
Snow and Glacier Melt Contributions 

and SLA-ELA Relationship in 

Himalayan Basins 
 

 

Ph.D. Thesis 

 

 

by 

 

PARUL VINZE 

 

 

 

 

 
 

 

 

 
 

 

Department of Civil Engineering 

Indian Institute of Technology Indore 

January 2026 

 



Snow and Glacier Melt Contributions 

and SLA-ELA Relationship in 

Himalayan Basins 
 

 

A Thesis 

 

Submitted in partial fulfillment of the  

requirements for the award of the degree of 

 

 

DOCTOR OF PHILOSOPHY 

 

by 

 

PARUL VINZE 

 

 
 

 

 

 
 

 

Department of Civil Engineering 

Indian Institute of Technology Indore 

January 2026 



 

  



Indian Institute of Technology  

Indore 

 
 

I hereby certify that the work which is being presented in the thesis entitled “Snow and 

Glacier Melt Contributions and SLA-ELA Relationship in Himalayan Basins” in 

the partial fulfilment of the requirements for the award of the degree of Doctor of 

Philosophy and submitted in the Department of Civil Engineering, Indian Institute 

of Technology Indore, is an authentic record of my own work carried out during the 

time period from July 2019 to September 2025 under the supervision of Dr. Mohd. 

Farooq Azam, Associate Professor, Department of Civil Engineering, Indian Institute 

of Technology Indore.  

The matter presented in this thesis has not been submitted by me for the award of any 

other degree of this or any other institute.  

Signature of the Student 

(Parul Vinze) 

This is to certify that the above statement made by the candidate is correct to the best 

of my knowledge.  

 

Signature of Thesis Supervisor 

(Dr. Mohd. Farooq Azam) 

Parul Vinze has successfully given her Ph.D. Oral Examination held on  

 

 

 

Signature of Thesis Supervisor 

(Dr. Mohd. Farooq Azam) 

 

 

 

 

07 Jan 2026



 

  



ACKNOWLEDGEMENTS 

First and foremost, I thank God for providing me strength, patience and resilience 

throughout this journey. Without that divine presence, the completion of this work 

would not have been possible. 

I am profoundly grateful to my supervisor, Dr. Mohd. Farooq Azam, for his invaluable 

guidance and constant support throughout the course of this research. His 

encouragement, patience, and thoughtful mentorship during challenging times have 

been an immense support. I am especially thankful for his constant motivation, 

insightful advice and faith in my abilities, which have shaped not only the direction of 

this work but also my academic journey and personal growth. I am truly fortunate to 

have had the opportunity to work with him. 

I would like to express my heartfelt gratitude to Dr. Adina E Racoviteanu for her 

continuous support and guidance throughout this research. Her generous sharing of 

knowledge has been a constant source of motivation. It has been a privilege to 

collaborate with her and learn from her expertise.   

I would also like to express my sincere gratitude to my PG Student's Progress 

Committee members, Prof. Sandeep Chaudhary and Dr. Lalit Borana, for their 

insightful feedback and constructive suggestions, which have greatly strengthened and 

enriched this work. 

I would like to thank the Department of Civil Engineering for all their support and IIT 

Indore for giving me this opportunity to be a part of IIT community. 

Special thanks to my friends Smriti, Sushmita, Abhishek, Rosa and Ghulam for their 

invaluable support during my difficult times. I am also thankful to Arif, Himanshu, 

Sachin and Manoj for their support throughout this journey.  

My deepest gratitude goes to my parents and my grandparents for their unconditional 

love and support; their sacrifices and values have been my foundation. A big thanks to 

my brother and my sister-in-law for their support, constant encouragement and care. I 

am very grateful to my in-laws for their support and patience throughout this journey. 

A very special thanks to my husband, Rishi, whose support, patience and 

encouragement have carried me through every challenge, he has been my greatest 

strength and I feel blessed to have him by my side. 

To all who, in ways big or small, have contributed to this work and walked alongside 

me on this path, I offer my heartfelt thanks. 



 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

Dedicated to my beloved family 

  



i 

 

ABSTRACT 

Snow and glacier meltwater are critical hydrological components in the glacierized and 

snow-covered basins of the Himalaya-Karakoram (HK), yet their accurate 

quantification remains challenging due to limited in-situ observations in this remote 

and rugged terrain. This thesis aims to advance the understanding of meltwater 

dynamics, improve modelling approaches, and enhance glacier monitoring techniques 

using remote sensing to better assess hydrological responses of glacierized basins to 

climatic variability in the region. The thesis focuses on three glacierized basins situated 

in distinct climatic regimes of HK. In the western Himalaya, the Snowmelt Runoff 

Model (SRM) was applied in the Chandra-Bhaga Basin, using a data-rich reference 

catchment of Chhota Shigri Glacier to constrain key parameters from extensive field 

observations, while the remaining parameters were calibrated against observed 

discharge. Daily discharge simulations for 2003–2018 indicated that flow was primarily 

controlled by summer temperature in the Chhota Shigri Catchment and by summer SCA 

at the basin scale. Although parameters calibrated in the reference catchment produced 

good results at the catchment scale, their direct application to the basin scale resulted 

in substantial overestimation of discharge, indicating that the parameters are not 

transferable even within the same basin. In the central Himalaya, the long-term melt 

contributions and their climatic controls in the Gangotri Glacier System (GGS) were 

examined over 1980–2020, by applying a high-resolution glaciohydrological model 

Spatial Processes in Hydrology (SPHY) forced with Indian Monsoon Data Assimilation 

and Analysis reanalysis data. Two-tier calibration using in-situ discharge and geodetic 

mass balance estimates, and validation against improved MODIS snow cover data, 

showed that snowmelt contributed 64%, glacier melt 21% followed by rainfall-runoff 

11% and baseflow 4%. A shift in the discharge peak from August to July after 1990 

was attributed to reduced winter precipitation and enhanced early summer melting. 

Summer precipitation and winter temperature were identified as the dominant climatic 

controls on annual discharge. In Dudh Koshi Basin of the central Himalaya, an 

improved method for snowline altitude (SLA) extraction was developed and applied to 

assess the relationship of SLA with the equilibrium line altitude (ELA). Comparisons 

on Mera Glacier therein revealed that remotely sensed end-of-ablation season SLA 

(SLAmax) consistently underestimated field-based ELA, challenging the common 

assumption that SLAmax approximates ELA in monsoon-dominated regions. The 
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observed discrepancies were linked to surface processes such as sublimation, wind 

erosion, and snow redistribution, underscoring the need for caution when using SLA as 

a proxy for ELA in this region. By integrating enhanced modelling frameworks with 

improved remote sensing approaches, this work provides new insights into the 

hydrological behaviour of Himalayan glacierized basins. The sensitivity of discharge 

to climatic factors and the limitations of parameter transferability and ELA proxy, 

thereby contributing to more robust water resource assessments under changing climate 

conditions.
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Chapter 1 

Introduction 

1.1 Himalaya-Karakoram and its importance 

High mountain regions play a crucial role in the hydrological cycle, storing 

and releasing freshwater that sustains populations far beyond the mountain 

boundaries. Among these, the Himalaya-Karakoram (HK) region holds a 

particularly important position, being one of the largest glacierized regions 

outside the polar areas and often referred to as the “Water Tower of Asia” 

(Immerzeel et al., 2020; Azam et al., 2021). The HK region stretches across 

parts of Afghanistan, Pakistan, India, Nepal, Bhutan, and China, 

encompassing some of the highest peaks in the world. Its glaciers, perennial 

snow cover, and permafrost collectively store an immense volume of water, 

acting as a natural reservoir that regulates river flows across multiple climatic 

zones. 

The meltwater from HK glaciers and snowfields feeds largest river 

systems, notably the Indus, Ganga, and Brahmaputra. These rivers originate in 

the high mountains and flow through densely populated agricultural plains 

before reaching the sea. Together, they provide water for drinking, irrigation, 

hydropower, and industrial activities to more than a billion people (Azam et 

al., 2021; Nepal et al., 2023). The Indus River basin is one of the most glacier 

and snowmelt dependent basin, with meltwater contributing a substantial 

proportion of its annual flow, particularly during the summer months 

(Bookhagen and Burbank, 2010; Lutz et al., 2014; Immerzeel et al., 2020). 

The Ganga and Brahmaputra basins, although more influenced by monsoon 

rainfall, also depend on seasonal snowmelt and glacier melt to sustain flows 

during the pre-monsoon and dry season (Lutz et al., 2014; Azam et al., 2021). 
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This glacier and snowmelt contribution is particularly critical during dry 

periods, when meltwater buffers the seasonal variability of precipitation 

(Pritchard, 2019; Immerzeel et al., 2020). It supports agricultural production, 

hydropower generation especially during lean flows, and sustains ecosystems 

dependent on perennial streams (Pritchard, 2019; Immerzeel et al., 2020). 

Therefore, the HK region is therefore not only a vital environmental system 

but also an essential socio-economic resource. 

1.2 Climatic regimes in HK 

The HK region is not climatically uniform; rather, it spans multiple climatic 

regimes that influence the hydrology and cryospheric processes in distinct 

ways. The western Himalaya and Karakoram are primarily influenced by 

western disturbances (WDs), receiving most of their annual precipitation in 

the form of snowfall (Thayyen and Gergan, 2010). As a result, summer flows 

in rivers such as the Indus are dominated by snow and glacier melt (Bookhagen 

and Burbank, 2010; Azam et al., 2021).  

The central and eastern Himalaya are predominantly monsoon-fed, with 

the majority of annual precipitation occurring June through September 

(Thayyen and Gergan, 2010). Snow and glacier melt play a smaller role in total 

discharge compared to rainfall, but they can still be important during the pre-

monsoon season and in high-altitude catchments (Lutz et al., 2014; Azam et 

al., 2021). These spatial variations mean that climate change impacts will not 

be uniform across the HK region; some areas may experience short-term 

increases in meltwater followed by declines, while others may be more 

affected by changes in rainfall patterns (Lutz et al., 2014). To capture the range 

of climatic and hydrological conditions in HK, this thesis focuses on three 

glacierized basins distributed across the western and central Himalaya (Figure 

1.1). 
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Figure 1.1 Geographic location of the study basins: (A) Chandra-Bhaga Basin 

in the western Himalaya, (B) Gangotri Glacier System in the central Himalaya, 

and (C) Dudh Koshi Basin in the central Himalaya. Glacier extents are 

indicated in blue, and red stars denote discharge measurement stations. 

1.3 Climate change and observed cryospheric changes 

Over recent decades, the HK region has experienced significant climatic 

changes, most notably warming trends that have exceeded the global average 

in many locations (Krishnan et al., 2019; Pörtner et al., 2022). In-situ records 

and reanalysis data indicate that mean annual temperatures have increased 

across much of the region, with particularly strong warming at higher 

elevations (Pepin et al., 2015). The latest IPCC Sixth Assessment Report 

(2022) projects that global warming will reach or exceed 1.5°C above pre-

industrial levels within the next two decades, with pronounced impacts on high 

mountain cryospheric systems (Pörtner et al., 2022). 

Himalayan glaciers have been losing mass at an accelerating rate (Brun 

et al., 2017; Azam et al., 2018; Maurer et al., 2019; Shean et al., 2020). Remote 

sensing studies have shown widespread retreat of glacier terminus and 

thinning of ice, though with notable spatial variability. The Karakoram Range, 
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for instance, has exhibited a relatively stable or slightly positive mass balance 

in recent decades, a phenomenon known as the “Karakoram Anomaly” 

(Hewitt, 2005; Gardelle et al., 2013). However, there are emerging evidence 

of glacier wastage in the Karakoram over the recent decades (Hugonnet et al., 

2021). Seasonal snow cover has also declined in duration and extent in many 

parts of the HK region, with earlier onset of melt and shifts in the timing of 

peak runoff (Brown et al., 2010; Bormann et al., 2018). 

These cryospheric changes have direct hydrological consequences. In 

the short term, increased glacier melt can enhance river flows during the melt 

season, but in the longer term, as glaciers lose mass, their meltwater 

contribution is expected to decline (Kraaijenbrink et al., 2017; Pritchard, 

2019). This shift could have profound impacts on water availability during 

critical agricultural periods and may intensify water scarcity in already 

vulnerable downstream regions. Furthermore, changes in snowmelt timing can 

affect seasonal water storage, hydropower scheduling, and flood risk 

management (Lutz et al., 2014). 

The combined effects of glacier retreat, snow cover decline, and altered 

precipitation patterns are likely to change the seasonality of river flows, with 

potential implications for both water security and hazard occurrence, including 

floods, landslides, and glacial lake outburst floods (GLOFs) (Harrison et al., 

2018; Veh et al., 2020; Sattar et al., 2025). Understanding these changes and 

their hydrological consequences requires robust monitoring and modelling 

tools capable of capturing the complex interplay between climate, cryosphere, 

and hydrology. 

1.4 Hydrological modelling in HK 

Hydrological modelling is a key tool for estimating the relative contributions 

of snowmelt, glacier melt, baseflow and rainfall-runoff to river discharge, 

particularly in high mountain regions where direct measurements are limited 

(Hock, 2003; Immerzeel et al., 2010; Ragettli and Pellicciotti, 2012). In such 

environments, models help bridge the gap between sparse observations and the 

need for continuous, long-term hydrological records. Two broad approaches 

are commonly applied for estimating the melt, viz. Physically-based energy-

balance models and temperature-index (degree-day) models. 
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Physically based energy-balance models simulate melt processes by 

resolving the surface energy budget, incorporating inputs such as incoming 

and outgoing radiation, air temperature, humidity, wind speed, and the phase 

of precipitation (Oerlemans, 1992; Favier et al., 2004; Azam et al., 2014b; 

Srivastava and Azam, 2022a). These models can offer a physically consistent 

representation of melt dynamics but require extensive meteorological and 

glacier surface data, which are often unavailable in HK due to the scarcity of 

high-altitude observation networks (Vishwakarma et al., 2022). Temperature-

index (degree-day) models take a simpler empirical approach, relating melt 

rates directly to air temperature through degree-day factors for snow and ice 

(Hock, 2003). Although they do not explicitly resolve the full energy balance, 

these models require fewer inputs and can be implemented using readily 

available datasets, including gridded meteorological products and remote 

sensing-derived snow cover information (Immerzeel et al., 2009; Tahir et al., 

2011). This makes them particularly useful in regions where ground-based 

meteorological measurements are sparse (Hock, 2003; Azam et al., 2014). 

In both approaches, model performance depends heavily on parameter 

calibration. When only discharge data are available for calibration, there is a 

risk of equifinality, where different parameter combinations can reproduce 

similar discharge patterns but imply different contributions from snow and 

glacier melt (Beven, 2016; Azam et al., 2021). Additionally, many studies 

calibrate parameters for a single basin without evaluating their applicability 

elsewhere, leaving uncertainty about whether these parameters can be 

transferred to other catchments with similar climatic or physiographic 

conditions. This lack of tested parameter transferability and model calibration 

with a limited dataset is the critical limitations for large-scale water resource 

assessments in glacierized regions. 

1.5 Satellite-based monitoring of snowline altitude 

Remote sensing has become crucial for monitoring glacier conditions across 

HK, enabling consistent and frequent observations over large and often 

inaccessible areas (Racoviteanu et al., 2008; Brun et al., 2017; Dehecq et al., 

2019). Among the many glacier parameters that can be observed from space, 

the snowline altitude (SLA) is particularly important. SLA represents the 
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boundary between snow-covered and snow-free area at a given time, and its 

highest position at the end of the ablation season (SLAmax) is often used as a 

proxy for the equilibrium line altitude (ELA), the elevation at which 

accumulation equals ablation (Braithwaite and Raper, 2009; Cuffey and 

Paterson, 2010). Since ELA is directly linked to the glacier mass balance, 

monitoring SLA provides a valuable means of assessing glacier health and 

detecting changes in response to climate variability (Braithwaite and Raper, 

2009; Rabatel et al., 2013). 

The use of SLA as an indicator has grown with the availability of high- 

to medium-resolution satellite imagery from sensors such as Landsat, Sentinel, 

SPOT, etc. (Racoviteanu et al., 2019; Liu et al., 2021). SLA mapping methods 

can be broadly grouped into manual, semi-automated, and automated 

approaches. Manual delineation involves expert visual interpretation of 

satellite images to draw the snowline, often with high accuracy when cloud-

free images are available, but it is time-consuming and can be subjective 

(Rabatel et al., 2016). Semi-automated techniques typically use spectral band 

ratios such as near-infrared (NIR) to shortwave infrared (SWIR), to 

differentiate snow, ice and bare land, combined with thresholding methods to 

define the snowline (Racoviteanu et al., 2019). Automated approaches extend 

these methods to large datasets, sometimes incorporating additional 

information such as slope, aspect, and elevation to refine the classification 

(Naegeli et al., 2019; Loibl et al., 2025). 

Recent developments in machine learning have made large-scale, long-

term SLA monitoring more efficient, allowing for consistent mapping across 

extensive spatial and temporal domains (Prieur et al., 2022). Such datasets 

have multiple applications, including detecting long-term glacier change, 

supporting hydrological model calibration and validation, and analyzing 

glacier-climate interactions. However, despite its widespread adoption, the use 

of SLA as a proxy for ELA has not been comprehensively validated in HK. 

This limits the ability to fully assess the accuracy of SLA-derived ELA 

estimates and highlights the need for systematic evaluation against reliable 

field-based measurements. 
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1.6 Research gaps 

Despite significant progress in understanding glacier hydrology in the HK 

region, important gaps remain that constrain the accuracy and applicability of 

current modelling and monitoring approaches. A key uncertainty arises from 

the limited evaluation of hydrological model parameter transferability between 

catchments. In many studies, parameters such as degree-day factors, runoff 

coefficients, temperature lapse rates, etc. are calibrated for a single basin and, 

in some cases, applied to other basins without thorough testing. Given the 

considerable variability in precipitation regimes, glacier characteristics, and 

topographic conditions across the region, such untested parameter application 

can introduce substantial biases into discharge simulations and meltwater 

estimates. 

Another limitation concerns the reconstruction of long-term meltwater 

contributions. Most modelling efforts have been restricted to relatively short 

observational periods and often rely on single-variable calibration, typically 

discharge, which increases susceptibility to equifinality and reduces the 

robustness of process representation. Integrating multiple datasets within a 

multi-tier calibration framework offers a way to address these issues, yet such 

approaches remain rare, mainly due to the sparse data. Without multi-decadal 

reconstructions constrained by diverse observations, the temporal evolution of 

snow and glacier melt contributions and their relationship to climatic 

variability cannot be fully characterized. 

In addition, the use of SLAmax at the end-of-ablation season as a proxy 

for the ELA in HK remains insufficiently validated. While this relationship is 

well established for winter-accumulation glaciers, the summer-accumulation 

regime of the monsoon-dominated Himalaya introduces complexities such as 

simultaneous accumulation and ablation, episodic summer snowfall, persistent 

cloud cover, and post-monsoon accumulation. These factors can cause 

significant deviations between SLAmax and the true ELA. Although advances 

in semi-automated SLA extraction methods have improved spatial and 

temporal coverage, their reliability in monsoon-dominated settings has not 

been systematically assessed against field-based ELA measurements. This gap 
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limits the confidence with which SLA can be used for mass balance estimation, 

model calibration, and long-term monitoring in these regions. 

Addressing these gaps requires an integrated approach that combines 

glacio-hydrological modelling, remote sensing analysis, and field validation. 

Such an approach can improve the accuracy and reliability of meltwater 

contribution estimates, enhance understanding of SLA-ELA relationships in 

complex climatic regimes and provide a stronger basis for assessing the 

impacts of climate change on HK water resources. 

1.7 Objectives of the thesis 

The main aim of this thesis is to improve the understanding of glacier 

hydrology and melt contributions in the Himalayan region through the 

integration of remote sensing, glaciohydrological modelling, and field 

validation. It focuses on three climatically distinct glacierized basins to explore 

meltwater contributions, model parameter transferability, and the SLA-ELA 

relationship. The specific objectives are: 

1. To evaluate the transferability of snowmelt runoff model parameters in the 

Chandra-Bhaga basin, 

2. To simulate long-term snow and glacier melt contributions in the Gangotri 

Glacier System, 

3. To develop an improved method for snowline extraction, and  

4. To examine the relationship between snowline altitude (SLA) and 

equilibrium line altitude (ELA). 

1.8 Organisation of the thesis 

Chapter 1: Introduction 

This chapter presents a brief overview of HK, climatic regimes across different 

glacierized regions, and challenges in modelling snow and glacier melt. It 

summarises the existing methods and highlights research gaps related to SLA 

estimation, SLA-ELA relationships, long-term melt contribution estimation, 

and model parameter transferability. The chapter concludes by defining the 

objectives of the thesis. 
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Chapter 2: Literature review 

This chapter provides a comprehensive review of the different 

glaciohydrological models used for estimating melt contributions, highlighting 

their advancements and limitations. It also identifies key methodological gaps 

in SLA estimation and the SLA-ELA relationship in the Himalaya. 

Chapter 3: Assessing model parameter transferability between the glacier 

and basin scale in the western Himalaya 

The chapter assesses the transferability of SRM parameters from a data-rich 

glacier catchment (Chhota Shigri) to its basin (Chandra-Bhaga) in the western 

Himalaya. The SRM was calibrated for Chhota Shigri using field-constrained 

parameters and validated with observed discharge over 2010–2015. When 

these calibrated parameters were applied to the Chandra-Bhaga basin, 

significant overestimations in discharge were observed, indicating that SRM 

parameters are not directly scalable even within the same basin having similar 

climatic and physiographic settings. Sensitivity analysis further revealed that 

the runoff coefficient for snow and the degree-day factor are dominant controls 

on model output. This chapter highlights the importance of site-specific 

calibration and cautions against using parameter sets from reference 

catchments for other or more heterogeneous basins. 

Chapter 4: Snow and glacier melt contributions from the Gangotri 

Glacier System and their climatic controls 

Chapter 4 presents long-term glaciohydrological modelling of Gangotri 

Glacier System (GGS) using the SPHY model, forced with bias-corrected 

IMDAA reanalysis data over 1980–2020. The model was calibrated using in-

situ discharge and available geodetic mass balance and validated against 

improved MODIS snow cover data. Results show that snowmelt is the 

dominant contributor to total discharge (64%), followed by glacier melt (21%), 

rainfall-runoff (11%) and baseflow (4%). Statistical analysis identifies 

summer precipitation and winter temperature as key climatic drivers of runoff 

variability. This chapter underscores the value of multi-constraint calibration 

and remote sensing inputs in long-term melt modelling for Himalayan basins. 
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Chapter 5: Improved snowline extraction method 

This chapter presents an improved methodology for estimating glacier SLA 

from optical satellite imagery. The method integrates a semi-automated band 

ratio-based SLA extraction routine with Otsu method and a robust post-

processing filtering scheme to address challenges posed by cloud cover, cast 

shadows, steep slopes, and temporary snow. The processing framework is 

implemented in Python and validated using high-resolution Planet and Venµs 

imagery. This chapter contributes to a reproducible and scalable approach for 

generating sub-monthly SLA time series suitable for climatological and 

glaciological analyses in data-scarce, complex mountain environments. 

Chapter 6: SLA-ELA relationship in the monsoon-dominated region 

Chapter 6 investigates the relationship between remotely sensed end-of-

ablation season SLAmax and field-based ELA in the monsoon-dominated 

central Himalaya. Using a multi-year SLA dataset generated through the 

improved extraction method in Chapter 5, this chapter evaluates the validity 

of using SLAmax as a proxy for ELA on Mera Glacier, where longest field 

observations are available in the central Himalaya. The analysis considers the 

influence of surface processes such as sublimation, wind redistribution, and 

temporary snow cover, which complicate SLA fluctuations and challenge the 

SLA-ELA assumption. This chapter highlights the limitations of applying 

standard SLA-based ELA estimation methods in regions with complex 

monsoon-driven accumulation and ablation patterns. 

Chapter 7: Conclusions and future work 

The thesis concludes with a summary of the key findings and a discussion on 

the potential directions for future research. 
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Chapter 2  

Literature review 

2.1 Glaciohydrological modelling in HK 

Glaciohydrological modelling in the HK region has advanced substantially 

over the past two decades, motivated by the need to quantify meltwater 

contributions to river systems and assess their response to climate change. 

Numerous studies indicate that snow and glacier melt constitute a substantial 

fraction of annual runoff in many HK basins, particularly those with high 

glacierized area, such as the Indus basin (Bookhagen and Burbank, 2010; Lutz 

et al., 2014; Azam et al., 2021). Model projections consistently suggest that 

rising temperatures will enhance meltwater yields in the near term, after which 

melt contributions will decline as glacier storage diminishes (Lutz et al., 2014; 

Huss and Hock, 2018). However, the magnitude and timing of these changes 

vary considerably between basins and modelling frameworks, reflecting large 

uncertainties in both climatic forcing and process representation (Ragettli et 

al., 2013; Pritchard, 2019). A persistent challenge in the HK region is 

accurately partitioning runoff into rainfall-runoff, snowmelt, and glacier melt 

components, as observational data remain sparse and heterogeneous across 

catchments (Armstrong et al., 2019; Azam et al., 2021; Vishwakarma et al., 

2022). 

The modelling approaches applied in HK span from empirical 

temperature-index (degree-day) models to physically based energy-balance 

models, as well as hybrid and distributed frameworks that integrate multiple 

processes. For melt calculations, temperature-index approach are the most 

widely used due to their fewer input requirements and their adaptability to 

basins with limited meteorological observations in HK (Hock, 2003; 
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Immerzeel et al., 2009; Butt and Bilal, 2011; Panday et al., 2014; Azam et al., 

2019). These models relate melt rates to air temperature using degree-day 

factors for snow and ice and can be coupled with satellite-derived snow cover 

to constrain spatial melt patterns (Tahir et al., 2011; Aggarwal et al., 2014). 

While effective in simulating seasonal flow in many HK catchments, their 

performance is sensitive to the estimation of model parameters, which vary 

with elevation, debris cover, and season (Hock, 2003; Zhang et al., 2006; 

Heynen et al., 2013). Physically based energy-balance approach resolves the 

surface energy budget and can capture additional processes such as 

sublimation, wind redistribution, and debris-cover effects (Reid et al., 2012; 

Shea et al., 2015; Buri et al., 2016; Miles et al., 2016), but their application in 

the HK is constrained by the scarcity of high-resolution meteorological data 

and the complexity of calibration (Ragettli et al., 2013; Vishwakarma et al., 

2022). 

Advances in distributed and hybrid modelling have improved the 

spatial variability of simulations by integrating topographic variability, glacier 

hypsometry, and temporally varying snow cover (Immerzeel et al., 2013; Lutz 

et al., 2014; Khanal et al., 2021). Latest models combine temperature-index 

melt formulations with distributed hydrological structures that also account for 

seasonal snowpack evolution and glacier dynamics (Terink et al., 2015). The 

integration of high-resolution remote sensing products, including improved 

MODIS snow cover (Muhammad and Thapa, 2020; Salim and Pandey, 2021) 

and geodetic glacier mass balance (Shean et al., 2020), into model forcing and 

calibration has improved process representation. Bias-corrected reanalysis 

datasets have also been increasingly adopted to address the lack of in-situ 

meteorological observations (Arora et al., 2024; Srivastava et al., 2024). 

