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ABSTRACT 

This thesis presents the development and implementation of a micromechanics-based damage model for 

ceramics subjected to high strain rate loading. Advanced ceramics, owing to their exceptional thermal, 

mechanical, and chemical properties, are widely used in critical applications such as defence, aerospace, 

and biomedical industries. However, their brittle nature and sensitivity to flaw-induced failure demand 

robust constitutive models to predict fracture behaviour under dynamic conditions. 

A modified framework extending the ref. [19] model has been formulated, incorporating a rate-sensitive 

crack growth law to account for loading-rate-dependent fracture toughness. The model captures the 

initiation and growth of wing cracks under compressive stress states and links microcrack evolution to 

macroscopic behaviour through a representative population of flaws. Implementation of this model is 

achieved in MATLAB for uniaxial and hydrostatic compression cases. 

Comparative analysis with experimental data from Dionysus-Pentelicon marble validates the model's 

ability to replicate the strain-rate sensitivity and damage evolution observed in brittle materials. The work 

highlights the model’s potential in accurately forecasting failure in ceramics under dynamic loading, and 

suggests improvements for capturing post-peak softening and local damage instabilities. 

 

 

 

 

 

 

 

 

 



x 
 

TABLE OF CONTENTS 

Table of Contents 

LIST OF FIGURES .............................................................................................................................. xi 
NOMENCLATURE ............................................................................................................................ xii 
Chapter 1 ................................................................................................................................................. 1 

1.1 Ceramics .................................................................................................................................. 1 
1.2 Properties of Ceramics ............................................................................................................. 1 
1.3 Application of Ceramics ........................................................................................................... 2 

Chapter 2 ................................................................................................................................................. 4 
2.1 Literature review ...................................................................................................................... 4 
2.2 Failure Mechanisms of Ceramics .............................................................................................. 4 
2.3 Problem Statement ................................................................................................................... 6 
2.4 Experimental studies of Ceramic failure ................................................................................... 7 

Chapter 3 ................................................................................................................................................. 8 
3.1 Ceramic Modeling .................................................................................................................... 8 

3.1.1 Continuum Damage Mechanics Model................................................................................... 8 

3.1.2 Analytical Models .................................................................................................................. 8 

3.1.3 Numerical Models ................................................................................................................. 9 

3.1.4 Damage Evolution ................................................................................................................. 9 

3.2 Fracture Mechanics & Micromechanical Models .................................................................... 10 
3.2.1 Fracture Mechanics............................................................................................................. 10 

3.2.2 Micromechanical Models .................................................................................................... 10 

3.3 Multiscale Analysis ................................................................................................................ 11 
3.4 Wing Crack Model ................................................................................................................. 11 
3.5 Initiation & growth of wing cracks in plate in compression .................................................... 12 
3.6 Interaction of Wing Cracks ..................................................................................................... 16 
3.7 A micromechanics based Constitutive Model for failure at high strain rate ............................. 22 
3.8 Evolution Law for Damage (D) .............................................................................................. 33 

Chapter 4 ............................................................................................................................................... 35 
4.1 Numerical Implementation ..................................................................................................... 35 
REFERENCES .................................................................................................................................. 39 

 

 

 



xi 
 

LIST OF FIGURES 

Fig. 2. 1: (a) Result of actual crack growth in photo-elastic plastic.                                                            

(b) Growth of an array of cracks in glass (taken from ref. [32]) ............................................................... 5 

Fig. 2. 2: Shear stresses acting on the angled cracks generate zones of concentrated tensile stress at the 

crack tip (taken from ref. [31])................................................................................................................. 6 

Fig. 2. 3 : A Split Hopkinson pressure bar made from maraging steel. The magnified view illustrates the 

specimen held between the two bars (Source: Courtesy of REL Inc, Calumet MI, USA.) ......................... 7 

Fig. 3. 1: Schematic of wing crack growth from an angled crack under a compressive stress σ1 (taken 

from ref. [16]) ....................................................................................................................................... 12 

Fig. 3. 2: A population of growing wing cracks. Prior to incorporating the crack-crack interaction 

(illustrated on the right), we examine the growth of an isolated crack (shown above) (taken from ref. 

[19]). ..................................................................................................................................................... 17 

Fig. 3. 3 : Geometry of damage mechanics model (taken from ref. [20]) ................................................ 23 

Fig. 4. 1 Algorithm diagram for implementing MATLAB program ........................................................ 35 

Fig. 4. 2 The variation of stress intensity factor, KI   with the applied normal strain, ϵxx along X axis for 

uniaxial compression loading. ............................................................................................................... 36 

Fig. 4. 3:The variation of stress intensity factor KI with applied normal strain ϵxx plot along X axis for 

hydrostatic compression loading. ........................................................................................................... 37 

 

 

 

 

  



xii 
 

NOMENCLATURE 

 

                    𝜎1         Largest compressive stress (𝑀𝑃𝑎). 

             𝜎2, 𝜎3          Smaller principal compressive stress (𝑀𝑃𝑎). 

                 𝜎, 𝜏         Normal and shear stress on crack plane. 

                𝜎𝑥𝑦          Shear stress acting in crack plane (𝑀𝑃𝑎). 

                  2𝑎           Length of initial angled crack(𝑚). 

                     𝑙          Extension of wing crack(𝑚). 

                     𝐿          Dimensionless wing crack length (𝐿 = 𝑙/𝑎). 

                     𝑏          Sample thickness. 

                     𝑡          Width of beam or column. 

                    𝜓         Angle between 𝜎1 and crack face. 

                     𝜃          Angle measured from crack plane. 

                    𝐸0          Young’s modulus of the uncracked body. 

                     𝐸          Young’s modulus of the crack body (𝑀𝑃𝑎). 

                    𝐾𝐼           Mode I stress intensity (𝑀𝑃𝑎 𝑚
1

2). 

                  𝐾𝐼𝐶           Mode I fracture toughness. 

                    𝑢𝑠          Crack sliding displacement. 

                 2𝛿𝑛         Mode I crack opening displacement at mid-point(𝑚). 

                  2𝛿𝑠           Mode II sliding displacement at mid-point(𝑚). 

                  2𝛿𝑡           Net mode I crack opening displacement at midpoint. 

               𝑇𝑛 , 𝑇𝑠           Traction acting on crack surfaces (𝑀𝑃𝑎). 

                      𝐺          Strain energy release rate(𝑚−2). 

            𝜇   Co-efficient of friction. 

        𝑈, 𝑈𝐼 , 𝑈𝐼𝐼          Elastic energy stored in crack fields (𝐽).   

                     𝑊          Work done by applied stresses (𝐽). 

                     𝑁𝐴           Number of cracks per unit area (𝑚−2). 

                      𝜆           Ratio of principal stresses(𝜎3/𝜎1). 

                     𝜎𝑦           Yield strength (𝑀𝑃𝑎). 

          𝛼1, 𝛼2, 𝛼           Dimensionless constants. 

               𝛽𝑏, 𝛽𝑠            Dimensionless constants. 
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Chapter 1  

Introduction 

1.1 Ceramics 

 

The word "ceramics" originates from the Greek term "keramos" which means potter's clay. The essential 

properties of ceramics include their durability along with their versatility and visual appeal in products 

such as porcelain and earthenware. Ceramics form when clay mixes with water and minerals including 

silica and alumina and feldspar while metal oxides serve as important components. Advanced ceramics 

such as zirconia and tungsten carbide incorporate carbon, nitrogen and sulfur compounds to fulfill 

industrial requirements. Oxide ceramics consist of metallic and metalloid components whereas non-oxide 

ceramics including nitrides, carbides and borides provide outstanding hardness and conductivity. The 

composition is adjusted to produce desired properties which enables multiple applications in artistic works 

and technological systems and industrial processes. The final product characteristics determine the 

specific formulation of ceramics. Ceramic products exist in two forms because pure clay is used for some 

making while silica and feldspar enhance others with additional properties. Advanced materials such as 

zirconia and tungsten carbide are produced for specific industrial functions. 

 

1.2 Properties of Ceramics  

 

Bond: The remarkable strength and stability of ceramics exist because their atomic structure contains both 

covalent and ionic bonds. Ceramic materials develop a sturdy lattice structure through their bonding 

connections that makes them resistant to deformation forces.  

Strength: Ceramics provide significant strength for rigid applications but metals generally possess higher 

tensile and compressive strength. The strength-per-weight value of ceramics proves useful in particular 

engineering tasks.  

Brittleness: Ceramics break easily because they lack elasticity so that stress leads to fractures without 

much plastic deformation. The brittleness of ceramics creates an obstacle in situations that require both 

toughness and hardness.  
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Electrical connectivity: The ionic or covalent bonds within ceramics prevent free electron movement 

which results in restricted electrical flow. Ceramics demonstrate their effectiveness as electrical insulators 

throughout various engineering applications because of their specific electrical properties.  

Thermal conductivity: Ceramics serve their purpose well in both thermal insulation applications and 

high temperature environments because they possess poor thermal conductive properties. The 

combination of high heat resistance and low thermal conductivity enables ceramics to withstand 

temperature extremes which makes them suitable for engine and furnace applications. 

Density: The physical characteristics of ceramics stem from their density which stands between the 

densities of metals and polymers. The material choice for specific situations might be affected by this 

property. Ceramics provide a beneficial combination of low weight and high strength for applications 

which require equilibrium between these two factors such as aeronautical components. 

 

1.3 Application of Ceramics 

 

Electronics 

Manufacturing electronic parts like capacitors, resistors and IC substrates uses ceramics extensively in the 

industry.  The use of ceramics in piezoelectric devices enables precise electrical signal generation for 

sensor and actuator applications and ultrasound machines. 

 

Automotive Industries 

Ceramics find applications in automotive industry engine production because they can withstand high 

temperatures and corrosive environments. Ceramic-coated automotive parts provide enhanced wear 

resistance along with reduced engine friction which results in better engine performance and fuel 

economy. 

 

Aerospace & Defence 

Ceramics play a crucial role in aerospace and defence industries through their use in developing 

lightweight aircraft engine components and missile nose cones and heat shields because of their strong 

weight-to-strength ratio and ability to handle extreme temperatures. The military uses armour plating made 

of ceramics to protect personnel and vehicles because of their strong ballistic resistance. 
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Medical Applications 

Ceramics play a crucial role in medical applications because of their biocompatibility and resistance to 

physiological fluids which allows them to create orthopaedic implants such as hip and knee replacements 

and dental implants and surgical instruments. Medical professionals use bioactive ceramics to promote 

bone regeneration during tissue engineering as well as bone grafting procedures. 
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Chapter 2  

Literature Review & Problem Statement 

2.1 Literature review 

 

The story of understanding brittle material failure, like ceramics, rocks, and ice, unfolds through decades 

of research, each study revealing new facets of how cracks lead to catastrophe. In 1963, Brace and 

Bombolakis [32]  noted that the stress to start cracks in compression differs from that causing final 

fracture. By 1964, Walsh and Brace [40] explored ceramics under tension and compression, finding 

Griffith’s theory apt for tension but inadequate for compression due to crack closure. 

In 1991, Schulson’s [41] team studied ice, showing cracks nucleate at grain scales (1-10 mm) and grow 

under confinement, with fracture stress rising sharply at low confinement. Following ref. [39] found that 

damage in Westerly granite deviated from earlier predictions, underscoring the need for models capturing 

progressive micro-failure ref. [16] revealed that cracks near surfaces grow faster, laying groundwork for 

damage mechanics, while ref. [20] refined this model for rocks, focusing on crack interactions. 

From ref. [26] we identified three deformation regimes—quasi-static, intermediate, and high-velocity—

tying loading rate to ceramic failure. Finally, ref. [20] developed a micromechanics model for high-speed 

crack propagation, fitting rock failure surfaces and simulating earthquake dynamics. 

Earlier studies oversimplified crack interactions, misapplied Griffith’s theory to compression, and 

neglected dynamic loading and microstructural complexity. These gaps point to future research in 

dynamic crack growth and grain-scale effects. 

 

2.2 Failure Mechanisms of Ceramics 

 

Ceramics generally fail due to their brittle nature and low fracture toughness. The failure mechanism of 

brittle fracture [42] occurs when microcracks or pores or surface flaws concentrate stress until sudden 

breakage happens. Thermal shock [43] causes cracks to develop because of quick temperature variations 

which create thermal stress within materials. The combination of cyclic loading [44] and moisture 

exposure leads to subcritical crack development which results in fatigue failure. High-temperature 

environments [45] cause ceramics to deform over time through grain boundary sliding and viscous flow 

file:///C:/Users/Chandra%20Pratap%20Singh/Documents/M.tech%20Project/M.Tech%20Thesis/Thesis_resource/M.TECH_THESIS_2302103035_R8.docx%23R39
file:///C:/Users/Chandra%20Pratap%20Singh/Documents/M.tech%20Project/M.Tech%20Thesis/Thesis_resource/M.TECH_THESIS_2302103035_R8.docx%23R16
file:///C:/Users/Chandra%20Pratap%20Singh/Documents/M.tech%20Project/M.Tech%20Thesis/Thesis_resource/M.TECH_THESIS_2302103035_R8.docx%23R20
file:///C:/Users/Chandra%20Pratap%20Singh/Documents/M.tech%20Project/M.Tech%20Thesis/Thesis_resource/M.TECH_THESIS_2302103035_R8.docx%23R26
file:///C:/Users/Chandra%20Pratap%20Singh/Documents/M.tech%20Project/M.Tech%20Thesis/Thesis_resource/M.TECH_THESIS_2302103035_R8.docx%23R20
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mechanisms. In this thesis we will be focusing on brittle fracture of ceramic material under different 

loading condition. From ref. [32] performed some experiments to investigate growth of cracks in photo 

elastic material and glass under uniaxial compression. 

