
i

ACKNOWLEDGEMENT

This M.Tech thesis required a lot of support to get completed, and luckily,

I got so much help during my project work. I am glad and proud to

complete my M.Tech at the Indian Institute of Technology, Indore.

First of all, I would like to express the most profound appreciation to my

thesis supervisor Dr. Srivathsan Vasudevan, Associate Professor,

Electrical Engineering, IIT Indore for his patience and faith in me, as he

continually and convincingly supported me to move forward day by day.

He guided me well for the project.

 I would like to thank the Discipline of Electrical Engineering for

providing all the facilities and resources required for the completion of

this work.

Furthermore, I would like to express my sincere gratitude to my PSPC

members Dr.Satya S. Bulusu, IIT Indore, and Dr. Amod C. Umarikar,

IIT Indore, for their valuable suggestions and feedback at every point.

Besides, I would not forget Miss Kritika Bhardwaj (JRF), IIT Indore for

investing all her valuable time with me. Finally, I owe a lot to my family,

friends, and classmates for always encouraging and supporting me to stay

motivated and focused on completing the project.

SARIKA ATHYA

ii

iii

Dedicated to my Family and friends

iv

v

Abstract

Usually, the extensive calculations done in real life like weather

forecasting, science-related massive calculations take a lot of time, due to

their complexity. Here in this project, as a preliminary example, we have

tried to reduce the complexity as well as reduce clock cycles and

calculation time, also to reduce the hardware if needed. This project is just

an attempt to do so, by simply checking it on matrix multiplication and

using directives to reduce clock cycles and equipment used, namely

pipelining and unrolling. Vivado High-Level Synthesis (HLS) is being

used for the simulation and creation of IP, while Vivado HLx for creating

a block diagram by using the same IP which we produced at HLS. Further

getting the multiplied output at Xilinx SDK, this has been used for the

checking of the circuit created with its calculations, timing and other

parameters, so that we can implement it physically later, only if the

parameters match our requirement and modify it if needed. The board used

in the project is the ZYBO board with a dual core arm cortex A9 processor

present in it.

Keywords- Complexity reduction, HLS, HLx, SDK, Zynq-7000

vi

vii

TABLE OF CONTENTS

Title Page no.

List of figures ix

List of flowcharts xi

List of tables xiii

List of abbreviations xv

Chapter 1: INTRODUCTION 1

1.1 Background 3

1.2 Motivation 3

1.3 Objectives 4

1.4 Organization of the thesis 5

Chapter 2: LITERATURE SURVEY 7

2.1 SoC 9

2.2 Field Programmable Gate Arrays (FPGAs) 9

 2.2.1 FPGA Architecture 11

 2.2.2 FPGA Architecture Features 12

 2.2.2.1 Configurable Logic Block 12

 2.2.2.2 Programmable I/O 13

 2.2.2.3 Programmable Routing/Interconnect 14

 2.2.3 FPGA Architecture Design Flow 15

 2.2.3.1 Design verification 15

 2.2.3.2 Design Entry 15

 2.2.3.3 Design Synthesis 16

 2.2.3.4 Design Implementation 16

 2.2.3.5 Device Programming 18

 2.2.3.6 Design Verification 18

 2.2.4 FPGA Applications 18

 2.3 Complex Programmable Logic Devices (CPLDs) 20

viii

 2.4 BRAM 21

 2.4.1 Single Port BRAM Configuration 22

 2.4.2 Dual Port BRAM Configuration 23

 2.5AXI bus 24

 2.6 ZYBO Board 25

 2.6.1 Introduction 25

 2.6.2 Features of the Zynq-7000 26

Chapter 3: METHODOLOGY 29

 3.1 Vivado HLS 31

 3.1.1 Directives 33

 3.1.1.1 Pipelining 34

 3.1.1.2 Unrolling 36

 3.1.2 Matrix multiplication 37

 3.2 Vivado HLx 38

 3.3 Xilinx SDK 41

 3.3.1 The C code used for getting output at Xilinx SDK 43

 3.4 Design specifications 44

Chapter 4: RESULTS AND DISCUSSION 45

 4.1 Sequential process 47

 4.2 Loop Pipelining 49

 4.3 Loop Unrolling 54

 4.4 Block Design 61

 4.5 Implemented design 62

 4.6 SDK Output 63

Chapter 5: SUMMARY AND FUTURE SCOPE 65

References

ix

 List of figures

Figure no. Description Page no.

