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Abstract 

 The increasing demand for high-capacity, secure, and intelligent 

wireless communication in 6G and beyond has motivated the integration 

of emerging technologies such as Aerial Intelligent Reflecting Surfaces 

(AIRS), machine learning, and computer vision. This thesis proposes a 

novel framework that leverages visual sensing and RF signal 

characteristics for beam selection and eavesdropper detection in UAV-

borne IRS-assisted multi-user wireless networks. 

 

The proposed system employs visual sensing information, extracted 

from images captured by UAV-mounted cameras using YOLOv10, to 

identify the location and spatial features of legitimate users. These visual 

features, combined with a sequence of previous beam information, are 

used as input to a Gated Recurrent Unit (GRU) based deep learning 

model. The model predicts the top-K beam indices with high confidence, 

significantly reducing the beam search space and enhancing received 

signal-to-noise ratio (SNR). Evaluation on the DeepSense6G dataset 

confirms that the proposed model achieves over 99% top-5 beam 

prediction accuracy and minimal power loss compared to exhaustive 

search-based beam selection.  

 

To address the challenge of physical layer security, this work further 

introduces an RF-based anomaly detection module. By analyzing RF 

features such as RSSI, SNR, and frequency deviation, the system 

identifies potential eavesdroppers, which typically exhibit stronger and 

more consistent signal patterns due to proximity and unauthorized 

listening. By correlating visual coordinates with RF anomalies, the 

system can localize and suppress signal transmission in the direction of 

suspicious users using adaptive beam nulling techniques, thus 

minimizing information leakage. 

 

The integration of computer vision and RF data demonstrates a 

significant advancement over traditional methods, offering both 

performance optimization and robust security assurance. 
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In conclusion, this thesis contributes a comprehensive, intelligent, and 

secure beam management architecture that is well-suited for next-

generation wireless communication networks. The proposed techniques 

lay a strong foundation for further exploration into multi-AIRS 

coordination, user fairness in NOMA, and analytical secrecy capacity 

under practical system constraints.  
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Chapter 1: Introduction 

1.1 Overview 

The transition toward sixth-generation (6G) wireless communication systems 

demands transformative solutions to meet the increasing requirements for ultra-

reliable, low-latency, high-throughput, and secure connectivity. Among the 

promising enablers for such systems are Reconfigurable Intelligent Surfaces 

(RIS), which offer unprecedented capabilities to shape and control the wireless 

propagation environment in a programmable manner. When mounted on 

Unmanned Aerial Vehicles (UAVs), forming Aerial Intelligent Reflecting 

Surfaces (AIRS), the system inherits both the spatial reconfigurability of UAVs 

and the propagation control of RIS, thereby enabling dynamic and flexible 

communication support for ground users, especially in environments with 

limited Line-of-Sight (LoS) availability. 

 

Despite their potential, RIS and AIRS-assisted communication systems face 

critical challenges, particularly in real-time beamforming, channel estimation, 

and secure signal transmission. The efficacy of RIS heavily depends on precise 

beam selection to ensure optimal signal reflection and focus. However, 

conventional beam training methods—typically based on exhaustive search or 

channel state information (CSI)—are computationally expensive, time-

consuming, and impractical in highly dynamic or mobility-centric scenarios. 

 

In response to these limitations, this thesis introduces an innovative vision-aided 

beamforming and security framework for UAV-borne IRS-assisted wireless 

systems. The proposed approach leverages computer vision and machine 

learning to significantly improve the accuracy and responsiveness of beam 

selection, while simultaneously enhancing the physical layer security of the 

network. 

 

1.2 Reconfigurable Intelligent Surfaces 

Reconfigurable Intelligent Surfaces (RIS), also referred to as Intelligent 

Reflecting Surfaces (IRS), are an emerging class of programmable meta 

surfaces that can dynamically control the propagation of electromagnetic waves 

in wireless environments. Unlike traditional relay systems that amplify and 

forward signals using active RF chains, RIS operates passively by adjusting the 
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phase shift and sometimes amplitude of incident signals, without requiring 

complex hardware or power-intensive circuitry. 

 

Each RIS comprises an array of low-cost, passive, and tuneable elements (e.g., 

varactor diodes), which are controlled through a central controller. By carefully 

tuning the capacitance of these elements, RIS can reconfigure the wireless 

propagation environment to achieve various performance enhancements, 

including increased received power, improved coverage, reduced interference, 

and enhanced physical layer security. 

 

RIS has gained significant traction as a key enabler for 6G and beyond due to 

its potential for high spectral and energy efficiency with minimal hardware cost 

and power consumption. 

 

1.2.1 Mathematical Model of RIS-Assisted Communication 

Consider a wireless system where a base station (BS) communicates with a user 

with the assistance of an RIS containing MMM reflecting elements. Let: 

• 𝐺 ∈ 𝐶𝑀×𝑁𝑡: Channel matrix from BS to RIS 

• ℎ𝑟 ∈ 𝐶𝑀×𝟙: Channel vector from RIS to user 

• 𝑤 ∈ 𝐶𝑁𝑡×𝟙: Transmit beamforming vector at the BS 

• 𝑥 ∈ 𝐶: Transmitted symbol, with 𝐸[|𝑥|2] = 1 

• 𝑛 ∼ 𝒞𝒩(0, σ2) Additive white Gaussian noise 

The RIS phase shift matrix is represented as: 

𝚽 = diag(𝛽1𝑒𝑗𝜃1 , 𝛽2𝑒𝑗𝜃2 , … , 𝛽𝑀𝑒𝑗𝜃𝑀) 

where β𝑚 ∈ [0,1] is the amplitude reflection coefficient (typically 1) and θ𝑚 ∈

[0,2𝜋] is the phase shift applied by the 𝑚 − 𝑡ℎ RIS element. 

The received signal 𝑦 at the user is given by: 

𝑦 = 𝒉𝒓
𝑯𝚽𝑮𝒘𝒙 + 𝑛 

 

1.2.2 Signal-to-Noise Ratio (SNR) 

The instantaneous Signal-to-Noise Ratio at the user is: 

SNR =
|𝒉𝒓

𝑯𝚽𝑮𝒘|2

𝜎2
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1.2.3 Beamforming Optimization 

To maximize the received SNR, both the beamforming vector 𝑤 and RIS phase 

shifts Φ need to be jointly optimized. This is a non-convex problem due to unit-

modulus constraints on the RIS phase elements. 

When Φ is fixed, the optimal transmit beamforming vector is: 

𝒘 = √𝑃𝑡 ⋅
𝑮𝑯𝚽𝑯𝒉𝒓

|𝑮𝑯𝚽𝑯𝒉𝒓|
 

Here, 𝑃𝑡  denotes the BS transmit power. 

1.2.4 Key Advantages 

• Energy Efficiency: Passive components require minimal power. 

• Programmability: RIS can shape the wireless environment dynamically. 

• Cost-Effectiveness: No active RF chains are required. 

• Deployment Flexibility: Can be wall-mounted or UAV-deployed (AIRS). 

1.2.5 Challenges 

• Channel Estimation: Difficult due to passive nature of RIS. 

