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ABSTRACT

This thesis presents the development and implementation of a micromechanics-based damage model for
ceramics subjected to high strain rate loading. Advanced ceramics, owing to their exceptional thermal,
mechanical, and chemical properties, are widely used in critical applications such as defence, aerospace,
and biomedical industries. However, their brittle nature and sensitivity to flaw-induced failure demand

robust constitutive models to predict fracture behaviour under dynamic conditions.

A modified framework extending the ref. [19] model has been formulated, incorporating a rate-sensitive
crack growth law to account for loading-rate-dependent fracture toughness. The model captures the
initiation and growth of wing cracks under compressive stress states and links microcrack evolution to
macroscopic behaviour through a representative population of flaws. Implementation of this model is

achieved in MATLAB for uniaxial and hydrostatic compression cases.

Comparative analysis with experimental data from Dionysus-Pentelicon marble validates the model's
ability to replicate the strain-rate sensitivity and damage evolution observed in brittle materials. The work
highlights the model’s potential in accurately forecasting failure in ceramics under dynamic loading, and

suggests improvements for capturing post-peak softening and local damage instabilities.
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NOMENCLATURE

Largest compressive stress (MPa).

Smaller principal compressive stress (MPa).
Normal and shear stress on crack plane.
Shear stress acting in crack plane (MPa).
Length of initial angled crack(m).
Extension of wing crack(m).
Dimensionless wing crack length (L = /a).
Sample thickness.

Width of beam or column.

Angle between ¢, and crack face.

Angle measured from crack plane.

Young’s modulus of the uncracked body.

Young’s modulus of the crack body (MPa).

Mode I stress intensity (MPa m%).

Mode I fracture toughness.

Crack sliding displacement.

Mode | crack opening displacement at mid-point(m).
Mode Il sliding displacement at mid-point(m).

Net mode | crack opening displacement at midpoint.
Traction acting on crack surfaces (MPa).

Strain energy release rate(m™2).

Co-efficient of friction.

Elastic energy stored in crack fields (J).

Work done by applied stresses ().

Number of cracks per unit area (m=2).

Ratio of principal stresses(o3/a;).

Yield strength (MPa).

Dimensionless constants.

Dimensionless constants.
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Chapter 1

Introduction

1.1 Ceramics

The word "ceramics" originates from the Greek term "keramos" which means potter's clay. The essential
properties of ceramics include their durability along with their versatility and visual appeal in products
such as porcelain and earthenware. Ceramics form when clay mixes with water and minerals including
silica and alumina and feldspar while metal oxides serve as important components. Advanced ceramics
such as zirconia and tungsten carbide incorporate carbon, nitrogen and sulfur compounds to fulfill
industrial requirements. Oxide ceramics consist of metallic and metalloid components whereas non-oxide
ceramics including nitrides, carbides and borides provide outstanding hardness and conductivity. The
composition is adjusted to produce desired properties which enables multiple applications in artistic works
and technological systems and industrial processes. The final product characteristics determine the
specific formulation of ceramics. Ceramic products exist in two forms because pure clay is used for some
making while silica and feldspar enhance others with additional properties. Advanced materials such as

zirconia and tungsten carbide are produced for specific industrial functions.

1.2 Properties of Ceramics

Bond: The remarkable strength and stability of ceramics exist because their atomic structure contains both
covalent and ionic bonds. Ceramic materials develop a sturdy lattice structure through their bonding

connections that makes them resistant to deformation forces.

Strength: Ceramics provide significant strength for rigid applications but metals generally possess higher
tensile and compressive strength. The strength-per-weight value of ceramics proves useful in particular

engineering tasks.

Brittleness: Ceramics break easily because they lack elasticity so that stress leads to fractures without
much plastic deformation. The brittleness of ceramics creates an obstacle in situations that require both

toughness and hardness.




Electrical connectivity: The ionic or covalent bonds within ceramics prevent free electron movement
which results in restricted electrical flow. Ceramics demonstrate their effectiveness as electrical insulators

throughout various engineering applications because of their specific electrical properties.

Thermal conductivity: Ceramics serve their purpose well in both thermal insulation applications and
high temperature environments because they possess poor thermal conductive properties. The
combination of high heat resistance and low thermal conductivity enables ceramics to withstand

temperature extremes which makes them suitable for engine and furnace applications.

Density: The physical characteristics of ceramics stem from their density which stands between the
densities of metals and polymers. The material choice for specific situations might be affected by this
property. Ceramics provide a beneficial combination of low weight and high strength for applications

which require equilibrium between these two factors such as aeronautical components.

1.3 Application of Ceramics

Electronics
Manufacturing electronic parts like capacitors, resistors and IC substrates uses ceramics extensively in the
industry. The use of ceramics in piezoelectric devices enables precise electrical signal generation for

sensor and actuator applications and ultrasound machines.

Automotive Industries

Ceramics find applications in automotive industry engine production because they can withstand high
temperatures and corrosive environments. Ceramic-coated automotive parts provide enhanced wear
resistance along with reduced engine friction which results in better engine performance and fuel

economy.

Aerospace & Defence

Ceramics play a crucial role in aerospace and defence industries through their use in developing
lightweight aircraft engine components and missile nose cones and heat shields because of their strong
weight-to-strength ratio and ability to handle extreme temperatures. The military uses armour plating made

of ceramics to protect personnel and vehicles because of their strong ballistic resistance.




Medical Applications

Ceramics play a crucial role in medical applications because of their biocompatibility and resistance to
physiological fluids which allows them to create orthopaedic implants such as hip and knee replacements
and dental implants and surgical instruments. Medical professionals use bioactive ceramics to promote

bone regeneration during tissue engineering as well as bone grafting procedures.




Chapter 2

Literature Review & Problem Statement

2.1 Literature review

The story of understanding brittle material failure, like ceramics, rocks, and ice, unfolds through decades
of research, each study revealing new facets of how cracks lead to catastrophe. In 1963, Brace and
Bombolakis [32] noted that the stress to start cracks in compression differs from that causing final
fracture. By 1964, Walsh and Brace [40] explored ceramics under tension and compression, finding

Griffith’s theory apt for tension but inadequate for compression due to crack closure.

In 1991, Schulson’s [41] team studied ice, showing cracks nucleate at grain scales (1-10 mm) and grow
under confinement, with fracture stress rising sharply at low confinement. Following ref. [39] found that
damage in Westerly granite deviated from earlier predictions, underscoring the need for models capturing
progressive micro-failure ref. [16] revealed that cracks near surfaces grow faster, laying groundwork for

damage mechanics, while ref. [20] refined this model for rocks, focusing on crack interactions.

