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ABSTRACT

Snow and glacier meltwater are critical hydrological components in the glacierized and
snow-covered basins of the Himalaya-Karakoram (HK), yet their accurate
quantification remains challenging due to limited in-situ observations in this remote
and rugged terrain. This thesis aims to advance the understanding of meltwater
dynamics, improve modelling approaches, and enhance glacier monitoring techniques
using remote sensing to better assess hydrological responses of glacierized basins to
climatic variability in the region. The thesis focuses on three glacierized basins situated
in distinct climatic regimes of HK. In the western Himalaya, the Snowmelt Runoff
Model (SRM) was applied in the Chandra-Bhaga Basin, using a data-rich reference
catchment of Chhota Shigri Glacier to constrain key parameters from extensive field
observations, while the remaining parameters were calibrated against observed
discharge. Daily discharge simulations for 2003—2018 indicated that flow was primarily
controlled by summer temperature in the Chhota Shigri Catchment and by summer SCA
at the basin scale. Although parameters calibrated in the reference catchment produced
good results at the catchment scale, their direct application to the basin scale resulted
in substantial overestimation of discharge, indicating that the parameters are not
transferable even within the same basin. In the central Himalaya, the long-term melt
contributions and their climatic controls in the Gangotri Glacier System (GGS) were
examined over 19802020, by applying a high-resolution glaciohydrological model
Spatial Processes in Hydrology (SPHY) forced with Indian Monsoon Data Assimilation
and Analysis reanalysis data. Two-tier calibration using in-situ discharge and geodetic
mass balance estimates, and validation against improved MODIS snow cover data,
showed that snowmelt contributed 64%, glacier melt 21% followed by rainfall-runoff
11% and baseflow 4%. A shift in the discharge peak from August to July after 1990
was attributed to reduced winter precipitation and enhanced early summer melting.
Summer precipitation and winter temperature were identified as the dominant climatic
controls on annual discharge. In Dudh Koshi Basin of the central Himalaya, an
improved method for snowline altitude (SLA) extraction was developed and applied to
assess the relationship of SLA with the equilibrium line altitude (ELA). Comparisons
on Mera Glacier therein revealed that remotely sensed end-of-ablation season SLA
(SLAmax) consistently underestimated field-based ELA, challenging the common

assumption that SLAmax approximates ELA in monsoon-dominated regions. The



observed discrepancies were linked to surface processes such as sublimation, wind
erosion, and snow redistribution, underscoring the need for caution when using SLA as
a proxy for ELA in this region. By integrating enhanced modelling frameworks with
improved remote sensing approaches, this work provides new insights into the
hydrological behaviour of Himalayan glacierized basins. The sensitivity of discharge
to climatic factors and the limitations of parameter transferability and ELA proxy,
thereby contributing to more robust water resource assessments under changing climate

conditions.
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Introduction

1.1 Himalaya-Karakoram and its importance

High mountain regions play a crucial role in the hydrological cycle, storing
and releasing freshwater that sustains populations far beyond the mountain
boundaries. Among these, the Himalaya-Karakoram (HK) region holds a
particularly important position, being one of the largest glacierized regions
outside the polar areas and often referred to as the “Water Tower of Asia”
(Immerzeel et al., 2020; Azam et al., 2021). The HK region stretches across
parts of Afghanistan, Pakistan, India, Nepal, Bhutan, and China,
encompassing some of the highest peaks in the world. Its glaciers, perennial
snow cover, and permafrost collectively store an immense volume of water,
acting as a natural reservoir that regulates river flows across multiple climatic
Zones.

The meltwater from HK glaciers and snowfields feeds largest river
systems, notably the Indus, Ganga, and Brahmaputra. These rivers originate in
the high mountains and flow through densely populated agricultural plains
before reaching the sea. Together, they provide water for drinking, irrigation,
hydropower, and industrial activities to more than a billion people (Azam et
al., 2021; Nepal et al., 2023). The Indus River basin is one of the most glacier
and snowmelt dependent basin, with meltwater contributing a substantial
proportion of its annual flow, particularly during the summer months
(Bookhagen and Burbank, 2010; Lutz et al., 2014; Immerzeel et al., 2020).
The Ganga and Brahmaputra basins, although more influenced by monsoon
rainfall, also depend on seasonal snowmelt and glacier melt to sustain flows

during the pre-monsoon and dry season (Lutz et al., 2014; Azam et al., 2021).
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This glacier and snowmelt contribution is particularly critical during dry
periods, when meltwater buffers the seasonal variability of precipitation
(Pritchard, 2019; Immerzeel et al., 2020). It supports agricultural production,
hydropower generation especially during lean flows, and sustains ecosystems
dependent on perennial streams (Pritchard, 2019; Immerzeel et al., 2020).
Therefore, the HK region is therefore not only a vital environmental system

but also an essential socio-economic resource.

1.2 Climatic regimes in HK

The HK region is not climatically uniform; rather, it spans multiple climatic
regimes that influence the hydrology and cryospheric processes in distinct
ways. The western Himalaya and Karakoram are primarily influenced by
western disturbances (WDs), receiving most of their annual precipitation in
the form of snowfall (Thayyen and Gergan, 2010). As a result, summer flows
in rivers such as the Indus are dominated by snow and glacier melt (Bookhagen
and Burbank, 2010; Azam et al., 2021).

The central and eastern Himalaya are predominantly monsoon-fed, with
the majority of annual precipitation occurring June through September
(Thayyen and Gergan, 2010). Snow and glacier melt play a smaller role in total
discharge compared to rainfall, but they can still be important during the pre-
monsoon season and in high-altitude catchments (Lutz et al., 2014; Azam et
al., 2021). These spatial variations mean that climate change impacts will not
be uniform across the HK region; some areas may experience short-term
increases in meltwater followed by declines, while others may be more
affected by changes in rainfall patterns (Lutz et al., 2014). To capture the range
of climatic and hydrological conditions in HK, this thesis focuses on three
glacierized basins distributed across the western and central Himalaya (Figure

1.1).
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Figure 1.1 Geographic location of the study basins: (A) Chandra-Bhaga Basin
in the western Himalaya, (B) Gangotri Glacier System in the central Himalaya,
and (C) Dudh Koshi Basin in the central Himalaya. Glacier extents are

indicated in blue, and red stars denote discharge measurement stations.

1.3 Climate change and observed cryospheric changes
Over recent decades, the HK region has experienced significant climatic
changes, most notably warming trends that have exceeded the global average
in many locations (Krishnan et al., 2019; Portner et al., 2022). In-situ records
and reanalysis data indicate that mean annual temperatures have increased
across much of the region, with particularly strong warming at higher
elevations (Pepin et al., 2015). The latest IPCC Sixth Assessment Report
(2022) projects that global warming will reach or exceed 1.5°C above pre-
industrial levels within the next two decades, with pronounced impacts on high
mountain cryospheric systems (Portner et al., 2022).

Himalayan glaciers have been losing mass at an accelerating rate (Brun
etal.,2017; Azam et al., 2018; Maurer et al., 2019; Shean et al., 2020). Remote
sensing studies have shown widespread retreat of glacier terminus and

thinning of ice, though with notable spatial variability. The Karakoram Range,
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for instance, has exhibited a relatively stable or slightly positive mass balance
in recent decades, a phenomenon known as the “Karakoram Anomaly”
(Hewitt, 2005; Gardelle et al., 2013). However, there are emerging evidence
of glacier wastage in the Karakoram over the recent decades (Hugonnet et al.,
2021). Seasonal snow cover has also declined in duration and extent in many
parts of the HK region, with earlier onset of melt and shifts in the timing of
peak runoff (Brown et al., 2010; Bormann et al., 2018).

These cryospheric changes have direct hydrological consequences. In
the short term, increased glacier melt can enhance river flows during the melt
season, but in the longer term, as glaciers lose mass, their meltwater
contribution is expected to decline (Kraaijenbrink et al., 2017; Pritchard,
2019). This shift could have profound impacts on water availability during
critical agricultural periods and may intensify water scarcity in already
vulnerable downstream regions. Furthermore, changes in snowmelt timing can
affect seasonal water storage, hydropower scheduling, and flood risk
management (Lutz et al., 2014).

The combined effects of glacier retreat, snow cover decline, and altered
precipitation patterns are likely to change the seasonality of river flows, with
potential implications for both water security and hazard occurrence, including
floods, landslides, and glacial lake outburst floods (GLOFs) (Harrison et al.,
2018; Veh et al., 2020; Sattar et al., 2025). Understanding these changes and
their hydrological consequences requires robust monitoring and modelling
tools capable of capturing the complex interplay between climate, cryosphere,

and hydrology.

1.4 Hydrological modelling in HK

Hydrological modelling is a key tool for estimating the relative contributions
of snowmelt, glacier melt, baseflow and rainfall-runoff to river discharge,
particularly in high mountain regions where direct measurements are limited
(Hock, 2003; Immerzeel et al., 2010; Ragettli and Pellicciotti, 2012). In such
environments, models help bridge the gap between sparse observations and the
need for continuous, long-term hydrological records. Two broad approaches
are commonly applied for estimating the melt, viz. Physically-based energy-

balance models and temperature-index (degree-day) models.
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Physically based energy-balance models simulate melt processes by
resolving the surface energy budget, incorporating inputs such as incoming
and outgoing radiation, air temperature, humidity, wind speed, and the phase
of precipitation (Oerlemans, 1992; Favier et al., 2004; Azam et al., 2014b;
Srivastava and Azam, 2022a). These models can offer a physically consistent
representation of melt dynamics but require extensive meteorological and
glacier surface data, which are often unavailable in HK due to the scarcity of
high-altitude observation networks (Vishwakarma et al., 2022). Temperature-
index (degree-day) models take a simpler empirical approach, relating melt
rates directly to air temperature through degree-day factors for snow and ice
(Hock, 2003). Although they do not explicitly resolve the full energy balance,
these models require fewer inputs and can be implemented using readily
available datasets, including gridded meteorological products and remote
sensing-derived snow cover information (Immerzeel et al., 2009; Tahir et al.,
2011). This makes them particularly useful in regions where ground-based
meteorological measurements are sparse (Hock, 2003; Azam et al., 2014).

