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Abstract 

 

      

      

Usually, the extensive calculations done in real life like weather 

forecasting, science-related massive calculations take a lot of time, due to 

their complexity. Here in this project, as a preliminary example, we have 

tried to reduce the complexity as well as reduce clock cycles and 

calculation time, also to reduce the hardware if needed. This project is just 

an attempt to do so, by simply checking it on matrix multiplication and 

using directives to reduce clock cycles and equipment used, namely 

pipelining and unrolling. Vivado High-Level Synthesis (HLS) is being 

used for the simulation and creation of IP, while Vivado HLx for creating 

a block diagram by using the same IP which we produced at HLS. Further 

getting the multiplied output at Xilinx SDK, this has been used for the 

checking of the circuit created with its calculations, timing and other 

parameters, so that we can implement it physically later, only if the 

parameters match our requirement and modify it if needed. The board used 

in the project is the ZYBO board with a dual core arm cortex A9 processor 

present in it. 

 

Keywords- Complexity reduction, HLS, HLx, SDK, Zynq-7000 
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1. INTRODUCTION 

 
      

1.1 Background  

Complexity in computation is a significant issue these days. There is 

always a need to reduce the complexity saving the time needed for the 

calculations used by machines. Dynamic programming may be among 

the causes for the complexity in the devices, to get the final output; 

several times, temporary data is used [1]. For doing the mentioned 

task, it requires a massive amount of memory space in the machine. 

With the advancement in technology, we need to use lesser hardware 

and also speeds up the calculations. The computational techniques used 

up till now, need improvement. The calculations which were usually 

taking much time can now be done parallelly, with lesser time. 

  

1.2 Motivation 

CPUs are used for general processing, contain all in one type of 

processor, due to which they are slow as they perform many tasks at a 

time. But this may not be desired for all kind of applications. Also, we 

need faster processors these days to save time. However, it can 

perform all the tasks but not with the appropriate performance [1].CPU 

contains only one ALU, for performing logical tasks. 

To speed up our CPU, we can either use faster circuits or arrange the 

hardware to perform more tasks at one time. 

With advancement, there are designs of the multi-core processor. Now 

we can perform many logical tasks at a time. For example, our 

application needs ten multiplications at one time; we can do it by 

increasing the number of ALU.FPGA is one such device which we 

have used in this project. 
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1.3 Objective 

In the project, we aim to take up a multiplication function and 

 

●    Take two matrices and get their multiplied output 

●    Know about the latency of the calculation 

●    Comparison of applying different directives and without their 

application 

●    Testing for the multiplication output using different values 

●    Getting the correct output using the FPGA board 

Here, it is proposed to get production from an FPGA board for a 2x2 

matrix multiplication. We are performing this project, for the testing of 

connections between Vivado HLS and the FPGA board used. Vivado 

HLS is used for the creation of IP and application of the directives. It 

uses high-level languages (C, C++, SystemC) and converts these 

languages to Hardware Description Languages (HDL). Vivado HLx 

has been used for the connections between HLS code and FPGA, while 

Xilinx SDK for the testing purpose. 

 

We can relate FPGA and CPU as we are using both the devices for 

logical tasks, but FPGA is different as it is not a processor itself, does 

not run a stored program, but we can reconfigure. We can implement 

any logic needed and is not predefined or stored in it. An FPGA 

features may vary as per their vendors and models, it typically contains 

IO banks, clock manager, etc. As the FPGA contains the element so 

that it can perform any function, and can modify as per the need of the 

customer. This feature makes it suitable for the user to make use as per 

the requirement and application. 
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1.4 Organization of the thesis 

This section contains a description of how we have organized the 

thesis. It mainly has the following five chapters: 

Chapter 1 provides the background, motivation, and goal of the 

project. 

Chapter 2 contains the introduction to FPGA, Vivado HLS, directives, 

Vivado HLx, and Xilinx 

SDK. 

Chapter 3 describes the methodology used to implement the project 

work. 

Chapter 4 provides the results and discussion. 

Chapter 5 presents the project summary and conclusion. 
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2. LITERATURE SURVEY 
 

      

2.1 SoC 

An SoC is the one which contains all the elements required in a 

computer or any other electronic circuit. Parts included may be for 

storage, data processing, RAM, ROM, or input-output ports [2]. We 

can say that SoCs have replaced microcontrollers. In layman’s 

language, SoCs are the chips which integrate all the required for a 

circuit on a single chip. SoC contains microprocessors, a system for 

communication for contacting between its modules. SoC is mainly 

present in devices which are small but complex [3]. It includes analog, 

digital, and mixed functions. SoC is the one stop for both software and 

hardware components in a single chip. It contains all the elements 

required for a complete circuit [4]. 

SoC requires less space, less power with excellent performance. It 

helps us avoid the need for multiple chips as it provides all the needed 

elements on one chip [5]. It is present on mobile phones, cameras, 

medical technology, etc 

.       

2.2 Field Programmable Gate Arrays (FPGAs) 

Field Programmable Gate Arrays (FPGAs) consists of configurable 

logic blocks (CLBs) which are networked and the connection between 

them is made out via interconnects which are programmable. FPGAs 

have the feature to be reconfigured as per the needs of the consumer's 

application even after its manufacturing [6]. And this is the feature that 

makes it stand out from Application Specific Integrated Circuits 

(ASICs), which are manufactured only for particular tasks. However, 

FPGAs, which we cannot reprogram, is also available, but the one 

which we widely use is with the feature to be able to modify as per the 

user application. 
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                               Figure 2.1:  The basic architecture of FPGA [7] 

 

      

We can casually say that FPGAs are chips which can be programmed 

to check or work on the digital designs. Advanced FPGAs have 

approximately 3, 30,000 logic blocks and around 1,100 inputs and 

outputs. 

