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Abstract 

 

Molecular Dynamics is an important technique for exploring Potential Energy 

Surfaces at finite temperatures. We have software packages for running Molecular 

Dynamics Simulations but these are generalized programs and hence more 

computationally complex. In this project, we developed a standalone Molecular 

Dynamics program using the guidance from the software called Tinker. This 

program runs Molecular Dynamics Simulations using our in-house potentials and 

specifically targets nanoclusters. We tested this program using the results already 

reported for Au147 and then ran Molecular Dynamics simulations for Au309 

using two different initial structures.  
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Chapter 1  

Introduction 

1.1 General Introduction: 

 

The Concept of PES is a key concept in Quantum Chemistry. These are energy 

landscapes which relate the energy of a polyatomic system to its geometry. The 

concept of PES originates from the BO treatment of polyatomic systems. The key 

idea behind BO approximation is that the nuclei are so much heavier than the 

electrons that they move very very slowly compared to electrons so we can 

assume that electrons are moving in a field of fixed nuclei[1,2]. If the nuclei are 

fixed, then their kinetic energy is zero and the total Hamiltonian reduces to 

Electronic Hamiltonian. 

 

The total Hamiltonian is as follows:- 

  

                                          Ĥ =  (K.E)e  + (K.E)N  + VeN  + Vee  + VNN  

 

Since, (K.E)N = 0, therefore, we obtain the following:-    

                        

                                         Ĥ =  (K.E)e   + VeN  + Vee  + VNN    

 

Since nuclei are fixed, VNN  becomes constant and therefore it can be discarded 

from the above equation. The equation  then modifies to  

 

                                          Ĥ =  (K.E)e   + VeN  + Vee     

 

If this Electronic Hamiltonian is solved then it will give the total energy of the 

polyatomic system with a fixed geometry (fixed positions of the nuclei). On 

plotting the energy (obtained from the Electronic Hamiltonian) against nuclear 

coordinates, we get the PES.  
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The significance of PES lies in the fact that the stationary points on PES represent 

different species. A minima corresponds to a stable chemical species (reactants, 

products) while a saddle point represents a transition state. Thus, PES finds use in 

the study of molecular geometry and chemical reaction dynamics. 

 

In MD, we simulate the atoms using Newtonian dynamics. The key idea is that 

using an appropriate potential energy function we calculate the forces acting on 

atoms and then move them in accordance with Newton’s Laws of motion with 

time.  

  

When we perform MD we are actually simulating the real dynamics of the system 

under study and in doing so we can keep track of each individual atom in an 

incredibly detailed way. In this way, MD simulations can help us to gain new 

insight into important processes taking place at the atomic and molecular level.   

 

 

1.2 Organization of the Thesis: 

Chapter 2: Theory 

Chapter 3: Fortran Code 

Chapter 4: Results and Discussion 

Chapter 5: Conclusions 
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Chapter 2 

Theory 

 

2.1: Methodology for Molecular Dynamics 

Step 1: Assigning positions and velocities to atoms 

We have the initial positions for all atoms. For initial velocities, random velocities 

are assigned to each of the atoms. 

 

Step 2: Calculating the force acting on each atom 

Trained NN1[3] and NN2[4]  are used to calculate the potential for an atom. 

Ei= Ʃw23 × f2( b2 + Ʃw12 × f1( b1 + Ʃw1Dij)) 

where Ei is the energy of atom and Dij stands for input descriptor functions. w23 

and w12 are weights connecting the different layers of NN. b1 and b2 are bias 

weights in different layers of NN. f2 and f1 represent the functions for activation 

of the network[5]. 

The total energy (E) of a nanocluster is computed by summation of all the atomic 

energies.  

E=Ʃ Ei 

The Force(F) on an atom is given by the negative gradient of total energy of the 

nanocluster. 

F= - δE/δr = - Ʃ(δEi/δDij) × (δDij/δr) 
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Set Particle 
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Assign 

particle 
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Reach 
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Exit  

Figure 1: Flowchart for MD 
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Step 3: Updating positions and velocities of atoms 

Using Newton’s second law of motion, acceleration is calculated. 

According to Newton’s Second law of motion:- 

                                                                      

F = m × a 

 

If we know the value of force we can get acceleration:- 

           

a = F/m 

 

 

Once acceleration is known, the velocity-verlet algorithm[6] is used to update 

positions for each atom and  the velocities at mid-step  

 

r(t+δt)= r(t) + δt × v(t) + ½ δt × δt × a(t) 

 

v(t + ½ δt) = v(t) + ½ δt × a(t) 

 

The forces and accelerations at time t+δt  are then computed, and the velocity 

move is completed using the velocity-verlet algorithm.  

