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ABSTRACT 

In modern technology with shrinking size and high speed requirement there is a need 

of an efficient design flow. The traditional method of synthesis doesn’t take into 

account of clock skew scheduling that’s going to be happening in Clock Tree building 

and optimization stage. In order to meet the timing specification synthesis, tries to 

optimize the data path. Although this method will improve setup violation but impact 

area and power on the overall design. On the other hand, positive slack distributed in 

our design is not utilized. To solve this issue many have proposed a Back-annotation 

[BA] flow. In BA, useful skew number is retrieve from CTS stage and feedback either 

to CTS or synthesis stage. This long feedback loop from the implementation tool to 

synthesis not only impact the design time cycle but also result in an inefficient result as 

the implementation is already done keeping data path optimization in mind. 

In this project we will discussed a methodology on how this positive slack can be 

retrieved by adjusting the clock skew at synthesis stage and redistributed along the most 

critical path in our design. The proposed algorithm analyze slack across multiple depth 

of a timing path and redistribute the available slack by adjusting the clock skew of 

capture or launch registers to the most critical register pair. The clock skew adjustment 

script which will be our output will be passed down to physical implementation tool at 

placement and clock tree synthesis stage so that skew aware placement and clock tree 

build happen which will result into better timing correlation between the synthesis tool 

and implementation tool. 

The proposed system leads to improve runtime and timing QoR of design. Power and 

area reduction over conventional method of zero skew synthesis is also observed. 

Moreover, the flow is generic which means that whenever there is a technology shift 

no reconfiguration is required as the flow is independent on the technology parameter.  
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Chapter 1 

INTRODUCTION 

In a sequential circuit, Timing is the main concern of a digital design engineer. As 

technology is moving into smaller node and demand for a high performance system 

keep pushing the clock frequency into GHz region, the conventional method of 

achieving the required timing target is no longer efficient. Apart from functional 

designing, timing closure is one of the important milestones on which heavy time is 

being spent which govern when a chip can be released to the semiconductor foundry 

for fabrication. So any effort which can help reduce the effort on timing closure will be 

of great importance. 

The conventional method of synthesis, assume ideal clock network as clock tree in not 

build yet. This approach of ideal clock network is too optimistic which result in data 

path optimization for setup violation. As we go further into the implementation stage, 

this approach leads to penalty of area and power. Also, the positive slack available at 

multiple stages is not properly utilized which lead to underuse resources. Many 

researchers have started to address the need of clock skew at synthesis stage. They 

started to provide feedback from implementation stage or post synthesis stage back to 

synthesis stage. However, this method is inefficient as tool has already mapped the 

design and data path optimization is performed. This led to a classic chicken-egg 

problem. In further Chapter 3, we have tried to address this issue. 

1.1 ASIC DESIGN FLOW 

 ASIC (Application Specific Integrated Circuit) are designed for specific applications. 

Examples of ASCI design include IoT devices, chip for satellite, mobile chip and 

interface chip etc. At Seagate ASIC is used for designing of flash controller. ASIC 

design cycle starts with a functional specification of a chip followed by RTL logic, 

synthesis, Implementation and STA. The typical design cycle can be shown by figure 

1.1. 
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Figure 1.1 ASIC FLOW 
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1.1.1 Design Specification 

To design a chip, one first lay down the specification of the system. Specifications are 

nothing but a high level representation of the system which include Functionality i.e. 

what will our designed chip do, Performance parameter like speed and power, Physical 

dimension, Technology constraint & Fabrication technology etc. 

 

1.1.2 Behavioral or Functional Description 

In this step, architecture of the design is decided. This includes whether to use RISC 

(Reduced Instruction Set Computer) versus CISC (Complex Instruction Set Computer), 

ALUs, pipelining, Floating Point units and size of caches etc. The functionality of the 

design is broken into small pieces with a clear understanding about different block 

implementation. The outcome of functional design is usually a timing or relationship 

between the various subsystems of a large block. This allows for a fast debugging of 

the full system. Behavioral design is largely a manual step and working environment is 

documentation. 

 

1.1.3 Register Transfer Level 

This step is basically the detailed logic implementation of the entire design. This is 

where the detailed description such as arithmetic operation, logic operation, controls 

flows and register allocation that represent a functional design are derived and tested. 