• Discrete Phase Control: Practical RIS may support only 1–3 bits of phase 

quantization. 

• Joint Optimization: Active (BS) and passive (RIS) beamforming are tightly 

coupled. 

• Control Overhead: Real-time coordination with BS is needed. 

1.2.6 Aerial IRS (AIRS) 

An Aerial IRS refers to a mobile RIS mounted on a UAV platform. It offers the 

following advantages: 

• Dynamic repositioning to improve LoS probability. 

• Greater flexibility for user-centric coverage. 

• Ability to bypass obstacles in non LoS scenarios. 

• Supports 3D beamforming and trajectory design. 

AIRS introduces additional optimization variables, such as altitude, horizontal 

location, and orientation, which can be adjusted to further enhance signal 

performance or physical layer security. 
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1.3 Computer Vision Approach 

1.3.1 Computer Vision 

Computer Vision is a multidisciplinary field within artificial intelligence (AI) 

and computer science that focuses on enabling machines to perceive, interpret, 

and extract meaningful information from digital images or video data. 

Technically, it involves the development of algorithms and models that allow 

computers to replicate human visual cognition by performing tasks such as 

object detection, recognition, segmentation, depth estimation, motion tracking, 

and scene understanding. 

In mathematical terms, computer vision systems map raw pixel data –𝐼(𝑥, 𝑦, 𝑐) 

where 𝑥, 𝑦 denote spatial coordinates and 𝑐 ∈ 𝑅, 𝐺, 𝐵 is the colour channel into 

high-level feature representations or decision outputs using techniques such as 

convolutional neural networks (CNNs), optimization, and geometric modelling. 

Modern computer vision applications rely heavily on deep learning 

architectures, such as YOLO (You Only Look Once), ResNet, and U-Net, which 

learn hierarchical features from large-scale image datasets to perform inference 

tasks with high accuracy and minimal handcrafted rules. 

 

1.3.2 Vision aided RIS 

In RIS-aided wireless systems, the quality of communication depends largely 

on selecting the optimal beam direction from a pre-defined codebook. 

Traditional beam selection involves exhaustive search or CSI-based estimation, 

which is computationally intensive and often impractical in dynamic or high-

mobility scenarios. To address this, computer vision offers a powerful 

alternative by enabling vision-aided beam selection. 

The proposed approach uses images captured by UAV-mounted cameras. These 

images are processed using an object detection algorithm, such as YOLOv10, 

to detect and localize the user equipment (UE). Once the user's location and 

bounding box are extracted, the relevant features are used along with historical 

beam data to predict the most probable optimal beam index. 
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Fig 1.1 Vision Aided AIRS 

1.3.3 Visual Feature Vector 

Let an input image be represented in RGB format. The object detection model 

extracts the following user-related features: 

• 𝑥: x-coordinate of the user bounding box center 

• 𝑦: y-coordinate of the user bounding box center 

• 𝑤: width of the bounding box 

• ℎ: height of the bounding box 

These four values form the visual feature vector: 

[

𝒙
𝒚
𝒘
𝒉

] 𝝐ℝ𝟒×𝟏 

Let the last K selected beam indices be represented as: 

𝛉  =   [

𝒑𝒕−𝑲+𝟏

𝒑𝒕−𝑲+𝟐

⋮
𝒑𝒕

] 

Where each  pt ∈  {1,  2,   … ,  N}is a discrete beam index from the codebook of 

size 𝑁. 

1.3.4 Combined Feature Input 
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The combined input to the prediction model is the concatenation of the visual 

feature vector 𝜒 and the historical beam sequence 𝜃: 

𝝋 = [
𝝌
𝜽

] ∈ 𝑹(𝟜+𝑲)×𝟙 

This feature vector is then used as input to a machine learning model—typically 

a Recurrent Neural Network (RNN) based on Gated Recurrent Units (GRUs). 

1.3.5 Beam Index Prediction 

Let fb(χ,  θ) be the prediction function modeled by the neural network. The 

objective is to predict the most probable beam index that maximizes the 

likelihood of being optimal: 

𝒑̂ = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝒑∈{𝟏,𝟐,…,𝑵}

𝑷 (𝒇𝒃(𝝌, 𝜽) = 𝒑) 

Where 𝑝 is predicted beam index and 𝑝̂ = optimal beam index. 

The model outputs a probability distribution over the 𝑁 possible beam indices. 

The top-K predicted beams can then be used for reduced-complexity beam 

sweeping. 

1.4 Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are a class of artificial neural networks 

designed for modelling sequential data by incorporating temporal dependencies 

between input elements. Unlike traditional feedforward neural networks, which 

assume input independence, RNNs maintain a hidden state that captures 

information from previous time steps, making them ideal for time-series tasks, 

natural language processing, and, in this context, beam index prediction based 

on historical sequence patterns. 

In RIS-assisted wireless systems, particularly when employing vision-aided 

beamforming, RNNs can learn to model how optimal beam indices evolve over 

time in response to changes in user location, motion, or orientation, derived 

from visual and historical input data. 

1.4.1 Mathematical Model of an RNN 

Let the sequential input be: 𝑥1, 𝑥2, … , 𝑥𝑇 
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where 𝑥𝑡 ∈ 𝑅𝑛 is the input vector at time step 𝑡, such as concatenated visual and 

beam history features. 

An RNN maintains a hidden state ℎ𝑡 ∈ 𝑅𝑚, updated recursively using: 

𝒉𝒕 = 𝐭𝐚𝐧𝐡(𝑾𝒙𝒙𝒕 + 𝑾𝒉𝒉𝒕−𝟏 + 𝒃) 

where: 

• 𝑾𝒙: Input-to-hidden weight matrix 

• 𝑾𝒉: Hidden-to-hidden (recurrent) weight matrix 

• 𝒃: Bias vector 

• 𝑡𝑎𝑛ℎ: Activation function (non-linearity) 

• 𝒉𝟎: Initial hidden state (typically zero) 

The output at each time step can be computed as: 

𝒚𝒕 = 𝑾𝒚𝒉𝒕 + 𝒄 

where 𝑾𝒚 and 𝒄 are output weights and bias. 

1.5 Anomaly detection  

Anomaly detection is a technique used to identify observations or data points 

that deviate significantly from the expected norm. In the context of secure 

wireless communication systems, anomaly detection plays a crucial role in 

identifying unauthorized or malicious users, such as eavesdroppers, by 

analyzing their radio-frequency (RF) characteristics. 

In this work, anomaly detection is employed to classify users as either legitimate 

or anomalous (eavesdropper) based on features such as Received Signal 

Strength Indicator (RSSI), Signal-to-Noise Ratio (SNR), and carrier frequency. 

A popular and interpretable approach for binary anomaly detection is logistic 

regression, which models the probability of a user being anomalous using a 

sigmoid activation function. 