In both approaches, model performance depends heavily on parameter
calibration. When only discharge data are available for calibration, there is a
risk of equifinality, where different parameter combinations can reproduce
similar discharge patterns but imply different contributions from snow and
glacier melt (Beven, 2016; Azam et al., 2021). Additionally, many studies
calibrate parameters for a single basin without evaluating their applicability
elsewhere, leaving uncertainty about whether these parameters can be
transferred to other catchments with similar climatic or physiographic
conditions. This lack of tested parameter transferability and model calibration
with a limited dataset is the critical limitations for large-scale water resource

assessments in glacierized regions.

1.5 Satellite-based monitoring of snowline altitude

Remote sensing has become crucial for monitoring glacier conditions across
HK, enabling consistent and frequent observations over large and often
inaccessible areas (Racoviteanu et al., 2008; Brun et al., 2017; Dehecq et al.,
2019). Among the many glacier parameters that can be observed from space,

the snowline altitude (SLA) is particularly important. SLA represents the



Chapter 1

boundary between snow-covered and snow-free area at a given time, and its
highest position at the end of the ablation season (SLAmax) is often used as a
proxy for the equilibrium line altitude (ELA), the elevation at which
accumulation equals ablation (Braithwaite and Raper, 2009; Cuffey and
Paterson, 2010). Since ELA is directly linked to the glacier mass balance,
monitoring SLA provides a valuable means of assessing glacier health and
detecting changes in response to climate variability (Braithwaite and Raper,
2009; Rabatel et al., 2013).

The use of SLA as an indicator has grown with the availability of high-
to medium-resolution satellite imagery from sensors such as Landsat, Sentinel,
SPOT, etc. (Racoviteanu et al., 2019; Liu et al., 2021). SLA mapping methods
can be broadly grouped into manual, semi-automated, and automated
approaches. Manual delineation involves expert visual interpretation of
satellite images to draw the snowline, often with high accuracy when cloud-
free images are available, but it is time-consuming and can be subjective
(Rabatel et al., 2016). Semi-automated techniques typically use spectral band
ratios such as near-infrared (NIR) to shortwave infrared (SWIR), to
differentiate snow, ice and bare land, combined with thresholding methods to
define the snowline (Racoviteanu et al., 2019). Automated approaches extend
these methods to large datasets, sometimes incorporating additional
information such as slope, aspect, and elevation to refine the classification
(Naegeli et al., 2019; Loibl et al., 2025).

Recent developments in machine learning have made large-scale, long-
term SLA monitoring more efficient, allowing for consistent mapping across
extensive spatial and temporal domains (Prieur et al., 2022). Such datasets
have multiple applications, including detecting long-term glacier change,
supporting hydrological model calibration and validation, and analyzing
glacier-climate interactions. However, despite its widespread adoption, the use
of SLA as a proxy for ELA has not been comprehensively validated in HK.
This limits the ability to fully assess the accuracy of SLA-derived ELA
estimates and highlights the need for systematic evaluation against reliable

field-based measurements.



Chapter 1

1.6 Research gaps

Despite significant progress in understanding glacier hydrology in the HK
region, important gaps remain that constrain the accuracy and applicability of
current modelling and monitoring approaches. A key uncertainty arises from
the limited evaluation of hydrological model parameter transferability between
catchments. In many studies, parameters such as degree-day factors, runoff
coefficients, temperature lapse rates, etc. are calibrated for a single basin and,
in some cases, applied to other basins without thorough testing. Given the
considerable variability in precipitation regimes, glacier characteristics, and
topographic conditions across the region, such untested parameter application
can introduce substantial biases into discharge simulations and meltwater
estimates.

Another limitation concerns the reconstruction of long-term meltwater
contributions. Most modelling efforts have been restricted to relatively short
observational periods and often rely on single-variable calibration, typically
discharge, which increases susceptibility to equifinality and reduces the
robustness of process representation. Integrating multiple datasets within a
multi-tier calibration framework offers a way to address these issues, yet such
approaches remain rare, mainly due to the sparse data. Without multi-decadal
reconstructions constrained by diverse observations, the temporal evolution of
snow and glacier melt contributions and their relationship to climatic
variability cannot be fully characterized.

In addition, the use of SLAmax at the end-of-ablation season as a proxy
for the ELA in HK remains insufficiently validated. While this relationship is
well established for winter-accumulation glaciers, the summer-accumulation
regime of the monsoon-dominated Himalaya introduces complexities such as
simultaneous accumulation and ablation, episodic summer snowfall, persistent
cloud cover, and post-monsoon accumulation. These factors can cause
significant deviations between SLAmax and the true ELA. Although advances
in semi-automated SLA extraction methods have improved spatial and
temporal coverage, their reliability in monsoon-dominated settings has not

been systematically assessed against field-based ELA measurements. This gap
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limits the confidence with which SLA can be used for mass balance estimation,
model calibration, and long-term monitoring in these regions.

Addressing these gaps requires an integrated approach that combines
glacio-hydrological modelling, remote sensing analysis, and field validation.
Such an approach can improve the accuracy and reliability of meltwater
contribution estimates, enhance understanding of SLA-ELA relationships in
complex climatic regimes and provide a stronger basis for assessing the

impacts of climate change on HK water resources.

1.7 Objectives of the thesis

The main aim of this thesis is to improve the understanding of glacier
hydrology and melt contributions in the Himalayan region through the
integration of remote sensing, glaciohydrological modelling, and field
validation. It focuses on three climatically distinct glacierized basins to explore
meltwater contributions, model parameter transferability, and the SLA-ELA
relationship. The specific objectives are:

1. To evaluate the transferability of snowmelt runoff model parameters in the
Chandra-Bhaga basin,

2. To simulate long-term snow and glacier melt contributions in the Gangotri
Glacier System,

3. To develop an improved method for snowline extraction, and

4. To examine the relationship between snowline altitude (SLA) and

equilibrium line altitude (ELA).

1.8 Organisation of the thesis

Chapter 1: Introduction

This chapter presents a brief overview of HK, climatic regimes across different
glacierized regions, and challenges in modelling snow and glacier melt. It
summarises the existing methods and highlights research gaps related to SLA
estimation, SLA-ELA relationships, long-term melt contribution estimation,
and model parameter transferability. The chapter concludes by defining the

objectives of the thesis.
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Chapter 2: Literature review

This chapter provides a comprehensive review of the different
glaciohydrological models used for estimating melt contributions, highlighting
their advancements and limitations. It also identifies key methodological gaps

in SLA estimation and the SLA-ELA relationship in the Himalaya.

Chapter 3: Assessing model parameter transferability between the glacier
and basin scale in the western Himalaya

The chapter assesses the transferability of SRM parameters from a data-rich
glacier catchment (Chhota Shigri) to its basin (Chandra-Bhaga) in the western
Himalaya. The SRM was calibrated for Chhota Shigri using field-constrained
parameters and validated with observed discharge over 2010-2015. When
these calibrated parameters were applied to the Chandra-Bhaga basin,
significant overestimations in discharge were observed, indicating that SRM
parameters are not directly scalable even within the same basin having similar
climatic and physiographic settings. Sensitivity analysis further revealed that
the runoff coefficient for snow and the degree-day factor are dominant controls
on model output. This chapter highlights the importance of site-specific
calibration and cautions against using parameter sets from reference

catchments for other or more heterogeneous basins.

Chapter 4: Snow and glacier melt contributions from the Gangotri
Glacier System and their climatic controls

Chapter 4 presents long-term glaciohydrological modelling of Gangotri
Glacier System (GGS) using the SPHY model, forced with bias-corrected
IMDAA reanalysis data over 1980-2020. The model was calibrated using in-
situ discharge and available geodetic mass balance and validated against
improved MODIS snow cover data. Results show that snowmelt is the
dominant contributor to total discharge (64%), followed by glacier melt (21%),
rainfall-runoff (11%) and baseflow (4%). Statistical analysis identifies
summer precipitation and winter temperature as key climatic drivers of runoff
variability. This chapter underscores the value of multi-constraint calibration

and remote sensing inputs in long-term melt modelling for Himalayan basins.
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Chapter 5: Improved snowline extraction method

This chapter presents an improved methodology for estimating glacier SLA
from optical satellite imagery. The method integrates a semi-automated band
ratio-based SLA extraction routine with Otsu method and a robust post-
processing filtering scheme to address challenges posed by cloud cover, cast
shadows, steep slopes, and temporary snow. The processing framework is
implemented in Python and validated using high-resolution Planet and Venps
imagery. This chapter contributes to a reproducible and scalable approach for
generating sub-monthly SLA time series suitable for climatological and

glaciological analyses in data-scarce, complex mountain environments.

Chapter 6: SLA-ELA relationship in the monsoon-dominated region

Chapter 6 investigates the relationship between remotely sensed end-of-
ablation season SLAmax and field-based ELA in the monsoon-dominated
central Himalaya. Using a multi-year SLA dataset generated through the
improved extraction method in Chapter 5, this chapter evaluates the validity
of using SLAmax as a proxy for ELA on Mera Glacier, where longest field
observations are available in the central Himalaya. The analysis considers the
influence of surface processes such as sublimation, wind redistribution, and
temporary snow cover, which complicate SLA fluctuations and challenge the
SLA-ELA assumption. This chapter highlights the limitations of applying
standard SLA-based ELA estimation methods in regions with complex

monsoon-driven accumulation and ablation patterns.