However, uncertainties persist due to biases in gridded precipitation, which 

often underestimates high-altitude snowfall (Eeckman et al., 2017; Immerzeel 

et al., 2020), and due to equifinality, where different parameter combinations 

produce similar discharge outputs but divergent melt partitioning (Ragettli et 

al., 2013; Beven, 2016). 

To address these limitations, recent studies have adopted multi-

constraint calibration approaches, simultaneously tuning models against 

discharge, snow cover, and glacier mass balance observations (Azam et al., 
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2019; Singh et al., 2023; Srivastava et al., 2024; Arora et al., 2024). This has 

improved the accuracy of meltwater partitioning and reduced uncertainty. 

Ensemble modelling, incorporating multiple models and climate scenarios, has 

been used to quantify uncertainty ranges and identify robust trends (Lutz et al., 

2014; Kraaijenbrink et al., 2017). Incorporating additional processes, such as 

the role of debris cover in insulating glacier ice (Vatsal et al., 2024) or the 

effect of snow/ice avalanching, can further enhance the efficiency of 

glaciohydrological models. The literatures show that progress in HK 

hydrological modelling will remain dependent on improved high-elevation 

monitoring networks, expanded benchmark glacier studies, and enhanced 

integration of remote sensing with physically consistent modelling 

frameworks (Azam et al., 2021; Vishwakarma et al., 2022). 

2.2 Parameter transferability in hydrological models 

Parameter transferability in glaciohydrological models has been a recurring 

necessity in the HK region due to the scarcity of long-term hydro-

meteorological observations at high elevations (Hock, 2003; Nepal et al., 

2023). In many modelling studies, key parameters such as degree-day factors, 

runoff coefficients, precipitation gradient, and temperature threshold for 

snow/rain partitioning are adopted from neighboring catchments or literature 

rather than calibrated locally (Singh and Jain, 2002; Butt and Bilal, 2011; 

Panday et al., 2014; Hayat et al., 2019). While this approach enables 

simulations in data-scarce basins, it introduces the risk that parameters 

optimized under one set of climatic, topographic, and glaciological conditions 

may not be valid elsewhere (Ragettli et al., 2013; Beven, 2016). The HK region 

exhibits substantial heterogeneity in glacier hypsometry, debris-cover extent, 

precipitation regime, and snow persistence (Maussion et al., 2014; Scherler et 

al., 2018; Garg et al., 2024), all of which can exert a huge impact on optimal 

parameter values. Consequently, such applications of parameters across basins 

may lead to substantial biases in simulated runoff and melt partitioning. 

Climatic regime differences across HK present one of the most 

significant barriers to parameter transferability. Glacierized basins in the 

western part of HK, influenced predominantly by WDs, are snowmelt-

dominated, whereas monsoon-fed eastern part are characterized by high-
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intensity summer rainfall and comparatively lower snowmelt contributions 

(Thayyen and Gergan, 2010). Temperature thresholds for snow-rain 

separation, precipitation gradient, and melt coefficients often differ 

significantly between these regimes, making inter-regime parameter transfer 

unreliable. Similarly, debris-cover variability exerts a strong control on melt 

rates (Zhang et al., 2006; Scherler et al., 2018). Parameters calibrated for 

clean-ice glaciers can substantially overestimate melt for debris-covered 

glaciers, and vice versa, unless debris effects are explicitly modelled (Buri et 

al., 2016; Miles et al., 2016). 

The risks of parameter transfer are further compounded by equifinality, 

where multiple parameter sets yield similar discharge simulations but different 

internal process representations (Ragettli et al., 2013; Beven, 2016). This is 

particularly problematic for future projections, as parameter sets that 

reproduce present-day hydrographs may not be physically robust under altered 

climate forcing (Lutz et al., 2014; Kraaijenbrink et al., 2017). To reduce such 

uncertainties, recent HK studies have increasingly employed multi-criteria 

calibration approaches, simultaneously optimizing model performance against 

discharge, snow cover, and glacier mass balance data (Singh et al., 2023; 

Srivastava et al., 2024; Arora et al., 2024). Ensemble modelling across 

multiple basins has also been proposed as a means to identify parameter ranges 

that perform satisfactorily across varied physiographic and climatic settings, 

thereby improving transferability while quantifying uncertainty (Lutz et al., 

2014). 

In summary, while parameter transferability offers a practical approach 

for ungauged HK basins, its success is highly dependent on various factors. 

Evidence suggests that parameter transfer may be reliable when basins are 

physically and climatically similar, and when uncertainties are explicitly 

quantified. However, the heterogeneity of the HK region in terms of glacier 

characteristics, debris cover, and climatic regime substantially limits the 

general applicability of parameter sets. Basin-specific calibration, informed by 

multi-source observations and sensitivity analysis, remains the preferred 

approach for robust glaciohydrological simulations in HK. 
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2.3 Quantifying snow and glacier melt contributions 

Quantifying the relative contributions of snowmelt, glacier melt, baseflow and 

rainfall-runoff to river discharge is very important in glaciohydrological 

research in HK (Hock, 2003; Bolch et al., 2019; Azam et al., 2021). These 

estimates are essential for understanding seasonal water availability 

(Immerzeel et al., 2010; Lutz et al., 2014), managing water resources in 

downstream regions (Pritchard, 2019; Nepal et al., 2023), and anticipating the 

impacts of climate change on river flow (Kraaijenbrink et al., 2017; Khanal et 

al., 2021). A variety of approaches ranging from model-based simulations to 

remote sensing assimilation and tracer-based hydrograph separation have been 

applied across the region (Singh and Jain, 2002; Immerzeel et al., 2009; 

Maurya et al., 2011; Andermann et al., 2012; Brun et al., 2017; Azam et al., 

2019). Reported contributions vary substantially between basins, reflecting 

differences in climatic regime, glacier extent, and catchment hypsometry 

(Thayyen and Gergan, 2010; Srivastava and Azam, 2022b), as well as 

variations in datasets, model structures, and calibration methods (Ragettli et 

al., 2013; Beven, 2016).  

In the Upper Indus Basin, combined snow and glacier melt 

contributions are estimated as 62–72% of annual discharge (Fowler and 

Archer, 2005; Lutz et al., 2014; Maussion et al., 2014), with glacier melt alone 

contributing ~21–40% (Fowler and Archer, 2005; Lutz et al., 2014). Glacier-

fed tributaries such as the Hunza River can exceed 60–92% meltwater during 

peak summer flows (Shrestha et al., 2015; Shrestha and Nepal, 2019). In 

contrast, the upper Ganges and Brahmaputra basins, dominated by monsoon 

rainfall, show annual meltwater contributions of only 10–20% (Lutz et al., 

2014). Central Himalayan basins such as the Dudh Koshi are snowmelt-

dominated, with total melt contributions of ~30–35% annually (Nepal et al., 

2014; Savéan et al., 2015). Smaller glacierized catchments in the western 

Himalaya, such as the Chandra-Bhaga, have roughly equal snow and glacier 

melt contributions, totalling around half of annual runoff (Srivastava et al., 

2024). In general, meltwater dominates in the sub-basins of the western 

Himalaya and Karakoram (Bookhagen and Burbank, 2010; Lutz et al., 2014) 
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but plays a smaller role in the monsoon-dominated central and eastern 

Himalaya (Nepal et al., 2014; Savéan et al., 2015). 

Despite these general patterns, absolute estimates often differ 

noticeably for the same basin or catchment, such as Langtang valley in the 

central Himalaya that showed meltwater contributions ranging from 30 to 90% 

from different approaches (Azam et al., 2021). Discrepancies arise from 

differences in input datasets such as precipitation products, glacier inventories 

(Bookhagen and Burbank, 2010; Immerzeel et al., 2010), calibration 

strategies, and definitions of “glacier melt” (Lutz et al., 2014; Kraaijenbrink et 

al., 2017). Some studies define glacier melt strictly as ice melt, while others 

include seasonal snow on glaciers, leading to higher apparent contributions 

(Reid et al., 2012; Shea et al., 2015). High-altitude precipitation uncertainty is 

a major source of variability (Eeckman et al., 2017; Vishwakarma et al., 2022), 

with lower assumed precipitation resulting in higher inferred melt fractions 

(Ragettli et al., 2013; Kraaijenbrink et al., 2017). Spatial scale also matters; 

upper-basin studies report higher melt dependence than basin-wide analyses 

that include downstream rainfall-fed tributaries (Bookhagen and Burbank, 

2010; Lutz et al., 2014). Uncertainty is compounded by sparse high-elevation 

observations (Bolch et al., 2019; Vishwakarma et al., 2022), the dependence 

on extrapolated climate data (Kraaijenbrink et al., 2017; Huss and Hock, 

2018), and parameter equifinality (Ragettli et al., 2013; Beven, 2016). Tracer-

based methods can help separate melt sources but often face end-member 

overlap between snow and ice melt (Maurya et al., 2011; Müller et al., 2025). 

Reducing variability in melt estimates requires improved quantification of 

high-altitude precipitation and consistent definitions of melt components. 

Standardised methodologies and harmonized datasets will enable more 

comparable and reliable assessments across HK basins. 

2.4 Snowline estimation using remote sensing 

Given the difficulty of conducting frequent in-situ observations at high 

altitudes, remote sensing-based SLA mapping serves as a proxy for the ELA 

and helps to assess spatial and temporal variations in glacier response to 

climate forcing. Early efforts primarily relied on manual delineation from 

satellite imagery such as Landsat, Sentinel, SPOT, etc., where visual 
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interpretation enabled tracing of the transient snowline on glaciers, particularly 

during the end of the ablation season when the contrast between snow and ice 

is usually high (Pelto, 2011; Mernild et al., 2013; Rabatel et al., 2016; Tawde 

et al., 2016; Barandun et al., 2018; Chandrasekharan et al., 2018). While 

manually derived snowlines remain valuable for detailed studies or for 

validation, they are constrained by operator bias and limited scalability across 

large regions or multiple time steps (Rabatel et al., 2013). 

Subsequent studies increasingly adopted semi-automated approaches 

based on spectral thresholding, particularly the normalized difference snow 

index (NDSI), to classify snow pixels and infer the snowline as the upper limit 

of exposed glacier ice (Rastner et al., 2015; Racoviteanu et al., 2019; Barandun 

et al., 2021; Liu et al., 2021). The NDSI method exploits the spectral contrast 

between snow and non-snow surfaces in the visible and shortwave infrared 

bands to enable robust snow classification. These methods have been widely 

applied to medium-resolution imagery from MODIS, Landsat, and Sentinel 

and were capable of deriving snowline elevation for numerous glaciers. Often, 

a fixed threshold value is used to classify snow cover (Rastner et al., 2015; 

Racoviteanu et al., 2019). However, some workflows determine the threshold 

adaptively by employing Otsu algorithm on a near-infrared band histogram to 

automatically separate snow from ice (Rastner et al., 2019; Liu et al., 2021). 

The Otsu method is a histogram-based thresholding approach that objectively 

separates classes by maximizing inter-class variance, allowing image-specific 

threshold selection without manual tuning. More sophisticated multi-step 

classification schemes based on surface albedo have also been introduced to 

better delineate the snowline (Lei et al., 2012; Naegeli et al., 2019; Barandun 

et al., 2021). To improve scalability and consistency, recent efforts make use 

of Google Earth Engine for regional-scale SLA mapping (Liu et al., 2021; 

Loibl et al., 2025) and apply machine-learning algorithms to refine snow/ice 

classification under diverse conditions (Prieur et al., 2022). To improve the 

reliability of results, various post-processing filters are introduced. For 

example, Loibl et al. (2025) excluded scenes based on percent cloud cover and 

standard deviation of SLA. Other studies applied slope and elevation 

thresholds to remove false snowline pixels in steep terrain (Girona‐Mata et al., 

2019; Racoviteanu et al., 2019). Additionally, some workflows filtered the 
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snowline based on the percent snow cover area in each elevation zone (Rastner 

et al., 2019; Prieur et al., 2022; Loibl et al., 2025). Another strategy to 

minimize topographic bias is to restrict snowline tracing to the glacier’s central 

flowline, rather than across its entire width, thereby reducing the influence of 

aspect and shading variations (Rabatel et al., 2017; Davaze et al., 2020). 

Despite these advancements, continuous sub-monthly SLA monitoring 

in high-mountain environments remains difficult because complex topography 

(steep slopes, cast shadows, debris-covered or superimposed ice, crevasses) 

and frequent cloud cover—especially during the monsoon season—often 

confound automated classification (Racoviteanu et al., 2019; Rastner et al., 

2019). Data discontinuities continue to restrict high-frequency, glacier-scale 

SLA monitoring across the HK region. The lack of standardization in SLA 

extraction procedures also complicates inter-study comparisons and trend 

detection. Nonetheless, integrating multi-sensor data (optical, SAR, and 

thermal), employing ensemble approaches, and increasing ground-truth 

datasets for training and validation hold promise for improving SLA estimates 

across spatial and temporal scales. Continued methodological refinement, 

particularly in semi-automated and machine learning-based approaches, is 

critical to advance the operational use of SLA tracking for hydrological and 

climate assessments in the HK region. 

2.5 SLA-ELA relationship 

The relationship between SLA and ELA has been investigated across 

glacierized regions, and its applicability in the HK region has gained 

increasing attention due to the scarcity of in-situ mass balance observations 

and the region’s complex climatic and topographic settings. SLA, particularly 

during the late ablation season, is commonly employed as a remote sensing 

proxy for ELA under the assumption that it approximates the altitude where 

annual accumulation equals ablation (Rabatel et al., 2012). This simplification 

supports numerous efforts to infer mass balance and climatic sensitivity from 

satellite imagery. However, this approach is complicated in HK, where 

monsoon dynamics and frequent summer snowfall introduce spatial and 

temporal heterogeneity in snow accumulation and melt (Wagnon et al., 2013; 

Brun et al., 2015). Wagnon et al. (2013) observed that under extreme melt 



Chapter 2 

19 

 

conditions, the ELA can exceed the glacier's highest elevation, rendering SLA-

based ELA estimates misleading. Moreover, glacier-specific topographic 

factors such as slope and aspect can also result in localized SLA-ELA 

discrepancies, underscoring the importance of spatial filtering in remote 

sensing analyses.  

Alternative statistical and empirical approaches have been proposed to 

improve SLA-ELA inference. Oien et al. (2022) assessed the performance of 

the accumulation-area ratio (AAR) and area-altitude balance ratio (AABR) 

methods applied to satellite-derived snowlines and found glacier-specific 

variability in their performance. Braithwaite and Raper (2009) and Owen and 

Benn (2005) suggested that using mean SLA over multiple years may offer a 

reasonable approximation of long-term ELA; however, they caution that this 

relationship can be sensitive to outlier years and variable accumulation 

regimes. Pelto (2011) further proposed that SLA migration rates during the 

melt season may provide a more dynamic and sensitive indicator of glacier-

climate interactions than absolute snowline positions. 

In summary, while SLA remains a feasible remote sensing-based 

indicator for estimating ELA and assessing glacier health in data-scarce 

regions like HK, its utility is highly context-dependent. The presence of 

complex monsoonal influence and topographic effects introduces biases that 

limit the validity of SLA-ELA relationships across the region. Methodological 

improvements, including topographic corrections, integration of snow 

persistence metrics, and cross-validation with mass balance and ELA in-situ 

observations, are essential to enhance the accuracy and reliability of SLA-

derived ELA estimates in HK. 
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Chapter 3  

Assessing model parameter transferability 

between the glacier and basin scale in the 

western Himalaya 

3.1 Introduction 

The Himalaya-Karakoram (HK) Range, also known as the Water Tower of 

Asia, contains a huge storage of water in the form of a large number of glaciers, 

snow cover, and permafrost. The HK Range contributes to the discharge of 

major river systems like the Ganga, Indus, and Brahmaputra in the form of 

snow and glacier melt (Immerzeel et al., 2020; Azam et al., 2021). Due to 

global and regional warming (Banerjee and Azam, 2016; Pörtner et al., 2022), 

glaciers in the Himalaya have been losing their mass at an accelerating rate 

since 2000 (Brun et al., 2017; Azam et al., 2018; Bolch et al., 2019; Maurer et 

al., 2019; Shean et al., 2020), which resulted in the increased discharge volume 

in these rivers (Lutz et al., 2014; Azam et al., 2021). The latest IPCC 6th 

assessment report stated that global warming will reach or exceed 1.5 ºC above 

the pre-industrial level in the next two decades (Pörtner et al., 2022). This 

temperature rise would result in decreasing snow cover, retreating glaciers, 

changes in river seasonality, and higher river discharge, which can be the main 

cause of different hazards like floods, landslides, etc. The discharge from 

snow-covered and glacierized catchments mainly involves contributions from 

snowmelt, glacier melt, baseflow, and rainfall-runoff. The snowmelt 

contribution to the river discharge is large in the Indus Basin (Karakoram and 

western Himalaya) because it receives a major portion of annual precipitation 

in the form of snow during winter that provides snowmelt discharge during 
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summer (Azam et al., 2021). Conversely, in the Ganga and Brahmaputra 

basins (central and eastern Himalaya), the total discharge is dominated by the 

monsoonal rains as these basins receive the maximum precipitation from 

Indian Summer Monsoon (ISM) during summer. A study by (Bookhagen and 

Burbank, 2010) found a pronounced contribution of snowmelt to total 

discharge in the Karakoram and western Himalaya as compared to the central 

and eastern Himalaya. Since snowmelt plays a significant role in the discharge 

of Himalayan rivers, it must be accurately estimated using suitable methods 

and modelling techniques with appropriate model parameters and inputs. 

Snowmelt runoff modelling has usually been done using temperature-

index or energy balance models. Whereas the temperature-index models are 

simple and need fewer input data, the energy balance models are sophisticated 

and require plenty of meteorological data (Hock, 2003; Shea et al., 2015; 

Srivastava and Azam, 2022b). In the Himalayan region, due to the adverse 

situations induced by steep terrain, harsh climatic conditions, and remote 

access to the high-altitude regions, monitoring of meteorological data is very 

difficult; hence, the application of energy balance models is very challenging. 

The temperature-index models follow the degree-day approach to estimate the 

melt (Hock, 2003). The snowmelt runoff model (SRM), based on the degree-

day approach, is developed to simulate the daily discharge under the changing 

climate from mountain basins where the snowmelt plays an important role 

(Martinec et al., 2007). SRM has widely been applied and tested on more than 

100 basins of varying areas by different agencies (Martinec et al., 2007) to 

simulate and forecast the daily discharge from the glacierized catchments in 

different mountain ranges. This model uses long-term meteorological and 

remotely sensed snow cover data as basic input for generating discharge at the 

outlet (Martinec et al., 2007; Tahir et al., 2011). 

The SRM has also been applied in several studies for simulating daily 

discharge in the HK range (Immerzeel et al., 2009; Bookhagen and Burbank, 

2010; Jain et al., 2010; Tahir et al., 2011; Panday et al., 2014). As snow cover 

area (SCA) has also been included in SRM for the simulation of daily 

discharge hence it can also be applied to study the impact of reduced snow 

cover on discharge (Immerzeel et al., 2009). For the regions where only the 

gridded precipitation and temperature datasets are available, SRM performs as 
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an efficient tool for snowmelt runoff modelling. Several studies tested this 

model with gridded datasets of temperature and precipitation like 

APHRODITE, TRMM, etc. (Immerzeel et al., 2009; Bookhagen and Burbank, 

2010; Tahir et al., 2011; Zhang et al., 2014). Jain et al. (2010) applied SRM in 

the Sutlej Basin (western Himalaya) and found that seasonally varied 

temperature lapse rate increases the efficiency of the SRM, which shows the 

model is sensitive to the temperature lapse rate parameter. Applying the SRM 

in the Hunza River Basin (Karakoram), Tahir et al. (2011) demonstrated that 

SRM, using SCA as an input, is relatively less sensitive to the precipitation 

input; hence, its efficiency is not hampered in high-altitude catchments where 

the precipitation measurements contain large uncertainties. The high accuracy 

of SRM runoff simulation in the Astore River Basin part of the Indus Basin 

showed that the SRM is suitable for the runoff forecast and water resource 

management (Butt and Bilal, 2011). Tahir et al. (2019) applied SRM in the 

Shyok River Basin (Karakoram) to assess the snowmelt discharge under 

climate change scenarios and found that the SRM is an efficient tool to 

simulate the snowmelt discharge in data-scarce regions. SRM was also applied 

for future runoff simulation under different climate scenarios in the Astore 

Basin (Karakoram) and Hunza Basin (western Himalaya) and resulted in an 

effective tool for runoff forecast (Hayat et al., 2019). Different SCA products 

from MODIS, like MOD10A2 and MOD10C2, have been widely used and 

shown to perform well in several studies (Immerzeel et al., 2009; Bookhagen 

and Burbank, 2010; Tahir et al., 2011; Panday et al., 2014; Zhang et al., 2014; 

Haq et al., 2020, 2021).  

Available studies suggested that the SRM is a simple and efficient 

model which can be applied in high-altitude catchments due to its flexibility 

with the gridded dataset, and SCA integration in the modelling scheme. 

Further, SRM requires a set of parameters that depends on the catchment area 

characteristics and the climatic conditions in the catchment. Due to the lack of 

information about the observed parameters in the Himalayan catchments, these 

parameters are being calibrated with the observed discharge or have been taken 

from previous studies (Butt and Bilal, 2011; Tahir et al., 2011; Panday et al., 

2014; Hayat et al., 2019). But since model parameters play a vital role in model 
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calibration to constrain the model from overfitting, they require special 

attention in snowmelt runoff modelling. 

In the present study, SRM was applied to reconstruct the daily 

discharge from a small catchment of Chhota Shigri Glacier (34.7 km2; volume 

of Chhota Shigri glacier is 1.69 km2 (Haq et al., 2021)) and Chandra-Bhaga 

Basin (including Chhota Shigri Catchment) having a large area (~4108 km2) 

up to the point of confluence of Chandra and Bhaga rivers at Tandi village in 

Himachal Pradesh. The daily discharge was simulated for the period of 2003–

2018 for both the study regions: Chhota Shigri Catchment and Chandra-Bhaga 

Basin. Small and large scales were selected to check the performance of SRM 

for snowmelt runoff modelling at the catchment scale and basin-scale, having 

distinct characteristics. The main objectives for this study are (a) to reconstruct 

the daily discharge separately for the Chhota Shigri Catchment and Chandra-

Bhaga Basin and assess the discharge pattern characteristics, (b) to analyse the 

model sensitivity to all input parameters in SRM, and (c) to assess the 

transferability of model parameters calibrated at Chhota Shigri Catchment to 

simulate the discharge in the Chandra-Bhaga Basin. 

3.2 Study area and datasets 

3.2.1 Topographical and climatic characteristics of the study 

area 

Chandra-Bhaga Basin is a part of the Indus River system located in the western 

Himalaya, it is formed by the confluence of rivers Chandra and Bhaga at Tandi 

village in the Lahaul-Spiti Valley, Himachal Pradesh, India (Figure 3.1A, B, 

C). It covers an area of ~4108 km2 up to Tandi, which lies between the 

elevation range from 2846 m a.s.l. to 6370 m a.s.l. (Figure 3.2B). This basin 

is having 25% glacierized area as per the GAMDAM inventory (Sakai, 2019). 

The Chhota Shigri Catchment, situated in the same basin, covers an area of 

34.7 km2, having a discharge site at 3840 m a.s.l. downstream of the Chhota 

Shigri Glacier terminus (Azam et al., 2016) (Figure 3.1D). Chhota Shigri 

Catchment lies between the elevation range of 3840 to 6263 m a.s.l. and 

contains 47% of the glacierized area (Figure 3.2A). The Chandra-Bhaga Basin 

is selected because this basin, as well as its Chhota Shigri Glacier Catchment, 

has been investigated for glaciohydrology by several studies (Azam et al., 
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2019; Mandal et al., 2020; Azam, 2021; Singh et al., 2021a; Azam et al., 2021; 

Gaddam et al., 2022; Srivastava et al., 2022) and also, the Chhota Shigri 

Glacier Catchment is having the longest series of observed meteorological data 

and discharge measurements that were available for the present study (Azam, 

2021). 

 

Figure 3.1 Location map of Chandra-Bhaga Basin (A–C), Basin boundary 

(black) with Tandi discharge site (green), river (green) and GAMDAM glacier 

cover (blue). Inset is the map of Chhota Shigri Catchment (D) with the 

catchment outline (red), Chhota Shigri Glacier (blue), and location of AWS 

station, discharge site, Chhota Shigri base camp, and ERA5 grid point (green 

symbols). 

The climate of the Chandra-Bhaga Basin is governed by two weather 

systems: ISM and WDs (Dimri et al., 2015, 2016); however, 67% of the 

precipitation (Mandal et al., 2020) comes in the form of snow during winter 

months from WDs (Pratap et al., 2019; Singh et al., 2019; Mandal et al., 2020; 

Laha et al., 2021). The study region receives maximum precipitation in 

February and March from WDs (Mandal et al., 2020). Major discharge 

contribution in this basin is governed by the seasonal snow and glacier melt 

from major glaciers like Bara Shigri, Samudra Tapu, Sutri Dhaka, Batal, 
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Chhota Shigri, and Hamtah, which are losing their mass over the last few 

decades (Singh et al., 2019; Mandal et al., 2020; Vishwakarma et al., 2022). 

In the Chhota Shigri Catchment, the discharge is dominated by snowmelt 

having around 69% contribution to the total discharge (Srivastava and Azam, 

2022b). The maximum discharge in the Chhota Shigri Catchment occurs in 

July–August, corresponding to the maximum temperature (Mandal et al., 

2020). 

3.2.2 Datasets 

3.2.2.1 DEM data and elevation zones 

For snowmelt runoff modelling Cartosat Digital Elevation Model (DEM) 

having 30 m resolution was downloaded from the Bhuvan portal 

(https://bhuvan-app3.nrsc.gov.in) and extracted separately for both, the 

catchment and basin. The Chhota Shigri Catchment was divided into three 700 

m interval elevation zones and the Chandra-Bhaga Basin was divided into 

sixteen 200 m interval elevation zones and their mean elevation and zone area 

were extracted using the digital elevation model (Table 3.1, Figure 3.2). The 

Chandra-Bhaga Basin was divided into the maximum possible number of 

elevation zones in SRM (WinSRM), but a higher elevation difference was used 

in the Chhota Shigri Catchment because the zonal areas were too small with 

the same elevation difference as the Chandra-Bhaga Basin. 

 

Figure 3.2 Hypsometry curve for Chhota Shigri Catchment (A) and Chandra-

Bhaga Basin (B) showing the area distribution over the different elevations. 

