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ABSTRACT

The prediction of phenotypic values based on genetic data is referred to as genomic pre-

diction (GP). Genome-wide association studies (GWAS), on the other hand, look for corre-

lations between genotypic markers (single nucleotide polymorphisms, SNPs) and phenotypic

traits like grain yield and plant height in order to discover the key SNPs responsible for those

traits. This study aims to address the distinct challenges of both GP and SNP identification.

The rrBLUP and BLINK models are widely used for GP and GWAS, respectively. However,

rrBLUP can only model simple linear relationships between genotype and phenotype, and

BLINK often results in false positives when identifying SNPs. To address these challenges,

we use machine learning approaches capable of capturing complicated, non-linear patterns,

hence improving genomic prediction performance and SNP identification.

In this study, we evaluate popular ML model support vector regression (SVR) and its

variants as well as the transformer-based GPformer, for their ability to improve predictive

performance. Motivated by the di!culty of identifying significant SNPs in high dimen-

sionalty low sample size SNP data, we initially create a hybrid model that combines the

regression power of SVR with the feature interaction strength of self attention. Building on

this breakthrough, we then reimagine the SNP sequence as a two dimensional, image like

representation, a strategy that reveals spatial patterns in genomic variation by taming the

curse of dimensionality and enabling potent image-based learning models.

Finally, our proposed model, ResGene18, builds on the ResNet18 architecture which is

one of the most popular convolutional neural networks for image based tasks. ResGene18 is

evaluated on two soybean datasets, exclusive ICAR and publicly available USDA. It consis-

tently outperforms traditional statistical methods. On ICAR, it delivers a 51% improvement

over rrBLUP, while on USDA it achieves an average gain of around 1%. Furthermore our

model uncovers more significant SNPs for each trait across both datasets, identifying 57%

more markers in ICAR and 34% more in USDA compared to the BLINK model.

By combining a deep learning backbone with a novel genomic to image data transfor-

mation, ResGene18 e”ectively addresses the dual challenges of genomic prediction and SNP

identification. It not only improves phenotypic prediction performance but also uncovers

meaningful genetic markers with higher precision, demonstrating its potential as a powerful

tool for advancing genomic research in crops like soybean.
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Chapter 1

Introduction

Introduction

Genotypic data, characterized by deoxyribonucleic acid (DNA) sequence variations such

as single nucleotide polymorphisms (SNPs), provides a molecular level view of genetic diver-

sity. These sequences are composed of four nucleotides Adenine (A), Thymine (T), Guanine

(G), and Cytosine (C), which serve as the fundamental building blocks of genetic informa-

tion. Phenotypic data, on the other hand, captures measurable traits such as plant height,

grain yield. The task of accurately predicting phenotypic traits from underlying genetic

data has long been a central challenge in plant genomics. This process, commonly known

as genomic prediction (GP), involves developing statistical or machine learning models to

estimate trait values such as plant height or grain yield based solely on an individual’s geno-

type, typically encoded as high-dimensional single nucleotide polymorphism (SNP) data.

In parallel, genome-wide association studies (GWAS) have been widely used to uncover

associations between specific genetic markers and observable traits, enabling researchers to

identify the most influential SNPs driving phenotypic variation. While GP aims to maximize

predictive accuracy, GWAS focuses on biological interpretability by SNP Identification. Tra-

ditional methods such as rrBLUP and BLINK have been widely adopted for GP and GWAS,

respectively. rrBLUP, a ridge regression-based method, has demonstrated e!ciency and ro-

1



bustness in handling large-scale genotype data; however, it is limited by its linear modeling

assumption, making it less e”ective when the genotype–phenotype relationship is non-linear

or influenced by complex interactions. On the other hand, BLINK, an iterative fixed-e”ect

model tailored for GWAS, has improved statistical power and speed over earlier GWAS

algorithms, yet it remains prone to producing false positives,

In this study, we have systematically evaluated the performance of popular machine

learning models, including Support Vector Regression (SVR) and its variants, as well as the

recently proposed transformer-based model GPformer, in the context of genomic prediction.

These models have been assessed for their ability to improve predictive accuracy when deal-

ing with high-dimensional SNP data. Motivated by the persistent challenge of identifying

significant SNPs from such high-dimensional, low-sample datasets, we have initially proposed

a hybrid framework that integrates the robust regression capabilities of SVR with the feature

extraction power of a self-attention mechanism. This hybrid model has demonstrated im-

proved performance by e”ectively capturing complex, non-linear interactions among SNPs.

Building upon this breakthrough, we have further introduced a novel transformation strategy

that reshapes the one-dimensional SNP sequence into a two-dimensional, image-like repre-

sentation. Specifically, the SNP features have been reorganized into a 3D tensor where each

channel corresponds to one of the 20 soybean chromosomes. This biologically meaningful re-

structuring has enabled the use of image based learning techniques, such as ResNet inspired

convolutional architectures, to uncover spatial dependencies in the genomic data—thereby

mitigating the curse of dimensionality and enhancing trait prediction performance.

Our proposed ResGene18 has been evaluated on two soybean datasets, first on the ex-

clusive ICAR and then on the publicly available USDA dataset. It has consistently outper-

formed traditional statistical models delivering a striking 51% boost in prediction accuracy

on ICAR and a more modest, yet meaningful, 1% gain on USDA compared to rrBLUP.

However when it comes to uncovering trait-associated SNPs, ResGene18 has identified 57%

more significant markers in the ICAR and 34% more in USDA than the BLINK model. This

2



highlights its powerful combination of prediction strength and discovery capability.

By integrating a deep learning backbone with a novel genomic-to-image transformation,

ResGene18 has successfully tackled the twin challenges of genomic prediction and SNP

identification. It has enhanced phenotypic prediction accuracy and identified key genetic

markers with improved precision, highlighting its potential as a valuable tool for advancing

genomic research in crops such as soybean.
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Chapter 2

Literature Survey

In this section, we divide our discussion into two key areas. The first focuses on tra-

ditional statistical techniques that have been widely employed to explore and quantify the

correlation between genotypic variations and phenotypic traits. These techniques aim to un-

cover significant genetic markers associated with observable traits. The second area delves

into the growing body of research on machine learning approaches developed for genomic pre-

diction and the identification of informative single nucleotide polymorphisms (SNPs). These

data-driven methods are designed to enhance predictive accuracy and detect meaningful

patterns within high-dimensional genomic datasets.

