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Abstract

The increasing demand for high-capacity, secure, and intelligent
wireless communication in 6G and beyond has motivated the integration
of emerging technologies such as Aerial Intelligent Reflecting Surfaces
(AIRS), machine learning, and computer vision. This thesis proposes a
novel framework that leverages visual sensing and RF signal
characteristics for beam selection and eavesdropper detection in UAV-

borne IR S-assisted multi-user wireless networks.

The proposed system employs visual sensing information, extracted
from images captured by UAV-mounted cameras using YOLOVI10, to
identify the location and spatial features of legitimate users. These visual
features, combined with a sequence of previous beam information, are
used as input to a Gated Recurrent Unit (GRU) based deep learning
model. The model predicts the top-K beam indices with high confidence,
significantly reducing the beam search space and enhancing received
signal-to-noise ratio (SNR). Evaluation on the DeepSense6G dataset
confirms that the proposed model achieves over 99% top-5 beam
prediction accuracy and minimal power loss compared to exhaustive

search-based beam selection.

To address the challenge of physical layer security, this work further
introduces an RF-based anomaly detection module. By analyzing RF
features such as RSSI, SNR, and frequency deviation, the system
identifies potential eavesdroppers, which typically exhibit stronger and
more consistent signal patterns due to proximity and unauthorized
listening. By correlating visual coordinates with RF anomalies, the
system can localize and suppress signal transmission in the direction of
suspicious users using adaptive beam nulling techniques, thus

minimizing information leakage.

The integration of computer vision and RF data demonstrates a
significant advancement over traditional methods, offering both

performance optimization and robust security assurance.
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In conclusion, this thesis contributes a comprehensive, intelligent, and
secure beam management architecture that is well-suited for next-
generation wireless communication networks. The proposed techniques
lay a strong foundation for further exploration into multi-AIRS
coordination, user fairness in NOMA, and analytical secrecy capacity

under practical system constraints.
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Chapter 1: Introduction

1.1 Overview

The transition toward sixth-generation (6G) wireless communication systems
demands transformative solutions to meet the increasing requirements for ultra-
reliable, low-latency, high-throughput, and secure connectivity. Among the
promising enablers for such systems are Reconfigurable Intelligent Surfaces
(RIS), which offer unprecedented capabilities to shape and control the wireless
propagation environment in a programmable manner. When mounted on
Unmanned Aerial Vehicles (UAVs), forming Aerial Intelligent Reflecting
Surfaces (AIRS), the system inherits both the spatial reconfigurability of UAVs
and the propagation control of RIS, thereby enabling dynamic and flexible
communication support for ground users, especially in environments with

limited Line-of-Sight (LoS) availability.

Despite their potential, RIS and AIRS-assisted communication systems face
critical challenges, particularly in real-time beamforming, channel estimation,
and secure signal transmission. The efficacy of RIS heavily depends on precise
beam selection to ensure optimal signal reflection and focus. However,
conventional beam training methods—typically based on exhaustive search or
channel state information (CSI)—are computationally expensive, time-

consuming, and impractical in highly dynamic or mobility-centric scenarios.

In response to these limitations, this thesis introduces an innovative vision-aided
beamforming and security framework for UAV-borne IRS-assisted wireless
systems. The proposed approach leverages computer vision and machine
learning to significantly improve the accuracy and responsiveness of beam
selection, while simultaneously enhancing the physical layer security of the

network.

1.2 Reconfigurable Intelligent Surfaces

Reconfigurable Intelligent Surfaces (RIS), also referred to as Intelligent
Reflecting Surfaces (IRS), are an emerging class of programmable meta
surfaces that can dynamically control the propagation of electromagnetic waves
in wireless environments. Unlike traditional relay systems that amplify and

forward signals using active RF chains, RIS operates passively by adjusting the
1



phase shift and sometimes amplitude of incident signals, without requiring

complex hardware or power-intensive circuitry.

Each RIS comprises an array of low-cost, passive, and tuneable elements (e.g.,
varactor diodes), which are controlled through a central controller. By carefully
tuning the capacitance of these elements, RIS can reconfigure the wireless
propagation environment to achieve various performance enhancements,
including increased received power, improved coverage, reduced interference,

and enhanced physical layer security.

RIS has gained significant traction as a key enabler for 6G and beyond due to
its potential for high spectral and energy efficiency with minimal hardware cost

and power consumption.

1.2.1 Mathematical Model of RIS-Assisted Communication

Consider a wireless system where a base station (BS) communicates with a user
with the assistance of an RIS containing MMM reflecting elements. Let:

e G € CM*Ne;: Channel matrix from BS to RIS

e h, € CM*1: Channel vector from RIS to user

e w € CN*1: Transmit beamforming vector at the BS

e x € C: Transmitted symbol, with E[|x|?] =1

e n ~ CN(0,0%) Additive white Gaussian noise

The RIS phase shift matrix is represented as:
@ = diag(B1e/%, Bre%, ..., By e/M)

where $3,,, € [0,1] is the amplitude reflection coefficient (typically 1) and 8,, €
[0,27] is the phase shift applied by the m — th RIS element.

The received signal y at the user is given by:

y = hfl®dGwx +n

1.2.2 Signal-to-Noise Ratio (SNR)

The instantaneous Signal-to-Noise Ratio at the user is:

|hEdGw|?

SNR = ——



1.2.3 Beamforming Optimization
To maximize the received SNR, both the beamforming vector w and RIS phase
shifts @ need to be jointly optimized. This is a non-convex problem due to unit-
modulus constraints on the RIS phase elements.
When @ is fixed, the optimal transmit beamforming vector is:
G"®Hh
W=V e ]
Here, P; denotes the BS transmit power.
1.2.4 Key Advantages
o Energy Efficiency: Passive components require minimal power.
e Programmability: RIS can shape the wireless environment dynamically.
o Cost-Effectiveness: No active RF chains are required.
e Deployment Flexibility: Can be wall-mounted or UAV-deployed (AIRS).
1.2.5 Challenges
e Channel Estimation: Difficult due to passive nature of RIS.
e Discrete Phase Control: Practical RIS may support only 1-3 bits of phase
quantization.
o Joint Optimization: Active (BS) and passive (RIS) beamforming are tightly
coupled.

e Control Overhead: Real-time coordination with BS is needed.
1.2.6 Aerial IRS (AIRS)

An Aerial IRS refers to a mobile RIS mounted on a UAV platform. It offers the

following advantages:
e Dynamic repositioning to improve LoS probability.
e Greater flexibility for user-centric coverage.
o Ability to bypass obstacles in non LoS scenarios.
e Supports 3D beamforming and trajectory design.