The FPGA industry has been emerged out through programmable logic 

devices (PLD) and the programmable read-only memory (PROM)[6]. 

But the FPGA allows doing the programming by the consumer itself 

and does not need PLD and PROM to be wired during the 

establishment of the board, and after we have produced the product, 

this feature allows the consumer to fix any bugs or add things 

according to the requirement. 

The emergence of FPGA has brought a significant change and 

advancement in the industry. Earlier FPGAs were limited to 

networking and communication; it slowly moved to automotive, 
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manufacturing, day to day life and for every kind of electronic devices 

as well. 

 

 

 2.2.1 FPGA Architecture 

The architecture of an FPGA is dependent on static random-access 

memory (SRAM), which is volatile. Once the FPGA is switched off, 

the data is lost. To store the data, we need to externally add electrically 

erasable programmable read-only memory (EEPROM) [7]. 

We can turn the architecture of FPGA into any hardware circuit as per 

the need. To turn basic logic circuits to complex architectures, we can 

make use of a configurable logic block (CLB). 

In FPGA architecture Configurable Logic Block (CLB) location is 

shown in the figure below. 

      

 

                                        Figure 2.2: Detailed FPGA Architecture [8] 
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We can also make a whole new SoC using FPGA. It can be used to 

program hardware architecture as per our needs. This is not possible in 

case of a microprocessor. 

2.2.2 FPGA Architecture Features 

FPGA Architecture consists of features such as 

● Configurable Logic Block (CLB),for logic functions 

● I/O Block, for external connections 

● Switching Matrix Interconnects, for internal connections 

2.2.2.1 Configurable Logic Block 

The programmable/configurable logic block helps with calculations 

and storing of data. An ideal one consists of a flip-flop, combinational 

logic, and logic to reduce area as well as cost. 

Advanced FPGAs consists of a combination of different kind of blocks 

such as multiplexers, BRAM, etc. We use configuration memory for 

the controlling of functions of each element [7]. 

The input Lookup tables (LUTs) of CLB are used to implement the 

functionalities such as 

● Combinational Logic design 

● Distributed RAM 

● Shift Register 

We can find more circuits inside FPGA, like Multiplier, Block RAM, 

and many more. 

CLBs have two slices, which we further divide into two logic 

elements. 

Logic elements have 

● Four input lookup Table 

● Full Adder and Mux logic 

● D Flip Flop 
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      Figure 2.3: Configurable Logic Block [9] 

      

We use Multiplier Block for the implementation of the dedicated 

18×18 multipliers with signed and unsigned operations. 

Block RAM is a dedicated memory that implements dual port 16kb 

memory. 

In architectures such as zynq from Xilinx, dual-core arm cortex A9 

Processor is present inside for high-performance implementation [7]. 

 

2.2.2.2 Programmable I/O 

We can use the programmable I/O blocks for external connections. The 

I/O pad and the circuit around it together form an I/O cell. 

This is a large area of an FPGA. Also, the design is complicated as the 

voltage applied, and the reference voltages both are different. 

Selecting a vast number of standards for its design could increase the 

area of the chip. 
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With development, the architecture of FPGA now contains several 

programmable blocks like BRAM, multiplexers, DSP-48. Also, we 

attach the microprocessors to the FPGA as per its requirement [10]. 

 

2.2.2.3 Programmable Routing/Interconnects 

The programmable routing is used to complete the desired circuit by 

connecting different blocks altogether. It has multiplexers pass 

transistors and tri-state buffers, used for connecting logic elements. 

      

 

Figure 2.4: FPGA with routing channels [11] 
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2.2.3 FPGA Architecture Design Flow 

FPGA Architecture design consists of design entry, design synthesis, 

design implementation, programming of the device, and verification of 

the design. 

      

 

      

      

Figure 2.5: FPGA Architecture Design Flow [10] 

      

2.2.3.1 Design verification  

This includes verification of the functions and timing done during 

design flow. Simulation is being carried out in this step like functional, 

time-related simulation and also the behavioral, user-defined 

simulation [10]. 

2.2.3.2 Design Entry 

The design entry can be with schematic or HDL or both. If the concept 

is about hardware, then the entry can be done by the schematic, and if 
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it is an algorithm, then HDL may be a good option. Because the 

schematic gives a more realistic view to the user, it is preferable [10]. 

2.2.3.3 Design Synthesis 

Here in the design synthesis, the VHDL code converts to a circuit with 

logic elements. It checks for the syntax and then goes to the 

architecture. The architecture created is optimized, and this is called 

the netlist, and the file saves as a Native Generic Circuit (NGC) file 

[10]. 

2.2.3.4 Design Implementation 

The design implementation needs to 

● Translate 

● Map 

● Place and Route 

Translate 

Here the files are converted to NGD (Native Generic Database) file. To 

the ports of the architecture created, we can give physical ports like 

switches, LEDs, etc. and then this information is saved in User 

Constraints File (UCF) [10]. 

Map 

Here the circuit is divided so that we can see it as an FPGA logic 

blocks. We can map it from NGD to CLBs, I/O blocks, and then an 

NCD file is being created. Ultimately the design is mapped to FPGA 

[10]. 
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Figure 2.6: Mapping for the design implementation of FPGA [10] 

 

Routing 

This puts the divided circuit to logic blocks as per the constraints and 

connections are being made for the logic blocks [10]. 

      

      

 

      

          Figure 2.7: Routing for the design implementation of FPGA [10] 

 



18 
 

2.2.3.5 Device Programming 

Once we have created a design as per the components of FPGA, now it 

must be made compatible with the FPGA. The NCD file is handed 

over to the BITGEN program, to create a BIT file, so that we can 

implement it to an FPGA [10]. 

 2.2.3.6 Design Verification 

Stages at which verification is done are; 

1. Behavioral Simulation (RTL Simulation) 

This is the very first step in the hierarchy. This is done to check the 

RTL code. 