2.1 Previous Studies Based on Statistical Methods

Kaler et al. [2020] have employed previously reported datasets comprising 346 soybean

accessions with 31,260 SNPs and 279 maize accessions with 48,833 SNPs to evaluate associ-

ation mapping models. They have compared eight statistical methods, spanning single-locus

to multilocus approaches, across traits with varying heritability. The FarmCPU model has

emerged as the most e”ective, accurately identifying SNPs near known genomic regions while

minimizing both false positives and false negatives. In simulated datasets, FarmCPU has

detected QTLs closer to the true number compared to other models. Unlike MLM based
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methods that have proven overly conservative, FarmCPU paired with less stringent multiple

testing corrections has produced more balanced and biologically relevant results. This work

has highlighted FarmCPU’s robustness across species with contrasting LD decay patterns,

reinforcing its utility for genomic studies.

Wang et al. [2021] have conducted a comprehensive GWAS using a dataset of 259 re-

sequenced rice accessions, generating 1,371.65 Gb of raw sequencing data and identifying 2.8

million SNPs. They have analyzed 13 agronomic traits including grain size, plant height,

panicle length, and heading date by leveraging phenotypic data and BLUP values collected

over two years. Principal component analysis (PCA) has been performed using GCTA to

account for population structure, and breeding values have been estimated using the lme4

package in R. Their GWAS has identified 816 significant SNPs, with candidate genes located

within 200 kb of these loci based on linkage disequilibrium patterns. Further haplotype

analysis has helped refine the identification of genomic regions associated with key traits.

This work has provided valuable candidate regions and SNPs for future gene validation and

marker-assisted selection, o”ering a rich genomic resource for breeding high yielding rice

cultivars.

Yoosefzadeh-Najafabadi et al. [2023] have carried out a comparative GWAS study us-

ing 227 soybean genotypes, selected after excluding 23 accessions due to high missing data.

From an initial pool of 40,712 SNPs, they have retained 17,958 high-quality markers, which

were mapped across all 20 soybean chromosomes. Their study has evaluated seed quality

traits—namely protein content, oil percentage, and 100 seed weight using both the conven-

tional FarmCPU method and a machine learning-based support vector regression (SVR)

approach. Significant negative correlation between protein and oil contents has been ob-

served, with respective heritability values of 0.69 and 0.67. SVR mediated GWAS has

identified 13 SNPs linked to seed oil content (on chromosomes 3, 12, 13, 14, 15, and 16),

while FarmCPU has identified 12 SNPs (on chromosomes 7, 8, 13, 15, and 19). The results

have demonstrated that SVR is more e”ective in capturing trait relevant QTLs, particularly

6



by considering potential interactions often missed in traditional models. This study has

emphasized the promising role of machine learning in advancing the accuracy of GWAS for

marker-assisted breeding in soybean.

Paper Dataset Used Methods Used Conclusion

Kaler et al.

[2020]

346 soybean ac-

cessions (31,260

SNPs), 279 maize

accessions (48,833

SNPs)

8 statistical models in-

cluding MLM, Farm-

CPU, GLM, SUPER

FarmCPU outperformed

other models by minimizing

false positives/negatives

and consistently identifying

SNPs near known genes.

Wang et al.

[2021]

259 rice accessions,

2.8 million SNPs

GWAS, BLUP, PCA

(GCTA), haplotype

analysis

Identified 816 SNPs signif-

icantly associated with 13

agronomic traits; provided

valuable regions and can-

didate genes for marker-

assisted selection.

Yoosefzadeh-

Najafabadi et al.

[2023]

227 soybean geno-

types, 17,958 SNPs

(filtered from

40,712)

GWAS using Farm-

CPU and SVR

SVR mediated GWAS has

identified more relevant

QTLs than FarmCPU,

highlighting ML’s potential

in enhancing GWAS preci-

sion for seed traits.

Table 2.1: Summary of GWAS and Genomic Prediction Studies
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2.2 Previous Studies Based on Machine Learning

Ma et al. [2018] have developed DeepGS, a deep convolutional neural network for pre-

dicting phenotypes from genotypes in genomic selection. They have used a dataset of 2,000

Iranian bread wheat accessions genotyped with 33,709 DArT markers. DeepGS has incorpo-

rated convolution, sampling, and dropout techniques to handle high-dimensional data and

capture complex genotype-phenotype relationships. Compared to RR BLUP, DeepGS has

achieved better prediction accuracy and shown complementary strengths. An ensemble of

DeepGS and RR-BLUP has further improved selection performance, demonstrating that

deep learning can enhance genomic selection outcomes.

Liu et al. [2019] have proposed a deep learning framework using convolutional neural

networks (CNNs) to predict quantitative traits from SNP data in soybean. They have

employed a dataset from the SoyNAM project, which includes over 5,000 recombinant inbred

lines and 4,236 high-quality SNPs. By treating missing SNP values as a separate genotype

class, their model has bypassed the need for imputation. The deep learning approach has

achieved higher prediction accuracy than traditional statistical methods. Importantly, they

have used saliency maps for feature selection, successfully identifying the most relevant SNPs

and SNP combinations associated with the traits. This framework has demonstrated strong

potential for both genomic prediction and interpretable marker discovery.

Grinberg et al. [2020] have explored the e”ectiveness of machine learning methods in ge-

nomic prediction using datasets from yeast, wheat, and rice. The yeast dataset has included

1,008 haploid strains with 11,623 Boolean markers, while the wheat dataset has involved

254 breeding lines genotyped with 33,516 SNPs. They have compared common machine

learning models such as elastic net, lasso, ridge regression, random forest, GBM, and SVM

with traditional statistical genetics approaches like genomic BLUP and a two step linear re-

gression method. Their results have shown that machine learning models, particularly GBM

and lasso for yeast, and SVM and BLUP for wheat and rice, have generally outperformed

8



classical methods. Random forest has emerged as the most robust model under conditions

of noise and missing data, while BLUP has performed well in datasets with strong popula-

tion structure. This study has highlighted both the promise and the complexity of applying

machine learning to phenotype prediction tasks in genomics.

Wang et al. [2023] have introduced DNNGP, a deep neural network-based method for

genomic prediction that integrates multi-omics data to improve trait prediction in plants.

They have evaluated DNNGP using four datasets, including wheat2000 and tomato332,

and compared its performance against five established models: GBLUP, LightGBM, SVR,

DeepGS, and DLGWAS. Unlike traditional linear models, DNNGP has leveraged a hierar-

chical deep learning architecture with batch normalization and early stopping to dynamically

learn complex genotype–phenotype relationships. The model has demonstrated superior ac-

curacy, especially on large-scale datasets, while maintaining competitive performance even

with smaller datasets. DNNGP has also outperformed DeepGS in computational e!ciency,

running up to 10 times faster, and has o”ered flexible hyperparameter tuning on local sys-

tems. These results have shown DNNGP to be a robust and scalable method for genomic

prediction, particularly suited for modern breeding platforms involving high-dimensional

omics data.