 2.1 Basic architecture of FPGA 10

 2.2 Detailed FPGA Architecture 11

 2.3 Configurable Logic Block 13

 2.4 FPGA with routing channels 14

 2.9 Single port BRAM 22

 2.10 Dual port BRAM 23

 2.12 Zybo Z7-10 27

 4.1 Latency report of sequential process 48

 4.2 Hardware utilization of sequential process 49

 4.3 Latency report after applying pipelining on

 loop i 50

 4.4 Hardware utilization report after

 applying pipelining on loop i 51

 4.5 Latency report after applying pipelining on

 loop j 51

 4.6 Hardware utilization report after

 applying pipelining on loop j 52

 4.7 Latency report after applying pipelining on

 loop k 53

 4.8 Hardware utilization report after

 applying pipelining on loop k 53

 4.9 Latency report after applying unrolling on

 loop ijk 54

 4.10 Hardware utilization report after applying

unrolling on loop ijk 55

x

 4.11 Latency report after applying unrolling on

 loop jk 56

 4.12 Hardware utilization report after applying

unrolling on loop jk 56

 4.13 Latency report after applying unrolling on

loop k 57

4.14 Hardware utilization report after applying

unrolling on loop k 58

 4.15 Block Design for matrix multiplication 61

 4.16 Implemented design for matrix

 Multiplication 62

 4.17 SDK output of the matrix multiplication 63

xi

List of flowcharts

2.5 FPGA Architecture Design Flow 15

2.6 Mapping for the design implementation

of FPGA 17

2.7 Routing for the design implementation

of FPGA 17

2.8 CPLD Architecture 21

2.11 AXI bus architecture 24

3.1 Design flow in Vivado HLS 33

3.2 Working of Vivado HLx 40

xii

xiii

List of tables

3.1 Table for the sequential process 34

3.2 Table showing pipelining 35

4.1 Comparison of parameters between

 sequential process, pipelining

 and unrolling directives 58

4.2 Comparing the reduction in delay after

applying pipelining and unrolling

directives 59

4.3 Comparing the hardware utilization of unrolling

and pipelining 59

xiv

xv

List of Abbreviations

ACP Accelerator Coherency Port

ADC Analog to Digital Converter

ALU Arithmetic and Logic Unit

AMBA Advanced Microcontroller Bus Architecture

API Application Program Interface

ARM Advanced Reduced instruction set computer

Machines

ASIC Application Specific Integrated Circuits

AXI Advanced Extensible Interface

BRAM Block Random Access Memory

BSP Board Support Package

CDT C/C++ Development Toolkit

CLB Configurable Logic Block

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

DDR Double Data Rate

DMA Direct Memory Access

DSP Digital Signal Processing

EBR Embedded Block RAM

EEPROM Electrically Erasable Programmable Read

Only Memory

FIFO First In First Out

FPGA Field Programmable Gate Array

GHz Gigahertz

GPIO General Purpose Input Output

HDL Hardware Description Language

HLS High-Level Synthesis

IDE Integrated Development Environment

IP Intellectual Property

xvi

IO Input Output

JTAG Joint Test Action Group

KB Kilobyte

LED Light Emitting Diode

LMB Local Memory Bus

LUT Look Up Table

MIO Multiplexed Input Output

MUX Multiplexing

NAS Network Attached Storage

NGC Native Generic Circuit

NGD Native Generic Database

OCM On-Chip Memory

OTG On The Go

PL Programmable Logic

PLB Processor Local Bus

PLD Programmable Logic Devices

PROM Programmable Read Only Memory

PS Processing System

RAM Random Access Memory

RTL Register Transfer Level

SAN Storage Area Network

SD Secure Digital

SDIO Secure Digital Input Output

SDK Software Development Kit

SoC System on Chip

SRAM Static Random-Access Memory

UART Universal Asynchronous Receiver

 Transmitter

UCF User Constraints File

USB Universal Serial Bus

xvii

VHDL Very high speed integrated circuit Hardware

Description Language

XADC Xilinx Analog to Digital Converter

XSCT Xilinx Software Command Line Tool

ZYBO ZYnq Board

1

Chapter 1

INTRODUCTION

2

3

1. INTRODUCTION

1.1 Background

Complexity in computation is a significant issue these days. There is

always a need to reduce the complexity saving the time needed for the

calculations used by machines. Dynamic programming may be among

the causes for the complexity in the devices, to get the final output;

several times, temporary data is used [1]. For doing the mentioned

task, it requires a massive amount of memory space in the machine.

With the advancement in technology, we need to use lesser hardware

and also speeds up the calculations. The computational techniques used

up till now, need improvement. The calculations which were usually

taking much time can now be done parallelly, with lesser time.

1.2 Motivation

CPUs are used for general processing, contain all in one type of

processor, due to which they are slow as they perform many tasks at a

time. But this may not be desired for all kind of applications. Also, we

need faster processors these days to save time. However, it can

perform all the tasks but not with the appropriate performance [1].CPU

contains only one ALU, for performing logical tasks.

To speed up our CPU, we can either use faster circuits or arrange the

hardware to perform more tasks at one time.

With advancement, there are designs of the multi-core processor. Now

we can perform many logical tasks at a time. For example, our

application needs ten multiplications at one time; we can do it by

increasing the number of ALU.FPGA is one such device which we

have used in this project.

4

1.3 Objective

In the project, we aim to take up a multiplication function and

● Take two matrices and get their multiplied output

● Know about the latency of the calculation

● Comparison of applying different directives and without their

application

● Testing for the multiplication output using different values

● Getting the correct output using the FPGA board

Here, it is proposed to get production from an FPGA board for a 2x2

matrix multiplication. We are performing this project, for the testing of

connections between Vivado HLS and the FPGA board used. Vivado

HLS is used for the creation of IP and application of the directives. It

uses high-level languages (C, C++, SystemC) and converts these

languages to Hardware Description Languages (HDL). Vivado HLx

has been used for the connections between HLS code and FPGA, while

Xilinx SDK for the testing purpose.

We can relate FPGA and CPU as we are using both the devices for

logical tasks, but FPGA is different as it is not a processor itself, does

not run a stored program, but we can reconfigure. We can implement

any logic needed and is not predefined or stored in it. An FPGA

features may vary as per their vendors and models, it typically contains

IO banks, clock manager, etc. As the FPGA contains the element so

that it can perform any function, and can modify as per the need of the

customer. This feature makes it suitable for the user to make use as per

the requirement and application.

5

1.4 Organization of the thesis

This section contains a description of how we have organized the

thesis. It mainly has the following five chapters:

Chapter 1 provides the background, motivation, and goal of the

project.

Chapter 2 contains the introduction to FPGA, Vivado HLS, directives,

Vivado HLx, and Xilinx

SDK.

Chapter 3 describes the methodology used to implement the project

work.

Chapter 4 provides the results and discussion.

Chapter 5 presents the project summary and conclusion.

6

7

Chapter 2

LITERATURE SURVEY

8

9

2. LITERATURE SURVEY

2.1 SoC

An SoC is the one which contains all the elements required in a

computer or any other electronic circuit. Parts included may be for

storage, data processing, RAM, ROM, or input-output ports [2]. We

can say that SoCs have replaced microcontrollers. In layman’s

language, SoCs are the chips which integrate all the required for a

circuit on a single chip. SoC contains microprocessors, a system for

communication for contacting between its modules. SoC is mainly

present in devices which are small but complex [3]. It includes analog,

digital, and mixed functions. SoC is the one stop for both software and

hardware components in a single chip. It contains all the elements

required for a complete circuit [4].

SoC requires less space, less power with excellent performance. It

helps us avoid the need for multiple chips as it provides all the needed

elements on one chip [5]. It is present on mobile phones, cameras,

medical technology, etc

.

2.2 Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs) consists of configurable

logic blocks (CLBs) which are networked and the connection between

them is made out via interconnects which are programmable. FPGAs

have the feature to be reconfigured as per the needs of the consumer's

application even after its manufacturing [6]. And this is the feature that

makes it stand out from Application Specific Integrated Circuits

(ASICs), which are manufactured only for particular tasks. However,

FPGAs, which we cannot reprogram, is also available, but the one

which we widely use is with the feature to be able to modify as per the

user application.

10

 Figure 2.1: The basic architecture of FPGA [7]

We can casually say that FPGAs are chips which can be programmed

to check or work on the digital designs. Advanced FPGAs have

approximately 3, 30,000 logic blocks and around 1,100 inputs and

outputs.

The FPGA industry has been emerged out through programmable logic

devices (PLD) and the programmable read-only memory (PROM)[6].

But the FPGA allows doing the programming by the consumer itself

and does not need PLD and PROM to be wired during the

establishment of the board, and after we have produced the product,

this feature allows the consumer to fix any bugs or add things

according to the requirement.

The emergence of FPGA has brought a significant change and

advancement in the industry. Earlier FPGAs were limited to

networking and communication; it slowly moved to automotive,

11

manufacturing, day to day life and for every kind of electronic devices

as well.

 2.2.1 FPGA Architecture

The architecture of an FPGA is dependent on static random-access

memory (SRAM), which is volatile. Once the FPGA is switched off,

the data is lost. To store the data, we need to externally add electrically

erasable programmable read-only memory (EEPROM) [7].

We can turn the architecture of FPGA into any hardware circuit as per

the need. To turn basic logic circuits to complex architectures, we can

make use of a configurable logic block (CLB).

In FPGA architecture Configurable Logic Block (CLB) location is

shown in the figure below.

 Figure 2.2: Detailed FPGA Architecture [8]

12

We can also make a whole new SoC using FPGA. It can be used to

program hardware architecture as per our needs. This is not possible in

case of a microprocessor.

2.2.2 FPGA Architecture Features

FPGA Architecture consists of features such as

● Configurable Logic Block (CLB),for logic functions

● I/O Block, for external connections

● Switching Matrix Interconnects, for internal connections

2.2.2.1 Configurable Logic Block

The programmable/configurable logic block helps with calculations

and storing of data. An ideal one consists of a flip-flop, combinational

logic, and logic to reduce area as well as cost.

Advanced FPGAs consists of a combination of different kind of blocks

such as multiplexers, BRAM, etc. We use configuration memory for

the controlling of functions of each element [7].