Chapter 7: Conclusions and future work
The thesis concludes with a summary of the key findings and a discussion on

the potential directions for future research.
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Chapter 2

Literature review

2.1 Glaciohydrological modelling in HK

Glaciohydrological modelling in the HK region has advanced substantially
over the past two decades, motivated by the need to quantify meltwater
contributions to river systems and assess their response to climate change.
Numerous studies indicate that snow and glacier melt constitute a substantial
fraction of annual runoff in many HK basins, particularly those with high
glacierized area, such as the Indus basin (Bookhagen and Burbank, 2010; Lutz
et al., 2014; Azam et al., 2021). Model projections consistently suggest that
rising temperatures will enhance meltwater yields in the near term, after which
melt contributions will decline as glacier storage diminishes (Lutz et al., 2014;
Huss and Hock, 2018). However, the magnitude and timing of these changes
vary considerably between basins and modelling frameworks, reflecting large
uncertainties in both climatic forcing and process representation (Ragettli et
al., 2013; Pritchard, 2019). A persistent challenge in the HK region is
accurately partitioning runoff into rainfall-runoff, snowmelt, and glacier melt
components, as observational data remain sparse and heterogeneous across
catchments (Armstrong et al., 2019; Azam et al., 2021; Vishwakarma et al.,
2022).

The modelling approaches applied in HK span from empirical
temperature-index (degree-day) models to physically based energy-balance
models, as well as hybrid and distributed frameworks that integrate multiple
processes. For melt calculations, temperature-index approach are the most
widely used due to their fewer input requirements and their adaptability to

basins with limited meteorological observations in HK (Hock, 2003;
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Immerzeel et al., 2009; Butt and Bilal, 2011; Panday et al., 2014; Azam et al.,
2019). These models relate melt rates to air temperature using degree-day
factors for snow and ice and can be coupled with satellite-derived snow cover
to constrain spatial melt patterns (Tahir et al., 2011; Aggarwal et al., 2014).
While effective in simulating seasonal flow in many HK catchments, their
performance is sensitive to the estimation of model parameters, which vary
with elevation, debris cover, and season (Hock, 2003; Zhang et al., 2006;
Heynen et al., 2013). Physically based energy-balance approach resolves the
surface energy budget and can capture additional processes such as
sublimation, wind redistribution, and debris-cover effects (Reid et al., 2012;
Shea et al., 2015; Buri et al., 2016; Miles et al., 2016), but their application in
the HK is constrained by the scarcity of high-resolution meteorological data
and the complexity of calibration (Ragettli et al., 2013; Vishwakarma et al.,
2022).

Advances in distributed and hybrid modelling have improved the
spatial variability of simulations by integrating topographic variability, glacier
hypsometry, and temporally varying snow cover (Immerzeel et al., 2013; Lutz
et al., 2014; Khanal et al., 2021). Latest models combine temperature-index
melt formulations with distributed hydrological structures that also account for
seasonal snowpack evolution and glacier dynamics (Terink et al., 2015). The
integration of high-resolution remote sensing products, including improved
MODIS snow cover (Muhammad and Thapa, 2020; Salim and Pandey, 2021)
and geodetic glacier mass balance (Shean et al., 2020), into model forcing and
calibration has improved process representation. Bias-corrected reanalysis
datasets have also been increasingly adopted to address the lack of in-situ
meteorological observations (Arora et al., 2024; Srivastava et al., 2024).
However, uncertainties persist due to biases in gridded precipitation, which
often underestimates high-altitude snowfall (Eeckman et al., 2017; Immerzeel
et al., 2020), and due to equifinality, where different parameter combinations
produce similar discharge outputs but divergent melt partitioning (Ragettli et
al., 2013; Beven, 2016).

To address these limitations, recent studies have adopted multi-
constraint calibration approaches, simultaneously tuning models against

discharge, snow cover, and glacier mass balance observations (Azam et al.,
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2019; Singh et al., 2023; Srivastava et al., 2024; Arora et al., 2024). This has
improved the accuracy of meltwater partitioning and reduced uncertainty.
Ensemble modelling, incorporating multiple models and climate scenarios, has
been used to quantify uncertainty ranges and identify robust trends (Lutz et al.,
2014; Kraaijenbrink et al., 2017). Incorporating additional processes, such as
the role of debris cover in insulating glacier ice (Vatsal et al., 2024) or the
effect of snow/ice avalanching, can further enhance the efficiency of
glaciohydrological models. The literatures show that progress in HK
hydrological modelling will remain dependent on improved high-elevation
monitoring networks, expanded benchmark glacier studies, and enhanced
integration of remote sensing with physically consistent modelling

frameworks (Azam et al., 2021; Vishwakarma et al., 2022).

2.2 Parameter transferability in hydrological models
Parameter transferability in glaciohydrological models has been a recurring
necessity in the HK region due to the scarcity of long-term hydro-
meteorological observations at high elevations (Hock, 2003; Nepal et al.,
2023). In many modelling studies, key parameters such as degree-day factors,
runoff coefficients, precipitation gradient, and temperature threshold for
snow/rain partitioning are adopted from neighboring catchments or literature
rather than calibrated locally (Singh and Jain, 2002; Butt and Bilal, 2011;
Panday et al., 2014; Hayat et al., 2019). While this approach enables
simulations in data-scarce basins, it introduces the risk that parameters
optimized under one set of climatic, topographic, and glaciological conditions
may not be valid elsewhere (Ragettli et al., 2013; Beven, 2016). The HK region
exhibits substantial heterogeneity in glacier hypsometry, debris-cover extent,
precipitation regime, and snow persistence (Maussion et al., 2014; Scherler et
al., 2018; Garg et al., 2024), all of which can exert a huge impact on optimal
parameter values. Consequently, such applications of parameters across basins
may lead to substantial biases in simulated runoff and melt partitioning.
Climatic regime differences across HK present one of the most
significant barriers to parameter transferability. Glacierized basins in the
western part of HK, influenced predominantly by WDs, are snowmelt-

dominated, whereas monsoon-fed eastern part are characterized by high-
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intensity summer rainfall and comparatively lower snowmelt contributions
(Thayyen and Gergan, 2010). Temperature thresholds for snow-rain
separation, precipitation gradient, and melt coefficients often differ
significantly between these regimes, making inter-regime parameter transfer
unreliable. Similarly, debris-cover variability exerts a strong control on melt
rates (Zhang et al., 2006; Scherler et al., 2018). Parameters calibrated for
clean-ice glaciers can substantially overestimate melt for debris-covered
glaciers, and vice versa, unless debris effects are explicitly modelled (Buri et
al., 2016; Miles et al., 2016).

The risks of parameter transfer are further compounded by equifinality,
where multiple parameter sets yield similar discharge simulations but different
internal process representations (Ragettli et al., 2013; Beven, 2016). This is
particularly problematic for future projections, as parameter sets that
reproduce present-day hydrographs may not be physically robust under altered
climate forcing (Lutz et al., 2014; Kraaijenbrink et al., 2017). To reduce such
uncertainties, recent HK studies have increasingly employed multi-criteria
calibration approaches, simultaneously optimizing model performance against
discharge, snow cover, and glacier mass balance data (Singh et al., 2023;
Srivastava et al.,, 2024; Arora et al., 2024). Ensemble modelling across
multiple basins has also been proposed as a means to identify parameter ranges
that perform satisfactorily across varied physiographic and climatic settings,
thereby improving transferability while quantifying uncertainty (Lutz et al.,
2014).

In summary, while parameter transferability offers a practical approach
for ungauged HK basins, its success is highly dependent on various factors.
Evidence suggests that parameter transfer may be reliable when basins are
physically and climatically similar, and when uncertainties are explicitly
quantified. However, the heterogeneity of the HK region in terms of glacier
characteristics, debris cover, and climatic regime substantially limits the
general applicability of parameter sets. Basin-specific calibration, informed by
multi-source observations and sensitivity analysis, remains the preferred

approach for robust glaciohydrological simulations in HK.
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2.3 Quantifying snow and glacier melt contributions

Quantifying the relative contributions of snowmelt, glacier melt, baseflow and
rainfall-runoff to river discharge is very important in glaciohydrological
research in HK (Hock, 2003; Bolch et al., 2019; Azam et al., 2021). These
estimates are essential for understanding seasonal water availability
(Immerzeel et al., 2010; Lutz et al., 2014), managing water resources in
downstream regions (Pritchard, 2019; Nepal et al., 2023), and anticipating the
impacts of climate change on river flow (Kraaijenbrink et al., 2017; Khanal et
al., 2021). A variety of approaches ranging from model-based simulations to
remote sensing assimilation and tracer-based hydrograph separation have been
applied across the region (Singh and Jain, 2002; Immerzeel et al., 2009;
Maurya et al., 2011; Andermann et al., 2012; Brun et al., 2017; Azam et al.,
2019). Reported contributions vary substantially between basins, reflecting
differences in climatic regime, glacier extent, and catchment hypsometry
(Thayyen and Gergan, 2010; Srivastava and Azam, 2022b), as well as
variations in datasets, model structures, and calibration methods (Ragettli et
al., 2013; Beven, 2016).

In the Upper Indus Basin, combined snow and glacier melt
contributions are estimated as 62—72% of annual discharge (Fowler and
Archer, 2005; Lutz et al., 2014; Maussion et al., 2014), with glacier melt alone
contributing ~21-40% (Fowler and Archer, 2005; Lutz et al., 2014). Glacier-
fed tributaries such as the Hunza River can exceed 60-92% meltwater during
peak summer flows (Shrestha et al., 2015; Shrestha and Nepal, 2019). In
contrast, the upper Ganges and Brahmaputra basins, dominated by monsoon
rainfall, show annual meltwater contributions of only 10-20% (Lutz et al.,
2014). Central Himalayan basins such as the Dudh Koshi are snowmelt-
dominated, with total melt contributions of ~30-35% annually (Nepal et al.,
2014; Savéan et al., 2015). Smaller glacierized catchments in the western
Himalaya, such as the Chandra-Bhaga, have roughly equal snow and glacier
melt contributions, totalling around half of annual runoff (Srivastava et al.,
2024). In general, meltwater dominates in the sub-basins of the western

Himalaya and Karakoram (Bookhagen and Burbank, 2010; Lutz et al., 2014)

15



Chapter 2

but plays a smaller role in the monsoon-dominated central and eastern
Himalaya (Nepal et al., 2014; Savéan et al., 2015).