Wu et al. [2024] have introduced a novel Transformer-based genomic prediction model,

GPformer, designed to capture long-range dependencies across SNPs for improved phenotype

prediction. They have evaluated GPformer on diverse crop datasets, including soybean999

(7,883 SNPs), Maize282 (282 inbred lines with 3,093 SNPs), and Rice469 (469 indica rice

accessions with 5,291 SNPs). Unlike traditional models, GPformer has leveraged an auto-

correlation attention mechanism to extract relevant genomic signals regardless of physical

SNP distance. As a key innovation, they have also developed a knowledge guided module

(KGM) that integrates GWAS derived information into the model as prior knowledge. This

combination GPformer + KGM has consistently outperformed mainstream methods such

as RR-BLUP, SVR, LightGBM, and DNNGP across multiple evaluation metrics, including

9



MAE, PCC, and a novel Consistent Index (CI). The study has shown that GPformer is not

only highly accurate but also robust to hyperparameter variations, making it well suited for

practical breeding applications.

Wang et al. [2025] have proposed a novel genomic prediction framework called WheatGP,

which integrates convolutional neural networks (CNNs) and long short-term memory (LSTM)

networks to improve phenotype prediction in wheat. They have evaluated WheatGP using

two datasets: Wheat599, consisting of 599 CIMMYT varieties genotyped with 1,279 markers,

and Wheat2000, which includes 2,000 Iranian bread wheat varieties with 33,709 markers.

The CNN component has captured short-range genomic dependencies, while the LSTM mod-

ule has modeled long-range interactions between gene loci. Compared to rrBLUP, XGBoost,

SVR, and DNNGP, WheatGP has demonstrated superior prediction accuracy, achieving up

to 0.73 for wheat yield and between 0.62 and 0.78 for other agronomic traits. Additionally,

they have employed Shapley Additive explanations (SHAP) to interpret the model by iden-

tifying the most influential genomic features. These results have shown that WheatGP is

both accurate and interpretable, making it a robust and e!cient tool for genomic selection

and wheat breeding.

10



Paper Dataset Used Methods Used Conclusion

Ma et al. [2018] 2000 Iranian wheat

accessions, 33,709

DArT markers

DeepGS (CNN

based), RR-BLUP

DeepGS has achieved better

prediction than RR-BLUP;

ensemble of both has fur-

ther enhanced performance.

Liu et al. [2019] SoyNAM: 5000+

RILs, 4236 SNPs

CNN with saliency

maps, no imputation

DL model has outper-

formed statistical methods;

saliency maps have iden-

tified key SNPs for trait

prediction.

Grinberg et al.

[2020]

Yeast (1008 strains,

11,623 markers),

Wheat (254 lines,

33,516 SNPs)

ML models: GBM,

RF, SVM, EN, Lasso,

Ridge; vs. BLUP, 2-

step LR

ML methods (esp. GBM,

lasso, SVM) have outper-

formed classical methods;

RF most robust to noise;

BLUP good with popula-

tion structure.

Wang et al.

[2023]

Wheat2000,

Tomato332 +

2 more datasets

DNNGP (deep neural

net) vs. GBLUP,

LightGBM, SVR,

DeepGS, DLGWAS

DNNGP has shown supe-

rior accuracy and speed;

scalable and e!cient for

high-dimensional multi-

omics prediction.

Wu et al. [2024] Soybean999 (7883

SNPs), Maize282

(3093 SNPs),

Rice469 (5291

SNPs)

GPformer (Trans-

former + KGM),

vs. RR-BLUP, SVR,

LightGBM, DNNGP

GPformer + KGM has out-

performed all baselines in

MAE, PCC, CI; robust

across datasets and pheno-

types.

Wang et al.

[2025]

Wheat599 (1279

SNPs), Wheat2000

(33,709 SNPs)

WheatGP (CNN +

LSTM) + SHAP,

vs. RR-BLUP, SVR,

DNNGP, XGBoost

WheatGP has achieved

high accuracy (up to 0.73);

SHAP used for model

interpretability; suitable for

breeding pipelines.

Table 2.2: Summary of Machine Learning Based Genomic Prediction Studies
11





Chapter 3

Methods & Experiments

This section provides a detailed account of the experiments, including the methodologies

employed, the datasets used, and the model architectures tested

3.1 Dataset

The following section has discussed two datasets: the first, referred to as the ICAR

dataset, while the second is the publicly available USDA dataset, which is described in the

subsequent subsection.

3.1.1 Dataset specification

The dataset used in this study has been exclusively obtained from ICAR-IISR1, and

contains both genotypic and phenotypic data for 269 soybean varieties cultivated across

central India. Phenotyping has been conducted during the summer season (mid-June to

mid-October) over three consecutive years, from 2019 to 2021. The genotypic data includes

66,589 Single Nucleotide Polymorphisms (SNPs), which serve as genetic markers to analyze

variation among the soybean varieties. As shown in Table 3.1, columns represent SNPs

distributed across all 20 chromosomes of the soybean genome, while rows correspond to the

1ICAR-Indian Institute of Soybean Research, Indore, M.P., India

13



individual varieties used for analysis.

Varieties S1 60978 S1 62104 · · · S20 50278263 S20 50287457

MP 7 GW-1 A K · · · T W

MP 4 SOY-523 A K · · · C W

MP 4 SOY-520 A K · · · C T

MP 7 GW-6 R K · · · T T
...

...
...

...
...

...

MP 3 SOY-403 R G · · · T W

Table 3.1: SNP (Genotype) Matrix

The phenotypic dataset have four important phenotype traits such as Plant Height (PH),

Number of Nodes (NN), Grain Yield (GY), and Canopy Temperature (CT). The short

summary of the phenotypic dataset is given in the Table 3.2.

Varieties PH NN GY CT

MP 7 GW-1 48.83 6.86 5.45425 27.37

MP 4 SOY-523 54.04 10.65 1.45425 28.83

MP 4 SOY-520 54.24 9.45 2.07425 29.00

MP 7 GW-6 54.64 6.45 2.07425 27.99
...

...
...

...
...

MP 3 SOY-403 42.93 3.425 1.11125 30.76

Table 3.2: Phenotypic Trait Values for Soybean Varieties

Furthermore, we have used another publicly available soybean dataset to evaluate our

model’s performance on. This dataset comprises 20, 087 varieties from the USDA Soybean

Germplasm Collection, genotyped with the SoySNP50K, which we have downloaded from

SoyBase (https://www.soybase.org/dlpages/#snp50k; accessed April 13, 2025). From

these data, we have extracted Height, Oil, Protein and Yield measurements for the 1, 170

varities reported by Hill et al. [2008]. After filtering to retain only common varities, we
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proceed to evaluate both existing and our proposed model on this dataset as well. In

following sections, we refer to the ICAR-IISR dataset simply as the ICAR dataset, and

the USDA Soybean dataset as the USDA dataset.