 

Fig. 2. 1: (a) Result of actual crack growth in photo-elastic plastic.                                                            

(b) Growth of an array of cracks in glass (taken from ref. [32]) 

Comparing crack behaviour in ceramics under tension and compression reveals distinct patterns. In 

tension, a critical crack, once initiated, propagates along its long axis until it reaches a free boundary, often 

forming a macroscopic crack from a single preexisting flaw. In compression, however, a growing crack 

deviates from its initial long axis, curves toward the compression direction, and halts after traveling a short 

distance (a few crack lengths).  

Wing cracks emerge from inclined flaws due to shear stress-induced sliding, creating tensile stress 

concentrations at crack tips (Fig. 2.2). Cracks aligned parallel or perpendicular to the applied stress 

experience no shear stress and theoretically do not extend. As stress increases from zero, a critical tensile 

stress triggers wing crack initiation, leading to growth into the tensile zone. 
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Fig. 2. 2: Shear stresses acting on the angled cracks generate zones of concentrated tensile stress at the 

crack tip (taken from ref. [31]) 

 

2.3 Problem Statement  

 

This project aims to develop and numerically implement a micromechanics-based damage model for 

ceramics, focusing on the wing crack mechanism, to enhance the understanding and prediction of their 

failure behavior under compressive loading and high strain rates. Previous studies failed to adequately 

distinguish between compressive and tensile stress regimes & transition between them. Also, prior model 

insufficiently addressed high strain rate loading relevant to rapid failure events. Following are the key 

objectives: 

 Implement a micromechanics-based damage model using numerical calculations in MATLAB. 

 Introduce scalar damage parameter 𝐷 to describe the evolution of micro-crack growth, accounting 

for the size and density of cracks under compressive and tensile stress regimes 

 Determine the optimal parameter ranges that accurately fits experimental failure surfaces (𝜎1, 𝜎3) 

for a range of rocks and capturing the onset of nonlinearity in stress-strain curves. 

 Accurately capture the initiation and growth of wing cracks in ceramics under different loading 

states. 
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2.4 Experimental studies of Ceramic failure 

 

In the strain-rate range of 10²–10⁴ s⁻¹, the Split Hopkinson Pressure Bar (SHPB) is a key dynamic testing 

tool that employs 1D wave propagation to evaluate material constitutive properties under tension, 

compression, and torsion ref. [34] offer a comprehensive review of the technique, with further insights 

provided by studies like ref.[35-38] primarily focusing on ductile materials. 

 

 

 

Fig. 2. 3 : A Split Hopkinson pressure bar made from maraging steel. The magnified view illustrates the 

specimen held between the two bars (Source: Courtesy of REL Inc, Calumet MI, USA.) 
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Chapter 3 

Constitutive Modeling    

3.1 Ceramic Modeling 

 

Modeling ceramic materials depends on the intended application—structural analysis, thermal response, 

fracture behavior, or multi-physics coupling—and the scale of interest (microscale, macroscale, 

continuum). The common approaches to model ceramics are listed below. 

 

3.1.1 Continuum Damage Mechanics Model 

 

In continuum damage mechanics (CDM), the stress-strain relation for ceramics is expressed as [1-2] 

𝜎 = 𝐸𝑒𝜀  ; where   𝐸𝑒 = 𝐸0(1 − 𝐷) 

 

Here, 𝐷 = 0 indicates an undamaged state, and 𝐷 = 1 denotes complete local failure. The damage 

measure 𝐷 can be a scalar, vector, or tensor (second or higher rank) reflecting varying complexity. 

Approaches to determine effective properties (e.g., 𝐸𝑒 , Poisson’s ratio) for solids with non-periodic defects 

fall into three categories: numerical models, analytical models and empirical models. Numerical models 

handle diverse shapes but demand high computational resources. Analytical models study defect 

arrangements but are limited to regular shapes (e.g., spherical, ellipsoidal) due to available elasticity 

solutions. Empirical models fit experimental data but lack universality. 

 

 

3.1.2 Analytical Models 

 

Analytical models are used for determining effective properties of porous ceramics, developed within 

small-deformation linear elasticity, predict macroscopic behaviour from microstructural parameters. 

Analytical models are effective for simple geometries and low porosity, common models include self-

consistent [3], differential [4], Mori-Tanaka [5], composite sphere [6], and minimum solid area models   

[7]. These involve: (1) determining stress and strain distributions for a matrix-inclusion geometry, and (2) 
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adjusting for inclusion interactions. With regard to the second step, it can be divided into two categories: 

non-interacting and interacting models. 

Non-interacting models assume independent pores, valid only for low porosity, while interacting models 

account for pore and crack interactions. 

 

3.1.3 Numerical Models 

 

Numerical models for heterogeneous ceramics use random or digital representations, modeled as spring 

networks or finite elements. Random representations generate microstructures statistically, while digital 

ones use computed tomography (CT), X-ray, or SEM images. The microstructure is discretized into 

elements, and elasticity equations are solved via finite element methods (FEM) using variational 

formulations, minimizing elastic energy with techniques like the fast conjugate gradient method. Periodic 

boundary conditions are assumed, yielding results as simple two- or three-parameter relations that link 

properties to porosity. Studies have explored porosity’s impact on Young’s modulus, Poisson’s ratio, and 

thermal conductivity, but often overlooked pore size, shape, and number due to complexity. Tsukrov and 

Novak [9] have combined numerical and analytical approaches, solving defect-specific elasticity problems 

numerically within linear elasticity, accounting for shape, size, and porosity, but neglecting nonlinear 

effects like hole closure under compression. 

 

3.1.4 Damage Evolution 

 

Damage variables in ceramics evolve with stress and strain, causing new cracks or damage. Damage 

evolution rules are derived via three methods: experiment-based [10], micromechanical [11], and 

thermodynamics-based [12]. Experiment-based methods, using curve fitting yield reliable results for 

tested cases but lack generalizability. Micromechanical methods derive microcrack growth laws, but are 

limited to homogeneous, linear isotropic solids without crack interactions. 

  

Thermodynamics-based methods include: (1) associated methods, defining a damage surface with 

evolution normal to it, ensuring state variables align with successive surfaces; (2) non-associated methods; 

and (3) direct methods. 

The non-associated method relaxes these constraints, allowing flux and consistency from different 

surfaces, e.g., linking damage to Von Mises equivalent strain. The direct method uses thermodynamic 
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principles like Onsager relations or a dissipation function to deduce damage evolution via differential 

relations. 

3.2 Fracture Mechanics & Micromechanical Models 

3.2.1 Fracture Mechanics 

 

In fracture mechanics (FM), macrocrack growth is explicitly modeled, with unstable crack length increase 

under tensile stress in a homogeneous microstructure. In linear fracture mechanics, cracks are idealized as 

sharp-tipped, two-dimensional defects in a linear, isotropic elastic solid, exhibiting perfectly brittle failure. 

Unlike three-dimensional flaws like pores with finite radii, cracks have zero-radius tips. Crack extension 

is described by two equivalent approaches: Griffith’s energy approach [13] and Irwin’s stress approach 

[14]. 

𝐺𝐼 =
𝐾𝐼

2

𝐸
                                                                                                                                                                           

𝜎𝑖𝑗 =
𝐾𝐼

√2𝜋𝑟
𝑓𝑖𝑗(𝜃) 

where 𝐺 is called "the energy release rate", 𝐾 is called "the stress intensity factor", the subscript 𝐼 

represents loading mode I, 𝐸 is the Young's modulus, 𝑓𝑖𝑗(𝜃) are known angular functions, 𝜎𝑖𝑗  are stresses 

near the crack tip and 𝑟 is the distance from the crack tip. 

 

3.2.2 Micromechanical Models 

 

As discussed in the sections above, FM approaches can be used to study the growth of the macrocrack 

through a solid with a heterogeneous microstructure, while CDM approaches can be used to determine the 

continuum damage accumulation that occurs before the macrocrack. The distinction lies in crack scale: 

microcracks (CDM) versus macrocracks (FM), with the surrounding medium’s scale being critical. 

Classical parameters like stress intensity factor 𝐾𝐼 or energy release rate 𝐺 rely on local theory, but global 

behavior and crack interactions require non-local approaches. A local CDM-FEM approach aids elastic-

brittle fracture analysis. Micromechanical models bridge micro- to macroscale, using FM or CDM to 

derive effective constitutive relations by explicitly modeling microstructural features (e.g., microcrack 

evolution, coalescence). These models capture arbitrary morphologies, stochastic fracture patterns, and 

natural crack initiation, growth, and coalescence under loading [8]. 
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Direct microscale discretization via finite element methods is challenging due to random defect 

distributions (size, location) and high computational demands. Micromechanical models use a 

representative volume element (RVE), sized to include sufficient microvoids or microcracks while 

maintaining near-homogeneous stress-strain fields. RVE microstructure is modeled via digital image-

based methods (e.g., micro-CT or CCD camera images, processed numerically) or random methods, where 

void/pore properties are statistically generated based on 2D observations (porosity, morphology). 

Subsequent steps involve selecting numerical techniques to solve boundary-value problems and defining 

constituent constitutive equations. 

 

3.3 Multiscale Analysis 

 

Finite element methods (FEM) are widely used in structural stress analysis and fracture mechanics, 

typically assuming material homogeneity. However, heterogeneous materials like ceramics, with 

microscale defects (cracks, voids, pores, inclusions), require multiscale models [15] to link microstructure 

to macroscopic behavior. Unlike single-scale local models, multiscale models are gradient-based or 

nonlocal, considering stress at a point as dependent on local strain, its spatial derivatives, or strains in a 

surrounding region. For example, a multilevel model for composites and porous materials uses Voronoi 

cell FEM for microstructural analysis and conventional FEM for macroscale, coupled via asymptotic 

homogenization. A three-scale model integrates microstructure, macrostructure, and fracture origins (e.g., 

cracks) using homogenization and FEM mesh superposition, effectively analyzing non-periodic 

microscopic stresses at crack tips under non-uniform strain fields. Other models combine FM or CDM 

with mesh superposition for crack propagation, while statistical approaches or Monte Carlo FEM predict 

elastic constants and fracture scatter in thin films.  

 

3.4 Wing Crack Model 

 

The wing crack model is a micromechanical approach to describe the propagation of cracks in brittle 

materials under compressive loading. It specifically addresses how pre-existing microcracks, often 

oriented at an angle to the applied compressive stress, initiate tensile wing cracks at their tips. Brittle 

materials like ceramics usually contains very small cracks due to defects, surface irregularities & micro 

porosity. When loaded under compression the crack interactions lead to macroscopic failure of the 

materials. Unlike the macroscopic models (e.g. Mohr-Coulomb criterion), which uses bulk properties of 
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the material, the wing crack model considers discrete microstructural features, such as crack geometry & 

local stress concentrators. The wing crack model is a powerful micromechanical tool that addresses the 

limitations of conventional theories by focusing on single crack propagation and stress intensity factors. 

 

3.5 Initiation & growth of wing cracks in plate in compression             

 

 
 

 

 

 

 
 

 
Fig. 3. 1: Schematic of wing crack growth from an angled crack under a compressive stress 𝜎1 (taken 

from ref. [16]) 

 

The growth of wing cracks from sharp starter flaws is shown in Fig. 3.1, when an incremental compressive 

load is applied vertically. First, we will talk about initiation & growth of wing cracks from starter flaws 

then we will discuss about the crack interactions & influence of material parameters like Poisson's ratio, 

inclination angle in crack growth. The discussion in this section is taken from ref. [16]. 

Considering an infinite elastic plate containing an initial crack of length 2a & subjected to principal 

stresses 𝜎1 & 𝜎3. Stresses are treated as positive when tensile, negative when compressive.  

𝜎1 = Most negative (Most Compressive) 

𝜎3 = Most positive (Least Compressive) 

 

The remote stress field generates in plane shear stress, 𝜎𝑥𝑦 and normal stress 𝜎𝑥𝑥 which are given by ref. 