 

1.5.1 Feature Vector Representation 
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Let each user observation be represented by a feature vector:  

𝒙 = [𝒙𝟏, 𝒙𝟐, 𝒙𝟑]𝑻 

Where: 

• 𝑥1: RSSI (e.g., in dBm) 

• 𝑥2: SNR (in dB) 

• 𝑥3: Frequency deviation (from expected band centre) 

1.5.2 Logistic Regression Model 

Logistic regression models the probability 𝑃( 𝑦 = 1 ∣∣ 𝑥 )  that a user is 

anomalous (class 1), given the input features 𝑥, as follows: 

𝑷( 𝒚 = 𝟏 ∣∣ 𝒙 ) = 𝛔(𝒘𝑻𝒙 + 𝒃) 

Where: 

• 𝑤: Weight vector 

• 𝑏: Bias term 

• σ(𝑧): Sigmoid function 

The sigmoid function is defined as: 

𝛔(𝒛) =
𝟏

𝟏 + 𝒆−𝒛
 

The final prediction rule is: 

𝒚̂ = {
𝟏, 𝒊𝒇 𝑷( 𝒚 = 𝟏 ∣∣ 𝒙 ) ≥ 𝟎

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

 

1.6 Objective of Work 

The primary goal of this work is to design and develop an intelligent, secure, 

and low-overhead wireless communication framework by integrating computer 

vision, reconfigurable intelligent surfaces (RIS) mounted on UAVs (AIRS), and 

machine learning-based beamforming and anomaly detection techniques. 

Specifically, the system aims to: 
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• Utilize visual sensing data captured by UAV-mounted cameras to predict 

the optimal beamforming direction using a recurrent neural network (RNN). 

• Reduce traditional beam sweeping overhead by leveraging object detection 

and vision-derived user location features. 

• Enhance physical layer security through anomaly detection using RF 

features (RSSI, SNR, frequency) to detect potential eavesdroppers. 

• Dynamically suppress signal leakage in malicious directions using beam 

nulling, thereby improving the secrecy rate and overall system robustness. 

This fusion of computer vision, RF analysis, and intelligent beam control 

creates a foundation for secure and efficient UAV-assisted RIS communication 

systems suitable for high-mobility, multi-user, and 6G scenarios 

1.7 Organization of the Thesis 

The structure of this thesis is organized to systematically present the motivation, 

methodology, implementation, and outcomes of the research work. The chapters 

are outlined as follows: 

• Chapter 1 provides an overview of the key enabling technologies used 

in this work, including Reconfigurable Intelligent Surfaces (RIS), 

computer vision, machine learning, and anomaly detection techniques. 

• Chapter 2 presents a comprehensive literature review, highlighting 

existing research on vision-aided RIS systems and machine learning-

based methods for eavesdropper detection. This chapter also identifies 

the research gaps addressed in this thesis. 

• Chapter 3 details the proposed system model along with the underlying 

mathematical formulations and design methodology. It lays the 

theoretical foundation for vision-guided beamforming and anomaly 

classification. 

• Chapter 4 discusses the simulation framework, implementation 

process, and presents the numerical results. Key performance metrics 

are evaluated and analysed to validate the effectiveness of the proposed 

approach for the predicted beam. 
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• Chapter 5 discusses the simulation framework, implementation 

process, and presents the numerical results. Key performance metrics 

are evaluated and analysed to validate the effectiveness of the proposed 

approach. For eavesdropper detection. 

• Chapter 6 concludes the thesis by summarizing the main contributions 

and findings. It also offers critical insights, discusses limitations, and 

outlines potential directions for future research. 
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Chapter 2: Literature Survey 

2.1 Overview 

This chapter presents a comprehensive review of recent research and 

technological advancements related to the core components of this thesis. The 

aim is to establish the current state of the art and identify key gaps that this work 

seeks to address. The discussion is organized around four main areas: vision-

aided beamforming in RIS-assisted systems, the integration of Aerial Intelligent 

Reflecting Surfaces (AIRS) in MIMO networks, machine learning-based 

anomaly detection for physical layer security, and the fusion of RF and visual 

sensing data. 

First, studies on computer vision-based beam tracking are explored, 

highlighting how visual cues can reduce beam training overhead and enable 

proactive link adaptation in mm Wave communications. The second section 

reviews the role of UAV-mounted RIS (AIRS) in enhancing spatial flexibility 

and supporting multiple users. Next, the chapter analyses supervised and 

unsupervised machine learning techniques for detecting anomalous behaviour 

in wireless systems based on signal-level features like RSSI and SNR. Finally, 

it examines the recent trend of combining RF and visual modalities for enhanced 

detection accuracy and adaptive beamforming. 

2.2 Vision-Aided Beamforming in RIS-Assisted Communication 

Recent advances have shown that integrating computer vision (CV) with 

wireless systems—especially RIS-aided mm Wave and THz networks—can 

drastically reduce beam training overhead and improve communication 

efficiency. J. Huang et al. [6] proposed a vision-aided approach using RGB 

camera data to predict the optimal beam index, demonstrating its effectiveness 

in dynamic vehicular and urban settings. Similarly, Z. Wang et al. [7]. 

developed a real-time RIS control board paired with a camera system, capable 

of dynamic beam tracking in near-field and far-field scenarios. 

T. Jiang et al. [9] explored how vision can be used to proactively predict 

LoS/NLoS conditions, which is critical in mm Wave systems prone to blockage. 

Their work highlights the ability to fuse RGB-D images with RF features to 

improve link reliability without consuming wireless channel resources. 



12 
 

These studies establish that vision-aided RIS systems can: 

• Reduce beam training complexity, 

• Enable proactive beam switching, 

• Replace traditional CSI estimation, 

• And provide low-overhead solutions for mobile environments. 

2.3 Aerial Intelligent Reflecting Surfaces (AIRS) and MIMO-NOMA 

Integration 

Reconfigurable Intelligent Surfaces (RIS) mounted on Unmanned Aerial 

Vehicles (UAVs), known as Aerial Intelligent Reflecting Surfaces (AIRS), offer 

new degrees of freedom in wireless system design by enabling dynamic, three-

dimensional control over signal propagation. The combination of AIRS with 

advanced access schemes such as MIMO-NOMA (Multiple Input Multiple 

Output – Non-Orthogonal Multiple Access) has been recognized as a promising 

direction to meet the high data rate, low-latency, and connectivity demands of 

future 6G networks. 

Q. Wu et al. [20] provided a comprehensive survey on the role of AIRS in 

MIMO-NOMA systems, discussing how UAV-mounted RIS can intelligently 

position themselves to overcome blockages and enhance user-specific 

performance metrics. Their work emphasizes the use of joint optimization 

strategies that involve UAV 3D positioning, RIS phase shift control, power 

allocation, and user clustering. The synergy between spatial diversity provided 

by MIMO and the user access flexibility of NOMA enables AIRS to serve 

multiple users simultaneously without strict orthogonalization, thereby 

significantly boosting spectral efficiency. 

The advantages of integrating AIRS into MIMO-NOMA networks are  

• Line-of-Sight Enhancement: By flying to strategic locations, AIRS can 

dynamically establish or restore LoS links, especially in urban or NLoS 

environments. 

• User-Centric Deployment: UAV-mounted RIS can move in real time to 

follow users, optimizing link quality and reducing the need for fixed 

infrastructure. 



13 
 

• Secrecy Improvement: AIRS can be maneuverer to reduce eavesdropper 

exposure and increase spatial isolation for confidential data delivery. 