3.1.2 Dataset preprocessing

Before training the models, we preprocess the genotypic dataset by encoding the SNP

values into a numerical format suitable for machine learning algorithms. Let X → Rn→d

denote the original genotypic data matrix, where n represents the number of soybean varieties

(i.e., 269), and d denotes the number of single nucleotide polymorphisms (SNPs) Markers

or features (i.e., 66, 589). Correspondingly, let y → Rn→1 represent the phenotypic vector

associated with each soybean phenotypic trait. However, each phenotypic trait corresponds

to a distinct y, while maintaining the same dimensionality.

Following the encoding scheme described in Lipka et al. [2012], homozygous alleles2A

and T are denoted by 0, while C and G are denoted by 2 to reflect genetic similarity,

heterozygous alleles3 (R, Y, S, W, K, and M) are denoted by 1 to represent their mixed

genetic nature. The character ‘N’, which indicates a missing value in the SNP data, is

denoted by -1. This transformation yields the encoded genotypic matrix X̃, which is more

computationally tractable and suitable for subsequent analyses.

2Homozygous alleles refer to identical versions of a gene inherited from both parent, located at

the same locus on homologous chromosomes.
3Heterozygous alleles refer to di”erent versions of a gene inherited from each parent at the same

locus, resulting in genetic variation at that position.
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Varieties S1 60978 S1 62104 · · · S20 50278263 S20 50287457

MP 7 GW-1 0 1 · · · 0 1

MP 4 SOY-523 0 1 · · · 2 1

MP 4 SOY-520 0 1 · · · 2 0

MP 7 GW-6 1 1 · · · 0 0
...

...
...

...
...

...

MP 3 SOY-403 1 2 · · · 0 1

Table 3.3: Encoded SNP Matrix

3.2 State of the art Statistical model with applica-

tion to Genomic Prediction and GWAS

Statistical methods have long been at the core of genomic prediction, and numerous

studies have employed and compared them across diverse datasets and traits. These methods

have provided a strong foundation for evaluating genetic potential, especially in early-stage

breeding. The following section highlights one of the most widely used and e”ective statistical

approaches for genomic prediction.

3.2.1 The ridge regression best linear unbiased prediction

(rrBLUP)

Before the widespread adoption of machine learning techniques in genomic studies, sta-

tistical models such as the Mixed Linear Model (MLM) and its compressed variant (CMLM)

have been commonly used for Genome-Wide Association Studies (GWAS) Zhang et al. [2010].

Among these, rrBLUP method has gained prominence as a standard approach for both ge-

nomic prediction and GWAS. Its strength lies in e”ectively handling high-dimensional SNP

data while accounting for population structure. By combining ridge regression with the

BLUP framework, rrBLUP is able to estimate marker e”ects e!ciently within a mixed
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model setup Endelman [2011].

In our study, we have applied rrBLUP to both the ICAR and USDA soybean datasets

using the rrBLUP package in R. We have followed a 10-fold cross-validation strategy to assess

the model’s predictive performance consistently across the datasets. This has allowed us to

benchmark rrBLUP against advanced machine learning models under a unified evaluation

framework.

3.2.2 Bayesian information and Linkage disequilibrium(BLINK)

Over time, Genome-Wide Association Studies (GWAS) have advanced through a series

of methodological improvements. The Mixed Linear Model (MLM) was initially favored for

its ability to control false positives, followed by the Compressed MLM (CMLM) for better

scalability. Later, FarmCPU improved statistical power by separating fixed and random

e”ects. The most recent and widely adopted method is BLINK (Bayesian-information and

Linkage-disequilibrium Iteratively Nested Keyway) Huang et al. [2019], which enhances speed

and accuracy by using Bayesian Information Criterion (BIC) and removing the assumption

of normally distributed markers.

In our study, we have used the BLINK method to identify trait-associated SNPs, where

lower p-values correspond to higher statistical significance. As shown in Section 4.4, BLINK

has e”ectively identified several SNPs associated with our traits of interest. We have imple-

mented BLINK using the GAPIT library, an R package specifically designed for genome-wide

association analysis, on both the ICAR and USDA soybean datasets. BLINK has o”ered su-

perior power and computational e!ciency by leveraging linkage disequilibrium and Bayesian

Information Criterion (BIC) for model selection Huang et al. [2019]. This has allowed us to

detect true associations more accurately, especially in the presence of complex population

structures. As a result, BLINK has served as a reliable and state-of-the-art approach in our

GWAS analysis.
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3.3 Basic Machine Learning Models with direct ap-

plication to Genomic Prediction

3.3.1 Support Vector Regression (SVR)

We have used Support Vector Regression (SVR) as a baseline model for genomic pre-

diction, owing to its proven ability to handle high-dimensional SNP datasets with strong

generalization capabilities. Prior studies have demonstrated that SVR performs competi-

tively in genomic contexts by e”ectively managing the curse of dimensionality and providing

robust predictive accuracy Basak et al. [2007].

SVR works by mapping input features into a high-dimensional space using kernel func-

tions and learns a linear function within an ω-insensitive margin, allowing the model to

tolerate small deviations while maintaining predictive sharpness. We have employed a linear

kernel. The SVR model has been trained using 10-fold cross-validation, ensuring that each

sample is tested once and trained nine times. Additionally, we have implemented an 90-10

data split, where 90% of the data is used for training and the remaining 10% is reserved for

evaluating the model’s generalization performance.

3.3.2 Variant SVR

To further enhance prediction performance and address the challenges of high-dimensional

SNP data, we have implemented a customized variant of SVR. This variant incorporates L2

regularization with an ω-insensitive loss function, which has made the model more robust to

noise and well-suited for datasets with limited samples but large numbers of features. In-

spired by recent studies that introduced semismooth optimization techniques in SVR frame-

works Yin and Li [2019], we have adopted a convex optimization approach to solve this

formulation.

The variant has been implemented using CVXPY, a Python-based modeling tool that
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enables e!cient specification of objective functions and constraints. This framework has al-

lowed us to define the optimization problem clearly and solve it with high precision. We have

applied 10-fold cross-validation for model reliability, and like the baseline SVR, the dataset

has been divided using an 90-10 train-test split. The model has demonstrated improved

control over overfitting while still capturing meaningful genotype–phenotype relationships,

particularly in the presence of noisy and sparse signal patterns across SNPs.

3.3.3 GPFormer Model

In addition to SVR-based approaches, we have employed the GPFormer model, a Transformer-

based deep learning architecture specifically designed for genomic prediction tasks Lu et al.