[16]: 

𝜎𝑥𝑦  =  (
𝜎3−𝜎1

2
) 𝑠𝑖𝑛2𝜓 =  𝜏 𝑠𝑖𝑛2𝜓,                                                                                      (1) 
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𝜎𝑥𝑥  = (
𝜎3+𝜎1

2
)  + (

𝜎3−𝜎1

2
) 𝑐𝑜𝑠2𝜓 =  𝜎 + 𝜏 𝑐𝑜𝑠2𝜓                                                       (2) 

 
The shear stresses tend to make the crack surfaces slide, but because the crack is closed a frictional stress 

𝜇𝜎𝑥𝑥 opposes the sliding. Then effective sliding stress can be expressed as by ref. [16]: 

       
𝜎𝑥𝑦́  = 𝜎𝑥𝑦 + 𝜇𝜎𝑥𝑥                                                                                            (3) 

 
The tensile stress 𝜎𝜃𝜃  at a distance 𝑟 from the tip at an angle θ to the crack plane is by ref. [24], 

 

𝜎𝜃𝜃
′ =

3

2

𝜎𝑥𝑦
′ √𝜋𝑎

√2𝜋𝑟
 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃/2                                                                                         (4) 

 
Following ref. [23], the stress intensity 𝐾𝐼 on a very small wing crack of length 𝑙 and oriented at an angle 

θ to the main crack may be approximated by 𝜎𝜃𝜃
′ √𝜋𝑙  at 𝑟 =  𝑙/2. Thus, invoking Eq. (4), 𝐾𝐼 can be 

written by ref. [24]:  

 

 𝐾𝐼 =
3

2
𝜎𝑥𝑦

′ √𝜋𝑎𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃/2                                                                               (5) 

 
     

The orientation of wing crack corresponding to maximum stress intensity factor can be determined by 

setting 
𝑑𝐾𝐼

𝑑𝜃
= 0,  as [24]:  

  𝑑𝐾𝐼

𝑑𝜃
=

3

2
𝜎𝑥𝑦

′ √𝜋𝑎 [
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃

2
−

1

2
𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜃

2
] = 0                                                                                     (6) 

Which implies that 

 [𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃/2 − 1/2 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜃/2] = 0       

  𝜃𝑐 = 70.5° 
 

Maximizing 𝐾𝐼 with respect to θ gives 𝜃𝑐 =  0.392𝜋 =  70.5 so that the stress intensity for the wing 

crack initiation is, 

𝐾𝐼 =
2

√3
𝜎𝑥𝑦

′ √𝜋𝑎                                                                             (7) 

The most dangerous crack is that lying at the angle ψ which again maximizes 𝐾𝐼. Substituting for 𝜎𝑥𝑦
′  & 

maximizing 𝐾𝐼  with respect to ψ gives from ref. [16]: 

𝐾𝐼 =
2

√3
(𝜎𝑥𝑦 + 𝜇𝜎𝑥𝑥)√𝜋𝑎                                                             (8) 
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𝐾𝐼 =
2

√3
[(

𝜎3 − 𝜎1

2
) 𝑠𝑖𝑛2𝜓 + 𝜇 ((

𝜎3 + 𝜎1

2
) + (

𝜎3 − 𝜎1

2
) 𝑐𝑜𝑠2𝜓)]√𝜋𝑎 

 𝑑𝐾𝐼

𝑑𝜓
=

2

√3
[(

𝜎3−𝜎1

2
)2𝑐𝑜𝑠2𝜓 + 𝜇 (

𝜎3−𝜎1

2
) − 2𝑠𝑖𝑛2𝜓 ]√𝜋𝑎 

 [(𝜎3−𝜎1

2
) 2𝑐𝑜𝑠2𝜓 − 𝜇 (

𝜎3−𝜎1

2
)2𝑠𝑖𝑛2𝜓] = 0 

𝑡𝑎𝑛2𝜓 = 
1

𝜇
                                                                                        (9) 

Now, we know from equation (8) by ref. [16]: 

𝐾𝐼 =
2

√3
(𝜎𝑥𝑦 + 𝜇𝜎𝑥𝑥)√𝜋𝑎 

 from equation (1) & (2), 

 𝜎𝑥𝑦 = (
𝜎3−𝜎1

2
) 𝑠𝑖𝑛2𝜓 = 𝜏 𝑠𝑖𝑛2𝜓 

𝜎𝑥𝑥 = (
𝜎3 + 𝜎1

2
) + (

𝜎3 − 𝜎1

2
) 𝑐𝑜𝑠2𝜓 = 𝜎 + 𝜏𝑐𝑜𝑠2𝜓 

Substituting equation (1) & (2) in (8) gives [16]: 

𝐾𝐼 =
2

√3
√𝜋𝑎 [(

𝜎3−𝜎1

2
) 𝑠𝑖𝑛2𝜓 + 𝜇 ((

𝜎3+𝜎1

2
) + (

𝜎3−𝜎1

2
) 𝑐𝑜𝑠2𝜓 )]                      (10) 

 From equation (9) we get [16]: 

𝑡𝑎𝑛2𝜓 = 
1

𝜇
    

𝜇 =
𝑐𝑜𝑠2𝜓

𝑠𝑖𝑛2𝜓
    

Substituting these values in equation (10) gives [16]: 

𝐾𝐼 =
√𝜋𝑎

√3
[(𝜎3 − 𝜎1)𝑠𝑖𝑛2𝜓 + 𝜇((𝜎3 + 𝜎1) + (𝜎3 − 𝜎1)𝑐𝑜𝑠2𝜓)] 

    =
√𝜋𝑎

√3
[(𝜎3 − 𝜎1)(𝑠𝑖𝑛2𝜓 + 𝜇𝑐𝑜𝑠2𝜓) + 𝜇(𝜎3 + 𝜎1)] 

 

𝐾𝐼 =
√𝜋𝑎

√3
[(𝜎3 − 𝜎1)(1 + 𝜇2)

1
2 + 𝜇(𝜎3 + 𝜎1)] 

𝐾𝐼 =
√𝜋𝑎

√3
𝜎1 [(

𝜎3

𝜎1
− 1) (1 + 𝜇2)

1
2 + 𝜇 (

𝜎3

𝜎1
+ 1)] 
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We know this condition is valid only for proportional loading. Considering 𝜎3 = 𝜆𝜎1,   where 𝜆 is ratio 

of the principal stresses. 

𝐾𝐼 =
√𝜋𝑎

√3
𝜎1 [(

𝜎3

𝜎1
− 1) (1 + 𝜇2)

1
2 + 𝜇 (

𝜎3

𝜎1
+ 1)] 

Thus, 𝐾𝐼   can be expressed in terms of 𝜆 as [16] : 

𝐾𝐼 =
√𝜋𝑎

√3
𝜎1 [(𝜆 − 1)(1 + 𝜇2)

1
2 + 𝜇(𝜆 + 1)] 

𝐾𝐼 = −
√𝜋𝑎

√3
𝜎1 [(1 − 𝜆)(1 + 𝜇2)

1

2 − 𝜇(1 + 𝜆)]                                                     (11) 

The condition for crack initiation is determined by setting 𝐾𝐼 equal to 𝐾𝐼𝐶  (the fracture toughness of 

material) which results in [16]: 

𝜎1√𝜋𝑎

𝐾𝐼𝐶
= −

3

[(1−𝜆)(1+𝜇2)
1
2−𝜇(1+𝜆)]

                                                                                             (12) 

 

This result holds provided 𝜎𝑥𝑥  is compressive. When it is tensile, the crack faces separate and the frictional 

force 𝜇𝜎𝑥𝑥 disappears; but 𝜎𝑥𝑥 as well as 𝜎𝑥𝑦 is now concentrated by the crack, giving a new term in the 

equation for the stress intensity. 

The stress 𝜎𝜃𝜃  at a distance 𝑟 from the crack tip on the plane at angle 𝜃 to the crack plane can be written 

as [24]: 

𝜎𝜃𝜃 = −
3𝜎𝑥𝑦√𝜋𝑎

2√2𝜋𝑟
𝑠𝑖𝑛𝜃𝑐𝑜𝑠(𝜃/2) −

𝜎𝑥𝑦√𝜋𝑎

√2𝜋𝑟
𝑐𝑜𝑠3(𝜃/2)                                   (13) 

 

And substituting eq. (1) & (2), 

𝜎𝑥𝑦 = 𝜏𝑠𝑖𝑛2𝜓,   𝜎𝑥𝑥 = 𝜎 + 𝜏𝑐𝑜𝑠2𝜓 

𝐾𝐼 = −
3√𝜋𝑎

2
𝑐𝑜𝑠(𝜃/2)[𝜏𝑠𝑖𝑛2𝜓𝑠𝑖𝑛𝜃 +

2

3
(𝜎 + 𝜏𝑐𝑜𝑠2𝜓)𝑐𝑜𝑠2(𝜃/2)]                   (14) 

 

Maximizing 𝐾𝐼 with respect 𝜃 gives, 
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𝜎𝑥𝑥𝑡𝑎𝑛 (
𝜃

2
) + 2𝑡𝑎𝑛2 (

𝜃

2
) 𝜎𝑥𝑦 − 𝜎𝑥𝑦 = 0                                                   (15) 

 

Now again maximizing 𝐾𝐼 with respect to 2𝜓, 

 

𝐾𝐼 = −
3√𝜋𝑎

2
𝑐𝑜𝑠(𝜃/2)[𝜏𝑠𝑖𝑛2𝜓𝑠𝑖𝑛𝜃 +

2

3
(𝜎 + 𝜏𝑐𝑜𝑠2𝜓)𝑐𝑜𝑠2(𝜃/2)] 

It gives, 

     𝑡𝑎𝑛2𝜓 = 3𝑡𝑎𝑛(𝜃/2)                                                                         (16) 

 

3.6 Interaction of Wing Cracks 

 

Brittle solids consist of inhomogeneities such as tiny voids, microcracks or weakly bonded particles these 

defects can serve as initiation points for new cracks when material is subjected to stress. If the solid is 

loaded anyone of these can act as nuclei for the formation of new cracks. 

 

The range of possible nuclei is broad, yet their characteristics likely fall between two limiting cases: a 

spherical void and a sharp inclined crack. Both possibilities have been studied by ref. [16], in both cases 

criterion for crack initiation is described as, 

 

𝜎1 = 𝑐1𝜎3 − 𝜎0  

 

For this case from ref. [16] the cracks initiate when, 

    𝜎1 =
(1+𝜇2)

1
2+𝜇

(1+𝜇2)
1
2−𝜇

𝜎3 −
√3

(1+𝜇2)
1
2−𝜇

𝐾𝐼𝐶

√𝜋𝑎
  

 

For ease of computation, it is convenient to normalize the equations by 𝐾𝐼𝐶/√𝜋𝑎 ,giving 

𝑆1 = 𝑐1𝑆3 − 𝑆0   

 

where 𝑆1 =
𝜎1√𝜋𝑎

𝐾𝐼𝐶
 , 𝑆3 =

𝜎3√𝜋𝑎

𝐾𝐼𝐶
   

𝑐1 =
(1+𝜇2)

1
2+𝜇

(1+𝜇2)
1
2−𝜇

   & 𝑆0 =
√3

(1+𝜇2)
1
2−𝜇
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The objective is to create a damage mechanics of brittle solids that will allow for the operational definition 

of failure and the derivation of the stress-strain response for a material with a specific defect population 

and set of elastic properties under a specific stress condition. In the following, the model proposed by ref. 

[19] are summarized.   

 

The initial crack's faces experience a normal stress of 𝜎 and a shear stress of 𝜏 due to the remote field 𝜎1 

, 𝜎3. Each wing crack's mouth is wedged open by 𝛿 as the crack slides, which is resisted by the coefficient 

of friction 𝜇 . One way to conceptualize the wedging is as the result of forces acting at the crack's midpoint, 

 𝐹3, parallel to 𝑋3. The stresses 𝜏 and 𝜎 are provided by ref. [19]: 

 

 
Fig. 3. 2: A population of growing wing cracks. Prior to incorporating the crack-crack interaction 

(illustrated on the right), we examine the growth of an isolated crack (shown above) (taken from ref. 

[19]). 

 

𝜏 =  (
𝜎3−𝜎1

2
) 𝑠𝑖𝑛2𝜓   

𝜎 = (
𝜎3 + 𝜎1

2
) + (

𝜎3 − 𝜎1

2
) 𝑐𝑜𝑠2𝜓 

 
𝐹3 is just the part of the sliding force that runs parallel to 𝑋3 [19]: 

 
𝐹3 = (𝜏 + 𝜇𝜎)2𝑎 sin𝜓   
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Or   

 𝐹3 = −(𝐴1𝜎1 − 𝐴3𝜎3)𝑎  
 

When force 𝐹3 is applied at the middle of a 2𝑙 crack, it produces a stress intensity that tends to open the 

crack [25]:  

 (𝐾𝐼)1 =
𝐹3

√𝜋𝑙
   

 
When 𝑙 is large, this result provides a good estimate of the stress intensity at the tip of a wing crack; 

however, when 𝑙 is vanishingly small, it breaks down (becomes infinite). Although it is not infinite, the 

stress intensity at the initial inclined crack's tip can be precisely calculated using the formula from the 

previous section. 