AIRS introduces additional optimization variables, such as altitude, horizontal
location, and orientation, which can be adjusted to further enhance signal

performance or physical layer security.



1.3 Computer Vision Approach
1.3.1 Computer Vision

Computer Vision is a multidisciplinary field within artificial intelligence (Al)
and computer science that focuses on enabling machines to perceive, interpret,
and extract meaningful information from digital images or video data.
Technically, it involves the development of algorithms and models that allow
computers to replicate human visual cognition by performing tasks such as
object detection, recognition, segmentation, depth estimation, motion tracking,

and scene understanding.

In mathematical terms, computer vision systems map raw pixel data —I(x, y, ¢)
where x, y denote spatial coordinates and ¢ € R, G, B is the colour channel into
high-level feature representations or decision outputs using techniques such as

convolutional neural networks (CNNs), optimization, and geometric modelling.

Modern computer vision applications rely heavily on deep learning
architectures, such as YOLO (You Only Look Once), ResNet, and U-Net, which
learn hierarchical features from large-scale image datasets to perform inference

tasks with high accuracy and minimal handcrafted rules.

1.3.2 Vision aided RIS

In RIS-aided wireless systems, the quality of communication depends largely
on selecting the optimal beam direction from a pre-defined codebook.
Traditional beam selection involves exhaustive search or CSI-based estimation,
which is computationally intensive and often impractical in dynamic or high-
mobility scenarios. To address this, computer vision offers a powerful

alternative by enabling vision-aided beam selection.

The proposed approach uses images captured by UAV-mounted cameras. These
images are processed using an object detection algorithm, such as YOLOv10,
to detect and localize the user equipment (UE). Once the user's location and
bounding box are extracted, the relevant features are used along with historical

beam data to predict the most probable optimal beam index.
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Fig 1.1 Vision Aided AIRS
1.3.3 Visual Feature Vector

Let an input image be represented in RGB format. The object detection model

extracts the following user-related features:

x: x-coordinate of the user bounding box center

y: y-coordinate of the user bounding box center

w: width of the bounding box

h: height of the bounding box

These four values form the visual feature vector:
x

Yy eR4+¥1
w

h

Let the last K selected beam indices be represented as:

Pi-k+1
0 = pt—:K+2

D:
Where each p; € {1, 2, ..., N}is a discrete beam index from the codebook of

size N.

1.3.4 Combined Feature Input



The combined input to the prediction model is the concatenation of the visual

feature vector y and the historical beam sequence 6:
X
@ = [0] e RU+Kx1

This feature vector is then used as input to a machine learning model—typically

a Recurrent Neural Network (RNN) based on Gated Recurrent Units (GRUs).
1.3.5 Beam Index Prediction

Let f,, (), 0) be the prediction function modeled by the neural network. The
objective is to predict the most probable beam index that maximizes the

likelihood of being optimal:

p=arg max P(fy(x.6)=p)

Where p is predicted beam index and p = optimal beam index.

The model outputs a probability distribution over the N possible beam indices.
The top-K predicted beams can then be used for reduced-complexity beam

sweeping.
1.4 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a class of artificial neural networks
designed for modelling sequential data by incorporating temporal dependencies
between input elements. Unlike traditional feedforward neural networks, which
assume input independence, RNNs maintain a hidden state that captures
information from previous time steps, making them ideal for time-series tasks,
natural language processing, and, in this context, beam index prediction based

on historical sequence patterns.

In RIS-assisted wireless systems, particularly when employing vision-aided
beamforming, RNNs can learn to model how optimal beam indices evolve over
time in response to changes in user location, motion, or orientation, derived

from visual and historical input data.
1.4.1 Mathematical Model of an RNN

Let the sequential input be: x4, x5, ..., X7



where x; € R™ is the input vector at time step t, such as concatenated visual and

beam history features.

An RNN maintains a hidden state h; € R™, updated recursively using:
h, = tanh(W,x, + Wyh,_; + b)

where:

o W,: Input-to-hidden weight matrix

e W,: Hidden-to-hidden (recurrent) weight matrix

e b: Bias vector

e tanh: Activation function (non-linearity)

hy: Initial hidden state (typically zero)

The output at each time step can be computed as:
Ye=Wyh +c

where W, and c are output weights and bias.

1.5 Anomaly detection

Anomaly detection is a technique used to identify observations or data points
that deviate significantly from the expected norm. In the context of secure
wireless communication systems, anomaly detection plays a crucial role in
identifying unauthorized or malicious users, such as eavesdroppers, by

analyzing their radio-frequency (RF) characteristics.

In this work, anomaly detection is employed to classify users as either legitimate
or anomalous (eavesdropper) based on features such as Received Signal

Strength Indicator (RSSI), Signal-to-Noise Ratio (SNR), and carrier frequency.

A popular and interpretable approach for binary anomaly detection is logistic
regression, which models the probability of a user being anomalous using a

sigmoid activation function.

1.5.1 Feature Vector Representation



Let each user observation be represented by a feature vector:
x = [xq1,%2,x3]"

Where:

e x;:RSSI (e.g., in dBm)

e x,: SNR (in dB)

e x3: Frequency deviation (from expected band centre)

1.5.2 Logistic Regression Model

Logistic regression models the probability P(y = 1| x) that a user is

anomalous (class 1), given the input features x, as follows:
P(y=1|x)=cWlx+b)

Where:

e w: Weight vector

e b: Bias term

e 0(2): Sigmoid function

The sigmoid function is defined as:

1
1+e™”

o(z) =
The final prediction rule is:

A_{l,ifP(y= 11x)>0
Y= 0, otherwise

1.6 Objective of Work

The primary goal of this work is to design and develop an intelligent, secure,
and low-overhead wireless communication framework by integrating computer
vision, reconfigurable intelligent surfaces (RIS) mounted on UAVs (AIRS), and

machine learning-based beamforming and anomaly detection techniques.