The input Lookup tables (LUTs) of CLB are used to implement the

functionalities such as

● Combinational Logic design

● Distributed RAM

● Shift Register

We can find more circuits inside FPGA, like Multiplier, Block RAM,

and many more.

CLBs have two slices, which we further divide into two logic

elements.

Logic elements have

● Four input lookup Table

● Full Adder and Mux logic

● D Flip Flop

13

 Figure 2.3: Configurable Logic Block [9]

We use Multiplier Block for the implementation of the dedicated

18×18 multipliers with signed and unsigned operations.

Block RAM is a dedicated memory that implements dual port 16kb

memory.

In architectures such as zynq from Xilinx, dual-core arm cortex A9

Processor is present inside for high-performance implementation [7].

2.2.2.2 Programmable I/O

We can use the programmable I/O blocks for external connections. The

I/O pad and the circuit around it together form an I/O cell.

This is a large area of an FPGA. Also, the design is complicated as the

voltage applied, and the reference voltages both are different.

Selecting a vast number of standards for its design could increase the

area of the chip.

14

With development, the architecture of FPGA now contains several

programmable blocks like BRAM, multiplexers, DSP-48. Also, we

attach the microprocessors to the FPGA as per its requirement [10].

2.2.2.3 Programmable Routing/Interconnects

The programmable routing is used to complete the desired circuit by

connecting different blocks altogether. It has multiplexers pass

transistors and tri-state buffers, used for connecting logic elements.

Figure 2.4: FPGA with routing channels [11]

15

2.2.3 FPGA Architecture Design Flow

FPGA Architecture design consists of design entry, design synthesis,

design implementation, programming of the device, and verification of

the design.

Figure 2.5: FPGA Architecture Design Flow [10]

2.2.3.1 Design verification

This includes verification of the functions and timing done during

design flow. Simulation is being carried out in this step like functional,

time-related simulation and also the behavioral, user-defined

simulation [10].

2.2.3.2 Design Entry

The design entry can be with schematic or HDL or both. If the concept

is about hardware, then the entry can be done by the schematic, and if

16

it is an algorithm, then HDL may be a good option. Because the

schematic gives a more realistic view to the user, it is preferable [10].

2.2.3.3 Design Synthesis

Here in the design synthesis, the VHDL code converts to a circuit with

logic elements. It checks for the syntax and then goes to the

architecture. The architecture created is optimized, and this is called

the netlist, and the file saves as a Native Generic Circuit (NGC) file

[10].

2.2.3.4 Design Implementation

The design implementation needs to

● Translate

● Map

● Place and Route

Translate

Here the files are converted to NGD (Native Generic Database) file. To

the ports of the architecture created, we can give physical ports like

switches, LEDs, etc. and then this information is saved in User

Constraints File (UCF) [10].

Map

Here the circuit is divided so that we can see it as an FPGA logic

blocks. We can map it from NGD to CLBs, I/O blocks, and then an

NCD file is being created. Ultimately the design is mapped to FPGA

[10].

17

Figure 2.6: Mapping for the design implementation of FPGA [10]

Routing

This puts the divided circuit to logic blocks as per the constraints and

connections are being made for the logic blocks [10].

 Figure 2.7: Routing for the design implementation of FPGA [10]

18

2.2.3.5 Device Programming

Once we have created a design as per the components of FPGA, now it

must be made compatible with the FPGA. The NCD file is handed

over to the BITGEN program, to create a BIT file, so that we can

implement it to an FPGA [10].

 2.2.3.6 Design Verification

Stages at which verification is done are;

1. Behavioral Simulation (RTL Simulation)

This is the very first step in the hierarchy. This is done to check the

RTL code.

Here the breakpoints are being created, and we cross-check the

function, the signals and variables are verified [10].

2. Functional Simulation

It is done once the translation simulation completes. It tells about the

operation of the circuit [10].

3. Static Timing Simulation

It completes after mapping. We get to know about the path delays.

Here we get to see the summary of the timings and delays taken by the

design [10].

2.2.4 FPGA Applications

As we know, we can reconfigure FPGA; they are useful in many fields.

By leading the industry, Xilinx provides us with FPGA devices,

different software, and IP cores, which we can readily use in various

areas such as:

● Aerospace & Defense - FPGAs which have the advanced

property for processing of images, generation of waves and can

tolerate radiation [12].

19

● ASIC Prototyping -For the verification purpose of software and

modeling of the systems (SoC) FPGAs make it precise and

faster [12].

● Audio - With lowering engineering costs, increasing flexibility

Xilinx FPGAs is beneficial in fields like audio and multimedia

[12].

● Automotive -For the help of the driver, increasing the comfort

and ease inside the vehicle, IPs have been a great help [12].

● Broadcast & Pro-AV -fastening and increasing the lifespan of

the products with Broadcast Targeted Design Platforms and

also broadcast systems [12].

● Consumer Electronics -Daily use products have become more

advanced with a lesser cost like networking, handsets, wireless

systems, flat displays, and many more [12].

● Data Center - FPGA in the data center is helpful in storage,

higher bandwidth, and providing value to cloud deployments

[12].

● High-Performance Computing and Data Storage - Provides

help for different kinds of storage like Network Attached

Storage (NAS), Storage Area Network (SAN) and servers [12].

● Industrial -With lowering engineering costs, increasing

flexibility Xilinx FPGAs are beneficial for various applications

such as imaging equipment, industrial automation, and

surveillance [12].

● Medical - The Virtex FPGA and Spartan® FPGA families help

display and process purposes, also monitoring or identification

of the diseases can be done [12].

● Security -Xilinx provides all the security needs with

preventions to control and safety of the areas [12].

● Video & Image Processing -By lowering engineering costs,

increasing flexibility Xilinx FPGAs help in the field of

processing of videos and images [12].

20

● Wired Communications -Provides with the solution for the

Programmable Networking Line Card Packet Processing,

Framer/MAC, and more [12].

● Wireless Communications - Provides help for baseband,

connection, and transfer for wireless equipment, addressing

standards such as WCDMA, WiMAX, and others [12].

2.3 Complex Programmable Logic Devices (CPLDs)

CPLDs are made up of a few programmable logic arrays (PLAs) and

programmable interconnection lines. We use it for the implementation

of faster logic. It contains less number of registers [13].

In comparison to FPGA, CPLDs do not contain individual resources

like RAM, or to do logical functions like adding or the comparators.

CPLD only has the ability for small digital designs, unlike the FPGA,

which posses’ more significant designs. Even for large inputs CPLDs

due to their limiting complexity provide only single chips with faster

delays. We can use CPLDs for applications like equipment which are

run by battery, where quicker and more prominent decoding is needed,

use of power is less, fast switching is required, designs are not

significant, and security is also an important aspect. Here in CPLDs,

there is a security of the designs to be secured as they can be locked

after they are being programmed [13]. Comparatively in FPGA

security is an issue as the bitstream has to be loaded with power every

time.

 In comparison to FPGA, CPLDs are suitable for applications with

high power consumption and not in battery operated applications.

However, in the newly established FPGAs, it is better. As FPGA can

be reconfigured at the user end as well, it is more beneficial than

CPLDs, have flexible designs, RAM, the microprocessor on the chip

itself, multi-gigabit transceivers and more such benefits [13].