From ref. [26] we identified three deformation regimes—quasi-static, intermediate, and high-velocity—
tying loading rate to ceramic failure. Finally, ref. [20] developed a micromechanics model for high-speed

crack propagation, fitting rock failure surfaces and simulating earthquake dynamics.

Earlier studies oversimplified crack interactions, misapplied Griffith’s theory to compression, and
neglected dynamic loading and microstructural complexity. These gaps point to future research in

dynamic crack growth and grain-scale effects.

2.2 Failure Mechanisms of Ceramics

Ceramics generally fail due to their brittle nature and low fracture toughness. The failure mechanism of
brittle fracture [42] occurs when microcracks or pores or surface flaws concentrate stress until sudden
breakage happens. Thermal shock [43] causes cracks to develop because of quick temperature variations
which create thermal stress within materials. The combination of cyclic loading [44] and moisture
exposure leads to subcritical crack development which results in fatigue failure. High-temperature

environments [45] cause ceramics to deform over time through grain boundary sliding and viscous flow

4
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mechanisms. In this thesis we will be focusing on brittle fracture of ceramic material under different
loading condition. From ref. [32] performed some experiments to investigate growth of cracks in photo

elastic material and glass under uniaxial compression.
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Fig. 2. 1: (a) Result of actual crack growth in photo-elastic plastic.
(b) Growth of an array of cracks in glass (taken from ref. [32])

Comparing crack behaviour in ceramics under tension and compression reveals distinct patterns. In
tension, a critical crack, once initiated, propagates along its long axis until it reaches a free boundary, often
forming a macroscopic crack from a single preexisting flaw. In compression, however, a growing crack

deviates from its initial long axis, curves toward the compression direction, and halts after traveling a short

distance (a few crack lengths).

Wing cracks emerge from inclined flaws due to shear stress-induced sliding, creating tensile stress
concentrations at crack tips (Fig. 2.2). Cracks aligned parallel or perpendicular to the applied stress
experience no shear stress and theoretically do not extend. As stress increases from zero, a critical tensile

stress triggers wing crack initiation, leading to growth into the tensile zone.
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Fig. 2. 2: Shear stresses acting on the angled cracks generate zones of concentrated tensile stress at the

crack tip (taken from ref. [31])

2.3 Problem Statement

This project aims to develop and numerically implement a micromechanics-based damage model for
ceramics, focusing on the wing crack mechanism, to enhance the understanding and prediction of their
failure behavior under compressive loading and high strain rates. Previous studies failed to adequately
distinguish between compressive and tensile stress regimes & transition between them. Also, prior model
insufficiently addressed high strain rate loading relevant to rapid failure events. Following are the key

objectives:

e Implement a micromechanics-based damage model using numerical calculations in MATLAB.

e Introduce scalar damage parameter D to describe the evolution of micro-crack growth, accounting
for the size and density of cracks under compressive and tensile stress regimes

e Determine the optimal parameter ranges that accurately fits experimental failure surfaces (oq, g3)
for a range of rocks and capturing the onset of nonlinearity in stress-strain curves.

e Accurately capture the initiation and growth of wing cracks in ceramics under different loading

states.




2.4 Experimental studies of Ceramic failure

In the strain-rate range of 102-10* s™', the Split Hopkinson Pressure Bar (SHPB) is a key dynamic testing
tool that employs 1D wave propagation to evaluate material constitutive properties under tension,
compression, and torsion ref. [34] offer a comprehensive review of the technique, with further insights

provided by studies like ref.[35-38] primarily focusing on ductile materials.

Striker launcher Incident bar  Specimen  Transmission bar

G, = Reflocted puse [, = Specimen pulse
i Y RELT

Fig. 2. 3 : A Split Hopkinson pressure bar made from maraging steel. The magnified view illustrates the

specimen held between the two bars (Source: Courtesy of REL Inc, Calumet MI, USA.)




Chapter 3
Constitutive Modeling

3.1 Ceramic Modeling

Modeling ceramic materials depends on the intended application—structural analysis, thermal response,
fracture behavior, or multi-physics coupling—and the scale of interest (microscale, macroscale,

continuum). The common approaches to model ceramics are listed below.

3.1.1 Continuum Damage Mechanics Model

In continuum damage mechanics (CDM), the stress-strain relation for ceramics is expressed as [1-2]
o=E, ;where E, =E,(1—-D)

Here, D = 0 indicates an undamaged state, and D = 1 denotes complete local failure. The damage
measure D can be a scalar, vector, or tensor (second or higher rank) reflecting varying complexity.
Approaches to determine effective properties (e.g., E,, Poisson’s ratio) for solids with non-periodic defects
fall into three categories: numerical models, analytical models and empirical models. Numerical models
handle diverse shapes but demand high computational resources. Analytical models study defect
arrangements but are limited to regular shapes (e.g., spherical, ellipsoidal) due to available elasticity

solutions. Empirical models fit experimental data but lack universality.

3.1.2 Analytical Models

Analytical models are used for determining effective properties of porous ceramics, developed within
small-deformation linear elasticity, predict macroscopic behaviour from microstructural parameters.
Analytical models are effective for simple geometries and low porosity, common models include self-
consistent [3], differential [4], Mori-Tanaka [5], composite sphere [6], and minimum solid area models

[7]. These involve: (1) determining stress and strain distributions for a matrix-inclusion geometry, and (2)




adjusting for inclusion interactions. With regard to the second step, it can be divided into two categories:
non-interacting and interacting models.
Non-interacting models assume independent pores, valid only for low porosity, while interacting models

account for pore and crack interactions.

3.1.3 Numerical Models

Numerical models for heterogeneous ceramics use random or digital representations, modeled as spring
networks or finite elements. Random representations generate microstructures statistically, while digital
ones use computed tomography (CT), X-ray, or SEM images. The microstructure is discretized into
elements, and elasticity equations are solved via finite element methods (FEM) using variational
formulations, minimizing elastic energy with techniques like the fast conjugate gradient method. Periodic
boundary conditions are assumed, yielding results as simple two- or three-parameter relations that link
properties to porosity. Studies have explored porosity’s impact on Young’s modulus, Poisson’s ratio, and
thermal conductivity, but often overlooked pore size, shape, and number due to complexity. Tsukrov and
Novak [9] have combined numerical and analytical approaches, solving defect-specific elasticity problems
numerically within linear elasticity, accounting for shape, size, and porosity, but neglecting nonlinear

effects like hole closure under compression.

3.1.4 Damage Evolution

Damage variables in ceramics evolve with stress and strain, causing new cracks or damage. Damage
evolution rules are derived via three methods: experiment-based [10], micromechanical [11], and
thermodynamics-based [12]. Experiment-based methods, using curve fitting yield reliable results for
tested cases but lack generalizability. Micromechanical methods derive microcrack growth laws, but are

limited to homogeneous, linear isotropic solids without crack interactions.