Points represent the maximum elevations for each zone and cumulative 

percentage area. 
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3.2.2.2 Meteorological data, discharge data and bias correction 

Reanalysis product ERA5 precipitation and temperature data at resolution 

0.25º x 0.25º were downloaded (https://cds.climate.copernicus.eu) at the 

nearest ERA5 grid point to the automatic weather station (AWS) at 4863 m 

a.s.l. in the Chhota Shigri Catchment (Figure 3.1D). ERA5 reanalysis data is 

available since 1950. For this study, the ERA5 temperature and precipitation 

data were bias-corrected using the field observations from the Chhota Shigri 

Catchment. The in-situ precipitation data was available from the Chhota Shigri 

base camp (3850 m a.s.l.) over 2012–2020 from an automatic precipitation 

gauge (Geonor T-200B) and the temperature data was available from the AWS 

(Campbell CR1000 data logger; details can be found in (Mandal et al., 2020) 

(4863 m a.s.l.) in the Chhota Shigri Catchment over 2009–2019 (Azam et al., 

2016; Mandal et al., 2020) (Figure 3.1D). For the bias correction of 

temperature data, a linear regression equation was developed between the daily 

raw ERA5 temperature and the observed temperature, whereas monthly scale 

factors were used to bias correct the raw ERA5 precipitation series. The ERA5 

bias-corrected data was used for snowmelt runoff modelling in the Chhota 

Shigri Catchment as well as Chandra-Bhaga Basin. 
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Table 3.1 Characteristics of different zones used in SRM for Chhota Shigri Catchment and Chandra-Bhaga Basin 

Zone Elevation range (m) Mean elevation (m) Area (km2) Area (%) 

Chhota Shigri Catchment  

1 3840–4600 4328 5.4 15.7 

2 4600–5300 4981 21.7 62.6 

3 5300–6263 5673 7.5 21.7    
34.7 100 

Chandra-Bhaga Basin  

1 2846–3000 2943 11.3 0.3 

2 3000–3200 3107 44.0 1.1 

3 3200–3400 3304 75.9 1.8 

4 3400–3600 3506 91.8 2.2 

5 3600–3800 3706 121.7 3.0 

6 3800–4000 3906 164.2 4.0 

7 4000–4200 4107 221.6 5.4 

8 4200–4400 4304 280.0 6.8 

9 4400–4600 4504 347.6 8.5 

10 4600–4800 4705 415.2 10.1 

11 4800–5000 4904 497.6 12.1 

12 5000–5200 5102 581.1 14.1 

13 5200–5400 5298 599.6 14.6 

14 5400–5600 5489 443.4 10.8 

15 5600–5800 5682 168.3 4.1 

16 5800–6370 5985 44.4 1.1    
4107.5 100 
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Figure 3.3 Monthly variation of model variables ERA5 bias-corrected 

(temperature, precipitation) and SCA for Chhota Shigri Catchment and 

Chandra-Bhaga Basin over 2003–2018. 

The ERA5 bias-corrected mean annual temperature at the nearest ERA5 

grid point was −5.5 ºC over 2003–2018, with the maximum mean monthly and 

minimum mean monthly temperature of 4.1 ºC in July and −14.9 ºC in 

January. The mean monthly temperature for summer (May–September) was 

1.2 ºC and for winter (January–April and October–December) it was −10.3 ºC 

(Figure 3.3). The ERA5 bias-corrected mean annual precipitation was 819.9 

mm over 2003–2018, with maximum monthly precipitation of 129.7 mm in 

March and minimum monthly precipitation of 18 mm in November (Figure 

3.3). The mean precipitation for summer and winter was 263.1 mm and 556.8 

mm, respectively. The higher mean precipitation in winter shows that the 

major portion of the precipitation occurs in winter, as suggested by previous 

studies (Azam et al., 2014; Mandal et al., 2020). 

The observed daily discharge data from Chhota Shigri Catchment at a 

gauging site (~3840m a.s.l.), ~2km downstream of the Chhota Shigri glacier 

terminus, is available for the summer months over 2010–2015 (Azam et al., 

2019). The measurement of discharge was done using the velocity-area 

method. A graduated staff gauge for monitoring the water level, dipsticks for 

measuring the cross-sectional area, and a current meter for the measurement 

of velocity were used (Mandal et al., 2020). The daily discharge measurements 

for the Chandra-Bhaga Basin are available over 2004–2006 at a gauging site 
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located at Tandi village. This gauging site is maintained by the Central Water 

Commission (CWC). For the measurement of discharge by CWC at this 

gauging site, the velocity-area method was used with a current meter for 

velocity, a rod and bamboo for depth measurement 

(http://cwc.gov.in/mco/discharge-observation). 

3.2.2.3 Snow cover data 

Snow cover data for the study area was available from an enhanced snow cover 

and glacier combined product MOYDGL06* at the 8-day interval for the 

period 2002–2018. This product is generated by reducing the overestimation 

caused by MODIS sensors and underestimation caused by cloud cover in 

MODIS snow cover products MOD10A2.006 (Terra) and MYD10A2.006 

(Aqua) (Muhammad and Thapa, 2020). This product is freely available in tiff 

format and WGS1984 projection 

(https://doi.pangaea.de/10.1594/PANGAEA.901821). For this study, a total of 

736 images were used between 2003–2018. The SCA for each elevation zone 

of the Chhota Shigri Catchment and Chandra-Bhaga Basin was extracted for 

each 8-day interval and linearly interpolated to get the daily values. 

 

Figure 3.4 Mean monthly variation of SCA for Chhota Shigri Catchment (A) 

and Chandra-Bhaga Basin (B) over 2003–2018. Maps of both the areas are not 

on the same scale. 

http://cwc.gov.in/mco/discharge-observation
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In the Chhota Shigri Catchment, SCA was least in August (41% of the 

catchment area) and started increasing from September, achieved maximum 

SCA in March–April (100% of the catchment area), and then started 

decreasing in May (Figure 3.3 and Figure 3.4A). Whereas in the Chandra-

Bhaga Basin, the SCA started increasing in September and decreased from 

March. Chandra-Bhaga Basin showed the maximum SCA in February (99% 

of the basin area) and the minimum SCA in August (26% of the basin area) 

(Figure 3.3 and Figure 3.4B). The mean summer and winter SCA were 65% 

and 90%, respectively, in the Chhota Shigri Catchment, whereas for the 

Chandra-Bhaga Basin, it was 45% and 76% of the total basin area, 

respectively.  

3.3 Methodology 

3.3.1 Snowmelt runoff model 

SRM (WinSRM version 1.12) is based on the degree-day approach and runs 

for a maximum of 366 days in one simulation. This model can be applied in 

two ways: basin-wide and zone-wise applications. For reconstructing the 

discharge in the Chhota Shigri Catchment and Chandra-Bhaga Basin, the 

model was run zone-wise to compute the catchment-wide or basin-wide 

discharge. The simulated discharge is a combination of snowmelt runoff and 

rainfall runoff superimposed on recession flow to transform all the 

components into daily discharge (Martinec et al., 2007). This model follows 

eq. 3.1 for the daily discharge computation from each zone: 

𝑄𝑛+1 = [𝐶𝑆𝑛 
∗ 𝑎𝑛(𝑇𝑛 +△ 𝑇𝑛)𝑆𝑛 +  𝐶𝑅𝑛

𝑃𝑛]
𝐴 ∗ 10000

86400
(1 − 𝑘𝑛+1)

+ 𝑄𝑛 𝑘𝑛+1                                                                                    (3.1) 

Where Q is the daily discharge in m3/s, CS and CR are the runoff coefficients 

for snow and rain, respectively, a is the degree-day factor (cmºC-1d-1), 𝑇𝑛 +△

𝑇𝑛 are the degree days (ºCd -1) after extrapolation for each zone mean elevation, 

S is the ratio of snow-covered area to the zone area, P is precipitation 

contributing to runoff (cm), A is the zone area (km2),  k is the recession 

coefficient (input as ‘x’ and ‘y’ in the model) and n shows the sequence of 

days. 
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The critical temperature (Tcrit) is used to decide the precipitation phase 

as snow or rain. If the precipitation is determined as snow, its delayed effect is 

considered in two ways: (1) snowfall over the snow-covered area is assumed 

to become part of the snowpack and its contribution is determined by the snow 

depletion curve (Martinec et al., 2007) and (2) snowfall occurring over snow-

free areas contributes to the discharge immediately, depending on the available 

degree days. When the precipitation is determined as rain its contribution to 

the discharge depends on the snowpack characteristics. In winter, the 

snowpack is dry and thick, so the rain falling over the SCA is retained by the 

snowpack and the rain contribution to the total runoff is limited to the only 

snow-free area. Later in the summer, the snow becomes ripe, and the rain is 

allowed to contribute to the runoff from the entire zone area. The rainfall-

induced melting and base flow (sub-surface fluxes) are ignored in SRM 

(Martinec et al., 2007). Further, the glacier ice melt contribution is also ignored 

(Tahir et al., 2011). 

3.3.2 Model parameters 

In SRM, a total of nine different parameters are used. These parameters are 

runoff coefficient for snow and rain (CS and CR), degree-day factor (a), 

temperature lapse rate (LR), critical temperature (Tcrit), time lag, recession 

coefficients (x and y), and rainfall contributing area (RCA). In rough terrain 

like the Himalaya, the measurement of these parameters is very difficult 

because of the remote access and adverse climate conditions. But the Chhota 

Shigri Catchment is one of the glacier catchments which is having the longest 

series of observed meteorological data and discharge measurements (Azam, 

2021), hence among the nine parameters three parameters (LRs, ‘x’ and ‘y’) 

were calculated and constrained using the field measurements in the Chhota 

Shigri Catchment, whereas the other model parameters were calibrated for the 

Chhota Shigri Catchment.  

CS and CR represent the losses between the available water (snowmelt + 

rainfall) and the runoff volume from the catchment or basin; it depends on the 

surface conditions in the catchment or basin. The default values of CS and CR 

in the model were adopted initially for the Chhota Shigri Catchment as 0.7 and 

0.6 for CS and CR, respectively (Martinec et al., 2007). ‘a’ is converting the 
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positive temperatures on a particular day into the melt depth. For the Chhota 

Shigri Catchment, the initial ‘a’ was considered as 5.28 mmºC-1d-1 (Azam et 

al., 2014). The daily temperature LRs for the Chhota Shigri Catchment were 

available between the two temperature measurement stations at 3850 m a.s.l. 

(base camp) and 4863 m a.s.l. (AWS station) (Mandal et al., 2022; Srivastava 

et al., 2022). The mean LR was 0.63 °C(100m)-1 and it was 0.71°C(100m)-1  

for summer (May–September) and 0.57 °C(100m)-1 for winter (October– 

April). For precipitation extrapolation, a precipitation gradient (PG) of 0.20 

m/km was adopted, constrained through a mass balance model calibration on 

the Chhota Shigri Glacier (Azam et al., 2014). Tcrit is the threshold temperature 

that determines the precipitation phase. The time lag is the time interval 

between the start of increasing temperature and the corresponding increase in 

discharge. For both the catchment and basin,  a time lag range from 6 to 18 

hours was adopted, varying with the elevation zones from previous studies 

(Martinec et al., 2007; Tahir et al., 2011; Panday et al., 2014). The time lag 

tends to increase with elevation because at higher elevations, the mean 

temperature is less and the travel time for the melted water to the discharge 

point is more as compared to the lower zones, which results in the delayed 

discharge from the higher elevations. k deals with the proportion of the daily 

discharge which appears immediately in the runoff. In the SRM, this 

coefficient is used in the form of ‘x’ and ‘y’, which is usually determined by 

the historical discharge series. Based on the relation between k, ‘x’, ‘y’, and 

discharge i.e., 𝑘 =
𝑄𝑛+1

𝑄𝑛
  and 𝑘𝑛+1 = 𝑥𝑄𝑛

−𝑦 the values of ‘x’ and ‘y’ can be 

determined (Martinec et al., 2007). In our study, the value of ‘x’ and ‘y’ were 

calculated from the available discharge series for the Chhota Shigri Catchment 

and Chandra-Bhaga Basin. The RCA was taken as 1 for summer and 0 for 

winter depending on the melting season for both catchment and basin. RCA 1 

represents that the rain from the total zone area is contributing to the runoff 

and 0 shows that rain only from the snow-free area is contributing to the runoff. 

3.3.3  Model variables 

Precipitation, temperature, and SCA are the three most important input 

variables in SRM, which are required to simulate the daily discharge (Martinec 
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et al., 2007). The bias-corrected temperature and precipitation data were 

extrapolated from the ERA5 grid point for the mean altitude of each elevation 

zone using the daily LR and PG, respectively, available from previous studies 

in the Chhota Shigri Catchment (Azam et al., 2019; Srivastava et al., 2022). 

The extrapolated daily temperature and precipitation values were fed into the 

model, separately for each zone in both the Chhota Shigri Catchment and 

Chandra-Bhaga Basin. The model also needs daily SCA fractions as an input, 

which is the ratio of zonal SCA to the total zonal area. For each zone, these 

values were calculated at a daily timestep as discussed in section 3.2.2.3. 

3.3.4 Model calibration and validation 

The model for the Chhota Shigri Catchment was calibrated with the observed 

discharge values over 2010–2013 (Figure 3.5A). The parameters Tcrit, ‘a’, CS, 

CR, x, and y were calibrated over 2010–2013 while LR, time lag, and RCA 

were kept constant. The calibrated parameters were kept within a permissible 

range corresponding to the previous studies on SRM to avoid the overfitting 

of the model. The calibration was done by considering different performance 

criteria, i.e., coefficient of determination (R2), RMSE, and NSE (Nash-Sutcliff 

efficiency), which is determined using the equation: 

𝑅2 =  [
∑ {(𝑂𝑖−𝑂′)∗(𝑆𝑖−𝑆′)}𝑛

𝑖=1

√∑ (𝑂𝑖−𝑂′)2∗ ∑ (𝑆𝑖−𝑆′)2𝑛
𝑖=1

𝑛
𝑖=1

]

2

                               (3.2), 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑂𝑖−𝑆𝑖)2𝑛

𝑖=1

𝑛
                                                  (3.3), 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖−𝑆𝑖)𝑛

𝑖=1
2

∑ (𝑂𝑖−𝑂′)2𝑛
𝑖=1

                                                 (3.4), 

Here, n, 𝑂𝑖, 𝑆𝑖 , 𝑂′and 𝑆′ are the number of observations, observed 

discharge, simulated discharge, mean observed discharge and mean simulated 

discharge, respectively. NSE lies between 1 to −∞ where 1 corresponds to the 

perfect match and R2 lies between 0 to 1. The calibrated parameters are shown 

in Table 3.2. 

3.3.5 Sensitivity and uncertainty estimation 
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To understand the sensitivity of simulated discharge to different model 

parameters, sensitivity analysis was performed for eight model parameters 

including k (x and y), CS, CR, ‘a’, Tcrit, LR, and time lag. The sensitivity 

analysis was performed separately for both the Chhota Shigri Catchment and 

Chandra-Bhaga Basin over 2003–2018. For sensitivity analysis, each 

parameter was increased and decreased one by one by 10%, 20%, and 30% 

while keeping all other parameters constant, and the sensitivities were 

estimated using simulated mean daily discharge (Oerlemans et al., 1998) as 

follows: 

𝑆 =
𝑄𝐻− 𝑄𝐿

2
                                                    (3.5), 

Here, S is the sensitivity of each parameter, 𝑄𝐻  𝑎𝑛𝑑 𝑄𝐿 is the mean daily 

discharge values at the highest (+10%, +20% and +30%) and lowest (−10%, 

−20% and −30%) values of parameters. For the uncertainty estimation in the 

simulated discharge, each model parameter among x, y, CS, CR, ‘a’, and Tcrit 

were changed one by one, within a 10% range of its calibrated value (Heynen 

et al., 2013; Ragettli et al., 2013). The parameters which were not calibrated 

kept the same i.e., LR, time lag, and RCA, using the field observations from 

Chhota Shigri Catchment, are not changed in this process. The uncertainty 

estimation was done for both the study region Chhota Shigri Catchment and 

Chandra-Bhaga Basin separately. The overall mean uncertainty in the 

simulated daily discharge was estimated using the error propagation law as 

following: 

𝑈 = √∑ (
𝑄+10%− 𝑄−10%

2
)

2
𝑛
1                                      (3.6), 

Here, U is the overall uncertainty, n is the number of parameters, and  

𝑄+10% 𝑎𝑛𝑑 𝑄−10% are the mean daily simulated discharge when the 

parameters increased and decreased by 10%. 

3.4 Results and discussions 

3.4.1  Calibration and validation 

The calibrated daily discharge over 2010–2013 showed a good agreement with 

the observed data (R2 = 0.90, RMSE = 2.92 and NSE = 0.05) (Figure 3.5A). 

However, the mean calibrated discharge showed an underestimation of 41% 
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(Figure 3.5A, Figure 3.7A). As already highlighted, all the model parameters 

were kept within plausible ranges based on previous studies to avoid 

overfitting of the SRM. The 41% underestimation is most probably due to the 

lack of baseflow and glacier melt contribution in the SRM (details in section 

3.4.7). After the calibration, the SRM output for the Chhota Shigri Catchment 

was validated with the observed discharge over 2014–2015. In validation the 

mean simulated discharge showed a good agreement with the observed 

discharge (R2 = 0.94, RMSE = 2.34 and NSE = −0.13) (Figure 3.5B) but with 

an underestimation of 34% (Figure 3.5B, Figure 3.7A). After the validation, 

the same calibrated model was used to simulate the daily discharge for the 

Chhota Shigri Catchment over 2003–2018. 

 

Figure 3.5 Scatter plots for calibration on Chhota Shigri Catchment over 2010–

2013 (A) and validation on Chhota Shigri Catchment over 2014–2015 (B). 

Plots are showing the relations between observed and simulated discharges. 

The observed daily discharge was also available for the Chandra-Bhaga 

Basin over 2004–2006. To check the transferability of catchment-scale 

calibrated model parameters to basin-scale discharge simulation, the discharge 

for Chandra-Bhaga Basin was simulated over 2004–2006 for two different 

case scenarios. Case-I: the calibrated parameters on Chhota Shigri Catchment 

were applied on all the zones in Chandra-Bhaga Basin and Case-II: the 

calibrated parameters were applied on zones having elevation above 3900 m 

a.s.l., as the Chhota Shigri Catchment is having a minimum elevation of ~3900 

m a.s.l. and altered parameters (based on previous SRM studies) were applied 

for zones below 3900 m a.s.l. 
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 In Case-II, for the zones below 3900 m a.s.l., the parameters were 

altered based on previous studies (Tahir et al., 2011; Panday et al., 2014). A 

lower value of ‘a’ (4.5 mmºC-1d-1) was adopted for the lower zones because 

‘a’ is expected to decrease with a decrease in elevation, due to the high direct 

solar radiation at higher altitudes (Hock, 2003; Zhang et al., 2006; Tahir et al., 

2011; Panday et al., 2014). Tcrit for rain/snow separation was taken as 1.5 ºC 

for lower zones, like the previous studies in the western Himalaya (Singh and 

Jain, 2003; Aggarwal et al., 2014; Kiba et al., 2021). The values of CS and CR 

were also varied with the zone elevation, for the higher altitudes, the values 

for CS are higher and the values for CR are less as compared to the lower zones 

(Tahir et al., 2011; Panday et al., 2014). In the Chandra-Bhaga Basin for the 

lower elevations (below 3900 m a.s.l.), the values for these coefficients were 

altered as 0.5 and 0.75 for CS and CR, respectively. The values of x, y, RCA, 

time lag, and LR were kept the same as the Chhota Shigri Catchment for all 

the zones (Table 3.2). 

With the mentioned values of all the parameters for Case-I and Case-II 

(Table 3.2), the daily discharge for Chandra-Bhaga Basin was simulated over 

2004–2006. The daily simulated discharge in both cases showed a good 

agreement with the observed discharge over 2004–2006 (Figure 3.6A, B) but 

an overestimation of 83% in Case-I and an overestimation of 74% in Case-II. 

Despite the underestimation in simulated discharge at Chhota Shigri 

Catchment, large discharge overestimation in the Chandra-Bhaga Basin 

showed that the catchment-scale calibrated parameters are not transferable for 

basin-scale discharge simulation. This overestimation is further discussed in 

section 3.4.7. 
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Table 3.2 List of calibrated parameters and their calibrated values for the Chhota Shigri Catchment over 2010–2013 and Chandra-Bhaga Basin 

over 2004–2006. 'Z’ denotes the elevation zone. 

Parameter 
Chhota Shigri 

Catchment 

Case-I  

(Chandra-Bhaga 

Basin) 

Case-II  

(Chandra-Bhaga Basin) 

Case-III  

(Chandra-Bhaga Basin) 

Critical temperature for 

snow/rain (Tcrit) (ºC) 

0.1  

(Z1–Z3) 

0.1  

(Z1–Z16) 

1.5 (Z1–Z6), 

0.1 (Z7–Z16) 

2 (Z1–Z6), 

1 (Z7–Z16) 

Degree day factor 

(a) 

(mmºC-1d-1) 

6.8  

(Z1–Z3) 

6.8  

(Z1–Z16) 

4.5 (Z1–Z6), 

6.8 (Z7–Z16) 

 

4.5 (Z1–Z6), 

5.0 (Z7–Z16) 

 

Runoff coefficient for 

snow (Cs) 

0.75  

(Z1–Z3) 

0.75  

(Z1–Z16) 

0.5 (Z1–Z6), 

0.75 (Z7–Z16) 

 

0.4 (Z1–Z6), 

0.5 (Z7–Z16) 

 

Runoff coefficient for rain 

(CR) 

0.70  

(Z1–Z3) 

0.70  

(Z1–Z16) 

0.75 (Z1–Z6), 

0.70 (Z7–Z16) 

 

0.5 (Z1–Z6), 

0.4 (Z7–Z16) 

 

x 0.85 0.85 0.85 1.0499 

y 0.002 0.002 0.002 0.061 
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Figure 3.6 Scatter plots between the observed and simulated discharge for 

Chandra-Bhaga Basin in all three case scenarios (A) for Case-I, (B) for Case-

II and (C) and (D) for Case-III. 

Apart from these two case scenarios (Case-I and Case-II), where the 

Chandra-Bhaga simulated discharge is largely overestimated, an independent 

model calibration was performed for the Chandra-Bhaga Basin using the 

discharge data from Tandi village (Case-III; Table 3.2), ignoring the calibrated 

parameters on Chhota Shigri Catchment. The calibrated daily discharge over 

2004–2005 showed a good agreement with the observed data with R2 = 0.87, 

RMSE = 34.31 and NSE = 0.77 (Figure 3.6C). After the calibration, the same 

model was validated with the observed data for 2006 that showed a good 

agreement with R2 = 0.92, RMSE = 18.47 and NSE = 0.85 (Figure 3.6D). The 

calibrated and validated modelled discharge in Chandra-Bhaga Basin showed 

an underestimation of 12% and 9%, respectively unlike the overestimation 

shown in Case-I and Case-II for the same basin. The daily discharge for the 
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Chandra-Bhaga Basin was simulated with these calibrated parameters over 

2003–2018. 

3.4.2 Reconstructed daily discharge and its pattern 

The discharge from Chhota Shigri Catchment and Chandra-Bhaga Basin was 

reconstructed for 2003–2018 at a daily time step (Figure 3.7). The mean of 

daily discharges over 2003–2018 for the Chhota Shigri Catchment was 1.2 ± 

0.2 m3/s (Figure 3.7A). In the Chhota Shigri Catchment, the simulated daily 

discharge starts increasing in April and reaches the maximum in July. The 

highest peak in daily discharge was observed on 11th July 2005 of 7.9 ± 1.4 

m3/s. The mean of daily discharges in the Chandra-Bhaga Basin was 55.9 ± 

12.1 m3/s over 2003–2018 (Figure 3.7B). The daily discharge starts increasing 

in March and reaches its peak in July. The highest daily discharge was 

observed on 16th July 2011 of 386.7 ± 21.2 m3/s. The observed daily discharge 

values for the Chhota Shigri Catchment over 2010–2015 and for Chandra-

Bhaga Basin over 2004–2006 are also shown in Figure 3.7. The comparison 

showed that the simulated discharge in both the catchment and basin was 

underestimated (discussed in section 3.4.1). 

 

Figure 3.7 Simulated discharge of Chhota Shigri Catchment (A) and Chandra-

Bhaga Basin (B) over 2003–2018 (blue color). The observed discharge for 
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Chhota Shigri Catchment (A) and Chandra-Bhaga Basin (B) in red color over 

2010–2015 and 2004–2006, respectively. 

3.4.3 Seasonal and annual discharge patterns 

To understand the seasonal and annual patterns, the seasonal and annual 

discharge was computed using daily simulated discharge for Chhota Shigri 

Catchment and Chandra-Bhaga Basin over 2003–2018. Summer discharge has 

been considered from May to September and winter discharge has been 

considered from October to December and January to April in the same year. 

The mean summer discharge and winter discharge were found as 2.7 ± 0.5  

m3/s and 0.1 ± 0.05 m3/s for Chhota Shigri Catchment, Similarly, for Chandra-

Bhaga Basin it was 123.9 ± 22.3  m3/s and 6.7 ± 3.3  m3/s, respectively. The 

simulated discharge ranged from 0.02 ± 0.01 m3/s to 0.2 ± 0.04 m3/s and 2.6 ± 

1.2 m3/s to 13.3 ± 4.7 m3/s in winter and 1.9 ± 0.3 m3/s to 3.4 ± 0.6 m3/s and 

77.6 ± 13.7 m3/s to 164.5 ± 28.3 m3/s in summer for Chhota Shigri Catchment 

and Chandra-Bhaga Basin, respectively. The annual discharge is the mean 

discharge in both seasons over the same year. The mean annual discharge for 

the Chhota Shigri Catchment was found as 1.2 ± 0.2 m3/s over 2003–2018 with 

a minimum annual discharge of 0.8 ± 0.1 m3/s in 2004 and a maximum of 1.5 

± 0.3 m3/s in 2011 (Figure 3.8B). The mean annual discharge for the Chandra-

Bhaga Basin was found as 55.9 ± 12.1 m3/s over 2003–2018 with a minimum 

annual discharge of 39.9 ± 9.1 m3/s in 2003 and a maximum annual discharge 

of 75.1 ± 13.2 m3/s in 2010 (Figure 3.8C). The mean summer discharge 

dominates the mean winter discharge over 2003–2018 in the Chhota Shigri 

Catchment as well as in the Chandra-Bhaga Basin. Similar results were also 

suggested for the Chhota Shigri Catchment and Chandra Basin in the western 

Himalaya (Singh et al., 2021a; Gaddam et al., 2022; Srivastava and Azam, 

2022b). 

The year 2016 has the maximum temperature and minimum 

precipitation (Figure 3.8A). It is noteworthy that 2016 was the warmest year 

over a century (Wuebbles et al., 2017). This year, though the winter SCA was 

relatively less, the Chhota Shigri catchment showed more than the average 

discharge because of excessive snowmelt runoff production, mainly supported 

by quasi average summer SCA (Figure 3.8B). Conversely, in the Chandra-
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Bhaga Basin, the modelled discharge was less than average because of the 

lowest precipitation (Rain + Snow), and lowest winter as well as summer SCA 

(Figure 3.8C). Similarly, in 2011 the Chhota Shigri Catchment showed the 

maximum discharge having average precipitation and associated with the 

higher snowmelt due to higher temperature and higher summer SCA (Figure 

3.8B). While the Chandra-Bhaga Basin showed the maximum discharge in 

2010 due to the maximum precipitation and higher summer SCA (Figure 

3.8C). 