21

Figure 2.8: CPLD Architecture [14]

As FPGA has more registers and CPLDs have more combinational

circuits, they are used for timing and control circuit respectively. Also,

the synthesis report for the same code for FPGA gives different timing

output every time while for CPLD it is the same. With advancement,

the two devices seem to be similar. But the architecture of the CPLD

still keeps it different with low cost, a configuration that is not volatile

and also the timing characteristics [15].

2.4 BRAM

Block Random Access Memory (Block RAMs/BRAM) is built inside

FPGA and can be used to store a massive amount of information. It is a

kind of random memory on FPGA used for storing data. We consider it

in the FPGA datasheet along with flip flops, LUTs and DSPs. The size

of the BRAM depends on the size of the FPGA. It is an essential part

of the FPGA.

 A Block RAM (embedded memory, or Embedded Block RAM

(EBR)), is available in a good number on the FPGA, depending on the

22

FPGA uniquely. We can use them as per our needs. With more and

more designs we make, we get to know about the number of BRAMs

we need better [16].

 BRAMs have a fixed size like 4/8/16/32 KBS. Their width and depth

can be changed. BRAMs are very helpful to store data.

2.4.1 Single Port BRAM Configuration

 Figure 2.9: Single port BRAM [16]

If there is only one port to receive data, we can use Single Port Block

RAM. This is the most straightforward configuration. We use it at

places such as, we only need to read, and a fixed value is to be stored.

We can read data only at the positive edge of the clock cycle, and

address is being already mentioned, for the time when the write enable

signal is not on. We can read data stored when the read data signal is

on. We can only read a single data at one clock cycle. So if the BRAM

has a depth of 1024, it will have 1024 cycles to read [16].

Here we can only read or write data, and not both at the same time, as

there is only a single port. We can write data by enabling the write data

port high.

23

2.4.2 Dual Port BRAM Configuration

 Figure 2.10: Dual port BRAM [16]

The Dual-Port Block RAM (or DPRAM) is the same as a single port

only, but here we can read and write at the same time as there are two

ports available. We can use any of the two ports to read or write, as

both works the same. On the same clock cycle, both the ports can work

simultaneously at different addresses. That is we can read from a

different address and write it to another address.

This may be used at places like reading data externally or at the time of

ADC conversion to store data, or we may use it as a FIFO [16].

We use BRAM for functions such as:

● With the help of local FIFOs, we can transfer data to different

clock domains[17]

● With the help of DMA FIFO, we can transfer data between

FPGA and any other processor[17]

● It is better than LUTs for storing data[17]

The two ports can be connected to any of the buses independently:

LMB (Local Memory Bus), PLB (Processor Local Bus), and OCM

(On-Chip Memory). Range of the address, number of the byte write

enable define BRAM primitives [18].

24

2.5 AXI bus

As we have PCI for x86 architectures similarly AXI from AMBA 3 is

a bus for ARM SoCs.

Here we are using AXI4, which is of 3 types, all with master and slave

modes.

● AXI4 (Full) -memory mapping is needed and has high

performance

● AXI4-Lite -we can read and write in the four registers

contained

● AXI4-Stream - used to stream data at higher speed

Figure 2.11: AXI bus architecture [19]

 We can use the device connected as master or slave according to our

need.

25

● If the device connected is master, it can be used to write data to

DDR3

● If it is a slave, we can read from it, and which we can write to

other master elements, it is exposed to 64 to 1024 bytes.

2.6 ZYBO Board

2.6.1 Introduction

 It is a board by Digilent which is a Zynq-7000 family, the Z-7010,

based on SoC. The board is one of the cheapest versions. With the

ZYBO board, we get:

● The block design of the high level[20]

● We can program the FPGA portion of SoC into Verilog or

VHDL [20]

● The interface between the AXI bus and the code[20] C code

for interfacing with the wrapper through bus[20]

● Board support package[20]

● Linux kernel module[20]

● User space application[20]

● For high level block design we can use

zybo_base_system/source/vivado/hw/zybo_bsd/zybo_bsd.xp

r in vivado, because it contains information for physical

connections[20]

In Zynq-7000 which we are using 2 AXI master and 2 AXI slave

interfaces are present.

Next, for the connection between Zynq and a peripheral device, we

need interconnect.AXI4 interconnect is being used, which contains 1 to

16 AXI master and slave interfaces each [20].

26

2.6.2 Features of the Zynq-7000 include:

--the processor contained is ARM Cortex-A9, which is known for its

perfect performance and the per watt ratio [21].

--it supports single and double floating point [21]

--it can perform up to 1 GHz [21]

--contains the most significant amount of space,512KB cache,256KB

on-chip, and supports DDR3-1866[21]

--for low power consumption and low-cost Artix-7 is being used with

the excellent performance [21]

--Memory mapped components with DMA along with 2x USB 2.0, 2x

Tri-mode Gigabit Ethernet, 2x SD/SDIO, 2x UART, 32b GPIO, etc.

[21]

--Everything contained in a programmable, flexible, processor,

interconnects, a speed which we can adjust as per the need, low power

mode is also available [21]

 --acceleration is provided to hardware through AXI ACP port of 64

bit, and even cache coherency for soft processors present. It offers high

bandwidth with 100 GB/s between PS and PL [21]

--Hardware acceleration is provided through parallel processing with

low power DSP slices [21]

--We get full safety and security is provided with anti-tamper

technology and proper and safe booting system [21]

27

Figure 2.12: Zybo Z7-10[22]

The XC7Z010-1CLG400C contains:

--Power Switch [22]

--Processor Reset Pushbutton [22]

--Power Select Jumper and battery header [22]

--Logic configuration reset Pushbutton [22]

--Shared UART/JTAG USB port [22]

--Audio Codec Connectors [22]

--MIO LED [22]

--Logic Configuration Done LED [22]

--2 MIO Pushbuttons [22]

--Board Power Good LED [22]

--MIO Pmod [22]

--JTAG Port for optional external cable [22]

--USB OTG Connectors [22]

--Programming Mode Jumper [22]

28

--4 Logic LEDs [22]

--Independent JTAG Mode Enable Jumper [22]

--4 Logic Slide switches [22]

--PLL Bypass Jumper [22]

--USB OTG Host/Device Select Jumpers [22]

-- VGA connector [22]

--Standard Pmod [22]

--microSD connector (Reverse side)[22]

--3 High-speed Pmods [22]

--HDMI Sink/Source Connector [22]

--4 Logic Pushbuttons [22]

--Ethernet RJ45 Connector [22]

--XADC Pmod [22]

--Power Jack [22]

29

Chapter 3

METHODOLOGY

30

31

3. METHODOLOGY

Xilinx created software for analyzing and synthesizing designs created

by HDLs, called Vivado Design Suite. It also contains some features

like synthesizing it at a high level and implementing on SoC. Vivado is

really scalable, accurate, properly integrated, and predictive.

3.1 Vivado HLS

The algorithms used are becoming complicated day by day. Vivado

High-Level Synthesis is available as an up gradation in the HLx

edition without any charges [23]. With the advent of Vivado HLS, it

has become easy to create an IP with complex code, as it allows users

to use C, C++ and System C languages and directly create

configurations for the programmable device without the need to

develop any RTL manually. Vivado HLS creates a similar system and

design architects, providing a faster IP creation through:

● Absorbing the need for the algorithm from data type and

interfaces [23].