Thermodynamics-based methods include: (1) associated methods, defining a damage surface with
evolution normal to it, ensuring state variables align with successive surfaces; (2) non-associated methods;
and (3) direct methods.

The non-associated method relaxes these constraints, allowing flux and consistency from different

surfaces, e.g., linking damage to VVon Mises equivalent strain. The direct method uses thermodynamic
9




principles like Onsager relations or a dissipation function to deduce damage evolution via differential

relations.

3.2 Fracture Mechanics & Micromechanical Models

3.2.1 Fracture Mechanics

In fracture mechanics (FM), macrocrack growth is explicitly modeled, with unstable crack length increase
under tensile stress in a homogeneous microstructure. In linear fracture mechanics, cracks are idealized as
sharp-tipped, two-dimensional defects in a linear, isotropic elastic solid, exhibiting perfectly brittle failure.
Unlike three-dimensional flaws like pores with finite radii, cracks have zero-radius tips. Crack extension
is described by two equivalent approaches: Griffith’s energy approach [13] and Irwin’s stress approach
[14].

K,
o = —%fij )
where G is called "the energy release rate”, K is called "the stress intensity factor”, the subscript I

represents loading mode I, E is the Young's modulus, f;;(8) are known angular functions, g;; are stresses

near the crack tip and r is the distance from the crack tip.

3.2.2 Micromechanical Models

As discussed in the sections above, FM approaches can be used to study the growth of the macrocrack
through a solid with a heterogeneous microstructure, while CDM approaches can be used to determine the
continuum damage accumulation that occurs before the macrocrack. The distinction lies in crack scale:
microcracks (CDM) versus macrocracks (FM), with the surrounding medium’s scale being critical.
Classical parameters like stress intensity factor K; or energy release rate G rely on local theory, but global
behavior and crack interactions require non-local approaches. A local CDM-FEM approach aids elastic-
brittle fracture analysis. Micromechanical models bridge micro- to macroscale, using FM or CDM to
derive effective constitutive relations by explicitly modeling microstructural features (e.g., microcrack
evolution, coalescence). These models capture arbitrary morphologies, stochastic fracture patterns, and

natural crack initiation, growth, and coalescence under loading [8].

10




Direct microscale discretization via finite element methods is challenging due to random defect
distributions (size, location) and high computational demands. Micromechanical models use a
representative volume element (RVE), sized to include sufficient microvoids or microcracks while
maintaining near-homogeneous stress-strain fields. RVE microstructure is modeled via digital image-
based methods (e.g., micro-CT or CCD camera images, processed numerically) or random methods, where
void/pore properties are statistically generated based on 2D observations (porosity, morphology).
Subsequent steps involve selecting numerical techniques to solve boundary-value problems and defining

constituent constitutive equations.

3.3 Multiscale Analysis

Finite element methods (FEM) are widely used in structural stress analysis and fracture mechanics,
typically assuming material homogeneity. However, heterogeneous materials like ceramics, with
microscale defects (cracks, voids, pores, inclusions), require multiscale models [15] to link microstructure
to macroscopic behavior. Unlike single-scale local models, multiscale models are gradient-based or
nonlocal, considering stress at a point as dependent on local strain, its spatial derivatives, or strains in a
surrounding region. For example, a multilevel model for composites and porous materials uses VVoronoi
cell FEM for microstructural analysis and conventional FEM for macroscale, coupled via asymptotic
homogenization. A three-scale model integrates microstructure, macrostructure, and fracture origins (e.g.,
cracks) using homogenization and FEM mesh superposition, effectively analyzing non-periodic
microscopic stresses at crack tips under non-uniform strain fields. Other models combine FM or CDM
with mesh superposition for crack propagation, while statistical approaches or Monte Carlo FEM predict

elastic constants and fracture scatter in thin films.

3.4 Wing Crack Model

The wing crack model is a micromechanical approach to describe the propagation of cracks in brittle
materials under compressive loading. It specifically addresses how pre-existing microcracks, often
oriented at an angle to the applied compressive stress, initiate tensile wing cracks at their tips. Brittle
materials like ceramics usually contains very small cracks due to defects, surface irregularities & micro
porosity. When loaded under compression the crack interactions lead to macroscopic failure of the

materials. Unlike the macroscopic models (e.g. Mohr-Coulomb criterion), which uses bulk properties of

11




the material, the wing crack model considers discrete microstructural features, such as crack geometry &
local stress concentrators. The wing crack model is a powerful micromechanical tool that addresses the

limitations of conventional theories by focusing on single crack propagation and stress intensity factors.

3.5 Initiation & growth of wing cracks in plate in compression

R R

- INITIAL ‘-
ANGLED CRACK . |
- Uxx\ | -
q. L- g, —= X
3 q, 3 3
- r /\ - ]-
‘ |
—- -
T WING \
CRACK ‘
bttt

Fig. 3. 1: Schematic of wing crack growth from an angled crack under a compressive stress g; (taken

from ref. [16])

The growth of wing cracks from sharp starter flaws is shown in Fig. 3.1, when an incremental compressive
load is applied vertically. First, we will talk about initiation & growth of wing cracks from starter flaws
then we will discuss about the crack interactions & influence of material parameters like Poisson's ratio,

inclination angle in crack growth. The discussion in this section is taken from ref. [16].

Considering an infinite elastic plate containing an initial crack of length 2a & subjected to principal
stresses o; & a;. Stresses are treated as positive when tensile, negative when compressive.

o, = Most negative (Most Compressive)

o3 = Most positive (Least Compressive)

The remote stress field generates in plane shear stress, o, and normal stress a,, which are given by ref.
[16]:
03—01 . .
Oxy = (T) sin2y = tsin2y, Q)

12




Oxx = (USMl) + (03;01) cos2yp = o + T cos2y (2)

The shear stresses tend to make the crack surfaces slide, but because the crack is closed a frictional stress

Uao,, opposes the sliding. Then effective sliding stress can be expressed as by ref. [16]:

O-;cy = Oxy T UOxy (3)

The tensile stress gy at a distance r from the tip at an angle 0 to the crack plane is by ref. [24],

, 30ppVEa
Opg = Eﬁ sinfcos /2 (4)

Following ref. [23], the stress intensity K; on a very small wing crack of length [ and oriented at an angle

0 to the main crack may be approximated by cggVml at r = 1/2. Thus, invoking Eq. (4), K; can be
written by ref. [24]:

K, = Z oxyNmasingcosd /2 (5)

The orientation of wing crack corresponding to maximum stress intensity factor can be determined by
setting % =0, as[24]:
m
a6
Which implies that
[cosOcosO/2 — 1/2 sinfBsinf/2] =0
6, = 70.5°

1 . .
_ 3 , r—|cosbcoso  3sinbsinf|
= Eo-xy mwa 2 —_ > — 0 (6)