[2025]. This model has outperformed traditional machine learning methods across multi-

ple trait predictions in prior research. GPFormer adopts an encoder–decoder architecture

and integrates critical deep learning components such as multi-head self-attention, residual

connections, positional encoding, batch normalization, and dropout.

These design elements have enabled GPFormer to e”ectively capture long-range depen-

dencies among SNPs, which is a limitation in many conventional models. The self-attention

mechanism has allowed the model to focus on relevant SNP regions without relying on fea-

ture selection heuristics. For training, we have followed the same 10-fold cross-validation

procedure and retained an 90-10 split for evaluation. The final phenotype prediction has

been obtained from the output of a fully connected layer applied to the final hidden state of

the encoder. This design has led to high model stability, reduced overfitting, and consistent

performance across di”erent trait prediction scenarios.
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3.4 Advance ML models with novel application to

Genomic Prediction and GWAS

3.4.1 Attention with Support Vector Regression

We have faced a major challenge due to the high dimensionality of SNP data, which

makes the direct application of self-attention computationally expensive. Traditional self-

attention mechanisms scale quadratically with input size, which is impractical for large

genomic datasets.

To address this, we have designed a lightweight self-attention mechanism where the

entire SNP sequence of a sample is treated as a single token. This approach reduces the

computational complexity and allows self-attention to operate in linear time, generating an

self-attention score matrix across SNPs. The resulting matrix has been used as input to a

Support Vector Regression (SVR) model.

This hybrid model has shown slightly better prediction performance than standalone

SVR and has identified a greater number of informative SNPs, indicating that the self-

attention mechanism has e”ectively captured relevant patterns in the data.

3.4.2 Attention with Variant of Support Vector Regression

To further explore the e”ectiveness of self-attention, we have also applied the same self-

attention mechanism in combination with a variant of SVR. This experiment was intended to

evaluate whether the benefits of self-attention persist across di”erent SVR formulations. The

performance of this model has been found to be comparable to the original Attention with

SVR model, confirming the generalizability of the self-attention based feature extraction

approach.
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3.4.3 ResGene18

High dimensionality of SNP data has remained a persistent challenge in genomic predic-

tion tasks. To address this, we have looked into existing literature and found that Muneeb

et al. [2022] have transformed SNP data into a 2D matrix format to apply convolutional

neural networks. However, their dataset involved low-dimensional SNPs and was used for

classification, making the approach unsuitable for our high-dimensional regression-based

problem.

Motivated by this, we have proposed a novel transformation technique tailored for high-

dimensional SNP data. Specifically, we have reshaped the SNP input into a 3D format, We

have represented the SNP data using 20 channels, where each channel corresponds to one

of the 20 soybean chromosomes, as illustrated in Figure 3.1. This chromosome-wise decom-

position has not only preserved biological relevance but has also enabled the use of deep

learning techniques for e”ective feature extraction. Additionally, this multi-channel strategy

aligns with the concept of input channels in image-based models, allowing us to break the

high-dimensional SNP data into manageable chunks. Our decision to segment the data in

this way has been motivated by the biological distribution of SNPs across 20 chromosomes,

thereby introducing a meaningful bias that supports both interpretability and model e!-

ciency. To the best of our knowledge, we are the first to apply such a genomic-to-image

transformation for both genomic prediction and GWAS tasks. Owing to the unique nature

of this transformation and its integration with a lightweight deep learning backbone, we

have named our architecture ResGene18, where the ‘18’ corresponds to the 18 layers of

the ResNet18 model chosen for being the simplest and least complex variant in the ResNet

family, yet su!ciently powerful for our application. We have trained the ResNet18 model

using 10-fold cross-validation to ensure robust and unbiased evaluation across di”erent sub-

sets of the data. For optimization, we have used Stochastic Gradient Descent (SGD), which

is known to perform well on image-based datasets by enabling smoother convergence and
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better generalization. This combination of architecture and training strategy has allowed

the model to learn meaningful spatial dependencies from the SNP image representations.

Figure 3.1: Transformation of sequential SNP data into 2D multi-channel image for-

mat.

As a result, our proposed model, ResGene18, has achieved the highest Pearson’s corre-

lation coe!cient (PCC) among all models, including traditional statistical models, baseline

machine learning methods, and our other proposed hybrids as demonstrated in sections 4.2.

Additionally, ResGene18 has identified a greater number of informative SNPs compared to

all other models, highlighting its e”ectiveness in both Genomic prediction and SNP Identi-

fication as demonstrated in section 4.3 and 4.4
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Chapter 4

Results

4.1 Experimental Setup

For our machine learning experiments, we have utilized the Kaggle platform, running

Python version 3.11.11. The ResNet18 architecture has been implemented using the Py-

Torch library to process SNP image representations for genomic prediction. On the other

hand, statistical analyses including rrBLUP and the BLINK model have been carried out

using the rrBLUP and GAPIT packages within RStudio. The computational environment has

included an Intel(R) Xeon(R) CPU @ 2.00GHz and an NVIDIA Tesla P100-PCIe-16GB

GPU, providing su!cient processing power for deep learning and statistical modeling tasks.

4.2 Evaluation Metric

For evaluating our model, we have used the following well-known metrics, which are

described below.

Pearson Correlation Coe!cient (PCC): This metric evaluates the linear relation-

ship between the predicted and actual values. It indicates how closely the two sets of values

align on a straight line. A PCC value close to 1 suggests a strong positive correlation,

meaning the predictions closely follow the actual trend. A value near 0 implies no linear
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relationship, while a negative value indicates an inverse correlation. This metric is especially

useful in assessing how well a model captures the direction and strength of the relationship

between input features and the target trait Cohen et al. [2009].

The mathematical formulation of PCC metrics As shown in Equation (4.1), where yi

indicates the actual values for the ith sample, y↑i represents the predicted values, and ȳ is

the mean of the actual values. Similarly, ȳ↑ denotes the mean of the predicted values (i.e.,

ȳ↑ = 1
n

∑n
i=1 y

↑
i).

PCC =

∑n
i=1(yi ↑ ȳ)(y↑i ↑ ȳ↑)√∑n

i=1(yi ↑ ȳ)2
√∑n

i=1(y
↑
i ↑ ȳ↑)2

(4.1)

In soybean Genome-Wide Association Studies (GWAS), PCC (Pearson Correlation Co-

e!cient) is especially helpful. GWAS seeks to identify genetic variant/trait associations.

Using PCC in this type of analysis permits researchers to evaluate the linear correlation

between predicted and actual trait values based on genetic markers. A higher PCC value

indicates a stronger linear relationship between specific genetic variants and the target trait,

thereby aiding in identification of significant genetic components influencing soybean traits.

Additionally, genomic prediction studies frequently adopt PCC as a primary evaluation met-

ric due to its interpretability and e”ectiveness in assessing model performance Sehrawat et al.