● An extensive library with every kind of data type, videos, etc.

[23].

● Architectures which are modified by the directives [23].

● Faster as there is no RTL created manually [23].

● The algorithm is written in simple language, and VHDL or

Verilog codes are automatically created [23].

● Works with a wide range of languages [23].

● No manual work is done for the use of FPGA memory or

library [23].

Vivado HLS can automatically create an implementation for RTL

using the code provided. Users can use different directives available

for the design. We can modify the designs as per the needs of the user

for the same source using various directives.

32

Scheduling and Binding are essential tasks of the HLS, as scheduling

tells us about the time taken for the operation and also the provision of

the resources, while binding tells us about the delays of the

components or directives used [24].

HLS can to do this by available defaults inside and use directives and

constraints to be precise.

It calculates the timing and delays by the device, which we mentioned

earlier so that it can also tell us about the area needed [24].

The advantages of using Vivado HLS can be:

--Designers can now do their work faster and more productive with

lesser efforts [25].

--Software designers can now create more complex algorithms with

acceleration [25].

--Verification of the design now done at a faster rate as compared to

earlier processes [25]

--The use of directives creates a much-optimized design, only with the

C source code, and different designs can be established [25].

--The c code is portable and understandable language [25].

--We can use the same code for different hardware [25].

--HLS makes the operations work as per the speed of the FPGA [25].

--To make a sequence of the operations, the finite state machine is

being created first [25].

The synthesis of the code is being done in the following way:

--The function which is selected at the top level is converted to RTL

--Functions involved are converted to blocks, if there is a hierarchy,

then it is followed in the RTL design as per the code.

33

The design flow of the Vivado HLS involves:

1. Firstly the compilation is done using the C simulation option, then

the simulation is done to check the code and subsequently debugging

[25].

2. Then the code is converted to an RTL design using a synthesis

option, and we can also include directives if needed [25].

3. Reports are being created, and the design is analyzed [25].

4. The implementation of RTL is verified [25].

5. IP is then created using an export RTL option [25].

 Figure 3.1: Design flow in Vivado HLS

3.1.1 DIRECTIVES

What Vivado HLS does is creates a hardware design as per the code

provided. The directives option available in the software is to improve

the performance, like using pipelining for the betterment of the design

[26].

Sometimes it assumes that the user only needs a better performance

and optimizes the design, without keeping the priority of reducing the

clocks or area.

34

3.1.1.1 PIPELINING

Usually, in languages such as C, C++ operations are done sequentially,

meaning one by one.

The Initiation Interval (II) meaning the time to start of two loops,

which are one after the other, is very important for pipelining. Without

pipelining the Initiation Interval are different for consecutive loops, but

if we apply to the pipeline, we get only one clock cycle for both saving

time and hardware, as both start at the same time[27].

To apply pipelining to a loop in Vivado HLS uses directives section

and select pipelining at the desired loop. And it tries to minimize the

latency.

As an example, we can see that without pipelining for two read

operations, we require three clock cycles, but with pipelining, it gets

reduced to just one. Overall six clock cycles are being reduced to four;

the optimization done is to start iteration before the previous one ends.

Shown below is a simple example of pipelining.

In this example, we have procedures taking place, namely P1 and P2.

Table below shows how it works sequentially.

Stages 1 2 3 4 5 6 7 8

S1 P1 P2

S2 P1 P2

S3 P1 P2

S4 P1 P2
 Table 3.1: Table for the sequential process

35

Another table shows working of the procedures after applying

pipelining

Table 3.2: Table showing pipelining

Hence we can conclude that on applying pipelining, we can reduce the

number of stages, procedures are being performed simultaneously with

maximum use of the hardware.

Advantages of Pipelining

1. The latency is reduced.

2. The utility of the system is improved.

3. The system's reliability is increased.

Disadvantages of Pipelining

1. The use of pipelining increases hardware use, thus

increasing the manufacturing cost.

2. The clock cycle for instructions increases.

In pipelining, we can perform tasks of many instructions

simultaneously, by overlapping them, and not waiting for one to end.

By the overlapping of the task, we increase the productivity of the

system [28].

Stages 1 2 3 4 5

S1 P1 P2

S2 P1 P2

S3 P1 P2

S4 P1 P2

36

We can perform many operations at a time.

3.1.1.2 UNROLLING

Unrolling is another method for parallelism. Here many copies of a

loop are made and then adjusted as per the need.

Let's take an example to understand it better.

The code written below is a rolled code, meaning no directive is

applied;

int s=0;

for(int t=0ti<10;t++){

s+=a[t];

}

After applying the unrolling of a factor of two over the above code we

get;

int s=0;

for(int t=0;t<10;t+=2){

s+=a[t];

s+=a[t+1];

}

The number of unrolling means that many numbers of copies of the

instructions are created, and adjusted accordingly; also, the counter is

updated with the iterations.

The number of operations is increased to ease the parallelism,

increasing the productivity of the system.

Two types of unrolling are present, namely partial and full. Partial

means the number of copies is less than the number of loops present,

while if the number of loops is equal to the copies created is called full

37

unrolling. Full unrolling is better than the partial one as it creates more

parallelism. In RTL design for fully unrolling all the loops are run

simultaneously, while in partial unrolling several copies are created.

Loop bounds are needed for full unrolling at compilation time [29].

To apply unrolling we can simply select unrolling from the directives

section or write the code as;

int s=0;

for(int t=0;t<10;t++){

#pragma HLS unroll factor=2

s+=a[t];

}

Usually, in C/C++ rolled functions are present and performed

sequentially, We create RTL designs in the same way. But we may use

unrolling to increase productivity and data access [29].

HLS adds a remark at the end of a partially unrolled loop to distinguish

between the original one.

3.1.2 MATRIX MULTIPLICATION

The C code used for the matrix multiplication is shown below:

#include <stdio.h>

#include <stdlib.h>

void mmult (int A[4], int B[4], int C[4])

{

 int i,j,k,s,t;

 int Ao[2][2], Bo[2][2];

 for(i=0; i<2; i++) {

38

 for(j=0; j<2; j++) {

 Ao[i][j] = A[i * 2 + j];

 Bo[i][j] = B[i * 2 + j];

 }

 }

 for (i = 0; i < 2; i++) {

 for (j = 0; j < 2; j++) {

 int s = 0;

 for (k = 0; k < 2; k++) {

 int t = Ao[i][k] * Bo[k][j];

 s += t;

 }

 C[i * 2 + j] = s;

 }

 }

}

3.2 VIVADO HLx

In the Vivado HL Design Edition and HL System Edition, without any

additional charges, the HLx Edition is a configuration to it.

The Vivado HLx helps the designers with its features to reuse

optimized designs, maximize the use of the design, reuse of IPs

created, automated connections, and fastening the making of a design.

It is a great help for designers with the reuse of designs with much

abstraction [30].