Maximizing K; with respect to 0 gives 6, = 0.392m = 70.5 so that the stress intensity for the wing

crack initiation is,

2
K, = Eaxy\/na @)

The most dangerous crack is that lying at the angle y which again maximizes K;. Substituting for gy, &

maximizing K; with respect to y gives from ref. [16]:
2
K; = NG (ny + uoy)Vma (8)
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K, = % I(GS ; 01) sin2y + ((03 ; 01> + (03 ; 01) cosZt/;)l Vra

ﬂ=2[( . )200521p+/1( )—ZSmZI,D]\/_

ap 3
|(252) 2c0s2p — p (252) 25im23p| = 0
tan2y = i

Now, we know from equation (8) by ref. [16]:

2
K, = ﬁ (ny + uoy)Vma

from equation (1) & (2),

Oxy = (%) sin2y = t sin2y

o3+ 0 03 — O
axx=( 32 1)+( 32 1)cosZt,l)=0+Tc0521,l)

Substituting equation (1) & (2) in (8) gives [16]:

) sin2y + p (("3+"1) + ("3;"1) cos2y )]

o = &ma(2

From equation (9) we get [16]:

Substituting these values in equation (10) gives [16]:

K, = [(03 — 0y)sin2y + u((o3 + 1) + (03 — al)coszw)]

(05 — 07) (sin2ip + pcos2yp) + (a3 + 0y)]

K= Y22 (o = o1 4 9% + oy + 00

KI:%61 (03 >(1+u2)2+u( +1>]
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We know this condition is valid only for proportional loading. Considering o3 = Aoy, where 4 is ratio

of the principal stresses.

K, =%01 [(Z—j— 1) (1+u2)%+u(3—j+ 1)]

Thus, K; can be expressed interms of A as [16] :

K, = %01 [(/1 -DA+ /12)% +u(d+ 1)]
K= =0 [ = DA+ — (1 + D] (11)

The condition for crack initiation is determined by setting K, equal to K;- (the fracture toughness of

material) which results in [16]:

K - 1
e A-D(A+uH)2-p(1+2)

0'1\/75 _ 3 (12)

This result holds provided o, is compressive. When it is tensile, the crack faces separate and the frictional
force po,, disappears; but g, as well as g, is now concentrated by the crack, giving a new term in the

equation for the stress intensity.

The stress gyg at a distance r from the crack tip on the plane at angle 6 to the crack plane can be written
as [24]:

3ny VT gxyVma Vma

060 = ~ oy 2 sinfcos(0/2) — Vo cos3(0/2) (13)
And substituting eg. (1) & (2),
Oxy = TSIN2Y, 0yx = 0 + TCOS2Y
K, = 3% cos(6/2)[tsin2sin6 + = (a + tcos2y)cos?(6/2)] (14)

Maximizing K, with respect 8 gives,

15




O tan (g) + 2tan? (g) Oxy — Oxy =0 (15)

Now again maximizing K; with respect to 21,

K, =— B\Qﬁ cos(8/2)[tsin2ysinf + %(0 + tcos2y)cos?(6/2)]
It gives,
tan2y = 3tan(0/2) (16)

3.6 Interaction of Wing Cracks

Brittle solids consist of inhomogeneities such as tiny voids, microcracks or weakly bonded particles these
defects can serve as initiation points for new cracks when material is subjected to stress. If the solid is

loaded anyone of these can act as nuclei for the formation of new cracks.

The range of possible nuclei is broad, yet their characteristics likely fall between two limiting cases: a
spherical void and a sharp inclined crack. Both possibilities have been studied by ref. [16], in both cases

criterion for crack initiation is described as,
01 = (€103 — 0y

For this case from ref. [16] the cracks initiate when,

1
_ (a+p®)24p V3 Kic
o= 03— — 5
(1+u2)2-p (1+u2)2-p

For ease of computation, it is convenient to normalize the equations by K,./vma ,giving

S$1=683—38
where §, = 2¥™¢ g, = BVT@
1 Kic '’ 3 Kic
1
1+p2)2+ 3
(1+u2)2—p 1+u?)z—p
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The objective is to create a damage mechanics of brittle solids that will allow for the operational definition
of failure and the derivation of the stress-strain response for a material with a specific defect population
and set of elastic properties under a specific stress condition. In the following, the model proposed by ref.

[19] are summarized.

The initial crack’s faces experience a normal stress of o and a shear stress of T due to the remote field o,
, a3. Each wing crack’s mouth is wedged open by & as the crack slides, which is resisted by the coefficient
of friction u . One way to conceptualize the wedging is as the result of forces acting at the crack's midpoint,

F5, parallel to X5. The stresses T and ¢ are provided by ref. [19]:

FORCE R/ CPENS
WING CRACKS BY &

WEDGING FORCE
Fy; CREATES
TENSION T ON
REMAINING LIGAMENT

P

RRRARRNA
Y

Pt otat it

Fig. 3. 2: A population of growing wing cracks. Prior to incorporating the crack-crack interaction

(illustrated on the right), we examine the growth of an isolated crack (shown above) (taken from ref.

[19]).

T = (%) sin2y

_ 0-3+O-1 0-3_0-1
a—( > >+( > )cosZt/)

F5 is just the part of the sliding force that runs parallel to X5 [19]:

F; = (t + uo)2a siny
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Or
F; = —(A101 - A303)a

When force F; is applied at the middle of a 21 crack, it produces a stress intensity that tends to open the
crack [25]:

-5
(Kl)l - Vrl

When [ is large, this result provides a good estimate of the stress intensity at the tip of a wing crack;
however, when [ is vanishingly small, it breaks down (becomes infinite). Although it is not infinite, the
stress intensity at the initial inclined crack’s tip can be precisely calculated using the formula from the

previous section.