 

Figure 3.8 Seasonal (summer in orange and winter in blue) and annual (grey) 

discharge patterns over 2013–2018 with total precipitation (black) and mean 

temperature (red) patterns for Chhota Shigri Catchment (B) and Chandra-
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Bhaga Basin (C). The summer season is from May to September and the 

Winter season is from October to December and January to April. Total 

precipitation and mean temperature patterns plotted here represent the data 

from the ERA5 grid point location (A). Dashed lines show the average values 

over 2003–2018 of temperature (red), Precipitation (black), winter SCA 

(blue), and summer SCA (orange). 

Further, to understand the influence of variables on discharge, the 

interrelationships between the discharge (annual, summer, and winter), SCA 

(annual, summer, and winter), and temperature and precipitation (annual, 

summer, and winter) were explored with the help of the correlation matrix 

developed separately for both the study regions (Figure 3.9). In both the study 

regions, the annual discharge is highly correlated with the summer discharge 

as the maximum melting occurs in summer (Figure 3.9). The annual discharge 

in the Chhota Shigri Catchment is more correlated with summer temperature 

(r = 0.51) and summer SCA (r = 0.47) and has a very weak correlation with 

the annual precipitation (Figure 3.9A). These relations are expected because 

the higher altitude of the catchment provides more snowfall than rainfall hence 

catchment discharge is mainly dominated by snowmelt. Similarly, the summer 

discharge also showed the same relationship with the summer temperature and 

summer SCA (Figure 3.9A). Due to very low temperatures, winter discharge 

was negligible (4% of summer discharge) hence relationships were 

insignificant. 

 

Figure 3.9 Correlation matrix for Chhota Shigri Catchment and Chanda-Bhaga 

Basin. The values from −1 to 1 denote the correlation coefficients and the 

color range denotes the intensity of the correlation (1 denotes the completely 
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positive correlation, dark blue, and −1 denotes the completely negative 

correlation, dark brown). Ann, Sum, and Win = annual, summer, and winter 

season, and Q, P, T, and SCA are discharge, precipitation, temperature, and 

SCA, respectively. 

In the Chandra-Bhaga Basin, the annual discharge showed a strong 

correlation with the summer SCA (r = 0.74) followed by summer precipitation 

(r = 0.53) (Figure 3.9B), as the basin has lower altitudes (up to 2804 m a.s.l.), 

receives a significant contribution of rainfall that directly contributes to 

discharge. The same relation was also shown by the summer discharge with 

summer SCA and summer precipitation (Figure 3.9B). Though the winter 

discharge was only 6% it was fairly correlated with the winter SCA (r = 0.56) 

and winter temperature (r = 0.41) (Figure 3.9) because sometimes at lower 

altitudes positive temperatures may occur in March and April which generates 

some snowmelt. In all, the discharge in Chhota Shigri Catchment is equally 

driven by both summer temperature and summer SCA while in the Chandra-

Bhaga Basin summer SCA and summer precipitation exert a strong control on 

the discharge. 

3.4.4 Contribution of different components to total discharge 

The modelled discharge from SRM includes the contribution from rainfall and 

snowmelt. The snowmelt is considered in two ways: melt from ‘New snow’ 

and ‘Initial snow’. ‘New snow’ melt is the sum of melts from the snow melt 

from nth day snowfall and remained snow on the previous days from the non-

snow cover area in the catchment. ‘Initial snow’ melt is the melt contribution 

coming from the depletion of snow cover. The percentage contribution of 

different components in discharge for Chhota Shigri Catchment and Chandra-

Bhaga Basin is shown in Figure 3.10. 
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Figure 3.10 Monthly hydrograph of total discharge (black line) and depth of 

different components contributing to the total discharge: Initial snow (blue), 

new snow (sky blue), and rainfall (light green) over 2003–2018 for Chhota 

Shigri Catchment (A) and Chandra-Bhaga Basin (B). The pie chart shows the 

percentage contribution of each component. 

The percentage contribution of snowmelt as initial snow from SCA to 

total discharge was highest with 89% and 74% in Chhota Shigri Catchment 

and Chandra-Bhaga Basin, respectively. The contribution of monthly 

snowmelt from the SCA was maximum over July in both the study regions in 

agreement with the maximum monthly mean temperatures (Figure 3.3). As 

expected, the contribution of total snow melt (initial snow + new snow) to total 

discharge was significantly more in the Chhota Shigri Catchment (90%) 

compared to the Chandra-Bhaga Basin (78%) (Figure 3.10). Whereas the 

contribution of new snow was higher in Chandra-Bhaga Basin (4%) as 

compared to the Chhota Shigri Catchment (1%). The higher melt contribution 

of new snow in the Chandra-Bhaga Basin was due to the higher temperatures 

at the lower zones (below 3900 m a.s.l.) than Chhota Shigri Catchment, which 

promotes the melting of new snow. As expected, the rainfall contribution to 

total discharge was higher (22%) in the Chandra-Bhaga Basin than in the 

Chhota Shigri Catchment (10%) due to the lower elevation zones (below 

3900m a.s.l.) that favour more rainfall due to higher temperatures.  

The monthly depth (new snowmelt + initial snowmelt + rainfall) was 

maximum in July as 0.49 ± 0.03 m w.e. and 0.27 ± 0.02 m w.e. for Chhota 
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Shigri Catchment and Chandra-Bhaga Basin, respectively (Figure 3.10A and 

3.10B). The total annual depth (1.34 ± 0.01 m w.e.) in Chhota Shigri 

Catchment was more than the Chandra-Bhaga Basin (0.93 ± 0.05 m w.e.) 

because the higher Tcrit (1 oC at above 3900 m a.s.l. and 2oC at below 3900 m 

a.s.l.) in the Chandra-Bhaga Basin compared to Tcrit (0.1 oC) in the Chhota 

Shigri Catchment results in a relatively higher amount of snow available for 

melt from snowfall (section 3.4.1). Snow takes relatively more time to 

contribute to the discharge and sometimes may not produce melt due to limited 

degree days and become part of storage that is nullified at the end of each 

calendar year, a limitation of the SRM discussed in section 3.4.7. Due to the 

lower Tcrit (0.1 oC) a larger portion of precipitation is considered as rainfall in 

Chhota Shigri Catchment which directly contributes to the discharge and 

further results in higher depth than Chandra-Bhaga Basin.  

3.4.5 Decadal discharge patterns 

Studies suggest that volumetric and seasonal changes are occurring in the HK 

river runoffs due to climate change (Azam et al., 2021; Lutz et al., 2014). 

Though our simulation period is short (2003–2018), the decadal variations in 

discharge were analysed by comparing two time periods of equal length as 

2003–2010 and 2011–2018. A higher discharge was found over 2011–2018 

period than 2003–2010 period in both Chhota Shigri Catchment and Chandra-

Bhaga Basin. The mean monthly discharge in the Chhota Shigri Catchment 

increased by 8% from 1.1 ± 0.2 m3/s to 1.2 ± 0.3 m3/s over 2011–2018 as 

compared to 2003–2010. Similarly in the Chandra-Bhaga Basin, the mean 

monthly discharge increased by 2% from 54.9 ± 11.2 m3/s to 56.2 ± 13.9 m3/s 

over 2011–2018 as compared to 2003–2010. In both the study regions, the 

maximum monthly discharge occurred in July (Figure 3.11). The maximum 

monthly discharge increased by 11% from 4.4 ± 0.7 m3/s to 4.9 ± 0.7 m3/s for 

the Chhota Shigri Catchment and by 9% from 184.1 ± 25.9 m3/s to 201.8 ± 

24.8 m3/s for the Chandra-Bhaga Basin in 2011–2018 as compared to 2003–

2010 (Figure 3.11A and 3.11B). 
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Figure 3.11 Decadal comparison of discharge with precipitation, temperature, 

and snow cover area over the two time periods 2003–2010 (blue color) and 

2011–2018 (red color) for Chhota Shigri Catchment (A) and Chandra-Bhaga 

Basin (B). 

 In the Chhota Shigri Catchment, the mean monthly discharge over June-

August increased by 11% from 4.3 ± 0.64 m3/s in the 2003-2010 to 4.8 ± 0.76 

m3/s in 2011–2018 (Figure 3.11A). This increased discharge was due to the 

increased temperature in 2011–2018 (3.3 ºC) as compared to 2003–2010 (2.7 

ºC) over June–August (Figure 3.11), having almost the same SCA in both 

periods (53% and 54%). Conversely, the discharge decreased in September 

over 2011–2018 as compared to 2003–2010 due to the lower SCA (64% as 

compared to 71%), even having a higher temperature by 0.2 ºC in 2011–2018 

(Figure 3.11A). In the Chandra-Bhaga Basin, the mean monthly discharge also 

increased in summer by 11% from 126.5 ± 20.6 m3/s over 2003–2010 to 140.4 

± 30.4 m3/s over 2011–2018, except in September (Figure 3.11B). This 

increment in summer discharge resulted due to the increased precipitation 

from 882 mm in 2003–2010 to 1023 mm in 2011–2018 (over June–August) 

and increased SCA (over May–June) from 63% in 2003–2010 to 66% in 2011–

2018 (Figure 3.11B). Similarly, in September the decreased precipitation by 

27 mm and decreased SCA (37% as compared to 44%) resulted in lower 

discharge in the basin (Figure 3.11B). Though the summer discharge 

increased, the winter discharge decreased in both the study regions over 2011–
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2018 period. In the Chhota Shigri Catchment the variations were negligible (< 

1%) whereas in the Chandra-Bhaga Basin the winter discharge showed a 

significant decrease of 32% from 7.9 ± 5.2 m3/s over 2003–2010 to 5.3 ± 3.4 

m3/s over 2011–2018 due to the decreased temperature over January–April by 

0.6 ºC in 2011–2018 and decreased SCA (56% as compared to 60%) over 

October–December (Figure 3.11B). In line to section 3.4.3, the decadal 

analysis also suggested a large control of summer temperature and summer 

SCA in the Chhota Shigri Catchment and summer SCA and summer 

precipitation in Chandra-Bhaga Basin, for discharge generation in summer, 

and winter temperature and winter SCA control on winter discharge in the 

Chandra-Bhaga Basin. 

Further, the hydrograph is also slightly shifted in early summer 

approximately by 10 days in the Chhota Shigri Catchment and 20 days in the 

Chandra-Bhaga Basin. The early onset of discharge or the seasonality shift 

was also observed in previous studies in the Indus Basin (Immerzeel et al., 

2010; Tahir et al., 2011; Lutz et al., 2014; Hasson, 2016). In this study, the 

change in seasonality occurred due to the higher temperatures and higher SCA 

in the early summer months (May and June) and also the early occurring 

precipitation peak in March over 2011–2018 as compared to April over 2003–

2010 (Figure 3.11). Similar to our study (Lutz et al., 2014) and (Immerzeel et 

al., 2010) also highlighted the increased precipitation and shift in the snowmelt 

peak (due to high temperature) as the main cause of the seasonality shift in the 

Indus Basin. 

3.4.6 Sensitivity analysis  

 

Figure 3.12 Sensitivity analysis results for Chhota Shigri Catchment (A) and 

Chandra-Bhaga Basin. The X-axis shows the percentage variation in the values 
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of each parameter and the Y-axis shows the corresponding simulated mean 

daily discharge values. 

In the Chhota Shigri Catchment, the simulated discharge was almost 

equally sensitive to ‘a’ and CS with a sensitivity of 0.098 and 0.099 m3/s, 

respectively (Figure 3.12A, Table 3.3). Other parameters CR, and LRs showed 

mean sensitivities of −0.011 m3/s, and 0.015 m3/s, respectively, whereas the 

model is less sensitive to ‘x’ and Tcrit (Table 3.3). Parameters ‘y’ and time lag 

showed no impact on simulated discharge in the Chhota Shigri Catchment. In 

the Chandra-Bhaga Basin, the simulated discharge was most sensitive to CS 

with a sensitivity of 5.2 m3/s followed by ‘a’ with a sensitivity of 5.0 m3/s 

(Figure 3.12B, Table 3.3) whereas among the other parameters the model is 

more sensitive to CR,  and LR as compared to ‘x’ and Tcrit with ‘y’ and time 

lag have no impact on simulated discharge, similar to the Chhota Shigri 

Catchment (Table 3.3). Other studies by Siemens et al. (2021) and Panday et 

al. (2014) also found that the parameters CS, CR, ‘x’, and ‘y’ have substantial 

control over the simulated discharge. The analysis showed almost linear 

changes in the simulated discharge with variations in each sensitive parameter 

value except for parameter ‘x’ (Figure 3.12). The simulated discharge varied 

significantly when the parameter value of ‘x’ increased from 10% to 20% and 

became constant after this. Whereas it showed no significant change in the 

discharge when the value of ‘x’ was reduced. This varying pattern was due to 

the maximum limit of k as 0.99 in WinSRM (section 3.3.2), which restricts the 

value of ‘x’ and ‘y’ according to the maximum value of k. A significant impact 

of LR was found on simulated discharge, which is also highlighted by Jain et 

al. (2010) and Panday et al. (2014). In this study, daily temperature LRs were 

used which were observed in the Chhota Shigri Catchment, which is among 

the sensitive parameters in both the study regions. The adopted daily LR values 

enable the SRM to capture the seasonal variations in the discharge (Figure 3.8) 

which is not possible with constant LR values over a year. The daily LRs 

reduce the possibility of errors in the extrapolated temperature values which 

directly affects the snowmelt in the different seasons. The overall mean 

uncertainty in the simulated daily discharge was found as ± 0.2 m3/s and ± 12.1 

m3/s for Chhota Shigri Catchment and Chandra-Bhaga Basin, respectively.
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Table 3.3 List of model parameters and their sensitivities for the Chhota Shigri Catchment and Chandra-Bhaga Basin (Case-III) 

Parameters Sensitivities (m3/s) 

 Chhota Shigri Catchment Chandra-Bhaga Basin 

x −0.0004 −0.79 

Runoff coefficient for snow (CS) 0.099 5.2 

Runoff coefficient for rain (CR) −0.011 1.06 

Degree day factor (a) 0.098 5.0 

Critical temperature (Tcrit) −0.00002 −0.18 

Lapse rate (LR) 0.015 1.3 

* Parameters ‘y’ and time lag showed no impact on discharge 
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3.4.7 Model limitations and transferability of catchment-scale 

calibrated model parameters to basin scale 

In section 3.4.1, the model limitations and transferability of catchment-scale 

calibrated model parameters to basin-scale discharge simulation in the same 

basin were introduced and investigated in this section in detail. The simulated 

daily discharge in the Chhota Shigri Catchment was underestimated (41% and 

34%) over the calibration (2010–2013) and validation (2014–2015) periods, 

respectively (Figure 3.5A, 3.5B, Figure 3.7A). The SRM does not involve the 

baseflow and glacier melt runoff contribution to the total discharge. Given that 

the Chhota Shigri Catchment is highly glacierized (47%), base flow 

contribution can be neglected (Srivastava and Azam, 2022b). However, glacier 

melt contribution cannot be ignored, and probably this is the reason for the 

underestimation in simulated discharge as glacier provides significant runoff 

contribution through glacier melt (around 21% of the total runoff; (Srivastava 

and Azam, 2022b). In line, the simulated discharge in Case-III for the 

Chandra-Bhaga Basin was also underestimated (12% over 2004–2005 and 9% 

over 2006). The relatively less underestimation in the Chandra-Bhaga Basin is 

probably associated with the less glacierized area (25%) in the Chandra-Bhaga 

Basin as compared to the Chhota Shigri Catchment (47%). Another reason for 

this underestimation in SRM simulated discharge in both the catchment and 

basin scale could be the stored snow at higher altitudes (above zero-degree 

isotherm) which does not melt at the end of the year and cannot be added to 

the next successive year’s simulation in the SRM scheme. 

Conversely, when the calibrated model parameters from Chhota Shigri 

Catchment were applied to simulate the discharge from the Chandra-Bhaga 

Basin, the simulated discharge in Chandra-Bhaga Basin in Case-I and Case-II 

was overestimated (83% and 74%) by the SRM over 2004–2006 (section 3.4.1; 

Figure 3.6 A, B). The overestimation in simulated discharge could partially be 

due to the parameter values which may not be applicable for lower elevation 

zones (below 3900m a.s.l.) in Chandra-Bhaga Basin. The precipitation phase 

(snow vs rain) patterns over Chhota Shigri Catchment and lower zones of 

Chandra-Bhaga Basin (below 3900 m a.s.l.) are quite different as the Chhota 

Shigri Catchment receives frequent snowfall while the Chandra-Bhaga Basin 
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is having relatively more rainfall frequency due to the inclusion of the lower 

altitudes in the basin. The values of Tcrit in Case-I (0.1 ºC) and Case-II (1.5 ºC 

) are lower than the calibrated value of Tcrit in Case-III (2 ºC) for lower zones 

of Chandra-Bhaga Basin. These lower values of Tcrit (Case-I and II) are 

expected to convert a large portion of precipitation into rainfall instead of 

snowfall as in Case-III. This extra amount of rainfall considered in Case-I and 

Case-II due to lower Tcrit contributes to the overestimation of simulated 

discharge while the additional snowfall in Case-III due to higher Tcrit may not 

be melted out completely. Further, the higher value of CS used in Case-I (0.75) 

and Case-II (0.5) for lower zones (below 3900 m a.s.l.) also causes the 

discharge overestimation in the Chandra-Bhaga Basin in Case-I and Case-II 

because these values are higher than the calibrated value (0.4) at the basin 

(Case-III). Similarly, the value for CR, which directly increases the discharge, 

is also higher in Case-I (0.7) and Case-II (0.75) than the calibrated value (0.5) 

in Case-III. 

Though the underestimation in the Chhota Shigri Catchment and 

overestimation in the Chandra-Bhaga Basin (Case-I and Case-II) can also 

partially be attributed to the high uncertainty of up to 25% in field discharge 

measurements in the turbulent Himalayan rivers (Eeckman et al., 2017). Our 

analysis clearly indicates that even after applying the SRM in a data-plenty 

catchment, the calibrated model parameters at the catchment scale may not be 

transferable to basin scale discharge simulation, even in the same basin 

therefore utmost care must be taken while using model parameters from other 

basins for the SRM applications. 

3.4.8  Comparison with other studies 

Previous studies estimated the discharge from the Chhota Shigri Catchment 

using a simplified glacio-hydrological model (Azam et al., 2019; Srivastava et 

al., 2022). In agreement with those studies, a dominance of snowmelt in the 

hydrology of the Chhota Shigri Catchment is suggested. Further, similar to our 

study, summer temperature was also one of the main drivers for discharge 

generation in the Chhota Shigri Catchment (Azam et al., 2019). The mean 

monthly hydrograph showed the maximum discharge in July (Figure 3.10A) 

however the peak of snowmelt runoff was found in July and total runoff in 
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August in (Azam et al., 2019). This is because SRM does not consider glacier 

ice melt in the simulation of discharge and the runoff generation is solely due 

to snow melt (from SCA and fresh snow) that peaks in July. In August, the 

snow cover is usually melted out up to 5000 m a.s.l. (Mandal et al., 2020) and 

ice is exposed to higher summer temperatures that contribute to runoff 

providing peak discharge (Azam et al., 2019). The rainfall contribution in the 

Chhota Shigri Catchment as 10% of the total discharge is similar to the 

previous study by (Srivastava and Azam, 2022b), showing a 10% combined 

contribution of rainfall from glacierized and nonglacierized areas. 

Hydrological studies are not available in the whole Chandra-Bhaga Basin, but 

a few studies cover the Chandra Basin (59% of Chandra-Bhaga Basin). These 

studies also showed a peak discharge in July (Singh et al., 2020, 2021b; 

Gaddam et al., 2022) similar to our study (Figure 3.10B). The increased 

discharge volume in 2011-2018 shown in this study is in agreement with the 

study by (Immerzeel et al., 2013) in the Baltoro watershed in the Indus Basin. 

Further, the seasonal shift observed in decadal hydrographs in our study has 

already been highlighted by some other studies in different regions of the Indus 

Basin (Immerzeel et al., 2010; Tahir et al., 2011; Lutz et al., 2014; Hasson, 

2016). 

3.5 Conclusions 

The daily discharge series from the Chandra-Bhaga Basin and Chhota Shigri 

Catchment was reconstructed over the period 2003–2018 using SRM. Analysis 

showed that SRM efficiently simulated the discharge over the calibration and 

validation period. The mean annual discharge was found as 1.2 ± 0.2 m3/s and 

55.9 ± 12.1 m3/s over 2003–2018 for the Chhota Shigri Catchment and 

Chandra-Bhaga Basin, respectively. The analysis suggests the overall 

discharge was mainly controlled by the summer temperature and summer SCA 

in the Chhota Shigri Catchment whereas by summer SCA and summer 

precipitation in the Chandra-Bhaga Basin. The decadal comparison showed 

that the mean discharge increased in 2011–2018 as compared to the mean 

discharge in 2003–2010 and also the hydrograph shifted in the early summer 

by 10 days in the Chhota Shigri Catchment and 20 days in the Chandra-Bhaga 

Basin associated with the higher mean temperature, higher SCA in early 
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summer, and early precipitation peak in 2011–2018. Sensitivity analysis 

showed that the simulated discharge was equally sensitive to ‘a’ and CS in the 

Chhota Shigri Catchment and most sensitive to CS in the Chandra-Bhaga 

Basin. The daily LRs used in this study enable the SRM to capture the seasonal 

variations in discharge and further increase the model efficiency by simulating 

the discharge peaks accurately due to the varying LRs. 

For the first time, the transferability of catchment-scale calibrated 

parameters to the basin-scale simulation of discharge was systematically 

checked using SRM. For this assessment, the model calibration was done on 

the data-plenty catchment of Chhota Shigri Glacier and calibrated parameters 

were then applied to the Chandra-Bhaga Basin in different case scenarios. This 

resulted in a large overestimation in the simulated discharge from the basin. 

Our analysis clearly showed that even though the model parameters in SRM 

are calibrated with plenty of field data at the catchment scale, their application 

to the basin-scale runoff simulation, even in the same basin, may not be 

applicable. Care must be taken while adopting the model parameters for SRM 

from other basins, especially for the ungauged basins. The calibrated SRM for 

the Chandra-Bhaga basin and the Chhota Shigri Catchment can be used to 

forecast future discharge and its patterns under various climate change 

scenarios. With a combination of an automatic calibration process and high-

resolution snow cover product the efficiency of SRM can be improved in 

future work.  
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Chapter 4   

Snow and glacier melt contributions from 

the Gangotri Glacier System and their 

climatic controls 

4.1 Introduction 

The snow and ice reserves of the Himalaya-Karakoram (HK) are essential 

water resources for the downstream populations, contributing to major rivers 

like the Indus, Ganga, and Brahmaputra (Azam et al., 2021; Nepal et al., 2023). 

Significant climatic changes have been observed in recent decades in the HK 

region, resulting in noticeable changes in the cryosphere and the hydrological 

cycle (Zhan et al., 2017; Krishnan et al., 2019). These changes have 

significantly altered the dynamics of glacier-fed hydrological systems, 

accelerating glacial retreat and shifting seasonal discharge patterns, which 

have profound implications for both upstream and downstream water 

availability (Lutz et al., 2014; Jackson et al., 2023; Srivastava et al., 2024). 

Hence, understanding the contribution of glacier and snowmelt to regional 

hydrology is crucial for assessing the sustainability of water resources in HK 

river basins.  

Hydrological modelling studies in the HK have been conducted at large-scale 

basins, focusing primarily on the Indus, Ganges and Brahmaputra rivers 

(Immerzeel et al., 2010; Lutz et al., 2014; Khanal et al., 2021). However, these 

studies remain limited and face several challenges, (1) the scarcity of in-situ 

data for model calibration and validation, (2) difficulties in separating 

discharge contributions from snowmelt and ice melt, (3) the problem of 

equifinality, where different sets of model parameters yield similar outputs, 
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leading to uncertainty in discharge estimates and (4) the general exclusion of 

glacier dynamics, mainly due to the unavailability of ice thickness and velocity 

data (Azam et al., 2021). The issue of equifinality, in particular, can be 

addressed using a multi-tier calibration approach that incorporates multiple 

datasets, such as glacier mass balance, discharge, and snow cover area (Beven, 

2016; Eeckman et al., 2019; Azam et al., 2021). To improve the accuracy of 

discharge estimates, long-term in-situ data, multi-tier model calibration, and 

glaciohydrological models incorporating glacier dynamics are critically 

needed in HK. 

Few studies have examined small-scale basins or catchments where field 

data such as river discharge, local meteorology and glacier mass balance are 

available. These studies offer valuable insights into snow and ice melt 

contributions and runoff patterns (Singh and Jain, 2002; Singh et al., 2021a; 

Srivastava and Azam, 2022b; Singh et al., 2023; Soheb et al., 2024; Srivastava 

et al., 2024). They typically employ semi-distributed or fully distributed 

models to estimate discharge contributions from snowmelt, glacier melt, and 

rainfall.  

At the small catchment scale, one of the most studied glacier systems is 

the Gangotri Glacier System (GGS) in HK. GGS discharge has been analyzed 

using in-situ discharge measurements, environmental isotopes, and 

hydrological models such as SNOWMOD, HBV, and Spatial Processes in 

Hydrology (SPHY) (Haritashya et al., 2006; Singh et al., 2006, 2008, 2011; 

Rai et al., 2019; Salim and Pandey, 2021; Singh et al., 2023; Arora et al., 

2024). A previous study discussed GGS discharge patterns using in-situ 

measurements over 2000–2003, emphasizing the critical role of glacial melt in 

sediment transport and the strong relationship between temperature, discharge, 

and sediment yield (Haritashya et al., 2006; Singh et al., 2006). Another study 

employed SNOWMOD, a temperature index model, to simulate snowmelt 

runoff using a hydro-meteorological database established near the glacier 

snout over four melt seasons (2000–2003) (Singh et al., 2008). To explore the 

time lag between melt generation and runoff emergence at the Gangotri 

Glacier outlet, hourly discharge and temperature data were collected near the 

snout (~4000 m) for three melt seasons (2004–2006) to analyze diurnal 

variations in water storage and runoff (Singh et al., 2011). Additionally, to 
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quantify the fractional contributions of snowmelt and glacier melt, isotope-

based hydrograph separation was applied for the ablation period of 2005 (Rai 

et al., 2019). The glacier melt runoff was modelled from 2010 to 2019 using 

MODIS satellite data and the SNOWMOD model within a GIS framework 

(Salim and Pandey, 2021). Another study by Singh et al. (2023) coupled 

GlabTop2 and SPHY models to understand the impact of glacier thickness 

change on the runoff of GGS over 2011–2020. Recently, a semi-distributed 

conceptual hydrological model (HBV) was applied to evaluate the 

contributions of snowmelt, glacier melt, and rainfall runoff over 2013–2019 

(Arora et al., 2024). While these studies have provided valuable insights into 

GGS, long-term discharge analysis, evolution of meltwater contribution and 

understanding of the climatic drivers affecting GGS are still lacking.  

To address these research gaps, the present study combines remote 

sensing datasets with hydrological modelling and focuses on long-term 

discharge analysis to provide a more reliable and comprehensive 

understanding of GGS hydrology since 1980. The SPHY model is applied to 

reconstruct long-term discharge and is calibrated using a two-tier approach by 

using Gangotri Glacier geodetic mass balance and in-situ discharge measured 

at Bhojbasa (3 km downstream from the Gangotri Glacier snout). The major 

objectives of this study are: (i) to develop a long-term GGS discharge series 

and assess snow and glacier melt contributions since 1980, (ii) to assess 

volumetric and seasonal changes in GGS discharge using decadal analysis, and 

(iii) to understand the climatic drivers influencing GGS discharge. 