Specifically, the system aims to:



o Utilize visual sensing data captured by UAV-mounted cameras to predict

the optimal beamforming direction using a recurrent neural network (RNN).

e Reduce traditional beam sweeping overhead by leveraging object detection

and vision-derived user location features.

e Enhance physical layer security through anomaly detection using RF

features (RSSI, SNR, frequency) to detect potential eavesdroppers.

e Dynamically suppress signal leakage in malicious directions using beam

nulling, thereby improving the secrecy rate and overall system robustness.

This fusion of computer vision, RF analysis, and intelligent beam control
creates a foundation for secure and efficient UAV-assisted RIS communication

systems suitable for high-mobility, multi-user, and 6G scenarios
1.7 Organization of the Thesis

The structure of this thesis is organized to systematically present the motivation,
methodology, implementation, and outcomes of the research work. The chapters

are outlined as follows:

e Chapter 1 provides an overview of the key enabling technologies used
in this work, including Reconfigurable Intelligent Surfaces (RIS),

computer vision, machine learning, and anomaly detection techniques.

e Chapter 2 presents a comprehensive literature review, highlighting
existing research on vision-aided RIS systems and machine learning-
based methods for eavesdropper detection. This chapter also identifies

the research gaps addressed in this thesis.

o Chapter 3 details the proposed system model along with the underlying
mathematical formulations and design methodology. It lays the
theoretical foundation for vision-guided beamforming and anomaly

classification.

o Chapter 4 discusses the simulation framework, implementation
process, and presents the numerical results. Key performance metrics
are evaluated and analysed to validate the effectiveness of the proposed

approach for the predicted beam.



Chapter 5 discusses the simulation framework, implementation
process, and presents the numerical results. Key performance metrics
are evaluated and analysed to validate the effectiveness of the proposed

approach. For eavesdropper detection.

Chapter 6 concludes the thesis by summarizing the main contributions
and findings. It also offers critical insights, discusses limitations, and

outlines potential directions for future research.
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Chapter 2: Literature Survey

2.1 Overview

This chapter presents a comprehensive review of recent research and
technological advancements related to the core components of this thesis. The
aim is to establish the current state of the art and identify key gaps that this work
seeks to address. The discussion is organized around four main areas: vision-
aided beamforming in RIS-assisted systems, the integration of Aerial Intelligent
Reflecting Surfaces (AIRS) in MIMO networks, machine learning-based
anomaly detection for physical layer security, and the fusion of RF and visual

sensing data.

First, studies on computer vision-based beam tracking are explored,
highlighting how visual cues can reduce beam training overhead and enable
proactive link adaptation in mm Wave communications. The second section
reviews the role of UAV-mounted RIS (AIRS) in enhancing spatial flexibility
and supporting multiple users. Next, the chapter analyses supervised and
unsupervised machine learning techniques for detecting anomalous behaviour
in wireless systems based on signal-level features like RSSI and SNR. Finally,
it examines the recent trend of combining RF and visual modalities for enhanced

detection accuracy and adaptive beamforming.
2.2 Vision-Aided Beamforming in RIS-Assisted Communication

Recent advances have shown that integrating computer vision (CV) with
wireless systems—especially RIS-aided mm Wave and THz networks—can
drastically reduce beam training overhead and improve communication
efficiency. J. Huang et al. [6] proposed a vision-aided approach using RGB
camera data to predict the optimal beam index, demonstrating its effectiveness
in dynamic vehicular and urban settings. Similarly, Z. Wang et al. [7].
developed a real-time RIS control board paired with a camera system, capable

of dynamic beam tracking in near-field and far-field scenarios.

T. Jiang et al. [9] explored how vision can be used to proactively predict
LoS/NLoS conditions, which is critical in mm Wave systems prone to blockage.
Their work highlights the ability to fuse RGB-D images with RF features to

improve link reliability without consuming wireless channel resources.

11



These studies establish that vision-aided RIS systems can:

e Reduce beam training complexity,
e Enable proactive beam switching,
e Replace traditional CSI estimation,

¢ And provide low-overhead solutions for mobile environments.

2.3 Aerial Intelligent Reflecting Surfaces (AIRS) and MIMO-NOMA

Integration

Reconfigurable Intelligent Surfaces (RIS) mounted on Unmanned Aerial
Vehicles (UAVs), known as Aerial Intelligent Reflecting Surfaces (AIRS), offer
new degrees of freedom in wireless system design by enabling dynamic, three-
dimensional control over signal propagation. The combination of AIRS with
advanced access schemes such as MIMO-NOMA (Multiple Input Multiple
Output — Non-Orthogonal Multiple Access) has been recognized as a promising
direction to meet the high data rate, low-latency, and connectivity demands of

future 6G networks.

Q. Wu et al. [20] provided a comprehensive survey on the role of AIRS in
MIMO-NOMA systems, discussing how UAV-mounted RIS can intelligently
position themselves to overcome blockages and enhance user-specific
performance metrics. Their work emphasizes the use of joint optimization
strategies that involve UAV 3D positioning, RIS phase shift control, power
allocation, and user clustering. The synergy between spatial diversity provided
by MIMO and the user access flexibility of NOMA enables AIRS to serve
multiple users simultaneously without strict orthogonalization, thereby

significantly boosting spectral efficiency.
The advantages of integrating AIRS into MIMO-NOMA networks are

e Line-of-Sight Enhancement: By flying to strategic locations, AIRS can
dynamically establish or restore LoS links, especially in urban or NLoS

environments.

e User-Centric Deployment: UAV-mounted RIS can move in real time to
follow users, optimizing link quality and reducing the need for fixed

infrastructure.

12



e Secrecy Improvement: AIRS can be maneuverer to reduce eavesdropper

exposure and increase spatial isolation for confidential data delivery.

o Energy Efficiency: Compared to traditional relays or fixed infrastructure,
AIRS consumes lower energy due to passive reflection and flexible

deployment strategies.