Here the breakpoints are being created, and we cross-check the 

function, the signals and variables are verified [10]. 

2. Functional Simulation 

It is done once the translation simulation  completes. It tells about the 

operation of the circuit [10]. 

3. Static Timing Simulation 

It completes after mapping. We get to know about the path delays. 

Here we get to see the summary of the timings and delays taken by the 

design [10]. 

2.2.4 FPGA Applications 

As we know, we can reconfigure FPGA; they are useful in many fields. 

By leading the industry, Xilinx provides us with FPGA devices, 

different software, and IP cores, which we can  readily use in various 

areas such as: 

● Aerospace & Defense - FPGAs which have the advanced 

property for processing of images, generation of waves and can 

tolerate radiation [12]. 
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● ASIC Prototyping -For the verification purpose of software and 

modeling of the systems (SoC) FPGAs make it precise and 

faster [12]. 

●  Audio - With lowering engineering costs, increasing flexibility 

Xilinx FPGAs is beneficial in fields like audio and multimedia 

[12]. 

● Automotive -For the help of the driver, increasing the comfort 

and ease inside the vehicle, IPs have been a great help [12]. 

●  Broadcast & Pro-AV -fastening and increasing the lifespan of 

the products with Broadcast Targeted Design Platforms and 

also broadcast systems [12]. 

●  Consumer Electronics -Daily use products have become more 

advanced with a lesser cost like networking, handsets, wireless 

systems, flat displays, and many more [12]. 

●  Data Center - FPGA in the data center is helpful in storage, 

higher bandwidth, and providing value to cloud deployments 

[12]. 

● High-Performance Computing and Data Storage - Provides 

help for different kinds of storage like Network Attached 

Storage (NAS), Storage Area Network (SAN) and servers [12]. 

● Industrial -With lowering engineering costs, increasing 

flexibility Xilinx FPGAs are beneficial for various applications 

such as imaging equipment, industrial automation, and 

surveillance [12]. 

●  Medical - The Virtex FPGA and Spartan® FPGA families help 

display and process purposes, also monitoring or identification 

of the diseases can be done [12]. 

● Security -Xilinx provides all the security needs with 

preventions to control and safety of the areas [12]. 

●  Video & Image Processing -By lowering engineering costs, 

increasing flexibility Xilinx FPGAs help in the field of 

processing of videos and images [12]. 
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●  Wired Communications -Provides with the solution for the 

Programmable Networking Line Card Packet Processing, 

Framer/MAC, and more [12]. 

●  Wireless Communications - Provides help for baseband, 

connection, and transfer for wireless equipment, addressing 

standards such as WCDMA, WiMAX, and others [12]. 

      

2.3 Complex Programmable Logic Devices (CPLDs) 

CPLDs are made up of a few programmable logic arrays (PLAs) and 

programmable interconnection lines. We use it for the implementation 

of faster logic. It contains less number of registers [13]. 

In comparison to FPGA, CPLDs do not contain individual resources 

like RAM, or to do logical functions like adding or the comparators. 

CPLD only has the ability for small digital designs, unlike the FPGA, 

which posses’ more significant designs. Even for large inputs CPLDs 

due to their limiting complexity provide only single chips with faster 

delays. We can use CPLDs for applications like equipment which are 

run by battery, where quicker and more prominent decoding is needed, 

use of power is less, fast switching is required, designs are not 

significant, and security is also an important aspect. Here in CPLDs, 

there is a security of the designs to be secured as they can be locked 

after they are being programmed [13]. Comparatively in FPGA 

security is an issue as the bitstream has to be loaded with power every 

time. 

 In comparison to FPGA, CPLDs are suitable for applications with 

high power consumption and not in battery operated applications. 

However, in the newly established FPGAs, it is better. As FPGA can 

be reconfigured at the user end as well, it is more beneficial than 

CPLDs, have flexible designs, RAM, the microprocessor on the chip 

itself, multi-gigabit transceivers and more such benefits [13]. 

 

      



21 
 

 

Figure 2.8: CPLD Architecture [14] 

      

As FPGA has more registers and CPLDs have more combinational 

circuits, they are used for timing and control circuit respectively. Also, 

the synthesis report for the same code for FPGA gives different timing 

output every time while for CPLD it is the same. With advancement, 

the two devices seem to be similar. But the architecture of the CPLD 

still keeps it different with low cost, a configuration that is not volatile 

and also the timing characteristics [15]. 

 

2.4 BRAM 

Block Random Access Memory (Block RAMs/BRAM) is built inside 

FPGA and can be used to store a massive amount of information. It is a 

kind of random memory on FPGA used for storing data. We consider it 

in the FPGA datasheet along with flip flops, LUTs and DSPs. The size 

of the BRAM depends on the size of the FPGA. It is an essential part 

of the FPGA. 

 A Block RAM (embedded memory, or Embedded Block RAM 

(EBR)), is available in a good number on the FPGA, depending on the 
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FPGA uniquely. We can use them as per our needs. With more and 

more designs we make, we get to know about the number of BRAMs 

we need better [16]. 

 BRAMs have a fixed size like 4/8/16/32 KBS. Their width and depth 

can be changed. BRAMs are very helpful to store data. 

      

2.4.1 Single Port BRAM Configuration 

                        

 
                  Figure 2.9: Single port BRAM [16] 

      

If there is only one port to receive data, we can use Single Port Block 

RAM. This is the most straightforward configuration. We use it at 

places such as, we only need to read, and a fixed value is to be stored. 

We can read data only at the positive edge of the clock cycle, and 

address is being already mentioned, for the time when the write enable 

signal is not on. We can read data stored when the read data signal is 

on. We can only read a single data at one clock cycle. So if the BRAM 

has a depth of 1024, it will have 1024 cycles to read [16]. 