The subsystems which are defined at top level are implemented using logic 

representation, finite state machine, combinational and sequential logic etc. This 

description is called Logic Design or Register Transfer Level (RTL) description. RTL 

is usually expressed in a Hardware Description Language (HDL) such as VHDL or 

Verilog. This description can be used for simulation and verification. Nowadays 

another HDL language System Verilog is gaining popularity for verification. 

 

1.1.4 Synthesis 
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 Synthesis is a process of converting a design description written in a hardware 

description language such as Verilog or VHDL into an optimized gate level netlist 

mapped to a particular technology library. Implementation tool are not advance enough 

to derive the physical representation from the logical representation. To bridge the gap 

between logical and physical representation Synthesis is done. We have used Design 

Compiler (DC) tool from Synopsys for synthesis of our design. Constraint such as 

timing, area and power are considered for the optimization of the design. The synthesis 

tool try to meet required constraint criteria based Total cost of the design. At the end, 

we will also verify whether the gate level netlist obtained at the end of synthesis match 

the functional behavioral of design. For that we used the formality tool which does 

functional verification. 

The next in ASIC flow is the physical implementation of the optimized gate level 

netlist. The Gate level Netlist is converted into geometric representation using an 

implementation tool such as Encounter, IC compiler etc. 

 

1.1.5 FLOORPLAN 

This is the first major step in PnR (Placement and Routing) to get our layout done. Goal 

of floorplan is to provide best possible seed to the placement stage. At floorplan stage 

we decide the area of the core, location of Input output pads, type of power distribution. 

Every subsequent stage like placement, Clock tree and routing performance depend on 

optimum floorplan. Maximum effort are put into floorplan to create a optimize seed for 

the placement stage. As good as our floorplan will be the subsequent stage result will 

be better. The core area of the floorplan can be decided by using the total area of cell 

available in the netlist.  

• Goals of floor planning:  

➢ Place the Macros on a chip. 

➢ Decide the location of the I/O pins.  

➢ Decide the type of power distribution. 

• Objectives of floor planning are:  

➢ To minimize the chip area 

➢ Minimize delay 
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➢ Minimize global congestion (routable) 

 

Figure 1.2 Floorplan 

1.1.6 Power Network Synthesis 

Power Network Synthesis (PNS) is done so that the power is distributed evenly in our 

design to each and every corner. To distribute power straps and rails are distribute in 

the design. Physical cells such as TAP, ENDCAP, DECAP cell are also included in the 

design. Power planning is done by introducing switches and creating power region to 

save power consumption. Power gating can also be implemented at this stage for further 

optimization. 



6 

 

Figure 1.3 Power Network Synthesis 

 

1.1.7 Placement 

At placement we assign cells to a positions on the chip, which is basically knows as site 

rows. The main objective is to reduce area and interconnect cost. Placement stage also 

decides the routability of the design. 

Goal of Placement 

I. Timing, Power and Area optimizations 

II. Routable design (minimal global & local congestion) 

III. No/minimal cell density, pin density & congestion hot-spots 
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Figure 1.4 Placement 

 

1.1.8 Clock Tree Synthesis 

CTS is a process in which clock gets distributed throughout the design. The goal of 

CTS is to minimize the skew so that maximum frequency of the design can be properly 

utilized. Cell used in clock nets are LVT (Low Voltage Threshold) cell as these nets are 

most timing critical. 

 

Figure 1.5 Clock Tree Synthesis 
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1.1.9 Routing 

Routing is the process of physically connecting every pins and instance in our design. 

During routing we make sure that crosstalk effect doesn’t degrade the system 

performance. 

 

Figure 1.6 Routing 

 

1.1.10 Static Timing Analysis 

Timing analysis is the integral part of ASIC flow. Anything can be compromised but 

not timing. Timing should be met before sending a chip for fabrication. Static Timing 

Analysis is used to determine whether a design is meeting all timing constraint for that 

STA checks all possible path for timing violation. STA is much faster than timing-

driven, gate-level simulation and doesn’t check the functionality of the design. Static 

timing analysis tool work by dividing the design into different timing paths. Then 

propagation delay of each path is calculated. Then these delay is compared to the 

required maximum and minimum values. 
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Figure 1.7 Static Timing Analysis. 

In figure 1.7, we can see that STA Engine gives Reports and ECO scripts as an output. 

ECO script can further be used back in implementation tool to close timing and meet 

the design specification. 

1.2 Definitions 

1.2.1 Clock Skew 

Clock Skew is defined as the time difference between the arrivals of clock signal at two 

different point is our design. Conventionally we try to minimize the clock skew in the 

design so that max utilization of frequency can be done. 