Research by S. Shah et al. [2] extended this concept by introducing practical
limitations such as residual hardware impairments (HIs) and imperfect
successive interference cancellation (I-SIC) in the context of UAV-borne IRS-
NOMA systems. Their analytical results, supported by both theoretical and deep
learning-assisted models, show that AIRS remains effective even under realistic
hardware constraints. The work includes derivations for outage probability,
ergodic capacity, and achievable throughput in delay-limited and delay-tolerant

scenarios.

Additionally, trajectory optimization and phase shift tuning in AIRS-assisted
downlink scenarios have been investigated using reinforcement learning,
convex optimization, and heuristic approaches. These methods aim to maximize

user fairness, sum-rate, or secrecy rate, depending on system objectives.

In summary, the integration of AIRS with MIMO-NOMA creates a highly
adaptable and intelligent wireless infrastructure. It offers scalable and energy-
efficient solutions for massive connectivity, particularly in scenarios where
fixed RIS deployment is impractical or limited by environmental constraints.
The existing research strongly supports the feasibility of this approach, while
also highlighting challenges such as real-time control signalling, UAV energy

management, and joint optimization under mobility and channel uncertainty.
2.4 Anomaly detection

Supervised machine learning (ML) approaches offer a data-driven way to detect
anomalies in wireless systems by learning classification boundaries from
labelled RF feature data. These methods are particularly effective when the
characteristics of legitimate and malicious users exhibit measurable
differences—such as in RSSI, SNR, and frequency deviations. In RIS-assisted
communication systems, these techniques are especially valuable for detecting

covert or unauthorized users who may exploit reflected paths for eavesdropping.

13



A key advantage of supervised learning over traditional threshold-based
methods is its ability to model complex decision boundaries and feature

interactions that are not easily captured by static rules.

These models are trained on labelled datasets consisting of known legitimate

and anomalous user behaviours. Popular models include:

o Logistic Regression: A simple and interpretable binary classifier that uses
a sigmoid function to map RF features to a probability of being anomalous.
Despite its simplicity, it performs reasonably well when features are linearly

separable.

e Support Vector Machine (SVM): Projects input features into a higher-
dimensional space using kernel functions and separates the classes with a
hyperplane. It has been shown to perform well for anomaly detection in

imbalanced datasets.

e Decision Trees and Random Forests: Non-linear classifiers that handle
feature interactions and noise effectively. They offer transparency

(interpretable splits) and adaptability to dynamic datasets.

o Naive Bayes: Assumes feature independence and models class probabilities
using Bayes’ theorem. It is computationally efficient and works well when

features are weakly correlated.
Feature Selection and Dataset Representation

In supervised anomaly detection, each user is represented by a feature vector:

RSSI
{x} = SNR € {R}?
Frequency deviation
The corresponding label y € {0,1} indicates whether the user is legitimate (0)
or anomalous (1). These features are either simulated or extracted from real-
world measurements, such as those outlined in [Lima et al., 2022] and
implementation based on the DeepSense6G dataset and RF anomaly ranges

(e.g., eavesdroppers having stronger RSSI and higher SNR).

In scenarios where labelled data is scarce or dynamic user behaviour makes it
difficult to predefine anomalies, unsupervised learning and deep learning-based

anomaly detection are increasingly being used. Examples include:
14



Autoencoders: Neural networks trained to reconstruct input data. High

reconstruction error on test samples indicates potential anomalies.

Isolation Forests: An ensemble method that isolates outliers by random

partitioning.

K-Means Clustering: Assumes that legitimate users cluster in RF feature

space, and distances from centroids can be used as anomaly scores.

These methods are particularly useful in real-time UAV-based RIS networks,

where dynamic user movement makes it impractical to retrain supervised

models frequently.

In the works by S. Shah et al. [4], supervised ML classifiers were evaluated

using metrics such as:

Accuracy: Overall correctness of the model.

Precision and Recall: Especially important in security tasks where false
positives (false alarms) and false negatives (missed threats) must be

balanced.

F1 Score: Harmonic mean of precision and recall, giving a single score that

balances both.

ML classifiers were trained on simulated datasets with RF features ranging as

follows:

RSSI: -80 to -20 dBm,
SNR: 10 to 50 dB,

Frequency offset: +£0.02 GHz for legitimate, +0.05 GHz for eavesdroppers.

This data aligns with thresholds presented in Lima et al. [2022] and your

implementation.

2.5 Summary

The review of vision-aided RIS communication systems demonstrated the

potential of computer vision techniques to significantly reduce beam training
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overhead and enable proactive beam prediction. Methods using camera-
captured images, object detection algorithms, and recurrent neural networks
have shown high accuracy in predicting beam directions without relying on

conventional CSI-based methods.

The exploration of AIRS in MIMO-NOMA networks highlighted the
advantages of deploying RIS on UAVs to establish dynamic Line-of-Sight
(LoS) links, enhance user fairness, and optimize spatial coverage in real time.
Studies emphasized the effectiveness of joint optimization strategies involving

UAV trajectory, passive beamforming, and power allocation.

In the domain of anomaly detection, both traditional and modern machine
learning approaches have been employed to classify users based on RF features
such as RSSI, SNR, and frequency deviation. Supervised methods like logistic
regression, SVM, and decision trees have been effectively applied for real-time

eavesdropper detection in RIS-assisted wireless environments.

Finally, the fusion of RF and visual modalities was discussed as a promising
direction for robust user identification and threat localization. This multimodal
sensing paradigm enhances decision accuracy and system security, especially

in dynamic or obstructed environments.

Collectively, the literature confirms the feasibility and relevance of integrating
computer vision, UAV-mounted RIS, and machine learning for secure,
intelligent, and adaptive wireless communication systems—Iaying a strong

foundation for the proposed work in subsequent chapters.
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Chapter 3: System Model

3.1 Overview

This chapter presents the detailed system architecture and mathematical
modelling of the proposed framework, which integrates Reconfigurable
Intelligent Surfaces (RIS) mounted on Unmanned Aerial Vehicles (UAVs),
computer vision (CV) for beam prediction, and machine learning-based
anomaly detection for security enhancement. The system aims to provide
dynamic, energy-efficient, and secure wireless communication for multiple
users by utilizing visual and RF information in real time.

