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ABSTRACT

The prediction of phenotypic values based on genetic data is referred to as genomic pre-
diction (GP). Genome-wide association studies (GWAS), on the other hand, look for corre-
lations between genotypic markers (single nucleotide polymorphisms, SNPs) and phenotypic
traits like grain yield and plant height in order to discover the key SNPs responsible for those
traits. This study aims to address the distinct challenges of both GP and SNP identification.
The rrBLUP and BLINK models are widely used for GP and GWAS, respectively. However,
rrBLUP can only model simple linear relationships between genotype and phenotype, and
BLINK often results in false positives when identifying SNPs. To address these challenges,
we use machine learning approaches capable of capturing complicated, non-linear patterns,
hence improving genomic prediction performance and SNP identification.

In this study, we evaluate popular ML model support vector regression (SVR) and its
variants as well as the transformer-based GPformer, for their ability to improve predictive
performance. Motivated by the difficulty of identifying significant SNPs in high dimen-
sionalty low sample size SNP data, we initially create a hybrid model that combines the
regression power of SVR with the feature interaction strength of self attention. Building on
this breakthrough, we then reimagine the SNP sequence as a two dimensional, image like
representation, a strategy that reveals spatial patterns in genomic variation by taming the
curse of dimensionality and enabling potent image-based learning models.

Finally, our proposed model, ResGenel8, builds on the ResNet18 architecture which is
one of the most popular convolutional neural networks for image based tasks. ResGenel8 is
evaluated on two soybean datasets, exclusive ICAR and publicly available USDA. It consis-
tently outperforms traditional statistical methods. On ICAR, it delivers a 51% improvement
over rTBLUP, while on USDA it achieves an average gain of around 1%. Furthermore our
model uncovers more significant SNPs for each trait across both datasets, identifying 57%
more markers in ICAR and 34% more in USDA compared to the BLINK model.

By combining a deep learning backbone with a novel genomic to image data transfor-
mation, ResGenel8 effectively addresses the dual challenges of genomic prediction and SNP
identification. It not only improves phenotypic prediction performance but also uncovers
meaningful genetic markers with higher precision, demonstrating its potential as a powerful

tool for advancing genomic research in crops like soybean.
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Chapter 1

Introduction

Introduction

Genotypic data, characterized by deoxyribonucleic acid (DNA) sequence variations such
as single nucleotide polymorphisms (SNPs), provides a molecular level view of genetic diver-
sity. These sequences are composed of four nucleotides Adenine (A), Thymine (T), Guanine
(G), and Cytosine (C), which serve as the fundamental building blocks of genetic informa-
tion. Phenotypic data, on the other hand, captures measurable traits such as plant height,
grain yield. The task of accurately predicting phenotypic traits from underlying genetic
data has long been a central challenge in plant genomics. This process, commonly known
as genomic prediction (GP), involves developing statistical or machine learning models to
estimate trait values such as plant height or grain yield based solely on an individual’s geno-
type, typically encoded as high-dimensional single nucleotide polymorphism (SNP) data.
In parallel, genome-wide association studies (GWAS) have been widely used to uncover
associations between specific genetic markers and observable traits, enabling researchers to
identify the most influential SNPs driving phenotypic variation. While GP aims to maximize
predictive accuracy, GWAS focuses on biological interpretability by SNP Identification. Tra-
ditional methods such as rr BLUP and BLINK have been widely adopted for GP and GWAS,

respectively. rrBLUP, a ridge regression-based method, has demonstrated efficiency and ro-



bustness in handling large-scale genotype data; however, it is limited by its linear modeling
assumption, making it less effective when the genotype—phenotype relationship is non-linear
or influenced by complex interactions. On the other hand, BLINK, an iterative fixed-effect
model tailored for GWAS, has improved statistical power and speed over earlier GWAS
algorithms, yet it remains prone to producing false positives,

In this study, we have systematically evaluated the performance of popular machine
learning models, including Support Vector Regression (SVR) and its variants, as well as the
recently proposed transformer-based model GPformer, in the context of genomic prediction.
These models have been assessed for their ability to improve predictive accuracy when deal-
ing with high-dimensional SNP data. Motivated by the persistent challenge of identifying
significant SNPs from such high-dimensional, low-sample datasets, we have initially proposed
a hybrid framework that integrates the robust regression capabilities of SVR with the feature
extraction power of a self-attention mechanism. This hybrid model has demonstrated im-
proved performance by effectively capturing complex, non-linear interactions among SNPs.
Building upon this breakthrough, we have further introduced a novel transformation strategy
that reshapes the one-dimensional SNP sequence into a two-dimensional, image-like repre-
sentation. Specifically, the SNP features have been reorganized into a 3D tensor where each
channel corresponds to one of the 20 soybean chromosomes. This biologically meaningful re-
structuring has enabled the use of image based learning techniques, such as ResNet inspired
convolutional architectures, to uncover spatial dependencies in the genomic data—thereby
mitigating the curse of dimensionality and enhancing trait prediction performance.

Our proposed ResGenel8 has been evaluated on two soybean datasets, first on the ex-
clusive ICAR and then on the publicly available USDA dataset. It has consistently outper-
formed traditional statistical models delivering a striking 51% boost in prediction accuracy
on ICAR and a more modest, yet meaningful, 1% gain on USDA compared to rrBLUP.
However when it comes to uncovering trait-associated SNPs, ResGenel8 has identified 57%

more significant markers in the ICAR and 34% more in USDA than the BLINK model. This



highlights its powerful combination of prediction strength and discovery capability.

By integrating a deep learning backbone with a novel genomic-to-image transformation,
ResGenel8 has successfully tackled the twin challenges of genomic prediction and SNP
identification. It has enhanced phenotypic prediction accuracy and identified key genetic
markers with improved precision, highlighting its potential as a valuable tool for advancing

genomic research in crops such as soybean.






Chapter 2
Literature Survey

In this section, we divide our discussion into two key areas. The first focuses on tra-
ditional statistical techniques that have been widely employed to explore and quantify the
correlation between genotypic variations and phenotypic traits. These techniques aim to un-
cover significant genetic markers associated with observable traits. The second area delves
into the growing body of research on machine learning approaches developed for genomic pre-
diction and the identification of informative single nucleotide polymorphisms (SNPs). These
data-driven methods are designed to enhance predictive accuracy and detect meaningful

patterns within high-dimensional genomic datasets.