 

v(t + δt) = v(t + ½ δt) + ½ δt × a(t + δt) 
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Step 4: Applying Thermostat 

The updated velocities are scaled using the Andersen Thermostat algorithm to 

maintain constant Temperature condition.  

Step 5: Saving current data in a file 

Current velocities and positions of each atom are saved in a file. The current 

velocities and positions become previous velocities and positions. 

 

Step 6: Check if the number of preset steps reached  

If the number of preset steps is reached then the MD is stopped otherwise steps 3 

to 5 are repeated until the required number of steps are reached. 

 

2.2: Order Parameters  

In order to study the movement of atoms in the structures obtained from 

Molecular Dynamics, some parameters can be calculated. Two such parameters 

are RMSD[4] and Volume Variation[4]. 

  

2.2.1: RMSD  

         

𝐑𝐌𝐒𝐃𝐜𝐨𝐧𝐟𝐢𝐫𝐦𝐚𝐭𝐢𝐨𝐧 = √
∑ (𝐱𝐢 − 𝐱𝐢𝐧𝐢𝐭𝐢𝐚𝐥)𝟐 + (𝐲𝐢 − 𝐲𝐢𝐧𝐢𝐭𝐢𝐚𝐥)𝟐 + (𝐳𝐢 − 𝐳𝐢𝐧𝐢𝐭𝐢𝐚𝐥)𝟐
𝐚𝐭𝐨𝐦𝐬
𝐢=𝟏

𝐍
 

 

where xinitial, yinitial and zinitial are the coordinates of the initial structure and xi , 

yi and zi are the coordinates of the ith atom of the confirmation obtained from the 

MD trajectory. N is the total number of atoms in the confirmation.  

The significance of the RMSD is that the change in the atomic positions can be 

observed by comparing the current atomic positions with the atomic positions in 
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the initial structure. Therefore, we can observe how the structure is evolving as 

the simulation progresses. 

2.2.2: Volume Variation 

We can find the variation in the volume of the structure by calculating the volume 

of each structure obtained from the MD. Small volume variations indicate that no 

major movements took place during the simulation while large volume variations 

mean that there is a lot of movement by the atoms during the simulation. 
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Chapter 3 

Fortran Code  

3.1 Main Code 

      program dynamic 

      implicit none 

      include 'md.i' 

      include 'atmtyp.i' 

      include 'atoms.i' 

      integer istep,nstep 

      integer mode 

      real*8 dt,dtdump 

c 

c 

c     information levels within the program 

c 

      verbose = .false. 

      debug = .false. 

      abort = .false. 

c 

c     default input/output unit numbers 

c 

      input = 5 

      iout = 6 

c 

c     default parameters used by optimizations 

      iprint = -1 

      iwrite = -1 

c 

c     type of coordinates file 

c 

      coordtype = 'NONE' 

c 

c     Reading key and xyz file 

c 

      call getxyz 

c  

c     initialize the temperature, pressure and coupling baths 

c 

      kelvin = 0.0d0 

      isothermal = .false. 

c 

c     Opening .dat file 

      open(input,file='Au309_ICO.dat',status='unknown') 



9 
 

c 

c     initialize the simulation length as number of time steps 

c 

         read (input,340) 

  340    format() 

        read (input,220)  nstep 

  220    format (i10) 

c 

c     get the length of the dynamics time step in picoseconds 

c 

        read (input,240,err=50)  dt 

  240    format (f20.0) 

   50    continue 

      dt = 0.001d0 * dt 

c 

c     set the time between trajectory snapshot coordinate dumps 

c 

        read (input,260,err=70)  dtdump 

  260    format (f20.0) 

         if (dtdump .le. 0.0d0)  dtdump = 0.1d0 

  70    continue 

      iwrite = nint(dtdump/dt) 

c 

c     use constant energy or temperature for nonperiodic system 

c 

           read (input,280)  mode 

  280       format (i10) 

         if (mode .eq. 2 .or.mode.eq.1) then 

            isothermal = .true. 

              read (input,300,err=110)  kelvin 

  300          format (f20.0) 

               if (kelvin .le. 0.0d0)  kelvin = 298.0d0 

  110          continue 

         end if 

c          

c     initialize setup dynamics 

c 

      call mdinit 

c 

c     integrate equations of motion to take a time step 

c 

       do istep = 1, nstep 

            call verlet (istep,dt) 

      end do 

c 

c     print a final status message before exiting  



10 
 

c 

      if (debug) then 

         write (iout,320) 