In order to resolve this issue, an "effective” crack length (I + fa) is considered which provides [19]:

___ b
K = e (17)
Following this, when [ is zero, we select 8 so that (K;), equals that for the inclined crack [25]:
(K3 = o3/l (18)

Summing the two contributions with F5; [19],

KI 7T(l+ﬁ —+ 0'3\/_
i 85 1)

where L = [/a. The cracks extend until K, becomes equal to K,

Making sure that this equation matches the known results for very long cracks (L > 1) and reduces to the

exact result for crack initiation (L = 0) yields the constants [19]:

Ae%[mw%—u]

18




As = A, {M} B=01 (19)

(1+u?)2-p

The main part of figure shows an array of N, cracks per unit area all of which have extended to length

2(L + aa). The center to center spacing of the crack can be assumed to be [19],
1

/N,

So that an uncracked ligament of average length S — 2(L + aa) remains between the cracks in X;

S =

direction. The average internal stress is given by [19],

i F3

03 = m (20)
This acts on the wing cracks, so that equation (18) becomes [19]:

(K))3 = (03 + oDVl (21)
Defining the initial damage D, and current damage D states, as [19]:

D, = m(aa)?*N, (22a)

D = n(l+ aa)?N, (22b)
From Egs. (20) and (22), the average internal stress can be expressed as [19]:

1
ot = e (23)
o122

(n(1+Ba))?
Substitution of Eqgs. (23) and (17) into Eq. (21) gives [19]:

KI_—F +(O'3+0-3)V
(m(l + Ba))?
1
_ —(A101—A303)a (Alal ABJB)(T[ 2
1
2

Ja(+Ba) t|os— (

7)

By using Egs. 22(a) and (b), the relations between D and D, can be determined as [19]:
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1
Do\2
_ _ Alo-la + A3O'3Cl 0_3 T[l _ Alo-l (?0)
Jr+Ba)  Jn(l+ Ba) D\s
al1-2 (—)
T

D 1

2

4101 ()

+

o(1-2(2))

Now taking A,0;+vma common from all the terms will lead to expression,

1
E
1 _Azosl
= —A,01V ’ /
Loavma [+ ,Ba A0 T [+ Ba alAlf f
1 - 2

1
2

()

_A3U3\ﬁ
Aq0q |a . (1 , (%)2)

| =

Also principal stress ratio A = ?
1

[EN
N[

_ m/a(£+1—1+§>i=nﬁ(lzza—1+§)

Thus,

N[

7_[\/a(l+aa_1_l_§> . [+ Ba
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1
2

Alalx/r[a

1
2

1_i_ f l+Ba f I+Ba ?0
Ag \J \J

T l+Ba
N oa

AjoVTa

[y

A3A1T ’l+ﬁaf ?0

_EW

1 AA fl+ﬁa\/' 7Toz 1 (1 A/1 n,1 ’z+ﬁa\/'

AjoVma (

_n\@_

ForpB « 1,

Ajo\Ta (1 Asg A)

_ﬂ@

AioVma

- 1

ma ((Dﬂo)z -1 +§) |

The values of the constants are [19],

1
o, = fa
P (1+u2)%—u
s Ba
mVa
Cz = A = Bl ,C3 = \/E
o +pz-yp
3
_ra_ B
o (1+u2)%—u

Also,

21
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givVma
' Kic
S — 0’3% S — \/§
’ Kic (14+2)2
N~
S1 _ ogiVTma .

3.7 A micromechanics based Constitutive Model for failure at high
strain rate

In this section, the model proposed by ref. [20] is presented. This model can be considered to be an
extension of the theory proposed by ref. [19] and ref. [26] to accommodate the strain rate effects on brittle
fracture of rocks and ceramics. This model have successfully shown predict the fracture behavior of
Dionysus-Pentelicon marble under high strain rates.

In contrast to the model of ref. [26], the present model employs a dynamic crack growth law which is
valid over a wide range of loading rates. Also, this model is more convenient to implement in the strain

based finite element framework.

WHH

A A A A

[

|
I
|
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Fig. 3. 3 : Geometry of damage mechanics model (taken from ref. [20])

The key equations of the model are taken from ref. [20] and presented in the following, The stress-strain

relationship and compliance tensor, M;jy;, determined from Gibbs free energy function W (g, S)as [20]:

_ 0W(a,5)

e 3% [W(a,9)]
) - aaij

6aijaakl

s Miji =
Here dW denotes change in free energy function for solid undergoing change from state S to S + dS at
constant g;;. The expression for inelastic strain associated with dW is given by [20]:

a(daw)
aO'ij

dgij =

Let I" represent locus of all crack fronts in damaged solid & ds be a function of position along I’

describing local advance of microcracks, then change in free energy function is,
dW = [ {[G(0,S) — 2y,]ds}dr

The inelastic strain is given by,

de;; = [f G(0,S)dsdl'] = a(AW)

Iij

The expression of energy release rate G related to stress intensity factor by,

G(o,5) = —[KI (0,5) + K2(0,S) +K1111(clf95)]

The above expression in valid for cracks without sudden kinks, forks & branches, thus by [20]:
AW (q,S) = —f K?(0,5) + K7 (0,5) + K @9 gs ar

Gibbs free energy function is expressed as the summation of elastic and inelastic contributions, due to the

presence of micro-cracks.
W(o,S) =We(0o) +—f [KI (0,8) + K#(0,5) +K111(US)]d dr

Fromref. [20], we categorize three deformation regimes for microcrack solid based on the applied loading
state. In Regime I, the remote loading is compressive but insufficient to overcome the frictional resistance
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on penny-shaped cracks, causing the solid to behave as an isotropic linear elastic material. In Regime 11,
the remote compressive load surpasses the frictional resistance, initiating the nucleation and growth of

wing cracks from the micro-cracks.

In Regime II1, the remote loading becomes tensile, resulting in the opening of both penny-shaped cracks

and wing cracks. The criteria governing transitions between these regimes will be detailed later in the text.

Regime II: Following [19, 26] we evaluate Mode-I stress intensity factor(K;) at the tip of the wing cracks.
The Mode-I stress intensity factor, which drives crack growth in materials, comes from three main sources.
First, when penny-shaped cracks slide under stress, they create a wedging force, F,, that pushes wing cracks

open.

This force is the part of the sliding force aligned perpendicular to the maximum principal stress, calculated
as F, = (t + fo)ma? sin ¥ , a is the crack radius, and v is the angle of the crack relative to the stress
direction. Second, the remote compressive stress, denoted by o , works to close the wing cracks,

counteracting their opening.

Finally, the wedging force, F,, generates tensile stress o, in the unbroken material between neighboring
wing cracks, encouraging crack growth. Together, these factors shape how cracks propagate and affect the

material’s strength.

20; .
KIR_” _ (t+fo)ma sz3n1p +£(O’ + O'l)\/a (25)
[m+pa)z T
2 1 2
i _ (+fo)ma‘siny _ —( 3 )E
where o' = pp—————" s Acrack = T3 w,

We define a scalar damage parameter to represent both the current size of each crack and volume density

of such cracks.

D= gmv,,(z + aa)? (26)

Rewriting eq. (25) in terms of D & D, we obtain,
K#~(0,D) = vmalA(D)o + B(D)1] 27)
AD) = fer (D) + (1 + f)ez(D)e3(D)
B(D) = ¢;(D) + c;(D)cs(D)

And
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2

) =5E|()

Regime III: From ref. [26] we allow the possibility of overall loading turning tensile. We write the Mode

I stress intensity factor as quadratic function of stress [27,28,29]:

KR (g,D) =+ma[C?(D)o? + E?(D)1?] (28)

In general, the calculations start with the evaluation of the Gibbs free energy function for Regime's I, I1

and III using the SIF’s (stress intensity factors) that we have calculated in the previous section,

* Regime I : For this regime the stress-strain relationship can be described as below,

_ 2ul
O'l'j = Zl,lé'l'j +m€6u

(29)
* Regime Il : The Gibbs free energy function can be written as,

W(o,D) = W¢(o) +ﬁ [A,0 + By7]?