Despite these general patterns, absolute estimates often differ
noticeably for the same basin or catchment, such as Langtang valley in the
central Himalaya that showed meltwater contributions ranging from 30 to 90%
from different approaches (Azam et al., 2021). Discrepancies arise from
differences in input datasets such as precipitation products, glacier inventories
(Bookhagen and Burbank, 2010; Immerzeel et al., 2010), calibration
strategies, and definitions of “glacier melt” (Lutz et al., 2014; Kraaijenbrink et
al., 2017). Some studies define glacier melt strictly as ice melt, while others
include seasonal snow on glaciers, leading to higher apparent contributions
(Reid et al., 2012; Shea et al., 2015). High-altitude precipitation uncertainty is
amajor source of variability (Eeckman et al., 2017; Vishwakarma et al., 2022),
with lower assumed precipitation resulting in higher inferred melt fractions
(Ragettli et al., 2013; Kraaijenbrink et al., 2017). Spatial scale also matters;
upper-basin studies report higher melt dependence than basin-wide analyses
that include downstream rainfall-fed tributaries (Bookhagen and Burbank,
2010; Lutz et al., 2014). Uncertainty is compounded by sparse high-elevation
observations (Bolch et al., 2019; Vishwakarma et al., 2022), the dependence
on extrapolated climate data (Kraaijenbrink et al., 2017; Huss and Hock,
2018), and parameter equifinality (Ragettli et al., 2013; Beven, 2016). Tracer-
based methods can help separate melt sources but often face end-member
overlap between snow and ice melt (Maurya et al., 2011; Miiller et al., 2025).
Reducing variability in melt estimates requires improved quantification of
high-altitude precipitation and consistent definitions of melt components.
Standardised methodologies and harmonized datasets will enable more

comparable and reliable assessments across HK basins.

2.4 Snowline estimation using remote sensing

Given the difficulty of conducting frequent in-situ observations at high
altitudes, remote sensing-based SLA mapping serves as a proxy for the ELA
and helps to assess spatial and temporal variations in glacier response to
climate forcing. Early efforts primarily relied on manual delineation from

satellite imagery such as Landsat, Sentinel, SPOT, etc., where visual
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interpretation enabled tracing of the transient snowline on glaciers, particularly
during the end of the ablation season when the contrast between snow and ice
is usually high (Pelto, 2011; Mernild et al., 2013; Rabatel et al., 2016; Tawde
et al., 2016; Barandun et al., 2018; Chandrasekharan et al., 2018). While
manually derived snowlines remain valuable for detailed studies or for
validation, they are constrained by operator bias and limited scalability across
large regions or multiple time steps (Rabatel et al., 2013).

Subsequent studies increasingly adopted semi-automated approaches
based on spectral thresholding, particularly the normalized difference snow
index (NDSI), to classify snow pixels and infer the snowline as the upper limit
of' exposed glacier ice (Rastner et al., 2015; Racoviteanu et al., 2019; Barandun
et al., 2021; Liu et al., 2021). The NDSI method exploits the spectral contrast
between snow and non-snow surfaces in the visible and shortwave infrared
bands to enable robust snow classification. These methods have been widely
applied to medium-resolution imagery from MODIS, Landsat, and Sentinel
and were capable of deriving snowline elevation for numerous glaciers. Often,
a fixed threshold value is used to classify snow cover (Rastner et al., 2015;
Racoviteanu et al., 2019). However, some workflows determine the threshold
adaptively by employing Otsu algorithm on a near-infrared band histogram to
automatically separate snow from ice (Rastner et al., 2019; Liu et al., 2021).
The Otsu method is a histogram-based thresholding approach that objectively
separates classes by maximizing inter-class variance, allowing image-specific
threshold selection without manual tuning. More sophisticated multi-step
classification schemes based on surface albedo have also been introduced to
better delineate the snowline (Lei et al., 2012; Naegeli et al., 2019; Barandun
et al., 2021). To improve scalability and consistency, recent efforts make use
of Google Earth Engine for regional-scale SLA mapping (Liu et al., 2021;
Loibl et al., 2025) and apply machine-learning algorithms to refine snow/ice
classification under diverse conditions (Prieur et al., 2022). To improve the
reliability of results, various post-processing filters are introduced. For
example, Loibl et al. (2025) excluded scenes based on percent cloud cover and
standard deviation of SLA. Other studies applied slope and elevation
thresholds to remove false snowline pixels in steep terrain (Girona-Mata et al.,

2019; Racoviteanu et al., 2019). Additionally, some workflows filtered the
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snowline based on the percent snow cover area in each elevation zone (Rastner
et al., 2019; Prieur et al., 2022; Loibl et al., 2025). Another strategy to
minimize topographic bias is to restrict snowline tracing to the glacier’s central
flowline, rather than across its entire width, thereby reducing the influence of
aspect and shading variations (Rabatel et al., 2017; Davaze et al., 2020).
Despite these advancements, continuous sub-monthly SLA monitoring
in high-mountain environments remains difficult because complex topography
(steep slopes, cast shadows, debris-covered or superimposed ice, crevasses)
and frequent cloud cover—especially during the monsoon season—often
confound automated classification (Racoviteanu et al., 2019; Rastner et al.,
2019). Data discontinuities continue to restrict high-frequency, glacier-scale
SLA monitoring across the HK region. The lack of standardization in SLA
extraction procedures also complicates inter-study comparisons and trend
detection. Nonetheless, integrating multi-sensor data (optical, SAR, and
thermal), employing ensemble approaches, and increasing ground-truth
datasets for training and validation hold promise for improving SLA estimates
across spatial and temporal scales. Continued methodological refinement,
particularly in semi-automated and machine learning-based approaches, is
critical to advance the operational use of SLA tracking for hydrological and

climate assessments in the HK region.

2.5 SLA-ELA relationship

The relationship between SLA and ELA has been investigated across
glacierized regions, and its applicability in the HK region has gained
increasing attention due to the scarcity of in-situ mass balance observations
and the region’s complex climatic and topographic settings. SLA, particularly
during the late ablation season, is commonly employed as a remote sensing
proxy for ELA under the assumption that it approximates the altitude where
annual accumulation equals ablation (Rabatel et al., 2012). This simplification
supports numerous efforts to infer mass balance and climatic sensitivity from
satellite imagery. However, this approach is complicated in HK, where
monsoon dynamics and frequent summer snowfall introduce spatial and
temporal heterogeneity in snow accumulation and melt (Wagnon et al., 2013;

Brun et al., 2015). Wagnon et al. (2013) observed that under extreme melt
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conditions, the ELA can exceed the glacier's highest elevation, rendering SLA-
based ELA estimates misleading. Moreover, glacier-specific topographic
factors such as slope and aspect can also result in localized SLA-ELA
discrepancies, underscoring the importance of spatial filtering in remote
sensing analyses.

Alternative statistical and empirical approaches have been proposed to
improve SLA-ELA inference. Oien et al. (2022) assessed the performance of
the accumulation-area ratio (AAR) and area-altitude balance ratio (AABR)
methods applied to satellite-derived snowlines and found glacier-specific
variability in their performance. Braithwaite and Raper (2009) and Owen and
Benn (2005) suggested that using mean SLA over multiple years may offer a
reasonable approximation of long-term ELA; however, they caution that this
relationship can be sensitive to outlier years and variable accumulation
regimes. Pelto (2011) further proposed that SLA migration rates during the
melt season may provide a more dynamic and sensitive indicator of glacier-
climate interactions than absolute snowline positions.

In summary, while SLA remains a feasible remote sensing-based
indicator for estimating ELA and assessing glacier health in data-scarce
regions like HK, its utility is highly context-dependent. The presence of
complex monsoonal influence and topographic effects introduces biases that
limit the validity of SLA-ELA relationships across the region. Methodological
improvements, including topographic corrections, integration of snow
persistence metrics, and cross-validation with mass balance and ELA in-situ
observations, are essential to enhance the accuracy and reliability of SLA-

derived ELA estimates in HK.
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Chapter 3
Assessing model parameter transferability
between the glacier and basin scale in the

western Himalaya

3.1 Introduction

The Himalaya-Karakoram (HK) Range, also known as the Water Tower of
Asia, contains a huge storage of water in the form of a large number of glaciers,
snow cover, and permafrost. The HK Range contributes to the discharge of
major river systems like the Ganga, Indus, and Brahmaputra in the form of
snow and glacier melt (Immerzeel et al., 2020; Azam et al., 2021). Due to
global and regional warming (Banerjee and Azam, 2016; Portner et al., 2022),
glaciers in the Himalaya have been losing their mass at an accelerating rate
since 2000 (Brun et al., 2017; Azam et al., 2018; Bolch et al., 2019; Maurer et
al., 2019; Shean et al., 2020), which resulted in the increased discharge volume
in these rivers (Lutz et al., 2014; Azam et al., 2021). The latest IPCC 6
assessment report stated that global warming will reach or exceed 1.5 °C above
the pre-industrial level in the next two decades (Portner et al., 2022). This
temperature rise would result in decreasing snow cover, retreating glaciers,
changes in river seasonality, and higher river discharge, which can be the main
cause of different hazards like floods, landslides, etc. The discharge from
snow-covered and glacierized catchments mainly involves contributions from
snowmelt, glacier melt, baseflow, and rainfall-runoff. The snowmelt
contribution to the river discharge is large in the Indus Basin (Karakoram and
western Himalaya) because it receives a major portion of annual precipitation

in the form of snow during winter that provides snowmelt discharge during
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summer (Azam et al., 2021). Conversely, in the Ganga and Brahmaputra
basins (central and eastern Himalaya), the total discharge is dominated by the
monsoonal rains as these basins receive the maximum precipitation from
Indian Summer Monsoon (ISM) during summer. A study by (Bookhagen and
Burbank, 2010) found a pronounced contribution of snowmelt to total
discharge in the Karakoram and western Himalaya as compared to the central
and eastern Himalaya. Since snowmelt plays a significant role in the discharge
of Himalayan rivers, it must be accurately estimated using suitable methods
and modelling techniques with appropriate model parameters and inputs.