2.1 Previous Studies Based on Statistical Methods

Kaler et al.| [2020] have employed previously reported datasets comprising 346 soybean
accessions with 31,260 SNPs and 279 maize accessions with 48,833 SNPs to evaluate associ-
ation mapping models. They have compared eight statistical methods, spanning single-locus
to multilocus approaches, across traits with varying heritability. The FarmCPU model has
emerged as the most effective, accurately identifying SNPs near known genomic regions while
minimizing both false positives and false negatives. In simulated datasets, FarmCPU has

detected QTLs closer to the true number compared to other models. Unlike MLM based



methods that have proven overly conservative, FarmCPU paired with less stringent multiple
testing corrections has produced more balanced and biologically relevant results. This work
has highlighted FarmCPU’s robustness across species with contrasting LD decay patterns,
reinforcing its utility for genomic studies.

Wang et al.| [2021] have conducted a comprehensive GWAS using a dataset of 259 re-
sequenced rice accessions, generating 1,371.65 Gb of raw sequencing data and identifying 2.8
million SNPs. They have analyzed 13 agronomic traits including grain size, plant height,
panicle length, and heading date by leveraging phenotypic data and BLUP values collected
over two years. Principal component analysis (PCA) has been performed using GCTA to
account for population structure, and breeding values have been estimated using the lme4
package in R. Their GWAS has identified 816 significant SNPs, with candidate genes located
within 200 kb of these loci based on linkage disequilibrium patterns. Further haplotype
analysis has helped refine the identification of genomic regions associated with key traits.
This work has provided valuable candidate regions and SNPs for future gene validation and
marker-assisted selection, offering a rich genomic resource for breeding high yielding rice
cultivars.

Yoosefzadeh-Najafabadi et al. [2023] have carried out a comparative GWAS study us-
ing 227 soybean genotypes, selected after excluding 23 accessions due to high missing data.
From an initial pool of 40,712 SNPs, they have retained 17,958 high-quality markers, which
were mapped across all 20 soybean chromosomes. Their study has evaluated seed quality
traits—namely protein content, oil percentage, and 100 seed weight using both the conven-
tional FarmCPU method and a machine learning-based support vector regression (SVR)
approach. Significant negative correlation between protein and oil contents has been ob-
served, with respective heritability values of 0.69 and 0.67. SVR mediated GWAS has
identified 13 SNPs linked to seed oil content (on chromosomes 3, 12, 13, 14, 15, and 16),
while FarmCPU has identified 12 SNPs (on chromosomes 7, 8, 13, 15, and 19). The results

have demonstrated that SVR is more effective in capturing trait relevant QTLs, particularly
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by considering potential interactions often missed in traditional models.

This study has

emphasized the promising role of machine learning in advancing the accuracy of GWAS for

marker-assisted breeding in soybean.

Paper Dataset Used Methods Used Conclusion
Kaler et al. | 346 soybean ac- | 8 statistical models in- | FarmCPU  outperformed
[2020] cessions (31,260 | cluding MLM, Farm- | other models by minimizing
SNPs), 279 maize | CPU, GLM, SUPER | false positives/negatives
accessions (48,833 and consistently identifying
SNPs) SNPs near known genes.
Wang et al. | 259 rice accessions, | GWAS, BLUP, PCA | Identified 816 SNPs signif-
[2021] 2.8 million SNPs (GCTA), haplotype | icantly associated with 13
analysis agronomic traits; provided
valuable regions and can-
didate genes for marker-
assisted selection.
Yoosefzadeh- 227 soybean geno- | GWAS using Farm- | SVR mediated GWAS has
Najafabadi et al. | types, 17,958 SNPs | CPU and SVR identified more relevant
[2023] (filtered from QTLs than FarmCPU,
40,712) highlighting ML’s potential
in enhancing GWAS preci-
sion for seed traits.

Table 2.1: Summary of GWAS and Genomic Prediction Studies




2.2 Previous Studies Based on Machine Learning

Ma et al. [2018] have developed DeepGS, a deep convolutional neural network for pre-
dicting phenotypes from genotypes in genomic selection. They have used a dataset of 2,000
Iranian bread wheat accessions genotyped with 33,709 DArT markers. DeepGS has incorpo-
rated convolution, sampling, and dropout techniques to handle high-dimensional data and
capture complex genotype-phenotype relationships. Compared to RR, BLUP, DeepGS has
achieved better prediction accuracy and shown complementary strengths. An ensemble of
DeepGS and RR-BLUP has further improved selection performance, demonstrating that

deep learning can enhance genomic selection outcomes.

Liu et al.| [2019] have proposed a deep learning framework using convolutional neural
networks (CNNs) to predict quantitative traits from SNP data in soybean. They have
employed a dataset from the SoyNAM project, which includes over 5,000 recombinant inbred
lines and 4,236 high-quality SNPs. By treating missing SNP values as a separate genotype
class, their model has bypassed the need for imputation. The deep learning approach has
achieved higher prediction accuracy than traditional statistical methods. Importantly, they
have used saliency maps for feature selection, successfully identifying the most relevant SNPs
and SNP combinations associated with the traits. This framework has demonstrated strong

potential for both genomic prediction and interpretable marker discovery.

Grinberg et al.| [2020] have explored the effectiveness of machine learning methods in ge-
nomic prediction using datasets from yeast, wheat, and rice. The yeast dataset has included
1,008 haploid strains with 11,623 Boolean markers, while the wheat dataset has involved
254 breeding lines genotyped with 33,516 SNPs. They have compared common machine
learning models such as elastic net, lasso, ridge regression, random forest, GBM, and SVM
with traditional statistical genetics approaches like genomic BLUP and a two step linear re-
gression method. Their results have shown that machine learning models, particularly GBM

and lasso for yeast, and SVM and BLUP for wheat and rice, have generally outperformed
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classical methods. Random forest has emerged as the most robust model under conditions
of noise and missing data, while BLUP has performed well in datasets with strong popula-
tion structure. This study has highlighted both the promise and the complexity of applying
machine learning to phenotype prediction tasks in genomics.

Wang et al.| [2023] have introduced DNNGP, a deep neural network-based method for
genomic prediction that integrates multi-omics data to improve trait prediction in plants.
They have evaluated DNNGP using four datasets, including wheat2000 and tomato332,
and compared its performance against five established models: GBLUP, Light GBM, SVR,
DeepGS, and DLGWAS. Unlike traditional linear models, DNNGP has leveraged a hierar-
chical deep learning architecture with batch normalization and early stopping to dynamically
learn complex genotype—phenotype relationships. The model has demonstrated superior ac-
curacy, especially on large-scale datasets, while maintaining competitive performance even
with smaller datasets. DNNGP has also outperformed DeepGS in computational efficiency,
running up to 10 times faster, and has offered flexible hyperparameter tuning on local sys-
tems. These results have shown DNNGP to be a robust and scalable method for genomic
prediction, particularly suited for modern breeding platforms involving high-dimensional
omics data.