 

In order to resolve this issue, an "effective" crack length (𝑙 + 𝛽𝑎) is considered which provides [19]:  

 

(𝐾𝐼)1 =
𝐹3

√𝜋(𝑙+𝛽𝑎)
                                              (17) 

 

Following this, when 𝑙 is zero, we select 𝛽 so that (𝐾𝐼)1 equals that for the inclined crack [25]:   

(𝐾𝐼)3 = 𝜎3√𝜋𝑙                                                        (18) 

 

Summing the two contributions with 𝐹3 [19], 

 

𝐾𝐼 =
𝐹3

√𝜋(𝑙+𝛽𝑎)
+ 𝜎3√𝜋𝑙  

𝐾𝐼 = −
𝐴1𝜎1√𝜋𝑎

𝜋√𝐿+𝛽
+ 𝜎3√𝜋𝑎 (

𝐴3

𝜋√𝐿+𝛽
+ 𝐿)  

 

where 𝐿 =  𝑙/𝑎. The cracks extend until 𝐾𝐼 becomes equal to 𝐾𝐼𝐶  

 

Making sure that this equation matches the known results for very long cracks (𝐿 ≫ 1) and reduces to the 

exact result for crack initiation (𝐿 = 0) yields the constants [19]: 

𝐴1 =
𝜋√𝛽

√3
[(1 + 𝜇2)

1
2 − 𝜇] 
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𝐴3 = 𝐴1  {
(1+𝜇2)

1
2+𝜇

(1+𝜇2)
1
2−𝜇

}  , 𝛽 = 0.1                                                       (19) 

 

The main part of figure shows an array of 𝑁𝐴 cracks per unit area all of which have extended to length  

2(𝐿 + 𝛼𝑎). The center to center spacing of the crack can be assumed to be [19],  

𝑆 =
1

√𝑁𝐴

 

So that an uncracked ligament of average length 𝑆 − 2(𝐿 + 𝛼𝑎) remains between the cracks in 𝑋1 

direction. The average internal stress is given by [19], 

 

𝜎3
𝑖 =

𝐹3

𝑆−2(𝐿+𝛼𝑎)
                                                                      (20) 

This acts on the wing cracks, so that equation (18) becomes [19]: 

   
(𝐾𝐼)3 = (𝜎3 + 𝜎3

𝑖)√𝜋𝑙                                                     (21) 
 

 
Defining the initial damage 𝐷0 and current damage 𝐷 states, as [19]: 

 
𝐷0 =  𝜋(𝛼𝑎)2𝑁𝐴                                                                   (22a) 
𝐷 =  𝜋(𝑙 + 𝛼𝑎)2𝑁𝐴                                                                    (22b) 

 

From Eqs. (20) and (22), the average internal stress can be expressed as [19]: 

𝜎3
𝑖 =

−(𝐴1𝜎1−𝐴3𝜎3)(
𝐷0
𝜋

)

1
2

𝛼(1−2(
𝐷

𝜋
)

1
2
)

                                                               (23) 

𝐾𝐼 =
𝐹3

(𝜋(𝑙+𝛽𝑎))
1
2

+ (𝜎3 + 𝜎3
𝑖)√𝜋𝑙 

Substitution of Eqs. (23) and (17) into Eq. (21) gives [19]: 

 

𝐾𝐼 =
𝐹3

(𝜋(𝑙 + 𝛽𝑎))
1
2

+ (𝜎3 + 𝜎3
𝑖)√𝜋𝑙  

      =  
−(𝐴1𝜎1−𝐴3𝜎3)𝑎

√𝜋(𝑙+𝛽𝑎)
+ (𝜎3 −

(𝐴1𝜎1−𝐴3𝜎3)(
𝐷0
𝜋

)

1
2

𝛼(1−2(
𝐷

𝜋
)

1
2
)

) 

 

By using Eqs. 22(a) and (b), the relations between 𝐷 and 𝐷0 can be determined as [19]:  
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 (
𝐷

𝐷0
)

1

2
− 1 =

𝑙+𝛼𝑎

𝛼𝑎
− 1 =

𝑙

𝛼𝑎
  

𝐾𝐼 = −
𝐴1𝜎1𝑎

√𝜋(𝑙 + 𝛽𝑎) 
+

𝐴3𝜎3𝑎

√𝜋(𝑙 + 𝛽𝑎)
+ 𝜎3√𝜋𝑙 −

𝐴1𝜎1 (
𝐷0

𝜋 )

1
2

𝛼 (1 − 2 (
𝐷
𝜋)

1
2
)

+
𝐴1𝜎1 (

𝐷0

𝜋 )

1
2

𝛼 (1 − 2 (
𝐷
𝜋)

1
2
)

 

 

Now taking 𝐴1𝜎1√𝜋𝑎 common from all the terms will lead to expression, 

= −𝐴1𝜎1√𝜋𝑎

[
 
 
 
 
 

1

𝜋
√

𝑎

𝑙 + 𝛽𝑎
−

𝐴3𝜎3

𝐴1𝜎1

1

𝜋
√

𝑎

𝑙 + 𝛽𝑎
−

𝜎3

𝜎1𝐴1

√
𝑙

𝑎
+ √

𝑙

𝑎

 (
𝐷0

𝜋 )

1
2

𝛼 (1 − 2 (
𝐷
𝜋)

1
2
)

−
𝐴3𝜎3

𝐴1𝜎1

√
𝑙

𝑎
 

 (
𝐷0

𝜋 )

1
2

𝛼 (1 − 2 (
𝐷
𝜋)

1
2
)

 

]
 
 
 
 
 

 

Also principal stress ratio 𝜆 =
𝜎3

𝜎1
, 

 

𝜋√
𝑙 + 𝛽𝑎

𝑎
= 𝜋 (

𝑙 + 𝛽𝑎

𝑎
)

1
2

 

=  𝜋 (
𝑙

𝑎
+ 𝛽)

1
2

= 𝜋√𝛼 (
𝑙

𝛼𝑎
+

𝛽

𝛼
)

1
2

 

=  𝜋√𝛼 (
𝑙

𝛼𝑎
+ 1 − 1 +

𝛽

𝛼
)

1
2

= 𝜋√𝛼 (
𝑙 + 𝛼𝑎

𝛼𝑎
− 1 +

𝛽

𝛼
)

1
2

 

 
 

 
Thus, 

𝜋√𝛼 (
𝑙 + 𝛼𝑎

𝛼𝑎
− 1 +

𝛽

𝛼
)

1
2

= 𝜋√
𝑙 + 𝛽𝑎

𝑎
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 = −
𝐴1𝜎1√𝜋𝑎

𝜋√
𝑙+𝛽𝑎

𝑎

[1 −
𝐴3𝜆

𝐴1
−

𝜆𝜋

𝐴1
√

𝑙

𝑎
√

𝑙+𝛽𝑎

𝑎
 + 𝜋√

𝑙

𝑎
√

𝑙+𝛽𝑎

𝑎

 (
𝐷0
𝜋

)

1
2

𝛼(1−2(
𝐷

𝜋
)

1
2
)

−
𝐴3𝜆𝜋

𝐴1
√

𝑙+𝛽𝑎

𝑎
√

𝑙

𝑎

 (
𝐷0
𝜋

)

1
2

𝛼(1−2(
𝐷

𝜋
)

1
2
)

 ] 

= −
𝐴1𝜎1√𝜋𝑎

𝜋√𝑙 + 𝛽𝑎
𝑎  

[
 
 
 
 
 

(1 −
𝐴3𝜆

𝐴1
) +  𝜋√

𝑙 + 𝛽𝑎

𝑎
 √

𝑙

𝑎

 (
𝐷0

𝜋
)

1
2

𝛼 (1 − 2 (
𝐷
𝜋)

1
2
)

(1 −
𝐴3𝜆

𝐴1
) −

𝜋𝜆

𝐴1
 √

𝑙 + 𝛽𝑎

𝑎
 √

𝑙

𝑎

]
 
 
 
 
 

 

= −
𝐴1𝜎1√𝜋𝑎

𝜋√𝑙 + 𝛽𝑎
𝑎  

[
 
 
 
 
 

(1 −
𝐴3𝜆

𝐴1
)

(

  
 

1 + 𝜋√
𝑙 + 𝛽𝑎

𝑎
 √

𝑙

𝑎

 (
𝐷0

𝜋
)

1
2

𝛼 (1 − 2 (
𝐷
𝜋)

1
2
)
)

  
 

−
𝜋𝜆

𝐴1
 √

𝑙 + 𝛽𝑎

𝑎
 √

𝑙

𝑎

]
 
 
 
 
 

 

 
 
For 𝛽 ≪ 1, 

= −
𝐴1𝜎1√𝜋𝑎

𝜋√𝑙 + 𝛽𝑎
𝑎  

[
 
 
 
 
 

(1 −
𝐴3𝜆

𝐴1
)

(

  
 

1 +
𝜋𝑙

𝑎

 (
𝐷0

𝜋 )

1
2

𝛼 (1 − 2 (
𝐷
𝜋)

1
2
)
)

  
 

−
𝜋𝜆

𝐴1

𝑙

𝑎

]
 
 
 
 
 

 

But 𝑙
𝑎

= (
𝐷

𝐷0
)

1

2
− 1  

= −
𝐴1𝜎1√𝜋𝑎

𝜋√𝛼 ((
𝐷
𝐷0

)

1
2
− 1 +

𝛽
𝛼
)

1
2

[
 
 
 
 
 

(1 −
𝐴3𝜆

𝐴1
)

(

  
 

1 +

 𝜋 (
𝐷0

𝜋 )

1
2
((

𝐷
𝐷0

)

1
2
− 1)

𝛼 (1 − 2 (
𝐷
𝜋)

1
2
)

)

  
 

−
𝜋𝜆

𝐴1

((
𝐷

𝐷0
)

1
2
− 1)

]
 
 
 
 
 

 

 
 

The values of the constants are [19], 

𝑐1 =
𝐴3

𝐴1
= {

(1+𝜇2)
1
2+𝜇

(1+𝜇2)
1
2−𝜇

}   

𝑐2 =
𝜋√𝛼

𝐴1
=

√
3𝛼
𝛽

(1 + 𝜇2)
1
2 − 𝜇 

 , 𝑐3 = √𝜋 

𝑐4 =
𝜋𝛼

𝐴1  
=  

√
3

𝛽

(1+𝜇2)
1
2−𝜇

                                                                                  (24) 

Also,        
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𝑆1 = 𝑐1𝑆3 − 𝑆0  , 

𝑆1 =
𝜎1√𝜋𝑎

𝐾𝐼𝐶
 

𝑆3 =
𝜎3√𝜋𝑎

𝐾𝐼𝐶
, 𝑆0 =

√3

(1+𝜇2)
1
2−𝜇

 

 

𝑆1 = 
𝜎1√𝜋𝑎

−
𝐴1𝜎1√𝜋𝑎

𝜋√𝛼 ((
𝐷
𝐷0

)

1
2
−1+

𝛽
𝛼

)

1
2

[
 
 
 
 
 

(1−
𝐴3𝜆

𝐴1
)

(

  
 

1+

 𝜋(
𝐷0
𝜋

)

1
2
((

𝐷
𝐷0

)

1
2
−1)

𝛼(1−2(
𝐷
𝜋

)

1
2
)

)

  
 

−
𝜋𝜆

𝐴1
((

𝐷

𝐷0
)

1
2−1)

]
 
 
 
 
 
 

 =
−

𝜋√𝛼

𝐴1
((

𝐷

𝐷0
)

1
2
−1+

𝛽

𝛼
)

1
2

(1−𝑐1𝜆)

[
 
 
 
 
 

1+

𝑐3𝐷0

1
2((

𝐷
𝐷0

)

1
2
−1)

1−𝐷

1
2

]
 
 
 
 
 

−𝑐4𝜆((
𝐷

𝐷0
)

1
2
−1)

 

 

3.7 A micromechanics based Constitutive Model for failure at high 

strain rate  

                                                                                                                                             
In this section, the model proposed by ref. [20] is presented. This model can be considered to be an 

extension of the theory proposed by ref. [19] and ref. [26] to accommodate the strain rate effects on brittle 

fracture of rocks and ceramics. This model   have successfully shown predict the fracture behavior of 

Dionysus-Pentelicon marble under high strain rates.  