Snowmelt runoff modelling has usually been done using temperature-
index or energy balance models. Whereas the temperature-index models are
simple and need fewer input data, the energy balance models are sophisticated
and require plenty of meteorological data (Hock, 2003; Shea et al., 2015;
Srivastava and Azam, 2022b). In the Himalayan region, due to the adverse
situations induced by steep terrain, harsh climatic conditions, and remote
access to the high-altitude regions, monitoring of meteorological data is very
difficult; hence, the application of energy balance models is very challenging.
The temperature-index models follow the degree-day approach to estimate the
melt (Hock, 2003). The snowmelt runoff model (SRM), based on the degree-
day approach, is developed to simulate the daily discharge under the changing
climate from mountain basins where the snowmelt plays an important role
(Martinec et al., 2007). SRM has widely been applied and tested on more than
100 basins of varying areas by different agencies (Martinec et al., 2007) to
simulate and forecast the daily discharge from the glacierized catchments in
different mountain ranges. This model uses long-term meteorological and
remotely sensed snow cover data as basic input for generating discharge at the
outlet (Martinec et al., 2007; Tahir et al., 2011).

The SRM has also been applied in several studies for simulating daily
discharge in the HK range (Immerzeel et al., 2009; Bookhagen and Burbank,
2010; Jain et al., 2010; Tahir et al., 2011; Panday et al., 2014). As snow cover
area (SCA) has also been included in SRM for the simulation of daily
discharge hence it can also be applied to study the impact of reduced snow
cover on discharge (Immerzeel et al., 2009). For the regions where only the

gridded precipitation and temperature datasets are available, SRM performs as
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an efficient tool for snowmelt runoff modelling. Several studies tested this
model with gridded datasets of temperature and precipitation like
APHRODITE, TRMM, etc. (Immerzeel et al., 2009; Bookhagen and Burbank,
2010; Tahir et al., 2011; Zhang et al., 2014). Jain et al. (2010) applied SRM in
the Sutlej Basin (western Himalaya) and found that seasonally varied
temperature lapse rate increases the efficiency of the SRM, which shows the
model is sensitive to the temperature lapse rate parameter. Applying the SRM
in the Hunza River Basin (Karakoram), Tahir et al. (2011) demonstrated that
SRM, using SCA as an input, is relatively less sensitive to the precipitation
input; hence, its efficiency is not hampered in high-altitude catchments where
the precipitation measurements contain large uncertainties. The high accuracy
of SRM runoff simulation in the Astore River Basin part of the Indus Basin
showed that the SRM is suitable for the runoff forecast and water resource
management (Butt and Bilal, 2011). Tahir et al. (2019) applied SRM in the
Shyok River Basin (Karakoram) to assess the snowmelt discharge under
climate change scenarios and found that the SRM is an efficient tool to
simulate the snowmelt discharge in data-scarce regions. SRM was also applied
for future runoff simulation under different climate scenarios in the Astore
Basin (Karakoram) and Hunza Basin (western Himalaya) and resulted in an
effective tool for runoff forecast (Hayat et al., 2019). Different SCA products
from MODIS, like MOD10A2 and MOD10C2, have been widely used and
shown to perform well in several studies (Immerzeel et al., 2009; Bookhagen
and Burbank, 2010; Tahir et al., 2011; Panday et al., 2014; Zhang et al., 2014;
Hagq et al., 2020, 2021).

Available studies suggested that the SRM is a simple and efficient
model which can be applied in high-altitude catchments due to its flexibility
with the gridded dataset, and SCA integration in the modelling scheme.
Further, SRM requires a set of parameters that depends on the catchment area
characteristics and the climatic conditions in the catchment. Due to the lack of
information about the observed parameters in the Himalayan catchments, these
parameters are being calibrated with the observed discharge or have been taken
from previous studies (Butt and Bilal, 2011; Tahir et al., 2011; Panday et al.,

2014; Hayat et al., 2019). But since model parameters play a vital role in model
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calibration to constrain the model from overfitting, they require special
attention in snowmelt runoff modelling.

In the present study, SRM was applied to reconstruct the daily
discharge from a small catchment of Chhota Shigri Glacier (34.7 km?; volume
of Chhota Shigri glacier is 1.69 km? (Haq et al., 2021)) and Chandra-Bhaga
Basin (including Chhota Shigri Catchment) having a large area (~4108 km?)
up to the point of confluence of Chandra and Bhaga rivers at Tandi village in
Himachal Pradesh. The daily discharge was simulated for the period of 2003—
2018 for both the study regions: Chhota Shigri Catchment and Chandra-Bhaga
Basin. Small and large scales were selected to check the performance of SRM
for snowmelt runoff modelling at the catchment scale and basin-scale, having
distinct characteristics. The main objectives for this study are (a) to reconstruct
the daily discharge separately for the Chhota Shigri Catchment and Chandra-
Bhaga Basin and assess the discharge pattern characteristics, (b) to analyse the
model sensitivity to all input parameters in SRM, and (c) to assess the
transferability of model parameters calibrated at Chhota Shigri Catchment to
simulate the discharge in the Chandra-Bhaga Basin.

3.2 Study area and datasets

3.2.1 Topographical and climatic characteristics of the study
area

Chandra-Bhaga Basin is a part of the Indus River system located in the western
Himalaya, it is formed by the confluence of rivers Chandra and Bhaga at Tandi
village in the Lahaul-Spiti Valley, Himachal Pradesh, India (Figure 3.1A, B,
C). It covers an area of ~4108 km? up to Tandi, which lies between the
elevation range from 2846 m a.s.l. to 6370 m a.s.l. (Figure 3.2B). This basin
is having 25% glacierized area as per the GAMDAM inventory (Sakai, 2019).
The Chhota Shigri Catchment, situated in the same basin, covers an area of
34.7 km?, having a discharge site at 3840 m a.s.l. downstream of the Chhota
Shigri Glacier terminus (Azam et al., 2016) (Figure 3.1D). Chhota Shigri
Catchment lies between the elevation range of 3840 to 6263 m a.s.l. and
contains 47% of the glacierized area (Figure 3.2A). The Chandra-Bhaga Basin
is selected because this basin, as well as its Chhota Shigri Glacier Catchment,

has been investigated for glaciohydrology by several studies (Azam et al.,
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2019; Mandal et al., 2020; Azam, 2021; Singh et al., 2021a; Azam et al., 2021;
Gaddam et al., 2022; Srivastava et al., 2022) and also, the Chhota Shigri
Glacier Catchment is having the longest series of observed meteorological data
and discharge measurements that were available for the present study (Azam,

2021).
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Figure 3.1 Location map of Chandra-Bhaga Basin (A-C), Basin boundary
(black) with Tandi discharge site (green), river (green) and GAMDAM glacier
cover (blue). Inset is the map of Chhota Shigri Catchment (D) with the
catchment outline (red), Chhota Shigri Glacier (blue), and location of AWS
station, discharge site, Chhota Shigri base camp, and ERAS grid point (green

symbols).

The climate of the Chandra-Bhaga Basin is governed by two weather
systems: ISM and WDs (Dimri et al., 2015, 2016); however, 67% of the
precipitation (Mandal et al., 2020) comes in the form of snow during winter
months from WDs (Pratap et al., 2019; Singh et al., 2019; Mandal et al., 2020;
Laha et al., 2021). The study region receives maximum precipitation in
February and March from WDs (Mandal et al., 2020). Major discharge
contribution in this basin is governed by the seasonal snow and glacier melt

from major glaciers like Bara Shigri, Samudra Tapu, Sutri Dhaka, Batal,
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Chhota Shigri, and Hamtah, which are losing their mass over the last few
decades (Singh et al., 2019; Mandal et al., 2020; Vishwakarma et al., 2022).
In the Chhota Shigri Catchment, the discharge is dominated by snowmelt
having around 69% contribution to the total discharge (Srivastava and Azam,
2022b). The maximum discharge in the Chhota Shigri Catchment occurs in
July—August, corresponding to the maximum temperature (Mandal et al.,

2020).