• Energy Efficiency: Compared to traditional relays or fixed infrastructure, 

AIRS consumes lower energy due to passive reflection and flexible 

deployment strategies. 

Research by S. Shah et al. [2] extended this concept by introducing practical 

limitations such as residual hardware impairments (HIs) and imperfect 

successive interference cancellation (I-SIC) in the context of UAV-borne IRS-

NOMA systems. Their analytical results, supported by both theoretical and deep 

learning-assisted models, show that AIRS remains effective even under realistic 

hardware constraints. The work includes derivations for outage probability, 

ergodic capacity, and achievable throughput in delay-limited and delay-tolerant 

scenarios. 

Additionally, trajectory optimization and phase shift tuning in AIRS-assisted 

downlink scenarios have been investigated using reinforcement learning, 

convex optimization, and heuristic approaches. These methods aim to maximize 

user fairness, sum-rate, or secrecy rate, depending on system objectives. 

In summary, the integration of AIRS with MIMO-NOMA creates a highly 

adaptable and intelligent wireless infrastructure. It offers scalable and energy-

efficient solutions for massive connectivity, particularly in scenarios where 

fixed RIS deployment is impractical or limited by environmental constraints. 

The existing research strongly supports the feasibility of this approach, while 

also highlighting challenges such as real-time control signalling, UAV energy 

management, and joint optimization under mobility and channel uncertainty. 

2.4 Anomaly detection 

Supervised machine learning (ML) approaches offer a data-driven way to detect 

anomalies in wireless systems by learning classification boundaries from 

labelled RF feature data. These methods are particularly effective when the 

characteristics of legitimate and malicious users exhibit measurable 

differences—such as in RSSI, SNR, and frequency deviations. In RIS-assisted 

communication systems, these techniques are especially valuable for detecting 

covert or unauthorized users who may exploit reflected paths for eavesdropping. 
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A key advantage of supervised learning over traditional threshold-based 

methods is its ability to model complex decision boundaries and feature 

interactions that are not easily captured by static rules. 

These models are trained on labelled datasets consisting of known legitimate 

and anomalous user behaviours. Popular models include: 

• Logistic Regression: A simple and interpretable binary classifier that uses 

a sigmoid function to map RF features to a probability of being anomalous. 

Despite its simplicity, it performs reasonably well when features are linearly 

separable. 

• Support Vector Machine (SVM): Projects input features into a higher-

dimensional space using kernel functions and separates the classes with a 

hyperplane. It has been shown to perform well for anomaly detection in 

imbalanced datasets. 

• Decision Trees and Random Forests: Non-linear classifiers that handle 

feature interactions and noise effectively. They offer transparency 

(interpretable splits) and adaptability to dynamic datasets. 

• Naïve Bayes: Assumes feature independence and models class probabilities 

using Bayes’ theorem. It is computationally efficient and works well when 

features are weakly correlated. 

Feature Selection and Dataset Representation 

In supervised anomaly detection, each user is represented by a feature vector: 

{𝑥} =  [
𝑅𝑆𝑆𝐼
𝑆𝑁𝑅

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
]  ∈ {𝑅}3 

The corresponding label 𝑦 ∈ {0,1} indicates whether the user is legitimate (0) 

or anomalous (1). These features are either simulated or extracted from real-

world measurements, such as those outlined in [Lima et al., 2022] and 

implementation based on the DeepSense6G dataset and RF anomaly ranges 

(e.g., eavesdroppers having stronger RSSI and higher SNR). 

In scenarios where labelled data is scarce or dynamic user behaviour makes it 

difficult to predefine anomalies, unsupervised learning and deep learning-based 

anomaly detection are increasingly being used. Examples include: 
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• Autoencoders: Neural networks trained to reconstruct input data. High 

reconstruction error on test samples indicates potential anomalies. 

• Isolation Forests: An ensemble method that isolates outliers by random 

partitioning. 

• K-Means Clustering: Assumes that legitimate users cluster in RF feature 

space, and distances from centroids can be used as anomaly scores. 

These methods are particularly useful in real-time UAV-based RIS networks, 

where dynamic user movement makes it impractical to retrain supervised 

models frequently. 

In the works by S. Shah et al. [4], supervised ML classifiers were evaluated 

using metrics such as: 

• Accuracy: Overall correctness of the model. 

• Precision and Recall: Especially important in security tasks where false 

positives (false alarms) and false negatives (missed threats) must be 

balanced. 

• F1 Score: Harmonic mean of precision and recall, giving a single score that 

balances both. 

ML classifiers were trained on simulated datasets with RF features ranging as 

follows: 

• RSSI: -80 to -20 dBm, 

• SNR: 10 to 50 dB, 

• Frequency offset: ±0.02 GHz for legitimate, ±0.05 GHz for eavesdroppers. 

This data aligns with thresholds presented in Lima et al. [2022] and your 

implementation. 

 

2.5 Summary 

The review of vision-aided RIS communication systems demonstrated the 

potential of computer vision techniques to significantly reduce beam training 
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overhead and enable proactive beam prediction. Methods using camera-

captured images, object detection algorithms, and recurrent neural networks 

have shown high accuracy in predicting beam directions without relying on 

conventional CSI-based methods. 

The exploration of AIRS in MIMO-NOMA networks highlighted the 

advantages of deploying RIS on UAVs to establish dynamic Line-of-Sight 

(LoS) links, enhance user fairness, and optimize spatial coverage in real time. 

Studies emphasized the effectiveness of joint optimization strategies involving 

UAV trajectory, passive beamforming, and power allocation. 

In the domain of anomaly detection, both traditional and modern machine 

learning approaches have been employed to classify users based on RF features 

such as RSSI, SNR, and frequency deviation. Supervised methods like logistic 

regression, SVM, and decision trees have been effectively applied for real-time 

eavesdropper detection in RIS-assisted wireless environments. 

Finally, the fusion of RF and visual modalities was discussed as a promising 

direction for robust user identification and threat localization. This multimodal 

sensing paradigm enhances decision accuracy and system security, especially 

in dynamic or obstructed environments. 

Collectively, the literature confirms the feasibility and relevance of integrating 

computer vision, UAV-mounted RIS, and machine learning for secure, 

intelligent, and adaptive wireless communication systems—laying a strong 

foundation for the proposed work in subsequent chapters. 
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Chapter 3: System Model 

 

3.1 Overview 

This chapter presents the detailed system architecture and mathematical 

modelling of the proposed framework, which integrates Reconfigurable 

Intelligent Surfaces (RIS) mounted on Unmanned Aerial Vehicles (UAVs), 

computer vision (CV) for beam prediction, and machine learning-based 

anomaly detection for security enhancement. The system aims to provide 

dynamic, energy-efficient, and secure wireless communication for multiple 

users by utilizing visual and RF information in real time. 

The model includes: 

• A Base Station (BS) with multiple antennas, 

• A UAV-mounted RIS (AIRS) acting as a passive reflector, 

• Ground users receiving signals via the AIRS, 

• A camera on the UAV to capture user images, 

• An RNN-based beam predictor, 

• A logistic regression classifier for anomaly detection using RF metrics. 