Wu et al.| [2024] have introduced a novel Transformer-based genomic prediction model,
GPformer, designed to capture long-range dependencies across SNPs for improved phenotype
prediction. They have evaluated GPformer on diverse crop datasets, including soybean999
(7,883 SNPs), Maize282 (282 inbred lines with 3,093 SNPs), and Rice469 (469 indica rice
accessions with 5,291 SNPs). Unlike traditional models, GPformer has leveraged an auto-
correlation attention mechanism to extract relevant genomic signals regardless of physical
SNP distance. As a key innovation, they have also developed a knowledge guided module
(KGM) that integrates GWAS derived information into the model as prior knowledge. This
combination GPformer + KGM has consistently outperformed mainstream methods such

as RR-BLUP, SVR, LightGBM, and DNNGP across multiple evaluation metrics, including
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MAE, PCC, and a novel Consistent Index (CI). The study has shown that GPformer is not
only highly accurate but also robust to hyperparameter variations, making it well suited for
practical breeding applications.

Wang et al.| [2025] have proposed a novel genomic prediction framework called WheatGP,
which integrates convolutional neural networks (CNNs) and long short-term memory (LSTM)
networks to improve phenotype prediction in wheat. They have evaluated WheatGP using
two datasets: Wheat599, consisting of 599 CIMMY T varieties genotyped with 1,279 markers,
and Wheat2000, which includes 2,000 Iranian bread wheat varieties with 33,709 markers.
The CNN component has captured short-range genomic dependencies, while the LSTM mod-
ule has modeled long-range interactions between gene loci. Compared to rrBLUP, XGBoost,
SVR, and DNNGP, WheatGP has demonstrated superior prediction accuracy, achieving up
to 0.73 for wheat yield and between 0.62 and 0.78 for other agronomic traits. Additionally,
they have employed Shapley Additive explanations (SHAP) to interpret the model by iden-
tifying the most influential genomic features. These results have shown that WheatGP is
both accurate and interpretable, making it a robust and efficient tool for genomic selection

and wheat breeding.
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Paper

Dataset Used

Methods Used

Conclusion

Ma et al. [2018]

2000 Iranian wheat
33,709
DArT markers

accessions,

DeepGS (CNN
based), RR-BLUP

DeepGS has achieved better
prediction than RR-BLUP;
ensemble of both has fur-

ther enhanced performance.

Liu et al.|[2019]

[2020]

[2023]

SoyNAM: 50004+
RILs, 4236 SNPs

CNN with saliency

maps, no imputation

DL model has outper-
formed statistical methods;
saliency maps have iden-
tified key SNPs for trait

prediction.

Grinberg et al.

Yeast (1008 strains,
11,623
Wheat (254 lines,
33,516 SNPs)

markers),

ML models: GBM,
RF, SVM, EN, Lasso,
Ridge; vs. BLUP, 2-

step LR

ML methods (esp. GBM,
lasso, SVM) have outper-
formed classical methods;
RF most robust to noise;
BLUP good with popula-

tion structure.

Wang et al

Wheat2000,
Tomato332 +

2 more datasets

DNNGP (deep neural
net) vs. GBLUP,
Light GBM, SVR,
DeepGS, DLGWAS

DNNGP has shown supe-
rior accuracy and speed;
scalable and efficient for
high-dimensional multi-

omics prediction.

(33,709 SNPs)

vs. RR-BLUP, SVR,
DNNGP, XGBoost

Wu et al. [2024] | Soybean999 (7883 | GPformer (Trans- | GPformer + KGM has out-
SNPs), Maize282 | former + KGM), | performed all baselines in
(3093 SNPs), | vs. RR-BLUP, SVR, | MAE, PCC, CI; robust
Rice469 (5291 | LightGBM, DNNGP | across datasets and pheno-
SNPs) types.

Wang et al. | Wheat599 (1279 | WheatGP (CNN 4 | WheatGP  has achieved

[2025] SNPs), Wheat2000 | LSTM) +  SHAP, | high accuracy (up to 0.73);

SHAP wused for model
interpretability; suitable for

breeding pipelines.

Table 2.2: Summary of Machine Learrll}ng Based Genomic Prediction Studies







Chapter 3

Methods & Experiments

This section provides a detailed account of the experiments, including the methodologies

employed, the datasets used, and the model architectures tested

3.1 Dataset

The following section has discussed two datasets: the first, referred to as the ICAR
dataset, while the second is the publicly available USDA dataset, which is described in the

subsequent subsection.

3.1.1 Dataset specification

The dataset used in this study has been exclusively obtained from ICAR—IIS and
contains both genotypic and phenotypic data for 269 soybean varieties cultivated across
central India. Phenotyping has been conducted during the summer season (mid-June to
mid-October) over three consecutive years, from 2019 to 2021. The genotypic data includes
66,589 Single Nucleotide Polymorphisms (SNPs), which serve as genetic markers to analyze
variation among the soybean varieties. As shown in Table columns represent SNPs

distributed across all 20 chromosomes of the soybean genome, while rows correspond to the

'ICAR-Indian Institute of Soybean Research, Indore, M.P., India
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individual varieties used for analysis.

Varieties 51.60978 S1.62104 --- S20-50278263 S20_50287457
MP_7_GW-1 A K e T W
MP_4 SOY-523 A K C W
MP_4_SOY-520 A K e C T
MP_7_GW-6 R K T T
MP_3.S0Y-403 R G X T W

Table 3.1: SNP (Genotype) Matrix

The phenotypic dataset have four important phenotype traits such as Plant Height (PH),
Number of Nodes (NN), Grain Yield (GY), and Canopy Temperature (CT). The short

summary of the phenotypic dataset is given in the Table

Varieties PH NN GY cT
MP_7.GW-1 | 48.83 6.86 5.45425 27.37
MP_4 S0Y-523 | 54.04 10.65 1.45425 28.83
MP_4.SOY-520 | 54.24 9.45 2.07425 29.00
MP_7.GW-6 | 54.64 6.45 2.07425 27.99

MP_3.50Y-403 | 42.93 3.425 1.11125 30.76

Table 3.2: Phenotypic Trait Values for Soybean Varieties

Furthermore, we have used another publicly available soybean dataset to evaluate our
model’s performance on. This dataset comprises 20,087 varieties from the USDA Soybean
Germplasm Collection, genotyped with the SoySNP50K, which we have downloaded from
SoyBase (https://www.soybase.org/dlpages/#snp50k; accessed April 13, 2025). From
these data, we have extracted Height, Oil, Protein and Yield measurements for the 1,170

varities reported by Hill et al. [2008]. After filtering to retain only common varities, we
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proceed to evaluate both existing and our proposed model on this dataset as well. In
following sections, we refer to the ICAR-IISR dataset simply as the ICAR dataset, and

the USDA Soybean dataset as the USDA dataset.