3.2.2 Datasets
3.2.2.1 DEM data and elevation zones

For snowmelt runoff modelling Cartosat Digital Elevation Model (DEM)
having 30 m resolution was downloaded from the Bhuvan portal
(https://bhuvan-app3.nrsc.gov.in) and extracted separately for both, the
catchment and basin. The Chhota Shigri Catchment was divided into three 700
m interval elevation zones and the Chandra-Bhaga Basin was divided into
sixteen 200 m interval elevation zones and their mean elevation and zone area
were extracted using the digital elevation model (Table 3.1, Figure 3.2). The
Chandra-Bhaga Basin was divided into the maximum possible number of
elevation zones in SRM (WinSRM), but a higher elevation difference was used
in the Chhota Shigri Catchment because the zonal areas were too small with

the same elevation difference as the Chandra-Bhaga Basin.
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Figure 3.2 Hypsometry curve for Chhota Shigri Catchment (A) and Chandra-
Bhaga Basin (B) showing the area distribution over the different elevations.
Points represent the maximum elevations for each zone and cumulative

percentage area.
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3.2.2.2 Meteorological data, discharge data and bias correction

Reanalysis product ERAS precipitation and temperature data at resolution
0.25° x 0.25° were downloaded (https://cds.climate.copernicus.eu) at the
nearest ERAS grid point to the automatic weather station (AWS) at 4863 m
a.s.l. in the Chhota Shigri Catchment (Figure 3.1D). ERAS reanalysis data is
available since 1950. For this study, the ERAS temperature and precipitation
data were bias-corrected using the field observations from the Chhota Shigri
Catchment. The in-situ precipitation data was available from the Chhota Shigri
base camp (3850 m a.s.l.) over 2012-2020 from an automatic precipitation
gauge (Geonor T-200B) and the temperature data was available from the AWS
(Campbell CR1000 data logger; details can be found in (Mandal et al., 2020)
(4863 m a.s.l.) in the Chhota Shigri Catchment over 2009-2019 (Azam et al.,
2016; Mandal et al., 2020) (Figure 3.1D). For the bias correction of
temperature data, a linear regression equation was developed between the daily
raw ERAS temperature and the observed temperature, whereas monthly scale
factors were used to bias correct the raw ERAS precipitation series. The ERAS
bias-corrected data was used for snowmelt runoff modelling in the Chhota

Shigri Catchment as well as Chandra-Bhaga Basin.
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Table 3.1 Characteristics of different zones used in SRM for Chhota Shigri Catchment and Chandra-Bhaga Basin

Zone Elevation range (m) Mean elevation (m) Area (km?) Area (%)
Chhota Shigri Catchment
1 3840-4600 4328 5.4 15.7
2 4600-5300 4981 21.7 62.6
3 5300-6263 5673 7.5 21.7
34.7 100
Chandra-Bhaga Basin

1 2846-3000 2943 11.3 0.3
2 3000-3200 3107 44.0 1.1
3 3200-3400 3304 75.9 1.8
4 3400-3600 3506 91.8 2.2
5 3600-3800 3706 121.7 3.0
6 3800-4000 3906 164.2 4.0
7 4000-4200 4107 221.6 54
8 4200-4400 4304 280.0 6.8
9 4400-4600 4504 347.6 8.5
10 4600-4800 4705 415.2 10.1
11 4800-5000 4904 497.6 12.1
12 5000-5200 5102 581.1 14.1
13 5200-5400 5298 599.6 14.6
14 5400-5600 5489 443.4 10.8
15 5600-5800 5682 168.3 4.1
16 5800-6370 5985 44 4 1.1
4107.5 100
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Figure 3.3 Monthly variation of model variables ERAS5 bias-corrected
(temperature, precipitation) and SCA for Chhota Shigri Catchment and
Chandra-Bhaga Basin over 2003-2018.

The ERAS bias-corrected mean annual temperature at the nearest ERAS
grid point was —5.5 °C over 2003-2018, with the maximum mean monthly and
minimum mean monthly temperature of 4.1 °C in July and —14.9 °C in
January. The mean monthly temperature for summer (May—September) was
1.2 °C and for winter (January—April and October-December) it was —10.3 °C
(Figure 3.3). The ERAS bias-corrected mean annual precipitation was 819.9
mm over 2003-2018, with maximum monthly precipitation of 129.7 mm in
March and minimum monthly precipitation of 18 mm in November (Figure
3.3). The mean precipitation for summer and winter was 263.1 mm and 556.8
mm, respectively. The higher mean precipitation in winter shows that the
major portion of the precipitation occurs in winter, as suggested by previous
studies (Azam et al., 2014; Mandal et al., 2020).

The observed daily discharge data from Chhota Shigri Catchment at a
gauging site (~3840m a.s.l.), ~2km downstream of the Chhota Shigri glacier
terminus, is available for the summer months over 2010-2015 (Azam et al.,
2019). The measurement of discharge was done using the velocity-area
method. A graduated staff gauge for monitoring the water level, dipsticks for
measuring the cross-sectional area, and a current meter for the measurement
of velocity were used (Mandal et al., 2020). The daily discharge measurements

for the Chandra-Bhaga Basin are available over 2004—2006 at a gauging site
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located at Tandi village. This gauging site is maintained by the Central Water
Commission (CWC). For the measurement of discharge by CWC at this
gauging site, the velocity-area method was used with a current meter for
velocity, a rod and bamboo for depth = measurement

(http://cwc.gov.in/mco/discharge-observation).

3.2.2.3 Snow cover data

Snow cover data for the study area was available from an enhanced snow cover
and glacier combined product MOYDGLO6* at the 8-day interval for the
period 2002-2018. This product is generated by reducing the overestimation
caused by MODIS sensors and underestimation caused by cloud cover in
MODIS snow cover products MOD10A2.006 (Terra) and MYD10A2.006
(Aqua) (Muhammad and Thapa, 2020). This product is freely available in tiff
format and WGS1984 projection
(https://doi.pangaea.de/10.1594/PANGAEA.901821). For this study, a total of
736 images were used between 2003-2018. The SCA for each elevation zone
of the Chhota Shigri Catchment and Chandra-Bhaga Basin was extracted for

each 8-day interval and linearly interpolated to get the daily values.
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In the Chhota Shigri Catchment, SCA was least in August (41% of the
catchment area) and started increasing from September, achieved maximum
SCA in March—-April (100% of the catchment area), and then started
decreasing in May (Figure 3.3 and Figure 3.4A). Whereas in the Chandra-
Bhaga Basin, the SCA started increasing in September and decreased from
March. Chandra-Bhaga Basin showed the maximum SCA in February (99%
of the basin area) and the minimum SCA in August (26% of the basin area)
(Figure 3.3 and Figure 3.4B). The mean summer and winter SCA were 65%
and 90%, respectively, in the Chhota Shigri Catchment, whereas for the
Chandra-Bhaga Basin, it was 45% and 76% of the total basin area,

respectively.

3.3 Methodology

3.3.1 Snowmelt runoff model

SRM (WinSRM version 1.12) is based on the degree-day approach and runs
for a maximum of 366 days in one simulation. This model can be applied in
two ways: basin-wide and zone-wise applications. For reconstructing the
discharge in the Chhota Shigri Catchment and Chandra-Bhaga Basin, the
model was run zone-wise to compute the catchment-wide or basin-wide
discharge. The simulated discharge is a combination of snowmelt runoff and
rainfall runoff superimposed on recession flow to transform all the
components into daily discharge (Martinec et al., 2007). This model follows

eq. 3.1 for the daily discharge computation from each zone:

A*10000(1 ko)
86400 n+l

+ Qn ki1 (3.1)

Qn+1 = [C.S‘n * an(Tp +ATy)S, + CRnPn]

Where Q is the daily discharge in m%/s, Cs and Cr are the runoff coefficients
for snow and rain, respectively, a is the degree-day factor (cm°C'd"), T, +A
T, are the degree days (°Cd ') after extrapolation for each zone mean elevation,
S is the ratio of snow-covered area to the zone area, P is precipitation
contributing to runoff (cm), A is the zone area (km?), k is the recession
coefficient (input as ‘x’ and ‘y’ in the model) and n shows the sequence of

days.
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The critical temperature (Teit) is used to decide the precipitation phase
as snow or rain. If the precipitation is determined as snow, its delayed effect is
considered in two ways: (1) snowfall over the snow-covered area is assumed
to become part of the snowpack and its contribution is determined by the snow
depletion curve (Martinec et al., 2007) and (2) snowfall occurring over snow-
free areas contributes to the discharge immediately, depending on the available
degree days. When the precipitation is determined as rain its contribution to
the discharge depends on the snowpack characteristics. In winter, the
snowpack is dry and thick, so the rain falling over the SCA is retained by the
snowpack and the rain contribution to the total runoff is limited to the only
snow-free area. Later in the summer, the snow becomes ripe, and the rain is
allowed to contribute to the runoff from the entire zone area. The rainfall-
induced melting and base flow (sub-surface fluxes) are ignored in SRM
(Martinec et al., 2007). Further, the glacier ice melt contribution is also ignored

(Tahir et al., 2011).

3.3.2 Model parameters

In SRM, a total of nine different parameters are used. These parameters are
runoff coefficient for snow and rain (Cs and Cr), degree-day factor (a),
temperature lapse rate (LR), critical temperature (Tcit), time lag, recession
coefficients (x and y), and rainfall contributing area (RCA). In rough terrain
like the Himalaya, the measurement of these parameters is very difficult
because of the remote access and adverse climate conditions. But the Chhota
Shigri Catchment is one of the glacier catchments which is having the longest
series of observed meteorological data and discharge measurements (Azam,
2021), hence among the nine parameters three parameters (LRs, ‘x” and ‘y’)
were calculated and constrained using the field measurements in the Chhota
Shigri Catchment, whereas the other model parameters were calibrated for the
Chhota Shigri Catchment.