In contrast to the model of ref. [26], the present model employs a dynamic crack growth law which is 

valid over a wide range of loading rates. Also, this model is more convenient to implement in the strain 

based finite element framework.  
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Fig. 3. 3 : Geometry of damage mechanics model (taken from ref. [20]) 

 

The key equations of the model are taken from ref. [20] and presented in the following, The stress-strain 

relationship and compliance tensor, 𝑀𝑖𝑗𝑘𝑙 , determined from Gibbs free energy function 𝑊(𝜎, 𝑆)as [20]: 

 𝜀𝑖𝑗 =
𝜕𝑊(𝜎,𝑆)

𝜕𝜎𝑖𝑗
  ,  𝑀𝑖𝑗𝑘𝑙 =

𝜕2[𝑊(𝜎,𝑆)]

𝜕𝜎𝑖𝑗𝜕𝜎𝑘𝑙
 

Here 𝑑𝑊 denotes change in free energy function for solid undergoing change from state 𝑆 to 𝑆 + 𝑑𝑆 at 

constant 𝜎𝑖𝑗 . The expression for inelastic strain associated with 𝑑𝑊 is given by [20]: 

 𝑑𝜀𝑖𝑗 =
𝜕(𝑑𝑊)

𝜕𝜎𝑖𝑗
 

Let 𝛤 represent locus of all crack fronts in damaged solid & 𝑑𝑠 be a function of position along 𝛤 

describing local advance of microcracks, then change in free energy function is,  

 𝑑𝑊 = ∫ {[𝐺(𝜎, 𝑆) − 2𝛾𝑠]𝑑𝑠}𝑑𝛤
𝛤

 

The inelastic strain is given by, 

 𝑑𝜀𝑖𝑗 =
𝜕

𝜕𝜎𝑖𝑗
[∫ 𝐺(𝜎, 𝑆)𝑑𝑠𝑑𝛤

𝛤
] =

𝜕(∆𝑊)

𝜕𝜎𝑖𝑗
 

The expression of energy release rate 𝐺 related to stress intensity factor by, 

 𝐺(𝜎, 𝑆) =
1−𝜗2

𝐸
[𝐾𝐼

2(𝜎, 𝑆) + 𝐾𝐼𝐼
2(𝜎, 𝑆) +

𝐾𝐼𝐼𝐼
2 (𝜎,𝑆)

1−𝜗
] 

The above expression in valid for cracks without sudden kinks, forks & branches, thus by [20]: 

 ∆𝑊(𝜎, 𝑆) =
1−𝜗2

𝐸
∫ [𝐾𝐼

2(𝜎, 𝑆) + 𝐾𝐼𝐼
2(𝜎, 𝑆) +

𝐾𝐼𝐼𝐼 
2 (𝜎,𝑆)

1−𝜗
]

𝛤

𝑑𝑠 𝑑𝛤 

Gibbs free energy function is expressed as the summation of elastic and inelastic contributions, due to the 

presence of micro-cracks. 

 𝑊(𝜎, 𝑆) = We(𝜎) +
1−𝜗2

𝐸
∫ [𝐾𝐼

2(𝜎, 𝑆) + 𝐾𝐼𝐼
2(𝜎, 𝑆) +

𝐾𝐼𝐼𝐼 
2 (𝜎,𝑆)

1−𝜗
]

𝛤

𝑑𝑠 𝑑𝛤              

From ref. [20], we categorize three deformation regimes for microcrack solid based on the applied loading 

state. In Regime I, the remote loading is compressive but insufficient to overcome the frictional resistance 
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on penny-shaped cracks, causing the solid to behave as an isotropic linear elastic material. In Regime II, 

the remote compressive load surpasses the frictional resistance, initiating the nucleation and growth of 

wing cracks from the micro-cracks. 

 In Regime III, the remote loading becomes tensile, resulting in the opening of both penny-shaped cracks 

and wing cracks. The criteria governing transitions between these regimes will be detailed later in the text. 

𝑅𝑒𝑔𝑖𝑚𝑒 𝐼𝐼: Following [19, 26] we evaluate Mode-I stress intensity factor(𝐾𝐼) at the tip of the wing cracks. 

The Mode-I stress intensity factor, which drives crack growth in materials, comes from three main sources. 

First, when penny-shaped cracks slide under stress, they create a wedging force,𝐹𝑤  that pushes wing cracks 

open.  

This force is the part of the sliding force aligned perpendicular to the maximum principal stress, calculated 

as 𝐹𝑤 = (𝜏 + 𝑓𝜎)𝜋𝑎2 𝑠𝑖𝑛 𝜓 , 𝑎 is the crack radius, and 𝜓 is the angle of the crack relative to the stress 

direction. Second, the remote compressive stress, denoted by 𝜎 , works to close the wing cracks, 

counteracting their opening.  

Finally, the wedging force, 𝐹𝑤 generates tensile stress 𝜎𝑖, in the unbroken material between neighboring 

wing cracks, encouraging crack growth. Together, these factors shape how cracks propagate and affect the 

material’s strength. 

 𝐾𝐼
𝑅−𝐼𝐼 =

(𝜏+𝑓𝜎)𝜋𝑎2𝑠𝑖𝑛𝜓

[𝜋(𝑙+𝛽𝑎)]
3
2

+
2

𝜋
(𝜎 + 𝜎𝑖)√𝜋𝑙                                                              (25) 

 where 𝜎𝑖 =
(𝜏+𝑓𝜎)𝜋𝑎2𝑠𝑖𝑛𝜓

𝐴𝑐𝑟𝑎𝑐𝑘−𝜋(𝑙+𝛼𝑎)2
; 𝐴𝑐𝑟𝑎𝑐𝑘 = 𝜋

1

3 (
3

4𝑁𝑣
)

2

3
 

We define a scalar damage parameter to represent both the current size of each crack and volume density 

of such cracks. 

 𝐷 =
4

3
𝜋𝑁𝑣(𝑙 + 𝛼𝑎)3                                                                                   (26) 

Rewriting eq. (25) in terms of 𝐷 & 𝐷0 we obtain, 

 𝐾𝐼
𝑅−𝐼𝐼(𝜎,𝐷) = √𝜋𝑎[𝐴(𝐷)𝜎 + 𝐵(𝐷)𝜏]                                                              (27) 

 𝐴(𝐷) = 𝑓𝑐1(𝐷) + (1 + 𝑓)𝑐2(𝐷)𝑐3(𝐷) 

 𝐵(𝐷) = 𝑐1(𝐷) + 𝑐2(𝐷)𝑐3(𝐷) 

And 
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 𝑐1(𝐷) =
√1−𝛼2

𝜋𝛼
3
2
 
[(

𝐷

𝐷𝑜
)

1
3
−1+

𝛽

𝛼
]

3
2

, 𝑐2(𝐷) = (
√1−𝛼2

𝛼
) (

𝐷0

2
3

1−𝐷
2
3

) 

 𝑐3(𝐷) =
2√𝛼

𝜋
[(

𝐷

𝐷𝑜
)

1

3
− 1]

1

2

 

Regime III: From ref. [26] we allow the possibility of overall loading turning tensile. We write the Mode 

I stress intensity factor as quadratic function of stress [27,28,29]: 

 𝐾𝐼
𝑅−𝐼𝐼𝐼(𝜎, 𝐷) = √𝜋𝑎[𝐶2(𝐷)𝜎2 + 𝐸2(𝐷)𝜏2]                                                      (28) 

  

In general, the calculations start with the evaluation of the Gibbs free energy function for Regime's I, II 

and III using the SIF’s (stress intensity factors) that we have calculated in the previous section, 

• 𝑅𝑒𝑔𝑖𝑚𝑒 𝐼 : For this regime the stress-strain relationship can be described as below, 

         𝜎𝑖𝑗 = 2𝜇𝜀𝑖𝑗 +
2𝜇𝜗

1−2𝜗
𝜀𝛿𝑖𝑗                                                                                                                      (29)     

• 𝑅𝑒𝑔𝑖𝑚𝑒 𝐼𝐼 : The Gibbs free energy function can be written as, 

 𝑊(𝜎,𝐷) = 𝑊𝑒(𝜎) + 1

4𝜇
[𝐴1𝜎 + 𝐵1𝜏]

2 

where 𝜏 = √
1

2
𝑆𝑖𝑗𝑆𝑖𝑗  and 𝜎 =

𝜎𝑘𝑘

3
  ,  𝑆𝑖𝑗 = 𝜎𝑖𝑗 − 𝜎 𝛿𝑖𝑗 , 

 𝑊𝑒(𝜎) =
1

2
𝜎𝑖𝑗𝜀𝑖𝑗  

 𝑊 =
1

2
𝜎𝑖𝑗𝜀𝑖𝑗 +

1

4𝜇
[
𝐴1𝜎𝑘𝑘

3
+ 𝐵1𝜏]

2

 

 𝜏 = √
1

2
𝑆𝑖𝑗𝑆𝑖𝑗 = √

1

2
(𝜎𝑖𝑗 −

𝜎𝑘𝑘

3
𝛿𝑖𝑗)(𝜎𝑖𝑗 −

𝜎𝑘𝑘

3
𝛿𝑖𝑗) 

       = √
1

2
(𝜎𝑖𝑗 . 𝜎𝑖𝑗 −

𝜎𝑖𝑗 .𝜎𝑘𝑘𝛿𝑖𝑗

3
−

𝜎𝑖𝑗 .𝜎𝑘𝑘𝛿𝑖𝑗

3
+

𝜎𝑘𝑘𝜎𝑚𝑚𝛿𝑖𝑗𝛿𝑖𝑗

9
) 

 𝜏 = √
1

2
(𝜎𝑖𝑗𝜎𝑖𝑗 −

𝜎𝑘𝑘𝜎𝑚𝑚

3
  ) 

 𝑊 =
1

2
𝜎𝑖𝑗𝜀𝑖𝑗 +

1

4𝜇
[
𝐴1𝜎𝑘𝑘

3
+ 𝐵1𝜏]

2

 

                                                                 𝑥 
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Now we will differentiate the above expression w.r.t stress to obtain the stress-strain relation, 

𝜕𝑊

𝜕𝜎𝑚𝑙
=

1

2

𝜕𝜎𝑖𝑗

𝜕𝜎𝑚𝑙
𝜀𝑖𝑗 +

1

2
𝜎𝑖𝑗

𝜕𝜀𝑖𝑗

𝜕𝜎𝑚𝑙
+

1

4𝜇
[2𝑥 

𝜕

𝜕𝜎𝑚𝑙
(

𝐴1𝜎𝑘𝑘

3
+ 𝐵1 (√

1

2
(𝜎𝑖𝑗𝜎𝑖𝑗 −

𝜎𝑘𝑘𝜎𝑝𝑝

3
  )))]  

Let 𝑦 =
1

2
(𝜎𝑖𝑗𝜎𝑖𝑗 −

𝜎𝑘𝑘𝜎𝑚𝑚

3
) 

𝜕𝑊

𝜕𝜎𝑚𝑙
= 𝜀𝑚𝑙 +

1

4𝜇
[2𝑥 (

𝐴1𝛿𝑘𝑚𝛿𝑘𝑙

3
+

𝐵1

2√𝑦

1

2
(2𝜎𝑚𝑙 −

𝜎𝑝𝑝

3
𝛿𝑘𝑚𝛿𝑘𝑙 −

𝜎𝑘𝑘

3
𝛿𝑝𝑚𝛿𝑝𝑙))] 

 

                 = 𝜀𝑚𝑙 +
1

4𝜇
[2𝑥 (

𝐴1𝛿𝑚𝑙

3
+

𝐵1

2√𝑦
𝜎𝑚𝑙 −

𝐵1𝜎𝑝𝑝𝛿𝑚𝑙

6√𝑦
)]  

Substituting 𝑥 =
𝐴1𝜎𝑘𝑘

3
+ 𝐵1𝜏 , 

 = 𝜀𝑚𝑙 +
1

4𝜇
[2 (

𝐴1𝜎𝑘𝑘

3
+ 𝐵1𝜏) (

𝐴1

3
𝛿𝑚𝑙 +

𝐵1𝜎𝑚𝑙

2√𝑦
−

𝐵1𝜎𝑝𝑝𝛿𝑚𝑙

6√𝑦
)] 

Apparently, we are aware √𝑦 = 𝜏 and rearranging the terms, 

                  = 𝜀𝑚𝑙 +
1

4𝜇
[
2

9
𝐴1

2𝜎𝑘𝑘𝛿𝑚𝑙 +
𝐴1𝐵1𝜎𝑘𝑘𝜎𝑚𝑙

3𝜏
−

𝐴1𝐵1𝜎𝑘𝑘𝜎𝑝𝑝𝛿𝑚𝑙

9𝜏
+

2

3
𝐴1𝐵1𝜏𝛿𝑚𝑙 + 𝐵1

2𝜎𝑚𝑙 −
𝐵1

2

3
𝜎𝑚𝑚𝛿𝑚𝑙]  

                 = 𝜀𝑚𝑙 +
1

4𝜇
[
2

3
𝐴1

2𝜎𝛿𝑚𝑙 +
𝐴1𝐵1𝜎𝜎𝑚𝑙

𝜏
−

𝐴1𝐵1𝜎2𝛿𝑚𝑙

𝜏
+

2

3
𝐴1𝐵1𝜏𝛿𝑚𝑙 + 𝐵1

2𝜎𝑚𝑙 − 𝐵1
2𝜎𝛿𝑚𝑙]                 (30) 

 

We know from eq. (29), 

         𝜎𝑖𝑗 = 2𝜇𝜀𝑖𝑗 +
2𝜇𝜗

1−2𝜗
𝜀𝛿𝑖𝑗     &  𝑒𝑖𝑗 = 𝜀𝑖𝑗 −

𝜀

3
 𝛿𝑖𝑗 ;𝜖 = 𝜖𝑘𝑘     

Substituting the deviatoric stress tensor to obtain stress, 

 𝜎𝑖𝑗 = 2𝜇 [𝑒𝑖𝑗 +
𝜀𝛿𝑖𝑗

3
] +

2𝜇𝜗

1−2𝜗
𝜀𝛿𝑖𝑗 

       = 2𝜇𝑒𝑖𝑗 +
2𝜇

3
𝜀𝛿𝑖𝑗 +

2𝜇𝜗

1−2𝜗
𝜀𝛿𝑖𝑗 

 𝜎𝑖𝑗 = 2𝜇𝑒𝑖𝑗 +
2𝜇𝜀𝛿𝑖𝑗(1+𝜗)