 

1.2.2 Setup Time 

Setup Time is defined as minimum amount of time for which data should be available 

at the capture edge of the clock so that the data can be perfectly latched. Any violation 

in setup time can cause an imperfect data to latch into the system and can impact the 

functionality of our design. 
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1.2.3 Hold Time 

Hold Time is defined as the minimum amount of time after clock edge for which data 

should be held stable so it can be perfectly latched. Hold Time is the most critical of all 

timing violation as hold violation depend upon the data path delay. 

 

1.2.4 Positive Slack 

Slack is define as the difference between the data required time and the data arrival time 

of a signal. For a timing path slack determine the desired frequency. In Setup, Positive 

slack is when the data is arriving early than the required time. 

 

Figure 1.8 Positive Slack 

 

In figure 1.8, Path A is the launch path and Path B is the capture path. Arrival time of 

a signal to reach capture flop from launch flop is 7ns and the required time is 9 ns. So 

the slack of our timing path is 2ns which is knows as positive slack. This positive slack 

can be used to the other critical path of the design. 
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1.2.5 Negative Slack 

 

Figure 1.9 Negative Slack 

In setup, negative slack is when the data arrival time is  greater than the data required 

time. In figure 1.9 data arrival time is 5ns and data required time is 3 ns which create a 

negative slack of -2ns. In timing path, we aim to improve this negative slack. Chip will 

be fabricated only when there are no negative slack path. 

 

1.2.6 Positive Skew 

Positive skew is defined as when the clock edge on the capture flop come late than the 

launch flop than it is called positive skew. In positive skew clock and the data are 

traveling in the same direction. Positive skew can help in removing the setup violation 

but can degrade the hold violation. Clock and data are routed in the same direction than 

it is called +ve skew. 

 

1.2.7 Negative Skew 
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Negative skew is defined as when the clock edge come early in capture flop than the 

launch flop than it is called negative skew. In negative skew clock and data are 

travelling in the opposite direction. Negative skew can help in removing the hold 

violation but can degrade the setup violation. Clock and data are routed in the opposite 

direction than it is called -ve skew. 

 

Figure 1.10 Timing Path before skew implementation 

 

1.2.8 Useful skew 

If we intentionally try to add skew in our design so that the violating timing path can 

be met is knows useful skew. This skew is borrowed from the adjacent stages and 

redistributed in the most critical path to meet timing of the design. 

In figure 1.10, we have two flip flop pair FF1-FF2 and FF2-FF3.  FFI-FF2 being the 

longest path has timing violation of 2ns. FF2-FF3 is the shortest path is meeting setup 

timing by 5ns. In useful skew we can borrow the positive 2ns from the FF2-FF3 pair 

and can distribute it to the FF1-FF2 pair to remove the timing violation. This can be 

done by adding a additional buffer for delay to the clock pin of FF2. By doing so we 

can reduce the timing violation is path 1 and path 2 will still be meeting by 3ns.  

In figure 1.11 we have add the additional delay Td to clock pin of FF2 so that FF1-FF2 

timing is met without effecting the timing of FF2-FF3. 
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Figure 1.11 Timing path after Useful Skew. 

 

 

1.3 Timing Path 

In our design, timing path can be divided into four path mainly R2R, I2O, I2R and R2O. 

 

Figure 1.12 Timing Path[15] 

 

I. R2R: R2gister to Register (Path 2) 

II. I2O: Input to Output (Path 4) 
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III. I2R: Input to Register (Path 1) 

IV. R2O: Register to Output (Path 3) 

 

1.4 Motivation 

In conventional ASIC flow, synthesis tool maximize his effort to reduce the setup time 

violation. To remove setup time violation tool used to optimize the data path. Data path 

optimization lead to increase in cell size or addition of buffer and invertor. The positive 

slack available in adjacent flop pair are not utilize. Also the synthesis tool is not aware 

of the clock skew scheduling that going to be happen in the clock build stage. Again in 

the placement stage, setup violation are removed by optimizing the data path based on 

the wirelength delay. This optimization lead to unnecessary addition of buffer and 

invertor. This lead to underutilize adjacent positive slack in flop pair. By doing data 

path optimization and not utilizing the positive slack, overall runtime of our design is 

also increased. 