39

Accelerating High-Level Design [30]

● Creation of IP only with a simple C code automatically through

HLS

● Integration of IP automatically based on the blocks

● Model Composer and System Generator for DSP

Accelerating Verification [30]

● Logic Simulation of Vivado

● Mixed Language Simulator

● Standalone Programming and Debug Environments

● Accelerated Verification with C, C++ or SystemC with Vivado

HLS

● Verification of IP

Accelerating Implementation [30]

● Faster Implementation

● Better Design Density

● Advantage of Performance for the low and mid-range and

Advantage of Power for the high-end

Vivado Design Suite HLx Editions can go further than RTL design. It

is now able to the verification and creation of designs much faster than

earlier RTL based methods[31].HLx also supports SDx well and

together create an excellent platform for automated design creation or

using all programmable devices like Zynq SoCs, 3D ICs, etc.

https://www.xilinx.com/products/design-tools/vivado/integration.html
https://www.xilinx.com/products/design-tools/vivado/integration.html
https://www.xilinx.com/products/design-tools/vivado/simulator.html
https://www.xilinx.com/products/design-tools/vivado/debug.html
https://www.xilinx.com/products/design-tools/vivado/implementation.html

40

 Figure 3.2: Working of Vivado HLx

RTL design cycles needed working for each block separately, and we

do it for the whole design. This method took time, and any changes

would make it difficult to verify it again even before the hardware

setup, also the connectivity could not be stabilized. But the high-level

design method covers it all, containing features such as [20]:

--Development of platform and logic are two different things now

--Connectivity is faster, with Vivado IP Integrator knowing about the

board as well

--Simulation time is being reduced as compared to RTL simulation by

the use of C

--From language to the chip is a faster task now with the help of HLS

for better synthesis

All the steps from simulation to the FPGA are fully automated. This

makes it easy to generate a bit stream and check it on the board. We

get a better product by using design derivatives. Even switching the

41

same design to any other board is very easy; the things will be

modified automatically as per the new board [31].

3.3 XILINX SDK

The Xilinx Software Development Kit (XSDK) is an environment for

creating applications for any of the Xilinx's microprocessors like Zynq-

7000 SoCs.

Features of the SDK [32]:

--Language used for compiling is C/C++ [32]

--Manages the projects on itself [32]

--Makefile and applications are created on its own [32]

--Inspection of errors is accessible [32]

--Boards' detection, profiling and debugging is done easily due to the

environment provided [32]

--The version of the source code can be easily handled [32]

--Configuration of FPGAs is possible [32]

--Command-line tool is present which can be scripted [32]

This Integrated Development Environment (IDE) is a connection

between the Xilinx's processors available and the designs created on

the software. Eclipse is the base for the SDK.

Advantages of SDK include:

--Many processors like Zynq-7000 SoCs, Micro-Blaze, etc. can be

used [31]

--Can be downloaded separately or with the Vivado Design Suite [31]

42

--Can connect the Integrated Design Environment (IDE) to the design

[31]

--Debugging and co-debugging is possible for the whole of the

software design [31]

--Flash memory management, compiling and JTAG debug integration

[31]

--Many libraries and drivers available [31]

--RTOS for any platform is supported [31]

--Scripting possible through Xilinx Software Command Line Tool

(XSCT) [31]

Using the Xilinx SDK, we can create software for the Xilinx

processors available. The requirements for the same are JTAG

debugger, BSPs, libraries, flash programmer, compiler, and drivers. An

environment for C/C++ bare- metal and Linux development and

debugging is also available. C/C++ Development Toolkit (CDT) is

supported through the Eclipse platform.

The project created executes our final output, and the directory present

in it contains all the required files such as source, make file, elf file,

output file, etc.

The board support package (BSP) present contains all the libraries and

drivers needed for the project. The APIs of our software application

must be at the top of our software platform. Therefore the creation of a

BSP is the primary step [33].

To get a good SoC, we need to know well about our board and the

software. It's tough to get an all in one tool, to know all about

performance and visualization. Xilinx System Development Kit

(XSDK) can do it for us, along with optimization of the system, using

System Analysis toolbox [33].

43

3.3.1 The C code used for getting output at the Xilinx Software

Development Kit is:

#include <stdio.h>

#include "platform.h"

#include "xil_printf.h"

#include "xparameters.h"

#include "xil_io.h"

int main()

{

 init_platform();

 int c[4];

print("Hello World\n\r");

 Xil_Out32(XPAR_AXI_BRAM_CTRL_0_S_AXI_BASEAD

DR,0x1);

 Xil_Out32(XPAR_AXI_BRAM_CTRL_0_S_AXI_BASEAD

DR+4,0x2);

 Xil_Out32(XPAR_AXI_BRAM_CTRL_0_S_AXI_BASEAD

DR+8,0x1);

 Xil_Out32(XPAR_AXI_BRAM_CTRL_0_S_AXI_BASEAD

DR+12,0x2);

 Xil_Out32(XPAR_AXI_BRAM_CTRL_1_S_AXI_BASEAD

DR,0x1);

 Xil_Out32(XPAR_AXI_BRAM_CTRL_1_S_AXI_BASEAD

DR+4,0x2);

44

 Xil_Out32(XPAR_AXI_BRAM_CTRL_1_S_AXI_BASEAD

DR+8,0x1);

 Xil_Out32(XPAR_AXI_BRAM_CTRL_1_S_AXI_BASEAD

DR+12,0x2);

c[0]=Xil_In32(XPAR_AXI_BRAM_CTRL_2_S_AXI_BASEADDR);

c[1]=Xil_In32(XPAR_AXI_BRAM_CTRL_2_S_AXI_BASEADDR+

4);

c[2]=Xil_In32(XPAR_AXI_BRAM_CTRL_2_S_AXI_BASEADDR+

8);

c[3]=Xil_In32(XPAR_AXI_BRAM_CTRL_2_S_AXI_BASEADDR+

12);

xil_printf("%d\n%d\n%d\n%d",c[0],c[1],c[2],c[3]);

 return 0;

 }

3.4 Design specifications

C language has been used for the implementation of the design as well

for checking the output in Vivado HLS and Xilinx SDK respectively.

The synthesis and creation of IP have been done using development

tools available in the Vivado HLS. And the design is being checked by

the SDK Integrated Development Environment.

The targeted chip used is XC7Z010-1CLG400C.

45

Chapter 4

RESULTS AND DISCUSSION

46

47

4. RESULTS AND DISCUSSION

We first synthesize the C code in the Vivado HLS, and we got to know

the performance and utilization estimates sequentially. Later the

directives, pipelining and unrolling were applied one by one, and we

calculated the estimates again by the synthesis. There is a difference in

applying the directives; both of them showed different results, with an

optimized design. By export RTL we have created an IP to use it in our

hardware design. Using Vivado HLx Edition, we have created a block

diagram to connect it up with our board through Xilinx SDK.

The results presented here show us the estimates as well as the

comparison between the sequential and optimized process. Also, the

block diagram created is shown up with a snip of the multiplied output

in Xilinx SDK.

4.1 Sequential process

 Latency report

This is the report for timing and clock cycles required for the

sequential process, where no directives are applied.

48

Figure 4.1: Latency report of sequential process

 Hardware utilization report

With this report we get to know about the hardware (LUTs, Flip-Flops)

required for circuit implementation, without any directives are applied.

49

Figure 4.2: Hardware utilization of sequential process

4.2 Loop Pipelining

We have applied the pipeline directive over the loops in the C code,

and then the results are obtained after the simulation of the code. As

we can see from the reports shown below, there is a reduction in

latency and hardware utilization. Also, the application of directive at

different loops gives different results. But we should know that on

applying pipeline, the sub-loops gets unrolled, therefore there is no use

of applying pipelining on two consecutive loops. However, below are

the results for different loops.