_ 1 _ Okk _
where T = ’ESUSU ando = T , SU = O'l'j - 0'61']' ,

1
We(O') = Eo-ijgij

2
1 1 [Ajokk
W_Zo-ijgij-l_ll-[t[ 3 +B1T]

1 1
T= \/ESUSU = J; (03 = =2£.8) (05 — =£ 83))

_ 1 0ij-Okk08ij  0ij-Okk0ij , OkkOmmbijoij
= E O-ij'o-ij_ 3 - +

3 9
1= 1Yo .0 — ZeeTmm
- 2 Ly~ 3

2
_1 1 JAq0kk
W_Zo-ijgij+4u[ 3 +B1T]
l—Y—J
X
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Now we will differentiate the above expression w.r.t stress to obtain the stress-strain relation,

ow 1 doy 1 aeu 1 d [ Ao Okk Opp
— EU + = O'U aO'ml +E 2x aO'ml 3 + 1 E(O-ijo-ij - 3 )

aaml B 2 aO'ml

_1 Okk9mm
Loty = - 25

Okk
5 O

ow 1 A16km6kl B; 1 _ Opp
do. Emi +—|2x ( 3

4u 3 2\/— 2

5km (Skl -

= L A18m 31"17_178"11)]
_Eml+4u[2x( 3 +2\/_ ml 6vy

Substituting x = 222 4 B T |
3

-t 5 ) (0 4 -2

Apparently, we are aware ﬁ = 7 and rearranging the terms,

2 A1B10kkOmi  A1B10kkOppSmi | 2 2 B?
- gml [ A O-kk(sml + 37 - 97 + gAlBngml + Bl Omi — ?Jmmdml

AlBlc'O'ml AlBlsz

i . 2
= et + o= |5 A3 08 + L+ 2 4,116,y + B0y — BE 06y (30)

We know from eq. (29),

_ 2ud _ £ L
O-ij = leé'ij +m€8u & el-j = Sij —g 611 € = €k

Substituting the deviatoric stress tensor to obtain stress,

&6ij 2u9
O'l] = 2,Ll [eij + 3”] +m€5ij

= 2,[16[]‘ 8611 + 1— 511

219
2/1851']'(1+19)

Oij = 2Ke; ¥ =05

0 =% = [anen + 2ned (555)| = 202 (5555 Gy

_3(1-29)
T 2u(1+9)

(32)
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Substitution of € from eq. (32) into Eq. (29) gives:

_ 29 3(1-29) _ 39
Oij = 2HE; 1-29 2u(1+9) 00 = 2p;; + 1+9 by
39 1 39
2/181']' = Uij—ma&-j s Eij —Z{O’l]—mo'(su} (33)

Substituting &;; from Eq. (33) into eq. (30),

ow 1 [2 2 Ai{Byo0oy;  A1B10%8py; | 2 2 2
— == —|=A5068 — =A{B1é Bio,,, — Bfod
90 m; ml + au 13 1 ml + T T + 3 1P1tYmi + 1Y%ml 1 ml
_ 1 39 102 ,, A1B100y;  A1B10%8py; | 2 2
= 21 {Uml ) O'Sml} + an [3A106ml + . . + 3 A1B1T6ml + B1 Omi
B%O’aml]

On rearranging the terms, we get the final expression for strain in terms of stress,

=452 e D - (4222 r D s (o)

Following the same procedure & again differentiating the above expression w.r.t to stress to obtain

compliance tensor,

2 3
(342 4+ 8599) (5,8, + 8,8y) — (5 + 5 — A 4 Aahao WD) 5 5,

AlBl AlBla A B10' A A
+ (_6 + ) (O'ngl + 61]0'](1) (_‘E )O-ijo-kl

M;ji(o,D) = zi

(35)
In order to implement above constitutive model in strain based finite element program, the expression of
stress should be in term of strains. Here we will recast Gibbs free energy function in terms of conjugate

strains € and y , where

2u19
= 2ug; + o ——&0;;

_ &dij 2ud
O'] = Z,U,[eu + 3 :|+1_219£6ij

149
Oij = 2,ueU + 2.1155[]' (m)
The elastic Gibb’s free energy is given by,

1
We(O') = Eo-ijgij
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From eq. (32),

From eq. (37),

(2,ueu + 2ued;; (3(%’;9))) (el.j +
(

1
=3 2ue;je;; + - useudu + 2ued;; (

NI»—\

=
=l + 3555 me?]

N|H

uy?* +

o = 22e (3 755)

2(1+9)
Sij = O'ij - U6ij = 2/4617 +

3(1-29)

Sij = 2ue;;

Sij-Sij = 2ue;;. 2ue;; = 4u? eij- €ij

1 1
T= \/gSijSij = \[g (2u?y?) =y

W(o,D) = We¢(o) + [Ala + B;7 ]?

2(1+9)

_%[I’W +3(1 219)“ 2]+ﬁ

€= &, Y = 4/2¢€i. €

2(1+9)
13(1-29)

)
3

i

149

3(1-29)

i

6skl 2y 6skl( el] el]) ( l] el])

£8;

€ij = &ij — 5>

ExrOij EmmOij
el-j.el-j = gij_ 3 gij_ 3

= &ij-&ij — 3 EkkEmm T 3 EpkeEmm = Eij- Eij —

1
€ij-€ij = &ij-&ij — 3 EkkEmm

28

)

2ue? 1+9
€;; + £
J 3

uy® + _e"k +2pe (3(1i12919)) ke T 5 e (3(1“2919))( )]

2u(1+9)
3(1-29)

61] = Z,UBU

2
pe + Bluy]

1
5 ExkEmm

3(1-29)

) 80:)

(36)

(37)

(38)




oy _ 1 0 ( )_l a 1
dens €ij-€ij = e €ij-€ij — 3 EkkEmm

Y 0ggy
. 1( d¢gij e d¢ij 28 asmm)
- V4 Y 6skl Y 6skl 3 pp 6skl

- %[22‘7 X % (8uS + Sudje) — %gppakl] - )l/[(gkl + &)

_2 _ eopbrit] _ 2en

14 3 14
oy __ 2ey
Oep 14

de _asrr_6 5. =68
aEkl - aEkl - rk®rli — kl

The elastic part of the Gibbs free energy is given by,

Weé(o,D) = [u 4 2a) Ue ]