4.2 Study area and climate conditions 

The study area consists of the GGS, which includes Meru (7 km2), Raktavaran 

(30 km2), Chaturangi (75 km2) and the largest glacier Gangotri (140 km2) 

(Figure 4.1). The GGS forms the headwater of the upper Ganga basin and 

contributes to the streamflow of the Bhagirathi River in the central Himalaya. 

It was selected due to its hydrological and regional importance within the 

Ganga basin, where comprehensive assessments of long-term melt partitioning 

and its climatic controls remain limited despite extensive prior studies. This 

study considers the discharge measurement site at Bhojbasa (30.95ºN, 

79.05ºE; ~3800 m a.s.l.) as the discharge outlet (Figure 4.1). GGS covers an 
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area of 549 km2, between the elevation range 3767 and 7072 m a.s.l. (Figure 

4.1). GGS has 48% glacierized area (~264 km2) as per GAMDAM glacier 

inventory (Sakai, 2019), among which ~23% is debris covered area (Scherler 

et al., 2018). GGS receives precipitation from the WDs during winter (October 

to April) and from ISM during summer (May to September) (Singh et al., 

2005; Arora et al., 2024). The average seasonal rainfall (May to October) is 

around 260 mm, with an average mean temperature of 9.4 °C for the period 

2000–2003 (Singh et al., 2005; Arora et al., 2024). 

 

Figure 4.1 Study area (A) Country boundaries, (B) Gangotri Glacier System 

with the discharge measurement site at Bhojbasa (green star), and glaciers 

from the GAMDAM inventory shown in black; and (C) Area-altitude 

distribution of glacier area (black) and total area (red) in the GGS. 

4.3 Dataset 

4.3.1 Meteorological data 

The Indian Monsoon Data Assimilation and Analysis (IMDAA) reanalysis 

gridded precipitation and temperature data were downloaded from the 

National Centre for Medium Range Weather Forecasting (NCMRWF) 

database over 1979–2020 (https://rds.ncmrwf.gov.in/dashboard/download). 

IMDAA is a regional atmospheric reanalysis dataset available at a 12 × 12 km 

spatial resolution since 1979, covering the Indian subcontinent (Rani et al., 
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2021). It assimilates a significantly larger set of Indian observations, of which 

some had not been used in any previous reanalysis, through a 4D-Var system 

and demonstrates improved representation of orographic precipitation, 

monsoon onset and withdrawal, and mesoscale convective systems (Rani et 

al., 2021). The IMDAA reanalysis accurately captures key features of ISM. 

IMDAA data has been used for different purposes, such as discharge 

modelling, drought assessment, and climate trend analysis over the Himalaya 

in the last few years, including a study specifically focused on GGS, 

demonstrating its suitability for high-altitude hydrological modelling (Singh 

et al., 2023; Gupta et al., 2024; Ahmed et al., 2024). IMDAA data was 

preferred in this study due to its high spatial resolution (12 km) and its specific 

development for the Indian subcontinent, making it more suitable for 

hydrological studies compared to coarser resolution global reanalysis 

products. The hourly IMDAA temperature and precipitation data were 

aggregated from hourly to daily resolution for the model simulations. These 

raw data were bias-corrected using in-situ temperature and precipitation 

measurements recorded at Bhojbasa from May to October during 2000–2003 

(Figure 4.1; (Singh et al., 2005). For bias correction, a linear regression 

equation was developed between the mean monthly values of raw IMDAA 

data and in-situ data for the period 2000–2003 and derived the monthly scale 

factors for temperature as well as precipitation. These factors were then used 

to bias-correct the raw IMDAA temperature and precipitation data over 1980 

to 2020. 

4.3.2 In-situ discharge data 

The in-situ daily discharge data was available from May to October at the 

Bhojbasa site in GGS over 2000–2003 (Figure 4.1; (Singh et al., 2005)). 

Discharge was measured using the area velocity method. The cross-section 

area of the channel was determined with the help of sounding rods at the 

beginning of the melt season and was rechecked at the end, while flow velocity 

was measured using wooden floats (Haritashya et al., 2006). 

4.4 Methodology 

4.4.1 Spatial Processes in Hydrology (SPHY) model 
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The Spatial Processes in Hydrology (SPHY) model is a spatially distributed, 

raster-based hydrological model designed to simulate key processes such as 

snow and glacier melt, rainfall-runoff, evapotranspiration, soil moisture 

dynamics, and groundwater recharge (Terink et al., 2015). SPHY is written in 

the Python programming language using the PCRaster dynamic modelling 

framework (Terink et al., 2015). The model can operate at different temporal 

and spatial scales. The model comprises different modules, including glacier, 

snow, groundwater, dynamic vegetation, simple routing, and lake/reservoir 

routing (Terink et al., 2015), which can be activated or deactivated based on 

study area requirements. 

 

Figure 4.2 Flowchart showing the overall methodology, including input data, 

model setup, calibration and validation for glaciohydrological modelling. 

The SPHY model uses a degree day approach to simulate discharge 

from snowmelt and glacier melt, making it suitable for data-scarce regions 

with limited long-term field measurements (Terink et al., 2015). To determine 

the liquid or solid form of precipitation, SPHY uses a critical temperature 

(Tcrit). The precipitation phase is assigned as solid (snowfall) if the daily mean 

temperature in a cell is less than Tcrit, otherwise, it is classified as rainfall (eq. 

4.1).  

{
Psnow = Ptotal , Prain = 0   if   Tavg  ≤  Tcrit

Prain = Ptotal , Psnow = 0  if   Tavg >  Tcrit
                               (4.1) 

Where Psnow (mm) is the precipitation as snowfall, Prain (mm) is the 

precipitation as rainfall, Tavg (°C) is the mean air temperature, and Tcrit (°C) is 

the critical temperature threshold for precipitation to fall as snow. 
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When simulating discharge, rainfall and snowfall are handled 

differently. Snowfall contributes to snow storage, which is updated based on 

accumulation, melt and refreezing. Rainfall is partially transformed into 

surface runoff depending on the losses through infiltration, with infiltrated 

water contributing to baseflow depending on soil properties.  

For glacier melt, SPHY distinguishes between clean ice and debris-

covered ice, which melt at different rates. Multiple studies across glacierized 

regions have shown that despite slower melt rates, debris-covered glaciers can 

have similar mass loss due to the presence of features such as ice cliffs and 

supraglacial lakes (Buri et al., 2016; Miles et al., 2016; Hussain et al., 2022). 

In GGS, Gangotri Glacier exhibits such features in its lower ablation zone 

(4,000–4,750 m a.s.l.), contributing an additional 32% to ablation (Hussain et 

al., 2022). In SPHY, it is not possible to apply a different degree day factor for 

debris (DDFdebris) for different glaciers or at different elevation zones since it 

is a grid-based model. Hence, the same DDFdebris and degree day factor for 

clean ice (DDFice) was calibrated and applied to all glaciers within GGS. 

However, a sensitivity test was performed for the selected DDFdebris (section 

4.4.4). 

The snowmelt and glacier melt are calculated based on degree day 

factors, for which the following equations are used (Hock, 2003) (eq. 4.2): 

Melt = {
Tavg ∗ DDFsnow/ice/debris   if   Tavg > 0 

0                                              if   Tavg ≤ 0
                      (4.2) 

Where DDFsnow/ice/debris is the degree day factor for snow, clean ice and debris, 

respectively and Tavg is the average daily temperature. 

 The SPHY model simulates soil water processes by dividing the soil into 

three layers: the root zone, subzone, and groundwater layer (Terink et al., 

2015). Since SPHY operates on a daily time step, it does not capture short-

term rainfall intensity variations and therefore, emphasizes the saturation 

excess runoff process (Hewlett, 1961) rather than the Hortonian runoff 

(Corradini et al., 1998; Beven, 2004). Lateral flow is modelled where slopes 

are steep and soils are permeable, occurring only when water content exceeds 

field capacity (Beven, 1981; Beven and Germann, 1982; Sloan and Moore, 

1984). Water moves stepwise from the root zone to the subzone and 

groundwater layer, similar to the SWAT model (Neitsch et al., 2009). 
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Groundwater recharge, which may include glacier melt, often faces delays 

influenced by groundwater depth and soil properties, modelled using an 

exponential decay weighting function (Venetis, 1969; Sangrey et al., 1984). 

To calculate the total discharge for each cell, various discharge 

components are combined (Figure 4.2) (eq. 4.3). These components include 

snowmelt (QS), Glacier melt (QG), rainfall-runoff (QR), and baseflow (QB). 

Rainfall-runoff is calculated as the sum of surface runoff and lateral flow from 

the first soil layer. The total discharge (QT) is calculated using the following 

equation: 

QT =  QS +  QG + QR +  QB                                                            (4.3) 

To obtain discharge at the outlet, QT is routed through a flow direction 

network map (Terink et al., 2015). This map is generated using PCRaster in 

combination with DEM, which helps in delineating the river network 

accurately. Additionally, the model requires a glacier table that includes details 

about the initial glacier thickness and specifies whether a particular model cell 

is debris-covered or not to calculate glacier melt, including both clean ice and 

debris-covered ice. Most existing studies have suggested that a 250 m spatial 

resolution is suitable for obtaining reasonable modelling results in large-scale 

analysis across the HK region (Singh et al., 2021b; Srivastava et al., 2024). 

However, a coarser resolution may lead to the omission of small glacierized 

areas, especially when they occupy only a fraction of a grid cell, potentially 

resulting in the underestimation of glacier extent. Using a finer resolution not 

only offers more detailed outputs but also enhances the accuracy of the 

analysis by more precisely capturing smaller glaciers. Therefore, the model 

was run at a spatial resolution of 100 m × 100 m to reduce such limitations 

(Figure 4.2). 

4.4.2 SPHY model inputs 

SPHY model involves several raster data layers such as digital elevation model 

(DEM), land use/land cover (LULC), soil maps and glacier maps at a spatial 

resolution of 100× 100 m (Figure 4.3). Most of the input layers used in this 

study were derived from remote sensing products, which offer high-resolution, 

spatially continuous data essential for initializing glaciohydrological model in 

data-scarce region such as the GGS. The Shuttle Radar Topographic Mission 
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(SRTM) DEM (30m) was used in GlabTop2 model to calculate the initial ice 

depth.  The GAMDAM glacier inventory was used for the glacier map 

developed by (Sakai, 2019). LULC layers were derived from the Globe Cover 

land cover map for the year 2009, created by the European Space Agency 

(ESA) 

(https://www.esa.int/ESA_Multimedia/Images/2010/12/ESA_s_2009_global

_land_cover_map) (Figure 4.3). A high-resolution soil map (250 m²) and 

related parameters from HiHydroSoil version 1.2 (2016) 

(http://soilgrids1km.isric.org/) were used (Figure 4.3). The debris cover map 

was derived from supraglacial debris cover Geo Forschungs Zentrum (GFZ) 

data services (Scherler et al., 2018) for the preparation of glacier table and to 

differentiate a cell as debris covered or debris free. 

 

Figure 4.3 Input raster maps for SPHY model at 100m spatial resolution. 

4.4.3 Model Calibration  

https://www.esa.int/ESA_Multimedia/Images/2010/12/ESA_s_2009_global_land_cover_map
https://www.esa.int/ESA_Multimedia/Images/2010/12/ESA_s_2009_global_land_cover_map
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In the SPHY model, both automatic and manual calibration could be 

performed (Terink et al., 2015). The automatic calibration was applied in the 

present study. The SPHY model parameters were altered within the plausible 

ranges, as mentioned in Table 4.1. The model parameters were calibrated using 

a two-tier approach using in-situ discharge over 2000–2003 and geodetic mass 

balance over 2000–2019 for GGS (section 4.4.3.1 and 4.4.3.2), the geodetic 

mass balance offered a broader calibration period and reinforced the two-tier 

calibration approach. 

To check the performance of the model, the model calibration was 

done by considering the different performance criteria such as coefficient of 

determination (R2) (eq. 4.4), root mean square error (RMSE) (eq. 4.5), 

percentage bias (PBIAS) (eq. 4.6), Nash–Sutcliffe model efficiency 

coefficient (NSE) (eq. 4.7) and Kling–Gupta efficiency (KGE) (eq. 4.8), which 

were calculated using the following equations: 

𝑅2 =  [
∑ {(𝑂𝑖 − 𝑂′) ∗ (𝑆𝑖 − 𝑆′)}𝑛

𝑖=1

√∑ (𝑂𝑖 − 𝑂′)2 ∗  ∑ (𝑆𝑖 − 𝑆′)2𝑛
𝑖=1

𝑛
𝑖=1

]

2

                                    (4.4) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑂𝑖 − 𝑆𝑖)

2𝑛
𝑖=1

𝑛
                                                                    (4.5) 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑆𝑖 − 𝑂𝑖)

𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

∗ 100                                                              (4.6) 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖 − 𝑆𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − 𝑂′)2𝑛
𝑖=1

                                                                  (4.7) 

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 +  (𝛼 − 1)2 + (𝛽 − 1)2                            (4.8) 

where n, Oi, Si,  Ó́́́, Ś́ , r, α and β are the number of observations, in-situ 

value, modelled value, mean in-situ value, mean modelled value, Pearson 

correlation coefficient, term representing the variability of prediction errors 

and bias term, respectively. α is ratio of standard deviation of modelled and 

in-situ values (σs / σo) and β is ratio of mean modelled value to mean in-situ 

value ( Ś́  / Ó́́́ ). R2 lies between 0 to 1, NSE and KGE lie between −∞ to 1. 

4.4.3.1 In-situ Discharge  
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The SPHY model parameters such as glacier melt runoff factor (GlacF), 

rootzone thickness, sublayer thickness, groundwater layer thickness, saturated 

ground water content, capillary rise, alphaGw, deltaGw and recession 

coefficient were calibrated using the in-situ daily discharge available at the 

Bhojbasa site for GGS over 2000–2003 (May to October) (Figure 4.3). The 

modelled daily discharge of GGS showed a good agreement with the in-situ 

daily discharge at Bhojbasa after calibration over 2000–2003 (May to October) 

(R2 = 0.77, RMSE = 31.68 m3/s, PBIAS = −2.88%, NSE = 0.61 and KGE = 

0.51; Figure 4.4). 

 

Figure 4.4 Regression plot between the daily in-situ and modelled discharge 

over the period 2000–2003 for GGS. 

4.4.3.2 Geodetic mass balance 

Geodetic mass balance represents glacier-wide mass change, derived by 

differencing DEMs to estimate glacier thickness change which is then 

converted to mass using standard density assumptions (Cogley, 2009; Huss, 

2013). These estimates provide spatially distributed, temporally integrated 

measurements of glacier mass changes. However geodetic estimates are often 

available for a multi-annual scale hence do not provide inter-annual variability 
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(Cogley, 2009). These estimates are particularly valuable for model calibration 

in data-scarce regions like Himalaya (Zemp et al., 2009; Gardner et al., 2013). 

In this study, high-resolution, bias-corrected geodetic mass balance data from 

(Hugonnet et al., 2021) were used for Gangotri Glacier over 2000–2019 to 

calibrate the SPHY model. The latest version of SPHY, version 3, used in the 

present study includes glacier dynamics. It provides the annual ice thickness 

change, from which the glacier annual mass balances can be calculated 

(Khanal et al., 2021). After calibrating some of the model parameters of snow 

and glacier module with in-situ discharge (section 4.4.3.1), the rest of the 

model parameters such as snow storage capacity (SSC), the critical 

temperature for snow/rain (Tcrit), degree day factor for snow (DDFsnow), degree 

day factor for ice (DDFice) and degree day factor for debris (DDFdebris) were 

calibrated with the available geodetic mass balances for the four different 

periods, i.e. 2000–2004, 2005–2009, 2010–2014 and 2015–2019 from 

(Hugonnet et al., 2021) of Gangotri Glacier (Figure 4.3). While calibrating, 

these model parameters were varied within the plausible ranges mentioned in 

Table 4.1. The calibrated model parameters are selected when the difference 

between the geodetic mass balance and modelled mass balances was minimal 

over 2000–2019 (Table 4.1). After calibration, the difference between the 

geodetic mass balance and modelled mass balance were 0.09, 0.05, −0.03 and 

0.05 m w.e. for 2000–2004, 2005–2009, 2010–2014 and 2015–2019, 

respectively, with a mean difference of 0.04 m w.e. over 2000–2019 for 

Gangotri Glacier. 

4.4.4  Model Validation 

The SPHY model was validated against the improved 8-day MODIS snow 

cover product (ICIMOD, 2023) over the period 2002–2020 on a monthly scale 

(Figure 4.2). The improved MODIS snow cover product was generated using 

MODIS Terra and Aqua 8-day snow cover products MOD10A2 and 

MYD10A2 collection 6.1 (C61), respectively for High Mountain Asia and is 

freely available at ICIMOD regional database system  

(https://rds.icimod.org/DatasetMasters/BulkDownload/1973819).  The data is 

available at 8-day temporal resolution and 500 m spatial resolution over the 

period 2002–2022 (ICIMOD, 2023). This product was generated by reducing 

https://rds.icimod.org/DatasetMasters/BulkDownload/1973819
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the overestimation caused by MODIS sensors and underestimation caused by 

cloud cover in MODIS snow cover products (Muhammad and Thapa, 2020).  

The mean monthly snow cover area (%) i.e. the percentage of GGS area 

covered with snow, was extracted from the improved MODIS snow cover 

maps and SPHY derived snow cover maps over 2002–2020 for validation 

(Figure 4.5). The monthly comparison between the SPHY derived and 

improved MODIS snow cover (%) showed good agreement (R2 = 0.79, RMSE 

= 12.75%, PBIAS = 12.33%, NSE = 0.65 and KGE = 0.62; Figure 4.5).
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Table 4.1 Model parameters used in the SPHY model for the Gangotri Glacier System with its range, sensitivity range, uncertainty range, 

calibrated values and sensitivities. 

Parameters 
Paramete

r range 

Calibrate

d value 
Uncertainty range 

Sensitivity 

range 

Sensitivity 

(m3/s) 

Snow storage capacity 

(SSC) 
0–1 0.05 0.045–0.055 0.045–0.055 −0.22 

Degree day factor for snow 

(DDFsnow) (mm/d/ºC) 
2.5–8 5.6 5.04–6.16 5.04–6.16 1.48 

Degree day factor for clean 

ice DDFice (mm/d/ºC) 
2.5–8 7.7 6.93–8.47 6.93–8.47 0.04 

Degree day factor for snow 

DDFdebris (mm/d/ºC) 
2.5–8 4.8 4.32–5.28 4.32–5.28 0.05 

Critical temperature for 

snow/rain Tcrit (ºC) 
−4 to 4 1.5 0.35–1.65 0.5–2.5 −3.55 

Glacier melt runoff factor 

(GlacF) 
0–1 0.81 0.72–0.89 0.72–0.89 0.02 

root zone thickness (mm) 300–1000 817 735–899 735–899 −0.01 

sublayer thickness(mm) 
1000–

2000 
1932 1739–2125 1739–2125 −0.01 

groundwater layer 

thickness(mm) 

1000–

4000 
2697 2427–2967 2427–2967 0.00 

saturated groundwater 

content(mm) 
500–3000 1303 1173–1433 1173–1433 −0.003 

Capillary rise max 

(mm/day) 
2–10 6.2 5.58–6.82 5.58–6.82 0.00 

alphaG
w
 0.1–1 0.9 0.81–0.99 0.81–0.99 0.00 

deltaG
w 

 (days) 0–365 320 288–352 288–352 −0.003 

Recession coefficient 0.5–1 0.85 0.77–0.94 0.77–0.94 −0.003 
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Figure 4.5 Comparison between the monthly snow cover % derived from 

SPHY and improved Snow cover product (ICIMOD, 2023). The inset figure 

is a regression plot between SPHY and improved MODIS snow cover %. 

The SPHY modelled annual mass balances of Gangotri Glacier 

(section 4.4.3.2) were also compared with available annual mass balance 

estimates derived using the temperature index model in (Hussain et al., 2022) 

over 2000–2019. The comparison between the SPHY and temperature-index 

modelled annual mass balances showed a moderate agreement (R2 = 0.40, 

RMSE = 0.57 m w.e.). The mean modelled annual mass balance was −0.50 m 

w.e. compared to −0.90 m w.e. reported by (Hussain et al., 2022) over 2000–

2019. This difference can be attributed in part to the more detailed 

hydrological processes represented in the SPHY model, including refreezing 

and geometry changes, which were not included in the simplified modelling 

approach adopted by (Hussain et al., 2022). Another reason for the discrepancy 

lies in the two different values of DDFdebris and DDFice used in the present 

study, which fail to account for the additional melt due to the supraglacial lakes 

and ice cliff present on Gangotri Glacier, as discussed in section 4.4.1. To 

assess the impact, a sensitivity experiment was conducted by using the same 

value for DDFdebris and DDFice across all glaciers in GGS. This led to an 

increase in the mean annual GGS discharge by 0.42 m3/s (1.5%) and a slightly 

more negative mean annual mass balance of Gangotri Glacier as −0.57 m w.e. 

(13%) over 2000–2019. 
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4.4.5 Uncertainty and sensitivity analysis 

To evaluate the sensitivity of GGS discharge to the SPHY model parameters, 

sensitivity analysis was performed with a total of 14 parameters including 

SSC, GlacF, Tcrit, DDFsnow, DDFice, DDFdebris, rootzone thickness, sublayer 

thickness, groundwater layer thickness, saturated ground water content, 

capillary rise, alphaGw, deltaGw and recession coefficient. The sensitivity was 

estimated by running the model at each 10% increase and decrease in 

parameter values except Tcrit while keeping other model parameters constant. 

For Tcrit, the parameter values increased and decreased by 1ºC to evaluate 

sensitivity. One-At-a-Time (OAT) approach for sensitivity analysis was 

selected for its computational efficiency and interpretability in the context of 

a high-dimensional glaciohydrological model (Heynen et al., 2013). The ±10% 

perturbation range is consistent with previous studies (Ragettli et al., 2013; 

Azam et al., 2019; Srivastava et al., 2024). The sensitivity was calculated using 

the modelled GGS mean discharge over 1980–2020 and eq. 4.9 (Oerlemans et 

al., 1998).  

𝑠 =  
𝑄𝑇𝐻 −  𝑄𝑇𝐿

2
                                                                                       (4.9) 

Here, s is the sensitivity of each parameter, QTH and QTL are the GGS mean 

discharge over 1980–2020 at the highest (+10%) and lowest (−10%) values of 

parameters. The sensitivities were estimated over the period 1980–2020.   

For the uncertainty estimation, each calibrated model parameter was 

altered by ±10% of its calibrated value and the uncertainty was estimated using 

the error propagation law as follows (Heynen et al., 2013; Ragettli et al., 2013): 

𝑢 =  √∑ (
𝑄𝑇𝐻 −  𝑄𝑇𝐿

2
)

2𝑛

1

                                                                   (4.10) 

Here, u is the overall uncertainty in the modelled discharge, n is the number of 

parameters and QTH and QTL are the same as mentioned in the sensitivity 

estimation above. 

4.5 Results 

4.5.1 Annual discharge 
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The mean annual discharge from the GGS was computed using the daily 

modelled QT to understand the interannual variability over 1980–2020 (Figure 

4.6). The annual QT varies from 18.9 ± 1.4 m3/s in 2015 to 35.9 ± 2.4 m3/s in 

2010 with a mean annual QT of 28 ± 1.9 m3/s for GGS over 1980–2020 (Figure 

4.6). The highest annual QT in 2010 corresponds to the second highest annual 

temperature (4ºC) associated with higher precipitation (585 mm) (Figure 4.6). 

Though the annual temperature in 2009 was maximum (4.2ºC) but due to the 

reduced precipitation (446 mm), it results in less annual QT as compared to 

2010 (Figure 4.6).  

Each discharge component showed different interannual variability 

with the mean annual QS, QG, QR, and QB as 18.0, 5.7, 3.1 and 1.1 m3/s, 

respectively, for GGS over 1980–2020. Overall, among all the discharge 

components, QS contributes the major portion (64%) to QT followed by QG 

(21%), QR (11%) and QB (4%) over 1980–2020 (Figure 4.7). Despite being the 

dominant contributor, QS showed less interannual variability compared to QG 

(Figure 4.6). QS varies from 11.6 m3/s in 2016 to 22.6 in 2005, whereas QG 

varies from 1.1 m3/s in 2015 to 12.6 m3/s in 2001 (Figure 4.6). QG contribution 

was maximum in 2001, because of the reduced annual precipitation (492 mm) 

and increased annual temperature (3.4 ºC) for GGS (Figure 4.6). Interestingly, 

QG was low in 2009 despite similar low precipitation (446 mm) and even 

higher temperature (4.2 ºC). This contrary result is attributed to higher early 

summer temperature in 2001, which triggered more rapid snowmelt and led to 

earlier exposure of glacier ice. The extended duration of exposed ice during 

summer in 2001 likely contributed to increased icemelt compared to 2009. QR 

contribution was maximum in 2016 because of the higher annual temperature 

(3.9 ºC), resulting in a large portion of precipitation as rainfall (Figure 4.6). QB 

showed a minimal interannual variability for GGS over 1980–2020 (Figure 

4.6). 
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Figure 4.6 Annual discharge variability of different discharge components 

over 1980–2020, snowmelt (sky blue), Glacier melt (blue), rainfall-runoff 

(green), baseflow (grey) with annual precipitation (brown) and temperature 

(black line). The annual discharge uncertainties are shown with black error 

bars. 

4.5.2 Monthly and seasonal discharge patterns 

The mean monthly QT varies from 0.9 to 129.9 m3/s with an average monthly 

discharge of 28 m3/s for GGS over 1980–2020 (Figure 4.7). QT shows a 

significant increase from April and then peaks in July (129.9 m3/s) (Figure 

4.7). Similarly, QS starts increasing in May and peaks in July, similar to QT 

(99.1 m3/s) (Figure 4.7). Whereas QG starts increasing in June when the snow 

line reaches higher elevations and peaks in August (33.4 m3/s) (Figure 4.7). In 

GGS, QR contribution starts increasing from June with the onset of monsoon 

in this area and peaks in August (19.2 m3/s), similar to QG (Figure 4.7). There 

is minimal variability in mean monthly QB with a maximum contribution in 

September and October (1.6 m3/s), probably a delayed response of percolation 

of glacier meltwater and monsoonal rains during the melt season (June through 

September) (Figure 4.7). The average monthly QS, QG, QR and QB are 18.0 m3/s, 

5.7 m3/s, 3.1 m3/s and 1.1 m3/s, respectively, for GGS over 1980–2020 (Figure 

4.7). 
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Figure 4.7 Mean monthly variability of different discharge components for 

GGS over 1980–2020. The pie chart shows the percentage contribution of each 

discharge component. 