Cs and Cr represent the losses between the available water (snowmelt +
rainfall) and the runoff volume from the catchment or basin; it depends on the
surface conditions in the catchment or basin. The default values of Cs and Cr
in the model were adopted initially for the Chhota Shigri Catchment as 0.7 and
0.6 for Cs and Cg, respectively (Martinec et al., 2007). ‘a’ is converting the
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positive temperatures on a particular day into the melt depth. For the Chhota
Shigri Catchment, the initial ‘a’ was considered as 5.28 mm°C'd"! (Azam et
al., 2014). The daily temperature LRs for the Chhota Shigri Catchment were
available between the two temperature measurement stations at 3850 m a.s.l.
(base camp) and 4863 m a.s.l. (AWS station) (Mandal et al., 2022; Srivastava
et al., 2022). The mean LR was 0.63 °C(100m)"! and it was 0.71°C(100m)!
for summer (May—September) and 0.57 °C(100m)! for winter (October—
April). For precipitation extrapolation, a precipitation gradient (Pg) of 0.20
m/km was adopted, constrained through a mass balance model calibration on
the Chhota Shigri Glacier (Azam et al., 2014). Tcrit is the threshold temperature
that determines the precipitation phase. The time lag is the time interval
between the start of increasing temperature and the corresponding increase in
discharge. For both the catchment and basin, a time lag range from 6 to 18
hours was adopted, varying with the elevation zones from previous studies
(Martinec et al., 2007; Tahir et al., 2011; Panday et al., 2014). The time lag
tends to increase with elevation because at higher elevations, the mean
temperature is less and the travel time for the melted water to the discharge
point is more as compared to the lower zones, which results in the delayed
discharge from the higher elevations. k deals with the proportion of the daily
discharge which appears immediately in the runoff. In the SRM, this
coefficient is used in the form of ‘x’ and ‘y’, which is usually determined by

b

the historical discharge series. Based on the relation between k, ‘x’, ‘y’, and

Qn+1

discharge i.e., k = and k,,,; = xQ,” the values of ‘x’ and ‘y’ can be

n

determined (Martinec et al., 2007). In our study, the value of ‘x” and ‘y’ were
calculated from the available discharge series for the Chhota Shigri Catchment
and Chandra-Bhaga Basin. The RCA was taken as 1 for summer and O for
winter depending on the melting season for both catchment and basin. RCA 1
represents that the rain from the total zone area is contributing to the runoff

and 0 shows that rain only from the snow-free area is contributing to the runoff.

3.3.3 Model variables

Precipitation, temperature, and SCA are the three most important input

variables in SRM, which are required to simulate the daily discharge (Martinec
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et al.,, 2007). The bias-corrected temperature and precipitation data were
extrapolated from the ERAS grid point for the mean altitude of each elevation
zone using the daily LR and Pg, respectively, available from previous studies
in the Chhota Shigri Catchment (Azam et al., 2019; Srivastava et al., 2022).
The extrapolated daily temperature and precipitation values were fed into the
model, separately for each zone in both the Chhota Shigri Catchment and
Chandra-Bhaga Basin. The model also needs daily SCA fractions as an input,
which is the ratio of zonal SCA to the total zonal area. For each zone, these

values were calculated at a daily timestep as discussed in section 3.2.2.3.

3.3.4 Model calibration and validation

The model for the Chhota Shigri Catchment was calibrated with the observed
discharge values over 2010-2013 (Figure 3.5A). The parameters Teit, ‘a’, Cs,
Cr, X, and y were calibrated over 2010-2013 while LR, time lag, and RCA
were kept constant. The calibrated parameters were kept within a permissible
range corresponding to the previous studies on SRM to avoid the overfitting
of the model. The calibration was done by considering different performance
criteria, i.e., coefficient of determination (R?), RMSE, and NSE (Nash-Sutcliff

efficiency), which is determined using the equation:
2

RZ — ‘?=1{(0i—0’)*(5i—5’)} (3‘2),
[ERa00"2 S (51872
n —S:)2
RMSE = |2=Ci (3.3),
T 1(0i-5)°

Here, n, 0;, S;,0'and S’ are the number of observations, observed
discharge, simulated discharge, mean observed discharge and mean simulated
discharge, respectively. NSE lies between 1 to —oo where 1 corresponds to the
perfect match and R? lies between 0 to 1. The calibrated parameters are shown

in Table 3.2.

3.3.5 Sensitivity and uncertainty estimation
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To understand the sensitivity of simulated discharge to different model
parameters, sensitivity analysis was performed for eight model parameters
including k (x and y), Cs, Cgr, ‘@’, Tait, LR, and time lag. The sensitivity
analysis was performed separately for both the Chhota Shigri Catchment and
Chandra-Bhaga Basin over 2003-2018. For sensitivity analysis, each
parameter was increased and decreased one by one by 10%, 20%, and 30%
while keeping all other parameters constant, and the sensitivities were
estimated using simulated mean daily discharge (Oerlemans et al., 1998) as

follows:

§ =4 (3.5),

Here, S is the sensitivity of each parameter, Qy and Q; is the mean daily
discharge values at the highest (+10%, +20% and +30%) and lowest (—10%,
—20% and —30%) values of parameters. For the uncertainty estimation in the
simulated discharge, each model parameter among X, y, Cs, Cr, ‘a’, and Terit
were changed one by one, within a 10% range of its calibrated value (Heynen
et al., 2013; Ragettli et al., 2013). The parameters which were not calibrated
kept the same i.e., LR, time lag, and RCA, using the field observations from
Chhota Shigri Catchment, are not changed in this process. The uncertainty
estimation was done for both the study region Chhota Shigri Catchment and
Chandra-Bhaga Basin separately. The overall mean uncertainty in the
simulated daily discharge was estimated using the error propagation law as

following:

Q %~ Q-10% 2
U — \/Z‘lil( +10% . 10/) (3.6),

Here, U is the overall uncertainty, n is the number of parameters, and
Q4109 and Q_qgy, are the mean daily simulated discharge when the

parameters increased and decreased by 10%.

3.4 Results and discussions

3.4.1 Calibration and validation

The calibrated daily discharge over 2010-2013 showed a good agreement with
the observed data (R? = 0.90, RMSE = 2.92 and NSE = 0.05) (Figure 3.5A).

However, the mean calibrated discharge showed an underestimation of 41%
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(Figure 3.5A, Figure 3.7A). As already highlighted, all the model parameters
were kept within plausible ranges based on previous studies to avoid
overfitting of the SRM. The 41% underestimation is most probably due to the
lack of baseflow and glacier melt contribution in the SRM (details in section
3.4.7). After the calibration, the SRM output for the Chhota Shigri Catchment
was validated with the observed discharge over 2014-2015. In validation the
mean simulated discharge showed a good agreement with the observed
discharge (R? = 0.94, RMSE = 2.34 and NSE = —0.13) (Figure 3.5B) but with
an underestimation of 34% (Figure 3.5B, Figure 3.7A). After the validation,
the same calibrated model was used to simulate the daily discharge for the

Chhota Shigri Catchment over 2003-2018.

12 | A. Chhota Shigri Catchment 2010-2013 12 B. Chhota Shigri Catchment 2014-2015
Y=059X . Y =0.66 X
IO R2 = 0.90 0] R2=0.94
E RMSE = 2.92 E RMSE = 2.34
;’ NSE = 0.05 @ NSE=-0.13
o 8- o 8
[ ]
K- =
a 2
a [= I
K ®
B 5
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0 7]
0 | I | I

Observed Discharge (m?/s) Observed Discharge (m¥/s)
Figure 3.5 Scatter plots for calibration on Chhota Shigri Catchment over 2010-
2013 (A) and validation on Chhota Shigri Catchment over 2014-2015 (B).

Plots are showing the relations between observed and simulated discharges.

The observed daily discharge was also available for the Chandra-Bhaga
Basin over 2004-2006. To check the transferability of catchment-scale
calibrated model parameters to basin-scale discharge simulation, the discharge
for Chandra-Bhaga Basin was simulated over 2004-2006 for two different
case scenarios. Case-I: the calibrated parameters on Chhota Shigri Catchment
were applied on all the zones in Chandra-Bhaga Basin and Case-II: the
calibrated parameters were applied on zones having elevation above 3900 m
a.s.l., as the Chhota Shigri Catchment is having a minimum elevation of ~3900
m a.s.l. and altered parameters (based on previous SRM studies) were applied

for zones below 3900 m a.s.l.
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In Case-II, for the zones below 3900 m a.s.l., the parameters were
altered based on previous studies (Tahir et al., 2011; Panday et al., 2014). A
lower value of ‘a’ (4.5 mm°C'd"!") was adopted for the lower zones because
‘a’ is expected to decrease with a decrease in elevation, due to the high direct
solar radiation at higher altitudes (Hock, 2003; Zhang et al., 2006; Tahir et al.,
2011; Panday et al., 2014). T for rain/snow separation was taken as 1.5 °C
for lower zones, like the previous studies in the western Himalaya (Singh and
Jain, 2003; Aggarwal et al., 2014; Kiba et al., 2021). The values of Cs and Cr
were also varied with the zone elevation, for the higher altitudes, the values
for Cs are higher and the values for Cr are less as compared to the lower zones
(Tahir et al., 2011; Panday et al., 2014). In the Chandra-Bhaga Basin for the
lower elevations (below 3900 m a.s.l.), the values for these coefficients were
altered as 0.5 and 0.75 for Cs and Cg, respectively. The values of x, y, RCA,
time lag, and LR were kept the same as the Chhota Shigri Catchment for all
the zones (Table 3.2).

With the mentioned values of all the parameters for Case-I and Case-I1
(Table 3.2), the daily discharge for Chandra-Bhaga Basin was simulated over
2004-2006. The daily simulated discharge in both cases showed a good
agreement with the observed discharge over 2004-2006 (Figure 3.6A, B) but
an overestimation of 83% in Case-I and an overestimation of 74% in Case-IL.
Despite the underestimation in simulated discharge at Chhota Shigri
Catchment, large discharge overestimation in the Chandra-Bhaga Basin
showed that the catchment-scale calibrated parameters are not transferable for
basin-scale discharge simulation. This overestimation is further discussed in

section 3.4.7.
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Table 3.2 List of calibrated parameters and their calibrated values for the Chhota Shigri Catchment over 2010-2013 and Chandra-Bhaga Basin

over 2004-2006. 'Z’ denotes the elevation zone.