3.1.2 Dataset preprocessing

Before training the models, we preprocess the genotypic dataset by encoding the SNP
values into a numerical format suitable for machine learning algorithms. Let X € R™*¢
denote the original genotypic data matrix, where n represents the number of soybean varieties
(i.e., 269), and d denotes the number of single nucleotide polymorphisms (SNPs) Markers
or features (i.e., 66,589). Correspondingly, let y € R™*! represent the phenotypic vector
associated with each soybean phenotypic trait. However, each phenotypic trait corresponds

to a distinct y, while maintaining the same dimensionality.

Following the encoding scheme described in [Lipka et al. [2012], homozygous allelesﬂA
and T are denoted by 0, while C and G are denoted by 2 to reflect genetic similarity,
heterozygous alleleﬁ (R, Y, S, W, K, and M) are denoted by 1 to represent their mixed
genetic nature. The character ‘N’, which indicates a missing value in the SNP data, is
denoted by -1. This transformation yields the encoded genotypic matrix X, which is more

computationally tractable and suitable for subsequent analyses.

2Homozygous alleles refer to identical versions of a gene inherited from both parent, located at

the same locus on homologous chromosomes.
3Heterozygous alleles refer to different versions of a gene inherited from each parent at the same

locus, resulting in genetic variation at that position.
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Varieties 51.60978 S1.62104 .- S20.50278263 S20.50287457
MP_7_.GW-1 0 1 e 0 1
MP_4_50Y-523 0 1 2 1
MP_4_S0Y-520 0 1 2 0
MP_7_.GW-6 1 1 0 0
MP_3_50Y-403 1 2 e 0 1

Table 3.3: Encoded SNP Matrix

3.2 State of the art Statistical model with applica-
tion to Genomic Prediction and GWAS

Statistical methods have long been at the core of genomic prediction, and numerous
studies have employed and compared them across diverse datasets and traits. These methods
have provided a strong foundation for evaluating genetic potential, especially in early-stage
breeding. The following section highlights one of the most widely used and effective statistical

approaches for genomic prediction.

3.2.1 The ridge regression best linear unbiased prediction

(rrBLUP)

Before the widespread adoption of machine learning techniques in genomic studies, sta-
tistical models such as the Mixed Linear Model (MLM) and its compressed variant (CMLM)
have been commonly used for Genome-Wide Association Studies (GWAS) Zhang et al. [2010].
Among these, rrBLUP method has gained prominence as a standard approach for both ge-
nomic prediction and GWAS. Its strength lies in effectively handling high-dimensional SNP
data while accounting for population structure. By combining ridge regression with the

BLUP framework, rrBLUP is able to estimate marker effects efficiently within a mixed
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model setup Endelman [2011].

In our study, we have applied rrBLUP to both the ICAR and USDA soybean datasets
using the rrBLUP package in R. We have followed a 10-fold cross-validation strategy to assess
the model’s predictive performance consistently across the datasets. This has allowed us to
benchmark rrfBLUP against advanced machine learning models under a unified evaluation

framework.

3.2.2 Bayesian information and Linkage disequilibrium(BLINK)

Over time, Genome-Wide Association Studies (GWAS) have advanced through a series
of methodological improvements. The Mixed Linear Model (MLM) was initially favored for
its ability to control false positives, followed by the Compressed MLM (CMLM) for better
scalability. Later, FarmCPU improved statistical power by separating fixed and random
effects. The most recent and widely adopted method is BLINK (Bayesian-information and
Linkage-disequilibrium Iteratively Nested Keyway) Huang et al. [2019], which enhances speed
and accuracy by using Bayesian Information Criterion (BIC) and removing the assumption

of normally distributed markers.

In our study, we have used the BLINK method to identify trait-associated SNPs, where
lower p-values correspond to higher statistical significance. As shown in Section BLINK
has effectively identified several SNPs associated with our traits of interest. We have imple-
mented BLINK using the GAPIT library, an R package specifically designed for genome-wide
association analysis, on both the ICAR and USDA soybean datasets. BLINK has offered su-
perior power and computational efficiency by leveraging linkage disequilibrium and Bayesian
Information Criterion (BIC) for model selection Huang et al.|[2019]. This has allowed us to
detect true associations more accurately, especially in the presence of complex population

structures. As a result, BLINK has served as a reliable and state-of-the-art approach in our

GWAS analysis.
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3.3 Basic Machine Learning Models with direct ap-

plication to Genomic Prediction

3.3.1 Support Vector Regression (SVR)

We have used Support Vector Regression (SVR) as a baseline model for genomic pre-
diction, owing to its proven ability to handle high-dimensional SNP datasets with strong
generalization capabilities. Prior studies have demonstrated that SVR performs competi-
tively in genomic contexts by effectively managing the curse of dimensionality and providing
robust predictive accuracy [Basak et al. [2007].

SVR works by mapping input features into a high-dimensional space using kernel func-
tions and learns a linear function within an e-insensitive margin, allowing the model to
tolerate small deviations while maintaining predictive sharpness. We have employed a linear
kernel. The SVR model has been trained using 10-fold cross-validation, ensuring that each
sample is tested once and trained nine times. Additionally, we have implemented an 90-10
data split, where 90% of the data is used for training and the remaining 10% is reserved for

evaluating the model’s generalization performance.

3.3.2 Variant SVR

To further enhance prediction performance and address the challenges of high-dimensional
SNP data, we have implemented a customized variant of SVR. This variant incorporates L2
regularization with an e-insensitive loss function, which has made the model more robust to
noise and well-suited for datasets with limited samples but large numbers of features. In-
spired by recent studies that introduced semismooth optimization techniques in SVR frame-
works Yin and Li [2019], we have adopted a convex optimization approach to solve this

formulation.

The variant has been implemented using CVXPY, a Python-based modeling tool that
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enables efficient specification of objective functions and constraints. This framework has al-
lowed us to define the optimization problem clearly and solve it with high precision. We have
applied 10-fold cross-validation for model reliability, and like the baseline SVR, the dataset
has been divided using an 90-10 train-test split. The model has demonstrated improved
control over overfitting while still capturing meaningful genotype—phenotype relationships,

particularly in the presence of noisy and sparse signal patterns across SNPs.

3.3.3 GPFormer Model

In addition to SVR-based approaches, we have employed the GPFormer model, a Transformer-
based deep learning architecture specifically designed for genomic prediction tasks |Lu et al.
[2025]. This model has outperformed traditional machine learning methods across multi-
ple trait predictions in prior research. GPFormer adopts an encoder—decoder architecture
and integrates critical deep learning components such as multi-head self-attention, residual

connections, positional encoding, batch normalization, and dropout.

