

PREDICTIVE CLOCK SKEW

REDISTRIBUTION METHODOLOGY FOR

IMPROVING TIMING QoR

M.Tech. Thesis

By

PRANSHU BISHT

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JUNE, 2019

PREDICTIVE CLOCK SKEW

REDISTRIBUTION METHODOLOGY

FOR IMPROVING TIMING QoR

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

Master of Technology

in

Electrical Engineering

with specialization in

VLSI Design and Nanoelectronics

by

PRANSHU BISHT

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

INDORE
JUNE, 2019

V

INDIAN INSTITUTE OF TECHNOLOGY

INDORE

CANDIDATE’S DECLARATION

 I hereby certify that the work which is being presented in the thesis entitled “PREDICTIVE

CLOCK SKEW REDISTRIBUTION METHODOLOGY FOR IMPROVING TIMING QoR” in

the partial fulfillment of the requirements for the award of the degree of MASTER OF TECHNOLOGY

and submitted in the DISCIPLINE OF ELECTRICAL ENGINEERING, Indian Institute of

Technology Indore, is an authentic record of my own work carried out during the time period from

JULY, 2017 to JUNE, 2019 under the supervision of Dr. Santosh Kumar Vishvakarma, Associate

Professor, Indian Institute of Technology, Indore and Shrikrishna Nana Mehetre, Sr. Engineering

Manager, Seagate Technologies HDD (India) Pvt Ltd.

 The matter presented in this thesis has not been submitted by me for the award of any other

degree of this or any other institute.

 Signature of the student with date

PRANSHU BISHT

This is to certify that the above statement made by the candidate is correct to the best of my/our

knowledge.

 Signature of the Supervisor of

 M.Tech. thesis #1 (with date)

 Signature of the Supervisor of

M.Tech. thesis #2 (with date)

Dr. SANTOSH KUMAR VISHVAKARMA SHRIKRISHNA NANA MEHETRE

 PRANSHU BISHT has successfully given his/her M.Tech. Oral Examination held on 24-Jun-

2019.

Signature(s) of Supervisor(s) of M.Tech. Thesis Signature of Convener, DPGC

Date: Date:

Signature of PSPC Member #1 Signature of PSPC Member #2

Date: Date:

--

VI

VII

Dedicated To my family and friends

VIII

IX

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my extreme gratitude to my research

supervisor Dr. Santosh Kumar Vishvakarma, Associate Professor IIT Indore and

Shrikrishna Nana Mehetre Sr. Engineering Manager at Seagate Technologies HDD

(India) Pvt Ltd. At many stages in the course of this research project I benefited from

their advice, particularly so when exploring new ideas. Their positive outlook and

confidence in my research inspired me and gave me confidence.

A project of this nature, based on both experiment and theoretical work, is only

possible with the help of many people. In particular, I would like to thank Mahendra

Singh Thakur my mentor at Seagate for helping me with the experiments.

The many hours that I spent at the college have been very stimulating and enriching,

and thanks to the wonderful that I have been privileged to interact with. Particularly,

I would like to thank Dr. Vishal Sharma Sr. R&D Engineer at Synopsys, Abhishek

Dalal, and Pallab Nath for the great discussions that we had in the lab and for useful

comments that improved my work significantly.

I would like to thank the great people of the Seagate community specially Jay Shah,

Hemant Wadhavankar, Abhijit Jawkar and Gaurav Jadhav. The divine inspiration

from the Tech Events and study session gave me the confidence and power to stand up

against the difficulties that I faced in the course of my Project.

At last, I would like to thank IIT Indore for providing the essential research facilities

for my research work. I gratefully acknowledge the contribution of all the faculty

members and staff of Electrical Engineering for their help and support. I would also

like to express my sincere gratitude to Ministry of Human Resource and Development

(MHRD), Government of India for providing the Teaching Assistantship during the

course of M.Tech.

X

XI

ABSTRACT

In modern technology with shrinking size and high speed requirement there is a need

of an efficient design flow. The traditional method of synthesis doesn’t take into

account of clock skew scheduling that’s going to be happening in Clock Tree building

and optimization stage. In order to meet the timing specification synthesis, tries to

optimize the data path. Although this method will improve setup violation but impact

area and power on the overall design. On the other hand, positive slack distributed in

our design is not utilized. To solve this issue many have proposed a Back-annotation

[BA] flow. In BA, useful skew number is retrieve from CTS stage and feedback either

to CTS or synthesis stage. This long feedback loop from the implementation tool to

synthesis not only impact the design time cycle but also result in an inefficient result as

the implementation is already done keeping data path optimization in mind.

In this project we will discussed a methodology on how this positive slack can be

retrieved by adjusting the clock skew at synthesis stage and redistributed along the most

critical path in our design. The proposed algorithm analyze slack across multiple depth

of a timing path and redistribute the available slack by adjusting the clock skew of

capture or launch registers to the most critical register pair. The clock skew adjustment

script which will be our output will be passed down to physical implementation tool at

placement and clock tree synthesis stage so that skew aware placement and clock tree

build happen which will result into better timing correlation between the synthesis tool

and implementation tool.

The proposed system leads to improve runtime and timing QoR of design. Power and

area reduction over conventional method of zero skew synthesis is also observed.

Moreover, the flow is generic which means that whenever there is a technology shift

no reconfiguration is required as the flow is independent on the technology parameter.

XII

XIII

LIST OF PUBLICATIONS

• Peer Reviewed International Journal

➢ Vishal Sharma, Pranshu Bisht, Abhishek Dalal, Maisagalla Gopal, Santosh

Kumar Vishvakarma and Shailesh Singh Chouchan “Half-select free bit-line

sharing 12T SRAM with double-adjacent bits soft error correction and

reconfigurable FPGA for low-power applications”,International Journal of

Electronics and Communication, Feb. 2019

• Conferences

➢ Vishal Sharma, Pranshu Bisht, Abhishek Dalal, Shailesh Singh

Chouhan, H. S. Jatana and S. K. Vishvakarma, “A Write-Improved

Half-Select-Free Low-Power 11T Subthreshold SRAM with Double

Adjacent Error Correction for FPGA- LUT Design,” 22nd

International Symposium on VLSI Design and Test (VDAT), 28th-

30th June, 2018, Tamilnadu, India.