Here we can only read or write data, and not both at the same time, as 

there is only a single port. We can write data by enabling the write data 

port high. 
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2.4.2 Dual Port BRAM Configuration 

                                  

 
                                                     Figure 2.10: Dual port BRAM [16] 

      

      

The Dual-Port Block RAM (or DPRAM) is the same as a single port 

only, but here we can read and write at the same time as there are two 

ports available. We can use any of the two ports to read or write, as 

both works the same. On the same clock cycle, both the ports can work 

simultaneously at different addresses. That is we can read from a 

different address and write it to another address. 

This may be used at places like reading data externally or at the time of 

ADC conversion to store data, or we may use it as a FIFO [16]. 

      

We use BRAM for functions such as: 

● With the help of local FIFOs, we can transfer data to different 

clock domains[17] 

●  With the help of DMA FIFO, we can transfer data between 

FPGA and any other processor[17] 

● It is better than LUTs for storing data[17] 

The two ports can be connected to any of the buses independently: 

LMB (Local Memory Bus), PLB (Processor Local Bus), and OCM 

(On-Chip Memory). Range of the address, number of the byte write 

enable define BRAM primitives [18]. 
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2.5 AXI bus 

As we have PCI for x86 architectures similarly AXI from AMBA 3 is 

a bus for ARM SoCs. 

Here we are using AXI4, which is of 3 types, all with master and slave 

modes. 

● AXI4 (Full) -memory mapping is needed and has high 

performance 

●  AXI4-Lite -we can read and write in the four registers 

contained 

●  AXI4-Stream - used to stream data at higher speed 

      

 

      

Figure 2.11: AXI bus architecture [19] 

      

      

 We can use the device connected as master or slave according to our 

need. 
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● If the device connected is master, it can be used to write data to 

DDR3 

● If it is a slave, we can read from it, and which we can write to 

other master elements, it is exposed to 64 to 1024 bytes. 

 

 

 

 

2.6 ZYBO Board 

2.6.1 Introduction 

 It is a board by Digilent which is a Zynq-7000 family, the Z-7010, 

based on SoC. The board is one of the cheapest versions. With the 

ZYBO board, we get: 

● The block design of the high level[20] 

●  We can program the FPGA portion of SoC into Verilog or 

VHDL [20] 

●  The interface between the AXI bus and the code[20] C code 

for interfacing with the wrapper through bus[20] 

● Board support package[20] 

● Linux kernel module[20] 

● User space application[20] 

● For high level block design we can use 

zybo_base_system/source/vivado/hw/zybo_bsd/zybo_bsd.xp

r in vivado, because it contains information for physical 

connections[20] 

In Zynq-7000 which we are using 2 AXI master and 2 AXI slave 

interfaces are present. 

Next, for the connection between Zynq and a peripheral device, we 

need interconnect.AXI4 interconnect is being used, which contains 1 to 

16 AXI master and slave interfaces each [20]. 
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2.6.2 Features of the Zynq-7000 include: 

--the processor contained is ARM Cortex-A9, which is known for its 

perfect performance and the per watt ratio [21]. 

--it supports single and double floating point [21] 

--it can perform up to 1 GHz [21] 

--contains the most significant amount of space,512KB cache,256KB 

on-chip, and supports DDR3-1866[21] 

--for low power consumption and low-cost Artix-7 is being used with 

the excellent performance [21] 

--Memory mapped components with DMA along with 2x USB 2.0, 2x 

Tri-mode Gigabit Ethernet, 2x SD/SDIO, 2x UART, 32b GPIO, etc. 

[21] 

--Everything contained in a programmable, flexible, processor, 

interconnects, a speed which we can adjust as per the need, low power 

mode is also available [21] 

 --acceleration is provided to hardware through AXI ACP port of 64 

bit, and even cache coherency for soft processors present. It offers high 

bandwidth with 100 GB/s between PS and PL [21] 

--Hardware acceleration is provided through parallel processing with 

low power DSP slices [21] 

--We get full safety and security is provided with anti-tamper 

technology and proper and safe booting system [21] 

      

      

      



27 
 

 

Figure 2.12: Zybo Z7-10[22] 

 

The XC7Z010-1CLG400C contains: 

--Power Switch [22] 

--Processor Reset Pushbutton [22] 

--Power Select Jumper and battery header [22]  

--Logic configuration reset Pushbutton [22] 

--Shared UART/JTAG USB port [22]  

--Audio Codec Connectors [22] 

--MIO LED [22]  

--Logic Configuration Done LED [22] 

--2 MIO Pushbuttons [22] 

--Board Power Good LED [22] 

--MIO Pmod [22] 

--JTAG Port for optional external cable [22] 

--USB OTG Connectors [22]  

--Programming Mode Jumper [22] 
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--4 Logic LEDs [22] 

--Independent JTAG Mode Enable Jumper [22] 

--4 Logic Slide switches [22] 

--PLL Bypass Jumper [22] 

--USB OTG Host/Device Select Jumpers [22] 

-- VGA connector [22] 

--Standard Pmod [22]  

--microSD connector (Reverse side)[22] 

--3 High-speed Pmods [22] 

--HDMI Sink/Source Connector [22] 

--4 Logic Pushbuttons [22] 

--Ethernet RJ45 Connector [22] 

--XADC Pmod [22] 

--Power Jack [22] 
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3. METHODOLOGY 

 

Xilinx created software for analyzing and synthesizing designs created 

by HDLs, called Vivado Design Suite. It also contains some features 

like synthesizing it at a high level and implementing on SoC. Vivado is 

really scalable, accurate, properly integrated, and predictive. 