3(1−2𝜗)
 

 𝜎 =
𝜎𝑘𝑘

3
=

1

3
[2𝜇𝑒𝑘𝑘 + 2𝜇𝜀𝛿𝑘𝑘 (

(1+𝜗)

3(1−2𝜗)
)] = 2𝜇𝜀 (

(1+𝜗)

3(1−2𝜗)
)                  (31) 

 𝜀 =
3(1−2𝜗)

2𝜇(1+𝜗)
 𝜎                                                                                        (32) 
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Substitution of 𝜀 from eq. (32) into Eq. (29) gives: 

 𝜎𝑖𝑗 = 2𝜇𝜀𝑖𝑗 +
2𝜇𝜗

1−2𝜗

3(1−2𝜗)

2𝜇(1+𝜗)
 𝜎𝛿𝑖𝑗 = 2𝜇𝜀𝑖𝑗 +

3𝜗

1+𝜗
𝜎𝛿𝑖𝑗 

 2𝜇𝜀𝑖𝑗 = 𝜎𝑖𝑗 −
3𝜗

1+𝜗
𝜎𝛿𝑖𝑗 →  𝜀𝑖𝑗 =

1

2𝜇
{𝜎𝑖𝑗 −

3𝜗

1+𝜗
𝜎𝛿𝑖𝑗}                           (33) 

Substituting 𝜀𝑖𝑗  from Eq. (33) into eq. (30), 

         
𝜕𝑊

𝜕𝜎𝑚𝑙
 = 𝜀𝑚𝑙 +

1

4𝜇
[
2

3
𝐴1

2𝜎𝛿𝑚𝑙 +
𝐴1𝐵1𝜎𝜎𝑚𝑙

𝜏
−

𝐴1𝐵1𝜎2𝛿𝑚𝑙

𝜏
+

2

3
𝐴1𝐵1𝜏𝛿𝑚𝑙 + 𝐵1

2𝜎𝑚𝑙 − 𝐵1
2𝜎𝛿𝑚𝑙]  

                  =
1

2𝜇
{𝜎𝑚𝑙 −

3𝜗

1+𝜗
𝜎𝛿𝑚𝑙} +

1

4𝜇
[
2

3
𝐴1

2𝜎𝛿𝑚𝑙 +
𝐴1𝐵1𝜎𝜎𝑚𝑙

𝜏
−

𝐴1𝐵1𝜎2𝛿𝑚𝑙

𝜏
+

2

3
𝐴1𝐵1𝜏𝛿𝑚𝑙 + 𝐵1

2𝜎𝑚𝑙 −

𝐵1
2𝜎𝛿𝑚𝑙]  

On rearranging the terms, we get the final expression for strain in terms of stress, 

 

            𝜀𝑚𝑙 =
1

2𝜇
{(1 +

𝐴1𝐵1𝜎

2𝜏
+

𝐵1
2

2
) 𝜎𝑚𝑙  − (

3𝜗

1+𝜗
+

𝐴1𝐵1𝜎

2𝜏
−

𝐴1
2

3
+

𝐵1
2

2
)𝜎𝛿𝑚𝑙 +  (

𝐴1𝐵1

3
) 𝜏𝛿𝑚𝑙}                (34) 

Following the same procedure & again differentiating the above expression w.r.t to stress to obtain 

compliance tensor, 

𝑀𝑖𝑗𝑘𝑙(𝜎, 𝐷) =
1

2𝜇
{
(

1

2
+

𝐵1
2

2
+

𝐴1𝐵1𝜎

4𝜏
) (𝛿𝑘𝑖𝛿𝑙𝑗 +  𝛿𝑙𝑖𝛿𝑘𝑗) − (

𝜗

1−𝜗
+

𝐵1
2

6
 −

𝐴1
2

9
+

 𝐴1𝐵1𝜎

2𝜏
+

𝐴1𝐵1𝜎3

2𝜏3 ) 𝛿𝑖𝑗𝛿𝑘𝑙

+(
𝐴1𝐵1

6
+

𝐴1𝐵1𝜎2

4𝜏2 ) (𝜎̂𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑗𝜎̂𝑘𝑙) − (
𝐴1𝐵1𝜎

4𝜏
) 𝜎̂𝑖𝑗𝜎̂𝑘𝑙

}        

(35) 

In order to implement above constitutive model in strain based finite element program, the expression of 

stress should be in term of strains. Here we will recast Gibbs free energy function in terms of conjugate 

strains 𝜀 and 𝛾 , where  

 𝜎𝑖𝑗 = 2𝜇𝜀𝑖𝑗 +
2𝜇𝜗

1−2𝜗
𝜀𝛿𝑖𝑗  

 𝜎𝑖𝑗 = 2𝜇 [𝑒𝑖𝑗 +
𝜀𝛿𝑖𝑗

3
] +

2𝜇𝜗

1−2𝜗
𝜀𝛿𝑖𝑗  

 𝜎𝑖𝑗 = 2𝜇𝑒𝑖𝑗 + 2𝜇𝜀𝛿𝑖𝑗 (
1+𝜗

3(1−2𝜗)
) 

The elastic Gibb’s free energy is given by, 

 𝑊𝑒(𝜎) =
1

2
𝜎𝑖𝑗𝜀𝑖𝑗  
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 =
1

2
(2𝜇𝑒𝑖𝑗 + 2𝜇𝜀𝛿𝑖𝑗 (

1+𝜗

3(1−2𝜗)
))(𝑒𝑖𝑗 +

𝜀𝛿𝑖𝑗

3
) 

 =
1

2
(2𝜇𝑒𝑖𝑗𝑒𝑖𝑗 +

2

3
𝜇𝜀𝑒𝑖𝑗𝛿𝑖𝑗 + 2𝜇𝜀𝛿𝑖𝑗 (

1+𝜗

3(1−2𝜗)
) 𝑒𝑖𝑗 +

2𝜇𝜀2

3
(

1+𝜗

3(1−2𝜗)
) 𝛿𝑖𝑗𝛿𝑖𝑗) 

 =
1

2
[𝜇𝛾2 +

2𝜇𝜀

3
𝑒𝑘𝑘 + 2𝜇𝜀 (

1+𝜗

3(1−2𝜗)
) 𝑒𝑘𝑘 +

2𝜇𝜀2

3
(

1+𝜗

3(1−2𝜗)
) (3)] 

 =
1

2
[𝜇𝛾2 +

2(1+𝜗)

3(1−2𝜗)
𝜇𝜀2] 

From eq. (32),  

 𝜎 = 2𝜇𝜀 (
(1+𝜗)

3(1−2𝜗)
) 

 𝑆𝑖𝑗 = 𝜎𝑖𝑗 − 𝜎𝛿𝑖𝑗 = 2𝜇𝑒𝑖𝑗 +
2(1+𝜗)

3(1−2𝜗)
𝜇𝜀𝛿𝑖𝑗 −

2𝜇(1+𝜗)

3(1−2𝜗)
𝜀𝛿𝑖𝑗 = 2𝜇𝑒𝑖𝑗 

 𝑆𝑖𝑗 = 2𝜇𝑒𝑖𝑗 

 𝑆𝑖𝑗 . 𝑆𝑖𝑗 = 2𝜇𝑒𝑖𝑗 . 2𝜇𝑒𝑖𝑗 = 4𝜇2𝑒𝑖𝑗. 𝑒𝑖𝑗 

 = 4𝜇2 (
𝛾2

2
) = 2𝜇2𝛾2 

 𝜏 = √
1

2
𝑆𝑖𝑗𝑆𝑖𝑗 = √

1

2
(2𝜇2𝛾2) = 𝜇𝛾                                                        (36) 

 𝑊(𝜎,𝐷) = 𝑊𝑒(𝜎) +
1

4𝜇
[𝐴1𝜎 + 𝐵1𝜏 ]

2 

 =
1

2
[𝜇𝛾2 +

2(1+𝜗)

3(1−2𝜗)
𝜇𝜀2] +

1

4𝜇
[𝐴1

2(1+𝜗)

3(1−2𝜗)
𝜇𝜀 + 𝐵1𝜇𝛾]

2

 

 

 𝜀 = 𝜀𝑘𝑘 , 𝛾 = √2𝑒𝑖𝑗. 𝑒𝑖𝑗 

 
𝜕𝛾

𝜕𝜀𝑘𝑙
=

1

2𝛾

𝜕

𝜕𝜀𝑘𝑙
(2𝑒𝑖𝑗 . 𝑒𝑖𝑗) =

1

𝛾

𝜕

𝜕𝜀𝑘𝑙
(𝑒𝑖𝑗. 𝑒𝑖𝑗)                                             (37) 

 

 𝑒𝑖𝑗 = 𝜀𝑖𝑗 −
𝜀𝛿𝑖𝑗

3
,  

𝑒𝑖𝑗 . 𝑒𝑖𝑗 = (𝜀𝑖𝑗 −
𝜀𝑘𝑘𝛿𝑖𝑗

3
)(𝜀𝑖𝑗 −

𝜀𝑚𝑚𝛿𝑖𝑗

3
) 

 = 𝜀𝑖𝑗 . 𝜀𝑖𝑗 −
2

3
𝜀𝑘𝑘𝜀𝑚𝑚 +

1

3
𝜀𝑘𝑘𝜀𝑚𝑚 = 𝜀𝑖𝑗 . 𝜀𝑖𝑗 −

1

3
𝜀𝑘𝑘𝜀𝑚𝑚      

 𝑒𝑖𝑗 . 𝑒𝑖𝑗 = 𝜀𝑖𝑗 . 𝜀𝑖𝑗 −
1

3
𝜀𝑘𝑘𝜀𝑚𝑚                                                                  (38) 

From eq. (37), 
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𝜕𝛾

𝜕𝜀𝑘𝑙
=

1

𝛾

𝜕

𝜕𝜀𝑘𝑙
(𝑒𝑖𝑗 . 𝑒𝑖𝑗) =

1

𝛾

𝜕

𝜕𝜀𝑘𝑙
(𝜀𝑖𝑗 . 𝜀𝑖𝑗 −

1

3
𝜀𝑘𝑘𝜀𝑚𝑚)  

 =
1

𝛾
(𝜀𝑖𝑗

𝜕𝜀𝑖𝑗

𝜕𝜀𝑘𝑙
+ 𝜀𝑖𝑗

𝜕𝜀𝑖𝑗

𝜕𝜀𝑘𝑙
−

2

3
𝜀𝑝𝑝 

𝜕𝜀𝑚𝑚

𝜕𝜀𝑘𝑙
 )  

 =
1

𝛾
[2𝜀𝑖𝑗 ×

1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) −

2

3
𝜀𝑝𝑝𝛿𝑘𝑙] =

1

𝛾
[(𝜀𝑘𝑙 + 𝜀𝑙𝑘) −

2

3
𝜀𝑝𝑝𝛿𝑘𝑙] 

 =
2

𝛾
[𝜀𝑘𝑙 −

𝜀𝑝𝑝𝛿𝑘𝑙

3
] =

2𝑒𝑘𝑙

𝛾
 

 
𝜕𝛾

𝜕𝜀𝑘𝑙
=

2𝑒𝑘𝑙

𝛾
                                                                                          (39) 

 
𝜕𝜀

𝜕𝜀𝑘𝑙
=

𝜕𝜀𝑟𝑟

𝜕𝜀𝑘𝑙
= 𝛿𝑟𝑘𝛿𝑟𝑙 = 𝛿𝑘𝑙 

The elastic part of the Gibbs free energy is given by, 

 𝑊𝑒(𝜎, 𝐷) =
1

2
[𝜇𝛾2 +

2(1+𝜗)

3(1−2𝜗)
𝜇𝜀2] 

 
𝜕𝑊𝑒

𝜕𝜀𝑘𝑙
=

1

2
[𝜇(2𝛾)

𝜕𝛾

𝜕𝜀𝑘𝑙
+

2(1+𝜗)

3(1−2𝜗)
 𝜇(2𝜀𝑟𝑟)

𝜕𝜀𝑟𝑟

𝜕𝜀𝑘𝑙
] 

 =
1

2
[2𝜇𝛾 (

2𝑒𝑘𝑙

𝛾
) +

2(1+𝜗)

3(1−2𝜗)
 𝜇(2𝜀𝑟𝑟)𝛿𝑟𝑘𝛿𝑟𝑙] = 2𝜇𝑒𝑘𝑙 +

2(1+𝜗)

3(1−2𝜗)
 𝜇𝜀𝑟𝑟𝛿𝑘𝑙 

 
𝜕𝑊𝑒

𝜕𝜀𝑘𝑙
= 2𝜇𝑒𝑘𝑙 +

2(1+𝜗)

