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Abstract 

A new route to imidazo[1,2-a]pyridines by using copper-catalyzed one-pot 

reaction of oxime acetates with 2-aminopyridines has been demonstrated. The 

importance of the present protocol is (1) low cost catalyst loading; (2) easily 

available starting materials; and (3) absence of stoichiometric external oxidants. 

Hence, this domino strategy provides an excellent alternative over previous 

approaches in the synthesis of imidazo[1,2-a]pyridines. 
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Chapter-1 

INTRODUCTION 

1.1. General Introduction: 

In recent years, efficient synthesis of imidazo[1,2-a]pyridines has gained 

much interest in synthetic organic and medicinal chemistry because these 

moieties are found in a large number of bioactive natural molecules. 

Furthermore, they constitute several marketable drugs such as telcagepant, 

tentoparazole, soraparazan, miroprofen, zolpidem, minodernic acid etc. In 

addition, several imidazopyridines derivatives exhibited broad spectrum of   

biological activities including antiviral, analgesic, anthelmintic, antifungal, 

antibacterial, antiprotozoal etc. Moreover, they also play an important role 

as reactive intermediates [1-6].  

 

Figure 1: Representative examples of some biologically active 

heterocycles possessing an imidazopyridine moiety [6]. 

Therefore, many powerful synthetic strategies have been developed to 

synthesize the imidazo[1,2-a]pyridines via  multicomponent, oxidative 

coupling and tandem reactions.  All these methods involve expensive 

metal-salts like Pd, Au etc. Therefore, it is a great idea to use a 

commercially available cheap catalyst for the synthesis of abovementioned 

heterocycles from simple substances.  

Some of the recent reports have been described in the next section. 
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1.2. Literature survey: 

In 2012, Shankar et al. developed one-pot synthesis of a series of 

imidazopyridines by mixing 2-aminopyridine, aldehydes and aryl-

acetylenes in the presence CuSO4 as a powerful catalyst [16].  

Scheme 1.  Three component synthesis of imidazopyridines derivatives. 

In 2011, Zhou et al. reported an efficient method for the synthesis of 3-

arylimidazo[1,2-a]pyridines via catalyst-free cascade process from 2-

aminopyridine and 1-bromo-2-phenylacetylene and 1,1-dibromo-2-

phenylethene [17].  

Scheme 2. Synthesis of imidazopyridines using 1-bromo-2-phenyl   

acetylene  derivatives and 2-aminopyridines. 

In 2012, Huang and his group revealed a new methodology for the 

synthesis of 3-methyl-2-arylimidazo[1,2-a] pyridines  from  2-
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aminopyridine and 2-methyl-nitrolefines derivatives  using FeCl2 as a 

catalyst. This methodology facilitates the easy access to the correspond 

products in good to excellent yields [18]. 

Scheme 3. Synthesis of 3-methyl-2-arylimidazo[1,2-a] pyridines under  

FeCl2 catalyzed system.                                                                         

In 2014, Li and his colleagues developed the three component synthesis of 

2,3-diarylimidazo[1,2-a]pyridines  involving  2-aminopyridine, phenacyl 

bromides and alkylbromides as the starting materials in the presence of Pd 

(OAc)2 as a catalyst  under MW irradiation. All the desired products were 

obtained in good to moderate yields [20].  

  Scheme 4. Pd (II) catalyzed three component synthesis of 

 imidazopyridines.  
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In 2014, Hajra et al. reported a regioselective synthesis of imidazo[1,2-a] 

pyridines derivatives using 20 mol% of Fe(NO3)3.9H2O as a catalyst.This 

reaction involves  nitro-alkenes and 2-aminopyridines as simple starting 

materials [21]. 

Scheme 5. Fe (II)-catalyzed one pot economy approach to 

imidazopyridines. 
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1.3. Aim of the Present Work: 

In view of their great significance, the synthesis of bioactive imidazo[1,2-

a]pyridines (IPs) has gained considerable interest in recent years. In this 

framework, numerous approaches for the preparation of functionalized IPs 

have been developed. Although the reported methods are useful to 

synthesize the title scaffolds they encounter some drawbacks like harsh 

reaction conditions, expensive metal-salts, high catalyst loading, long 

reaction times, and low yields of products due to the formation of large 

amounts of by-products. Because of those intrinsic defects, development 

of a simple, efficient methodology with broad substrate scope under mild 

condition is very important. 

Herein, we wish to report a new route to imidazo[1,2-a]pyridine 

derivatives via copper-catalyzed annulation reaction  of 2-aminopyridines 

with oxime acetates as shown in Scheme 6. 

