

• Comparative analysis across SS 316L, 63Co29Cr4Mo4Ti, and Ti6Al4V materials 

provided valuable insights into process parameters for uniform and continuous 

depositions. In case of Ti6Al4V, as the deposition height lacked consistency, it was 

not possible to assign any range for it.  

• Trends clearly show that low µ-plasma current (14A) with moderate to high traverse 

speed (50 mm/min, 53 mm/min) and, high µ-plasma current (14.5A, 15A) with high 

traverse speed (53 mm/min) of deposition head is essential for non-wavy depositions 

of SS 316L. All currents (14A, 14.5A and 15A) with high deposition head traverse 

speed (53 mm/min) gave comparatively uniform depositions.  

• Low µ-plasma current and high deposition head traverse speed are essential for 

uniform 63Co29Cr4Mo4Ti depositions. Upon increasing the current, low to moderate 

deposition head traverse speed parameters yielded non- wavy 63Co29Cr4Mo4Ti 
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depositions. So, it can be concluded that low to moderate deposition head traverse 

speed is essential for fabricating 63Co29Cr4Mo4Ti non- wavy depositions.  

• Highest accuracy was obtained for height detection of 63Co29Cr4Mo4Ti material 

(93%) using YOLOv11. Highest precision was achieved for height detection of SS 

316L material (97%) on YOLOv11. Highest recall was obtained for height detection of 

Ti6Al4V material (98%) using YOLOV11 and height detection of 63Co29Cr4Mo4Ti 

material (98%) on YOLOv8. Highest F1 score was achieved for height detection of 

63Co29Cr4Mo4Ti material (95%) through YOLOv11.  

5.3 Scope for Future Work 

• This research can be taken further to study various defects that occur between the 

layers and, between layer and substrate for multi-layer and multi-track depositions.  

• For single-layer depositions, this study can be extended to different kinds of materials 

deposited using additive manufacturing processes.  

• The scope of defect detection can also be broadened to different defects such as 

surface roughness and delamination. 

• Different models such as R-CNN can be used to train the dataset to analyze the 

depositions. 

• A digital twin system can be developed by integrating the defect detection system with 

the parameter optimization techniques. Currently, it is in the digital shadow phase of 

development.  
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