[2023].

24



4.3 Model Evaluation

4.3.1 Model Evaluation: ICAR Dataset

The ICAR dataset has comprised approximately 66,000 SNP markers, 269 soybean ac-

cessions, and four phenotypic traits. A comparative analysis of all the methods is presented

in the Table below.

Trait Statistical Existing ML Models Our Proposed ML Models % Gain

rrBLUP SVR Variant SVR GPFormer ATT+SVR ATT+Variant SVR ReGene18

PH 0.331 0.421 0.4105 0.4642 0.436 0.394 0.485 46.53

NN 0.3422 0.376 0.3237 0.3892 0.3778 0.241 0.4094 19.64

GY 0.3208 0.201 0.174 0.2845 0.224 0.211 0.3221 0.41

CT 0.079 0.097 0.0997 0.1044 0.072 0.012 0.1878 137.72

Average % Gain between rrBLUP and ResGene18 51.07

Table 4.1: Comparison of PCC values across di”erent models and traits on ICAR

dataset. The % Gain column represents the relative improvement of ResGene18 over

rrBLUP.

As demonstrated in Table 4.1, machine learning-based approaches have outperformed

the statistical method rrBLUP. Notably, among all the methods tested, our proposed model

ResGene18 has achieved the highest accuracy across all traits, outperforming statistical

techniques and other machine learning models, thereby highlighting its strong potential for

genomic prediction tasks.

4.3.2 Model Evaluation: USDA Dataset

Similar algorithms have also been evaluated on the USDA soybean dataset, which in-

cludes 1,173 accessions, approximately 42,000 SNP markers, and four phenotypic traits:

plant height, oil content, protein content, and grain yield. On this dataset, the traditional
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statistical method rrBLUP has outperformed all machine learning models, including SVR, its

variant, GPFormer, and our proposed models Attention+SVR and Attention+Variant SVR.

However, among all approaches, only our final proposed model ResGene18 has consistently

delivered the highest prediction accuracy, achieving the best Pearson correlation coe!cients

(PCC) across all four traits. This demonstrates the robustness and superior performance of

ResGene18 for genomic prediction, even on large and complex datasets, as evidenced in the

results shown in Table 4.2

Trait Statistical Existing ML Models Our Proposed ML Models % Gain

rrBLUP SVR Variant SVR GPFormer ATT+SVR ATT+Variant SVR ResGene18

HEIGHT 0.7341 0.687 0.7242 0.6485 0.703 0.704 0.7392 0.69

OIL 0.7098 0.652 0.6006 0.6585 0.657 0.606 0.7112 0.20

PROTEIN 0.6662 0.611 0.6587 0.6453 0.636 0.662 0.6786 1.86

YIELD 0.7553 0.736 0.7378 0.7076 0.737 0.726 0.7604 0.68

Average % Gain between rrBLUP and ResGene18 0.86

Table 4.2: Comparison of PCC values across di”erent models and traits on USDA

dataset. The % Gain column represents the relative improvement of ResGene18 over

rrBLUP.
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4.4 SNP Identification

Single Nucleotide Polymorphism (SNP) detection plays a crucial role in Genome-Wide

Association Studies (GWAS), as it helps uncover genetic variations linked to complex traits

and diseases Fang et al. [2017]. Identifying significant SNPs allows researchers to pinpoint

genomic regions influencing traits of interest, thereby supporting marker-assisted selection

(MAS) in breeding programs and contributing to advancements in personalized medicine. To

further demonstrate the e”ectiveness of our model, we compared the SNPs it identified with

those reported as ground truth on the SoyBase database Grant et al. [2010]. Specifically, we

assessed the top 20 SNPs identified by our model ResGene18 against the top 20 discovered

by BLINK, a leading statistical method widely recognized for its GWAS performance Huang

et al. [2019]. For a fair comparison, we considered only those SNPs where the genomic

position di”erence between the identified SNP and the SoyBase ground truth was less than

3 million base pairs.
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4.4.1 SNP Identification on ICAR Dataset

Trait BLINK ResGene18 % Di!erence

PH 9 11 22.22

NN 4 6 50.00

GY 6 11 83.33

CT 4 7 75.00

Average % Di!erence 57.14

Table 4.3: Comparison of number of SNPs identified by BLINK and ResGene18 on

the ICAR dataset.

As demonstrated in Table 4.3 our proposed model ResGene18 and the statistical model

BLINK is employed to identify significant SNPs associated with four traits in the ICAR

dataset. ResGene18 has consistently identified a higher number of SNPs. On average,

ResGene18 has achieved a 57.14% improvement in SNP identification compared to BLINK.
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Chr Identified Position Identified Position by BLINK Di!erence

S18 8,658,515 9,263,941 605,426

S18 5,908,800 5,271,342 637,458

S18 5,908,800 5,244,535 664,265

S3 42,527,196 41,769,136 758,060

S3 42,527,196 41,769,127 758,069

S3 42,527,196 41,699,688 827,508

S5 4,300,531 2,899,164 1,401,367

S18 50,198,744 51,620,945 1,422,201

S13 13,259,705 15,903,319 2,643,614

Total SNPs identified by BLINK 9

Chr Identified Position Identified Position by ResGene18 (bp) Di!erence

S18 4,702,682 4,522,238 180,444

S13 34,916,010 34,676,862 239,148

S20 46,223,443 45,694,464 528,979

S18 53,267,229 52,532,933 734,296

S20 46,223,443 45,100,008 1,123,435

S15 25,719,454 24,648,725 1,070,729

S5 4,300,531 2,778,975 1,521,556

S18 50,198,744 52,532,914 2,334,170

S15 26,551,533 29,011,688 2,460,155

S12 36,038,398 39,034,317 2,995,919

S12 36,038,398 39,034,638 2,996,240

Total SNPs identified by ResGene18 11

Table 4.4: SNPs identified for the trait Plant Height using BLINK and ResGene18,

along with corresponding ground truth positions and positional di”erences.
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Chr Ground Position Identified Position - BLINK Di!erence

S16 37,079,553 37,059,512 20,041

S16 37,079,553 36,999,780 79,773

S19 43,990,450 43,165,754 824,696

S11 4,980,454 3,837,243 1,143,211

Total SNPs identified by BLINK 4

Chr Ground Position Identified Position - ResGene18 (bp) Di!erence

S19 43,990,450 43,454,424 536,026

S11 4,980,454 6,060,734 1,080,280

S19 43,990,450 42,881,920 1,108,530

S13 32,115,483 33,952,562 1,837,079

S13 32,115,483 34,654,698 2,539,215

S18 55,620,032 52,932,922 2,687,110

S18 55,808,363 52,832,933 2,975,430

Total SNPs identified by ResGene18 7

Table 4.5: SNPs identified for the trait Number of Nodes using BLINK and Res-

Gene18, along with corresponding ground truth positions and positional di”erences.
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Chr Ground Position Identified Position - BLINK Di!erence