 

3.1 Vivado HLS 

The algorithms used are becoming complicated day by day. Vivado 

High-Level Synthesis is available as an up gradation in the HLx 

edition without any charges [23]. With the advent of Vivado HLS, it 

has become easy to create an IP with complex code, as it allows users 

to use C, C++ and System C languages and directly create 

configurations for the programmable device without the need to 

develop any RTL manually. Vivado HLS creates a similar system and 

design architects, providing a faster IP creation through: 

● Absorbing the need for the algorithm from data type and 

interfaces [23]. 

● An extensive library with every kind of data type, videos, etc. 

[23]. 

● Architectures which are modified by the directives [23]. 

● Faster as there is no RTL created manually [23]. 

● The algorithm is written in simple language, and VHDL or 

Verilog codes are automatically created [23]. 

● Works with a wide range of languages [23]. 

● No manual work is done for the use of FPGA memory or 

library [23]. 

Vivado HLS can automatically create an implementation for RTL 

using the code provided. Users can use different directives available 

for the design. We can modify the designs as per the needs of the user 

for the same source using various directives.  
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Scheduling and Binding are essential tasks of the HLS, as scheduling 

tells us about the time taken for the operation and also the provision of 

the resources, while binding tells us about the delays of the 

components or directives used [24]. 

HLS can to do this by available defaults inside and use directives and 

constraints to be precise. 

It calculates the timing and delays by the device, which we mentioned 

earlier so that it can also tell us about the area needed [24]. 

      

The advantages of using Vivado HLS can be: 

--Designers can now do their work faster and more productive with 

lesser efforts [25]. 

--Software designers can now create more complex algorithms with 

acceleration [25]. 

--Verification of the design now done at a faster rate as compared to 

earlier processes [25] 

--The use of directives creates a much-optimized design, only with the 

C source code, and different designs can be established [25]. 

--The c code is portable and understandable language [25]. 

--We can use the same code for different hardware [25]. 

--HLS makes the operations work as per the speed of the FPGA [25]. 

--To make a sequence of the operations, the finite state machine is 

being created first [25]. 

The synthesis of the code is being done in the following way: 

--The function which is selected at the top level is converted to RTL 

--Functions involved are converted to blocks, if there is a hierarchy, 

then it is followed in the RTL design as per the code. 
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The design flow of the Vivado HLS involves: 

1. Firstly the compilation is done using the C simulation option, then 

the simulation is done to check the code and subsequently debugging 

[25]. 

2. Then the code is converted to an RTL design using a synthesis 

option, and we can also include directives if needed [25]. 

3. Reports are being created, and the design is analyzed [25]. 

4. The implementation of RTL is verified [25]. 

5. IP is then created using an export RTL option [25]. 

 

  Figure 3.1: Design flow in Vivado HLS 

3.1.1 DIRECTIVES 

What Vivado HLS does is creates a hardware design as per the code 

provided. The directives option available in the software is to improve 

the performance, like using pipelining for the betterment of the design 

[26]. 

Sometimes it assumes that the user only needs a better performance 

and optimizes the design, without keeping the priority of reducing the 

clocks or area. 



34 
 

3.1.1.1 PIPELINING 

Usually, in languages such as C, C++ operations are done sequentially, 

meaning one by one. 

The Initiation Interval (II) meaning the time to start of two loops, 

which are one after the other, is very important for pipelining. Without 

pipelining the Initiation Interval are different for consecutive loops, but 

if we apply to the pipeline, we get only one clock cycle for both saving 

time and hardware, as both start at the same time[27]. 

To apply pipelining to a loop in Vivado HLS uses directives section 

and select pipelining at the desired loop. And it tries to minimize the 

latency. 

As an example, we can see that without pipelining for two read 

operations, we require three clock cycles, but with pipelining, it gets 

reduced to just one. Overall six clock cycles are being reduced to four; 

the optimization done is to start iteration before the previous one ends. 

Shown below is a simple example of pipelining. 

In this example, we have procedures taking place, namely P1 and P2. 

Table below shows how it works sequentially. 

Stages 1 2 3 4 5 6 7 8 

S1 P1       P2       

S2   P1       P2     

S3     P1       P2   

S4       P1       P2 
    Table 3.1: Table for the sequential process 
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Another table shows working of the procedures after applying 

pipelining 

 

      

Table 3.2: Table showing pipelining 

      

Hence we can conclude that on applying pipelining, we can reduce the 

number of stages, procedures are being performed simultaneously with 

maximum use of the hardware. 

 

Advantages of Pipelining 

1. The latency is reduced. 

2. The utility of the system is improved. 

3. The system's reliability is increased. 

Disadvantages of Pipelining 

1. The use of pipelining increases hardware use, thus 

increasing the manufacturing cost. 

2. The clock cycle for instructions increases. 

In pipelining, we can perform tasks of many instructions 

simultaneously, by overlapping them, and not waiting for one to end. 

By the overlapping of the task, we increase the productivity of the 

system [28]. 

Stages 1 2 3 4 5 

S1 P1 P2       

S2   P1 P2     

S3     P1 P2   

S4       P1 P2 
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We can perform many operations at a time. 

3.1.1.2 UNROLLING 

Unrolling is another method for parallelism. Here many copies of a 

loop are made and then adjusted as per the need. 

Let's take an example to understand it better.  

The code written below is a rolled code, meaning no directive is 

applied; 

int s=0; 

for(int t=0ti<10;t++){ 

s+=a[t]; 

} 

After applying the unrolling of a factor of two over the above code we 

get; 

int s=0; 

for(int t=0;t<10;t+=2){ 

s+=a[t]; 

s+=a[t+1]; 

} 

The number of unrolling means that many numbers of copies of the 

instructions are created, and adjusted accordingly; also, the counter is 

updated with the iterations. 

The number of operations is increased to ease the parallelism, 

increasing the productivity of the system. 

Two types of unrolling are present, namely partial and full. Partial 

means the number of copies is less than the number of loops present, 

while if the number of loops is equal to the copies created is called full 
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unrolling. Full unrolling is better than the partial one as it creates more 

parallelism. In RTL design for fully unrolling all the loops are run 

simultaneously, while in partial unrolling several copies are created. 