To make the synthesis tool aware of the clock skew scheduling there is a need of a new 

design flow. In this Thesis we have tried to address this issue by proposing a predictive 

clock skew redistribution technique which result in improving the timing of our design 

as well as the overall QoR. We are saying it as a predictive method because the clock 

tree is not available in the synthesis stage and the skew is done based on the data path 

optimization. The output skew adjustment of our script is feed to the placement stage 

for skew aware placement. The proposed method is unidirectional as no feedback is 

used in our design. This result in improving the runtime of our design as well.  

 

1.5 Organization of Thesis 

In Chapter 2 we have discussed in detailed about the different predictive skew 

methodology available and how a long feedback impact the runtime of our design. 

Chapter 3 present a proposed methodology that predict useful skew from synthesis 

stage and distribute the positive slack to the most critical path. Chapter 4 presents result 

and discussions section. In which  we have presented result of proposed method and 
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compared it to the conventional ASIC flow. Chapter 5 represent the conclusion of the 

whole work and future scope by which we can further refine our results. 
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Chapter 2 

Literature Survey and Problem statement 

 

2.1 Literature Survey 

In traditional industrial ASIC, to remove timing violation back-annotation flow is used. 

The back-annotation flow can have many variant. In BA, feedback is used. This 

feedback is provided from Post-Clock tree synthesis stage either to the implementation 

tool or the synthesis tool. The long feedback result in increased run time. Not only the 

loop is ineffective but also the timing violation at the synthesis stage doesn’t correlate 

with the violation at the end of implementation run. Synthesis tool and Placement stage 

invest a lot of effort in removing setup time. To remove setup time, data path 

optimization is done which lead to adding buffers or invertors, resizing of cell and 

VT(Threshold Voltage) group swapping. Now in BA flow, the useful skew values are 

retrieved when the data path optimization is already done. These skew values are not 

efficient and can only be taken for the most critical paths. 
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Figure 2.1 Back Annotation Flow[5] 

Seungwon Kim[8] has proposed a unidirectional flow to overcome this long feedback 

loop. In which predictive useful skew Methodology is implemented with the 

incremental timing driven placement optimization stage. Timing driven 

placement(TDP) improves setup time violation and is not aware of the clock skew 

optimization next stage. To make placement aware of the clock skew optimization in 

the next stage author proposes to use a predictive useful skew methodology with  hybrid 

legalization method for better placement result. 

 

Figure 2.2 A predictive useful skew implementation in the conventional timing-driven 

placement flow.[8] 

 

Using MMWC (maximum mean weight cycle)[13] optimal clock latency of each flip 

flop is obtained. Based on the clock latency value, Local clock buffer(LCB) are assign 
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to the flops and additionally flip flop and LCB are placed in a tangential position. The 

placement of LCB and Flipflop are changed depending on the wirelength and timing 

summary. The position is further optimized by using a proposed hybrid legalizer. After 

that STA is done to further verify and optimize the result. By doing so placement is 

aware of the clock skew optimization on next stage. The drawback is that the synthesis 

tool is not aware about these skew value and will try to optimize the result based on 

data path information which lead to underutilized resources. 

Tuck-Boon Chan[5], proposed a method which applies useful skews at the post 

synthesis  stage which improves the timing correlation between the post synthesis stage 

and the implementation stage. Author used the MMWC method to retrieve the optimum 

skew values and feed this value to the placement stage. Author also proposed an 

additional run of synthesis with LVT libraries only to predict the useful skew based on 

two synthesized netlist. The result shows that the single pass flow achieve better timing 

compared to the back annotation flow. 

 

Figure 2.3 Predictive NOLO (“no-loop”) useful skew flow [5] 

 

 NOLO in figure 2.3 address the issue of making the implementation flow aware of 

clock skew optimization using the clock skew scheduling. The predictive skew 

methodology based on MMWC approach to find an optimum clock skew value for 

flop’s. This method will reduce the run time as the most critical path can easily be 
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recovered using the clock skew and implementation tool will have a lesser path for 

optimization. This indeed result in improving the QoR and better run time compare to 

the conventional industrial flow. Still the front end, synthesis tool is not aware about 

these optimization. In next paper author has address this issue. 

In paper [1], author has address the issue of making the front end tool aware of the clock 

skew scheduling in implementation run. Author used the Synopsys Physical compiler 

to generate a physical aware placed-netlist. The useful skew is obtained using the 

Extensive slack balance algorithm. These skew value are feedback to synthesis tool 

using a SDC file and then again a re-synthesis is done. 