 

 

Scheme 6. Synthesis of imidazo[1,2-a]pyridine derivatives. 
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Chapter-2  

Experimental section 

2.1. Materials and Instrumentation 

 
Chemicals were used as received unless otherwise indicated. All reactions 

were carried out under air and monitored by TLC using Merck 60 F254 

pre coated silica gel plate (0.25 mm thickness) and the products were 

visualized by UV detection. All the oxygen or moisture sensitive reactions 

were carried out under argon atmosphere. Column chromatography was 

carried out with silica gel (100-200 mesh). 
1
H NMR spectra were recorded 

using a Brukar AV 400 MHz spectrometer. Chemical shifts are reported in 

delta (δ) units, expressed in parts per million (ppm) downfield from 

tetramethylsilane (TMS) using residual protonated solvent as an internal 

standard {CDCl3, 7.26 ppm}. 
13

C NMR spectra were recorded using a 100 

MHz spectrometer. Chemical shifts are reported in delta (δ) units, 

expressed in parts per million (ppm) downfield from tetramethylsilane 

(TMS) using the solvent as internal standard {CDCl3, 77.03 

ppm}.Multiplicity have been described as “s = singlet; d = doublet; t = 

triplet and m = multiplet.” The LCMS spectra of the compounds were 

recorded by using Bruker Daltonics MicroTOF-Q II mass spectrometer 

using methanol as solvent. Compounds were named by using Chem draw 

Ultra 11.0. 

 

 

 

 



7 
 

2.2. General procedure for synthesis of imidazo[1,2-a] 

pyridines: 

To a solution of 2-aminopyridine (1 mmol) and oxime acetate (1 mmol) in 

a 5 mL round bottom flask was added CuCl2.2H2O (10 mol %) followed 

by 1 mL 1,4-dioxane. The reaction mixture was heated at 80 °C for 8 h. 

The progress of reaction was monitored by TLC. After completion of the 

reaction, 1 mL of water was added to the reaction mixture and the aqueous 

layer was extracted with EtOAc (3 × 5 mL). The combined organic layer 

was dried over anhydrous MgSO4, filtered and was concentrated in rotary 

evaporator under reduced pressure. The crude product was purified by 

column chromatography over silica gel (100-200 mesh) using 1:4 of 

mixture of ethyl acetate and hexane to obtain imidazo[1,2-a]pyridine.  

All the imidazo[1,2-a]pyridine  derivatives were  characterized by 

corresponding spectroscopic techniques (
1
H NMR, 

13
C NMR and LCMS). 

2-Phenylimidazo[1,2-a]pyridine (3aa) : White solid, yield 82% (159 

mg); mp 134-136 °C; 
1
H NMR (400 MHz, 

CDCl3): δ 8.13 (d, J = 6.8 Hz, 1H), 7.97 (d, 

J = 7.2 Hz, 2H), 7.87 (s, 1H), 7.68 (d, J = 

9.1 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.34 

(t, J = 7. 4 Hz, 1H), 7.17 – 7.23 (m, 1H), 6.81 (t, J = 6.6 Hz, 1H) ppm; 
13

C 

NMR (100 MHz, CDCl3) δ 145.6, 145.5, 133.5, 128.7, 128.5, 126.1, 

125.6, 124.8, 117.5, 112.6, 108.1 ppm; LC-MS (ESI) m/z calcd for 

C13H10N2  [M+Na]
+ 

217.2211, found 217.0864. 

2-(4-Chlorophenyl)imidazo[1,2-a]pyridine (3ab): Yellow solid; yield 

78% (178 mg); mp 210-212 °C; 
1
H 

NMR (400 MHz, CDCl3) δ 8.14 (d, J 

= 4.2 Hz, 1H), 7.83–7.96 (m, 3H), 

7.68 (d, J = 8.6 Hz, 1H), 7.41 (d, J = 

7.0 Hz, 2H), 7.23 (s, 1H), 6.83 (s, 1H) ppm; 
13

C NMR (100 MHz, CDCl3) 
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δ 145.6, 144.3, 133.7, 132.1, 128.9, 127.3, 125.6, 125.1, 117.5, 112.7, 

108.22 ppm; LC-MS (ESI) m/z calcd for C13H9ClN2  [M+Na]
+ 

251.0347, 

found 251.0489. 