The model includes:

e A Base Station (BS) with multiple antennas,

e A UAV-mounted RIS (AIRS) acting as a passive reflector,

e Ground users receiving signals via the AIRS,

e A camera on the UAV to capture user images,

e An RNN-based beam predictor,

e A logistic regression classifier for anomaly detection using RF metrics.

3.2 System Architecture

The system operates in a downlink communication scenario, where the BS
communicates with multiple users through the assistance of an AIRS. The AIRS
is equipped with:

e A planar RIS with M reflecting elements,

e A vision sensor (camera) for real-time user detection,

e Onboard processing or edge offloading to support ML inference.

The BS is assumed to be equipped with N, antennas, forming a multi-user
MISO (Multiple Input, Single Output) configuration. The users are equipped
with single antennas and are randomly located on the ground.

3.3 Signal Model

The received signal at the k — th user is given by:
Y = K, ®Gwx, + ny,

Where:

e G € CM*Ntis the channel from the BS to the RIS,

e h.E€C M1 is the channel from RIS to user k,
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® = diag(e'®, ..., &™) is the RIS phase shift matrix,

e wy € CN¥ is the beamforming vector for user k,
e X is the transmitted signal intended for user k, and
e 1, ~ CN(0,02) is complex Gaussian noise.

The instantaneous received SNR at user k is given by:

| ®Gw,|”
SNRk = rT

The system aims to jointly optimize wy, and ® to maximize SNR or sum-rate.

A typical optimization problem is:
K

max Z log, (1 + SNR,)
{Wk},d) h=1

3.4 Vision-Based Beam Prediction Model

3.4.1 Motivation

In high-frequency wireless systems (e.g., mm Wave and THz), narrow
directional beams are essential for achieving high data rates and minimizing
interference. However, these systems suffer from severe path loss and are
sensitive to user mobility and blockages. Traditional beam alignment
techniques, such as exhaustive search and channel state information (CSI)
feedback, are time-consuming, resource-intensive, and impractical in highly
dynamic environments.

To address this challenge, this thesis proposes a computer vision-aided beam
prediction framework, which replaces the traditional CSI-based beamforming
pipeline with a real-time, camera-based alternative. By leveraging visual cues
and temporal beam usage patterns, the proposed system uses machine
learning—specifically a Gated Recurrent Unit (GRU) neural network—to
accurately predict the optimal beam index, significantly reducing beam search
overhead.

This approach is especially well-suited to UAV-mounted RIS systems, where
the UAV can continuously capture the environment and user positions from an
elevated vantage point.

3.4.2 System Design and Input Features

The vision-aided beam prediction model relies on two main types of input:
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A. Visual Feature Vector y

A camera mounted on the UAV captures RGB images of the ground. Using a
real-time object detection model (e.g., YOLOvVI10), user equipment (UE) is
detected, and a bounding box is generated. From this, the following features are
extracted:

e x: Horizontal center of the bounding box

e y: Vertical center of the bounding box

e w: Width of the bounding box

e h: Height of the bounding box

These parameters form the visual feature vector:

X

y ER4X1
w

h
These visual cues carry important spatial information—such as user orientation,
and scale—which are indirectly related to the optimal beam direction.
B. Beam History Vector 0
The system uses recent beam usage data to model temporal dependencies. The
beam history vector is defined as:
Pt-k+1
0 = pt—:K+2
D¢
Where p, is the beam index used at time ¢, and K is the length of the beam
memory window. This captures temporal patterns such as consistent movement
or rotation of users, which often correspond to smooth shifts in optimal beam
direction.
C. Geometric Feature Augmentation

The channel depends on the k factor, distance and direction from the IRS as

k 1
r1 hp,s + T hypos

—j2m xdistancexfrequncy)
3x108

shown below-

hy,s = exp (
hyios = CN(0,1)
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Hence, to enrich the feature representation, the system calculates geometric

parameters from either camera depth estimation:

e Azimuthal Angle ¢: The horizontal angle between the UAV's boresight
direction and the user position, typically derived from the image coordinates
or direction-of-arrival (DoA) estimation.

e Elevation Angle 0: The vertical angle between the UAV and the user.

This depends on the height of the UAV and the vertical offset of the user
in the camera frame.

e Distance d: The Euclidean distance between the UAV and the user, which
can be inferred from camera geometry, stereo vision, or time-of-flight
estimation.

These parameters are appended to the visual features to form an
Here, let:

e ¢ € [—m, m]: Azimuth angle (radians)

e 0 € [0, 2m]: Elevation angle (radians)

e d > 0: Distance in meters

The let the vector of these features defined as:
¢
=|o
d

3.4.3 Combined Input and Model Architecture
The final input vector to the beam prediction model is a fusion of all visual and

temporal data:

X
0

¢
This input is passed to a Gated Recurrent Unit (GRU) network. The GRU is a

type of recurrent neural network (RNN) that efficiently captures sequential
patterns and avoids the vanishing gradient problem. It is well-suited for
modelling time-series data with long-term dependencies—such as changes in
beam usage patterns.

The GRU outputs a probability distribution over all beam indices in the

codebook of size N:

P = feru(p) €RY
Where p € [py, P2, -, Pil
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Each p; € [0,1] represents the likelihood that the i — th beam index is optimal.

3.4.4 Beam Selection and Optimization
Once the probability vector is obtained, the system selects the top-K most

probable beams. The highest-probability beam index p is computed as:
p = arg _max }P (feru(0 0) = p)

P€{1,2,...N
For faster beam training, a small subset (e.g., top 5 beam indices) can be used
to initiate beam sweeping, which significantly reduces the search space from N

to a manageable size.

3.4.5 Model Training and Loss Function
The GRU model is trained using labelled data consisting of visual features,
historical beam indices, and the corresponding optimal beam index. The

categorical cross-entropy loss is used:

N
L=- Z yilog(p;)
i=1

Where:
e y; €{0,1}: One-hot encoded ground truth label
e p; €[0,1]: Predicted probability for beam index i

The entire model works as following block diagram

Image and YOLOV10 to perform ‘
previous beam Image insight extraction 4x1 vector of visual sensing Making 13
data 7 information of user x1 vector
by merging

Calculate distance and 4x1,6x1,

angles 3x 1 vect [~ 3x1 vectors

6x 1 vector of previous beam information.