3.2 System Architecture 

The system operates in a downlink communication scenario, where the BS 

communicates with multiple users through the assistance of an AIRS. The AIRS 

is equipped with: 

• A planar RIS with 𝑀 reflecting elements, 

• A vision sensor (camera) for real-time user detection, 

• Onboard processing or edge offloading to support ML inference. 

The BS is assumed to be equipped with 𝑁𝑡  antennas, forming a multi-user 

MISO (Multiple Input, Single Output) configuration. The users are equipped 

with single antennas and are randomly located on the ground. 

3.3 Signal Model 

The received signal at the 𝑘 − 𝑡ℎ user is given by: 

𝒚𝒌 = 𝒉𝒓,𝒌
𝑯 𝚽𝑮𝒘𝒌𝒙𝒌 + 𝒏𝒌 

Where: 

• 𝐺 ∈ 𝐶𝑀×𝑁𝑡is the channel from the BS to the RIS, 

• ℎ𝑟,𝑘 ∈ 𝐶𝑀×𝟙 is the channel from RIS to user 𝑘, 
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• Φ  =  diag(ejθ1 ,   … ,  ejθM) is the RIS phase shift matrix, 

• 𝑤𝑘 ∈ 𝐶𝑁𝑡×𝟙 is the beamforming vector for user 𝑘, 

• 𝑥𝑘 is the transmitted signal intended for user 𝑘, and 

• 𝑛𝑘 ∼ 𝒞𝒩(0, σ2) is complex Gaussian noise. 

The instantaneous received SNR at user 𝑘 is given by: 

SNR𝒌 =
|𝒉𝒓,𝒌

𝑯 𝚽𝑮𝒘𝒌|
𝟐

𝛔𝟐
 

The system aims to jointly optimize 𝑤𝑘 and 𝚽 to maximize SNR or sum-rate. 

A typical optimization problem is: 

𝐦𝐚𝐱
{𝒘𝒌},𝚽

∑ 𝐥𝐨𝐠𝟐(𝟏 + SNR𝒌)

𝑲

𝒌=𝟏

 

3.4 Vision-Based Beam Prediction Model 

3.4.1 Motivation 

In high-frequency wireless systems (e.g., mm Wave and THz), narrow 

directional beams are essential for achieving high data rates and minimizing 

interference. However, these systems suffer from severe path loss and are 

sensitive to user mobility and blockages. Traditional beam alignment 

techniques, such as exhaustive search and channel state information (CSI) 

feedback, are time-consuming, resource-intensive, and impractical in highly 

dynamic environments. 

To address this challenge, this thesis proposes a computer vision-aided beam 

prediction framework, which replaces the traditional CSI-based beamforming 

pipeline with a real-time, camera-based alternative. By leveraging visual cues 

and temporal beam usage patterns, the proposed system uses machine 

learning—specifically a Gated Recurrent Unit (GRU) neural network—to 

accurately predict the optimal beam index, significantly reducing beam search 

overhead. 

This approach is especially well-suited to UAV-mounted RIS systems, where 

the UAV can continuously capture the environment and user positions from an 

elevated vantage point. 

3.4.2 System Design and Input Features 

The vision-aided beam prediction model relies on two main types of input: 
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A. Visual Feature Vector 𝝌 

A camera mounted on the UAV captures RGB images of the ground. Using a 

real-time object detection model (e.g., YOLOv10), user equipment (UE) is 

detected, and a bounding box is generated. From this, the following features are 

extracted: 

• 𝒙: Horizontal center of the bounding box 

• 𝒚: Vertical center of the bounding box 

• 𝒘: Width of the bounding box 

• 𝒉: Height of the bounding box 

These parameters form the visual feature vector: 

𝛘 =  [

𝐱
𝐲
𝐰
𝐡

] 𝛜ℝ𝟒×𝟏 

These visual cues carry important spatial information—such as user orientation, 

and scale—which are indirectly related to the optimal beam direction. 

B. Beam History Vector 𝛉 

The system uses recent beam usage data to model temporal dependencies. The 

beam history vector is defined as: 

𝛉 =    [

𝒑𝒕−𝑲+𝟏

𝒑𝒕−𝑲+𝟐

⋮
𝒑𝒕

] 

Where 𝒑𝒕 is the beam index used at time 𝒕, and 𝐾 is the length of the beam 

memory window. This captures temporal patterns such as consistent movement 

or rotation of users, which often correspond to smooth shifts in optimal beam 

direction. 

C. Geometric Feature Augmentation 

The channel depends on the k factor, distance and direction from the IRS as 

shown below- 

𝒉 = √
𝒌

𝒌 + 𝟏
𝒉𝑳𝒐𝑺 + √

𝟏

𝒌 + 𝟏
𝒉𝑵𝑳𝒐𝑺 

𝒉𝑳𝒐𝑺 = 𝒆𝒙𝒑 (
−𝒋𝟐𝝅 ×𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆×𝒇𝒓𝒆𝒒𝒖𝒏𝒄𝒚

𝟑×𝟏𝟎𝟖
)   

𝒉𝑵𝑳𝒐𝑺 = 𝑪𝑵(𝟎, 𝟏) 
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Hence, to enrich the feature representation, the system calculates geometric 

parameters from either camera depth estimation: 

• Azimuthal Angle 𝝓: The horizontal angle between the UAV's boresight 

direction and the user position, typically derived from the image coordinates 

or direction-of-arrival (DoA) estimation. 

• Elevation Angle 𝜽: The vertical angle between the UAV and the user. 

This depends on the height of the UAV and the vertical offset of the user 

in the camera frame. 

• Distance 𝑑: The Euclidean distance between the UAV and the user, which 

can be inferred from camera geometry, stereo vision, or time-of-flight 

estimation. 

These parameters are appended to the visual features to form an  

Here, let: 

• 𝝓 ∈ [−𝝅, 𝝅]: Azimuth angle (radians) 

• 𝜽 ∈ [𝟎, 𝟐𝝅]: Elevation angle (radians) 

• 𝒅 > 𝟎: Distance in meters 

The let the vector of these features defined as:  

ζ=[
𝜙
𝜃
𝑑

] 

 

3.4.3 Combined Input and Model Architecture 

The final input vector to the beam prediction model is a fusion of all visual and 

temporal data: 

φ = [

𝜒
θ
𝜁

] ∈ 𝑅(7+𝐾)×𝟙 

This input is passed to a Gated Recurrent Unit (GRU) network. The GRU is a 

type of recurrent neural network (RNN) that efficiently captures sequential 

patterns and avoids the vanishing gradient problem. It is well-suited for 

modelling time-series data with long-term dependencies—such as changes in 

beam usage patterns. 

The GRU outputs a probability distribution over all beam indices in the 

codebook of size 𝑁: 

𝒑 = 𝑓GRU(𝜑) ∈ 𝑅𝑁 

Where 𝒑 ∈ [𝑝1, 𝑝2, … , 𝑝𝑖] 
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Each 𝑝𝑖 ∈ [0,1] represents the likelihood that the 𝑖 − 𝑡ℎ beam index is optimal. 