 

Figure 2.4 ExtensiveSlackBalance: an Approach to make Front-end tool aware of 

clock skew scheduling.[1] 

To generate the placement author used the design compiler in topographical mode and 

based on that predictive useful skew values are extracted for all the critical paths. These 

skew value are again feed to the synthesis tool for another iteration. This process is 

repeated until desirable result are not obtained. 
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2.2 Problem Statement 

Typical run time for a SoC at 28nm technology node is 5~7 days. Any effort to reduce 

the run time and timing closure cycle will be of  great help. From previous section we 

can conclude that to remove timing violation either a long feedback is used or the useful 

skew is retrieved at the post synthesis stage. These long feedback increase the run time 

for chip implementation and taking feedback from the implementation tool result in 

uncorrelated data at the post-synthesis and post-route result as the feedback taken when 

the data path optimization is design has already taken place. 

In synthesis, data path optimization is done to remove timing violation. The data path 

optimization lead to addition of buffers, invertors and re-sizing of cell. The excessive 

data path optimization at synthesis undermine the positive slack available at subsequent 

stage. This available positive slack can be utilize to reduce run time and effort level 

invest at synthesis stage.  

To better utilize these positive slack from synthesis stage onwards we have proposed a 

method which  retrieve this positive slack in synthesis stage and distribute them to the 

most critical path, accordingly develop the netlist without much effort invest in data 

path optimization. These useful skew value are again feed at placement stage so that 

skew aware placement take place. This method not only result in improving the setup 

timing violation but also result in better area and power consumption. Overall timing 

QoR of our design is improved and run time of our design is also improved comparing 

to the conventional flow. 
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Chapter 3 

Proposed Method 

In proposed method, useful_skew_proc is created using a TCL (tool command 

language) scripting language. The proc is used in the synthesis stage and the dumped 

skew adjustment file which is the output of our proc is feed to the Placement and Clock 

tree synthesis stage in implementation tool. There are various switches in the proc 

which can control the performance of the script and can impact the overall result of the 

design. Different switches are discussed in section 3.2. 

Proposed proc make the synthesis tool aware of the clock skew optimization happen in 

the next stage. Zero skewing in synthesis stage is to conservative and doesn’t take the 

account of clock optimization in subsequent stage. By using the proposed method we 

are synthesizing our netlist based on non-zero skewing approach such that the synthesis 

tool is more aware of the clock tree and can invest more effort in the critical path of our 

design which can effect our result in the implementation run. 

The output skew adjustment script is feed forward to the implementation tool in 

placement stage. Sourcing these skew value will make the placement stage more skew 

aware and the placement of the cells is done accordingly. The run time for placement 

will also reduce as their will be less path for optimization and earlier critical path is 

converted into positive slack path by using useful skew. By doing so less number of 

buffer and invertor will be added and resizing of cell is also not required which will 

also result in saving area and power. 

These value are also feed to the Clock tree build stage, such that we are forcing the CTS 

engine to implement these value in the clock tree. Further CTS can optimize the tree 

and data path for hold violation which will result in overall improvement of our result 

QoR. 
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3.1 Flow Chart 

Figure 3.1 Proposed Flow 

In the proposed flow chart, we can see that the useful skew value are retrieved at the 

synthesis stage after initial and incremental compilation. In the initial compilation our 

design is mapped to the cell and no optimization has taken place so far. Experimental 

result shows that the implementation of useful_skew_proc after initial compile lead to 
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degraded result as after the incremental compilation the drive strength of cell are 

changed and buffer-invertor are added or removed from the design. This lead to a 

uncorrelated result after proc implementation and post synthesis. To overcome this 

issue we started to implement the useful_skew_proc after the incremental 

compilation.  

Proposed proc can also be implemented after the DFT insertion but experimental 

result show us that result are improved but run time is increased drastically. The 

output skew adjustment script contain information about all the clock pin of the flop 

on which skew is applied. This skew adjustment script is feed to the placement stage 

and cts stage for better timing correlation and make the implementation and synthesis 

tool more correlated.  

Skew adjustment script is also feed to the STA engine for verification at placement 

and post synthesis result. We are using Design Compiler from Synopsys for the 

synthesis, IC Compiler II from Synopsys for Placement and Routing Stage and Prime 

Time from Synopsys for the Timing analysis of our design. StarRC extraction is used 

to generated SPEF file for more accurate result. 
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3.2 Script Argument Inputs 

 

Figure 3.2 Script input arguments. 