XIV

XIV

CONTENTS

List of Figures………………………………………………… XV

List of Tables………………………………………………….. XVII

List of Abbreviations………………………………………..... XIX

1 INTRODUCTION 1

1.1 ASIC Design Flow…………………………………. 1

1.1.1 Design Specification…………………….. 3

1.1.2 Behavioural or Functional Description….. 3

1.1.3 Register Transfer Level………………….. 3

1.1.4 Synthesis…………………………………. 3

1.1.5 Floorplan………………………………… 4

1.1.6 Power Network Synthesis……………….. 5

1.1.7 Placement………………………………… 6

1.1.8 Clock Tree Synthesis……………………. 7

1.1.9 Routing………………………………….. 8

1.1.10 Static Timing Analysis………………….. 8

1.2 Definition 9

1.2.1 Clock Skew………………………………. 9

1.2.2 Setup Time……………………………….. 9

1.2.3 Hold Time…………………………………10

1.2.4 Positive Slack……………………………...10

1.2.5 Negative Slack……………………………..11

1.2.6 Positive Skew………………………………11

1.2.7 Negative Skew……………………………...11

1.2.8 Useful skew……………………………….12

1.3 Timing Path…………………………………………. 13

1.4 Motivation…………………………………………… 14

1.5 Organization of Thesis………………………………...14

2 LITERATURE SURVEY AND PROBLEM STATEMENT 17

2.1 Literature Survey……………………………………. 17

2.2 Problem Statement…………………………………... 21

3 Proposed Method 23

XV

3.1 Flow Chart……………………………………………...24

3.2 Script Argument Inputs………………………………..26

3.3 Proposed Method Flow…………………………………27

3.4 1st order search………………………………………….29

3.5 2nd order search…………………………………………29

3.6 Proposed Flow Sequence……………………………….30

3.7 Hierarchical Common Skew Points…………………….31

4 RESULT 33

5 Conclusion and Future Work 43

5.1 Conclusion………………………………………………43

5.2 Future Scope…………………………………………….44

6 References 45

XV

LIST OF FIGURES

1.1 ASIC Flow

1.2 Floorplan

1.3 Power Network Synthesis

1.4 Placement

1.5 Clock Tree Synthesis

1.6 Routing

1.7 Positive Slack

1.8 Negative Slack

1.9 Timing Path before Skew implementation

1.10 Timing Path after Useful Skew

1.11 Timing Path

1.12 Static Timing Analysis

2.1 Back Annotation Flow

2.2 A predictive useful skew implementation in the conventional timing-driven

placement flow.

2.3 Predictive NOLO (“no-loop”) useful skew flow.

2.4 ExtensiveSlackBalance: an Approach to make Front-end tool aware of clock

skew scheduling.

3.1 Proposed Flow

3.2 Script input arguments.

3.3 Algorithm Flow

3.4 Hierarchy Placement

4.1 Setup timing Summary

4.2 Hold violation summary

4.3 Graph comparing Hold violation

4.4 No of cell comparison

4.5 Area comparison

XVI

XVII

LIST OF TABLES

4.1 Timing Report at post-synthesis.

4.2 Setup timing summary after implementation run.

4.3 Hold Timing summary after implementation run.

4.4 Histogram for Hold Violation

4.5 Comparison of Area Summary and Cell Count.

4.6 Power Comparison

4.7 CTS cell count comparison for common skew points method.

4.8 Runtime Comparison

XVIII

XIX

List of Abbreviations

ASIC Application Specific integrated circuit

BA Back annotation

CTS Clock Tree Synthesis

CSS Clock Skew Scheduling

PT Prime Time

SoC System On Chip

Nm Nanometer

WNS Worst Negative Slack

TNS Total Negative Slack

NVE Number of Violating Endpoint

GhZ gigahertz

RTL Register Transfer Level

DC Design Compiler

HDL Hardware Descriptive Language

PnR Placement and Routing

PNS Power Network Synthesis

LVT Low Threshold Voltage

HVT High Threshold Voltage

SVT Standard Threshold Voltage

MMWC Maximum Mean Weight Cycle

QoR Quality of Result

FFx Flip flop

STA Static Timing Analysis

XX

1

Chapter 1

INTRODUCTION

In a sequential circuit, Timing is the main concern of a digital design engineer. As

technology is moving into smaller node and demand for a high performance system

keep pushing the clock frequency into GHz region, the conventional method of

achieving the required timing target is no longer efficient. Apart from functional

designing, timing closure is one of the important milestones on which heavy time is

being spent which govern when a chip can be released to the semiconductor foundry

for fabrication. So any effort which can help reduce the effort on timing closure will be

of great importance.

The conventional method of synthesis, assume ideal clock network as clock tree in not

build yet. This approach of ideal clock network is too optimistic which result in data

path optimization for setup violation. As we go further into the implementation stage,

this approach leads to penalty of area and power. Also, the positive slack available at

multiple stages is not properly utilized which lead to underuse resources. Many

researchers have started to address the need of clock skew at synthesis stage. They

started to provide feedback from implementation stage or post synthesis stage back to

synthesis stage. However, this method is inefficient as tool has already mapped the

design and data path optimization is performed. This led to a classic chicken-egg

problem. In further Chapter 3, we have tried to address this issue.

1.1 ASIC DESIGN FLOW

 ASIC (Application Specific Integrated Circuit) are designed for specific applications.

Examples of ASCI design include IoT devices, chip for satellite, mobile chip and

interface chip etc. At Seagate ASIC is used for designing of flash controller. ASIC

design cycle starts with a functional specification of a chip followed by RTL logic,

synthesis, Implementation and STA. The typical design cycle can be shown by figure

1.1.

2

Figure 1.1 ASIC FLOW

3

1.1.1 Design Specification

To design a chip, one first lay down the specification of the system. Specifications are

nothing but a high level representation of the system which include Functionality i.e.

what will our designed chip do, Performance parameter like speed and power, Physical

dimension, Technology constraint & Fabrication technology etc.

1.1.2 Behavioral or Functional Description

In this step, architecture of the design is decided. This includes whether to use RISC

(Reduced Instruction Set Computer) versus CISC (Complex Instruction Set Computer),

ALUs, pipelining, Floating Point units and size of caches etc. The functionality of the

design is broken into small pieces with a clear understanding about different block

implementation. The outcome of functional design is usually a timing or relationship

between the various subsystems of a large block. This allows for a fast debugging of

the full system. Behavioral design is largely a manual step and working environment is

documentation.

1.1.3 Register Transfer Level

This step is basically the detailed logic implementation of the entire design. This is

where the detailed description such as arithmetic operation, logic operation, controls

flows and register allocation that represent a functional design are derived and tested.

The subsystems which are defined at top level are implemented using logic

representation, finite state machine, combinational and sequential logic etc. This

description is called Logic Design or Register Transfer Level (RTL) description. RTL

is usually expressed in a Hardware Description Language (HDL) such as VHDL or

Verilog. This description can be used for simulation and verification. Nowadays

another HDL language System Verilog is gaining popularity for verification.

1.1.4 Synthesis

4

 Synthesis is a process of converting a design description written in a hardware

description language such as Verilog or VHDL into an optimized gate level netlist

mapped to a particular technology library. Implementation tool are not advance enough

to derive the physical representation from the logical representation. To bridge the gap

between logical and physical representation Synthesis is done. We have used Design

Compiler (DC) tool from Synopsys for synthesis of our design. Constraint such as

timing, area and power are considered for the optimization of the design. The synthesis

tool try to meet required constraint criteria based Total cost of the design. At the end,

we will also verify whether the gate level netlist obtained at the end of synthesis match

the functional behavioral of design. For that we used the formality tool which does

functional verification.

The next in ASIC flow is the physical implementation of the optimized gate level

netlist. The Gate level Netlist is converted into geometric representation using an

implementation tool such as Encounter, IC compiler etc.

1.1.5 FLOORPLAN

This is the first major step in PnR (Placement and Routing) to get our layout done. Goal

of floorplan is to provide best possible seed to the placement stage. At floorplan stage

we decide the area of the core, location of Input output pads, type of power distribution.

Every subsequent stage like placement, Clock tree and routing performance depend on

optimum floorplan. Maximum effort are put into floorplan to create a optimize seed for

the placement stage. As good as our floorplan will be the subsequent stage result will

be better. The core area of the floorplan can be decided by using the total area of cell

available in the netlist.

• Goals of floor planning:

➢ Place the Macros on a chip.

➢ Decide the location of the I/O pins.

➢ Decide the type of power distribution.