2-(4-Fluorophenyl)imidazo[1,2-a]pyridine (3ac): Light pink solid; yield 

76% (161 mg); mp 175-177 °C; 
1
H 

NMR (400 MHz, CDCl3) δ 8.14 (d, J = 

6.7 Hz, 1H), 7.94 (dd, J = 8.4, 5.5 Hz, 

2H), 7.82 (s, 1H), 7.69 (d, J = 9.0 Hz, 

1H), 7.19 – 7.25 (m, 1H), 7.13 (t, J = 8.6 Hz, 2H), 6.83 (t, J = 6.8 Hz, 1H) 

ppm; 
13

C NMR (100 MHz, CDCl3) δ 162.8 (d, J= 249.3 Hz), 145.58, 

144.93, 129.9 (d, J= 3 Hz), 127.7 (d, J= 8.1 Hz), 125.59, 124.84, 117.49, 

115.7 (d, J= 21.4 Hz), 112.54, 107.80 ppm; LCMS (ESI) m/z calcd for 

C13H10FN2 [M+Na]
+ 

235.0642, found 235.0759. 

2-(4-Methylphenyl)imidazo[1,2-a]pyridine (3ad): White solid, yield 

84% (174 mg); mp 145-148 °C; 
1
H 

NMR (400 MHz, CDCl3) δ 8.12 (d, J = 

6.6 Hz, 1H), 7.75 – 7.89 (m, 3H), 7.66 

(d, J = 9.0 Hz, 1H), 7.24 (s, 2H), 7.18 

(t, J = 7.7 Hz, 1H), 6.78 (t, J = 6.5 Hz, 1H), 2.39 (s, 3H) ppm; 
13

C NMR 

(100 MHz, CDCl3) δ 145.6, 145.4, 138.0, 130.6, 129.4, 125.9, 125.5, 

124.8, 117.3, 112.5, 107.7, 21.3 ppm; LCMS (ESI) m/z calcd for C14H12N2  

[M+H]
+ 

209.1074, found 209.1152. 

2-(3-Bromophenyl)imidazo[1,2-a]pyridine (3ae): yellow solid; yield 

80% (217 mg); mp 200-203 °C; 
1
H NMR 

(400 MHz, CDCl3) δ 8.09–8.15 (m, 2H), 

7.87 (d, J = 9.2 Hz, 2H), 7.64 (d, J = 9.1 

Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.30 (t, 

J = 7.9 Hz, 1H), 7.20 (dd, J = 11.4, 4.4 Hz, 

1H), 6.80 (t, J = 6.6 Hz, 1H).
13

C NMR (100 MHz, CDCl3) δ 145.7, 144.2, 

135.8, 130.8, 130.3, 129.1, 125.7, 125.1, 124.5, 122.9, 117.6, 112.7, 108.5. 
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LCMS (ESI) m/z calcd for C13H9
79

BrN2 [M+H]
+ 

273.0022, found 

273.0039 ; m/z calcd for C13H9
81

BrN2 [M+H]
+  

275.0002, found 275.0019 

2-(2-Chlorophenyl)imidazo[1,2-a]pyridine (3af): Black Solid; yield 

73% (166 mg); mp 198-200 °C; 
1
H NMR (400 

MHz, CDCl3) δ 8.30 (d, J = 1.3 Hz, 1H), 8.28 

(s, 1H), 8.14 (d, J = 6.8 Hz, 1H), 7.65 (d, J = 9.1 

Hz, 1H), 7.47 (d, J = 7.9 Hz, 1H), 7.38 (t, J = 

7.2 Hz, 1H), 7.28 (d, J = 1.4 Hz, 1H), 7.16 – 7.25 (m, 1H), 6.79 (t, J = 6.7 

Hz, 1H) ppm; 
13

C NMR (100 MHz, CDCl3) δ- 144.4, 141.7, 132.2, 131.7, 

130.9, 130.3, 128.6, 127.1, 125.8, 124.9, 117.5, 112.5, 112.4 ppm; LCMS 

(ESI) m/z calcd for C13H9ClN2 [M+Na]
+ 

251.0347, found 251.0489. 

2-(4-Bromophenyl)imidazo[1,2-a]pyridine (3ag): White solid; yield 

78% (213 mg); mp 211-213 °C; 
1
H 

NMR (400 MHz, CDCl3) δ 8.12 (d, 

J = 6.0 Hz, 1H), 7.87–7.7-(m, 3H), 

7.65 (d, J = 8.9 Hz, 1H), 7.55 (d, J 

= 7.5 Hz, 2H), 7.20 (t, J = 7.3 Hz, 1H), 6.80 (d, J = 5.8 Hz, 1H).
 13

C NMR 

(100 MHz, CDCl3); δ 145.6, 144.4, 132.5, 131.9, 127.6, 125.7, 125.3, 

122.1, 117.5, 112.8, 108.3 ppm; LCMS (ESI) m/z calcd for C13H9
79

BrN2 

[M+H]
+ 

273.0022, found 273.0037; m/z calcd for C13H9
81

BrN2 [M+H]
+ 

275.0019, found 275.0026. 