Loop bounds are needed for full unrolling at compilation time [29]. 

To apply unrolling we can simply select unrolling from the directives 

section or write the code as; 

int s=0; 

for(int t=0;t<10;t++){ 

#pragma HLS unroll factor=2 

s+=a[t]; 

} 

Usually, in C/C++ rolled functions are present and performed 

sequentially, We create RTL designs in the same way. But we may use 

unrolling to increase productivity and data access [29]. 

HLS adds a remark at the end of a partially unrolled loop to distinguish 

between the original one. 

      

3.1.2 MATRIX MULTIPLICATION 

The C code used for the matrix multiplication is shown below: 

#include <stdio.h> 

#include <stdlib.h> 

      

void mmult (int A[4], int B[4], int C[4]) 

{ 

  int i,j,k,s,t; 

  int Ao[2][2], Bo[2][2]; 

      

  for(i=0; i<2; i++) { 
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       for(j=0; j<2; j++) { 

      

            Ao[i][j] = A[i * 2 + j]; 

            Bo[i][j] = B[i * 2 + j]; 

       } 

  } 

      

  for (i = 0; i < 2; i++) { 

       for (j = 0; j < 2; j++) { 

      

            int s = 0; 

            for (k = 0; k < 2; k++) { 

                 int t = Ao[i][k] * Bo[k][j]; 

                 s += t; 

            } 

            C[i * 2 + j] = s; 

       } 

  } 

} 

      

3.2 VIVADO HLx 

In the Vivado HL Design Edition and HL System Edition, without any 

additional charges, the HLx Edition is a configuration to it. 

The Vivado HLx helps the designers with its features to reuse 

optimized designs, maximize the use of the design, reuse of IPs 

created, automated connections, and fastening the making of a design. 

It is a great help for designers with the reuse of designs with much 

abstraction [30]. 
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Accelerating High-Level Design [30] 

● Creation of IP only with a simple C code automatically through 

HLS  

● Integration of IP automatically based on the blocks 

● Model Composer and System Generator for DSP 

Accelerating Verification [30] 

● Logic Simulation of Vivado 

● Mixed Language Simulator 

● Standalone Programming and Debug Environments 

● Accelerated Verification with C, C++ or SystemC with Vivado 

HLS 

● Verification of IP 

Accelerating Implementation [30] 

● Faster Implementation 

● Better Design Density 

● Advantage of Performance for the low and mid-range and 

Advantage of  Power for the high-end 

      

Vivado Design Suite HLx Editions can go further than RTL design. It 

is now able to the verification and creation of designs much faster than 

earlier RTL based methods[31].HLx also supports SDx well and 

together create an excellent platform for automated design creation or 

using all programmable devices like Zynq SoCs, 3D ICs, etc. 

      

https://www.xilinx.com/products/design-tools/vivado/integration.html
https://www.xilinx.com/products/design-tools/vivado/integration.html
https://www.xilinx.com/products/design-tools/vivado/simulator.html
https://www.xilinx.com/products/design-tools/vivado/debug.html
https://www.xilinx.com/products/design-tools/vivado/implementation.html
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                                          Figure 3.2: Working of Vivado HLx 

      

RTL design cycles needed working for each block separately, and we 

do it for the whole design. This method took time, and any changes 

would make it difficult to verify it again even before the hardware 

setup, also the connectivity could not be stabilized. But the high-level 

design method covers it all, containing features such as [20]: 

--Development of platform and logic are two different things now 

--Connectivity is faster, with Vivado IP Integrator knowing about the 

board as well 

--Simulation time is being reduced as compared to RTL simulation by 

the use of C 

--From language to the chip is a faster task now with the help of HLS 

for better synthesis 

All the steps from simulation to the FPGA are fully automated. This 

makes it easy to generate a bit stream and check it on the board. We 

get a better product by using design derivatives. Even switching the 
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same design to any other board is very easy; the things will be 

modified automatically as per the new board [31]. 

 

3.3 XILINX SDK 

The Xilinx Software Development Kit (XSDK) is an environment for 

creating applications for any of the Xilinx's microprocessors like Zynq-

7000 SoCs. 

Features of the SDK [32]: 

--Language used for compiling is C/C++ [32] 

--Manages the projects on itself [32] 

--Makefile and applications are created on its own [32] 

--Inspection of errors is accessible [32] 

--Boards' detection, profiling and debugging is done easily due to the 

environment provided [32] 

--The version of the source code can be easily handled [32] 

--Configuration of FPGAs is possible [32] 

--Command-line tool is present which can be scripted [32] 

This Integrated Development Environment (IDE) is a connection 

between the Xilinx's processors available and the designs created on 

the software. Eclipse is the base for the SDK. 

 

Advantages of SDK include: 

--Many processors like Zynq-7000 SoCs, Micro-Blaze, etc. can be 

used [31] 

--Can be downloaded separately or with the Vivado Design Suite [31] 
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--Can connect the Integrated Design Environment (IDE) to the design 

[31] 

--Debugging and co-debugging is possible for the whole of the 

software design [31] 

--Flash memory management, compiling and JTAG debug integration 

[31] 

--Many libraries and drivers available [31] 

--RTOS for any platform is supported [31] 

--Scripting possible through Xilinx Software Command Line Tool 

(XSCT) [31] 

Using the Xilinx SDK, we can create software for the Xilinx 

processors available. The requirements for the same are JTAG 

debugger, BSPs, libraries, flash programmer, compiler, and drivers. An 

environment for C/C++ bare- metal and Linux development and 

debugging is also available. C/C++ Development Toolkit (CDT) is 

supported through the Eclipse platform. 