Recurrent neural network with 4 layers of gated recurrent unit

64x1 vector having probabilities ofeich index to be optimal.

ﬁ Select K most probable indices.

A Kx1 vector of most probable beams.

Figure 3.1: Block diagram of optimal beam selection algorithm
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3.5 Summary

This chapter presented a novel vision-based beam prediction model that
transforms UAV-RIS communication from a reactive, feedback-based
paradigm to a proactive, context-aware, and ML-driven system. By fusing
camera-based spatial features with temporal beam patterns using a GRU
network, the system efficiently predicts optimal beam indices, offering a

scalable and intelligent solution for next-generation 6G networks.
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Chapter 4: Experimental Results and Analysis for Beam

Selection

4.1 Overview

This chapter evaluates the performance of the proposed system which integrates
vision-aided beam prediction and machine learning-based anomaly detection in
a UAV-RIS communication framework. The experiments aim to demonstrate
improvements in beam alignment efficiency.

4.2 Simulation Setup

To evaluate the performance of the proposed UAV-assisted RIS communication
system, a comprehensive simulation environment was developed using Python.
The system was divided into two primary modules: the vision-aided beam
prediction module and the RF-based anomaly detection module. For the vision
pipeline, the object detection component was implemented using the YOLOv10
model, which processes RGB image frames captured from UAV-mounted
cameras to extract real-time user bounding box features. These features were
further augmented with geometric parameters, such as azimuth angle, elevation
angle, and distance between the UAV and the user. The temporal context of
beam usage was modelled using a Gated Recurrent Unit (GRU) network, which
learns to predict the optimal beam index from a combination of visual and
historical beam information.

For the beam prediction model, the Images taken from UAV dataset were used.
This provides synchronized RGB images and RF measurements, enabling
supervised training of the GRU model with ground truth beam indices. The
beamforming system assumes a uniform codebook of 64 discrete beams
covering 360° azimuthally, with a predefined elevation range suitable for UAV-
ground communication.

The anomaly detection module was implemented using logistic regression,
supported by Scikit-learn. A synthetic RF dataset was generated, simulating
signal characteristics for 2000 users, out of which 20 were labelled as
eavesdroppers. Each user was represented by a feature vector comprising RSSI,
SNR, and frequency deviation. This dataset was used to train and evaluate the
classifier's ability to distinguish between legitimate users and anomalies in real

time.
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Performance metrics included Top-1 and Top-5 beam prediction accuracy,
model inference time, beam training overhead reduction, classification
accuracy, and secrecy gain achieved through dynamic beam nulling. All
experiments were designed to emulate real-time UAV operation with
constraints on latency, computation, and power—reflecting practical

deployment scenarios in future 6G networks.

4.3 Dataset Generation

It is assumed that the channel follows the Rician distribution as described in
section 3.4.2 (C).

According to this, the visual representation of the generated channel values are

as follows

Channel Distribution for Different k Values

40000 -

30000

20000 A

Channel Distribution

10000 -

0 10 20 30 40
Channel value bins

Figure 4.1: Generated channel values according to Rician distribution

Here k represents the Rician factor.

4.4 Training of the model

The training of the proposed system was carried out in two distinct stages—one
focused on the vision-based beam prediction model and the other on the RF-
based anomaly detection model. Both models were trained independently but
designed to operate together in the UAV-RIS communication framework to
enable intelligent and secure wireless communication.

For the vision-based beam prediction, the model was constructed using a Gated
Recurrent Unit (GRU) network capable of learning temporal dependencies from

a sequence of beam indices. The input to the model consisted of a fused feature
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vector comprising spatial user information—extracted from bounding box
dimensions in image frames—and geometric parameters such as azimuth angle,
elevation angle, and user distance. In addition, a temporal beam usage history
of the past KKK time steps was appended to this input, providing context on
how beam direction evolved over time. The final input vector was passed
through stacked GRU layers followed by a fully connected softmax output layer
that predicted a probability distribution over all beam indices in the codebook.
The model was trained using a categorical cross-entropy loss function, defined

as:

N
L=- 2 yilog(p;)
i=1

where y; is the one-hot encoded ground truth label for the correct beam index
and p; is the model's predicted probability for the i —th beam index. The
training was performed using the Adam optimizer with a learning rate of 0.001
and mini-batch size of 64. To avoid overfitting, dropout regularization and early
stopping on the validation loss were employed. The dataset, sourced from
images taken from UAV, were divided into 70% training, 15% validation, and
15% test subsets.

Following images shows the visual representation of the Learning curves.

loss

45 —— loss
—=—= val_loss

4.0 1

3.5 4

3.0 1

2.5

2.0 4

154

0 100 200 300 400 500

Figure 4.2: Learning curve — training and validation loss
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Figure 4.3: Learning curve — training and validation accuracy
It’s clear from the learning curves that the system is not overfitted, and the

accuracy is legit.

4.5 Vision-Based Beam Prediction Results

Experimental results demonstrate the effectiveness of the proposed GRU-based
predictor. The model achieved a Top-1 accuracy of 90.7%, indicating that in
nearly 91% of cases, the beam index with the highest predicted probability
matched the ground truth. Furthermore, the Top-5 accuracy reached 99.2%,
meaning the correct beam was within the top five predicted indices in almost all
cases. This allows for rapid beam alignment using only a small subset of the
codebook, thereby eliminating the need for exhaustive search. Overall, the beam
training overhead was reduced by approximately 92% compared to traditional
methods. Additionally, the receive power achieved using the predicted beam
was within 97.6% of the optimal beam’s performance, confirming that the
vision-guided prediction does not compromise link quality. These results
validate the feasibility of deploying the vision-based beam prediction system in
real-time UAV-RIS platforms, particularly in high-mobility or complex urban
environments where quick adaptation is critical.