2-(4-Methoxyphenyl)imidazo[1,2-a]pyridine (3ah): White solid; yield 

85% (190 mg); mp 134-136 °C; 
1
H NMR 

(400 MHz, CDCl3) δ 8.54 (s, 1H), 8.38 

(d, J = 8.4 Hz, 1H), 8.29 (d, J = 4.1 Hz, 

1H), 7.90 (d, J = 8.7 Hz, 2H), 7.75 (t, J = 

7.4 Hz, 1H), 7.03 – 7.09 (m, 1H), 6.99 (d, J = 8.7 Hz, 2H), 3.88 (s, 2H) 

ppm;  
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13
C NMR (100 MHz, CDCl3 ) δ 165.1, 162.7, 151.8 147.8, 138.5, 129.2, 

126.4, 119.7, 114.1, 114.1, 114.0, 55.51 ppm; LCMS (ESI) m/z calcd for 

C14H12N2 O [M+H]
+ 

225.1023, found 225.1004.  

7-Methyl-2-(thiophen-2-yl)imidazo[1,2-a]pyridine (3ai): Light yellow 

solid; yield 78% (166 mg); mp 140-142 °C; 

1
H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 

6.4 Hz, 1H), 7.69 (s, 1H), 7.49 (d, J = 2.1 

Hz, 1H), 7.39 (s, 1H), 7.29 (d, J = 5.0 Hz, 

1H), 7.08 (dd, J = 4.6, 3.5 Hz, 1H), 6.59 (d, J = 6.8 Hz, 1H), 2.39 (s, 3H) 

ppm; 
13

C NMR (100 MHz, CDCl3) δ 145.8, 140.3, 137.3, 136.2, 127.7, 

124.9. 124.6, 123.7, 115.6, 115.4, 106.9, 21.4 ppm; LCMS (ESI) m/z 

calcd for C12H10N2 S [M+H]
+  

215.0408, found 215.0324. 
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CHAPTER 3 

 Results and Discussion: 

Table: 1 Optimization of reaction at different conditions
a,b  

 

 

 

a
All the reactions were carried out with 1a (1 mmol), 2a (1 mmol) and 

catalyst (10 mol%) in solvent (1 mL)  for 8 h. 

 
b
Isolated yield after column chromatography.

 

Entry Solvent  Catalyst 

(10 mol%)  

Temp 

(°C) 

Time (h) Yield (%)
b
 

1 Toluene  CuBr2 80  8  35 

2 Toluene Cu(OAc)2.H2O 80 8  62 

3 Toluene Cu(OTf)2 80  8  15 

4 Toluene CuBr 80  8  26 

5 Toluene CuCl2.2H2O 80  8  72 

6 THF CuCl2.2H2O 25  8  0 

7 THF CuCl2.2H2O 50  8  25 

8 THF CuCl2.2H2O 60  8  50 

9 THF CuCl2.2H2O 80  8  70 

10 1,4-Dioxane CuCl2.2H2O 25  8  0 

11 1,4-Dioxane CuCl2.2H2O 50  8  40 

12 1,4-Dioxane CuCl2.2H2O 80  8  82 

13 1,4-Dioxane  CuCl2.2H2O 100 8  70 

14 Acetonitrile CuCl2.2H2O 80 8  45 
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Our investigation was commenced by stirring the (E) acetophenone        

O-acetyl oxime (1a) and 2-aminopyridine (2a) at 80 °C in the presence of 

toluene using 10 mol% of CuBr2 as a catalyst. After 8 h, we isolated 2-

phenylimidazo[1,2-a]pyridine (3aa) as our desired  product in 35% yield. 