The project created executes our final output, and the directory present 

in it contains all the required files such as source, make file, elf file, 

output file, etc. 

The board support package (BSP) present contains all the libraries and 

drivers needed for the project. The APIs of our software application 

must be at the top of our software platform. Therefore the creation of a 

BSP is the primary step [33]. 

To get a good SoC, we need to know well about our board and the 

software. It's tough to get an all in one tool, to know all about 

performance and visualization. Xilinx System Development Kit 

(XSDK) can do it for us, along with optimization of the system, using 

System Analysis toolbox [33]. 



43 
 

3.3.1 The C code used for getting output at the Xilinx Software 

Development Kit is: 

#include <stdio.h> 

#include "platform.h" 

#include "xil_printf.h" 

#include "xparameters.h" 

#include "xil_io.h" 

      

int main() 

{ 

 init_platform(); 

            int c[4]; 

print("Hello World\n\r"); 

      

   

 Xil_Out32(XPAR_AXI_BRAM_CTRL_0_S_AXI_BASEAD

DR,0x1); 

   

 Xil_Out32(XPAR_AXI_BRAM_CTRL_0_S_AXI_BASEAD

DR+4,0x2); 

   

 Xil_Out32(XPAR_AXI_BRAM_CTRL_0_S_AXI_BASEAD

DR+8,0x1); 

   

 Xil_Out32(XPAR_AXI_BRAM_CTRL_0_S_AXI_BASEAD

DR+12,0x2); 

      

   

 Xil_Out32(XPAR_AXI_BRAM_CTRL_1_S_AXI_BASEAD

DR,0x1); 

   

 Xil_Out32(XPAR_AXI_BRAM_CTRL_1_S_AXI_BASEAD

DR+4,0x2); 
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 Xil_Out32(XPAR_AXI_BRAM_CTRL_1_S_AXI_BASEAD

DR+8,0x1); 

   

 Xil_Out32(XPAR_AXI_BRAM_CTRL_1_S_AXI_BASEAD

DR+12,0x2); 

      

      

c[0]=Xil_In32(XPAR_AXI_BRAM_CTRL_2_S_AXI_BASEADDR); 

c[1]=Xil_In32(XPAR_AXI_BRAM_CTRL_2_S_AXI_BASEADDR+

4); 

c[2]=Xil_In32(XPAR_AXI_BRAM_CTRL_2_S_AXI_BASEADDR+

8); 

c[3]=Xil_In32(XPAR_AXI_BRAM_CTRL_2_S_AXI_BASEADDR+

12); 

      

xil_printf("%d\n%d\n%d\n%d",c[0],c[1],c[2],c[3]); 

  return 0; 

   } 

      

      

3.4 Design specifications 

C language has been used for the implementation of the design as well 

for checking the output in Vivado HLS and Xilinx SDK respectively. 

The synthesis and creation of IP have been done using development 

tools available in the Vivado HLS. And the design is being checked by 

the SDK Integrated Development Environment. 

The targeted chip used is XC7Z010-1CLG400C. 



45 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 

RESULTS AND DISCUSSION 
  



46 
 

 

  



47 
 

4. RESULTS AND DISCUSSION 

 

We first synthesize the C code in the Vivado HLS, and we got to know 

the performance and utilization estimates sequentially. Later the 

directives, pipelining and unrolling were applied one by one, and we 

calculated the estimates again by the synthesis. There is a difference in 

applying the directives; both of them showed different results, with an 

optimized design. By export RTL we have created an IP to use it in our 

hardware design. Using Vivado HLx Edition, we have created a block 

diagram to connect it up with our board through Xilinx SDK. 

The results presented here show us the estimates as well as the 

comparison between the sequential and optimized process. Also, the 

block diagram created is shown up with a snip of the multiplied output 

in Xilinx SDK. 

4.1 Sequential process 

 Latency report 

This is the report for timing and clock cycles required for the 

sequential process, where no directives are applied. 
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Figure 4.1: Latency report of sequential process 

 

 Hardware utilization report 

With this report we get to know about the hardware (LUTs, Flip-Flops) 

required for circuit implementation, without any directives are applied. 
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Figure 4.2: Hardware utilization of sequential process 

      

4.2 Loop Pipelining 

We have applied the pipeline directive over the loops in the C code, 

and then the results are obtained after the simulation of the code. As 

we can see from the reports shown below, there is a reduction in 

latency and hardware utilization. Also, the application of directive at 

different loops gives different results. But we should know that on 

applying pipeline, the sub-loops gets unrolled, therefore there is no use 

of applying pipelining on two consecutive loops. However, below are 

the results for different loops. 
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-- For loop i   

Latency report 

This is the report for timing and clock cycles, where pipelining 

directive has been applied only on loop i, and the innermost loops as 

per pipelining will automatically be unrolled. 

 

Figure 4.3: Latency report after applying pipelining on loop i 

      

Hardware utilization report 

With this report we get to know about the hardware (LUTs, Flip-Flops) 

required for circuit implementation, pipelining directive being applied 

on loop i. 
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Figure 4.4: Hardware utilization report after applying pipelining on 

loop i 

-- For loop j 

Latency report 

This is the report for timing and clock cycles, where pipelining 

directive has been applied on loop j and loop k will now be 

automatically unrolled. 

 

Figure 4.5: Latency report after applying pipelining on loop j 
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Hardware utilization report 

With this report we get to know about the hardware (LUTs, Flip-Flops) 

required for circuit implementation, pipelining directive being applied 

only on loop j. 

 

Figure 4.6: Hardware utilization report after applying pipelining on 

loop j 

-- For loop k 

Latency report 

This is the report for timing and clock cycles, where pipelining 

directive has been applied on loop k. 
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Figure 4.7: Latency report after applying pipelining on loop k 

Hardware utilization report 

With this report we get to know about the hardware (LUTs, Flip-Flops) 

required for circuit implementation, pipelining directive being applied 

only on loop k. 