  320    format (/,' Exiting following Normal Termination', 

     &              ' of the Program',/) 

      end if 

c 

c     may need a pause to avoid closing the execution window 

c 

      if (holdup) then 

         read (input,330) 

  330    format () 

      end if 

c 

c     Closing .dat file 

      close(input) 

c 

c    

      end 

 

 

3.2 Initializing Molecular Dynamics 

     Code for initializing Molecular Dynamics 

     subroutine mdinit 

      implicit none 

      include 'md.i' 

      include 'atmtyp.i' 

      include 'atoms.i' 

      integer i,j 

      real*8 e,maxwell,speed 

      real*8 vec(3) 

      real*8 energy 

      real*8 derivs(3,maxatm) 

      logical exist 

      real*8 rho,beta 

      real*8 random,erfinv 

      real*8 xspeed,yspeed 

      real*8 zspeed 

      external erfinv 

      integer idyn,freeunit 

      character*120 dynfile 
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c 

c 

c     set default parameters for the dynamics trajectory 

c 

      nfree=0 

      integrate = 'BEEMAN' 

      velsave = .false. 

      frcsave = .false. 

      iprint = 100 

c 

c     set default values for temperature and pressure control 

c 

      thermostat = 'BUSSI' 

      collide = 0.1d0 

c 

    Assigning Parameters for MD 

      integrate='VERLET' 

      thermostat='Andersen' 

      velsave=.true. 

      frcsave=.true. 

c 

c     Setting degrees of freedom 

      nfree=3*n 

      if (nfree .eq. 0) then 

         write (iout,50) 

   50    format (/,' MDINIT  --  No Degrees of Freedom for Dynamics') 

         call fatal 

      end if 

c 

c     try to restart using prior velocities and accelerations 

c 

      dynfile = filename(1:leng)//'.dyn' 

      inquire (file=dynfile,exist=exist) 

      if (exist) then 

         idyn = freeunit () 

         open (unit=idyn,file=dynfile,status='old') 

         rewind (unit=idyn) 

         call readdyn (idyn) 

         close (unit=idyn) 

      else 
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c 

c     calculation of energy and gradient by using NN potential 

      open (unit=30, file='tmp.xyz', status='unknown') 

      write(30,*) n 

      do i = 1, n 

         write (30, '(3f15.8)') x(i), y(i), z(i) 

      end do 

      close(30) 

      call system ('/home/satya/Shubham/Au309_MD_ICO/md309ICO_NN.exe &') 

!      call system ('/usr/mpi/gcc/mvapich2-2.0/bin/mpirun 

!     &-np 8 /scratch/sblusu/SHWETA/MD_T300Au58_constructed/NN.exe &') 

      call wait_NNPES() 

!      call sf_feedforward_neuralnetwork  

      open (unit=30, file='force.txt', status='unknown') 

      read (30,*) energy 

      do i = 1, n 

         read(30,*) derivs(1,i),derivs(2,i),derivs(3,i) 

      end do 

      close(30) 

      call system("rm force.txt tmp.xyz") 

c 

c     Initializing velocities 

c 

         do i = 1, n 

c 

c     set normalization factor for cumulative velocity distribution 

c 

      beta = sqrt(mass(i) / (2.0d0*boltzmann*kelvin)) 

c 

c     pick a randomly distributed velocity along each of three axes 

c 

      rho = random () 

      xspeed = erfinv(rho) / beta 

      rho = random () 

      yspeed = erfinv(rho) / beta 

      rho = random () 

      zspeed = erfinv(rho) / beta 

c 

c     set the final value of the particle speed in 3-dimensions 

c 

http://tmp.xyz/
http://tmp.xyz/
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      maxwell = sqrt(xspeed**2 + yspeed**2 + zspeed**2) 

               speed = maxwell 

               call ranvec (vec) 

               do j = 1, 3 

                  v(j,i) = speed * vec(j) 

                  a(j,i) = -convert * derivs(j,i) / mass(i) 

                  aold(j,i) = a(j,i) 

               end do 

         end do 

         call mdrest 

      end if 

c 

      return 

      end 

c     

c     

!     editing according to our potential requirement ends 

      subroutine wait_NNPES() 

      implicit none 

      integer numline 

      logical test 

      character filen*80 

      filen ='force.txt' 

1     continue 

      inquire(FILE=filen, exist=test) 

      if (test) then 

         call system('wc -l force.txt >ntmpline') 

         open(unit=30,file='ntmpline',status='unknown') 

         read(30,*) numline 

         close(30) 

         call system('rm ntmpline') 

         if (numline.GT.6 ) then 

            goto 3 

         else 

            goto 1 

         endif 

      else 

         goto 1 

      endif 

3     continue 
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      return 

      end 

 