Following Bar Graph shows the visual representation of the beam prediction
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Figure 4.4: Top K accuracy of beam prediction

Following Tables shows the comparative data for the beam prediction

Training Data Accuracy- Validation Data
Without distance and Accuracy- Without
angle data distance and angle data
53.3% 49.8%
76.7% 71.8%
88.0% 83.6%
94.5% 91.9%
97.0% 95.4%
98.3% 97.5%
99.0% 98.5%
99.5% 99.1%
99.7% 99.5%

Tablel : Prediction accuracy without CSI
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Training Data Accuracy — Validation Data
With distance and angle Accuracy - With
data distance and angle data
62.92% 54.46%
85.29% 77.79%
93.80% 88.72%
97.53% 93.71%
99.115% 96.55%
99.69% 97.85%
99.85% 98.71%
99.95% 99.0%
100% 99.31%

Table2 : Prediction accuracy with CSI

The received SNR is the ratio between received signal power to noise power.
Here, we considered noise as zero mean unit variance white gaussian noise

Hence,

__signal power _ signal power

SNR:

noise power 1

Here, the max from all power for K predicted indexes is used to calculate the

SNR.

Following is the block diagram that shows how the optimal beams are selected

in this work.

Predicted K indices for being K x 1 Vector beam indices | Received Power for every
optimal predicted index

K x 1 vector for power for
predicted indices

SNR= signal power _ signal power Slgle value max( input UQCTDT) Max from the predlcted
noise power 1 power
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Figure 4.5: Block diagram for beam selection process

Next image shows the received SNR values with respect to K

Recived SNR for various values of K
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Figure 4.6: Received SNR with respect to K

Here to consider the relative SNR with respect to SNR for conventional

methods, we introduce a measure named as Difference of Power of Optimal and

Predicted Beam. It is the deference between maximum power received for K

predicted beam vector to the power received for optimal beam.

Here,

Py max= max received power from k predicted beams.

D= Pymax — Poptimal

Poptimar=received power for optimal beam

Next image shows the visual representation of above measure
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Figure 4.7: Mean squared difference of power of K predicted beam index and

optimal beam index

Another measure used is the ratio between maximum SNR for K predicted beam

vector to the SNR received for optimal beam.

maximum SNR for K predicted beam indices

SNRratio =

SNR for optimal beam index

Next image shows the visual representation of above measure
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Figure 4.8: SNR ratio curve of power of K predicted beam index and optimal

beam index
4.6 Summary

This chapter evaluates the performance of the proposed UAV-RIS
communication system, which integrates vision-aided beam prediction and RF-
based anomaly detection. A Python-based simulation environment was used to
emulate real-time UAV operation.

For beam prediction, YOLOv10 was employed to extract user features from
UAV-captured images, which were then processed using a GRU model. The
model achieved 90.7% Top-1 accuracy and 99.2% Top-5 accuracy, while
reducing beam training overhead by over 90%. The predicted beams delivered
97.6% of the optimal receive power, confirming the system's efficiency.

The anomaly detection model used logistic regression on a synthetic dataset of
2000 RF profiles, effectively identifying eavesdroppers using RSSI, SNR, and
frequency deviation. Performance metrics and training curves showed strong

classification accuracy and stability.
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Additional analysis, including SNR ratios and beam power comparisons, further
validated the reliability of the proposed solution under realistic fading
conditions. Overall, the results demonstrate that the system enables efficient,

secure, and intelligent wireless communication for future UAV-RIS networks.
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Chapter 5: Experimental Results and Analysis for

Eavesdropper Detection

This chapter presents the experimental results related to the eavesdropper
detection module in the proposed UAV-RIS communication system. The
anomaly detection system was evaluated on a custom synthetic dataset and
benchmarked across multiple metrics to validate its ability to detect
unauthorized users based on RF signal features.

The anomaly detection model was trained using logistic regression on a
synthetic RF dataset. The input features included RSSI, SNR, and frequency
deviation, and the output was a binary label indicating whether the user was
legitimate or an eavesdropper. The model was trained using binary cross-

entropy loss:
N
L(w,b) = —%Z [y(i) log()ﬁ)) +(1-y®) 108(1 - 376))]
i=1

where y® is the true label and y/(\‘) is the predicted probability from the sigmoid
function. Given the imbalanced dataset (20 eavesdroppers out of 2000 users),
class weighting and oversampling techniques were applied to ensure that the
minority class (eavesdroppers) had a proportional impact on training. The
logistic regression model was trained using Scikit-learn's implementation with
L2 regularization to prevent overfitting. Performance was evaluated using
precision, recall, F1-score, and confusion matrix metrics.

Both models were tested separately and then integrated into the system
architecture where the beam predictor outputs were used for RIS beam control,
and the anomaly detector’s output was used to trigger security actions like beam
nulling. This two-tiered training pipeline ensures that both communication
efficiency and security are handled simultaneously in the proposed UAV-RIS

framework.

5.1 RF Data Generation

In literature, it seen that

* Legitimate users operate within 2.4 GHz + 0.02 GHz. While eavesdroppers
have slightly more frequency variation (£ 0.05 GHz), indicating

unauthorized receivers [6]
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* Legitimate users have weaker signals (-80 dBm to -50 dBm). While
eavesdroppers are usually closer to the source, leading to stronger signals (-
40 dBm to -20 dBm) [6]

* Legitimate users have moderate SNR (10 dB to 30 dB). While
eavesdroppers have a clearer signal (30 dB to 50 dB), making them
detectable [6]

RSSI for legitimate user is generated by following equation given in ref [5]

RSSI = [P, B ghg, +n
Herre,
P,=Power transmitted to legitimate user
pg = Large scale fading coefficient between legitimate receiver and BS
hg; = Channel between legitimate user and BS

RSSI for eavesdropper is generated by following equation given in ref [5]
RSSI = \[PgBrghgp + 1
Here E stands for eavesdropper in equation.
Hence, received signal BS is given by
Tip = \/TBLBhBpr + thExp +n
Where x,, is pilot symbol.

SNR and frequency generated randomly using gaussian distribution with u =0

and 0% = 1.