For maximum flexibility, user can control many switches of the script, which can 

impact the runtime and QoR. One of the switches is “-depth” which control how far the 

2nd order search will look for the available positive slack values. A high depth value 

can improve the timing result but also result in an increased runtime. Another switch “-

max_path” which control the maximum number of violating path on which our script 

will run. High value of “-max_path” can directly impact our runtime. All switches have 

their default values. Hence it is not compulsory for the user to provide all of them but 

the best possible QoR within the reasonable runtime can be achieved by providing the 

complete argument. 
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3.3 Proposed Method Flow. 

I. Create a R2R path group for the entire worst case scenario. These path group 

should exclude path from don’t touch. 

II. Using “report_qor” command gets the total Number of Violating Endpoints 

(NVE) for each scenario. Otherwise user can also provide the NVE number 

using –max_path argument to save run time. 

III. From the NVE number in (II) and by using “report_timing” command, gather 

all information on Startpoint, Endpoint, Startpoint clock, Endpoint Clock, 

violated slack and store them into a array. 

IV. Now you can sort them from max violating path to the min. By experiment and 

iteration it have been observed that if script work from worst violating path 

toward minimum violating, we get better QoR and improved run time. 

V. Next, we filter the data path based on the clock domain. Startpoint-Endpoint 

pair should be of same clock domain. Clock crossing is difficult to handle 

without the full design knowledge. 

VI. Additional filtering required for the startpoint endpoint pair 

a. Endpoint should be unique in the collection. 

b. Startpoint Endpoint should be constrained. 

c. Remove any self-loop. 

d. For ease off calculation loop can be removed from design. 

e. Start/End points should not be a in/out ports. 

VII. With the left over endpoint pair after filtering we will apply the clock skew 

adjustment for removing timing violation. 

VIII. To obtain the value of slack for a given endpoint-startpoint pair we use a 

combination of “get_attribute” and “get_timing_path” command. 

IX. The next step is to update latency of startpoint-endpoint if they are already 

applied in earlier stage. 

X. With the updated slack, we can provide a clock skew adjustment if positive 

slack is available in the adjacent stage. If positive slack is available then the 

clock latency is written out to a file with “set_clock_latency”. 

Example :- “set_clock_latency 0.35 a/b/c/CK” 
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Where 0.35 is the delay that we want to introduced at the a/b/c/CK clock pin of 

the flop. 

XI. After retrieving all the skew value and updating them in an output file, Next 

step will be to find the common skew point so that skew number can be grouped 

together for a hierarchy. 

As shown in figure 3.2, the user input argument such as depth, slack margin & 

max_borrowing etc. can further improve the QoR but can result in increased run time 

for the script. By iteration and adjusting the depth and slack margin value, design QoR 

and run time can be balanced for optimum performance. 
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3.4 1st order search 

 

Figure 3.4 1st order Search 

In 1st order, available skew is retrieved from the adjacent register. Positive slack is 

check in the adjacent register and distributed to the critical path. In Figure 3.4, 

consider flop pair FF1 and FF2 having a timing violation of 2ns. The adjacent flop 

FF3 to FF2 is meeting time by 5ns. This positive slack of 5ns can be distributed 

back to FF1-FF2 to removing timing violation. By giving a skew value of 2ns to 

FF2 the timing violation can be removed without effecting the adjacent register 

timing.  

 

3.5 2nd order search 

 

In 2nd order search, positive slack is not only retrieved from the adjacent register 

but also from the next register down the line. By adjusting the “-depth” switch we 

can control how far the 2nd order will search the positive skew down the line. 
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3.6 Proposed flow sequence 

 

 

Figure 3.3 Algorithm Flow 

 

 

 



31 

3.7 Hierarchical Common Skew Points 

In a design cells belonging to the common hierarchy used to sit together during 

placement stage. By taking advantage of this placement strategy, we can group the 

common skew point in an hierarchy based on the skew values. This grouping allows 

us to use lesser clock buffers/invertors cell required during balancing of the clock 

tree build stage. This not only allows us to save area but power of our design is 

saved as the cell required to build clock tree are generally LVT cell. In figure  xxx 

it can be seen that a given hierarchy is sitting together after the placement stage. 

 

 

Figure 3.4 Hierarchy Placement 
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Chapter 4 

RESULT 

The predictive clock skew redistribution scheme was tested on a design with  target 

frequency of 725 MHz. Design also consist of multiple clock with frequency ranges 

from 450 MHz to 725 MHz. The SoC design tested was on 28nm technology node. 