3.3 Velocity- Verlet algorithm 

       Code for Velocity-Verlet Method 

      subroutine verlet (istep,dt) 

      implicit none 

      include 'md.i' 

      include 'atmtyp.i' 

      include 'atoms.i' 

      integer i,j,istep 

      real*8 dt,etot 

      real*8 dt_2,dt2_2 

      real*8 eksum,epot 

      real*8 temp,pres 

      real*8 ekin(3,3) 

      real*8 xold(maxatm) 

      real*8 yold(maxatm) 

      real*8 zold(maxatm) 

      real*8 energy 

      real*8 derivs(3,maxatm) 

c 

c 

c     set some time values for the dynamics integration 

c 

      dt_2 = 0.5d0 * dt 

      dt2_2 = dt * dt_2 

c 

c     store the current atom positions, then find new atom 

c     positions and half-step velocities via Verlet recursion 

c 

      do i = 1, n 

            xold(i) = x(i) 

            yold(i) = y(i) 

            zold(i) = z(i) 

            x(i) = x(i) + v(1,i)*dt + a(1,i)*dt2_2 

            y(i) = y(i) + v(2,i)*dt + a(2,i)*dt2_2 

            z(i) = z(i) + v(3,i)*dt + a(3,i)*dt2_2 
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            do j = 1, 3 

               v(j,i) = v(j,i) + a(j,i)*dt_2 

            end do 

      end do 

c 

c     calculation of energy and gradient by using NN potential 

      open (unit=30, file='tmp.xyz', status='unknown') 

      write(30,*) n 

      do i = 1, n 

         write (30, '(3f15.8)') x(i), y(i), z(i) 

      end do 

      close(30) 

      call system ('/home/satya/Shubham/Au309_MD_ICO/md309ICO_NN.exe &') 

!      call system ('/usr/mpi/gcc/mvapich2-2.0/bin/mpirun 

!     &-np 8 /scratch/sblusu/SHWETA/MD_T300Au58_constructed/NN.exe &') 

      call wait_NNPES() 

!      call sf_feedforward_neuralnetwork  

      open (unit=30, file='force.txt', status='unknown') 

      read (30, *) energy 

      epot=energy 

      do i = 1, n 

         read(30,*) derivs(1,i),derivs(2,i),derivs(3,i) 

      end do 

      close(30) 

      call system("rm force.txt tmp.xyz") 

c 

c     use Newton's second law to get the next accelerations; 

c     find the full-step velocities using the Verlet recursion 

c 

      do i = 1, n 

            do j = 1, 3 

               a(j,i) = -convert * derivs(j,i) / mass(i) 

               v(j,i) = v(j,i) + a(j,i)*dt_2 

            end do 

      end do 

c 

c     accumulate the kinetic energy and its outer product 

c 

      call kinetic (eksum,ekin) 

c 

http://tmp.xyz/
http://tmp.xyz/
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c     make full-step temperature and pressure corrections 

c 

      call temper2 (dt,eksum,temp) 

c 

c     system energy is sum of kinetic and potential energies 

c 

      etot = eksum + epot 

c 

c     compute statistics and save trajectory for this step 

c 

      call mdstat (istep,dt,etot,epot,eksum,temp,pres) 

      call mdsave (istep,dt,epot) 

      return 

      end 
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Chapter 4 

Results and Discussions  

 

4.1 Testing on Au147 

We tested our program by running MD simulations for Au147 at 700K with a 

time step of 3 fs. The Program reproduced the MD trajectory and RMSD data 

which are already reported  in the literature [4].  

                                                                     

                              

                    Initial structure                                         At 24 ps 

 

 

                           

                 At 480 ps                                                     At 210 ps 

Figure 2: MD Trajectory for Au147 at 700K 
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Figure3: RMSD for Au147 at 700K 

 

4.2 Applying on Au 309 

4.2.1: Molecular dynamics using NN1 potential  

We ran MD simulations for 2 different initial Au309 clusters (icosahedral and  

amorphous) using our program. The simulations were run at a temperature of 

500K with a time step of 3 fs. It was observed that the number of atoms on the 

surface increased for both the cases as the simulation progressed. In both cases, 

there was a change from a four-layered structure to a three-layered structure. 

Moreover, in the case of the icosahedral structure, all symmetry was lost and we 

obtained an amorphous structure.    
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               Initial structure                                                         At 42 ps 

Figure4: MD Trajectory for Au309 (Icosahedral) using NN1 potential at 

500K 

 

                                   

              Initial Structure                                                         At 42 ps   

Figure5: MD Trajectory for Au309 (Amorphous) using NN1 potential at 

500K 

 

In order to study the movement in the structures, two parameters were calculated. 