• Objectives of floor planning are:

➢ To minimize the chip area

➢ Minimize delay

5

➢ Minimize global congestion (routable)

Figure 1.2 Floorplan

1.1.6 Power Network Synthesis

Power Network Synthesis (PNS) is done so that the power is distributed evenly in our

design to each and every corner. To distribute power straps and rails are distribute in

the design. Physical cells such as TAP, ENDCAP, DECAP cell are also included in the

design. Power planning is done by introducing switches and creating power region to

save power consumption. Power gating can also be implemented at this stage for further

optimization.

6

Figure 1.3 Power Network Synthesis

1.1.7 Placement

At placement we assign cells to a positions on the chip, which is basically knows as site

rows. The main objective is to reduce area and interconnect cost. Placement stage also

decides the routability of the design.

Goal of Placement

I. Timing, Power and Area optimizations

II. Routable design (minimal global & local congestion)

III. No/minimal cell density, pin density & congestion hot-spots

7

Figure 1.4 Placement

1.1.8 Clock Tree Synthesis

CTS is a process in which clock gets distributed throughout the design. The goal of

CTS is to minimize the skew so that maximum frequency of the design can be properly

utilized. Cell used in clock nets are LVT (Low Voltage Threshold) cell as these nets are

most timing critical.

Figure 1.5 Clock Tree Synthesis

8

1.1.9 Routing

Routing is the process of physically connecting every pins and instance in our design.

During routing we make sure that crosstalk effect doesn’t degrade the system

performance.

Figure 1.6 Routing

1.1.10 Static Timing Analysis

Timing analysis is the integral part of ASIC flow. Anything can be compromised but

not timing. Timing should be met before sending a chip for fabrication. Static Timing

Analysis is used to determine whether a design is meeting all timing constraint for that

STA checks all possible path for timing violation. STA is much faster than timing-

driven, gate-level simulation and doesn’t check the functionality of the design. Static

timing analysis tool work by dividing the design into different timing paths. Then

propagation delay of each path is calculated. Then these delay is compared to the

required maximum and minimum values.

9

Figure 1.7 Static Timing Analysis.

In figure 1.7, we can see that STA Engine gives Reports and ECO scripts as an output.

ECO script can further be used back in implementation tool to close timing and meet

the design specification.

1.2 Definitions

1.2.1 Clock Skew

Clock Skew is defined as the time difference between the arrivals of clock signal at two

different point is our design. Conventionally we try to minimize the clock skew in the

design so that max utilization of frequency can be done.

1.2.2 Setup Time

Setup Time is defined as minimum amount of time for which data should be available

at the capture edge of the clock so that the data can be perfectly latched. Any violation

in setup time can cause an imperfect data to latch into the system and can impact the

functionality of our design.

10

1.2.3 Hold Time

Hold Time is defined as the minimum amount of time after clock edge for which data

should be held stable so it can be perfectly latched. Hold Time is the most critical of all

timing violation as hold violation depend upon the data path delay.

1.2.4 Positive Slack

Slack is define as the difference between the data required time and the data arrival time

of a signal. For a timing path slack determine the desired frequency. In Setup, Positive

slack is when the data is arriving early than the required time.

Figure 1.8 Positive Slack

In figure 1.8, Path A is the launch path and Path B is the capture path. Arrival time of

a signal to reach capture flop from launch flop is 7ns and the required time is 9 ns. So

the slack of our timing path is 2ns which is knows as positive slack. This positive slack

can be used to the other critical path of the design.

11

1.2.5 Negative Slack

Figure 1.9 Negative Slack

In setup, negative slack is when the data arrival time is greater than the data required

time. In figure 1.9 data arrival time is 5ns and data required time is 3 ns which create a

negative slack of -2ns. In timing path, we aim to improve this negative slack. Chip will

be fabricated only when there are no negative slack path.

1.2.6 Positive Skew

Positive skew is defined as when the clock edge on the capture flop come late than the

launch flop than it is called positive skew. In positive skew clock and the data are

traveling in the same direction. Positive skew can help in removing the setup violation

but can degrade the hold violation. Clock and data are routed in the same direction than

it is called +ve skew.

1.2.7 Negative Skew

12

Negative skew is defined as when the clock edge come early in capture flop than the

launch flop than it is called negative skew. In negative skew clock and data are

travelling in the opposite direction. Negative skew can help in removing the hold

violation but can degrade the setup violation. Clock and data are routed in the opposite

direction than it is called -ve skew.

Figure 1.10 Timing Path before skew implementation

1.2.8 Useful skew

If we intentionally try to add skew in our design so that the violating timing path can

be met is knows useful skew. This skew is borrowed from the adjacent stages and

redistributed in the most critical path to meet timing of the design.

In figure 1.10, we have two flip flop pair FF1-FF2 and FF2-FF3. FFI-FF2 being the

longest path has timing violation of 2ns. FF2-FF3 is the shortest path is meeting setup

timing by 5ns. In useful skew we can borrow the positive 2ns from the FF2-FF3 pair

and can distribute it to the FF1-FF2 pair to remove the timing violation. This can be

done by adding a additional buffer for delay to the clock pin of FF2. By doing so we

can reduce the timing violation is path 1 and path 2 will still be meeting by 3ns.

In figure 1.11 we have add the additional delay Td to clock pin of FF2 so that FF1-FF2

timing is met without effecting the timing of FF2-FF3.

13

Figure 1.11 Timing path after Useful Skew.

1.3 Timing Path

In our design, timing path can be divided into four path mainly R2R, I2O, I2R and R2O.

Figure 1.12 Timing Path[15]

I. R2R: R2gister to Register (Path 2)

II. I2O: Input to Output (Path 4)

14

III. I2R: Input to Register (Path 1)

IV. R2O: Register to Output (Path 3)

1.4 Motivation

In conventional ASIC flow, synthesis tool maximize his effort to reduce the setup time

violation. To remove setup time violation tool used to optimize the data path. Data path

optimization lead to increase in cell size or addition of buffer and invertor. The positive

slack available in adjacent flop pair are not utilize. Also the synthesis tool is not aware

of the clock skew scheduling that going to be happen in the clock build stage. Again in

the placement stage, setup violation are removed by optimizing the data path based on

the wirelength delay. This optimization lead to unnecessary addition of buffer and

invertor. This lead to underutilize adjacent positive slack in flop pair. By doing data

path optimization and not utilizing the positive slack, overall runtime of our design is

also increased.

To make the synthesis tool aware of the clock skew scheduling there is a need of a new

design flow. In this Thesis we have tried to address this issue by proposing a predictive

clock skew redistribution technique which result in improving the timing of our design

as well as the overall QoR. We are saying it as a predictive method because the clock

tree is not available in the synthesis stage and the skew is done based on the data path

optimization. The output skew adjustment of our script is feed to the placement stage

for skew aware placement. The proposed method is unidirectional as no feedback is

used in our design. This result in improving the runtime of our design as well.

1.5 Organization of Thesis

In Chapter 2 we have discussed in detailed about the different predictive skew

methodology available and how a long feedback impact the runtime of our design.

Chapter 3 present a proposed methodology that predict useful skew from synthesis

stage and distribute the positive slack to the most critical path. Chapter 4 presents result

and discussions section. In which we have presented result of proposed method and

15

compared it to the conventional ASIC flow. Chapter 5 represent the conclusion of the

whole work and future scope by which we can further refine our results.

16

17

Chapter 2

Literature Survey and Problem statement

2.1 Literature Survey

In traditional industrial ASIC, to remove timing violation back-annotation flow is used.