At synthesis, timing comparison is done for setup violation at the slow corner as shown 

in Table 4.1. The timing analysis is done with Prime Time tool for accurate result. All 

the result are analyzed for the Reg2Reg path. 

 

SETUP (0_Cworst) 

DESIGN WNS(ns) TNS(ns) NVE 

Classic 0.164 50.362 2287 

Proposed Method 0.042 0.152 9 

 

Table 4.1 Timing Report at post-synthesis. 

 

Table 4.1 shows the setup violation summary at the post synthesis stage. We have used 

to 0_Cworst corner to analyzed the setup violation as it is the worst slow corner in our 

design. From the table we can say that the same design show better result with the skew 

adjustment script with respect to the Conventional flow. Also the number of violating 

endpoint has been reduced drastically. The proposed method not only reduce the Total 

negative slack but worst negative slack of our design is also reduced.  
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SETUP 

  

Scenario’s 
CLASSIC Proposed Method 

  

  
WNS(ns

) 
TNS(ns) NVE 

WNS(ns

) 
TNS(ns) NVE 

0_RCworstT_SSG 0.381 
4447.72

4 

3752

3 
0.429 

4005.49

7 

3588

8 

125_RcworstT_SS

G 
0.261 448.052 4231 0.306 399.347 2683 

0_CworstT_SSG 0.419 
6267.66

7 

4417

8 
0.442 

5878.20

4 

4225

0 

125_CworstT_SSG 0.278 605.168 8664 0.311 465.748 5318 

 

Table 4.2 Setup timing summary after implementation run. 

Result in Table 4.2 shows the setup timing summary across all different corner i.e. slow 

corner’s, after design went through the complete implementation run. The result are 

obtained using Prime time tool and RC-STAR extraction is done for generating SPEF 

file which provide us with the more accurate result. 

 

From Table 4.2, it can be observed that setup violation have improved by 6.21% at the 

worst corner. There is a small increase in the worst negative slack in our design but the 

number of violation above 350ps were few. Overall the setup violation is improved and 

number of violation is also reduced. This can be inferred from figure 4.1, which shows 

the comparison between the classing TNS and Proposed method TNS. By using Bar 

graph it can be clearly seen that the setup violation have been improved. 
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Figure 4.1 Setup timing Summary 

 

Table 4.3, which shows the hold timing summary across different corner i.e. fast corner. 

The result  shows that there is a degradation of number of hold violation. 125_RCbest 

is the worst corner for hold analysis. The degradation is observed in hold analysis 

because after the proc implementation and an iteration of incremental compile, the 

synthesis tool optimize only setup timing violation without taking the hold violation 

into account. This optimization lead to the removing of buffer or sizing of cell which 

ultimately lead to hold degradation. To remove the hold violation we have taken the 

fast corner into consideration to address this issue. 
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SCENARIO'S 

HOLD 

CLASSIC Proposed Method 

  WNS TNS NVE WNS TNS NVE 

SSG             

0_Cworst 0.117 15.254 867 0.174 23.379 1182 

125_Cworst 0.112 17.537 1003 0.17 28.239 1448 

0_RCworst 0.116 13.186 801 0.176 22.566 1163 

125_RCworst 0.108 14.517 901 0.171 28.153 1449 

FFG             

0_Cbest 0.094 73.55 5699 0.143 109.992 5977 

125_Cbest 0.107 120.733 8103 0.161 166.562 8182 

0_RCbest 0.092 82.174 6048 0.139 114.369 6339 

125_RCbest 0.1 129.223 8444 0.155 164.762 8571 

0_Cworst 0.099 103.521 7073 0.151 141.639 7302 

125_Cworst 0.108 158.003 9659 0.17 204.411 9812 

0_RCworst 0.101 93.033 6678 0.154 135.944 6902 

125_RCworst 0.116 151.624 9718 0.174 203.123 9445 

 

Table 4.3 Hold Timing summary after implementation run. 
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Figure 4.2 Hold Violation Summary 

In Figure 4.2, we can see that the number of hold violation in all the scenario are 

comparatively same and there is a small degradation in the total negative slack. The 

difference in hold violation can be better understood by considering the histogram of 

hold violation of proposed method in below graph. 