The seasonal discharge patterns on GGS were analyzed by considering 

two major seasons, summer (May–October) and winter (November–April). QT 

is maximum during summer (54.9 m3/s) while minimum during winter (1.1 

m3/s) for GGS over 1980–2020 (Figure 4.7). QS, QG and QR showed a similar 

seasonal pattern as QT, with maximum contribution in summer (36.1, 11.5 and 

6.3 m3/s, respectively) and negligible contribution in winter (Figure 4.7). QB 

does not show any seasonal pattern, as its contribution is almost the same in 

summer and winter (Figure 4.7). 

4.5.3 Decadal discharge patterns 

41 years of modelled discharge data was analysed in four decades i.e., 1980–

1990, 1991–2000, 2001–2010 and 2011–2020 to explore the decadal discharge 

pattern in GGS (Figure 4.8). QS contribution to QT decreased from 1980–1990 

(73%) to 2001–2010 (52%) but increased again in 2011–2020 (63%), very 

similar to the variation in winter precipitation over the four decades in GGS 

(Figure 4.8). QG contribution was almost the same (~22%) in 1980–1990, 

1991–2000 and 2001–2010, whereas it decreased to 16% in the last decade 
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2011–2020 (Figure 4.8). The sudden increase in QS and decrease in QG in 

2011–2020 is mainly caused by reduced winter temperature (−2ºC) and 

increased winter precipitation (262 mm), leading to high snow accumulation 

in winter which subsequently melts in summer as temperature increases 

(Figure 4.8). QR contribution has significantly increased from 2% (1980–

1990) and 9% (1991–2000) to 22% and 17% in 2001–2010 and 2011–2020, 

respectively, due to the increase of 0.5 ºC in the mean temperature over 2001–

2020 as compared to 1980–2000 in GGS (Figure 4.8). The significant increase 

in QR was also associated with the increased summer precipitation in 2001–

2020 (293 mm) as compared to 1980–2000 (272 mm) and reduced average QS 

in 2001–2020 (57.5%) as compared to 1980–2000 (69%) (Figure 4.8). QB 

contribution showed a very small decadal change over the four decades from 

3% to 5% for GGS (Figure 4.8). Similar observations of decreasing QS with 

increasing QR were also documented in the previous studies in the other part 

of HK (Lutz et al., 2014; Khanal et al., 2021). It was observed that the decadal 

QT varies from a minimum of 26.8 m3/s in 1991–2000 to a maximum of 28.9 

m3/s in 2001–2010, corresponding to the highest mean decadal temperature of 

3.4ºC in 2001–2010 (Figure 4.8). QT showed the highest volumetric increase 

of 7.8% corresponding to the highest increase in summer precipitation and 

temperature rise from 1991–2000 to 2001–2010 (Figure 4.8). The positive 

association between temperature increase resulting in an increased discharge, 

is consistent with trends observed across HK (Lutz et al., 2014). 

The monthly decadal discharge showed a distinct pattern in 1980–1990 

as compared to the last three decades on GGS (Figure 4.8). In 1980–1990, the 

monthly QT peaks in August due to the increased QS in August corresponding 

to the highest winter precipitation over 1980–1990 (264 mm) in GGS (Figure 

4.8). In the last three decades (1991–2000, 2001–2010, 2011–2020), the peak 

in monthly QT occurred in July (Figure 4.8). Results showed a shift in 

discharge peak post-1990 from August to July (Figure 4.8). Unlike other 

months, in August QS contribution has significantly decreased from 70% in 

1980–1990 to 54% in 1991–2000 and 41% in 2001–2010, then again increased 

to 57% in 2011–2020 (Figure 4.8). This reduction in QS during August 

occurred because of the increased early summer temperature and reduced 

winter precipitation from 1980–1990 to 2001–2010 (Figure 4.8). There was no 
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shift observed in the monthly decadal QG peaks over 1980–2020 for GGS 

(Figure 4.8). There is a significant increase in QR contribution in July to 

September in the last two decades as compared to 1980–2000 due to the 

increased summer precipitation associated with higher temperature (Figure 

4.8). 

 

Figure 4.8 Decadal discharge variability and contribution of different 

discharge components over 1980–2020, snowmelt (sky blue), Glacier melt 

(blue), rainfall-runoff (green) and baseflow (grey) with precipitation (brown) 

and temperature (black). Pie charts show the percentage contribution of 

different discharge components. 

4.6 Discussions 

4.6.1 Climatic drivers for GGS discharge 

To understand the influence of climate drivers, i.e. precipitation and 

temperature on GGS discharge, the correlation coefficients (r) were calculated 

between the climate drivers, discharge and its different components over 

1980–2020 (Figure 4.9).  

Despite QS being the dominant contributor to QT, the annual QG showed 

strong control over annual QT (r = 0.81), suggesting that GGS discharge 

variability was primarily governed by changes in QG rather than QS, whose 

variability was less aligned with QT. Additionally, annual QT is also correlated 
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with annual QR (r = 0.57) (Figure 4.9). Summer QT showed almost the same 

relationships as the annual QT showing its dominant control over GGS 

discharge (Figure 4.9). Winter QT showed the strongest correlation with the 

winter and summer QB (r = 1 and 0.73, respectively) and weak correlation with 

winter QS and winter QG (r = 0.14 and 0.06, respectively), this indicates that 

GGS discharge in winter is mainly driven by QB (Figure 4.9). Annual QS 

showed a strong correlation with winter precipitation (WP) (r = 0.64) and 

moderate negative correlation with winter temperature WT (r = −0.47) (Figure 

4.9), possibly because the study region receives almost equal amount of 

precipitation in winter but in the form of snowfall which further contributes to 

QS when the temperature rises in summer. The inverse correlation with WT 

also reflects that colder winters favour greater snow retention, setting the stage 

for enhanced meltwater input during summer. It was also observed that annual 

QG has a strong correlation with WP (r = −0.66), likely because reduced 

precipitation in winter (mostly snowfall) leads to increased QG in summer 

(Figure 4.9). The negative relationship indicates that thick snow cover 

insulates glacier ice due to its high albedo and delays QG. In contrast, low 

snowfall years expose ice earlier, increasing QG through greater solar 

absorption. Although QR contributes less during winter, it showed a strong 

correlation with WT (r = 0.67), likely because small changes in temperature 

around Tcrit strongly influence precipitation phase (snow/rain) in this season. 

Overall, annual QT showed a strong positive correlation with summer 

precipitation (SP) (r = 0.62) followed by WT (r = 0.52) as both of these 

climatic drivers influence annual QG and QR. Similar control of SP was also 

observed on the hydrology of the Dokriani Bamak Glacier catchment 

belonging to the same region as GGS (Srivastava and Azam, 2022b). 
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Figure 4.9 Correlation matrix for Gangotri Glacier System. The values from 

−1 to 1 denote the correlation coefficients (1 denotes the completely positive 

correlation, dark blue, and −1 denotes the completely negative correlation, 

dark brown). ATo, STo, and WTo = annual, summer, and winter discharge, 

respectively; AB, SB and WB = annual, summer and winter baseflow, 

respectively; AR, SR and WR = annual, summer and winter rainfall-runoff, 

respectively. AG, SG and WG = annual, summer and winter glacier melt, 

respectively; AS, SS and WS = annual, summer and winter snowmelt, 

respectively; AT, ST and WT = annual, summer and winter temperature, 

respectively; AP, SP and WP = annual, summer and winter precipitation, 

respectively. 

4.6.2 Long-term trend analysis 

The long-term QT, its different hydrologic components (QS, QG, QR and QB), 

mean annual precipitation, temperature and snow cover area (%) were utilized 

to analyze the trends over 1980–2020 for GGS (Figure 4.10). For the trend 

analysis Men-Kendall test and Sen’s slope estimator method were used (Mann, 

1945; Kendall, 1948; Sen, 1968). The M-K test (Z value) assesses whether a 

significant trend exists, while Sen’s slope estimator (Q value) quantifies the 
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rate of change. These values define the trend only when the p-value is below 

0.05 (95% confidence level), otherwise it suggests that no statistically 

significant trend is present. 

The long-term trend analysis reveals key patterns in discharge, snow 

cover and temperature over 1980–2020 for GGS (Figure 4.10). QT (Q-value = 

−0.006, Z-value = 0.010) does not show a statistically significant trend, 

however, the slightly negative Q value suggests a minor decrease in GGS 

discharge over 1980–2020, possibly because of the no significant trend 

observed in mean annual precipitation (Q-value = 0.262, Z-value = −0.013) 

(Figure 4.10). Similarly, QG (Q-value = −0.037, Z-value = −0.095) shows no 

significant trend, but the small negative Q and Z values indicate a slight 

decrease in QG over 1980–2020 (Figure 4.10). In contrast, QS is significantly 

decreasing (Q-value = −0.134, Z-value = −0.327), likely due to rising 

temperature trend (Q-value = 0.018, Z-value = 0.286) and reducing snow cover 

area (Q-value = −0.07, Z-value = −0.315) for GGS over 1980–2020 (Figure 

4.10). The snow-covered area decreased by approximately 5% in 2020 

compared to 1980. However, it exhibits considerable interannual variability, 

with some years showing the increase in snow cover, rather than a uniform 

decrease. QR (Q-value = 0.149, Z-value = 0.471) and QB (Q-value = 0.015, Z-

value = 0.202) exhibit a significantly increasing trend (Figure 4.10), 

suggesting possible shifts in precipitation patterns and hydrological responses 

on GGS. 
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Figure 4.10 Observed trend in temperature (orange), precipitation (brown), 

snow cover area (SCA) (purple), total discharge (black), snowmelt (sky blue), 

glacier melt (blue), rainfall-runoff (green) and baseflow (grey) for GGS over 

1980–2020. 

Similar to these trends, previous studies also observed that the increase 

in QR and QB is offset by a significant decrease in QS in the Himalaya (Lutz et 

al., 2014; Khanal et al., 2021). Importantly, the mean annual temperature 

displays a significant positive trend (Q-value = 0.018, Z-value = 0.286), 

aligning with broader warming patterns in the Himalaya (Kumar et al., 2011; 

Immerzeel et al., 2012; Nepal and Shrestha, 2015; Srivastava et al., 2024) 

(Figure 4.10). These findings suggest that increasing temperature and 

decreasing snow cover are influencing different components of GGS 
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discharge. Although higher temperature on GGS would typically enhance 

snowmelt, the significant concurrent reduction in snow cover on GGS is 

limiting snowmelt, while on the other hand, increasing rainfall-runoff on GGS 

over 1980–2020. 

4.6.3 Sensitivity of discharge parameters 

The sensitivity analysis for GGS revealed that the Tcrit and DDFsnow exhibited 

the highest sensitivity, with a sensitivity of −3.5 m3/s and 1.48 m3/s, 

respectively, corresponding to ±1ºC and ±10% change in Tcrit and DDFsnow, 

respectively (Table 4.1). SSC also showed a higher sensitivity of −0.22 m3/s, 

emphasizing a significant influence on QT whereas DDFdebris, DDFice and 

GlacF exhibited moderate sensitivities of 0.05 m3/s, 0.04 m3/s and 0.02 m3/s 

(Table 4.1). In line with the present study, the previous studies on hydrological 

models also found DDFsnow, Tcrit, SSC, DDFdebris and DDFice are among the 

most sensitive model parameters (Azam et al., 2019; Fatima et al., 2020; 

Srivastava et al., 2024). The parameters related to subsurface flow, such as 

root zone thickness, sublayer thickness, groundwater layer thickness, and 

saturated groundwater content, showed relatively low sensitivities, indicating 

a lesser impact on immediate discharge response (Table 4.1).  

4.6.4 Comparison with the other studies 

The results from previous studies on GGS were compiled to assess the 

reliability of modelled discharge in the present study (Table 4.2). The findings 

indicate that snowmelt remains the primary contributor to discharge, followed 

by glacier melt, rainfall-runoff and baseflow (Table 4.2). Similar results were 

documented in previous studies on GGS (Singh et al., 2008; Rai et al., 2019; 

Singh et al., 2023; Arora et al., 2024) (Table 4.2).  

A previous study by (Lutz et al., 2014) applied the SPHY model to 

simulate discharge in HMA basins over 1998–2007, and the results are freely 

available (ICIMOD, 2021). The results for GGS were extracted and the mean 

discharge reported by (Lutz et al., 2014) is twice (56 m3/s) as compared to 

present study (28 m3/s) (Table 4.2). The reason for this could be the different 

spatial resolution of the model used in both the studies and that the model by 

(Lutz et al., 2014) was not calibrated at the glacier-catchment scale using field 
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measurements. In the present study, the calibration with the in-situ discharge 

measurement at the nearest outlet (Bhojbasa) resulted in significantly better 

modelled discharge estimates. Another reason could be the high resolution 

(0.12° × 0.12°) precipitation and temperature data used in the present study 

compared to the coarse resolution (0.5° × 0.5°) data used in (Lutz et al., 2014).  

GGS mean discharge observed in the present study (27.7 m3/s) showed 

a small difference compared to the results in (Singh et al., 2023) (38.1 m3/s) 

over 2012–2020, this small difference could be attributed by the different 

datasets and time period considered for the model calibration (Table 4.2). The 

monthly and seasonal discharge patterns observed in the present study are 

similar to the monthly patterns reported in the previous studies on GGS (Rai 

et al., 2019; Singh et al., 2023). The maximum annual discharge was observed 

in 2010 which was also reported by (Salim and Pandey, 2021).     
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Table 4.2 Estimates of different discharge components from previous studies on Gangotri Glacier System. 

Catchment Time period 
Model/ 

technique 

Mean 

discharge 

(m3/s) 

Snowmelt 

(%) 

Glacier 

melt (%) 

Rainfall-

runoff (%) 

Baseflow 

(%) 
References 

Gangotri 2000–2004 SNOWMOD – 97 (combined) 3 – 
(Singh et al., 

2008) 

Gangotri 1998–2007 SPHY 56 7 73 10 10 
(Lutz et al., 

2014) 

Gangotri 2012–2020 SPHY 38.1 52 27 17 3 
(Singh et al., 

2023) 

Gangotri 2013–2019 HBV – 56 30 15 – 
(Arora et al., 

2024) 

Gangotri 2005 Isotopes – 60 36 4 – 
(Rai et al., 

2019) 

Gangotri 

Glacier 

System 

1980–2020 SPHY 28 64 21 11 4 Present study 
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4.6.5 Uncertainties and limitations 

The modelled GGS discharge exhibit a few uncertainties, which are important 

to consider while interpreting the results. The main source of uncertainty arises 

from the sensitivity of SPHY model parameters. These uncertainties were 

systematically assessed by error propagation law (section 4.4.5; Figure 4.6). 

The average uncertainty in the modelled discharge was ±1.9 m3/s, with inter 

annual variability ranging between ±1.4 and ±2.4 m3/s over 1980–2020. 

Additionally, the differences in glacier area estimates between the different 

glacier inventories are also a source of uncertainty in the glaciohydrological 

model output. Importantly, understanding and quantifying these uncertainties 

enhances confidence in the modelled discharge and allows for more informed 

interpretation. It also enables more accurate projections of future water 

resources. Such insights are particularly valuable for strategic planning in 

glacier-fed basins under evolving climate scenarios. 

While the reconstructed discharge provided valuable insights, the study 

has few limitations, which can guide future research. A major limitation of the 

SPHY model is that it does not include the losses due to sublimation, which 

impacts the total discharge of a glacierized catchment. Including sublimation 

in future model developments could improve the representation of glacier 

melt, particularly in arid and high-altitude zones (Azam et al., 2021). Another 

key limitation of the SPHY model is its inability to assign glacier- or elevation-

specific DDFdebris values due to its grid-based setup. This leads to uniform 

DDFdebris across all glaciers in GGS, overlooking enhanced melt from 

supraglacial lakes and ice cliffs present on the Gangotri Glacier. Incorporating 

dynamic debris parameterization could significantly overcome this issue. 

While equifinality is an inherent limitation in hydrological models, efforts 

were made in this study to minimize its impact. For this, a two-tier calibration 

approach was adopted using in-situ discharge and geodetic mass balance, 

supported by validation against improved snow cover product (Section 4.4.3, 

4.4.4). Although there are some uncertainties and limitations, the use of high-

resolution meteorological datasets, two-tier calibration approach enhanced the 

reliability of modelled discharge for GGS. 
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4.7 Conclusions 

The long-term glaciohydrological studies focusing on climatic drivers 

influencing long-term discharge are limited in HK. The present study 

addresses this research gap by providing a comprehensive assessment of the 

long-term discharge and control of climatic drivers on the hydrology of GGS 

from 1980–2020. The contributions from snowmelt, glacier melt, rainfall-

runoff and baseflow were quantified by reconstructing GGS discharge 

spanning over four decades (1980–2020) using high-resolution SPHY model, 

combined with remote sensing datasets. The two-tier calibration using 

geodetic mass balance and field discharge data, along with validation using 

improved MODIS snow cover area, significantly increased the SPHY model 

reliability for simulating discharge. The findings indicate that snowmelt is the 

dominant contributor to GGS discharge, accounting for 64% of the mean 

annual GGS discharge (28 ± 1.9 m³/s). Glacier melt contributed 21%, while 

rainfall-runoff and baseflow contributed 11% and 4%, respectively. The 

highest annual discharge was observed in 2010 with the lowest in 2015 on 

GGS over 1980–2020. The monthly discharge starts increasing in April and 

peaks in July in GGS. The decadal analysis showed that the maximum decadal 

discharge (28.9 m3/s) was observed in 2001–2010 corresponds to the highest 

decadal temperature (3.4 ºC) over four decades (1980–2020) in GGS. The 

decadal mean discharge showed the highest volumetric increase of 7.8% from 

1991–2000 to 2001–2010 on GGS. Decadal analysis showed a shift in peak 

discharge to July post-1990. Statistical analysis revealed that the hydrology of 

GGS is mainly controlled by the summer precipitation, which regulates the 

interannual variability of GGS discharge, despite snowmelt being the primary 

contributor. This is primarily due to summer snowfall, which increases surface 

albedo, suppresses melt during peak ablation even under high temperature, and 

thus significantly impacts annual discharge. Long-term trend analysis 

indicates an increasing trend in mean annual temperature with a decreasing 

trend in snow cover area, resulting in a decreasing trend of snowmelt on GGS 

over 1980–2020. Conversely, rainfall-runoff and baseflow have exhibited 

increasing trends on GGS, suggesting warming-induced hydrological changes. 

Sensitivity analysis revealed that Tcrit and DDFsnow are the highest sensitive 
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parameters to GGS discharge over 1980–2020. The findings underscore the 

urgent need for continued field monitoring and modelling efforts to enhance 

water resource management strategies in glacier-fed river basins. Future 

research should focus on integrating high-resolution climate projections and 

remote sensing datasets to improve discharge predictions under the changing 

climate in HK. 
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Chapter 5  

Improved snowline extraction method 

5.1 Introduction 

Glaciers in High Mountain Asia are critical water resources for downstream 

communities, yet their response to climate change remains challenging to 

monitor (Armstrong et al., 2019; Azam et al., 2021). The Himalaya-

Karakoram (HK) region contains thousands of glaciers, but only a tiny fraction 

(38 glaciers, ~0.09%) are monitored in the field (Vishwakarma et al., 2022). 

This paucity of in-situ data limits our understanding of glacier changes in these 

rugged, heterogeneous terrains (Bolch et al., 2019). Equilibrium line altitude 

(ELA) is a key indicator of glacier health, defined as the elevation where 

annual accumulation equals ablation; mass balance is zero (Braithwaite and 

Raper, 2009; Cuffey and Paterson, 2010). Year-to-year fluctuations in ELA 

reflect shifts in climate (primarily temperature and precipitation). Continuous 

ELA monitoring is thus crucial for calibrating glacio-hydrological models and 

reconstructing mass balance variations (Azam et al., 2021; Srivastava and 

Azam, 2022b). However, in-situ estimation of ELA using the traditional 

glaciological method (stake networks and snow pits) is laborious and often 

challenging on glaciers in remote, high-altitude areas. However, ELA 

estimates can be sensitive to the accuracy of digital elevation models and 

glacier outlines (Braithwaite and Raper, 2009; Oien et al., 2022). In regions 

like the Himalaya, researchers often rely on remote sensing snowline altitude 

(SLA) as a proxy for the ELA. The highest SLA at the end of the ablation 

season (SLAmax) is expected to correspond closely to the ELA (Rabatel et al., 

2012). 
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Over the past two decades, remote sensing techniques for extracting 

glacier snowlines have advanced considerably (Pelto, 2011; Huss, 2013; 

Mernild et al., 2013; Tawde et al., 2016; Rabatel et al., 2017). Early studies 

relied on manual delineation of the snowline by visual inspection (Rabatel et 

al., 2016; Barandun et al., 2018; Chandrasekharan et al., 2018). Semi-

automated algorithms have since leveraged band ratios and spectral indices 

(e.g., NIR/SWIR) for classification, using either fixed thresholds (Rastner et 

al., 2015; Racoviteanu et al., 2019) or adaptive thresholding methods like Otsu 

algorithm (Rastner et al., 2019; Liu et al., 2021). Multi-step classification 

approaches incorporating albedo, slope, or elevation have also been used (Lei 

et al., 2012; Naegeli et al., 2019; Barandun et al., 2021). Platforms like Google 

Earth Engine have enabled scalable SLA mapping (Liu et al., 2021; Loibl et 

al., 2025), and machine learning methods are also developed (Li et al., 2012; 

Prieur et al., 2022). 

Despite these advances, SLA detection remains challenging due to deep 

shadows, crevasses, snow patches, steep terrain, and persistent cloud cover 

(Racoviteanu et al., 2019; Rastner et al., 2019). To mitigate such issues, 

various filtering techniques have been introduced: cloud cover thresholds, 

terrain masks, or filtering based on snow cover fraction (Racoviteanu et al., 

2019; Prieur et al., 2022; Loibl et al., 2025). Some studies restrict SLA 

extraction to glacier flowlines (Rabatel et al., 2017; Davaze et al., 2020). 

This chapter presents an improved semi-automated snowline extraction 

method implemented in Dudh Koshi basin. Our approach builds upon the 

method by Racoviteanu et al. (2019) and introduces a robust post-processing 

filtering procedure. The primary objectives are: (1) to improve a semi-

automated SLA approach developed previously (Racoviteanu et al., 2019) by 

implementing it in Python, adapting it to Sentinel-2/Landsat 8 and adding post-

processing filtering methods; (2) to validate the improved method using high-

resolution Planet/Venµs images. The chapter also sets the foundation for 

analyzing the SLA-ELA relationship discussed in the next chapter by ensuring 

that the snowline data used are temporally consistent across the study area. 
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5.2 Study area 

Our study area consists of the glacierized Dudh Koshi basin (~3711 km2, 449 

to 8761 m a.s.l.), located in the monsoon-dominated central Himalaya (Figure 

5.1) (Thayyen and Gergan, 2010). ISM causes maximum precipitation (~80 % 

of the annual precipitation) during the summer months (June to September), 

Glaciers in these areas are referred to as “summer accumulation type glaciers” 

(Bookhagen and Burbank, 2010; Thayyen and Gergan, 2010). The 

simultaneous accumulation and ablation in this region introduce challenges to 

snowline detection, as SLAs are often indistinguishable due to cloud and/or 

temporary snow cover (Brun et al., 2015). During the summer, snowfall is 

frequent at higher elevations, while lower elevations may experience rainfall 

(Khadka et al., 2024). The post-monsoon period (October–November) marks 

a rapid shift to predominantly dry, sunny, and cooler weather, occasionally 

disrupted by typhoons that can bring heavy snowfall above 4000 m a.s.l. (Shea 

et al., 2015). The winter period (December–February) is characterized by even 

harsher conditions, with consistently cold, arid, and windy weather and 

minimal snowfall; any deposited snow is often blown away by strong westerly 

winds above 5000 m a.s.l. (Wagnon et al., 2013). During the pre-monsoon 

period (March–May), weather gradually becomes warmer and wetter, making 

this the second wettest season of the year (Khadka et al., 2022). The unique 

climatic setting and dynamic surface conditions, including wind-driven snow 

redistribution, sublimation, and temporary snow cover make it a highly 

dynamic system. 
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Figure 5.1 Study area showing the upper Dudh Koshi basin in the central 

Himalaya, with glaciers from the GAMDAM inventory shown in cyan (A, B). 

The yellow box shows the subset used for validation around the Hinku sub-

basin (n = 177 glaciers) (B). The background image is a false color composite 

of the Sentinel-2 image (bands 11,8,4) from 14 Jan 2016 (B). 

5.3 Datasets 

5.3.1 Remote sensing data 

To extract glacier SLAs, sub-monthly, multi-temporal data were used from 

Sentinel-2 (denoted hereafter as ‘S2’) and Landsat 8 (‘L8’) sensors for the 

period 2016–2022 (Table 5.1). For S2, collection 1 MSI Level-1C (L1C) data 

were obtained from Copernicus Open Access Hub, consisting of orthorectified 

Top-Of-Atmosphere (TOA) reflectance in cartographic geometry for 13 

spectral bands, with 10 m spatial resolution in the visible (VIS) and 20 m in 

the shortwave infrared (SWIR) bands. For L8, collection 2, level-1 data were 

obtained from the United States Geological Survey (USGS, 2019), which 

consists of radiometrically calibrated and terrain-corrected (L1TP) data 

provided as scaled Digital Numbers (DN) for 11 bands, with 30 m pixel size 

in VIS to SWIR bands. Since L8 has only a 16-day revisit time, there were less 

available dates compared to S2 (5-day revisit time). For both sensors, cloud-

free contrast images were selected from post monsoon October to 

December/January each year.  Atmospheric and topographic corrections were 
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performed on all images using the open-access Atmospheric and Radiometric 

Correction of Satellite Imagery (ARCSI) software (Bunting and Clewley, 

2018), based on the 6S (Second Simulation of a Satellite Signal in the Solar 

Spectrum) algorithm, which is a radiative transfer model (Vermote et al., 

1997) (Figure 5.2A). This yielded the standardized surface reflectance for all 

the scenes, with deep shadows masked out as NoData.  

High-resolution Planet and Venµs data (3–5 m) were used to validate 

the S2/L8-derived SLAs over the period 2016–2022. Images from Planet 

RapidEye (5 m)/PlanetScope (3 m) consist of multi-spectral data (five and four 

spectral bands, respectively, in the VIS/NIR) with a positional accuracy of < 

10 m (PlanetLabs, 2021). Level 3A/B data were obtained, which comprises 

radiometrically-corrected, orthorectified surface reflectance computed from 

TOA radiance products using the 6S radiative transfer model (Vermote et al., 

1997). The Venµs sensor acquired images with a two-day revisit time, 5 m 

spatial resolution and 12 narrow spectral bands (VIS to NIR) over the period 

2017–2020 in our study area. VM1 (Venµs Mission 1) products from the first 

acquisition phase were freely accessed through the French CNES Theia 

website (https://www.theia-land.fr/en/blog/product/venus/). The Flat 

Reflectance (FRE) products were obtained, which consist of topographic and 

radiometric corrected data produced by CNES on the basis on L1C and L1A 

TOA reflectance (Theia-Land, 2022). Planet/Venµs images were used for the 

snowline validation, by selecting the images closest to the dates of the S2/L8 

images (~1–2 days). A list of all images used and their specific details are 

provided in Table 5.1. 