The back-annotation flow can have many variant. In BA, feedback is used. This

feedback is provided from Post-Clock tree synthesis stage either to the implementation

tool or the synthesis tool. The long feedback result in increased run time. Not only the

loop is ineffective but also the timing violation at the synthesis stage doesn’t correlate

with the violation at the end of implementation run. Synthesis tool and Placement stage

invest a lot of effort in removing setup time. To remove setup time, data path

optimization is done which lead to adding buffers or invertors, resizing of cell and

VT(Threshold Voltage) group swapping. Now in BA flow, the useful skew values are

retrieved when the data path optimization is already done. These skew values are not

efficient and can only be taken for the most critical paths.

18

Figure 2.1 Back Annotation Flow[5]

Seungwon Kim[8] has proposed a unidirectional flow to overcome this long feedback

loop. In which predictive useful skew Methodology is implemented with the

incremental timing driven placement optimization stage. Timing driven

placement(TDP) improves setup time violation and is not aware of the clock skew

optimization next stage. To make placement aware of the clock skew optimization in

the next stage author proposes to use a predictive useful skew methodology with hybrid

legalization method for better placement result.

Figure 2.2 A predictive useful skew implementation in the conventional timing-driven

placement flow.[8]

Using MMWC (maximum mean weight cycle)[13] optimal clock latency of each flip

flop is obtained. Based on the clock latency value, Local clock buffer(LCB) are assign

19

to the flops and additionally flip flop and LCB are placed in a tangential position. The

placement of LCB and Flipflop are changed depending on the wirelength and timing

summary. The position is further optimized by using a proposed hybrid legalizer. After

that STA is done to further verify and optimize the result. By doing so placement is

aware of the clock skew optimization on next stage. The drawback is that the synthesis

tool is not aware about these skew value and will try to optimize the result based on

data path information which lead to underutilized resources.

Tuck-Boon Chan[5], proposed a method which applies useful skews at the post

synthesis stage which improves the timing correlation between the post synthesis stage

and the implementation stage. Author used the MMWC method to retrieve the optimum

skew values and feed this value to the placement stage. Author also proposed an

additional run of synthesis with LVT libraries only to predict the useful skew based on

two synthesized netlist. The result shows that the single pass flow achieve better timing

compared to the back annotation flow.

Figure 2.3 Predictive NOLO (“no-loop”) useful skew flow [5]

 NOLO in figure 2.3 address the issue of making the implementation flow aware of

clock skew optimization using the clock skew scheduling. The predictive skew

methodology based on MMWC approach to find an optimum clock skew value for

flop’s. This method will reduce the run time as the most critical path can easily be

20

recovered using the clock skew and implementation tool will have a lesser path for

optimization. This indeed result in improving the QoR and better run time compare to

the conventional industrial flow. Still the front end, synthesis tool is not aware about

these optimization. In next paper author has address this issue.

In paper [1], author has address the issue of making the front end tool aware of the clock

skew scheduling in implementation run. Author used the Synopsys Physical compiler

to generate a physical aware placed-netlist. The useful skew is obtained using the

Extensive slack balance algorithm. These skew value are feedback to synthesis tool

using a SDC file and then again a re-synthesis is done.

Figure 2.4 ExtensiveSlackBalance: an Approach to make Front-end tool aware of

clock skew scheduling.[1]

To generate the placement author used the design compiler in topographical mode and

based on that predictive useful skew values are extracted for all the critical paths. These

skew value are again feed to the synthesis tool for another iteration. This process is

repeated until desirable result are not obtained.

21

2.2 Problem Statement

Typical run time for a SoC at 28nm technology node is 5~7 days. Any effort to reduce

the run time and timing closure cycle will be of great help. From previous section we

can conclude that to remove timing violation either a long feedback is used or the useful

skew is retrieved at the post synthesis stage. These long feedback increase the run time

for chip implementation and taking feedback from the implementation tool result in

uncorrelated data at the post-synthesis and post-route result as the feedback taken when

the data path optimization is design has already taken place.

In synthesis, data path optimization is done to remove timing violation. The data path

optimization lead to addition of buffers, invertors and re-sizing of cell. The excessive

data path optimization at synthesis undermine the positive slack available at subsequent

stage. This available positive slack can be utilize to reduce run time and effort level

invest at synthesis stage.

To better utilize these positive slack from synthesis stage onwards we have proposed a

method which retrieve this positive slack in synthesis stage and distribute them to the

most critical path, accordingly develop the netlist without much effort invest in data

path optimization. These useful skew value are again feed at placement stage so that

skew aware placement take place. This method not only result in improving the setup

timing violation but also result in better area and power consumption. Overall timing

QoR of our design is improved and run time of our design is also improved comparing

to the conventional flow.

22

23

Chapter 3

Proposed Method

In proposed method, useful_skew_proc is created using a TCL (tool command

language) scripting language. The proc is used in the synthesis stage and the dumped

skew adjustment file which is the output of our proc is feed to the Placement and Clock

tree synthesis stage in implementation tool. There are various switches in the proc

which can control the performance of the script and can impact the overall result of the

design. Different switches are discussed in section 3.2.

Proposed proc make the synthesis tool aware of the clock skew optimization happen in

the next stage. Zero skewing in synthesis stage is to conservative and doesn’t take the

account of clock optimization in subsequent stage. By using the proposed method we

are synthesizing our netlist based on non-zero skewing approach such that the synthesis

tool is more aware of the clock tree and can invest more effort in the critical path of our

design which can effect our result in the implementation run.

The output skew adjustment script is feed forward to the implementation tool in

placement stage. Sourcing these skew value will make the placement stage more skew

aware and the placement of the cells is done accordingly. The run time for placement

will also reduce as their will be less path for optimization and earlier critical path is

converted into positive slack path by using useful skew. By doing so less number of

buffer and invertor will be added and resizing of cell is also not required which will

also result in saving area and power.

These value are also feed to the Clock tree build stage, such that we are forcing the CTS

engine to implement these value in the clock tree. Further CTS can optimize the tree

and data path for hold violation which will result in overall improvement of our result

QoR.

24

3.1 Flow Chart

Figure 3.1 Proposed Flow

In the proposed flow chart, we can see that the useful skew value are retrieved at the

synthesis stage after initial and incremental compilation. In the initial compilation our

design is mapped to the cell and no optimization has taken place so far. Experimental

result shows that the implementation of useful_skew_proc after initial compile lead to

25

degraded result as after the incremental compilation the drive strength of cell are

changed and buffer-invertor are added or removed from the design. This lead to a

uncorrelated result after proc implementation and post synthesis. To overcome this

issue we started to implement the useful_skew_proc after the incremental

compilation.

Proposed proc can also be implemented after the DFT insertion but experimental

result show us that result are improved but run time is increased drastically. The

output skew adjustment script contain information about all the clock pin of the flop

on which skew is applied. This skew adjustment script is feed to the placement stage

and cts stage for better timing correlation and make the implementation and synthesis

tool more correlated.

Skew adjustment script is also feed to the STA engine for verification at placement

and post synthesis result. We are using Design Compiler from Synopsys for the

synthesis, IC Compiler II from Synopsys for Placement and Routing Stage and Prime

Time from Synopsys for the Timing analysis of our design. StarRC extraction is used

to generated SPEF file for more accurate result.

26

3.2 Script Argument Inputs

Figure 3.2 Script input arguments.