These design elements have enabled GPFormer to effectively capture long-range depen-
dencies among SNPs, which is a limitation in many conventional models. The self-attention
mechanism has allowed the model to focus on relevant SNP regions without relying on fea-
ture selection heuristics. For training, we have followed the same 10-fold cross-validation
procedure and retained an 90-10 split for evaluation. The final phenotype prediction has
been obtained from the output of a fully connected layer applied to the final hidden state of
the encoder. This design has led to high model stability, reduced overfitting, and consistent

performance across different trait prediction scenarios.

19



3.4 Advance ML models with novel application to
Genomic Prediction and GWAS

3.4.1 Attention with Support Vector Regression

We have faced a major challenge due to the high dimensionality of SNP data, which
makes the direct application of self-attention computationally expensive. Traditional self-
attention mechanisms scale quadratically with input size, which is impractical for large

genomic datasets.

To address this, we have designed a lightweight self-attention mechanism where the
entire SNP sequence of a sample is treated as a single token. This approach reduces the
computational complexity and allows self-attention to operate in linear time, generating an
self-attention score matrix across SNPs. The resulting matrix has been used as input to a

Support Vector Regression (SVR) model.

This hybrid model has shown slightly better prediction performance than standalone
SVR and has identified a greater number of informative SNPs, indicating that the self-

attention mechanism has effectively captured relevant patterns in the data.

3.4.2 Attention with Variant of Support Vector Regression

To further explore the effectiveness of self-attention, we have also applied the same self-
attention mechanism in combination with a variant of SVR. This experiment was intended to
evaluate whether the benefits of self-attention persist across different SVR formulations. The
performance of this model has been found to be comparable to the original Attention with
SVR model, confirming the generalizability of the self-attention based feature extraction

approach.
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3.4.3 ResGenel8

High dimensionality of SNP data has remained a persistent challenge in genomic predic-
tion tasks. To address this, we have looked into existing literature and found that [Muneeb
et al. [2022] have transformed SNP data into a 2D matrix format to apply convolutional
neural networks. However, their dataset involved low-dimensional SNPs and was used for
classification, making the approach unsuitable for our high-dimensional regression-based

problem.

Motivated by this, we have proposed a novel transformation technique tailored for high-
dimensional SNP data. Specifically, we have reshaped the SNP input into a 3D format, We
have represented the SNP data using 20 channels, where each channel corresponds to one
of the 20 soybean chromosomes, as illustrated in Figure [3.1} This chromosome-wise decom-
position has not only preserved biological relevance but has also enabled the use of deep
learning techniques for effective feature extraction. Additionally, this multi-channel strategy
aligns with the concept of input channels in image-based models, allowing us to break the
high-dimensional SNP data into manageable chunks. Our decision to segment the data in
this way has been motivated by the biological distribution of SNPs across 20 chromosomes,
thereby introducing a meaningful bias that supports both interpretability and model effi-
ciency. To the best of our knowledge, we are the first to apply such a genomic-to-image
transformation for both genomic prediction and GWAS tasks. Owing to the unique nature
of this transformation and its integration with a lightweight deep learning backbone, we
have named our architecture ResGenel8, where the ‘18’ corresponds to the 18 layers of
the ResNet18 model chosen for being the simplest and least complex variant in the ResNet
family, yet sufficiently powerful for our application. We have trained the ResNet18 model
using 10-fold cross-validation to ensure robust and unbiased evaluation across different sub-
sets of the data. For optimization, we have used Stochastic Gradient Descent (SGD), which

is known to perform well on image-based datasets by enabling smoother convergence and
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better generalization. This combination of architecture and training strategy has allowed

the model to learn meaningful spatial dependencies from the SNP image representations.

Flat SNP vector

width

Slice 19

m slices)

Figure 3.1: Transformation of sequential SNP data into 2D multi-channel image for-

mat.

As a result, our proposed model, ResGenel8, has achieved the highest Pearson’s corre-
lation coefficient (PCC) among all models, including traditional statistical models, baseline
machine learning methods, and our other proposed hybrids as demonstrated in sections
Additionally, ResGenel8 has identified a greater number of informative SNPs compared to
all other models, highlighting its effectiveness in both Genomic prediction and SNP Identi-

fication as demonstrated in section [4.3] and [4.4]
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Chapter 4

Results

4.1 Experimental Setup

For our machine learning experiments, we have utilized the Kaggle platform, running
Python version 3.11.11. The ResNet18 architecture has been implemented using the Py-
Torch library to process SNP image representations for genomic prediction. On the other
hand, statistical analyses including rrBLUP and the BLINK model have been carried out
using the rrBLUP and GAPIT packages within RStudio. The computational environment has
included an Intel(R) Xeon(R) CPU @ 2.00GHz and an NVIDIA Tesla P100-PCle-16GB

GPU, providing sufficient processing power for deep learning and statistical modeling tasks.

4.2 Evaluation Metric

For evaluating our model, we have used the following well-known metrics, which are
described below.

Pearson Correlation Coefficient (PCC): This metric evaluates the linear relation-
ship between the predicted and actual values. It indicates how closely the two sets of values
align on a straight line. A PCC value close to 1 suggests a strong positive correlation,

meaning the predictions closely follow the actual trend. A value near 0 implies no linear
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relationship, while a negative value indicates an inverse correlation. This metric is especially
useful in assessing how well a model captures the direction and strength of the relationship
between input features and the target trait Cohen et al. [2009].

The mathematical formulation of PCC metrics As shown in Equation , where y;
indicates the actual values for the i*" sample, y, represents the predicted values, and ¥ is

the mean of the actual values. Similarly, 4’ denotes the mean of the predicted values (i.e.,

y = % Die1 Y1)

Y Wi — 9 Wi —7)
CC = '
" Vi Wi — 92 2 (Y — )2 (4.1)

In soybean Genome-Wide Association Studies (GWAS), PCC (Pearson Correlation Co-
efficient) is especially helpful. GWAS seeks to identify genetic variant/trait associations.
Using PCC in this type of analysis permits researchers to evaluate the linear correlation
between predicted and actual trait values based on genetic markers. A higher PCC value
indicates a stronger linear relationship between specific genetic variants and the target trait,
thereby aiding in identification of significant genetic components influencing soybean traits.
Additionally, genomic prediction studies frequently adopt PCC as a primary evaluation met-
ric due to its interpretability and effectiveness in assessing model performance Sehrawat et al.

[2023).
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4.3 Model Evaluation

4.3.1 Model Evaluation: ICAR Dataset

The ICAR dataset has comprised approximately 66,000 SNP markers, 269 soybean ac-

cessions, and four phenotypic traits. A comparative analysis of all the methods is presented

in the Table below.