50

-- For loop i

Latency report

This is the report for timing and clock cycles, where pipelining

directive has been applied only on loop i, and the innermost loops as

per pipelining will automatically be unrolled.

Figure 4.3: Latency report after applying pipelining on loop i

Hardware utilization report

With this report we get to know about the hardware (LUTs, Flip-Flops)

required for circuit implementation, pipelining directive being applied

on loop i.

51

Figure 4.4: Hardware utilization report after applying pipelining on

loop i

-- For loop j

Latency report

This is the report for timing and clock cycles, where pipelining

directive has been applied on loop j and loop k will now be

automatically unrolled.

Figure 4.5: Latency report after applying pipelining on loop j

52

Hardware utilization report

With this report we get to know about the hardware (LUTs, Flip-Flops)

required for circuit implementation, pipelining directive being applied

only on loop j.

Figure 4.6: Hardware utilization report after applying pipelining on

loop j

-- For loop k

Latency report

This is the report for timing and clock cycles, where pipelining

directive has been applied on loop k.

53

Figure 4.7: Latency report after applying pipelining on loop k

Hardware utilization report

With this report we get to know about the hardware (LUTs, Flip-Flops)

required for circuit implementation, pipelining directive being applied

only on loop k.

Figure 4.8: Hardware utilization report after applying pipelining on

loop k

54

4.3 Loop Unrolling

The unrolling directive is applied to the loops of our C code, again

reducing the latency but with a slight increment in hardware

comparatively. Because unrolling copies the iterative part and runs in

parallel, making the hardware faster.

-- For loop ijk

Latency report

This is the report for timing and clock cycles, where unrolling directive

has been applied on all the three loops.

Figure 4.9: Latency report after applying unrolling on loop ijk

Hardware utilization report

With this report we get to know about the hardware (LUTs, Flip-Flops)

required for circuit implementation, with unrolling directive being

applied on loops ijk.

55

Figure 4.10: Hardware utilization report after applying unrolling on

loop ijk

-- For loop jk

Latency report

This is the report for timing and clock cycles, where unrolling directive

has been applied on only j and k loops.

56

Figure 4.11: Latency report after applying unrolling on loop jk

Hardware utilization report

With this report we get to know about the hardware (LUTs, Flip-Flops)

required for circuit implementation, unrolling directive being applied

only on loop j and k.

Figure 4.12: Hardware utilization report after applying unrolling on

loop jk

57

-- For loop k

Latency report

This is the report for timing and clock cycles, where unrolling directive

has been applied only on the innermost loop that is k loop.

Figure 4.13: Latency report after applying unrolling on loop k

Hardware utilization report

With this report we get to know about the hardware (LUTs, Flip-Flops)

required for circuit implementation, unrolling directive being applied

only on loop k.

58

Figure 4.14: Hardware utilization report after applying unrolling on

loop k

Comparison of parameters between sequential process, pipelining and

unrolling directive

Parameters No

directive

Pipelining Unrolling

 i j k ijk Jk k

Latency 50 18 20 24 15 20 30

LUTs 979 908 1085 1346 992 877 895

Registers 482 474 483 431 593 470 478

DSPs 3 12 6 3 24 12 6

Table 4.1: Comparison of parameters between sequential process,

pipelining and unrolling directives

59

The report presented above tells us how pipelining and unrolling are

helpful in comparison to the sequential process. Also, we can assume

the difference between pipelining and unrolling.

We can see that latency has been reduced in both the cases, while

hardware reduction is made much in the case of unrolling more

effectively.

Shown below are the tables where we are comparing the reduction in

delay in comparison to the sequential process and hardware utilization

of unrolling and pipelining:

Pipelining Unrolling

i j k ijk jk K

64% 60% 52% 70% 60% 40%

 Table 4.2: Comparing the reduction in delay after applying

pipelining and unrolling directives

 Pipelining Unrolling

 I j k ijk jk k

LUTs 6%↓ 10%↑ 37%↑ 2%↑ 11%↓ 9%↓

Registers 2%↓ 0% 11%↓ 23%↑ 3%↑ 1%↓

DSPs 4%↑ 2%↑ 0% 8%↑ 4%↑ 2%↑

Table 4.3: Comparing the hardware utilization of unrolling and

pipelining

60

From the above two tables, we get to know that applying unrolling on

all the three loops gives us a reduction in delay by 70% while

pipelining on loop i provides 64% reduction in delay.

Also, we can also see that there is an 11% decrease in hardware

utilization on using unrolling on j and k loop, while only 8% decrease

on applying pipelining to only i loop.

Now, we can use between the two directives as per the requirement of

our application.

61

4.4 Block Design

The following is a block diagram for the implementation of the design

on hardware. We have used Vivado HLx to design it. We connect the

processor to our IP created at Vivado HLS.

Figure 4.15: Block design for matrix multiplication

62

4.5 Implemented design

Shown below is the implemented design we can see at Vivado HLx. It

shows the LUTs.

Figure 4.16: Implemented design for matrix multiplication

The implemented design provides us with information about the

hardware; the circuit will contain 5108 LUTs count, 4536 Flip-Flops

count, 1.50 BRAM count, and 3 DSP count.

63

4.6 SDK Output

Shown below is the output we got for the multiplication of two

matrices as per our code, through Xilinx SDK, in the SDK Terminal.

Here we have multiplied [1,2,1,2] x [1,2,1,2] and got the output

[3,6,3,6].

Figure 4.17: SDK output for matrix multiplication

64

65

Chapter 5

SUMMARY AND FUTURE

SCOPE

66

67

5. SUMMARY AND FUTURE SCOPE

In this project, we have tried to reduce the complexity during

calculations, reducing the latency as well as the use of the hardware

using different directives and tried to get the output of the

multiplication of two matrices by using the device, the FPGA board.

The two directives used were pipelining and unrolling. The use of

directives lets us do the calculations faster, reducing the latency as

compared to our sequential process, also allowing us to use lesser

hardware. The two have been explained above, along with the software

used. We have created a C code for matrix multiplication, done the

synthesis, created an IP for the same, implemented a block design for

its hardware implementation, and got the multiplied output using the

board.

The future work we can apply to this project can be:

1. As we have implemented only two directives, we can apply

more available directives and compare all of them and use as

per the need of our application.

Directives can be:

● Loop Flatten: helps change nested or sequential loops to a

single loop.

● Dataflow: helps start a function or loop before the previous one

ends.

 2. Using multi-core processor or other boards for faster calculations

then now.

 3. Calculation of distance between atoms, applying the logic for

distance calculation in a quicker way.

68

69

REFERENCES

70

71

References

1. Gaur, N. (2018). Reducing computational complexity of Mathematical

functions using FPGA. [online] Slideshare.net. Available at:

https://www.slideshare.net/nehagaur339/reducing-computational-

complexity-of-mathematical-functions-using-fpga-104973922

[Accessed 1 Jun. 2019].

2. En.wikipedia.org. (n.d.). System on a chip. [online] Available at:

https://en.wikipedia.org/wiki/System_on_a_chip [Accessed 15 Jun.

2019].

3. Margaret Rouse (2015). system-on-a-chip (SoC). [ONLINE]

Available at:

https://internetofthingsagenda.techtarget.com/definition/system-on-a-

chip-SoC. [Accessed 15 June 2019].