For maximum flexibility, user can control many switches of the script, which can

impact the runtime and QoR. One of the switches is “-depth” which control how far the

2nd order search will look for the available positive slack values. A high depth value

can improve the timing result but also result in an increased runtime. Another switch “-

max_path” which control the maximum number of violating path on which our script

will run. High value of “-max_path” can directly impact our runtime. All switches have

their default values. Hence it is not compulsory for the user to provide all of them but

the best possible QoR within the reasonable runtime can be achieved by providing the

complete argument.

27

3.3 Proposed Method Flow.

I. Create a R2R path group for the entire worst case scenario. These path group

should exclude path from don’t touch.

II. Using “report_qor” command gets the total Number of Violating Endpoints

(NVE) for each scenario. Otherwise user can also provide the NVE number

using –max_path argument to save run time.

III. From the NVE number in (II) and by using “report_timing” command, gather

all information on Startpoint, Endpoint, Startpoint clock, Endpoint Clock,

violated slack and store them into a array.

IV. Now you can sort them from max violating path to the min. By experiment and

iteration it have been observed that if script work from worst violating path

toward minimum violating, we get better QoR and improved run time.

V. Next, we filter the data path based on the clock domain. Startpoint-Endpoint

pair should be of same clock domain. Clock crossing is difficult to handle

without the full design knowledge.

VI. Additional filtering required for the startpoint endpoint pair

a. Endpoint should be unique in the collection.

b. Startpoint Endpoint should be constrained.

c. Remove any self-loop.

d. For ease off calculation loop can be removed from design.

e. Start/End points should not be a in/out ports.

VII. With the left over endpoint pair after filtering we will apply the clock skew

adjustment for removing timing violation.

VIII. To obtain the value of slack for a given endpoint-startpoint pair we use a

combination of “get_attribute” and “get_timing_path” command.

IX. The next step is to update latency of startpoint-endpoint if they are already

applied in earlier stage.

X. With the updated slack, we can provide a clock skew adjustment if positive

slack is available in the adjacent stage. If positive slack is available then the

clock latency is written out to a file with “set_clock_latency”.

Example :- “set_clock_latency 0.35 a/b/c/CK”

28

Where 0.35 is the delay that we want to introduced at the a/b/c/CK clock pin of

the flop.

XI. After retrieving all the skew value and updating them in an output file, Next

step will be to find the common skew point so that skew number can be grouped

together for a hierarchy.

As shown in figure 3.2, the user input argument such as depth, slack margin &

max_borrowing etc. can further improve the QoR but can result in increased run time

for the script. By iteration and adjusting the depth and slack margin value, design QoR

and run time can be balanced for optimum performance.

29

3.4 1st order search

Figure 3.4 1st order Search

In 1st order, available skew is retrieved from the adjacent register. Positive slack is

check in the adjacent register and distributed to the critical path. In Figure 3.4,

consider flop pair FF1 and FF2 having a timing violation of 2ns. The adjacent flop

FF3 to FF2 is meeting time by 5ns. This positive slack of 5ns can be distributed

back to FF1-FF2 to removing timing violation. By giving a skew value of 2ns to

FF2 the timing violation can be removed without effecting the adjacent register

timing.

3.5 2nd order search

In 2nd order search, positive slack is not only retrieved from the adjacent register

but also from the next register down the line. By adjusting the “-depth” switch we

can control how far the 2nd order will search the positive skew down the line.

30

3.6 Proposed flow sequence

Figure 3.3 Algorithm Flow

31

3.7 Hierarchical Common Skew Points

In a design cells belonging to the common hierarchy used to sit together during

placement stage. By taking advantage of this placement strategy, we can group the

common skew point in an hierarchy based on the skew values. This grouping allows

us to use lesser clock buffers/invertors cell required during balancing of the clock

tree build stage. This not only allows us to save area but power of our design is

saved as the cell required to build clock tree are generally LVT cell. In figure xxx

it can be seen that a given hierarchy is sitting together after the placement stage.

Figure 3.4 Hierarchy Placement

32

33

Chapter 4

RESULT

The predictive clock skew redistribution scheme was tested on a design with target

frequency of 725 MHz. Design also consist of multiple clock with frequency ranges

from 450 MHz to 725 MHz. The SoC design tested was on 28nm technology node.

At synthesis, timing comparison is done for setup violation at the slow corner as shown

in Table 4.1. The timing analysis is done with Prime Time tool for accurate result. All

the result are analyzed for the Reg2Reg path.

SETUP (0_Cworst)

DESIGN WNS(ns) TNS(ns) NVE

Classic 0.164 50.362 2287

Proposed Method 0.042 0.152 9

Table 4.1 Timing Report at post-synthesis.

Table 4.1 shows the setup violation summary at the post synthesis stage. We have used

to 0_Cworst corner to analyzed the setup violation as it is the worst slow corner in our

design. From the table we can say that the same design show better result with the skew

adjustment script with respect to the Conventional flow. Also the number of violating

endpoint has been reduced drastically. The proposed method not only reduce the Total

negative slack but worst negative slack of our design is also reduced.

34

SETUP

Scenario’s
CLASSIC Proposed Method

WNS(ns

)
TNS(ns) NVE

WNS(ns

)
TNS(ns) NVE

0_RCworstT_SSG 0.381
4447.72

4

3752

3
0.429

4005.49

7

3588

8

125_RcworstT_SS

G
0.261 448.052 4231 0.306 399.347 2683

0_CworstT_SSG 0.419
6267.66

7

4417

8
0.442

5878.20

4

4225

0

125_CworstT_SSG 0.278 605.168 8664 0.311 465.748 5318

Table 4.2 Setup timing summary after implementation run.

Result in Table 4.2 shows the setup timing summary across all different corner i.e. slow

corner’s, after design went through the complete implementation run. The result are

obtained using Prime time tool and RC-STAR extraction is done for generating SPEF

file which provide us with the more accurate result.

From Table 4.2, it can be observed that setup violation have improved by 6.21% at the

worst corner. There is a small increase in the worst negative slack in our design but the

number of violation above 350ps were few. Overall the setup violation is improved and

number of violation is also reduced. This can be inferred from figure 4.1, which shows

the comparison between the classing TNS and Proposed method TNS. By using Bar

graph it can be clearly seen that the setup violation have been improved.

35

0

10000

20000

30000

40000

50000

Scenario’s

 TNS_Classic

 NVE_Classic

 TNS_Proposed

 NVE_Proposed

0_RCwors
tT

125_RCwors
tT

0_Cwors
tT

125_Cwors
tT

Figure 4.1 Setup timing Summary

Table 4.3, which shows the hold timing summary across different corner i.e. fast corner.

The result shows that there is a degradation of number of hold violation. 125_RCbest

is the worst corner for hold analysis. The degradation is observed in hold analysis

because after the proc implementation and an iteration of incremental compile, the

synthesis tool optimize only setup timing violation without taking the hold violation

into account. This optimization lead to the removing of buffer or sizing of cell which

ultimately lead to hold degradation. To remove the hold violation we have taken the

fast corner into consideration to address this issue.