Trait | Statistical Existing ML Models Our Proposed ML Models % Gain
rrBLUP SVR | Variant SVR | GPFormer | ATT4+SVR | ATT+Variant SVR | ReGenel8
PH 0.331 0.421 0.4105 0.4642 0.436 0.394 0.485 46.53
NN 0.3422 0.376 0.3237 0.3892 0.3778 0.241 0.4094 19.64
GY 0.3208 0.201 0.174 0.2845 0.224 0.211 0.3221 0.41
CT 0.079 0.097 0.0997 0.1044 0.072 0.012 0.1878 137.72
Average % Gain between rrBLUP and ResGenel8 51.07

Table 4.1: Comparison of PCC values across different models and traits on ICAR
dataset. The % Gain column represents the relative improvement of ResGenel8 over

rrBLUP.

As demonstrated in Table machine learning-based approaches have outperformed
the statistical method rrBLUP. Notably, among all the methods tested, our proposed model
ResGenel8 has achieved the highest accuracy across all traits, outperforming statistical
techniques and other machine learning models, thereby highlighting its strong potential for

genomic prediction tasks.

4.3.2 Model Evaluation: USDA Dataset

Similar algorithms have also been evaluated on the USDA soybean dataset, which in-
cludes 1,173 accessions, approximately 42,000 SNP markers, and four phenotypic traits:

plant height, oil content, protein content, and grain yield. On this dataset, the traditional
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statistical method rrBLUP has outperformed all machine learning models, including SVR, its
variant, GPFormer, and our proposed models Attention+SVR and Attention+ Variant SVR.
However, among all approaches, only our final proposed model ResGenel8 has consistently
delivered the highest prediction accuracy, achieving the best Pearson correlation coefficients
(PCC) across all four traits. This demonstrates the robustness and superior performance of
ResGenel8 for genomic prediction, even on large and complex datasets, as evidenced in the

results shown in Table 1.2]

Trait Statistical Existing ML Models Our Proposed ML Models % Gain
rrBLUP SVR  Variant SVR  GPFormer | ATT+SVR | ATT+Variant SVR | ResGenel8
HEIGHT 0.7341 0.687 0.7242 0.6485 0.703 0.704 0.7392 0.69
OIL 0.7098 0.652 0.6006 0.6585 0.657 0.606 0.7112 0.20
PROTEIN 0.6662 0.611 0.6587 0.6453 0.636 0.662 0.6786 1.86
YIELD 0.7553 0.736 0.7378 0.7076 0.737 0.726 0.7604 0.68
Average % Gain between rrBLUP and ResGenel8 0.86

Table 4.2: Comparison of PCC values across different models and traits on USDA
dataset. The % Gain column represents the relative improvement of ResGenel8 over

rrBLUP.
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4.4 SNP Identification

Single Nucleotide Polymorphism (SNP) detection plays a crucial role in Genome-Wide
Association Studies (GWAS), as it helps uncover genetic variations linked to complex traits
and diseases Fang et al. [2017]. Identifying significant SNPs allows researchers to pinpoint
genomic regions influencing traits of interest, thereby supporting marker-assisted selection
(MAS) in breeding programs and contributing to advancements in personalized medicine. To
further demonstrate the effectiveness of our model, we compared the SNPs it identified with
those reported as ground truth on the SoyBase database |Grant et al. [2010]. Specifically, we
assessed the top 20 SNPs identified by our model ResGenel8 against the top 20 discovered
by BLINK, a leading statistical method widely recognized for its GWAS performance |Huang
et al.| [2019]. For a fair comparison, we considered only those SNPs where the genomic
position difference between the identified SNP and the SoyBase ground truth was less than

3 million base pairs.
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4.4.1 SNP Identification on ICAR Dataset

Trait | BLINK | ResGenel8 | % Difference
PH 9 11 22.22
NN 4 6 50.00
GY § 11 83.33
CT 4 7 75.00
Average % Difference 57.14

Table 4.3: Comparison of number of SNPs identified by BLINK and ResGenel8 on
the ICAR dataset.

As demonstrated in Table our proposed model ResGenel8 and the statistical model
BLINK is employed to identify significant SNPs associated with four traits in the ICAR
dataset. ResGenel8 has consistently identified a higher number of SNPs. On average,

ResGenel8 has achieved a 57.14% improvement in SNP identification compared to BLINK.
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Chr | Identified Position Identified Position by BLINK Difference
S18 8,658,515 9,263,941 605,426
S18 5,908,800 5,271,342 637,458
S18 5,908,800 5,244,535 664,265
S3 42,527,196 41,769,136 758,060
S3 42,527,196 41,769,127 758,069
S3 42,527,196 41,699,688 827,508
S5 4,300,531 2,899,164 1,401,367
S18 50,198,744 51,620,945 1,422,201
S13 13,259,705 15,903,319 2,643,614
Total SNPs identified by BLINK 9
Chr | Identified Position | Identified Position by ResGenel8 (bp) | Difference
S18 4,702,682 4,522,238 180,444
S13 34,916,010 34,676,862 239,148
S20 46,223,443 45,694,464 528,979
S18 53,267,229 52,532,933 734,296
520 46,223,443 45,100,008 1,123,435
S15 25,719,454 24,648,725 1,070,729
S5 4,300,531 2,778,975 1,521,556
S18 50,198,744 52,532,914 2,334,170
S15 26,551,533 29,011,688 2,460,155
S12 36,038,398 39,034,317 2,995,919
S12 36,038,398 39,034,638 2,996,240
Total SNPs identified by ResGenel8 11

Table 4.4: SNPs identified for the trait Plant Height using BLINK and ResGenel8,

along with corresponding ground truth positions and positional differences.
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Chr | Ground Position Identified Position - BLINK Difference

S16 37,079,553 37,059,512 20,041
S16 37,079,553 36,999,780 79,773
S19 43,990,450 43,165,754 824,696
Si1 4,980,454 3,837,243 1,143,211
Total SNPs identified by BLINK 4

Chr | Ground Position | Identified Position - ResGenel8 (bp) | Difference

S19 43,990,450 43,454,424 536,026
S11 4,980,454 6,060,734 1,080,280
S19 43,990,450 42,881,920 1,108,530
S13 32,115,483 33,952,562 1,837,079
S13 32,115,483 34,654,698 2,539,215
S18 55,620,032 52,932,922 2,687,110
S18 55,808,363 52,832,933 2,975,430
Total SNPs identified by ResGenel8 7