 

Figure 4.8: Hardware utilization report after applying pipelining on 

loop k 
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4.3 Loop Unrolling 

The unrolling directive is applied to the loops of our C code, again 

reducing the latency but with a slight increment in hardware 

comparatively. Because unrolling copies the iterative part and runs in 

parallel, making the hardware faster. 

-- For loop ijk 

Latency report 

This is the report for timing and clock cycles, where unrolling directive 

has been applied on all the three loops. 

 

Figure 4.9: Latency report after applying unrolling on loop ijk 

Hardware utilization report 

With this report we get to know about the hardware (LUTs, Flip-Flops) 

required for circuit implementation, with unrolling directive being 

applied on loops ijk. 
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Figure 4.10: Hardware utilization report after applying unrolling on 

loop ijk 

 

 

-- For loop jk 

Latency report 

This is the report for timing and clock cycles, where unrolling directive 

has been applied on only j and k loops. 



56 
 

 

Figure 4.11: Latency report after applying unrolling on loop jk 

Hardware utilization report 

With this report we get to know about the hardware (LUTs, Flip-Flops) 

required for circuit implementation, unrolling directive being applied 

only on loop j and k. 

      

 

Figure 4.12: Hardware utilization report after applying unrolling on 

loop jk 
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-- For loop k 

Latency report 

This is the report for timing and clock cycles, where unrolling directive 

has been applied only on the innermost loop that is k loop. 

 

Figure 4.13: Latency report after applying unrolling on loop k 

 

Hardware utilization report 

With this report we get to know about the hardware (LUTs, Flip-Flops) 

required for circuit implementation, unrolling directive being applied 

only on loop k. 
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Figure 4.14: Hardware utilization report after applying unrolling on 

loop k 

Comparison of parameters between sequential process, pipelining and 

unrolling directive 

Parameters No 

directive 

Pipelining        Unrolling        

            i j k ijk Jk k 

Latency 50 18 20 24 15 20 30 

LUTs 979 908 1085 1346 992 877 895 

Registers 482 474 483 431 593 470 478 

DSPs 3 12 6 3 24 12 6 

Table 4.1: Comparison of parameters between sequential process, 

pipelining and unrolling directives 
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The report presented above tells us how pipelining and unrolling are 

helpful in comparison to the sequential process. Also, we can assume 

the difference between pipelining and unrolling. 

We can see that latency has been reduced in both the cases, while 

hardware reduction is made much in the case of unrolling more 

effectively. 

Shown below are the tables where we are comparing the reduction in 

delay in comparison to the sequential process and hardware utilization 

of unrolling and pipelining: 

Pipelining        Unrolling             

i j k ijk jk K 

64% 60% 52% 70% 60% 40% 

 

   Table 4.2: Comparing the reduction in delay after applying 

pipelining and unrolling directives 

 Pipelining        Unrolling        

 I j k ijk jk k 

LUTs 6%↓ 10%↑ 37%↑ 2%↑ 11%↓ 9%↓ 

Registers 2%↓ 0% 11%↓ 23%↑ 3%↑ 1%↓ 

DSPs 4%↑ 2%↑ 0% 8%↑ 4%↑ 2%↑ 

 

Table 4.3: Comparing the hardware utilization of unrolling and 

pipelining  
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From the above two tables, we get to know that applying unrolling on 

all the three loops gives us a reduction in delay by 70% while 

pipelining on loop i provides 64% reduction in delay. 

Also, we can also see that there is an 11% decrease in hardware 

utilization on using unrolling on j and k loop, while only 8% decrease 

on applying pipelining to only i loop. 

Now, we can use between the two directives as per the requirement of 

our application. 
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4.4 Block Design 

The following is a block diagram for the implementation of the design 

on hardware. We have used Vivado HLx to design it. We connect the 

processor to our IP created at Vivado HLS. 

 

 

 

 

 

Figure 4.15: Block design for matrix multiplication 
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4.5 Implemented design 

Shown below is the implemented design we can see at Vivado HLx. It 

shows the LUTs. 

      

 

Figure 4.16: Implemented design for matrix multiplication 

 

The implemented design provides us with information about the 

hardware; the circuit will contain 5108 LUTs count, 4536 Flip-Flops 

count, 1.50 BRAM count, and 3 DSP count. 
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4.6 SDK Output 

Shown below is the output we got for the multiplication of two 

matrices as per our code, through Xilinx SDK, in the SDK Terminal. 

Here we have multiplied [1,2,1,2] x [1,2,1,2] and got the output 

[3,6,3,6].  

  

Figure 4.17: SDK output for matrix multiplication 
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Chapter 5 

SUMMARY AND FUTURE 

SCOPE 
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5. SUMMARY AND FUTURE SCOPE 

 

In this project, we have tried to reduce the complexity during 

calculations, reducing the latency as well as the use of the hardware 

using different directives and tried to get the output of the 

multiplication of two matrices by using the device, the FPGA board. 

The two directives used were pipelining and unrolling. The use of 

directives lets us do the calculations faster, reducing the latency as 

compared to our sequential process, also allowing us to use lesser 

hardware. The two have been explained above, along with the software 

used. We have created a C code for matrix multiplication, done the 

synthesis, created an IP for the same, implemented a block design for 

its hardware implementation, and got the multiplied output using the 

board.  

The future work we can apply to this project can be: 

1. As we have implemented only two directives, we can apply 

more available directives and compare all of them and use as 

per the need of our application. 

Directives can be: 

● Loop Flatten: helps change nested or sequential loops to a 

single loop. 

● Dataflow: helps start a function or loop before the previous one 

ends. 

      2. Using multi-core processor or other boards for faster calculations 

then now. 

      3. Calculation of distance between atoms, applying the logic for 

distance calculation in a quicker way. 
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