3(1-29)
der [ 2 ) 32((11—+21?) w2err) Ziﬂ]
gz: =2p (gkl - gmfkl) + 32((11—+21?) Ok
owe 2(1+19)

2u
= —=&,,0 0
9ens 2UEp 3 Srp kit 3(1-29) UEryOfy

Now for the inelastic part,

- 1 2(1+9) 2
Wle(O',D) = a Al m‘u&' + BLLI)/]
_ 142 42 (1+9)? 2 2 2(1+9)
T au [ (9(1—2 9)2 ) e + Biu*y* + 24:Byyep 3(1-29)
owe 1 4u%(1 +9)? de 4(1+9 de
T 0] G N L
askl 4,[1 9(1 -2 19) agkl Y 3(1 ) 0Ekl

4(1+9) I ay
BT Ty F e ae,,

1 8u2(1+9)2 4(1+9) rr(2ex1)
= i—glzl_zﬁ)z ErrOi + A1By 3(1-29) p? (V5kl + Ttk 3ekl ) + Biu? (4€k1)]
ow'e 2u(1+9)° u(1+9) u(1+9) e

€rOpy + UBey + A1By ﬁ)"skl + 2A,B, 3(1 =

e 19(1 20)?2 29y

29

2
- 58pp6kl]

(39)

5kl

(40)




£6kl

where €kt — &kl — T

ow'e _ 42 2uC+9) 2, _ uB} u(1+9) ROHD) epreny
e 1 50-20)2 &rOiq + UBTEK 3 €qqOr + A1By s1-20) "V Y6 + 2A1By — 51-20) 7
L(1+9) errémmbil
2418, 3(1-29) 3y (41)

Adding both the eq. (40), (41) & after rearranging the terms,

_ow _ (1+9) ¢ v (1+9) AlBls_ﬁ 1+9)?2 5
% = Fen 2 [(1 + 4.5, (1-29)y » T ) € T (1—219 3(1-29) 3y e T 9(1-29)2 A )86”

(A B 68+1291)9)) y(skl]

Expressing the above equation in terms of damage dependent constants,
— 1 - 1
A, (D) = > (Aia; + B1by),B;(D) = > (Aiay + B1b,)

where,

o= (1+%)0 = -3(52)

_ 1[4 | 31-29) _ [3(a—29) 3(1-29) 2 |, A%
bz_r[z+2(1+ﬁ)]’r_[2(1+ﬁ)+ 4(1+9) 1+2]
—_ —_— —2
9 241 Bie 2B —2 —_——
O'ij 2[1 {( )gij + (1_219 — ;yl — 31 + Al )851']' + (Al Bl)ydlj} (42)

If we differentiate the above expression o;; w.r.t stress, we will end up getting the expression of

modulus tensor as stated below,

24, B1e 2B2 > 2A;Bie  4A B e3
(2+ 4 2 1)(5klsl,+5“5k,)+(l T )5ij5kl

241 B; 4A131£ 4A1 B1E\ A &
+( Y + )(8116k1+6ljgkl) ( Y )Eijgk

Cijri = 21

(43)

where él] = —

* Regime Il : The expression for Gibbs free energy function in regime III can be written as,
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W(aD)_Wff(a)+ [ 0% + E*1?]

_ 1 _ Gkk _
= IZSUSU & 0=— 3 SU Oij — JSU

1
We(O') = EO’UEU

6W 1 60'1] 651] 1 0 [ 2 (O}an) 2 2]
> 0i — C Eft
aakl 200y U + i 0oy + 4u 0oy 1 9 + 1

=g+ ﬁ [Cf (2“%) Sjdj + EZ

ot ]
90k

ot 0 1 1 0 O'mmajj
doy adkl[ 27Uy 4T OOy U=y 3

- 4%- [(Ulk +0y) — go—mmakl] = 41__[ [2(03; — 06,)]

a‘L'ij _ 1

dog 21 K (44)
;TV,: =g+ ﬁ [Cl2 (—2";""‘) 88 + E2(27y;) aakl]

Substituting value of ¢;; from eq. (33),

o = i{‘fkl > U‘Skl} {Clz (20%) S + E£ (20) % Sk }

doyy 2u 1+9
1 39 E?
=2 {Ukl - maakl _05k1 + 71 (O — U5kz)}
oW _ (2 g,
doyy =& = 2u {(1 + ) ki (1+19 T 2 0-6kl (45)

Differentiating the above equation w.r.t stress we obtain the compliance tensor,

1 Ef ¢}
Miji (0,D) = ﬂ{( ) (8xiyj + 8ubis) — ((Hﬁ) + - ;1) 5ij5kl} (46)
Here we will recast Gibbs free energy function in terms of conjugate strains € and y , where

W(o,D) = We(o) + ﬁ [C20% + E272 ]

_ 1,2, 20+9) 2 2.2
- Z[My 3(1 3(1-20) M€ ]+ ro®+Eft’]

2(1+9)
We know from eq. (32), (36) 0 = sz K e&tT=uy,
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2149) 2], 1 [pr2 40+9)2 5 o 2 ,,2.,2
W(e D) = [H +3(1 219)”8 ]+4u [C1 9(1-29)2 woet + Eppty ]

From eq. (38)

owe
aé‘kl

2u 2(1+9)
= 20E — ?gkkakl 3(1-29) UErrOpy

W™ 1 [ng 4(1+9)2
dery 4ul 1 9(1-20)2

2 O 2,2 9y
u*(2¢) 2e, TELH (2y) aekz]

As we have previously derived the relations % = Ok, % = %
- ﬁ[ 12% ey + 2ET 1Py (2?‘[)]
- [Clz 92((11:919))2 uedy + Efp (Ekz Eakl)]
szl/: - 1292((11:919))22 Hediy + Ef e — i—%usékl (47)

Adding both elastic & inelastic parts and after rearranging the terms,

w _ _2m 2(1+9) 2 2(1+9)? 2
den [Zﬂgkl 3 €0p + 3(1-29) ped + C1 5(1-20)? uedy + Ef uey
8 40) ]
3 HE€OK
6W _ 9 EZ 2 (1+19)2
0y = 5. =20 (1+ )ekl + (2 -E s (1_219)2) e8| (48)

Representing the above equations in terms of damage dependent constants C; & E;,

C. = Cy - _ £
1T EEE ) T )

_2E° | 2
_ZM[1+2E1)€RI+(1 219 31 +C1)86kl] (49)

Again, differentiating the above expression to obtain the modulus tensor,

Cijir = 2 {G + E_12) (81i61j + 81:6x) + (1 3 2?2 + C_12> 5ij5kz}
(50)
Criterion of transition between regimes,
For Regime |
Ao+ Bt <0 (51)
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The above condition suggests that the combined effect of stress related terms (o, 7) & material parameters

(4, B) does not exceed the threshold required for microcrack activation.
Transition from Regime II to Regime 111
In Regime 11,

Aoc+Bt>0 and (A4*>—-C*)o+ABt>0 (52)
The transition to Regime II occurs when stresses increase enough to initiate microcrack sliding or partial
activation, as indicated above.
In Regime 11,

Aoc+Bt>0 and (A?2—-C?)o+ABt<0 (53)

In Regime II1, the stresses are high enough to cause significant microcrack opening or extensive sliding,
the remote loading turns tensile which leads to opening of both wing & penny shaped cracks as both

conditions are satisfied

The most important part of model i.e., rate dependent fracture toughness is not discussed. It should be
discussed here because this is the most important extension in model and you have also used in the next

chapter.