3(1−2𝜗)
 𝜇𝜀𝑟𝑟𝛿𝑘𝑙                                                              

 
𝜕𝑊𝑒

𝜕𝜀𝑘𝑙
= 2𝜇 (𝜀𝑘𝑙 −

𝜀𝑝𝑝𝛿𝑘𝑙

3
) +

2(1+𝜗)

3(1−2𝜗)
 𝜇𝜀𝑟𝑟𝛿𝑘𝑙 

 
𝜕𝑊𝑒

𝜕𝜀𝑘𝑙
= 2𝜇𝜀𝑘𝑙 −

2𝜇

3
𝜀𝑝𝑝𝛿𝑘𝑙 +

2(1+𝜗)

3(1−2𝜗)
 𝜇𝜀𝑟𝑟𝛿𝑘𝑙                                         (40) 

Now for the inelastic part, 

 𝑊𝑖𝑒(𝜎, 𝐷) =
1

4𝜇
[𝐴1

2(1+𝜗)

3(1−2𝜗)
𝜇𝜀 + 𝐵1𝜇𝛾]

2

 

           =
1

4𝜇
[𝐴1

2 (
4𝜇2(1+𝜗)2

9(1−2 𝜗)2
) 𝜀2 + 𝐵1

2𝜇2𝛾2 + 2𝐴1𝐵1𝛾𝜀𝜇
2 2(1+𝜗)

3(1−2𝜗)
] 

𝜕𝑊𝑖𝑒

𝜕𝜀𝑘𝑙
=

1

4𝜇
[𝐴1

2 (
4𝜇2(1 + 𝜗)2

9(1 − 2 𝜗)2
) (2𝜀𝑟𝑟)

𝜕𝜀𝑟𝑟

𝜕𝜀𝑘𝑙
+ 𝐵1

2𝜇2(2𝛾) (
2𝑒𝑘𝑙

𝛾
) + 𝐴1𝐵1

4(1 + 𝜗)

3(1 − 2𝜗)
𝜇2𝛾

𝜕𝜀𝑟𝑟

𝜕𝜀𝑘𝑙

+ 𝐴1𝐵1

4(1 + 𝜗)

3(1 − 2𝜗)
 𝜇2𝜀𝑟𝑟

𝜕𝛾

𝜕𝜀𝑘𝑙
 ] 

          =
1

4𝜇
[𝐴1

2 8𝜇2(1+𝜗)2

9(1−2𝜗)2
𝜀𝑟𝑟𝛿𝑘𝑙 + 𝐴1𝐵1

4(1+𝜗)

3(1−2𝜗)
 𝜇2 (𝛾𝛿𝑘𝑙 +

𝜀𝑟𝑟(2𝑒𝑘𝑙)

3
) + 𝐵1

2𝜇2(4𝑒𝑘𝑙)] 

𝜕𝑊𝑖𝑒

𝜕𝜀𝑘𝑙
= 𝐴1

2
2𝜇(1 + 𝜗)2

9(1 − 2𝜗)2
 𝜀𝑟𝑟𝛿𝑘𝑙 + 𝜇𝐵1

2𝑒𝑘𝑙 + 𝐴1𝐵1

𝜇(1 + 𝜗)

3(1 − 2𝜗)
𝛾𝛿𝑘𝑙 + 2𝐴1𝐵1

𝜇(1 + 𝜗)

3(1 − 2𝜗)
𝜀𝑟𝑟

𝑒𝑘𝑙

𝛾
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 where  𝑒𝑘𝑙 = 𝜀𝑘𝑙 −
𝜀𝛿𝑘𝑙

3
 

𝜕𝑊𝑖𝑒

𝜕𝜀𝑘𝑙
= 𝐴1

2 2𝜇(1+𝜗)2

9(1−2𝜗)2
 𝜀𝑟𝑟𝛿𝑘𝑙 + 𝜇𝐵1

2𝜀𝑘𝑙 −
𝜇𝐵1

2

3
 𝜀𝑞𝑞𝛿𝑘𝑙 + 𝐴1𝐵1

𝜇(1+𝜗)

3(1−2𝜗)
𝛾𝛿𝑘𝑙 + 2𝐴1𝐵1

𝜇(1+𝜗)

3(1−2𝜗)
 
𝜀𝑟𝑟𝜀𝑘𝑙

𝛾
−

              2𝐴1𝐵1
𝜇(1+𝜗)

3(1−2𝜗)

𝜀𝑟𝑟𝜀𝑚𝑚𝛿𝑘𝑙

3𝛾
                                                                                                               (41)          

 

Adding both the eq. (40), (41) & after rearranging the terms, 

𝜎𝑖𝑗 =
𝜕𝑊

𝜕𝜀𝑘𝑙
= 2𝜇 [(1 + 𝐴1𝐵1

(1+𝜗)

3(1−2𝜗)

𝜀

𝛾
+

𝐵1
2

2
) 𝜀𝑘𝑙 + (

𝜗

1−2𝜗
−

(1+𝜗)

3(1−2𝜗)

𝐴1𝐵1𝜀

3𝛾
−

𝐵1
2

6
+

(1+𝜗)2

9(1−2𝜗)2
 𝐴1

2) 𝜀𝛿𝑘𝑙 +

                                 (𝐴1𝐵1
(1+𝜗)

6(1−2𝜗)
)  𝛾𝛿𝑘𝑙]  

Expressing the above equation in terms of damage dependent constants, 

 𝐴1
̅̅ ̅(𝐷) =

1

2
(𝐴1𝑎1 + 𝐵1𝑏1), 𝐵1

̅̅ ̅(𝐷) =
1

2
(𝐴1𝑎1 + 𝐵1𝑏2)  

where, 

 𝑎1 =
1

Γ
(1 +

𝐵1
2

2
) , 𝑏1 = −

1

Γ
(

𝐴1𝐵1

2
) 

 𝑏2 =
1

Γ
[
𝐴1

2

2
+

3(1−2𝜗)

2(1+𝜗)
] , Γ = [

3(1−2𝜗)

2(1+𝜗)
+ 

3(1−2𝜗)

4(1+𝜗)
𝐵1

2 +
𝐴1

2

2
]   

 

𝜎𝑖𝑗 = 2𝜇 {(1 +
2𝐴1 𝐵1𝜀

𝛾
+ 2𝐵1

2
) 𝜀𝑖𝑗 +  (

𝜗

1−2𝜗
−

2𝐴1  𝐵1𝜀

3𝛾
−

2𝐵1
2

3
+ 𝐴1

2
) 𝜀𝛿𝑖𝑗  + (𝐴1 𝐵1)𝛾𝛿𝑖𝑗}  (42) 

 

If we differentiate the above expression 𝜎𝑖𝑗 w.r.t stress, we will end up getting the expression of     

modulus tensor as stated below, 

 

𝐶𝑖𝑗𝑘𝑙 = 2𝜇 {
(

1

2
+

𝐵1
2

2
+

2𝐴1 𝐵1𝜀

𝛾
) (𝛿𝑘𝑖𝛿𝑙𝑗 + 𝛿𝑙𝑖𝛿𝑘𝑗) + (

𝜗

1−2𝜗
−

2𝐵1
2

3
+ 𝐴1

2 −
2𝐴1 𝐵1𝜀

𝛾
 −

4𝐴1 𝐵1𝜀3

9𝛾3 ) 𝛿𝑖𝑗𝛿𝑘𝑙

+(
2𝐴1 𝐵1

𝛾
+

4𝐴1 𝐵1𝜀2

3𝛾2 ) (𝜀𝑖̂𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑗𝜀𝑘̂𝑙) − (
4𝐴1 𝐵1𝜀

𝛾
) 𝜀𝑖̂𝑗𝜀𝑘̂

}     

                                                                                                                                                                                                      (43) 

where  𝜀𝑖̂𝑗 =
𝜀𝑖𝑗

𝛾
 

 

• 𝑅𝑒𝑔𝑖𝑚𝑒 𝐼𝐼𝐼 : The expression for Gibbs free energy function in regime III can be written as, 
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 𝑊(𝜎,𝐷) = 𝑊𝑒(𝜎) +
1

4𝜇
[𝐶1

2𝜎2 + 𝐸1
2𝜏2]  

 𝜏 = √
1

2
𝑆𝑖𝑗𝑆𝑖𝑗  &  𝜎 =

𝜎𝑘𝑘

3
 , 𝑆𝑖𝑗 = 𝜎𝑖𝑗 − 𝜎𝛿𝑖𝑗  

 𝑊𝑒(𝜎) =
1

2
𝜎𝑖𝑗𝜀𝑖𝑗 

 
𝜕𝑊

𝜕𝜎𝑘𝑙
=

1

2

𝜕𝜎𝑖𝑗

𝜕𝜎𝑘𝑙
𝜀𝑖𝑗 +

1

2
𝜎𝑖𝑗

𝜕𝜀𝑖𝑗

𝜕𝜎𝑘𝑙
+

1

4𝜇

𝜕

𝜕𝜎𝑘𝑙
 [𝐶1

2 (
𝜎𝑚𝑚

2

9
) + 𝐸1

2𝜏2]    

 

 = 𝜀𝑖𝑗 +
1

4𝜇
[𝐶1

2  (
2𝜎𝑚𝑚

9
)𝛿𝑗𝑘𝛿𝑗𝑙 + 𝐸1

2(2𝜏)
𝜕𝜏

𝜕𝜎𝑘𝑙
 ]  

 
𝜕𝜏

𝜕𝜎𝑘𝑙
=

𝜕

𝜕𝜎𝑘𝑙
[√

1

2
𝑆𝑖𝑗𝑆𝑖𝑗] =

1

4𝜏
 

𝜕

𝜕𝜎𝑘𝑙
[𝜎𝑖𝑗𝜎𝑖𝑗 −

𝜎𝑚𝑚𝜎𝑗𝑗

3
] 

 =
1

4𝜏
[(𝜎𝑙𝑘 + 𝜎𝑘𝑙) −

2

3
𝜎𝑚𝑚𝛿𝑘𝑙] =

1

4𝜏
[2(𝜎𝑘𝑙 − 𝜎𝛿𝑘𝑙)] 

 
𝜕𝜏𝑖𝑗

𝜕𝜎𝑘𝑙
=

1

2𝜏
 𝑆𝑘𝑙                                                                                          (44)      

           
𝜕𝑊

𝜕𝜎𝑘𝑙
= 𝜀𝑖𝑗 +

1

4𝜇
[𝐶1

2  (
2𝜎𝑚𝑚

9
)𝛿𝑗𝑘𝛿𝑗𝑙 + 𝐸1

2(2𝜏𝑖𝑗)
𝜕𝜏

𝜕𝜎𝑘𝑙
 ]  

Substituting value of 𝜀𝑖𝑗 from eq. (33), 

 
𝜕𝑊

𝜕𝜎𝑘𝑙
=

1

2𝜇
{𝜎𝑘𝑙 −

3𝜗

1+𝜗
𝜎𝛿𝑘𝑙} +

1

4𝜇
{𝐶1

2  (
2𝜎𝑚𝑚

9
)𝛿𝑘𝑙 + 𝐸1

2(2𝜏)
1

2𝜏
 𝑆𝑘𝑙  } 

 =
1

2𝜇
{𝜎𝑘𝑙 −

3𝜗

1+𝜗
𝜎𝛿𝑘𝑙 +

𝐶1
2

3
𝜎𝛿𝑘𝑙 +

𝐸1
2

2
(𝜎𝑘𝑙 − 𝜎𝛿𝑘𝑙)} 

 
𝜕𝑊

𝜕𝜎𝑘𝑙
= 𝜀𝑘𝑙 =

1

2𝜇
{(1 +

𝐸1
2

2
) 𝜎𝑘𝑙 − (

3𝜗

1+𝜗
+

𝐸1
2

2
−

𝐶1
2

3
)𝜎𝛿𝑘𝑙}                       (45) 

      

Differentiating the above equation w.r.t stress we obtain the compliance tensor, 

𝑀𝑖𝑗𝑘𝑙(𝜎, 𝐷) =
1

2𝜇
{(1 +

𝐸1
2

4
) (𝛿𝑘𝑖𝛿𝑙𝑗 + 𝛿𝑙𝑖𝛿𝑘𝑗) − (

𝜗

(1+𝜗)
+

𝐸1
2

6
−

𝐶1
2

9
) 𝛿𝑖𝑗𝛿𝑘𝑙}                             (46) 

Here we will recast Gibbs free energy function in terms of conjugate strains 𝜀 and 𝛾 , where  

 𝑊(𝜎,𝐷) = 𝑊𝑒(𝜎) +
1

4𝜇
[𝐶1

2𝜎2 + 𝐸1
2𝜏2 ] 

 = 
1

2
[𝜇𝛾2 +

2(1+𝜗)

3(1−2𝜗)
𝜇𝜀2] +

1

4𝜇
[𝐶1

2𝜎2 + 𝐸1
2𝜏2 ] 

We know from eq. (32), (36) 𝜎 =
2(1+𝜗)

3(1−2𝜗)
𝜇𝜀 & 𝜏 = 𝜇𝛾 , 
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 𝑊(𝜖, 𝐷) =
1