5.3.2 Glacier masks 

For the entire Dudh Koshi basin, glacier outlines from the GAMDAM glacier 

inventory (Sakai, 2019) were used, constructed using semi-automated 

mapping of satellite imagery (Landsat ETM+ imagery from 1999–2003) and 

manual corrections. This inventory covers 425 km2 of the Dudh Koshi basin, 

with a total of 462 glaciers. While there is a mismatch of ~10 years between 

the date stamp of these outlines and the period of our analysis, these were used 

only as a glacier mask, so this should not affect the SLA extraction routine as 

most glaciers have shrunk (Li et al., 2022). For the detailed validation of the 
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SLA method in the Hinku sub-basin, the glacier outlines were updated based 

on manual delineation on end-of-the ablation season Planet/Venµs satellite 

imagery from 2nd December 2020. 

5.3.3 Elevation data 

The ALOS Global Digital Surface Model (AW3D30 version 2.2, at 30 m) 

(Takaku and Tadono, 2017) was used for the topographic correction and SLA 

extraction. This DEM version contained fewer data voids and provided better 

shadow rendering in ARCSI in our study area, as reported by (Racoviteanu et 

al., 2021). The AW3D30 DEM was also has a high reported vertical accuracy 

of ~10 m in our study area (Tadono et al., 2014).  

5.4 Methodology 

5.4.1 Snowline extraction 

This study builds on the method proposed by (Racoviteanu et al., 2019), which 

was improved here for a more accurate SLA extraction. Specifically, the 

shadowed area was automatically masked out and the Otsu method was used 

for automatically selecting distinct thresholds for every satellite image. The 

Otsu method is an unsupervised, histogram-based thresholding technique that 

determines an optimal threshold by maximizing between-class variance, 

enabling objective separation of two dominant pixel classes (Otsu, 1979). In 

snowline detection, these classes correspond to snow-covered and snow-free 

glacier surfaces with distinct reflectance characteristics. The method’s image-

specific threshold selection makes it well suited for automated SLA mapping 

from optical satellite imagery (Liu et al., 2021; Rastner et al., 2019). In the 

previous method by (Racoviteanu et al., 2019), shadows were masked using a 

single band ratio and the thresholds for surface partitioning were selected on 

the basis of visual inspection and prior knowledge (Figure 5.2A). The 

automated filtering step introduced in this study (Figure 5.2B) marks a key 

improvement over the previous method by addressing challenges such as 

shadows, crevasses, snow patches, etc., which often led to erroneous pixels in 

previous studies. 

The SLA delimitation method used here consists of several steps 

implemented as conditional statements in Python (Figure 5.2) and applied over 
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the entire Dudh Koshi basin (462 glaciers). The first part (Figure 5.2A) 

consists of separating snow and ice from the surrounding terrain using a fixed 

threshold based on literature, applied to a band ratio (NIR/SWIR > 1.5, S2: 

band 8/11, L8: band 5/6) (Racoviteanu et al., 2009, 2019), followed by NIR 

band thresholding automated using the Otsu method (Otsu, 1979) to separate 

snow from ice (Racoviteanu et al., 2019). Snow and ice areas were then 

buffered and intersected to extract “raw” snowlines as detailed in (Racoviteanu 

et al., 2019) (Figure 5.2A). In the second part, the raw SLAs were filtered to 

limit known outliers commonly found in both the ablation and accumulation 

areas of glaciers in previous studies (Racoviteanu et al., 2019) (Figure 5.2B). 

This consisted in: (a) applying a negative buffer of 100 m to the GAMDAM 

glacier outlines (Figure 5.2B); (b) applying a threshold between Q3 (third 

quartile) and Whislo (lower whisker) on a box plot, chosen on a trial-and-error 

basis (Figure 5.2B, C); and (c) applying a sieve filter on the binary image 

(SLA/non-SLA pixels) to further minimize common outliers in the 

accumulation/ablation areas (for example, the inclusion of false positives in 

the accumulation area). For the sieve filtering step, different thresholds were 

defined for each sensor (S2: 50 pixels and L8: 30 pixels); these thresholds were 

determined by several tests on glaciers of varying sizes (~2 to ~127 km2) to 

capture isolated pixel groups of various sizes; (d) SLA extraction with the 

output binary image and DEM to yield the “final” SLAs at basin scale (Figure 

5.2B). Glacier SLA were calculated as the mean elevation of all the pixels 

along the final snowline within the glacier boundary. Sub-basin-wide average 

SLA were calculated as an average of all glacier SLAs within the Hinku sub-

basin.  

5.4.2 Validation 

The remote sensing S2 and L8 SLAs were validated in a subset of the Dudh 

Koshi basin, the Hinku sub-basin (177 glaciers), by comparing them with 

SLAs delineated manually on Planet/Venµs color composites (Planet: bands 

4,3,2 and Venµs: bands 11,7,4). This was conducted as a double-blind 

experiment by a different analyst, independently of the semi-automated 

workflow. Both the semi-automated and the manually-delineated SLAs were 

extracted from the AW3D30 DEM using the 2020 Planet glacier mask. The 
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mean SLAs were calculated from both datasets on a glacier-by-glacier basis 

and their means were compared from 13 common dates (±1 to 2 days) over the 

period 2016–2022. The accuracy of the semi-automated SLAs with respect to 

the Planet/Venµs SLAs was calculated as vertical root mean square error 

(RMSEz) and coefficient of determination (R2). Two-sample t-tests were also 

performed to evaluate the differences in means between the two samples 

(S2/L8 vs. Planet/Venµs) and visually investigated outliers. 

 

Figure 5.2 Flowchart showing the workflow of SLA extraction with all the 

inputs, outputs and their thresholds: raw SLA extraction using Otsu 

thresholding and buffer intersection (A), automated filtering to get final SLAs 

(B); box plot with thresholds (C). Here, Q1, Q3, whislo and whishi represent 

the first and third quartile, lowest whisker and highest whisker values, 

respectively. 

5.5 Results 

5.5.1 Performance of the snowline method 
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Initially, the raw SLAs exhibited outliers near the glacier ridgelines, crevasses, 

shadows and snow patches in the ablation area, etc. The filtering step (Figure 

5.2B) allowed the removal of these outliers, an example shown with S2 and 

L8 images acquired four days apart (Figure 5.3). The outliers, initially present 

around the glacier ridgelines (white arrows in Figure 5.3A and 5.3C) were 

removed by the negative buffer applied to glacier boundaries. Similarly, the 

outliers with extreme elevation values in the accumulation areas, which fell 

outside the 100 m buffer from the ridgeline, were removed using the box plot 

filtering (green arrow in Figure 5.3C). The remaining isolated outliers were 

removed by sieve filtering (yellow arrow in Figure 5.3A). Most of the 

outliers/erroneous pixels were successfully removed, resulting in more reliable 

and clearer SLAs (Figure 5.3B, D). 

 

Figure 5.3 Illustration of the SLA filtering step showing raw SLAs (panels A, 

C) and the final SLAs (panels B, D) on two randomly selected glaciers in the 

Hinku sub-basin for S2 (top row, 20 Oct 2018, bands 11,8,4) and L8 (bottom 

row, 24 Oct 2018, bands 6,5,4). Arrows point to outliers near glacier ridgeline 

(white) at high elevations (green) and isolated pixels (yellow). 
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5.5.2 Validation with high-resolution data at sub-basin scale 

For the Hinku sub-basin, final sub-monthly sub-basin-wide average SLA over 

2016–2022 are shown in Table 5.1. Sub-basin-wide average SLA was lowest 

in 2016 (5484 m) and highest in 2018 (5645 m) (Table 5.1), with a mean of 

5575 m over the period 2016–2022. Since the extent of the Planet scenes 

varied annually depending on acquisitions, only 381 glacier SLAs out of the 

total 1143 glacier SLAs, extracted from S2/L8 over the period 2016–2022 

could be compared with the manually-delineated Planet/Venµs SLAs in the 

Hinku sub-basin (Table 5.1). This correlation was poor in the case of raw SLAs 

(non-filtered) (R2 = 0.41, RMSEz = 188.8 m) (Figure 5.4A). However, a good 

agreement was found between filtered S2/L8 SLAs and the manually-

delineated Planet/Venµs SLAs (R2 = 0.80, RMSEz = 61.3 m) over 2016–2022 

(Figure 5.4B). The year-by-year comparison of final SLAs from S2/L8 vs. 

manually delineated SLAs from Planet/Venµs shows variability in R2, ranging 

from 0.65 in 2016 to a best fit of 0.90 in 2020 (Figure 5.5). This may illustrate 

the variability in surface conditions, as it will be discussed later in the 

discussion section. The means of the two sets of samples (S2/L8 final SLAs 

vs. Planet/Venµs) differed by only a few meters (Table 5.1). The differences 

were not statistically significant based on the two-sample t-test assuming 

unequal variances (p > 0.05, df = 791, where df denotes the degree of 

freedom). 

 

Figure 5.4 Regression between the semi-automated S2/L8 glacier SLAs and 

the manually-delineated Planet/Venµs glacier SLAs before and after 

automated filtering over the period 2016–2022. 
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Table 5.1 Summary statistics for S2/L8 sub-basin-wide average SLAs over the Hinku sub-basin (177 glaciers) and validation with 

manually-delineated sub-basin-wide average SLAs from Planet/Venµs images (denoted here as PS/VE) ± 1–2 days over the period 2016–

2022 

Date # SLAs 
SLAS2/L8  

(m) 

SLAPS/VE 

(m) 

mean 

diff (m) 

RMSEz 

(m) 
R2 

2016-01-14 34 5592 5610 18 68.8 0.8 

2016-11-19 14 5484 5494 10 82.9 0.7 

2016-12-09 26 5543 5574 31 71.4 0.8 

2016-12-29 28 5545 5585 40 88.4 0.7 

2017-12-09 32 5604 5608 4 45.0 0.9 

2017-12-29 37 5604 5602 2 50.0 0.9 

2018-10-20 39 5610 5590 20 57.5 0.8 

2018-10-24 17 5548 5570 22 65.2 0.6 

2018-11-24 39 5614 5605 9 42.8 0.9 

2018-11-25 21 5645 5619 26 51.1 0.9 

2019-12-04 33 5557 5556 1 60.4 0.8 

2020-12-03 32 5598 5593 5 40.5 0.9 

2022-12-08 29 5548 5562 14 64.6 0.9 

Mean  5575 5579    
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Figure 5.5 Yearly comparison of Landsat and Sentinel-2 glacier SLAs with 

high-resolution glacier SLAs on a glacier-by-glacier basis. SLAs for Mera are 

marked in red. 

  The residuals plotted against the averages of manually-delineated SLAs 

and semi-automated final SLAs (Figure 5.6A) follow a normal distribution, 
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with a mean residual of 4.25 m (Figure 5.6A). The majority of the residuals 

(93%) fall within the limits of agreement (±1.96 standard deviation) (Bland 

and Altman, 1986), marked as shaded area in Figure 5.6, with only 27 residuals 

fall outside the limits of agreement. Some of the outliers in Figure 5.6A are 

most likely due to the presence of snow patches in the ablation areas as shown 

in Figure 5.7A. In other situations, parts of the glacier surface near the shadow 

have a lower reflectance and get misclassified as ice, resulting in false SLAs 

near the shadow edge, higher than the actual SLA location (i.e., negative 

residuals). Low reflectance crevassed areas shown in (Figure 5.7C) and 

spectrally-mixed pixels (snow/ice/shadow) (Figure 5.7D) impact the 

reflectance histogram utilized for Otsu thresholding, resulting in multiple 

peaks of different reflectance, and a threshold that is either lower or higher 

than the optimal threshold needed to effectively separate snow and ice. These 

resulted in positive and negative residuals, respectively (Figure 5.6A). 

Supraglacial lakes were misclassified as snow due to the high reflectance or 

frozen lakes in winter (Figure 5.7B) resulting in snowlines being located at 

lower altitudes than the actual snowline, which appeared as positive residuals 

in Figure 5.6A. 

 

Figure 5.6 A) Bland-Altman plot of the average SLAs and the residuals 

(manually-delineated SLA minus semi-automated SLA); (B) normal 

distribution curve of residuals. The upper and lower limits of agreement 

correspond to ±1.96 times of standard deviation from the mean residual. 
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Figure 5.7Examples of challenging situations where the semi-automated 

method failed to accurately detect the SLA: glaciers with snow patches in the 

ablation area (A), shadows and supraglacial lakes (B), crevasses (C) and mixed 

pixels (snow/ice/shadow) (D). The background images are S2 false color 

composites (bands 11,8,4). 

5.6 Discussion 

5.6.1 Advances and limitations of the SLA method 

The proposed SLA extraction method provides promising results, yielding 

overall very small differences in means of SLAs when compared to high-

resolution satellite data (Table 5.1). However, these differences do vary on a 

year-by-year basis (S2: 1.06 to 23.95 m; L8: 4.36 to 9.74 m) depending on 

cloud cover and the quality of images (shadows, etc.). Overall, the 

performance of the method applied to basin scale showed good agreement with 

the manually-delineated SLAs at the glacier scale (Figure 5.4), with challenges 

remaining in different topographic settings (Figure 5.7). The automated 

filtering procedure based on the negative buffer, box plot and sieve filter 

proposed in this study effectively minimized the outliers around the ridgelines 

as well as in the accumulation and ablation areas.  
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While the present method shows potential for efficiently detecting 

SLAs, it is nevertheless subjected to the limitations of optical data, i.e., 

persistent cloud cover in the central-eastern region of the Himalaya during the 

monsoon. Therefore, in such areas, the use of other types of data such as 

Synthetic Aperture Radar, which are not affected by clouds, should be tested 

(Garg et al., 2022). In the monsoon-dominated areas, any (semi-) automated 

method is further challenged by the snowfall and wind re-deposition which 

may cover the glacier for part of the ablation season (Brun et al., 2015), as 

discussed above. Furthermore, the oversaturation issue due to highly reflective 

surfaces (i.e., bright snow) and stripping due to scanline corrector (SLC) 

failure in Landsat 7 (ETM+) (USGS, 2024) are general sources of uncertainties 

in optical data, but it did not affect this study which used Landsat 8. In this 

study, the image selection was quality controlled as much as possible to 

minimize the effect of these issues. 

5.7 Conclusions 

This improved semi-automated method, with Otsu thresholding and an 

automated filtering procedure, represents a robust approach for identifying 

glacier SLAs from satellite data such as Landsat and Sentinel. It has the 

advantage of using only limited input data (freely available DEM and multi- 

sensor satellite images), making it suitable for application to multi-spatial 

scales, from glacier to basin scale. The automated filtering procedure 

implemented in this study is an advancement in the previous semi-automated 

SLA delineation routine as it enhances the reliability of SLA estimates by 

minimizing errors due to shadows, crevassed areas, snow patches, etc. It 

provided high accuracy when compared to high-resolution data despite a few 

remaining outliers. Though in this study, the method was implemented on 

post-monsoon cloud-free images, the workflow is flexible and can also be used 

for other seasons, if images are cloud-free. This holds potential for 

investigating snowline evolution throughout the year from glacier to basin 

scale. Prospective improvements to separate snow and ice include the addition 

of more sophisticated methods based on spectral unmixing (Painter et al., 

2009; Racoviteanu et al., 2021), machine learning-based classification for 



Chapter 5 

102 

 

glacier surfaces and/or integration of the method in the Google Earth Engine 

platform (Loibl et al., 2025). 

The method developed in this chapter lays the foundation for consistent 

and large-scale analysis of snowline altitudes across glacierized basins. By 

enabling the generation of reliable SLA datasets over time, it enables studying 

glacier-climate interactions, mass balance variability, and climate change 

impacts with improved spatial and temporal resolution. In the following 

chapter, this method is leveraged to reconstruct SLA time series across the 

Dudh Koshi basin and to investigate the relationship between SLA and ELA 

on Mera Glacier, thereby assessing the reliability of using remotely sensed 

snowlines (SLAmax) as a proxy for equilibrium line altitude (ELA) in 

monsoon-dominated regions.   
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Chapter 6  

SLA-ELA relationship in the monsoon-

dominated region 

6.1 Introduction 

Glacier equilibrium line altitude (ELA) is a robust climatic indicator and a key 

proxy for assessing glacier mass balance and long-term glacier health 

(Braithwaite and Raper, 2009; Cuffey and Paterson, 2010). Defined as the 

altitude at which annual accumulation equals ablation, the ELA reflects the net 

outcome of seasonal climate variability. In many glaciated regions, especially 

at mid-latitudes, the late-ablation maximum snowline altitude (SLAmax) has 

been widely used as a remote-sensing proxy for ELA (Rabatel et al., 2013; 

Tawde et al., 2016; Barandun et al., 2018; Chandrasekharan et al., 2018). The 

temporal evolution of SLA across glaciers is often closely tied to climate 

variables, especially temperature and precipitation. However, in monsoon-

dominated regions such as the central Himalaya, this relationship becomes 

more complex (Rabatel et al., 2012; Yuwei et al., 2014). Here, the glacier mass 

balance regime is governed by simultaneous summer accumulation and 

ablation, driven by strong seasonality in both precipitation and cloud cover 

(Wagnon et al., 2013; Sherpa et al., 2017). This duality introduces temporal 

and spatial variability in snowline positions, complicating the assumption that 

SLAmax approximates ELA. Factors such as episodic summer snowfall, post-

monsoon accumulation, topographic shading, and microclimatic heterogeneity 

often result in decoupling between SLAmax and true ELA (Fujita, 2008; 

Rabatel et al., 2012; Yuwei et al., 2014; Brun et al., 2015). Furthermore, 

persistent cloud cover during the ablation season frequently obscures the 
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snowline, introducing observational gaps that challenge consistent monitoring 

(Racoviteanu et al., 2019; Barandun et al., 2021). 

Despite these complexities, a few studies in High Mountain Asia have 

attempted to empirically test the SLA-ELA relationship in summer-

accumulation type glaciers. For instance, Yuwei et al. (2014) and Rabatel et 

al. (2012) have shown that while SLAmax remains a useful proxy for ELA, it 

often exhibits an offset that varies across years and glacier types. These 

deviations highlight the need for high-quality, temporally consistent SLA 

datasets—especially in regions with challenging observational conditions like 

the Himalaya. 

This chapter investigates the SLA-ELA relationship on Mera Glacier, 

located in the monsoon-dominated central Himalaya, by leveraging a 

reconstructed multi-year SLA dataset. This dataset, generated using the 

method developed and validated in Chapter 5, allows us to explore the inter-

annual and sub-monthly variability of SLA and assess the agreement of 

SLAmax with field-based ELA estimates from the GLACIOCLIM observatory. 

Our analysis focuses on identifying temporal patterns in SLA, quantifying its 

elevation offset from ELA across multiple years, and evaluating the 

implications for using SLAmax as a proxy under monsoon-dominated region. 

6.2  Study area 

The assumption that SLAmax ≈ ELA was tested for Mera Glacier (~4.8 km2 in 

2018, 4940 to 6420 m a.s.l.), located in the central part of the Dudh Koshi 

basin within the Hinku Valley (Figure 6.1). Mera Glacier is a small clean 

glacier monitored in the field since 2007 within the framework of the 

GLACIOCLIM network (Wagnon et al., 2013, 2021). It is north-oriented and 

it divides into two branches ~5800 m, referred to as Mera and Naulek (Wagnon 

et al., 2013). In this study, only the Mera branch was investigated, which has 

a denser network of ablation stakes, offering a-priori field knowledge and 

opportunities for comparing the remote sensing SLAs with field-based ELAs. 

The mass balance of Mera Glacier is highly sensitive to climatic variations, 

with a ±1°C change in temperature resulting in a −0.75 ± 0.17 m w.e. change 

in glacier-wide mass balance and a ±20% change in precipitation leading to a 

+0.52 ± 0.10 m w.e. change (Khadka et al., 2024).  
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Figure 6.1 Study area showing the upper Dudh Koshi basin in the central 

Himalaya, with glaciers from the GAMDAM inventory shown in cyan (A, B). 

The yellow box shows the subset used for validation around the Hinku sub-

basin (n = 177 glaciers) (B). Mera Glacier in this sub-basin is also marked (red 

star) (B) and shown in panel C along with the stake locations (red dots). The 

background images are a false color composite of the Planet RapidEye image 

(bands 5,4,3) from 10 Jan 2016 (C) and Sentinel-2 image (bands 11,8,4) from 

14 Jan 2016 (B). 

6.3 Datasets 

6.3.1 Remote sensing data 

This chapter utilizes an extended set of multi-temporal satellite imagery 

acquired from the Sentinel-2 (S2) and Landsat 8 (L8), consistent with the 

datasets described in Chapter 5. While the previous chapter focused on a 

limited number of post-monsoon scenes (October–December) from 2016 to 

2022 for method development and validation, the current analysis incorporates 

a significantly broader temporal range. Specifically, all available cloud-free 

images between April and January during the period 2015–2023 were included 

to enable the reconstruction of a detailed SLA time series. All imagery 

underwent consistent pre-processing, including atmospheric and topographic 

correction, as detailed in Chapter 5. A complete list of all Sentinel-2, Landsat 
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8, PlanetScope, and Venµs images used in this analysis is provided in Table 

6.1 including the images previously used for method validation in Chapter 5. 

Table 6.1 Remote sensing datasets used in this study for the Dudh Koshi study 

area over the period 2015–2023 

Sentinel-2 MSI, Level L1C 

2016-01-14* 2016-04-13 2016-10-30 2016-11-29 2016-12-09* 2016-12-29* 2017-01-08 

2017-01-18 2017-04-18 2017-10-15 2017-10-30 2017-11-19 2017-11-24 2017-12-09* 

2017-12-14 2017-12-29* 2018-01-03 2018-01-08 2018-01-18 2018-01-23 2018-01-28 

2018-04-23 2018-05-08 2018-10-15 2018-10-20* 2018-10-30 2018-11-04 2018-11-09 

2018-11-14 2018-11-24* 2018-12-04 2018-12-09 2018-12-14 2018-12-19 2018-12-24 

2018-12-29 2019-01-13 2019-01-18 2019-01-28 2019-05-08 2019-10-15 2019-11-19 

2019-11-24 2019-12-04* 2019-12-09 2019-12-19 2019-12-24 2019-12-29 2020-01-13 

2020-01-23 2020-01-28 2020-04-02 2020-04-12 2020-04-17 2020-10-09 2020-10-24 

2020-11-08 2020-11-13 2020-11-18 2020-11-23 2020-11-28 2020-12-03* 2020-12-08 

2020-12-13 2020-12-18 2020-12-28 2022-04-12 2022-10-24 2022-11-03 2022-11-13 

2022-11-23 2022-11-28 2022-12-03 2022-12-08* 2022-12-18 2022-12-23 2022-12-28 

2023-01-07 2023-01-12 2023-01-17 2023-01-22 2023-01-27   

Landsat-8 OLI, Collection 2 Level 1 (L1TP) 

2015-05-25 2015-07-12 2015-09-30 2015-11-01 2015-11-17 2015-12-19 2016-11-03 

2016-11-19* 2017-11-06 2017-11-22 2018-10-24* 2018-11-25* 2019-10-27 2019-11-12 

2020-10-29 2020-11-14 2020-11-30 2022-11-04 2022-11-20   

Planet RapidEye, Level 3A 

2016-01-10       

Planet PSS, Level 3B 

2016-11-17 2016-12-08 2016-12-30 2017-12-29 2020-12-02 2022-12-08  

VENµS VSSC, VM1 mission 

2017-12-09 2018-10-21 2018-11-22 2019-12-04    

* denotes the images used for method validation in chapter 5 

6.3.2 Field data 

Field-based ELAs, point mass balance and corresponding snow depths for 

Mera Glacier were available from the GLACIOCLIM network over 2007–

2022. Ablation stakes installed on the Mera branch are measured each year at 



Chapter 6 

107 

 

the end of the ablation season (generally November) using the glaciological 

method (Wagnon et al., 2013). Field-based ELAs are estimated from the 

vertical mass balance gradient using stake measurements and elevations from 

the 2012 Pleiades DEM as reported in the studies. 

6.4 Methodology 

The same improved snowline extraction method described in chapter 5 was 

used to generate the SLA time series for Dudh Koshi basin. Basin-wide 

average SLA were calculated as an average of all glacier SLAs within the 

Dudh Koshi basin. To evaluate the reliability of SLAmax as a proxy for ELA 

on Mera Glacier, SLAs on same dates as well as SLAmax extracted from S2 and 

L8 images were compared with field-based ELAs obtained through direct 

mass balance measurements. This comparison was performed for the 

hydrological years over 2015–2023. For Mera Glacier, SLAs were masked 

from the basin scale final SLAs for all the available cloud-free satellite images 

over the period 2015–2023. Field measurements are generally performed 

during November at the end of the hydrological year, and our satellite data 

overlapped these dates ± 1 day.  

6.5 Results 

6.5.1 Basin- and Glacier-scale snowline fluctuations 

Here the fluctuation of the basin-wide average SLAs over the Dudh Koshi 

basin and SLAs for Mera Glacier within this basin over the period 2015–2023 

are presented (Figure 6.2). The annual basin-wide average SLAmax and glacier 

SLAmax for Mera Glacier are given in Table 6.2 and also shown with sub 

monthly basin-wide average SLAs in Figure 6.2 and Appendix A Table S1. 

Over the Dudh Koshi basin (462 glaciers), a total of 6330 glacier SLAs were 

detected over the period 2015–2023 ranging from 5090 m to 5624 m. Of these, 

a total of 68 glacier SLAs were detected on Mera Glacier, ranging from 5168 

m to 5673 m over the period 2015–2023. The number of glacier SLAs detected 

varied annually depending on the sensor’s temporal resolution as well as cloud 

cover and surface conditions (Figure 6.2, Appendix A Table S1).  
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Figure 6.2 (A) Remote sensing basin-wide average SLAs for Dudh Koshi 

basin (blue) and glacier SLAs for Mera Glacier (purple) over the period 2015–

23. SLAmax are marked in red for Dudh Koshi basin and yellow for Mera 

glacier. The span of field measurements dates is shown as grey vertical bars 

with field-based ELAs as horizontal black line at top. X-axis displays the dates 

of field measurements and hydrological years. (B) The scatter plot of basin-

wide average SLAs vs. glacier SLAs on common dates over the study period.    

Table 6.2 Basin-wide average SLAmax and glacier SLAmax (Mera Glacier) for 

each hydrological year over the period 2015–2023. 

Year Basin-wide 

average 

SLAmax 

Glacier 

SLAmax 

Difference 

(m) 

2014/15 5517 5458 69 

2015/16 5481 5366 115 

2016/17 5553 5491 62 

2017/18 5624 5673 -49 

2018/19 5476 5347 129 

2019/20 5546 5436 110 

2021/22 5506 5389 117 

Average 5525 5528 79 

  Basin-wide average SLAmax ranged from 5476 m in 2019 to 5624 m in 

2018 and averaged 5525 m over the period 2015–2023 (Table 6.2, Figure 6.2). 

SLAmax of Mera Glacier ranged from 5347 m in 2019 to 5673 m in 2018 and 

averaged 5528 over the entire period (Table 6.2, Figure 6.2). The years with 

the lowest and highest SLAmax (2019 and 2018, respectively) were consistent 

between the basin-wide average SLAmax and glacier SLAmax, although glacier 

SLAmax were on average ⁓79 m lower than basin-wide average SLAmax (Table 

6.2). The comparison between Mera Glacier SLAs and basin-wide average 
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SLAs shows a good agreement (Person’s r = 0.81), indicating that Mera 

Glacier SLA is representative of basin-wide average SLA (Figure 6.2). 