Table 4.5: SNPs identified for the trait Number of Nodes using BLINK and Res-

Genel8, along with corresponding ground truth positions and positional differences.
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Chr | Ground Position Identified Position - BLINK Difference
S7 6,396,861 6,152,396 244,465
S16 33,786,653 32,831,101 955,552
S16 33,786,653 32,792,281 994,372
S6 47,750,740 49,061,490 1,310,750
S6 47,750,740 49,076,176 1,325,436
S13 37,033,440 38,828,253 1,794,813
Total SNPs identified by BLINK 6
Chr | Ground Position | Identified Position - ResGenel8 | Difference
S10 176,869 193,685 16,816
S19 43,022,543 42,863,274 159,269
S10 1,020,657 1,111,345 90,688
S7 1,300,300 1,697,640 397,340
ST 1,300,300 1,697,673 397,373
S19 43,022,543 43,847,204 824,661
S10 1,020,657 184,336 836,321
S18 5,153,977 3,883,552 1,270,425
S11 7,897,730 8,913,591 1,015,861
S12 36,324,462 38,308,336 1,983,874
S12 36,324,462 39,250,317 2,925,855
Total SNPs identified by ResGenel8 11

Table 4.6: SNPs identified for the trait Grain Yield using BLINK and ResGenel8,

along with corresponding ground truth positions and positional differences.
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Chr | Ground Position | Identified Position - BLINK (bp) | Difference
S11 7,251,966 6,988,207 263,759
S11 7,251,966 8,185,858 933,892
S11 7,251,966 6,240,051 1,011,915
S11 7,251,966 6,189,928 1,062,038
Total SNPs identified by BLINK 4
Chr | Ground Position Identified Position - ResGenel8 Difference
S13 34,845,629 34,676,862 168,767
S13 34,845,629 34,654,698 190,931
S17 7,536,244 6,603,695 932,549
S6 12,426,395 10,774,194 1,652,201
S17 7,536,244 5,665,674 1,870,570
S6 12,426,395 9,819,431 2,606,964
S6 12,426,395 9,804,189 2,622,206
Total SNPs identified by ResGenel8 7

Table 4.7: SNPs identified for the trait Canopy Temprature using BLINK and Res-

Genel8, along with corresponding ground truth positions and positional differences.

Remarkably, our model identified a higher number of SNPs overlapping with SoyBase-
verified loci compared to the widely used statistical method BLINK, highlighting its superior
ability for SNP identification in genomic studies. Across all four traits in the ICAR dataset
— Plant Height (PH), Number of Nodes (NN), Grain Yield (GY), and Canopy Temperature
(CT) — our model consistently outperformed BLINK, identifying 2, 2, 5, and 3 additional

SNPs respectively. This demonstrates the model’s robustness and effectiveness in capturing

meaningful genetic signals.
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4.4.2 SNP Identification on USDA Dataset

Trait BLINK | ResGenel8 | % Difference
HEIGHT 10 13 30.00
OIL 13 14 7.69
PROTEIN 8 11 37.50
YIELD 7 11 57.14
Average % Difference 33.58

Table 4.8: Comparison of number of SNPs identified by BLINK and ResGenel8 on
the USDA dataset. % Difference is calculated between ResGenel8 and BLINK.

In the case of the USDA dataset, the comparison between the baseline statistical ap-
proach BLINK and our proposed deep learning model ResGenel8 has revealed that Res-

Genel8 has successfully detected a greater number of SNPs. This improvement is reflected

in an average percentage increase of 33.58%.
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Chromosome | Identified Position Identified Position - BLINK Difference
S07 6,598,470 6,875,359 276,889
S08 42,402,751 42,090,911 311,840
S10 46,373,097 46,729,408 356,311
S10 46,373,097 46,730,455 357,358
S09 46,006,470 45,242,813 763,657
S04 5,241,170 4,239,539 1,001,631
S10 7,750,656 6,196,008 1,554,648
S03 35,565,679 33,636,101 1,929,578
S07 15,350,606 14,106,459 1,244,147
S09 46,006,470 48,543,094 2,536,624

Total SNPs identified by BLINK 10

Chromosome | Identified Position | Identified Position - ResGenel8 | Difference
ST 4,535,039 4,623,018 87,979
S18 5,908,800 5,735,470 173,330
S2 41,290,024 41,544,629 254,605
S18 50,325,432 50,590,190 264,758
S1 55,166,202 54,750,659 415,543
S3 43,679,222 43,025,036 654,186
S2 41,290,024 40,730,110 559,914
S18 50,325,432 49,301,920 1,023,512
S20 40,857,494 42,125,878 1,268,384
S9 46,006,470 47,670,973 1,664,503
S18 50,325,432 48,132,642 2,192,790
S5 4,300,531 2,238,811 2,061,720
S8 43,005,079 45,517,454 2,512,375

Total SNPs identified by ResGenel8 13

Table 4.9: SNPs identified for the trait Height using BLINK and ResGenel8, along

with corresponding ground truth positions and positional differences.
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Chromosome Identified Position Identified Position - BLINK Difference

S5 41,780,982 41,855,235 74,253
S9 43,972,043 43,303,153 668,890

S6 49,834,614 48,850,059 984,555

S5 2,661,929 3,755,641 1,093,712
sS4 7,855,555 9,014,045 1,158,490
S7 9,339,240 8,021,155 1,318,085
S3 37,272,628 35,837,462 1,435,166
S03 43,679,222 45,151,144 1,471,922
S2 46,306,494 45,316,774 1,489,720
S9 10,384,779 11,970,660 1,585,881
S5 2,661,929 4,904,466 2,242,537
S11 22,911,236 25,114,851 2,203,615
S8 8,281,543 10,700,780 2,419,237
sS4 7,855,555 9,104,210 1,248,655

Total SNPs identified by BLINK 14

Chromosome Identified Position | Identified Position - ResGenel8 | Difference

S1 54,711,960 54,698,255 13,705

S7 4,986,841 4,883,153 103,688
S10 1,020,657 1,432,529 411,872
S5 2,661,929 2,207,089 454,840
S7 4,986,841 5,457,246 470,405
S15 3,828,587 3,319,227 509,360
S3 43,679,222 44,343,929 664,707
S6 6,291,064 3,313,294 2,977,770
S2 42,237,432 40,804,255 1,433,177
S7 6,623,116 5,456,442 1,166,674
S2 42,237,432 40,730,110 1,507,322
S17 6,418,985 4,955,428 1,463,557
S20 40,857,494 42,763,762 1,906,268
S17 6,418,985 3,924,278 2,494,707

Total SI$Bs identified by ResGenel8 14

Table 4.10: SNPs identified for the trait Oil using BLINK and ResGenel8, along with

corresponding ground truth positions and positional differences.