In histogram, obtained from table 4.4, as shown in figure 4.3,  shows that there are few 

violation above 100 ps and maximum number of violation is concentrated around 65 ps 

to 30 ps. These violation can easily be removed in timing closure cycle without 

effecting much of the effort level and run time. Overall we can say that there is an 

improvement of 5.53% in timing violation. 
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Bin CLASSIC Proposed Method 

-0.135 0 4 

-0.105 0 15 

-0.09 5 19 

-0.075 17 40 

-0.065 35 120 

-0.045 242 700 

-0.03 742 1089 

-0.015 2694 2164 

0 4709 4420 

Total Vio 8444 8571 

 

Table 4.4 Histogram for Hold Violation 

 

 

Figure 4.3 Graph comparing Hold violation. 

 

Next we look at table 4.5, the area comparison with and without the predictive skew 

algorithm. From the table 4.5, it can be observer that there is an improvement in total 

cell count which lead to a lesser area in skew adjustment script design. 
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  CLASSIC Proposed Method 

VT 
No. of 

Cells 
Area(um2) 

No. of 

Cells 
Area(um2) 

          

30uhd_hvt  32466 30103.15 32666 30412.93 

35uhd_hvt  121460 114333.17 130607 128885.39 

40uhd_hvt  1212023 865393.31 1234762 882128.67 

30uhd_svt  319399 436814.42 285473 373675.08 

35uhd_svt  314847 529690.39 332819 541693.73 

40uhd_svt  762230 634294.51 725596 609105.97 

30uhd_lvt  0 0 0   

35uhd_lvt  21187 28858.75 22849 30776.21 

40uhd_lvt 0 0 0 0 

undefined 85 1116482.18 85 1116482.18 

          

TOTAL 2783697 3755969.88 2764857 3713160.15 

Table 4.5 Comparison of Area Summary and Cell Count. 

The Table 4.5 also show that with more number of HVT, SVT cells there will be 

reduction in power consumption. This can be verified from Table 4.6. 
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Figure 4.4 No of cell Comparison 
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Figure 4.5 Area Comparison 

VT Classic PROC 

Power (nW) 4.06E+08 3.81E+08 

Table 4.6 Power Comparison 

 

VT With_skew_only With_skew_with_hier 

35uhd_lvt 26574 22849 

Table 4.7 CTS cell count comparison for common skew points method. 

 

With lesser count of LVT cell in Table 4.7, we can say that the hierarchical common 

skew point method come out to be as success as the LVT cell are only used during the 

clock tree synthesis stage. A lesser value of LVT directly relate to lesser cell count at 

clock build stage. 

Finally, run time of both the design i.e. with skew adjustment and without skew 

adjustment is presented in table 4.8. This further proved that the skew adjustment 

effectively help with the QoR of the design and result in lesser run time comparing to 

the conventional flow. 
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STAGE   Classic Proposed Flow 

Synthesis   43:49:00 55:36:00 

Placement   32:00:00 16:00:00 

CTS   35:25:00 30:30:00 

Routing   53:20:00 55:00:00 

Total (hrs) 

aprroax 
  164:34:00 157:06:00 

Table 4.8 Runtime Comparison 
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Chapter 5 

5.1 Conclusion 

Predictive clock skew redistribution unidirectional flow methodology was successful 

implemented. From previous section, we have concluded that the utilization of positive 

slack from the early stage and redistributing it to most critical path not only improve 

the timing QoR but also result in a better run time. The search for positive slack not 

only limited to adjacent register but also can be utilize for n register down the line with 

the help of 2nd order search. This might result in more number of violating points but 

result in decreasing the total negative slack significantly. 

The proposed common hierarchy clock skew point also help in reducing the number of 

buffer required in clock tree synthesis stage which result in overall reduction in clock 

tree power consumption. 

The overall runtime, power and area is also improved compare to the conventional flow 

which result in better utilization at timing closure. The degradation of hold violation is 

observed but these minute violation can easily be removed in timing closure without 

significant area and power penalty.  

The flow is generic which mean it is technology independent and can be used at 

different technology node. 
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5.2 Future Scope 

The proposed method can be used with MCMM (Multi corner multi-mode) analysis 

from the early stage to improve hold violation. Another upgradation will to use spg 

flow i.e. physical aware skew distribution at synthesis stage. SPG flow not only help in 

improving retrieving skew value but result will also be better correlated with the 

implementation engine. To remove hold violation, a high clock uncertainty value can 

also be used at synthesis stage so that the violation will be correlated to the 

implementation stage. 
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