Estimated basin-wide average SLAs are within the range of SLAs reported in 

a previous study for the same basin by Racoviteanu et al. (2013) (5172–6047 

m, mean ELA = 5568 m) based on analysis of December 2005 imagery. Our 

results are also in agreement with contemporary ELAs reported in Owen and 

Benn (2005) for the same region (5200–5800 m, with a mean value of 5600 

m). 

6.5.2 Spatial variability of snowline altitude 

The spatial distribution of mean SLAs across the Dudh Koshi basin over 2015–

2023 shows pronounced intra-basin variability (Figure 6.3). The mean SLA 

ranges from 4842 to 5858 m a.s.l. over 2015–2023. Mean SLAs are generally 

lower in the southern part and increases towards the north direction in the 

basin. This highlights the strong control of topography and local precipitation 

regimes on SLA behaviour. The observed spatial pattern corresponds well with 

the established precipitation gradient in the region, whereby windward slopes 

receive greater monsoonal accumulation while inner valleys remain 

comparatively dry (Sherpa et al., 2017). Grouping glaciers by mean elevation 

further highlights differences in SLA behaviour. Mean SLAs rise steadily from 

~4950 m in the 4900–5100 m elevation band to ~5640 m in the 5900–6100 m 

elevation band. However, the relative position of SLA to glacier mean 

elevation reveals contrasting glacier sensitivities. In the lowest elevation 

bands, SLAs are very close to the glacier mean elevation (offsets of only −6 to 

−36 m), indicates small accumulation area and makes these glaciers highly 

vulnerable. Mid-elevation glaciers (5300–5700 m) show slightly larger offsets 

(−30 to −97 m), suggesting more balanced conditions. By contrast, high-

elevation glaciers (>5700 m) have SLAs far below their mean elevations (−200 

to −600 m), indicating substantial accumulation buffers and greater resilience 

under present climate. 
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Figure 6.3 Spatial distribution of mean SLA over 2015–2023 in Dudh Koshi 

basin 

6.6 Discussion 

6.6.1 Intra- and inter-annual SLA trends 

The intra- and inter-annual variability of SLA give insights into the temporal 

behavior of SLAs in a monsoon-dominated region. Intra-annual SLA 

evolution within each hydrological year showed generally increasing patterns 

from April to November, but our results show that none of the trends were 

statistically significant for either basin-wide average SLA or glacier SLA 

(Mera Glacier), assessed using the Mann-Kendall test with 95% confidence 

level (p > 0.05). Remote sensing SLA on Mera Glacier often continue to rise 

after the field measurement dates i.e., November. Basin-wide average SLAmax 

and glacier SLAmax do not occur on same dates every year but they usually 

occur in the post-monsoon to early winter months (December or even in 

January) which belongs to the next hydrological year (Figure 6.2A). This is 

consistent with the previous studies, which suggest that the SLA observed in 

post-monsoon or winter months reflects the previous ablation season due to 
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the wind erosion, snow redistribution and sublimation (Wagnon et al., 2013; 

Brun et al., 2015). No significant trends were found in inter-annual basin-wide 

average SLAmax and glacier SLAmax over the study period, based on Mann-

Kendall test with 95% confidence level (p > 0.05). While our results show 

considerable intra-annual variability in SLA and inter-annual variability in 

SLAmax, neither show a statistically significant trend over a relatively short 

period. 

6.6.2 Discrepancies between the remote sensing SLAs and the 

field-based ELAs 

When comparing field-based ELA and remote sensing SLA on Mera Glacier 

on the common dates at the end-of-the-ablation season (i.e. November), large 

differences were found, ranging from 161 m for the 2017/18 hydrological year 

to 508 m for 2021/22 (Figure 6.2). The average remote sensing SLA over the 

period 2015–23 (5377 m) was ~400 m lower than average field-based ELA 

(5739 m) estimated using the traditional glaciological method (Wagnon et al., 

2021). These large differences persisted to some extent when comparing 

SLAmax (generally occurring at a later date) with and field-based ELAs for all 

the hydrological years except 2014/15 (5 m difference) (Table 6.3 and Figure 

6.2). However, these were smaller (up to 435 m in 2018/19) than those based 

on concomitant SLAs and field-based ELAs as mentioned above. These 

mismatches suggest that the remote sensing SLAs (and even SLAmax) do not 

fully capture the true ELA on Mera Glacier. To check for potential biases in 

the remote sensing SLAs, the impact of spatial resolution and choice of DEM 

was evaluated. The comparison of SLAmax estimated from S2/L8 images and 

high-resolution imagery on the same or nearby date (1 or 2 days) showed no 

significant differences (Table 6.3). Similarly, a sensitivity analysis of remote 

sensing SLAs to the choice of DEM (AW3D30 DEM, 30 m spatial resolution 

vs. HMA DEM, 8 m) yielded only ~35 m difference (Table 6.3). This is 

roughly 10 times smaller than the mean difference of ~400 m between 

remotely sensed SLA and field-based ELA (2015–23). This shows that the 

choice of DEM did not significantly influence the large negative bias in the 

remote sensing SLA values, indicating that other surface processes at play on 
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monsoon-dominated glaciers contribute to the low remote sensing 

SLAs/SLAmax. 

  It is hypothesized that the systematic mismatch between the concomitant 

SLAs and field-based ELAs on Mera Glacier, (i.e., observed on the same 

dates), is due to either snow persisting from the monsoon, or snowfall events 

occurring at the end-of-the-ablation season. Mera Glacier, being a summer-

accumulation-type glacier, receives snowfall throughout the summer. While 

most of this snow is expected to melt during the monsoon due to higher 

temperatures thus exposing the glacier ice over the ablation area, some snow 

can persist throughout the post-monsoon. Similarly, any snowfall occurring in 

October and November (when temperatures are generally much lower), is 

more likely to persist on the glacier surface. Furthermore, throughout the 

period October to April, snow is systematically redistributed from the higher 

altitudes by the strong winds (Wagnon et al., 2013). The combination of snow 

persistence and snow redistribution most likely contributes to the 

systematically lower SLAs compared to field-based ELAs observed at the end 

of the ablation season. As a result, in most years, the maximum SLA (~ ELA) 

may not occur until later in the winter or the following year before the melting 

season starts (Brun et al., 2015). 

  To support this hypothesis, field measurements (snow depths and point 

mass balance) on Mera Glacier were examined. Field measurement data show 

snow persistence during the November field campaigns, even below the ELA 

(Table 6.4). In most years, glacier areas between 5400 and 5600 m showed 

negative mass balances; yet, by the end-of-the-ablation season, these areas 

remained snow-covered, with average snow depths ranging from ~15 cm 

(2019/20) to ~72 cm (2020/21), and an overall mean of ~37 cm except in 

2017/18, when snowfall was minimal (a dry year). Consistent with our 

hypothesis that late-season/persistent snowfall drives the SLA-ELA 

difference, the 2017/18 hydrological year showed the smallest discrepancy 

between the remotely sensed SLA and the field-based ELA (161 m) (Figure 

6.2), likely due to minimal snowfall over the glacier surface during October–

November, just prior to field measurements. Comparison between SLA and 

field-based ELA in 2020/21 could not be performed because the glacier was 

completely snow-covered following the typhoon event. 
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Table 6.3 Comparison of remote sensing (S2/L8 and Planet/Venµs) SLAmax with field-based ELAs for Mera Glacier over the period 

2015–2023, extracted from AW3D30 (30 m) and HMA (8 m) DEMs 

Year Field observation data S2/L8 SLAmax (m) Planet/Venµs SLAmax (m) 

 Measurement date 
Field-based 

ELA 
Image date AW3D30 DEM 

HMA 

DEM 
Image date AW3D30 DEM 

HMA 

DEM 

2014/15 07–09 Dec 2015 5453 14 Jan 2016 5448 5421 10 Jan 2016 5438 5431 

2015/16 19–23 Nov 2016 5607 29 Dec 2016 5366 5327 30 Dec 2016 5313 5256 

2016/17 06–12 Nov 2017 5748 29 Dec 2017 5491 5448 29 Dec 2017 5564 5544 

2017/18 17–25 Nov 2018 5796 04 Dec. 2018 5673 5670 NA NA NA 

2018/19 10–15 Nov 2019 5782 04 Dec. 2019 5347 5305 04 Dec 2019 5394 5341 

2019/20 20–28 Nov 2020 5684 03 Dec. 2020 5436 5417 02 Dec 2020 5449 5404 

2021/22 12–16 Nov 2022 5817 18 Dec. 2022 5389 5338 NA NA NA 

Table 6.4 Average snow depth H (cm) and mean altitudinal mass balance ba (m w.e.) on Mera Glacier for the hydrological years over the 

period 2015–23. Ablation stake measurements were averaged per 100 m elevation bin at altitudes above 5400 m.   

Year 2014/15 2015/16 2016/17 2017/18 2018/19 2019/20 2020/21 2021/22 

Elev.(m) H ba H ba H ba H ba H ba H ba H ba H ba 

5400–5500 18.3 -0.2 64.5 -0.9 24.8 -1 0 -1.3 48.5 -1.2 17.0 -1.3 72 0.3 62.5 -1.4 

5500–5600 16.5  64.0  16.5 -1.1 5.4 -1 57.7 -1.1 12.5 -0.4   70.5  
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  This analysis of Mera Glacier suggests that comparing satellite-derived 

SLAs with field-based ELAs is particularly challenging in monsoon-

dominated regions. In such regions, late-summer snowfall often persists on the 

glacier surface due to lower temperatures, leading to systematically lower 

SLAs compared to field ELAs. This is evident from the significant 

discrepancies observed on Mera Glacier and on other glaciers in the Tian Shan 

and tropical regions (Rabatel et al., 2012; Yuwei et al., 2014). In these regions, 

due to simultaneous ablation and accumulation processes, remote sensing 

SLAs do not accurately capture the true ELA, suggesting that the assumption 

that SLAmax ≈ ELA does not hold in such regions. 

6.7 Conclusions 

This chapter examined the spatio-temporal variability of SLAs at both basin 

and glacier scale using a consistent semi-automated method, with a particular 

focus on evaluating SLAmax as a proxy for ELA on Mera Glacier. The method, 

previously validated over a subset of images in chapter 5, was applied across 

a broader set of cloud-free satellite scenes spanning April to January over 

2015–2023, enabling the construction of a robust SLA time series. The 

proposed SLA extraction method successfully captured the intra- and 

interannual evolution of snowlines, revealing important seasonal patterns and 

post-monsoon snowline exposures. On Mera Glacier, the method allowed 

detailed tracking of SLA fluctuations throughout the hydrological year, 

including the detection of SLAmax typically exposed during the dry, post-

monsoon months.  

  However, when SLAmax values were compared with field-based ELA 

measurements, systematic discrepancies were observed, with SLAmax 

consistently lower than ELA. This indicates that the common assumption 

SLAmax ≈ ELA does not hold true for summer accumulation-type glaciers such 

as Mera Glacier. The mismatch is explained by frequent fresh snowfalls, wind-

driven snow redistribution and sublimation which obscure the actual 

equilibrium line and contribute to overestimating the accumulation area when 

using optical imagery. These findings highlight the limitations of relying 

solely on remote sensing-derived SLAmax as a proxy for ELA in monsoon-
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dominated regions. At the same time, the study underscores the value of using 

a consistent, scalable, and semi-automated SLA extraction method to capture 

snowline dynamics. In conclusion, while SLAmax offers useful insights into 

glacier surface conditions, its use as an ELA proxy in regions with complex 

climatic regimes must be approached with caution. Efficient, validated SLA 

estimation methods remain essential for monitoring glacier behavior and 

climate sensitivity in High Mountain Asia.  
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Chapter 7  

Conclusions and future work 

7.1 Conclusions 

This thesis presents an integrated assessment of snow and glacier melt 

hydrology in the Himalaya, addressing some of the most pressing challenges 

associated with modelling meltwater contributions, evaluating the reliability 

of remote sensing-derived indicators, and understanding regional hydrological 

responses to climate change. The work combines temperature-index models 

and spatially distributed glaciohydrological modelling with remote sensing 

and field data across three climatically diverse Himalayan basins: Chandra-

Bhaga Basin in the western Himalaya, Gangotri Glacier System and Dudh 

Koshi basins in the central Himalaya. The chapters are organized to 

progressively tackle model calibration and parameter transferability, long-

term melt reconstruction, remote sensing method development, and validation 

of glacier equilibrium line estimation. 

 The modelling tests conducted in the Chandra-Bhaga Basin highlight 

critical limitations in applying parameters calibrated at smaller catchments to 

larger or more complex basins. Specifically, parameters tuned using detailed 

observations from the well-monitored Chhota Shigri Glacier Catchment were 

found to produce reliable discharge simulations within the catchment but 

failed to replicate discharge dynamics accurately when applied to the broader 

Chandra-Bhaga Basin. Discharge was substantially overestimated, indicating 

that parameter sensitivity, catchment area characteristics, glacier cover 

distribution, and local climate play important roles in model parameter 

transferability. This finding reinforces the need for caution when applying 

temperature-index models such as SRM across different spatial scales. 



Chapter 7 

118 

 

Although SRM remains a practical and low-data-requirement tool for 

glaciohydrological modelling, its effective application requires basin-specific 

calibration, especially in the heterogeneous and data-scarce Himalayan terrain. 

 The subsequent chapter shifts focus to the long-term hydrological 

behaviour of the Gangotri Glacier System (GGS), one of the largest and most 

studied glacier systems in the central Himalaya. Using the Spatial Processes 

in Hydrology (SPHY) model, forced by bias-corrected IMDAA reanalysis 

data, the study reconstructs snow and glacier melt contributions from 1980 to 

2020. A two-tier calibration approach utilizing both in-situ discharge (2000–

2003) and geodetic glacier mass balance (2000–2019) was implemented to 

reduce parameter equifinality and enhance model robustness. Results reveal 

that snowmelt was the predominant contributor to total streamflow (64%), 

followed by glacier melt (21%), rainfall runoff (11%), and baseflow (4%). A 

decadal shift in the timing of peak discharge from August to July was also 

observed, which is attributed to increased temperature and declining winter 

snowfall. Interestingly, although temperature has increased during the study 

period, glacier melt contributions remained stable, while snowmelt showed a 

declining trend due to shrinking snow cover. These results suggest a complex 

interplay between warming-induced melt acceleration and the reduction in 

available snowpack, illustrating different response of cryospheric components 

to climatic change. 

 Building upon these modelling efforts, the next chapter of the thesis 

introduces a refined, semi-automated methodology for extracting snowline 

altitudes (SLAs) from optical satellite imagery. Recognizing the limitations of 

SLA extraction in high-relief, cloud-prone regions, a new workflow was 

developed in Python, incorporating atmospheric and topographic corrections, 

dynamic thresholding using the Otsu method, and post-processing filters to 

eliminate erroneous pixels caused by shadows, crevasses, snow patches, and 

steep slopes. The methodology was implemented over the Dudh Koshi basin 

using Sentinel-2 and Landsat imagery and validated using high-resolution 

Planet and Venµs satellite data. In this chapter, the method was applied 

specifically to post-monsoon satellite images when clearer atmospheric 

conditions prevail to assess its accuracy and reliability. By applying the 

approach across hundreds of glaciers, including a dense validation subset in 
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the Hinku Valley, the workflow demonstrated its ability to extract consistent 

SLAs across sub-monthly timescales despite difficult conditions. This chapter 

not only offers a replicable framework for large-scale SLA monitoring in the 

monsoon-dominated Himalaya but also sets the stage for improved integration 

of satellite-derived SLAs in glaciohydrological models and mass balance 

studies. 

 The final chapter focuses on evaluating the long-held assumption that 

the end-of-ablation season SLA (SLAmax) is a suitable proxy for equilibrium 

line altitude (ELA), particularly in monsoon-dominated glacier systems. 

Expanding the temporal scale of the dataset, SLAs were extracted across the 

full period from April to January to develop a robust seasonal SLA time series 

for Dudh Koshi basin as well as Mera Glacier. This extended dataset was then 

used to identify SLAmax for each year and compare it systematically with field-

based ELA measurements from the GLACIOCLIM monitoring network. The 

results clearly show that SLAmax consistently underestimates ELA in this 

region, challenging the validity of this proxy relationship in summer 

accumulation-type glaciers. This underestimation is attributed to dynamic 

surface processes including frequent monsoonal snowfall, snow redistribution 

by wind, sublimation, and temporary snow cover over ablation zones. These 

conditions disrupt the typical melt–accumulation transition zone visibility and 

render remote sensing-based SLA proxies unreliable without region-specific 

corrections. The chapter demonstrates that assumptions validated in temperate 

or mid-latitude settings may not be held in the monsoon-dominated Himalaya, 

underscoring the importance of field-based validation. 

 Together, the findings of this thesis converge on several overarching 

themes. First, model calibration must be highly localized in glacierized regions 

due to the steep spatial gradients in topography, climate, and glacier cover. 

Second, multi-criteria calibration using independent datasets (e.g., discharge 

and geodetic mass balance) significantly improves model credibility in data-

scarce regions. Third, while remote sensing offers unparalleled spatial and 

temporal coverage, the interpretation of glacier surface features such as SLAs 

requires a deep understanding of local meteorological and glaciological 

processes. Finally, the combined use of multi-criteria calibration in 

hydrological modelling, advanced remote sensing, and in-situ observations 
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forms a powerful trio for understanding and anticipating hydrological change 

in Himalaya Karakoram. The insights from this thesis contribute to 

methodological improvements in modelling and monitoring snow and glacier 

melt contributions and offer a scientific foundation for developing climate-

resilient water resource strategies in the Himalaya. They also provide 

transferable frameworks for other glacierized regions globally, where similar 

data limitations and climatic variability pose significant challenges to 

hydrological forecasting and glacier mass balance assessment. 

7.2  Limitations of the study 

Despite providing robust insights into snow and glacier melt processes across 

contrasting Himalayan basins, the thesis work is subject to some limitations 

related to data availability, methodological assumptions, and the intrinsic 

constraints of modelling and remote sensing approaches in complex mountain 

environments. 

Following are some limitations of this thesis work: 

• Precipitation forcing relied on reanalysis datasets and an elevation-

based extrapolation approach, which are subject to known 

uncertainties in complex orographic terrain and propagate uncertainty 

into simulated snow and glacier melt contributions 

• The SPHY model does not explicitly account for sublimation losses, 

which may be non-negligible in high-altitude glacier environments, 

and applies spatially uniform debris-related degree-day factors, 

limiting the representation of glacier- and elevation-specific melt 

enhancement associated with heterogeneous debris cover 

• Optical satellite data used for SLA extraction are affected by persistent 

cloud cover, terrain shadows, and reflectance saturation, which 

constrain the temporal continuity of SLA estimates despite rigorous 

quality control 

7.3 Future work 

The complex and rapidly changing cryospheric and hydrological conditions in 

the Himalaya demand sustained scientific attention through new data sources, 

improved modelling approaches, and expanded spatial and temporal coverage. 
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Future research must adapt to the dynamic challenges posed by climate 

variability, technological innovations, and the growing importance of regional 

water security. Several key directions emerge from current gaps and 

challenges that can guide future research in this field. 

Following are some possible future works:  

• Future work should focus on developing transferable hydrological model 

parameterizations that reduce dependence on local calibration, thereby 

enabling broader application across diverse regions and scales 

• Approaches such as statistical regression, physical scaling laws, or machine 

learning can be explored to relate model parameters directly to 

physiographic and climatic controls, improving scalability and applicability 

in ungauged basins 

• Future studies can extend the multi-criteria calibration approach used here 

by incorporating additional datasets and evaluation metrics, improving 

parameter reliability and model robustness 

• Integrating energy-balance components would address key limitation of the 

current model and enable more realistic simulation of glacier melt and other 

runoff components 

• Applying this modelling framework to multiple Himalayan basins would 

enhance the consistency and reliability of long-term discharge 

reconstructions across diverse climatic settings 

• On the remote sensing front, further automation and scaling of SLA 

extraction methods represent a promising direction. Building upon 

threshold-based and post-processing approaches, future research could 

incorporate machine learning classifiers, spectral unmixing, or time-series 

trend analyses to identify SLA under more challenging conditions such as 

high cloud frequency, variable surface albedo, or complex shadow 

• Systematic, multi-site investigations across diverse Himalayan settings are 

needed to assess the validity of the SLAmax ≈ ELA assumption, and to guide 

necessary corrections in cases where the assumption does not hold  

• Integration of diverse high-resolution satellite datasets to advance multi-

dimensional glacier monitoring thereby improving both temporal and 

spatial resolution 
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In the broader climate and water management context, future efforts 

should focus on downscaling model outputs to support basin-scale water 

allocation, reservoir operations, and early warning systems, ensuring that 

meltwater projections translate into actionable adaptation strategies for 

downstream communities. At the same time, addressing persistent data gaps 

through expanded in-situ networks, low-cost sensors, and enhanced data-

sharing will remain essential. By advancing process-based modelling, remote 

sensing automation, and regional parameter estimation, future research can 

bridge the gaps between data, methods, and applications, thereby 

strengthening the resilience of Himalayan water systems under a changing 

climate. 
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APPENDIX A 

This appendix contains Table S1, which provides values for all the processed 

SLAs for Dudh Koshi basin over the period 2015–2023 

Table S 1 Summary statistics of S2/L8 basin-wide SLAs for the Dudh Koshi 

basin (462 glaciers) over the period 2015–2023; basin-wide SLAmax is marked 

in bold 

Date #SLAs Min.(m) Max.(m) Mean (m) STD (m) 

2015-05-25 6 5107 5309 5208 81.0 

2015-07-12 24 5145 5517 5354 98.4 

2015-09-30 21 5033 5377 5239 95.0 

2015-11-01 22 4954 5419 5222 117.4 

2015-11-17 49 5056 5682 5444 148.2 

2015-12-19 11 5096 5505 5352 120.3 

2016-01-14 95 5052 5833 5517 142.5 

2016-04-13 97 4971 5583 5381 123.7 

2016-10-30 88 4989 5678 5403 146.7 

2016-11-03 44 5032 5604 5396 137.2 

2016-11-19 46 5454 5695 5438 122.7 

2016-11-29 88 4994 5724 5434 144.3 

2016-12-09 95 5096 5747 5468 133.6 

2016-12-29 91 5084 5780 5481 145.1 

2017-01-08 58 4658 5620 5364 174.3 

2017-01-18 73 4754 5704 5411 155.7 

2017-04-18 30 5082 5575 5329 137.2 

2017-10-15 99 5157 5734 5470 134.5 

2017-10-30 70 4818 5596 5357 163.6 

2017-11-06 39 5090 5673 5402 130.3 

2017-11-19 93 4992 5684 5420 151.4 

2017-11-22 46 5024 5791 5460 165.1 

2017-11-24 67 5016 5773 5470 163.1 
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2017-12-09 88 5216 5807 5523 141.0 

2017-12-14 88 5229 5820 5528 140.4 

2017-12-29 88 5137 5854 5553 150.4 

2018-01-03 50 4653 5704 5381 213.2 

2018-01-08 27 4855 5713 5400 192.7 

2018-01-18 28 4863 5648 5383 178.4 

2018-01-23 37 4854 5708 5340 200.3 

2018-01-28 81 4680 5655 5393 187.4 

2018-04-23 42 4865 5448 5249 122.6 

2018-05-08 43 4898 5438 5265 105.1 

2018-10-15 85 5102 5672 5473 121.0 

2018-10-20 99 5145 5817 5573 128.4 

2018-10-24 37 5204 5702 5506 136.9 

2018-10-30 95 5110 5795 5544 139.8 

2018-11-04 90 5119 5737 5508 135.2 

2018-11-09 75 5227 5740 5545 120.4 

2018-11-14 95 5239 5821 5558 132.5 

2018-11-24 92 5252 5820 5586 116.1 

2018-11-25 40 5253 5856 5617 141.2 

2018-12-04 89 5256 5900 5624 131.8 

2018-12-09 89 5144 5843 5559 153.6 

2018-12-14 62 5031 5680 5448 159.5 

2018-12-19 50 4661 5607 5290 194.1 

2018-12-24 59 5129 5559 5371 109.4 

2018-12-29 36 5005 5617 5402 155.4 

2019-01-13 63 4887 5704 5433 167.3 

2019-01-18 64 4877 5592 5372 152.6 

2019-01-28 68 4625 5794 5411 213.0 

2019-05-08 62 4900 5527 5323 139.0 

2019-10-15 80 4811 5690 5356 174.1 

2019-10-27 29 4982 5462 5278 120.1 
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2019-11-12 37 5210 5579 5393 109.4 

2019-11-19 87 4960 5699 5406 144.4 

2019-11-24 27 5228 5627 5419 119.3 

2019-12-04 100 4984 5752 5476 151.8 

2019-12-09 77 5033 5615 5398 130.9 

2019-12-19 49 4627 5537 5263 184.3 

2019-12-24 46 4651 5577 5335 184.4 

2019-12-29 46 4907 5611 5364 161.8 

2020-01-13 54 4578 5590 5298 204.5 

2020-01-23 63 4952 5788 5467 183.3 

2020-01-28 56 4594 5580 5319 187.7 

2020-04-02 19 4657 5303 5131 157.0 

2020-04-12 26 4642 5254 5089 160.0 

2020-04-17 24 4820 5345 5176 124.5 

2020-10-09 65 4842 5436 5262 141.4 

2020-10-24 45 4855 5425 5197 134.5 

2020-10-29 41 5300 5814 5409 120.2 

2020-11-08 106 5072 5804 5494 153.6 

2020-11-13 108 5058 5806 5533 138.0 

2020-11-14 50 5197 5815 5527 143.8 

2020-11-18 79 4722 5677 5408 177.5 

2020-11-23 100 4974 5673 5454 142.4 

2020-11-28 86 4891 5656 5411 164.2 

2020-11-30 47 5125 5690 5480 139.3 

2020-12-03 105 5013 5824 5525 146.2 

2020-12-08 93 5078 5814 5544 140.9 

2020-12-13 27 4815 5682 5373 186.1 

2020-12-18 91 5078 5829 5546 136.3 

2020-12-28 26 4912 5636 5362 203.4 

2022-04-12 99 4965 5630 5404 145.8 

2022-10-24 71 4858 5562 5304 162.1 

2022-11-03 74 4874 5619 5340 145.4 
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2022-11-04 33 5099 5665 5432 151.6 

2022-11-13 91 5015 5695 5404 143.7 

2022-11-20 47 5097 5658 5430 138.6 

2022-11-23 99 4973 5744 5447 147.2 

2022-11-28 96 4968 5721 5429 143.0 

2022-12-03 100 4977 5735 5455 146.8 

2022-12-08 97 5059 5786 5481 148.4 

2022-12-18 71 5183 5647 5438 115.4 

2022-12-23 24 4655 5602 5309 215.3 

2022-12-28 80 5018 5763 5449 149.7 

2023-01-07 25 4885 5634 5297 163.7 

2023-01-12 34 5091 5649 5394 158.2 

2023-01-17 72 5227 5781 5506 122.4 

2023-01-22 35 4673 5652 5324 215.8 

2023-01-27 19 4953 5555 5295 162.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