4. What is a System on a Chip (SoC)? - Definition from

Techopedia. Techopedia.com. Available at:

https://www.techopedia.com/definition/702/system-on-a-chip-

soc [Accessed June 18, 2019].

5. SoC. What is SoC? Webopedia Definition. Available at:

https://www.webopedia.com/TERM/S/SoC.html [Accessed

June 18, 2019].

6. HardwareBee. (2018). Field Programmable Gate Array (FPGA)

History and Applications - HardwareBee. [online] Available at:

http://hardwarebee.com/field-programmable-gate-array-fpga-history-

applications/ [Accessed 13 May 2019].

7. Akthar, S. (2014). FPGA Architecture. [online] All About FPGA.

Available at: https://allaboutfpga.com/fpga-architecture/ [Accessed 18

May 2019].

8. Slideplayer.com. (n.d.). FPGA PLB Evaluation using Quantified

Boolean Satisfiability Andrew C. Ling M.A.Sc. Candidate University

of Toronto Deshanand P. Singh Ph.D. Altera Corporation. - ppt

download. [online] Available at:

https://slideplayer.com/slide/8349497/ [Accessed 2 Jun. 2019].

9. En.m.wikipedia.org. (n.d.). Logic block. [online] Available at:

https://en.m.wikipedia.org/wiki/Logic_block [Accessed 5 Jun. 2019].

72

10. Agarwal, T. (n.d.). Basic FPGA Architecture and its Applications.

[online] Edgefx.in. Available at: https://www.edgefx.in/fpga-

architecture-applications/ [Accessed 18 May 2019].

11. Only-vlsi.blogspot.com. (2008). Field-Programmable Gate Array.

[online] Available at: http://only-vlsi.blogspot.com/2008/05/field-

programmable-gate-array.html?m=1 [Accessed 4 Jun. 2019].

12. Xilinx.com. (n.d.). What is an FPGA? Field Programmable Gate

Array. [online] Available at: https://www.xilinx.com/products/silicon-

devices/fpga/what-is-an-fpga.html [Accessed 16 May 2019].

13. Trausmuth, R. (2006). Introduction to Field Programmable Gate

Arrays. [online] Cis.upenn.edu. Available at:

http://www.cis.upenn.edu/~lee/06cse480/lec-fpga.pdf [Accessed 15

May 2019].

14. ElProCus - Electronic Projects for Engineering Students. (n.d.).

Applications of Complex Programmable Logic Device (CPLD).

[online] Available at: https://www.elprocus.com/complex-

programmable-logic-device-cpld-architecture-applications/ [Accessed

4 Jun. 2019].

15. Idc-online.com. (2007). [online] Available at: http://www.idc-

online.com/technical_references/pdfs/electronic_engineering/Differen

ce_between_FPGA_and_CPLD.pdf [Accessed 12 May 2019].

16. Nandland.com. (n.d.). What is a Block RAM in an FPGA? For

Beginners.. [online] Available at:

https://www.nandland.com/articles/block-ram-in-fpga.html [Accessed

20 May 2019].

17. Ni.com. (n.d.). Block RAM (BRAM) on an FPGA - LabVIEW

Communications System Design Suite 3.1 Manual - National

Instruments. [online] Available at:

http://www.ni.com/documentation/en/labview-comms/latest/fpga-

targets/block-memory/ [Accessed 21 May 2019].

18. Xilinx.com. (2011). [online] Available at:

https://www.xilinx.com/support/documentation/ip_documentation/bra

m_block.pdf [Accessed 22 May 2019].

19. AnySilicon. (2016). Understanding AMBA Bus Architechture and

Protocols - AnySilicon. [online] Available at:

https://anysilicon.com/understanding-amba-bus-architechture-

protocols/ [Accessed 5 Jun. 2019].

20. Lauri Võsandi, l. (2014). Lauri's blog | Vivado 2014.1 vs ZYBO.

[online] Lauri.xn--vsandi-pxa.com. Available at: https://lauri.xn--

73

vsandi-pxa.com/hdl/zynq/vivado-2014.1-vs-zybo.html [Accessed 22

May 2019].

21. Xilinx.com. (n.d.). [online] Available at:

https://www.xilinx.com/support/documentation/product-briefs/zynq-

7000-product-brief.pdf [Accessed 23 May. 2019].

22. Reference.digilentinc.com. (2015). zybo:zybopins.png

[Reference.Digilentinc]. [online] Available at:

https://reference.digilentinc.com/_detail/zybo/zybopins.png?id=refere

nce%3Aprogrammable-logic%3Azybo%3Areference-manual

[Accessed 5 Jun. 2019].

23. Xilinx.com. (n.d.). Vivado High-Level Synthesis. [online] Available at:

https://www.xilinx.com/products/design-tools/vivado/integration/esl-

design.html [Accessed 24 May 2019].

24. Users.ece.utexas.edu. (n.d.). [online] Available at:

http://users.ece.utexas.edu/~gerstl/ee382v_f14/soc/vivado_hls/Vivad

oHLS_Overview.pdf [Accessed 26 May 2019].

25. Iitg.ac.in. (n.d.). [online] Available at:

http://www.iitg.ac.in/ckarfa/Course/2018/CS526/ug902-vivado-high-

level-synthesis.pdf [Accessed 26 May 2019].

26. China.xilinx.com. (n.d.). [online] Available at:

https://china.xilinx.com/support/documentation/sw_manuals/xilinx201

7_4/ug1270-vivado-hls-opt-methodology-guide.pdf [Accessed 26

May 2019].

27. Xilinx.com. (n.d.). Loop Pipelining and Loop Unrolling. [online]

Available at:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx201

5_2/sdsoc_doc/topics/calling-coding-

guidelines/concept_pipelining_loop_unrolling.html [Accessed 28 May

2019].

28. Studytonight.com. (n.d.). Concept of Pipelining | Computer

Architecture Tutorial | Studytonight. [online] Available at:

https://www.studytonight.com/computer-architecture/pipelining

[Accessed 28 May 2019].

29. Japan.xilinx.com. (n.d.). pragma HLS unroll. [online] Available at:

https://japan.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/uyd150

4034366571.html [Accessed 27 May 2019].

30. Xilinx.com. (n.d.). Vivado Design Suite. [online] Available at:

https://www.xilinx.com/products/design-tools/vivado.html [Accessed

29 May 2019].

74

31. Xilinx.com. (n.d.). [online] Available at:

https://www.xilinx.com/support/documentation/backgrounders/vivado-

hlx.pdf [Accessed 29 May 2019].

32. Xilinx.com. (n.d.). Xilinx Software Development Kit (XSDK). [online]

Available at: https://www.xilinx.com/products/design-tools/embedded-

software/sdk.html [Accessed 29 May 2019].

33. Xilinx.com. (n.d.). Getting Started with Xilinx SDK. [online] Available

at:

https://www.xilinx.com/html_docs/xilinx2018_3/SDK_Doc/sdk_getting

_started/sdk_getting_started.html [Accessed 30 May 2019].

34. Xilinx.com. (n.d.). Using Xilinx SDK. [online] Available at:

https://www.xilinx.com/html_docs/xilinx2018_2/SDK_Doc/index.html

[Accessed 31 May 2019].