36

SCENARIO'S

HOLD

CLASSIC Proposed Method

 WNS TNS NVE WNS TNS NVE

SSG

0_Cworst 0.117 15.254 867 0.174 23.379 1182

125_Cworst 0.112 17.537 1003 0.17 28.239 1448

0_RCworst 0.116 13.186 801 0.176 22.566 1163

125_RCworst 0.108 14.517 901 0.171 28.153 1449

FFG

0_Cbest 0.094 73.55 5699 0.143 109.992 5977

125_Cbest 0.107 120.733 8103 0.161 166.562 8182

0_RCbest 0.092 82.174 6048 0.139 114.369 6339

125_RCbest 0.1 129.223 8444 0.155 164.762 8571

0_Cworst 0.099 103.521 7073 0.151 141.639 7302

125_Cworst 0.108 158.003 9659 0.17 204.411 9812

0_RCworst 0.101 93.033 6678 0.154 135.944 6902

125_RCworst 0.116 151.624 9718 0.174 203.123 9445

Table 4.3 Hold Timing summary after implementation run.

37

1

10

100

1000

10000

100000

Scenario’s

 TNS_Classic

 NVE_Classic

 TNS_Proposed

 NVE_Proposed

12
5_

R
C

w
o
rs

t

0_
R

C
w

o
rs

t

12
5_

C
w

o
rs

t

0_
C

w
o
rs

t

12
5_

R
C

b
es

t

0_
R

C
b
es

t

0_
C

b
es

t

12
5_

C
b
es

t

Figure 4.2 Hold Violation Summary

In Figure 4.2, we can see that the number of hold violation in all the scenario are

comparatively same and there is a small degradation in the total negative slack. The

difference in hold violation can be better understood by considering the histogram of

hold violation of proposed method in below graph.

In histogram, obtained from table 4.4, as shown in figure 4.3, shows that there are few

violation above 100 ps and maximum number of violation is concentrated around 65 ps

to 30 ps. These violation can easily be removed in timing closure cycle without

effecting much of the effort level and run time. Overall we can say that there is an

improvement of 5.53% in timing violation.

38

Bin CLASSIC Proposed Method

-0.135 0 4

-0.105 0 15

-0.09 5 19

-0.075 17 40

-0.065 35 120

-0.045 242 700

-0.03 742 1089

-0.015 2694 2164

0 4709 4420

Total Vio 8444 8571

Table 4.4 Histogram for Hold Violation

Figure 4.3 Graph comparing Hold violation.

Next we look at table 4.5, the area comparison with and without the predictive skew

algorithm. From the table 4.5, it can be observer that there is an improvement in total

cell count which lead to a lesser area in skew adjustment script design.

1

10

100

1000

10000

N
u

m
b

e
r

o
f

vi
o

la
ti

o
n

s

Violations (ns)

Classic

Proposed
Method

39

 CLASSIC Proposed Method

VT
No. of

Cells
Area(um2)

No. of

Cells
Area(um2)

30uhd_hvt 32466 30103.15 32666 30412.93

35uhd_hvt 121460 114333.17 130607 128885.39

40uhd_hvt 1212023 865393.31 1234762 882128.67

30uhd_svt 319399 436814.42 285473 373675.08

35uhd_svt 314847 529690.39 332819 541693.73

40uhd_svt 762230 634294.51 725596 609105.97

30uhd_lvt 0 0 0

35uhd_lvt 21187 28858.75 22849 30776.21

40uhd_lvt 0 0 0 0

undefined 85 1116482.18 85 1116482.18

TOTAL 2783697 3755969.88 2764857 3713160.15

Table 4.5 Comparison of Area Summary and Cell Count.

The Table 4.5 also show that with more number of HVT, SVT cells there will be

reduction in power consumption. This can be verified from Table 4.6.

200000

400000

600000

800000

1000000

1200000

1400000

Threshold Voltage Group

 No. of Cells_Classic

 No. of Cells_Proposed

30
 u

hd
_h

vt
35

 u
hd

_h
vt

40
 u

hd
_h

vt

30
 u

hd
_s

vt
35

 u
hd

_s
vt

40
 u

hd
_s

vt

35
 u

hd
_l

vt

Figure 4.4 No of cell Comparison

40

200000

400000

600000

800000

1000000

1200000

1400000

Threshold Voltage Group

 Area_Classic

 Area_Proposed

30
 u

h
d
_h

vt
35

 u
h
d
_h

vt
40

 u
h
d
_h

vt
30

 u
h
d
_s

vt
35

 u
h
d
_s

vt
40

 u
h
d
_s

vt

35
 u

h
d
_l

vt

U
n
d
ef

in
ed

A
re

a
 (
m

m
2
)

Figure 4.5 Area Comparison

VT Classic PROC

Power (nW) 4.06E+08 3.81E+08

Table 4.6 Power Comparison

VT With_skew_only With_skew_with_hier

35uhd_lvt 26574 22849

Table 4.7 CTS cell count comparison for common skew points method.

With lesser count of LVT cell in Table 4.7, we can say that the hierarchical common

skew point method come out to be as success as the LVT cell are only used during the

clock tree synthesis stage. A lesser value of LVT directly relate to lesser cell count at

clock build stage.

Finally, run time of both the design i.e. with skew adjustment and without skew

adjustment is presented in table 4.8. This further proved that the skew adjustment

effectively help with the QoR of the design and result in lesser run time comparing to

the conventional flow.

41

STAGE Classic Proposed Flow

Synthesis 43:49:00 55:36:00

Placement 32:00:00 16:00:00

CTS 35:25:00 30:30:00

Routing 53:20:00 55:00:00

Total (hrs)

aprroax
 164:34:00 157:06:00

Table 4.8 Runtime Comparison

42

43

Chapter 5

5.1 Conclusion

Predictive clock skew redistribution unidirectional flow methodology was successful

implemented. From previous section, we have concluded that the utilization of positive

slack from the early stage and redistributing it to most critical path not only improve

the timing QoR but also result in a better run time. The search for positive slack not

only limited to adjacent register but also can be utilize for n register down the line with

the help of 2nd order search. This might result in more number of violating points but

result in decreasing the total negative slack significantly.

The proposed common hierarchy clock skew point also help in reducing the number of

buffer required in clock tree synthesis stage which result in overall reduction in clock

tree power consumption.

The overall runtime, power and area is also improved compare to the conventional flow

which result in better utilization at timing closure. The degradation of hold violation is

observed but these minute violation can easily be removed in timing closure without

significant area and power penalty.

The flow is generic which mean it is technology independent and can be used at

different technology node.

44

5.2 Future Scope

The proposed method can be used with MCMM (Multi corner multi-mode) analysis

from the early stage to improve hold violation. Another upgradation will to use spg

flow i.e. physical aware skew distribution at synthesis stage. SPG flow not only help in

improving retrieving skew value but result will also be better correlated with the

implementation engine. To remove hold violation, a high clock uncertainty value can

also be used at synthesis stage so that the violation will be correlated to the

implementation stage.

45

Chapter 6

REFERENCES

[1] K. Wang, L. Duan, and X. Cheng, “Extensiveslackbalance: an approach to make

front-end tools aware of clock skew scheduling,” in Proceedings of the 43rd

annual Design Automation Conference. ACM, 2006, pp. 951–954.

[2] J. P. Fishburn, “Clock skew optimization,” IEEE transactions on com- puters,

vol. 39, no. 7, pp. 945–951, 1990.

[3] K. Ravindran, A. Kuehlmann, and E. Sentovich, “Multi-domain clock skew

scheduling,” in Proceedings of the 2003 IEEE/ACM international conference

on Computer-aided design. IEEE Computer Society, 2003, p. 801.

[4] C. Albrecht, B. Korte, J. Schietke, and J. Vygen, “Cycle time and slack

optimization for vlsi-chips,” in Proceedings of the 1999 IEEE/ACM inter-

national conference on Computer-aided design. IEEE Press, 1999, pp. 232–238.