These are RMSD and Volume Variation. 
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RMSD  

We calculated the RMSD of the clusters corresponding to the two initial 

structures we took.   

From the RMSD plots for the two cases, we can say that core, surface and middle 

layer atoms are continuously moving during the simulation. From the plot, we can 

see that in the case of icosahedral, there is more movement of the middle layer 

atoms and core atoms. Indeed in the case of icosahedral, the increase in the no. of 

surface atoms is more as indicated from the final structures (at 42 ps) obtained 

from the MD. It is probably due to more no .of atoms from the middle layer and 

core moving outwards. 

 

Figure 6: RMSD for Au309 (Icosahedral) with NN1 potential at 500K 
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Figure 7: RMSD for Au309 (Amorphous) with NN1 potential at 500K 

 

Volume Variation 

We observed the change in the volume of the structure as the simulation 

progressed. In both the cases initially there was a large change in the volume but 

not so much change later on. One thing to be noted is that in the case of 

icosahedral, there is a drastic change in the volume compared to the case of 

amorphous which suggests more disturbance in the initial structure for the 

icosahedral case. 
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Figure 8: Volume Variation for Au 309 (Icosahedral) with NN1 potential at 

500K 

 

 

Figure 9: Volume Variation for Au 309 (Amorphous) with NN1 potential at              

500K 
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4.2.2: Molecular dynamics using NN2 potential  

We again ran MD simulations with the same initial Au309 clusters (icosahedral 

and amorphous) using our own program. The simulations were run at a 

temperature of 500K and at 300K respectively with a time step of 3 fs. In the case 

of Icosahedral initial structure, it was observed that the number of atoms on the 

surface increased as the simulation progressed.  Moreover, all symmetry was lost 

and we obtained an amorphous structure. In the case of Amorphous initial 

structure, the atoms in the 2 innermost layers increased as the simulation 

progressed. Unlike the previous  NN 1 case, the structures remained four- layered. 

                                     

         Initial Structure                                                               At 42 ps 

Figure 10: MD Trajectory for Au309 (Icosahedral) using NN2 potential at 

500K 

                                    

I         Initial Structure                                                            At 42 ps  

Figure 11:  MD Trajectory for Au309 (Amorphous) using NN2 potential at 

300K 
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In order to study the movement in the structures, two parameters were calculated. 

These are RMSD and Volume Variation. 

RMSD 

We calculated the RMSD of the clusters corresponding to the two initial 

structures we took. From the RMSD plots for the two cases, we can say that core, 

surface and middle layer atoms are continuously moving during the simulation. 

From the plots, we can see that in the case of icosahedral, there is more movement 

of the middle layer atoms and core atoms but in the amorphous case, there is more 

movement of surface atoms.  

 

 

 

Figure 12: RMSD for Au309 (Icosahedral) with NN2 potential at 500K 



25 
 

 

Figure 13: RMSD for Au309 (Amorphous) with NN2 potential at 300K 

 

Volume Variation  

We observed the change in the volume of the structure as the simulation 

progressed. In both the cases initially there was an appreciable increase in the 

volume but not so much change later on. One thing to be noted is that in the case 

of icosahedral, the increase in the volume is more compared to the case of 

amorphous which suggests more disturbance in the initial structure for the 

icosahedral case. 
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Figure 14: Volume Variation for Au 309 (Icosahedral) with NN2 potential at 

500K 

 

Figure 15: Volume Variation for Au 309 (Amorphous) with NN2 potential at 

300K 
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Chapter 4 

Conclusions  

 The aim of the project was to write a standalone MD program which uses 

our in-house potentials for running MD simulations for nanoclusters to 

explore potential energy surfaces of these nanoclusters.  

 The MD program was written and it was tested successfully on Au147 

nanocluster. It reproduced the MD trajectory and RMSD data for Au147 

nanocluster as reported in the literature. 

 This program offers less computational complexity. Unlike generalized 

MD programs, it is specialized to work for nanoclusters.  

 Using this program, we obtained the MD trajectories for Au309 

nanocluster. The MD was initiated with two different initial structures ((a) 

Icosahedral and (b) Amorphous) using two different NN Potentials (NN1 

and NN2). We analyzed the trajectories by calculating the RMSD and 

Volume Variation in the clusters with respect to the simulation time. 

 The structures of Au309 nanocluster evolved from four-layered to three-

layered when NN1 potential was used to calculate potential energy and 

forces during the dynamics. On the other hand, structures remained four-

layered when NN2 potential was used. 

 As part of future work, further modifications can be done in the program 

in order to incorporate other possibilities. 
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