2
[𝜇𝛾2 +

2(1+𝜗)

3(1−2𝜗)
𝜇𝜀2] +

1

4𝜇
[𝐶1

2 4(1+𝜗)2

9(1−2𝜗)2
 𝜇2𝜀2 + 𝐸1

2 𝜇2𝛾2] 

From eq. (38) 

 
𝜕𝑊𝑒

𝜕𝜀𝑘𝑙
= 2𝜇𝜀𝑘𝑙 −

2𝜇

3
𝜀𝑘𝑘𝛿𝑘𝑙 +

2(1+𝜗)

3(1−2𝜗)
 𝜇𝜀𝑟𝑟𝛿𝑘𝑙  

 
𝜕𝑊𝑖𝑒

𝜕𝜀𝑘𝑙
=

1

4𝜇
[𝐶1

2  
4(1+𝜗)2

9(1−2𝜗)2
 𝜇2(2𝜀)

𝜕𝜀

𝜕𝜀𝑘𝑙
+ 𝐸1

2 𝜇2(2𝛾)
𝜕𝛾

𝜕𝜀𝑘𝑙
] 

As we have previously derived the relations 
𝜕𝜀

𝜕𝜀𝑘𝑙
= 𝛿𝑘𝑙 ,

𝜕𝛾

𝜕𝜀𝑘𝑙
=

2𝑒𝑘𝑙

𝛾
 

 =
1

4𝜇
[𝐶1

2 8(1+𝜗)2

9(1−2𝜗)2
 𝜇2𝜀𝛿𝑘𝑙 + 2𝐸1

2𝜇2𝛾 (
2𝑒𝑘𝑙

𝛾
)] 

 = [𝐶1
2 2(1+𝜗)2

9(1−2𝜗)2
𝜇𝜀𝛿𝑘𝑙 + 𝐸1

2𝜇 (𝜀𝑘𝑙 −
𝜀𝛿𝑘𝑙

3
)]  

 
𝜕𝑊𝑖𝑒

𝜕𝜀𝑘𝑙
= 𝐶1

2 2(1+𝜗)2

9(1−2𝜗)2
𝜇𝜀𝛿𝑘𝑙 + 𝐸1

2𝜇𝜀𝑘𝑙 −
𝐸1

2

3
𝜇𝜀𝛿𝑘𝑙                                     (47) 

Adding both elastic & inelastic parts and after rearranging the terms, 

 
𝜕𝑊

𝜕𝜀𝑘𝑙
= [2𝜇𝜀𝑘𝑙 −

2𝜇

3
𝜀𝛿𝑘𝑙 +

2(1+𝜗)

3(1−2𝜗)
𝜇𝜀𝛿𝑘𝑙 + 𝐶1

2 2(1+𝜗)2

9(1−2𝜗)2
𝜇𝜀𝛿𝑘𝑙 + 𝐸1

2𝜇𝜀𝑘𝑙 −

                                                                            
𝐸1

2

3
𝜇𝜀𝛿𝑘𝑙] 

 𝜎𝑖𝑗 =
𝜕𝑊

𝜕𝜀𝑘𝑙
= 2𝜇 [(1 +

𝐸1
2

2
) 𝜀𝑘𝑙 + (

𝜗

1−2𝜗
−

𝐸1
2

6
+ 𝐶1

2 (1+𝜗)2

9(1−2𝜗)2
) 𝜀𝛿𝑘𝑙]        (48) 

 

Representing the above equations in terms of damage dependent constants 𝐶1
̅̅ ̅ & 𝐸1

̅̅ ̅, 

 𝐶1
̅̅ ̅ =

𝐶1

{
3(1−2𝜗)

1+𝜗
+𝐶1

2}
, 𝐸1
̅̅ ̅ =

𝐸1

{2+𝐸1
2}

 

 𝜎𝑖𝑗 = 2𝜇 [(1 + 2 𝐸1
̅̅ ̅2

) 𝜀𝑘𝑙 + (
𝜗

1−2𝜗
−

2 𝐸1̅̅̅̅ 2

3
 + 𝐶1

̅̅ ̅2
) 𝜀𝛿𝑘𝑙]                     (49) 

Again, differentiating the above expression to obtain the modulus tensor, 

 𝐶𝑖𝑗𝑘𝑙 = 2𝜇 {(
1

2
+ 𝐸1

̅̅ ̅2
) (𝛿𝑘𝑖𝛿𝑙𝑗 + 𝛿𝑙𝑖𝛿𝑘𝑗) + (

𝜗

1−2𝜗
−

2 𝐸1̅̅̅̅ 2

3
 + 𝐶1

̅̅ ̅2
) 𝛿𝑖𝑗𝛿𝑘𝑙}  

                                                                                                                                                                 (50) 

Criterion of transition between regimes, 

For 𝑅𝑒𝑔𝑖𝑚𝑒 𝐼 

 𝐴𝜎 + 𝐵𝜏 ≤ 0                                                                     (51) 
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The above condition suggests that the combined effect of stress related terms (𝜎, 𝜏) & material parameters 

(𝐴, 𝐵) does not exceed the threshold required for microcrack activation. 

Transition from 𝑅𝑒𝑔𝑖𝑚𝑒 𝐼𝐼 to 𝑅𝑒𝑔𝑖𝑚𝑒 𝐼𝐼𝐼 

In 𝑅𝑒𝑔𝑖𝑚𝑒 𝐼𝐼, 

 𝐴𝜎 + 𝐵𝜏 > 0    and    ( 𝐴2 − 𝐶2)𝜎 + 𝐴𝐵𝜏 > 0                                      (52) 

The transition to Regime II occurs when stresses increase enough to initiate microcrack sliding or partial 

activation, as indicated above. 

In 𝑅𝑒𝑔𝑖𝑚𝑒 𝐼𝐼𝐼, 

 𝐴𝜎 + 𝐵𝜏 > 0    and    ( 𝐴2 − 𝐶2)𝜎 + 𝐴𝐵𝜏 < 0                                     (53) 

In Regime III, the stresses are high enough to cause significant microcrack opening or extensive sliding, 

the remote loading turns tensile which leads to opening of both wing & penny shaped cracks as both 

conditions are satisfied 

The most important part of model i.e., rate dependent fracture toughness is not discussed. It should be 

discussed here because this is the most important extension in model and you have also used in the next 

chapter. 

 

3.8 Evolution Law for Damage (D) 

 

To complete the constitutive model discussed above, a particular evolution law for the scalar damage 

parameter 𝐷 , is to be implemented. Differentiating D (eq.26) with respect to time, we obtain the 

rate of damage evolution.  

The formulation allows the model to consider the time-dependent development of damage in ceramics 

under compressive stress, which corresponds to the effect of crack propagation and degradation of 

materials [20]. 

      
𝑑𝐷

𝑑𝑡
= (

3𝐷
2
3𝐷0

1
3

𝛼𝑎
)(

𝑑𝑙

𝑑𝑡
)                                                                                 (54) 

where 
𝑑𝑙

𝑑𝑡
= 𝑣 is instantaneous wing crack tip speed. 
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To address this problem effectively, it is crucial to analyse the stress state surrounding to the crack tip, 

both when stationary and during propagation, under diverse loading conditions. These stress values must 

then be compared with the experimentally measured fracture toughness of the material under comparable 

conditions to establish criteria for crack initiation and growth. Typically, such criteria stipulate that crack 

propagation occurs in a manner that maintains a material-specific parameter, such as the dynamic stress 

intensity factor (𝐾𝐼𝐶
𝑑 ), at a constant value characteristic of the material. 

Based on the experimental observations of ref. [20] we can now formulate an expression that captures 

both the initiation and growth of fractures under high loading rates. 

• 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛: The crack will initiate motion when [20], 

𝐾𝐼
𝑑(𝑣 = 0,𝐾𝐼

̇ ) = 𝐾𝐼𝐶
𝑑 (𝐾𝐼

̇ )                                                                                              (55) 

where  𝐾𝐼𝐶
𝑑 = (1 + (

𝐾𝐼̇

𝐾𝐼𝐶
𝑆𝑆) ∗ 2 ∗ 10−5) ∗ 𝐾𝐼𝐶

𝑆𝑆 

 𝐾𝐼
̇ =

𝐾𝐼𝐶

𝑡𝑐
 , 𝐾𝐼𝐶 = Mode I critical SIF at instant of crack initiation 

                                                𝐾𝐼
𝑑 = Dynamic stress intensity factor 

                                                𝐾𝐼𝐶
𝑆𝑆 = Quasi static stress intensity factor 

• 𝐺𝑟𝑜𝑤𝑡ℎ 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛: The dynamic stress intensity factor for the propagating crack is given by [20], 

                        
𝐾𝐼(1−𝑣/𝑐𝑅)

√1−𝑣/𝑐𝑝
= 𝐾𝐼𝐶

𝑆𝑆 {
1+(

𝑣

𝑣𝑚
)
5

 

√1−𝑣/𝑐𝑝
}                                                                                  (56) 

 where  𝑣𝑚 = Branching speed, 𝑣 =  Crack tip speed 

 𝑐𝑝 =Dilatational or P-wave speed, 𝑐𝑅 = Rayleigh wave speed [46]. 

In the above equation 𝐾𝐼 can be obtained from eq. (27) or (28) depending upon the loading regime. This 

expression is evaluated to determine the crack propagation speed(𝑣), which is subsequently 

incorporated into Equation (54) to finalize the damage evolution equation. 
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Chapter 4 

Numerical Implementation of Damage Model for Ceramics  

4.1 Numerical Implementation 

 

In this chapter, numerical implementation of fracture mechanics-based damage model proposed by 

ref. [20] has been presented. First of all, we would like to implement our damage constitutive 

model in MATLAB program. The flow chart explaining the algorithm employed in the 

implementation of model is presented in Fig. 4.1. 

 

Fig. 4. 1 Algorithm diagram for implementing MATLAB program 
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In a uniaxial compression loading, where compressive stress is applied along a single axis while the other 

two axes are constrained (e.g., preventing lateral expansion), the mechanical behaviour of the material can 

be analyzed using a stress-strain graph. This graph serves as a critical tool for identifying the operational 

regime of the material under load. 

Initially, as compression begins, the material operates in Regime I, known as the undamaged elastic 

regime. In this regime, the material exhibits linear elastic behaviour, where stress is proportional to strain 

according to Hooke's Law, and no permanent damage (e.g., micro-cracking or plastic deformation) occurs.  

As compressive stress increases, the material may transition from Regime I to a different regime, such as 

a damaged or plastic regime, depending on the material properties and loading conditions.  

 

This transition is governed by a specific failure or yield criterion, expressed as 𝐴𝜎 +  𝐵𝜏 >  0. This 

criterion indicates the onset of damage or a change in mechanical behaviour, such as the formation of 

micro-cracks, yielding, or other forms of inelastic deformation. 

In the current case, the condition 𝐴𝜎 +  𝐵𝜏 >  0 is not satisfied, implying that the applied stress remains 

below the threshold required for regime transition. Consequently, the material continues to operate within 

Regime I, maintaining its elastic and undamaged state.   

 

 

 
 

Fig. 4. 2 The variation of stress intensity factor, 𝐾𝐼   with the applied normal strain, 𝜖𝑥𝑥 along X axis for 

uniaxial compression loading. 

 



37 
 

 

 

Hydrostatic compression applies equal compressive forces to a material from all directions which 

produces a stress condition with equal principal stresses (𝜎₁ =  𝜎₂ =  𝜎₃ =  −𝜎 , where 𝜎 represents the 

compressive stress magnitude). The uniform stress distribution reduces shear stresses because no 

differential stresses create deviatoric deformation. The necessary factors to start damage processes 

including micro-crack initiation and crack extension and crack plane sliding are absent. The uniform stress 

conditions of hydrostatic compression lead to volume reduction without causing the stress concentrations 

which typically result in inelastic responses or material failure.  

 

The material shows a complete elastic response without any damage which corresponds to Regime I of a 

damage model known as the intact or undamaged elastic regime. The material follows Hooke's Law in 

this regime by demonstrating a direct proportional connection between stress and strain while showing 

complete elastic deformation without any structural damage. 

Hydrostatic compression produces a stress-strain behavior which depends on the bulk modulus to 

determine how resistant the material is to uniform compression.Since the hydrostatic stress state does not 

satisfy typical damage onset criteria (e.g., a critical stress threshold involving shear or tensile components, 

such as 𝐴𝜎 +  𝐵𝜏 >  0 in other loading scenarios), the material remains in Regime I, with no transition 

to subsequent regimes associated with damage accumulation. 

 

 
 

Fig. 4. 3:The variation of stress intensity factor 𝐾𝐼 with applied normal strain 𝜖𝑥𝑥 plot along X axis for 

hydrostatic compression loading. 
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The research excludes factors such as temperature variations and material heterogeneity which have 

the potential to affect stress distribution and transitions between different regimes. 

Future scope of the project includes understanding regime transition criterions to predict the material 

failure behavior and to perform dynamic loading experiments (e.g., split Hopkinson pressure bar tests) 

to validate models under high strain rates. 
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