S7 6,396,861 6,152,396 244,465

S16 33,786,653 32,831,101 955,552

S16 33,786,653 32,792,281 994,372

S6 47,750,740 49,061,490 1,310,750

S6 47,750,740 49,076,176 1,325,436

S13 37,033,440 38,828,253 1,794,813

Total SNPs identified by BLINK 6

Chr Ground Position Identified Position - ResGene18 Di!erence

S10 176,869 193,685 16,816

S19 43,022,543 42,863,274 159,269

S10 1,020,657 1,111,345 90,688

S7 1,300,300 1,697,640 397,340

S7 1,300,300 1,697,673 397,373

S19 43,022,543 43,847,204 824,661

S10 1,020,657 184,336 836,321

S18 5,153,977 3,883,552 1,270,425

S11 7,897,730 8,913,591 1,015,861

S12 36,324,462 38,308,336 1,983,874

S12 36,324,462 39,250,317 2,925,855

Total SNPs identified by ResGene18 11

Table 4.6: SNPs identified for the trait Grain Yield using BLINK and ResGene18,

along with corresponding ground truth positions and positional di”erences.
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Chr Ground Position Identified Position - BLINK (bp) Di!erence

S11 7,251,966 6,988,207 263,759

S11 7,251,966 8,185,858 933,892

S11 7,251,966 6,240,051 1,011,915

S11 7,251,966 6,189,928 1,062,038

Total SNPs identified by BLINK 4

Chr Ground Position Identified Position - ResGene18 Di!erence

S13 34,845,629 34,676,862 168,767

S13 34,845,629 34,654,698 190,931

S17 7,536,244 6,603,695 932,549

S6 12,426,395 10,774,194 1,652,201

S17 7,536,244 5,665,674 1,870,570

S6 12,426,395 9,819,431 2,606,964

S6 12,426,395 9,804,189 2,622,206

Total SNPs identified by ResGene18 7

Table 4.7: SNPs identified for the trait Canopy Temprature using BLINK and Res-

Gene18, along with corresponding ground truth positions and positional di”erences.

Remarkably, our model identified a higher number of SNPs overlapping with SoyBase-

verified loci compared to the widely used statistical method BLINK, highlighting its superior

ability for SNP identification in genomic studies. Across all four traits in the ICAR dataset

— Plant Height (PH), Number of Nodes (NN), Grain Yield (GY), and Canopy Temperature

(CT) — our model consistently outperformed BLINK, identifying 2, 2, 5, and 3 additional

SNPs respectively. This demonstrates the model’s robustness and e”ectiveness in capturing

meaningful genetic signals.
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4.4.2 SNP Identification on USDA Dataset

Trait BLINK ResGene18 % Di!erence

HEIGHT 10 13 30.00

OIL 13 14 7.69

PROTEIN 8 11 37.50

YIELD 7 11 57.14

Average % Di!erence 33.58

Table 4.8: Comparison of number of SNPs identified by BLINK and ResGene18 on

the USDA dataset. % Di”erence is calculated between ResGene18 and BLINK.

In the case of the USDA dataset, the comparison between the baseline statistical ap-

proach BLINK and our proposed deep learning model ResGene18 has revealed that Res-

Gene18 has successfully detected a greater number of SNPs. This improvement is reflected

in an average percentage increase of 33.58%.
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Chromosome Identified Position Identified Position - BLINK Di!erence

S07 6,598,470 6,875,359 276,889

S08 42,402,751 42,090,911 311,840

S10 46,373,097 46,729,408 356,311

S10 46,373,097 46,730,455 357,358

S09 46,006,470 45,242,813 763,657

S04 5,241,170 4,239,539 1,001,631

S10 7,750,656 6,196,008 1,554,648

S03 35,565,679 33,636,101 1,929,578

S07 15,350,606 14,106,459 1,244,147

S09 46,006,470 48,543,094 2,536,624

Total SNPs identified by BLINK 10

Chromosome Identified Position Identified Position - ResGene18 Di!erence

S7 4,535,039 4,623,018 87,979

S18 5,908,800 5,735,470 173,330

S2 41,290,024 41,544,629 254,605

S18 50,325,432 50,590,190 264,758

S1 55,166,202 54,750,659 415,543

S3 43,679,222 43,025,036 654,186

S2 41,290,024 40,730,110 559,914

S18 50,325,432 49,301,920 1,023,512

S20 40,857,494 42,125,878 1,268,384

S9 46,006,470 47,670,973 1,664,503

S18 50,325,432 48,132,642 2,192,790

S5 4,300,531 2,238,811 2,061,720

S8 43,005,079 45,517,454 2,512,375

Total SNPs identified by ResGene18 13

Table 4.9: SNPs identified for the trait Height using BLINK and ResGene18, along

with corresponding ground truth positions and positional di”erences.
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Chromosome Identified Position Identified Position - BLINK Di”erence

S5 41,780,982 41,855,235 74,253

S9 43,972,043 43,303,153 668,890

S6 49,834,614 48,850,059 984,555

S5 2,661,929 3,755,641 1,093,712

S4 7,855,555 9,014,045 1,158,490

S7 9,339,240 8,021,155 1,318,085

S3 37,272,628 35,837,462 1,435,166

S03 43,679,222 45,151,144 1,471,922

S2 46,806,494 45,316,774 1,489,720

S9 10,384,779 11,970,660 1,585,881

S5 2,661,929 4,904,466 2,242,537

S11 22,911,236 25,114,851 2,203,615

S8 8,281,543 10,700,780 2,419,237

S4 7,855,555 9,104,210 1,248,655

Total SNPs identified by BLINK 14

Chromosome Identified Position Identified Position - ResGene18 Di”erence

S1 54,711,960 54,698,255 13,705

S7 4,986,841 4,883,153 103,688

S10 1,020,657 1,432,529 411,872

S5 2,661,929 2,207,089 454,840

S7 4,986,841 5,457,246 470,405

S15 3,828,587 3,319,227 509,360

S3 43,679,222 44,343,929 664,707

S6 6,291,064 3,313,294 2,977,770

S2 42,237,432 40,804,255 1,433,177

S7 6,623,116 5,456,442 1,166,674

S2 42,237,432 40,730,110 1,507,322

S17 6,418,985 4,955,428 1,463,557

S20 40,857,494 42,763,762 1,906,268

S17 6,418,985 3,924,278 2,494,707

Total SNPs identified by ResGene18 14

Table 4.10: SNPs identified for the trait Oil using BLINK and ResGene18, along with

corresponding ground truth positions and positional di”erences.
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Chromosome Identified Position Identified Position - BLINK Di”erence