Chromosome | Identified Position Identified Position - BLINK Difference

S7 37,126,884 36,936,795 190,089
S9 2,238,015 2,669,838 431,823
S6 5,666,361 6,214,894 548,533
S3 37,272,628 37,895,336 622,708
S9 46,053,138 45,099,143 953,995
S7 37,126,884 36,237,935 888,949
S3 37,272,628 35,507,990 1,764,638
S4 7,855,555 10,193,474 2,337,919
Total SNPs identified by BLINK 8

Chromosome | Identified Position | Identified Position - ResGenel8 | Difference

S13 18,150,116 18,211,337 61,221

S7 6,623,116 6,198,644 424,472
S15 4,045,527 4,475,844 430,317
S15 4,045,527 4,481,538 436,011
S2 39,587,099 39,936,971 349,872
S8 46,415,576 45,529,194 886,382
S15 4,045,527 3,319,227 726,300
S18 50,815,522 49,747,507 1,068,015
520 40,857,494 42,125,878 1,268,384
S19 40,540,660 38,209,047 2,331,613
S20 40,857,494 37,971,425 2,886,069

Total SNPs identified by ResGenel8 11

Table 4.11: SNPs identified for the trait Protein using BLINK and ResGenel8, along

with corresponding ground truth positions and positional differences.
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Chromosome | Identified Position Identified Position - BLINK Difference
S7 42,849,437 42,750,874 98,563
S7 4,535,039 4,429,773 105,266
S9 46,006,470 45,885,099 121,371
S7 42,849,437 43,190,165 340,728
S7 12,644,089 13,176,087 531,998
S9 46,006,470 44,884,482 1,121,988
S9 37,962,563 39,358,464 1,395,901

Total SNPs identified by BLINK 7

Chromosome | Identified Position | Identified Position - ResGenel8 | Difference
S7 4,535,039 4,883,153 348,114
520 42,395,006 43,193,377 798,371
S18 5,908,800 6,790,349 881,549
520 42,395,006 43,293,034 898,028
S18 5,908,800 7,278,846 1,370,046
S18 51,521,459 49,747,507 1,773,952
518 51,521,459 49,301,920 2,219,539
S18 51,521,459 49,292,394 2,229,065
S18 51,521,459 49,289,323 2,232,136
S15 48,666,451 51,634,506 2,968,055
S15 48,666,451 51,647,162 2,980,711

Total SNPs identified by ResGenel8 11

Table 4.12: SNPs identified for the trait Yield using BLINK and ResGenel8, along with

corresponding ground truth positions and positional differences.
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Consistent with the ICAR dataset, our model also demonstrated superior SNP detection
on the USDA dataset. Specifically, it identified a greater number of SNPs than the BLINK
statistical model across all four traits Height (3 more SNPs), Oil (1), Protein (3), and Yield
(4). This further highlights the robustness and effectiveness of our approach in uncovering

biologically meaningful genetic associations.

4.5 Potential SNP positions with specific pheno-
typic traits

Building upon the above results, we propose a set of novel, potentially significant SNPs
in the Table and that demonstrate strong associations with the four phenotypic
traits for each dataset. Given their predictive importance and alignment with established
genomic knowledge, we suggest that these candidate SNPs may contribute meaningfully to
trait variation and could serve as valuable additions to the existing catalog of trait-associated
markers. Their inclusion could enhance the comprehensiveness of current genomic resources

and support future efforts in marker-assisted selection and functional genomics in soybean.
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Plant Height Number of Nodes Grain Yield Canopy Temperature
Chr | Location | Chr Location Chr | Location | Chr Location

S4 412,338 S11 8,917,811 S1 | 53,392,386 | S14 35,715,633

S8 8,363,522 S8 50,391,345 S13 | 33,952,562 | S2 53,110,518
S20 | 45,098,114 | S1 54,115,102 S3 | 48,690,949 | S18 52,532,914
S10 | 1,111,345 | S16 25,843,791 S8 8,362,116 S9 310,406

S19 | 43,847,204 | S2 52,465,611 S1 | 54,115,102 | S14 31,623,739

Table 4.13: Potential SNPs associated with phenotypic traits identified using our ResGenel8
model on the ICAR dataset.

Height Oil Protein Yield

Chr | Location | Chr | Location | Chr | Location | Chr | Location

S14 | 1,732,902 | S12 | 3,230,818 S9 | 50,008,825 | S12 | 3,230,818
S13 | 19,083,710 | S18 | 50,610,764 | S18 | 6,830,722 | S13 | 18,520,168
S8 6,196,069 | S14 | 1,416,586 S9 | 50,007,447 | S1 | 53,041,644
S13 | 18,520,168 | S8 | 44,096,773 | S5 1,358,556 | S10 | 51,426,325
S13 | 18,211,337 | S18 | 6,790,349 | S12 | 2,464,843 S1 | 53,067,596

Table 4.14: Potential SNPs associated with phenotypic traits identified using our ResGenel8
model on the USDA dataset.
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Chapter 5
Conclusion

In this study, we have introduced ResGenel8, a novel deep learning model that in-
tegrates a genomic-to-image transformation with the ResNet18 architecture. By leveraging
this biologically inspired representation and a lightweight convolutional network, ResGenel8
has effectively addressed the dual challenges of genomic prediction and SNP identification.

The success of ResGenel8 stems from a series of progressive innovations. Starting with
support vector regression (SVR) and its variants, we have evaluated their predictive capacity
alongside the transformer-based GPFormer. Recognizing the limitations of existing methods
in handling high-dimensional, low-sample SNP data, we developed a hybrid model that
combines the regression strength of SVR with the attention mechanism’s ability to model
complex feature interactions. After that, we have reimagined SNP data as two-dimensional,
chromosome-wise image-like structure, a novel approach that has facilitated spatial pattern
recognition and mitigated the curse of dimensionality.

To the best of our knowledge, we are the first to apply such a transformation for both
genomic prediction and GWAS tasks. In ResGenel8 architecture, the “18” signifies the layers
chosen for their simplicity and efficiency, making the model well-suited for high dimensional

genomic datasets.
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Through extensive evaluation on two soybean datasets namely the ICAR and USDA,
our model has consistently outperformed traditional statistical approaches such as rrBLUP
and BLINK. It has demonstrated an average performance improvement of approximately
51% on the first dataset and around 1% on the second dataset. Additionally, in terms of
SNP discovery, ResGenel8 has identified 57% more significant markers on the ICAR dataset
and 34% more on the USDA dataset, further highlighting its effectiveness for trait-marker
identification.

Looking ahead, the ResGenel8 framework holds promise for broader applications. In fu-
ture work, this architecture can be validated on multiple publicly available genomic datasets
and extended to a wider range of crops. Such evaluations will help further establish the
generalizability and robustness of our approach in diverse genomic prediction and GWAS

scenarios.
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