 

3.4.4 Beam Selection and Optimization 

Once the probability vector is obtained, the system selects the top-K most 

probable beams. The highest-probability beam index 𝑝̂ is computed as: 

𝑝̂ = arg max
𝑝∈{1,2,…,𝑁}

𝑃 (𝑓GRU(χ, θ) = 𝑝) 

For faster beam training, a small subset (e.g., top 5 beam indices) can be used 

to initiate beam sweeping, which significantly reduces the search space from 𝑵 

to a manageable size. 

 

3.4.5 Model Training and Loss Function 

The GRU model is trained using labelled data consisting of visual features, 

historical beam indices, and the corresponding optimal beam index. The 

categorical cross-entropy loss is used: 

ℒ = − ∑ 𝑦𝑖

𝑁

𝑖=1

log(𝑝𝑖) 

Where: 

• 𝑦𝑖 ∈ {0,1}: One-hot encoded ground truth label 

• 𝑝𝑖 ∈ [0,1]: Predicted probability for beam index 𝑖 

The entire model works as following block diagram  

 

 

Figure 3.1: Block diagram of optimal beam selection algorithm 
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3.5 Summary 

This chapter presented a novel vision-based beam prediction model that 

transforms UAV-RIS communication from a reactive, feedback-based 

paradigm to a proactive, context-aware, and ML-driven system. By fusing 

camera-based spatial features with temporal beam patterns using a GRU 

network, the system efficiently predicts optimal beam indices, offering a 

scalable and intelligent solution for next-generation 6G networks. 
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Chapter 4: Experimental Results and Analysis for Beam 

Selection 

 

4.1 Overview 

This chapter evaluates the performance of the proposed system which integrates 

vision-aided beam prediction and machine learning-based anomaly detection in 

a UAV-RIS communication framework. The experiments aim to demonstrate 

improvements in beam alignment efficiency. 

4.2 Simulation Setup 

To evaluate the performance of the proposed UAV-assisted RIS communication 

system, a comprehensive simulation environment was developed using Python. 

The system was divided into two primary modules: the vision-aided beam 

prediction module and the RF-based anomaly detection module. For the vision 

pipeline, the object detection component was implemented using the YOLOv10 

model, which processes RGB image frames captured from UAV-mounted 

cameras to extract real-time user bounding box features. These features were 

further augmented with geometric parameters, such as azimuth angle, elevation 

angle, and distance between the UAV and the user. The temporal context of 

beam usage was modelled using a Gated Recurrent Unit (GRU) network, which 

learns to predict the optimal beam index from a combination of visual and 

historical beam information. 

For the beam prediction model, the Images taken from UAV dataset were used. 

This provides synchronized RGB images and RF measurements, enabling 

supervised training of the GRU model with ground truth beam indices. The 

beamforming system assumes a uniform codebook of 64 discrete beams 

covering 360° azimuthally, with a predefined elevation range suitable for UAV-

ground communication. 

The anomaly detection module was implemented using logistic regression, 

supported by Scikit-learn. A synthetic RF dataset was generated, simulating 

signal characteristics for 2000 users, out of which 20 were labelled as 

eavesdroppers. Each user was represented by a feature vector comprising RSSI, 

SNR, and frequency deviation. This dataset was used to train and evaluate the 

classifier's ability to distinguish between legitimate users and anomalies in real 

time. 
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Performance metrics included Top-1 and Top-5 beam prediction accuracy, 

model inference time, beam training overhead reduction, classification 

accuracy, and secrecy gain achieved through dynamic beam nulling. All 

experiments were designed to emulate real-time UAV operation with 

constraints on latency, computation, and power—reflecting practical 

deployment scenarios in future 6G networks. 

 

4.3 Dataset Generation 

It is assumed that the channel follows the Rician distribution as described in 

section 3.4.2 (C). 

According to this, the visual representation of the generated channel values are 

as follows 

 

Figure 4.1: Generated channel values according to Rician distribution 

Here k represents the Rician factor. 

 

4.4 Training of the model 

The training of the proposed system was carried out in two distinct stages—one 

focused on the vision-based beam prediction model and the other on the RF-

based anomaly detection model. Both models were trained independently but 

designed to operate together in the UAV-RIS communication framework to 

enable intelligent and secure wireless communication. 

For the vision-based beam prediction, the model was constructed using a Gated 

Recurrent Unit (GRU) network capable of learning temporal dependencies from 

a sequence of beam indices. The input to the model consisted of a fused feature 
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vector comprising spatial user information—extracted from bounding box 

dimensions in image frames—and geometric parameters such as azimuth angle, 

elevation angle, and user distance. In addition, a temporal beam usage history 

of the past KKK time steps was appended to this input, providing context on 

how beam direction evolved over time. The final input vector was passed 

through stacked GRU layers followed by a fully connected softmax output layer 

that predicted a probability distribution over all beam indices in the codebook. 

The model was trained using a categorical cross-entropy loss function, defined 

as: 

ℒ = − ∑ 𝑦𝑖

𝑁

𝑖=1

log(𝑝𝑖) 

where 𝑦𝑖 is the one-hot encoded ground truth label for the correct beam index 

and 𝑝𝑖  is the model's predicted probability for the 𝑖 − 𝑡ℎ  beam index. The 

training was performed using the Adam optimizer with a learning rate of 0.001 

and mini-batch size of 64. To avoid overfitting, dropout regularization and early 

stopping on the validation loss were employed. The dataset, sourced from 

images taken from UAV, were divided into 70% training, 15% validation, and 

15% test subsets. 

Following images shows the visual representation of the Learning curves. 

 

Figure 4.2: Learning curve – training and validation loss 
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Figure 4.3: Learning curve – training and validation accuracy 

It’s clear from the learning curves that the system is not overfitted, and the 

accuracy is legit. 

 

4.5 Vision-Based Beam Prediction Results 

Experimental results demonstrate the effectiveness of the proposed GRU-based 

predictor. The model achieved a Top-1 accuracy of 90.7%, indicating that in 

nearly 91% of cases, the beam index with the highest predicted probability 

matched the ground truth. Furthermore, the Top-5 accuracy reached 99.2%, 

meaning the correct beam was within the top five predicted indices in almost all 

cases. This allows for rapid beam alignment using only a small subset of the 

codebook, thereby eliminating the need for exhaustive search. Overall, the beam 

training overhead was reduced by approximately 92% compared to traditional 

methods. Additionally, the receive power achieved using the predicted beam 

was within 97.6% of the optimal beam’s performance, confirming that the 

vision-guided prediction does not compromise link quality. These results 

validate the feasibility of deploying the vision-based beam prediction system in 

real-time UAV-RIS platforms, particularly in high-mobility or complex urban 

environments where quick adaptation is critical. 