S7 37,126,884 36,936,795 190,089

S9 2,238,015 2,669,838 431,823

S6 5,666,361 6,214,894 548,533

S3 37,272,628 37,895,336 622,708

S9 46,053,138 45,099,143 953,995

S7 37,126,884 36,237,935 888,949

S3 37,272,628 35,507,990 1,764,638

S4 7,855,555 10,193,474 2,337,919

Total SNPs identified by BLINK 8

Chromosome Identified Position Identified Position - ResGene18 Di”erence

S13 18,150,116 18,211,337 61,221

S7 6,623,116 6,198,644 424,472

S15 4,045,527 4,475,844 430,317

S15 4,045,527 4,481,538 436,011

S2 39,587,099 39,936,971 349,872

S8 46,415,576 45,529,194 886,382

S15 4,045,527 3,319,227 726,300

S18 50,815,522 49,747,507 1,068,015

S20 40,857,494 42,125,878 1,268,384

S19 40,540,660 38,209,047 2,331,613

S20 40,857,494 37,971,425 2,886,069

Total SNPs identified by ResGene18 11

Table 4.11: SNPs identified for the trait Protein using BLINK and ResGene18, along

with corresponding ground truth positions and positional di”erences.
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Chromosome Identified Position Identified Position - BLINK Di”erence

S7 42,849,437 42,750,874 98,563

S7 4,535,039 4,429,773 105,266

S9 46,006,470 45,885,099 121,371

S7 42,849,437 43,190,165 340,728

S7 12,644,089 13,176,087 531,998

S9 46,006,470 44,884,482 1,121,988

S9 37,962,563 39,358,464 1,395,901

Total SNPs identified by BLINK 7

Chromosome Identified Position Identified Position - ResGene18 Di”erence

S7 4,535,039 4,883,153 348,114

S20 42,395,006 43,193,377 798,371

S18 5,908,800 6,790,349 881,549

S20 42,395,006 43,293,034 898,028

S18 5,908,800 7,278,846 1,370,046

S18 51,521,459 49,747,507 1,773,952

S18 51,521,459 49,301,920 2,219,539

S18 51,521,459 49,292,394 2,229,065

S18 51,521,459 49,289,323 2,232,136

S15 48,666,451 51,634,506 2,968,055

S15 48,666,451 51,647,162 2,980,711

Total SNPs identified by ResGene18 11

Table 4.12: SNPs identified for the trait Yield using BLINK and ResGene18, along with

corresponding ground truth positions and positional di”erences.
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Consistent with the ICAR dataset, our model also demonstrated superior SNP detection

on the USDA dataset. Specifically, it identified a greater number of SNPs than the BLINK

statistical model across all four traits Height (3 more SNPs), Oil (1), Protein (3), and Yield

(4). This further highlights the robustness and e”ectiveness of our approach in uncovering

biologically meaningful genetic associations.

4.5 Potential SNP positions with specific pheno-

typic traits

Building upon the above results, we propose a set of novel, potentially significant SNPs

in the Table 4.13 and 4.14 that demonstrate strong associations with the four phenotypic

traits for each dataset. Given their predictive importance and alignment with established

genomic knowledge, we suggest that these candidate SNPs may contribute meaningfully to

trait variation and could serve as valuable additions to the existing catalog of trait-associated

markers. Their inclusion could enhance the comprehensiveness of current genomic resources

and support future e”orts in marker-assisted selection and functional genomics in soybean.
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Plant Height Number of Nodes Grain Yield Canopy Temperature

Chr Location Chr Location Chr Location Chr Location

S4 412,338 S11 8,917,811 S1 53,392,386 S14 35,715,633

S8 8,363,522 S8 50,391,345 S13 33,952,562 S2 53,110,518

S20 45,098,114 S1 54,115,102 S3 48,690,949 S18 52,532,914

S10 1,111,345 S16 25,843,791 S8 8,362,116 S9 310,406

S19 43,847,204 S2 52,465,611 S1 54,115,102 S14 31,623,739

Table 4.13: Potential SNPs associated with phenotypic traits identified using our ResGene18

model on the ICAR dataset.

Height Oil Protein Yield

Chr Location Chr Location Chr Location Chr Location

S14 1,732,902 S12 3,230,818 S9 50,008,825 S12 3,230,818

S13 19,083,710 S18 50,610,764 S18 6,830,722 S13 18,520,168

S8 6,196,069 S14 1,416,586 S9 50,007,447 S1 53,041,644

S13 18,520,168 S8 44,096,773 S5 1,358,556 S10 51,426,325

S13 18,211,337 S18 6,790,349 S12 2,464,843 S1 53,067,596

Table 4.14: Potential SNPs associated with phenotypic traits identified using our ResGene18

model on the USDA dataset.
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Chapter 5

Conclusion

In this study, we have introduced ResGene18, a novel deep learning model that in-

tegrates a genomic-to-image transformation with the ResNet18 architecture. By leveraging

this biologically inspired representation and a lightweight convolutional network, ResGene18

has e”ectively addressed the dual challenges of genomic prediction and SNP identification.

The success of ResGene18 stems from a series of progressive innovations. Starting with

support vector regression (SVR) and its variants, we have evaluated their predictive capacity

alongside the transformer-based GPFormer. Recognizing the limitations of existing methods

in handling high-dimensional, low-sample SNP data, we developed a hybrid model that

combines the regression strength of SVR with the attention mechanism’s ability to model

complex feature interactions. After that, we have reimagined SNP data as two-dimensional,

chromosome-wise image-like structure, a novel approach that has facilitated spatial pattern

recognition and mitigated the curse of dimensionality.

To the best of our knowledge, we are the first to apply such a transformation for both

genomic prediction and GWAS tasks. In ResGene18 architecture, the “18” signifies the layers

chosen for their simplicity and e!ciency, making the model well-suited for high dimensional

genomic datasets.
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Through extensive evaluation on two soybean datasets namely the ICAR and USDA,

our model has consistently outperformed traditional statistical approaches such as rrBLUP

and BLINK. It has demonstrated an average performance improvement of approximately

51% on the first dataset and around 1% on the second dataset. Additionally, in terms of

SNP discovery, ResGene18 has identified 57% more significant markers on the ICAR dataset

and 34% more on the USDA dataset, further highlighting its e”ectiveness for trait-marker

identification.

Looking ahead, the ResGene18 framework holds promise for broader applications. In fu-

ture work, this architecture can be validated on multiple publicly available genomic datasets

and extended to a wider range of crops. Such evaluations will help further establish the

generalizability and robustness of our approach in diverse genomic prediction and GWAS

scenarios.
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