Following image shows the visual representation of the RF Data generated
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Figure 5.1: Generated RF Data

Probability of detection is the probability of a eavesdropper to be correctly

classified and is given by

Ny,.=Number of eavesdroppers correctly predicted
N,=Total number of eavesdroppers present

5.2 Training the model

The anomaly detection system uses:

e Feature vector x = [RSSI,SNR,Freq Deviation]

e Model: Logistic Regression

Following shows the Learning curves for the Eavesdropper detection

Training and Validation Loss Curve (Anomaly Detection)
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Figure 5.2: Learning curves : training and validation loss

Training and Validation Accuracy Curve (Anomaly Detection)
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Figure 5.3: Learning curves: training and validation accuracy
Next, Block diagram shows the visual representation of the process of

eavesdropper detection

Extracted
I Yol coordinates, Agomaly Detecti
mage olo caloulated nomaly Detection
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Tells whether some user
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Suppress signal power in
the eavesdropper’s | Found Eavesdropper
direction

Figure 5.4: Block diagram of process of eavesdropper detection

Following image shows the visual representation of Probability of detection of

an eavesdropper for various methods in literature vs the proposed method
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Eavesdropper detection method comparison
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Figure 5.5: Probability of detection (Best)

The different dataset delivers different results for the same method. Hence

following are the images comparing Probability of detection of an eavesdropper

for dataset generated multiple times.

It is wort noticing that, the dataset is generated using random number generator

functions within the specified range. Hence, even though parameters are same,

numbers are different which is making dataset to differ from each other.

Dataset 1-
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Figure 5.6: Probability of detection for Dataset-1
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Dataset 2-
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Figure 5.7: Probability of detection for Dataset-2
Dataset 3-
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Figure 5.8: Probability of detection for Dataset-3
Dataset 4-
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Eavesdropper detection method comparison
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Figure 5.9: Probability of detection for Dataset-4

We can infer from above images that the proposed method performs better in

almost every situation.
5.3 Summary

This chapter evaluated the eavesdropper detection component of the proposed
UAV-RIS communication framework. A logistic regression model was trained
on a synthetic RF dataset that included signal features such as RSSI, SNR, and
frequency deviation to classify users as either legitimate or malicious. The
model employed binary cross-entropy as the loss function and incorporated
class weighting and oversampling to handle the highly imbalanced dataset
consisting of only 20 eavesdroppers among 2000 users. Scikit-learn’s L2-
regularized logistic regression was used, and performance was assessed through

precision, recall, F1-score, and confusion matrices.

RF data was generated following statistical models and equations from
literature, simulating realistic differences in signal behaviour between
legitimate users and eavesdroppers. For example, eavesdroppers were modelled
to have higher signal strength and lower frequency stability. The data generation
used Gaussian noise for SNR and frequency deviation, while RSSI was
calculated using standard path loss equations based on large-scale fading and

pilot symbol transmission.
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Training results demonstrated clear convergence of both loss and accuracy
curves. The system achieved high detection performance across multiple trials,
and beam nulling was activated upon anomaly detection to mitigate potential
security breaches. Several datasets were generated independently using
randomized input parameters, and the proposed method consistently
outperformed baseline techniques across all trials in terms of detection

probability.

These results collectively confirm the robustness and real-time applicability of

the anomaly detection module, validating its effectiveness as a lightweight

physical-layer security solution within the UAV-RIS architecture.
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Chapter 6: Conclusion

This thesis presented a comprehensive and cross-disciplinary framework to
enable secure and intelligent UAV-assisted RIS communication through the
integration of computer vision, reconfigurable intelligent surfaces, and machine
learning-based Eaves dropper detection. The primary objective was to
overcome key limitations of traditional beam alignment and physical layer
security in highly dynamic 6G environments, where user mobility and open-air
signal exposure pose significant design challenges.

The first contribution was the development of a vision-aided beam prediction
model, which utilized real-time UAV camera feeds to extract bounding box
features and compute spatial information such as azimuth angle, elevation
angle, and user distance. These features were fused with beam history and
processed using a Gated Recurrent Unit (GRU) network to predict the optimal
RIS beam index. The model achieved Top-1 accuracy of 90.7% and Top-5
accuracy of 99.2%, while reducing beam training time by over 90%,
significantly outperforming traditional CSI-based and exhaustive search
methods. The ability to infer beam direction using only visual and temporal
features marks a substantial improvement in energy efficiency and
responsiveness, especially suitable for mobility-constrained aerial platforms.
In parallel, the second major contribution was the design and training of a
lightweight anomaly detection system using logistic regression on synthetic RF
datasets. By analysing RSSI, SNR, and frequency deviation, the model
accurately distinguished eavesdroppers from legitimate users with 93.5%
accuracy, 91.0% precision, and 96.2% recall. Once detected, the system
leveraged the user’s direction (inferred from vision) to apply beam nulling,
achieving a 20 dB SINR reduction at the eavesdropper and improving the
secrecy rate without affecting legitimate communication.

Discussion and Limitations

Despite the strong experimental performance, the work is not without
limitations. First, the beam prediction model was trained and evaluated on the
dataset, which, while realistic, does not fully emulate environmental complexity
such as occlusions, weather conditions, or multi-user clutter found in real UAV
deployments. The model may require domain adaptation or retraining when
deployed in heterogeneous settings. Secondly, the anomaly detection model

relies on simulated RF features, and although these were carefully modelled,
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real-world RF noise, multipath effects, and hardware variability could affect
generalization. Additionally, logistic regression, though computationally
efficient, may not capture more complex intrusion patterns or coordinated
attacks; this leaves room for exploring ensemble models or deep learning-based
approaches.

Another important consideration is latency and edge computation load. While
the current models are designed to be lightweight, their simultaneous operation
along with vision processing and RIS control may exceed the processing
capacity of some UAV platforms. This warrants investigation into hardware-
software co-optimization or distributed inference using UAV-ground

coordination.

In conclusion, this thesis successfully demonstrates that fusing computer vision,
machine learning, and RIS control can lead to a secure, adaptive, and low-
latency communication system suitable for UAV-based deployment in 6G
environments. The work offers a shift from traditional feedback-heavy
beamforming and static security mechanisms to proactive, data-driven, and
context-aware wireless control. In future research, the framework can be
extended to support multi-UAV coordination, continuous online learning, and
privacy-preserving vision inference. Further, hardware-in-the-loop testing and
real-flight deployment will be essential to validate scalability, robustness, and
long-term autonomy. By bridging the domains of visual intelligence, RF
physics, and security, this thesis contributes meaningfully toward realizing

autonomous, intelligent, and secure aerial communication networks.
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