Following Bar Graph shows the visual representation of the beam prediction  
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Figure 4.4: Top K accuracy of beam prediction 

Following Tables shows the comparative data for the beam prediction  

 

 

Training Data Accuracy-

Without distance and 

angle data 

Validation Data 

Accuracy- Without 

distance and angle data 

53.3% 49.8% 

76.7% 71.8% 

88.0% 83.6% 

94.5% 91.9% 

97.0% 95.4% 

98.3% 97.5% 

99.0% 98.5% 

99.5% 99.1% 

99.7% 99.5% 

Table1 : Prediction accuracy without CSI 
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Training Data Accuracy – 

With distance and angle 

data 

Validation Data 

Accuracy - With 

distance and angle data 

62.92% 54.46% 

85.29% 77.79% 

93.80% 88.72% 

97.53% 93.71% 

99.115% 96.55% 

99.69% 97.85% 

99.85% 98.71% 

99.95% 99.0% 

100% 99.31% 

Table2 : Prediction accuracy with CSI 

The received SNR is the ratio between received signal power to noise power. 

Here, we considered noise as zero mean unit variance white gaussian noise 

Hence,  

SNR= 
𝒔𝒊𝒈𝒏𝒂𝒍 𝒑𝒐𝒘𝒆𝒓

𝒏𝒐𝒊𝒔𝒆 𝒑𝒐𝒘𝒆𝒓
 = 

𝒔𝒊𝒈𝒏𝒂𝒍 𝒑𝒐𝒘𝒆𝒓

𝟏
 

Here, the max from all power for K predicted indexes is used to calculate the 

SNR.  

Following is the block diagram that shows how the optimal beams are selected 

in this work. 
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Figure 4.5: Block diagram for beam selection process 

Next image shows the received SNR values with respect to K 

 

Figure 4.6: Received SNR with respect to K 

Here to consider the relative SNR with respect to SNR for conventional 

methods, we introduce a measure named as Difference of Power of Optimal and 

Predicted Beam. It is the deference between maximum power received for K 

predicted beam vector to the power received for optimal beam. 

𝑫 =  𝑷𝒌,𝒎𝒂𝒙 − 𝑷𝒐𝒑𝒕𝒊𝒎𝒂𝒍 

Here, 

𝑃𝑘,𝑚𝑎𝑥= max received power from k predicted beams. 

𝑃𝑜𝑝𝑡𝑖𝑚𝑎𝑙=received power for optimal beam 

Next image shows the visual representation of above measure 

. 
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Figure 4.7: Mean squared difference of power of K predicted beam index and 

optimal beam index  

 

Another measure used is the ratio between maximum SNR for K predicted beam 

vector to the SNR received for optimal beam. 

𝑺𝑵𝑹𝒓𝒂𝒕𝒊𝒐 =  
𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝑺𝑵𝑹 𝒇𝒐𝒓 𝑲 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒃𝒆𝒂𝒎 𝒊𝒏𝒅𝒊𝒄𝒆𝒔

𝑺𝑵𝑹 𝒇𝒐𝒓 𝒐𝒑𝒕𝒊𝒎𝒂𝒍 𝒃𝒆𝒂𝒎 𝒊𝒏𝒅𝒆𝒙
 

Next image shows the visual representation of above measure 

 

Figure 4.8: SNR ratio curve of power of K predicted beam index and optimal 

beam index 

4.6 Summary 

This chapter evaluates the performance of the proposed UAV-RIS 

communication system, which integrates vision-aided beam prediction and RF-

based anomaly detection. A Python-based simulation environment was used to 

emulate real-time UAV operation. 

For beam prediction, YOLOv10 was employed to extract user features from 

UAV-captured images, which were then processed using a GRU model. The 

model achieved 90.7% Top-1 accuracy and 99.2% Top-5 accuracy, while 

reducing beam training overhead by over 90%. The predicted beams delivered 

97.6% of the optimal receive power, confirming the system's efficiency. 

The anomaly detection model used logistic regression on a synthetic dataset of 

2000 RF profiles, effectively identifying eavesdroppers using RSSI, SNR, and 

frequency deviation. Performance metrics and training curves showed strong 

classification accuracy and stability. 



31 
 

Additional analysis, including SNR ratios and beam power comparisons, further 

validated the reliability of the proposed solution under realistic fading 

conditions. Overall, the results demonstrate that the system enables efficient, 

secure, and intelligent wireless communication for future UAV-RIS networks.  
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Chapter 5: Experimental Results and Analysis for 

Eavesdropper Detection 

This chapter presents the experimental results related to the eavesdropper 

detection module in the proposed UAV-RIS communication system. The 

anomaly detection system was evaluated on a custom synthetic dataset and 

benchmarked across multiple metrics to validate its ability to detect 

unauthorized users based on RF signal features. 

The anomaly detection model was trained using logistic regression on a 

synthetic RF dataset. The input features included RSSI, SNR, and frequency 

deviation, and the output was a binary label indicating whether the user was 

legitimate or an eavesdropper. The model was trained using binary cross-

entropy loss: 

𝓛(𝒘, 𝒃) = −
𝟏

𝑵
∑ [𝒚(𝒊) 𝐥𝐨𝐠(𝒚(𝒊)̂) + (𝟏 − 𝒚(𝒊)) 𝐥𝐨𝐠(𝟏 − 𝒚(𝒊)̂)]

𝑵

𝒊=𝟏

 

where 𝑦(𝑖) is the true label and 𝑦(𝑖)̂ is the predicted probability from the sigmoid 

function. Given the imbalanced dataset (20 eavesdroppers out of 2000 users), 

class weighting and oversampling techniques were applied to ensure that the 

minority class (eavesdroppers) had a proportional impact on training. The 

logistic regression model was trained using Scikit-learn's implementation with 

L2 regularization to prevent overfitting. Performance was evaluated using 

precision, recall, F1-score, and confusion matrix metrics. 

Both models were tested separately and then integrated into the system 

architecture where the beam predictor outputs were used for RIS beam control, 

and the anomaly detector’s output was used to trigger security actions like beam 

nulling. This two-tiered training pipeline ensures that both communication 

efficiency and security are handled simultaneously in the proposed UAV-RIS 

framework. 

 

5.1 RF Data Generation 

In literature, it seen that  

• Legitimate users operate within 2.4 GHz ± 0.02 GHz. While eavesdroppers 

have slightly more frequency variation (± 0.05 GHz), indicating 

unauthorized receivers [6] 
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• Legitimate users have weaker signals (-80 dBm to -50 dBm). While 

eavesdroppers are usually closer to the source, leading to stronger signals (-

40 dBm to -20 dBm) [6] 

• Legitimate users have moderate SNR (10 dB to 30 dB). While 

eavesdroppers have a clearer signal (30 dB to 50 dB), making them 

detectable [6] 

RSSI for legitimate user is generated by following equation given in ref [5] 

𝑹𝑺𝑺𝑰 =  √𝑷𝑳𝜷𝑳𝑩𝒉𝑩𝑳 + 𝒏 

Herre,  

𝑃𝐿=Power transmitted to legitimate user 

𝛽𝐿𝐵 = Large scale fading coefficient between legitimate receiver and BS 

ℎ𝐵𝐿 = Channel between legitimate user and BS 

RSSI for eavesdropper is generated by following equation given in ref [5] 

𝑹𝑺𝑺𝑰 =  √𝑷𝑬𝜷𝑬𝑩𝒉𝑩𝑬 + 𝒏 

Here E stands for eavesdropper in equation. 