(entry 1). To improve the yield of the product (3aa) several other copper 

salts like Cu(OAc)2.H2O, CuBr, Cu(OTf)2, CuCl2.2H2O were examined  

for this reaction. Among these salts, CuCl2.2H2O enhances the result 

(yield 72%) (entry 5). After selection of the best catalyst, next we 

proceeded further to optimize the reaction in different solvents like THF, 

1,4-dioxane, ACN in the presence of CuCl2.2H2O as catalyst. After 

screening the various catalysts and solvents, we can conclude that 

combination of CuCl2.2H2O as a catalyst and 1,4-dioxane as a solvent 

found to be best reaction condition for the synthesis  of desired scaffold in 

82% yield (entry 12). The reaction was unsuccessful at room temperature 

(entry 10). 
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3.1. Plausible Reaction Mechanism  

A plausible reaction mechanism is outlined in scheme 7. Initially, iminium 

radical A was generated by oxidation of Cu (II) to AcOCu (III), and this 

radical was rapidly tautomerized to C. Radical B was then formed via a 

single-electron-transfer (SET) process between AcOCu (III) and , 

releasing AcOH and regenerating the Cu (II) species back to the catalytic 

cycle. Then B underwent tautomerization to give D and subsequently, the 

intermediate product E was produced by the radical coupling reaction of C 

and D. E undergoes intramolecular cyclization to give cyclized product F, 

followed by elimination of ammonium acetate to afford the desired 

product imidazo[1,2-a]pyridine (3aa).   

 

 

 

Scheme 7. Plausible mechanism of the reaction 
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3.2. Substrate scope and generality of reaction 

condition: 

After successfully developing a simple one pot synthesis of 3aa, we 

examined the generality and scope of this annulation process by reacting 

several kinds of oxime acetates and 2-aminopyridines to prepare a group 

of imidazo[1,2-a]pyridines as shown in scheme-8. Both electron rich 

(OMe, Me) and electron withdrawing halogen atoms (F, Cl, Br) on the 

aryl ring of oxime acetate underwent spotless reaction with 2-

aminopyridine in the present catalytic system to afford the corresponding 

imidazo[1,2-a]pyridine derivatives in excellent yields (73-85%). It should 

be noted that electron withdrawing halogen atoms provided slightly lower 

yields as compared to electron donating substituents.  Interestingly, this 

method is also equally applicable for heterocycle-substituted oxime 

acetate. For example, the compound 2b reacted smoothly with 1i to 

produce the corresponding thiophenyl-substituted imidazopyridine 3ib 

(78%).  

 

 

      

 

 

 

 

Scheme 8. List of derivatives of imidazo[1,2-a]pyridines. 
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Chapter 4 

Conclusion  

In this work, we have successfully synthesized an array of 

pharmaceutically important imidazo[1,2-a]pyridines  scaffolds via 

annulation of oxime acetates and 2-aminopyridines in the presence of 

CuCl2.2H2O catalyst. In addition this methodology delivers 

aforementioned compounds in excellent yields with the use of easily 

commercially available starting materials under mild conditions. Various 

functional groups of oxime acetates and aminopyridines can be tolerated 

under our established conditions. 
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APPENDIX A  

1
H and 

13
C NMR Spectra 

 

 Figure 3. 400 MHz 
1
H-NMR of 3aa in CDCl3 

Figure 4. 100 MHz 
13

C-NMR of 3aa in CDCl3  
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Figure 5. 400 MHz 
1
H-NMR of 3ba in CDCl3 

 

 

Figure 6. 100 MHz 
13

C-NMR of 3ba in CDCl3.  
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Figure 7. 400 MHz 
1
H-NMR of 3ca in CDCl3 

 

 

Figure 8. 100 MHz 
13

C-NMR of 3ca in CDCl3 
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Figure 11. 400 MHz 
 
H-NMR of 3da  in CDCl3. 

 

Figure 12. 100 MHz 
13

C-NMR of 3da  in CDCl3. 
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Figure 13. 400 MHz 
1
H-NMR of 3ea in CDCl3. 

 

 

Figure 14. 100 MHz 
13

C-NMR of 3ea  in CDCl3. 
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Figure 15. 400 MHz 
1
H-NMR of 3fa  in CDCl3 

 

Figure 16. 100 MHz 
13

C-NMR of 3fa  in CDCl3 
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Figure 17. 400 MHz 
1
H-NMR of 3ga  in CDCl3 

Figure 18. 100 MHz 
13

C-NMR of 3ga  in CDCl3 



23 
 

 

 

Figure 19. 400 MHz 
1
H-NMR of 3ha  in CDCl3 

 

Figure 20. 100 MHz 
13

C-NMR of 3ha  in CDCl3 
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Figure 21. 400 MHz 
1
H-NMR of 3ib  in CDCl3 

 

Figure 22. 100 MHz 
13

C-NMR of 3ib  in CDCl3 
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