[5] T.-B. Chan, A. B. Kahng, and J. Li, “Nolo: A no-loop, predictive useful skew

methodology for improved timing in ic implementation,” in Fifteenth

International Symposium on Quality Electronic Design. IEEE, 2014, pp. 504–

509.

[6] C. Albrecht, A. B. Kahng, B. Liu, I. I. Mandoiu, and A. Z. Zelikovsky, “On the

skew-bounded minimum-buffer routing tree problem,” IEEE Trans- actions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 7, pp.

937–945, 2003.

[7] C. Albrecht, P. Witte, and A. Kuehlmann, “Performance and area opti- mization

using sequential flexibility,” in Proc. International Workshop on Logic and

Synthesis. Citeseer, 2004.

[8] S. Kim, S. Do, and S. Kang, “Fast predictive useful skew methodology for

timing-driven placement optimization,” in Proceedings of the 54th Annual

Design Automation Conference 2017. ACM, 2017, p. 55.

[9] C. Albrecht, “Efficient incremental clock latency scheduling for large cir-

46

cuits,” in Proceedings of the Design Automation & Test in Europe Con- ference,

vol. 1. IEEE, 2006, pp. 1–6.

[10] S. Roy, P. M. Mattheakis, L. Masse-Navette, and D. Z. Pan, “Clock tree

resynthesis for multi-corner multi-mode timing closure,” IEEE Trans- actions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 4, pp.

589–602, 2015.

[11] S.-H. Huang, Y.-H. Lin, and M.-L. Huang, “Utilizing clock skew for tim- ing

reliability improvement,” in TENCON 2007-2007 IEEE Region 10 Conference.

IEEE, 2007, pp. 1–4.

[12] R. Chaturvedi and J. Hu, “A simple yet effective merging scheme for

prescribed-skew clock routing,” in Proceedings 21st International Confer- ence

on Computer Design. IEEE, 2003, pp. 282–287.

[13] C. Albrecht, B. Korte, J. Schietke, and J. Vygen, “Maximum mean weight cycle

in a digraph and minimizing cycle time of a logic chip,” Discrete Applied

Mathematics, vol. 123, no. 1-3, pp. 103–127, 2002.

[14] IC Compiler 2 User Guide.

[15] Design Compiler User guide.

[16] Prime Time User guide.

[17] Solvnet – Synopsys User Group.

[18] S.-H. Huang and Y.-T. Nieh, “Clock period minimization of non-zero clock

skew circuits,” in Proceedings of the 2003 IEEE/ACM international con- ference

on Computer-aided design. IEEE Computer Society, 2003, p. 809.

[19] A. P. Hurst, P. Chong, and A. Kuehlmann, “Physical placement driven by

sequential timing analysis,” in Proceedings of the 2004 IEEE/ACM International

conference on Computer-aided design. IEEE Computer Society, 2004, pp. 379–

386.

[20] M. C. Papaefthymiou, “Understanding retiming through maximum average-

delay cycles,” Mathematical Systems Theory, vol. 27, no. 1, pp. 65–84, 1994.

[21] D. Velenis, K. T. Tang, I. S. Kourtev, V. Adler, F. Baez, and E. G. Friedman,

“Demonstration of speed enhancements on an industrial circuit through

application of non-zero clock skew scheduling,” in ICECS 2001. 8th IEEE

International Conference on Electronics, Circuits and Systems (Cat. No.

01EX483), vol. 2. IEEE, 2001, pp. 1021–1025.

47

[22] J. L. Neves and E. G. Friedman, “Optimal clock skew scheduling tolerant to

process variations,” in 33rd Design Automation Conference Proceed- ings, 1996.

IEEE, 1996, pp. 623–628.

[23] “Design methodology for synthesizing clock distribution networks exploiting

nonzero localized clock skew,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 4, no. 2, pp. 286–291, 1996.

[24] G. De Micheli, “Synchronous logic synthesis: Algorithms for cycle-time

minimization,” IEEE Transactions on Computer-Aided Design of Inte- grated

Circuits and Systems, vol. 10, no. 1, pp. 63–73, 1991.

[25] K. A. Sakallah, T. N. Mudge, and O. Olukotun, “checkt, and mintc: Timing

verification and optimal clocking of synchronous digital circuits,” Ann Arbor,

vol. 1001, pp. 48 109–2122, 1990.

[26] T. G. Szymanski, “Computing optimal clock schedules,” in [1992] Pro-

ceedings 29th ACM/IEEE Design Automation Conference. IEEE, 1992, pp. 399–

404.

[27] S. Pullela, N. Menezes, J. Omar, and L. T. Pillage, “Skew and delay op-

timization for reliable buffered clock trees,” in Proceedings of 1993 Inter-

national Conference on Computer Aided Design (ICCAD). IEEE, 1993, pp. 556–

562.

[28] B. Wu and N. A. Sherwani, “Effective buffer insertion of clock tree for high-

speed vlsi circuits,” Microelectronics journal, vol. 23, no. 4, pp. 291– 300, 1992.

[29] R.-S. Tsay, “An exact zero-skew clock routing algorithm,” IEEE Trans- actions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 12, no. 2, pp.

242–249, 1993.

[30] K. D. Boese and A. B. Kahng, “Zero-skew clock routing trees with mini- mum

wirelength,” in [1992] Proceedings. Fifth Annual IEEE International ASIC

Conference and Exhibit. IEEE, 1992, pp. 17–21.

[31] J.-L. Tsai, T.-H. Chen, and C.-P. Chen, “Zero skew clock-tree optimiza- tion

with buffer insertion/sizing and wire sizing,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 23, no. 4, pp. 565–572,

2004.

[32] R. B. Deokar and S. S. Sapatnekar, “A graph-theoretic approach to clock skew

optimization,” in Proceedings of IEEE International Symposium on Circuits and

Systems-ISCAS’94, vol. 1. IEEE, 1994, pp. 407–410.

48

[33] L.-F. Chao and H.-M. Sha, “Retiming and clock skew for synchronous

systems,” in Proceedings of IEEE International Symposium on Circuits and

Systems-ISCAS’94, vol. 1. IEEE, 1994, pp. 283–286.

[34] I. S. Kourtev and E. G. Friedman, “Clock skew scheduling for im- proved

reliability via quadratic programming,” in Proceedings of the 1999 IEEE/ACM

international conference on Computer-aided design. IEEE Press, 1999, pp. 239–

243.

[35] X. Liu, M. C. Papaefthymiou, and E. G. Friedman, “Maximizing per- formance

by retiming and clock skew scheduling,” in Proceedings 1999 Design Automation

Conference (Cat. No. 99CH36361). IEEE, 1999, pp. 231–236.

[36] V. Nawale and T. W. Chen, “Optimal useful clock skew scheduling in the

presence of variations using robust ilp formulations,” in Proceedings of the 2006

IEEE/ACM international conference on Computer-aided design. ACM, 2006, pp.

27–32.

[37] Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S.-H. Lo,G. A.

Sai-Halasz, R. G. Viswanathan, H.-J. Wann, S. J. Wind et al., “Cmos scaling into

the nanometer regime,” Proceedings of the IEEE, vol. 85, no. 4, pp. 486–504,

1997.

[38] V. Mehrotra and D. Boning, “Technology scaling impact of variation on clock

skew and interconnect delay,” in Proceedings of the IEEE 2001 Inter- national

Interconnect Technology Conference (Cat. No. 01EX461). IEEE, 2001, pp. 122–

124.