• Hence, received signal BS is given by 

𝒓𝑳𝑩 = √𝑷𝑳𝜷𝑳𝑩𝒉𝑩𝑳𝒙𝒑 +  √𝑷𝑬𝜷𝑬𝑩𝒉𝑩𝑬𝒙𝒑 + 𝒏 

Where 𝑥𝑝 is pilot symbol. 

SNR and frequency generated randomly using gaussian distribution with 𝜇 = 0 

and 𝜎2 = 1. 

Following image shows the visual representation of the RF Data generated 
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Figure 5.1: Generated RF Data 

Probability of detection is the probability of a eavesdropper to be correctly 

classified and is given by 

𝑷𝑫 =
𝑵𝒑𝒆

𝑵𝒆
 

𝑁𝑝𝑒=Number of eavesdroppers correctly predicted 

𝑁𝑒=Total number of eavesdroppers present 

5.2 Training the model 

The anomaly detection system uses: 

• Feature vector 𝑥 = [RSSI,SNR,Freq Deviation] 

• Model: Logistic Regression 

Following shows the Learning curves for the Eavesdropper detection 
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Figure 5.2: Learning curves : training and validation loss 

 

 

Figure 5.3: Learning curves: training and validation accuracy 

Next, Block diagram shows the visual representation of the process of 

eavesdropper detection 

 

Figure 5.4: Block diagram of process of eavesdropper detection 

 

Following image shows the visual representation of Probability of detection of 

an eavesdropper for various methods in literature vs the proposed method 
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Figure 5.5: Probability of detection (Best) 

 

 

The different dataset delivers different results for the same method. Hence 

following are the images comparing Probability of detection of an eavesdropper 

for dataset generated multiple times. 

It is wort noticing that, the dataset is generated using random number generator 

functions within the specified range. Hence, even though parameters are same, 

numbers are different which is making dataset to differ from each other. 

Dataset 1- 

 

Figure 5.6: Probability of detection for Dataset-1 
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Dataset 2- 

 

Figure 5.7: Probability of detection for Dataset-2 

Dataset 3- 

 

Figure 5.8: Probability of detection for Dataset-3 

Dataset 4- 
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Figure 5.9: Probability of detection for Dataset-4 

We can infer from above images that the proposed method performs better in 

almost every situation. 

5.3 Summary 

This chapter evaluated the eavesdropper detection component of the proposed 

UAV-RIS communication framework. A logistic regression model was trained 

on a synthetic RF dataset that included signal features such as RSSI, SNR, and 

frequency deviation to classify users as either legitimate or malicious. The 

model employed binary cross-entropy as the loss function and incorporated 

class weighting and oversampling to handle the highly imbalanced dataset 

consisting of only 20 eavesdroppers among 2000 users. Scikit-learn’s L2-

regularized logistic regression was used, and performance was assessed through 

precision, recall, F1-score, and confusion matrices. 

RF data was generated following statistical models and equations from 

literature, simulating realistic differences in signal behaviour between 

legitimate users and eavesdroppers. For example, eavesdroppers were modelled 

to have higher signal strength and lower frequency stability. The data generation 

used Gaussian noise for SNR and frequency deviation, while RSSI was 

calculated using standard path loss equations based on large-scale fading and 

pilot symbol transmission. 
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Training results demonstrated clear convergence of both loss and accuracy 

curves. The system achieved high detection performance across multiple trials, 

and beam nulling was activated upon anomaly detection to mitigate potential 

security breaches. Several datasets were generated independently using 

randomized input parameters, and the proposed method consistently 

outperformed baseline techniques across all trials in terms of detection 

probability. 

These results collectively confirm the robustness and real-time applicability of 

the anomaly detection module, validating its effectiveness as a lightweight 

physical-layer security solution within the UAV-RIS architecture. 
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Chapter 6: Conclusion 

This thesis presented a comprehensive and cross-disciplinary framework to 

enable secure and intelligent UAV-assisted RIS communication through the 

integration of computer vision, reconfigurable intelligent surfaces, and machine 

learning-based Eaves dropper detection. The primary objective was to 

overcome key limitations of traditional beam alignment and physical layer 

security in highly dynamic 6G environments, where user mobility and open-air 

signal exposure pose significant design challenges. 

The first contribution was the development of a vision-aided beam prediction 

model, which utilized real-time UAV camera feeds to extract bounding box 

features and compute spatial information such as azimuth angle, elevation 

angle, and user distance. These features were fused with beam history and 

processed using a Gated Recurrent Unit (GRU) network to predict the optimal 

RIS beam index. The model achieved Top-1 accuracy of 90.7% and Top-5 

accuracy of 99.2%, while reducing beam training time by over 90%, 

significantly outperforming traditional CSI-based and exhaustive search 

methods. The ability to infer beam direction using only visual and temporal 

features marks a substantial improvement in energy efficiency and 

responsiveness, especially suitable for mobility-constrained aerial platforms. 

In parallel, the second major contribution was the design and training of a 

lightweight anomaly detection system using logistic regression on synthetic RF 

datasets. By analysing RSSI, SNR, and frequency deviation, the model 

accurately distinguished eavesdroppers from legitimate users with 93.5% 

accuracy, 91.0% precision, and 96.2% recall. Once detected, the system 

leveraged the user’s direction (inferred from vision) to apply beam nulling, 

achieving a 20 dB SINR reduction at the eavesdropper and improving the 

secrecy rate without affecting legitimate communication. 

Discussion and Limitations 

Despite the strong experimental performance, the work is not without 

limitations. First, the beam prediction model was trained and evaluated on the 

dataset, which, while realistic, does not fully emulate environmental complexity 

such as occlusions, weather conditions, or multi-user clutter found in real UAV 

deployments. The model may require domain adaptation or retraining when 

deployed in heterogeneous settings. Secondly, the anomaly detection model 

relies on simulated RF features, and although these were carefully modelled, 
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real-world RF noise, multipath effects, and hardware variability could affect 

generalization. Additionally, logistic regression, though computationally 

efficient, may not capture more complex intrusion patterns or coordinated 

attacks; this leaves room for exploring ensemble models or deep learning-based 

approaches. 

Another important consideration is latency and edge computation load. While 

the current models are designed to be lightweight, their simultaneous operation 

along with vision processing and RIS control may exceed the processing 

capacity of some UAV platforms. This warrants investigation into hardware-

software co-optimization or distributed inference using UAV-ground 

coordination.  

 

In conclusion, this thesis successfully demonstrates that fusing computer vision, 

machine learning, and RIS control can lead to a secure, adaptive, and low-

latency communication system suitable for UAV-based deployment in 6G 

environments. The work offers a shift from traditional feedback-heavy 

beamforming and static security mechanisms to proactive, data-driven, and 

context-aware wireless control. In future research, the framework can be 

extended to support multi-UAV coordination, continuous online learning, and 

privacy-preserving vision inference. Further, hardware-in-the-loop testing and 

real-flight deployment will be essential to validate scalability, robustness, and 

long-term autonomy. By bridging the domains of visual intelligence, RF 

physics, and security, this thesis contributes meaningfully toward realizing 

autonomous, intelligent, and secure aerial communication networks. 
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