3.8 Evolution Law for Damage (D)

To complete the constitutive model discussed above, a particular evolution law for the scalar damage
parameter D , is to be implemented. Differentiating D (eq.26) with respect to time, we obtain the

rate of damage evolution.

The formulation allows the model to consider the time-dependent development of damage in ceramics
under compressive stress, which corresponds to the effect of crack propagation and degradation of

materials [20].

2 1
dp _ [3D3D§ | (dl
dt ( aa )(dt) (54)

dl . . .
where —; = V is instantaneous wing crack tip speed.
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To address this problem effectively, it is crucial to analyse the stress state surrounding to the crack tip,
both when stationary and during propagation, under diverse loading conditions. These stress values must
then be compared with the experimentally measured fracture toughness of the material under comparable
conditions to establish criteria for crack initiation and growth. Typically, such criteria stipulate that crack
propagation occurs in a manner that maintains a material-specific parameter, such as the dynamic stress

intensity factor (K%), at a constant value characteristic of the material.

Based on the experimental observations of ref. [20] we can now formulate an expression that captures

both the initiation and growth of fractures under high loading rates.
* Initiation Criterion: The crack will initiate motion when [20],

Kld (v=0, KI) = KI% (KI) (55)

where K% = (1 + (%) * 2 % 10‘5) * K3

IC

K = % , K;c = Mode I critical SIF at instant of crack initiation
[

K# = Dynamic stress intensity factor
K;® = Quasi static stress intensity factor

* Growth Criterion: The dynamic stress intensity factor for the propagating crack is given by [20],

N
Ki(1—v/cr) _ 1,ss 1+(ﬁ) (56)
N N

where v,, = Branching speed, v = Crack tip speed
¢, =Dilatational or P-wave speed, cg = Rayleigh wave speed [46].

In the above equation K; can be obtained from eq. (27) or (28) depending upon the loading regime. This
expression is evaluated to determine the crack propagation speed (v), which is subsequently

incorporated into Equation (54) to finalize the damage evolution equation.
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Chapter 4
Numerical Implementation of Damage Model for Ceramics

4.1 Numerical Implementation

In this chapter, numerical implementation of fracture mechanics-based damage model proposed by
ref. [20] has been presented. First of all, we would like to implement our damage constitutive
model in MATLAB program. The flow chart explaining the algorithm employed in the

implementation of model is presented in Fig. 4.1.

‘ Strain Increment :¢, 4y = €, + Ae, A = C Ae ‘
Ope1 =0, +Ac

e Transition
Regime transition |

criterion
has oclcurred \ Ao+ Br >0 L

Check No
KI> KISS

i Yes

Damage is present.
Compute updated
damage(D),& Compute
AB&C

Fig. 4. 1 Algorithm diagram for implementing MATLAB program
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In a uniaxial compression loading, where compressive stress is applied along a single axis while the other
two axes are constrained (e.g., preventing lateral expansion), the mechanical behaviour of the material can
be analyzed using a stress-strain graph. This graph serves as a critical tool for identifying the operational
regime of the material under load.

Initially, as compression begins, the material operates in Regime I, known as the undamaged elastic
regime. In this regime, the material exhibits linear elastic behaviour, where stress is proportional to strain
according to Hooke's Law, and no permanent damage (e.g., micro-cracking or plastic deformation) occurs.
As compressive stress increases, the material may transition from Regime | to a different regime, such as

a damaged or plastic regime, depending on the material properties and loading conditions.

This transition is governed by a specific failure or yield criterion, expressed as Ac + Bt > 0. This
criterion indicates the onset of damage or a change in mechanical behaviour, such as the formation of
micro-cracks, yielding, or other forms of inelastic deformation.

In the current case, the condition A + Bt > 0 is not satisfied, implying that the applied stress remains
below the threshold required for regime transition. Consequently, the material continues to operate within

Regime I, maintaining its elastic and undamaged state.

<108 Stress intensity factor{KI) vs Strain
4 T T T T T T T T T
3L g
£ %] Aoy ]
o
E (Br)
H.F:" 1r K, N
2
@
€ 0= .
g ——
57| I S S I I A S S ——]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Strain (-e_) %1073

Fig. 4. 2 The variation of stress intensity factor, K; with the applied normal strain, €, along X axis for

uniaxial compression loading.
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Hydrostatic compression applies equal compressive forces to a material from all directions which
produces a stress condition with equal principal stresses (01 = 0, = g3 = —a, where o represents the
compressive stress magnitude). The uniform stress distribution reduces shear stresses because no
differential stresses create deviatoric deformation. The necessary factors to start damage processes
including micro-crack initiation and crack extension and crack plane sliding are absent. The uniform stress
conditions of hydrostatic compression lead to volume reduction without causing the stress concentrations
which typically result in inelastic responses or material failure.

The material shows a complete elastic response without any damage which corresponds to Regime | of a
damage model known as the intact or undamaged elastic regime. The material follows Hooke's Law in
this regime by demonstrating a direct proportional connection between stress and strain while showing
complete elastic deformation without any structural damage.

Hydrostatic compression produces a stress-strain behavior which depends on the bulk modulus to
determine how resistant the material is to uniform compression.Since the hydrostatic stress state does not
satisfy typical damage onset criteria (e.g., a critical stress threshold involving shear or tensile components,
such as A + Bt > 0 in other loading scenarios), the material remains in Regime I, with no transition

to subsequent regimes associated with damage accumulation.

Stress intensity factcr(KI) vs Strain

107

Stress intensity factcr(KI)

-16

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Strain (-¢_, ) %1073

Fig. 4. 3:The variation of stress intensity factor K; with applied normal strain €, plot along X axis for

hydrostatic compression loading.
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The research excludes factors such as temperature variations and material heterogeneity which have
the potential to affect stress distribution and transitions between different regimes.

Future scope of the project includes understanding regime transition criterions to predict the material
failure behavior and to perform dynamic loading experiments (e.g., split Hopkinson pressure bar tests)

to validate models under high strain rates.
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