[39] A. Rajaram and D. Z. Pan, “Robust chip-level clock tree synthesis,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys- tems,

vol. 30, no. 6, pp. 877–890, 2011.

[40] D.-J. Lee and I. L. Markov, “Obstacle-aware clock-tree shaping during

placement,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 31, no. 2, pp. 205–216, 2012.

[41] Y. Wang, Q. Zhou, X. Hong, and Y. Cai, “Clock-tree aware placement based

on dynamic clock-tree building,” in 2007 IEEE International Sym- posium on

Circuits and Systems. IEEE, 2007, pp. 2040–2043.

[42] K. Rajagopal, T. Shaked, Y. Parasuram, T. Cao, A. Chowdhary, and B. Halpin,

“Timing driven force directed placement with physical net con- straints,” in

49

Proceedings of the 2003 international symposium on Physical design. ACM,

2003, pp. 60–66.

[43] Y. Liu, R. S. Shelar, and J. Hu, “Delay-optimal simultaneous technology

mapping and placement with applications to timing optimization,” in Proceedings

of the 2008 IEEE/ACM International Conference on Computer- Aided Design.

IEEE Press, 2008, pp. 101–106.

[44] S.-W. Hur, A. Jagannathan, and J. Lillis, “Timing-driven maze routing,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.

19, no. 2, pp. 234–241, 2000.

[45] K. Sato, M. Kawarabayashi, H. Emura, and N. Maeda, “Post-layout op-

timization for deep submicron design,” in 33rd Design Automation Con- ference

Proceedings, 1996. IEEE, 1996, pp. 740–745.

[46] Y.-P. Chen, J.-W. Fang, and Y.-W. Chang, “Eco timing optimization using

spare cells,” in Proceedings of the 2007 IEEE/ACM international conference on

Computer-aided design. IEEE Press, 2007, pp. 530–535.

[47] M. Ni and S. O. Memik, “A revisit to the primal-dual based clock skew

scheduling algorithm,” in 2010 11th International Symposium on Quality

Electronic Design (ISQED). IEEE, 2010, pp. 755–764.

[48] S. M. Burns, “Performance analysis and optimization of asynchronous circuits,”

1991.

[49] J. Lu and B. Taskin, “Post-cts clock skew scheduling with limited de- lay

buffering,” in 2009 52nd IEEE International Midwest Symposium on Circuits

and Systems. IEEE, 2009, pp. 224–227.

[50] W. Shen, Y. Cai, W. Chen, Y. Lu, Q. Zhou, and J. Hu, “Useful clock skew

optimization under a multi-corner multi-mode design framework,” in 2010 11th

International Symposium on Quality Electronic Design (ISQED). IEEE, 2010,

pp. 62–68.

[51] V. Ramachandran, “Functional skew aware clock tree synthesis,” in Proc. Int.

Symp. Phys. Design, 2012.

[52] J. Bhasker and R. Chadha, Static timing analysis for nanometer designs: A

practical approach. Springer Science & Business Media, 2009.

[53] V. G. Oklobdzija, V. M. Stojanovic, D. M. Markovic, and N. M. Nedovic,

Digital system clocking: high-performance and low-power aspects. John Wiley

& Sons, 2005.

50

[54] M. Ni and S. O. Memik, “A fast heuristic algorithm for multidomain clock skew

scheduling,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 18, no. 4, pp. 630–637, 2009.

[55] J. P. Fishburn, “Solving a system of difference constraints with variables

restricted to a finite set,” Information processing letters, vol. 82, no. 3, pp. 143–

144, 2002.

[56] S.-H. Huang, C.-M. Chang, and Y.-T. Nieh, “Fast multi-domain clock skew

scheduling for peak current reduction,” in Asia and South Pacific Conference on

Design Automation, 2006. IEEE, 2006, pp. 6–pp.

[57] H. Jiang, K. Wang, and M. Marek-Sadowska, “Clock skew bounds esti- mation

under power supply and process variations,” in Proceedings of the 15th ACM

Great Lakes symposium on VLSI. ACM, 2005, pp. 332–336.

[58] C. Lin and H. Zhou, “Clock skew scheduling with delay padding for pre- scribed

skew domains,” in 2007 Asia and South Pacific Design Automa- tion Conference.

IEEE, 2007, pp. 541–546.

[59] I.-M. Liu, T.-L. Chou, D. Wong, and A. Aziz, “Zero-skew clock tree con-

struction by simultaneous routing, wire sizing and buffer insertion,” in

Proceedings of the 2000 international conference on Computer-aided de- sign.

IEEE Computer Society Press, 2001, pp. 33–38.

[60] S. Tam, R. D. Limaye, and U. Desai, “Clock generation and distribution for the

130-nm itanium/sup/spl reg//2 processor with 6-mb on-die l3 cache,” IEEE

Journal of Solid-State Circuits, vol. 39, no. 4, pp. 636–642, 2004.

[61] S. Tam, S. Rusu, U. N. Desai, R. Kim, J. Zhang, and I. Young, “Clock gen-

eration and distribution for the first ia-64 microprocessor,” IEEE Journal of Solid-

State Circuits, vol. 35, no. 11, pp. 1545–1552, 2000.

[62] J.-L. Tsai, T.-H. Chen, and C. C.-P. Chen, “Optimal minimum-delay/area zero-

skew clock tree wire-sizing in pseudo-polynomial time,” in Proceedings of the

2003 international symposium on Physical design. ACM, 2003, pp. 166–173.

[63] J.-L. Tsai, L. Zhang, and C. C.-P. Chen, “Statistical timing analysis driven post-

silicon-tunable clock-tree synthesis,” in ICCAD-2005. IEEE/ACM International

Conference on Computer-Aided Design, 2005. IEEE, 2005, pp. 575–581.

[64] A. Vittal, H. Ha, F. Brewer, and M. Marek-Sadowska, “Clock skew

optimization for ground bounce control,” in Proceedings of the 1996 IEEE/ACM

51

international conference on Computer-aided design. IEEE Computer Society,

1997, pp. 395–399.

[65] Z. Xing and P. Banerjee, “A parallel algorithm for zero skew clock tree routing,”

in Proceedings of the 1998 international symposium on Physical design. ACM,

1998, pp. 118–123.

[66] B. Taskin and J. Lu, “Post-cts delay insertion to fix timing violations,” in 2008

51st Midwest Symposium on Circuits and Systems. IEEE, 2008, pp. 81–84.

[67] W.-K. Chen, The VLSI handbook. CRC press, 2010.

[68] E. G. Friedman, “Clock distribution networks vlsi circuits and systems,” A

Selected Reprint Volume, 1995.

[69] M. A. Jackson, A. Srinivasan, and E. S. Kuh, “Clock routing for high-

performance ics,” in 27th ACM/IEEE Design Automation Conference. IEEE,

1990, pp. 573–579.

[70] N.-C. Chou and C.-K. Cheng, “On general zero-skew clock net construc- tion,”

IEEE Transactions on Very Large Scale Integration (VLSI) Sys- tems, vol. 3, no.

1, pp. 141–146, 1995.

[71] N. Ito, H. Sugiyama, and T. Konno, “Chipprism- clock routing and tim- ing

analysis for high-performance cmos vlsi chips,” Fujitsu Scientific & Technical

Journal, vol. 31, no. 2, pp. 180–187, 1995.