Case-1

Parameter Chhota Shigri (Chandra-Bhaga Case-I1 Case-I11
Catchment Basin) g (Chandra-Bhaga Basin) (Chandra-Bhaga Basin)
Critical temperature for 0.1 0.1 1.5 (Z1-Z6), 2 (Z1-Z76),
snow/rain (Terie) (°C) (Z1-73) (Z1-716) 0.1 (Z7-7216) 1 (Z7-716)
Degree day factor 6.8 6.3 4.5 (Z1-Z6), 4.5 (Z1-26),
(a) ’ ' 6.8 (Z7-216) 5.0 (Z7-216)
Z1-73 Z1-716
(mm°C'd™") ( ) ( )
0.5 (Z1-Z6), 0.4 (Z1-Z6),
Runoff coefficient for 0.75 0.75 075 ((27 Zl)6) 0.5 ((27 Zl;)
snow (Cs) (Z1-23) (Z1-7216) ’ '
. . 0.75 (Z1-Z6), 0.5 (Z1-Z6),
Runoff coefficient for rain 0.70 0.70
(Cx) (Z1-23) (Z1-Z16) 0.70 (Z7-Z16) 0.4 (Z7-7216)
X 0.85 0.85 0.85 1.0499
y 0.002 0.002 0.002 0.061
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Figure 3.6 Scatter plots between the observed and simulated discharge for
Chandra-Bhaga Basin in all three case scenarios (A) for Case-I, (B) for Case-

IT and (C) and (D) for Case-III.

Apart from these two case scenarios (Case-I and Case-II), where the
Chandra-Bhaga simulated discharge is largely overestimated, an independent
model calibration was performed for the Chandra-Bhaga Basin using the
discharge data from Tandi village (Case-III; Table 3.2), ignoring the calibrated
parameters on Chhota Shigri Catchment. The calibrated daily discharge over
2004-2005 showed a good agreement with the observed data with R? = 0.87,
RMSE =34.31 and NSE = 0.77 (Figure 3.6C). After the calibration, the same
model was validated with the observed data for 2006 that showed a good
agreement with R?> = 0.92, RMSE = 18.47 and NSE = 0.85 (Figure 3.6D). The
calibrated and validated modelled discharge in Chandra-Bhaga Basin showed
an underestimation of 12% and 9%, respectively unlike the overestimation

shown in Case-I and Case-II for the same basin. The daily discharge for the
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Chandra-Bhaga Basin was simulated with these calibrated parameters over

2003-2018.

3.4.2 Reconstructed daily discharge and its pattern

The discharge from Chhota Shigri Catchment and Chandra-Bhaga Basin was
reconstructed for 20032018 at a daily time step (Figure 3.7). The mean of
daily discharges over 2003-2018 for the Chhota Shigri Catchment was 1.2 +
0.2 m*/s (Figure 3.7A). In the Chhota Shigri Catchment, the simulated daily
discharge starts increasing in April and reaches the maximum in July. The
highest peak in daily discharge was observed on 11" July 2005 of 7.9 + 1.4
m?>/s. The mean of daily discharges in the Chandra-Bhaga Basin was 55.9 +
12.1 m*/s over 20032018 (Figure 3.7B). The daily discharge starts increasing
in March and reaches its peak in July. The highest daily discharge was
observed on 16" July 2011 of 386.7 + 21.2 m%/s. The observed daily discharge
values for the Chhota Shigri Catchment over 2010-2015 and for Chandra-
Bhaga Basin over 2004-2006 are also shown in Figure 3.7. The comparison
showed that the simulated discharge in both the catchment and basin was

underestimated (discussed in section 3.4.1).
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Chhota Shigri Catchment (A) and Chandra-Bhaga Basin (B) in red color over
2010-2015 and 2004-2006, respectively.

3.4.3 Seasonal and annual discharge patterns

To understand the seasonal and annual patterns, the seasonal and annual
discharge was computed using daily simulated discharge for Chhota Shigri
Catchment and Chandra-Bhaga Basin over 2003—-2018. Summer discharge has
been considered from May to September and winter discharge has been
considered from October to December and January to April in the same year.
The mean summer discharge and winter discharge were found as 2.7 £ 0.5
m?/s and 0.1 + 0.05 m*/s for Chhota Shigri Catchment, Similarly, for Chandra-
Bhaga Basin it was 123.9 £ 22.3 m%/s and 6.7 = 3.3 m?/s, respectively. The
simulated discharge ranged from 0.02 £ 0.01 m>/s to 0.2 + 0.04 m*/s and 2.6 +
1.2 m%/s to 13.3 + 4.7 m%/s in winter and 1.9 + 0.3 m>/s to 3.4 + 0.6 m*/s and
77.6 £ 13.7 m%/s to 164.5 + 28.3 m*/s in summer for Chhota Shigri Catchment
and Chandra-Bhaga Basin, respectively. The annual discharge is the mean
discharge in both seasons over the same year. The mean annual discharge for
the Chhota Shigri Catchment was found as 1.2 = 0.2 m*/s over 2003-2018 with
a minimum annual discharge of 0.8 £ 0.1 m®/s in 2004 and a maximum of 1.5
+0.3 m%/sin 2011 (Figure 3.8B). The mean annual discharge for the Chandra-
Bhaga Basin was found as 55.9 = 12.1 m%/s over 2003-2018 with a minimum
annual discharge of 39.9 + 9.1 m*/s in 2003 and a maximum annual discharge
of 75.1 £ 13.2 m%/s in 2010 (Figure 3.8C). The mean summer discharge
dominates the mean winter discharge over 2003—-2018 in the Chhota Shigri
Catchment as well as in the Chandra-Bhaga Basin. Similar results were also
suggested for the Chhota Shigri Catchment and Chandra Basin in the western
Himalaya (Singh et al., 2021a; Gaddam et al., 2022; Srivastava and Azam,
2022b).

The year 2016 has the maximum temperature and minimum
precipitation (Figure 3.8A). It is noteworthy that 2016 was the warmest year
over a century (Wuebbles et al., 2017). This year, though the winter SCA was
relatively less, the Chhota Shigri catchment showed more than the average
discharge because of excessive snowmelt runoff production, mainly supported

by quasi average summer SCA (Figure 3.8B). Conversely, in the Chandra-
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Bhaga Basin, the modelled discharge was less than average because of the
lowest precipitation (Rain + Snow), and lowest winter as well as summer SCA
(Figure 3.8C). Similarly, in 2011 the Chhota Shigri Catchment showed the
maximum discharge having average precipitation and associated with the
higher snowmelt due to higher temperature and higher summer SCA (Figure
3.8B). While the Chandra-Bhaga Basin showed the maximum discharge in
2010 due to the maximum precipitation and higher summer SCA (Figure
3.8C).
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Figure 3.8 Seasonal (summer in orange and winter in blue) and annual (grey)
discharge patterns over 2013-2018 with total precipitation (black) and mean
temperature (red) patterns for Chhota Shigri Catchment (B) and Chandra-
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Bhaga Basin (C). The summer season is from May to September and the
Winter season is from October to December and January to April. Total
precipitation and mean temperature patterns plotted here represent the data
from the ERAS grid point location (A). Dashed lines show the average values
over 2003-2018 of temperature (red), Precipitation (black), winter SCA

(blue), and summer SCA (orange).

Further, to understand the influence of variables on discharge, the
interrelationships between the discharge (annual, summer, and winter), SCA
(annual, summer, and winter), and temperature and precipitation (annual,
summer, and winter) were explored with the help of the correlation matrix
developed separately for both the study regions (Figure 3.9). In both the study
regions, the annual discharge is highly correlated with the summer discharge
as the maximum melting occurs in summer (Figure 3.9). The annual discharge
in the Chhota Shigri Catchment is more correlated with summer temperature
(r = 0.51) and summer SCA (r = 0.47) and has a very weak correlation with
the annual precipitation (Figure 3.9A). These relations are expected because
the higher altitude of the catchment provides more snowfall than rainfall hence
catchment discharge is mainly dominated by snowmelt. Similarly, the summer
discharge also showed the same relationship with the summer temperature and
summer SCA (Figure 3.9A). Due to very low temperatures, winter discharge
was negligible (4% of summer discharge) hence relationships were

insignificant.
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Figure 3.9 Correlation matrix for Chhota Shigri Catchment and Chanda-Bhaga
Basin. The values from —1 to 1 denote the correlation coefficients and the

color range denotes the intensity of the correlation (1 denotes the completely
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positive correlation, dark blue, and —1 denotes the completely negative
correlation, dark brown). Ann, Sum, and Win = annual, summer, and winter
season, and Q, P, T, and SCA are discharge, precipitation, temperature, and

SCA, respectively.

In the Chandra-Bhaga Basin, the annual discharge showed a strong
correlation with the summer SCA (r = 0.74) followed by summer precipitation
(r=0.53) (Figure 3.9B), as the basin has lower altitudes (up to 2804 m a.s.l.),
receives a significant contribution of rainfall that directly contributes to
discharge. The same relation was also shown by the summer discharge with
summer SCA and summer precipitation (Figure 3.9B). Though the winter
discharge was only 6% it was fairly correlated with the winter SCA (r = 0.56)
and winter temperature (r = 0.41) (Figure 3.9) because sometimes at lower
altitudes positive temperatures may occur in March and April which generates
some snowmelt. In all, the discharge in Chhota Shigri Catchment is equally
driven by both summer temperature and summer SCA while in the Chandra-
Bhaga Basin summer SCA and summer precipitation exert a strong control on

the discharge.

3.4.4 Contribution of different components to total discharge

The modelled discharge from SRM includes the contribution from rainfall and
snowmelt. The snowmelt is considered in two ways: melt from ‘New snow’
and ‘Initial snow’. ‘New snow’ melt is the sum of melts from the snow melt
from nth day snowfall and remained snow on the previous days from the non-
snow cover area in the catchment. ‘Initial snow’ melt is the melt contribution
coming from the depletion of snow cover. The percentage contribution of
different components in discharge for Chhota Shigri Catchment and Chandra-

Bhaga Basin is shown in Figure 3.10.

44



Chapter 3

A. Chhota Shigri Catchment B. Chandra Bhaga Basin
160 —0.6 0.6
6000
120 )
—_ 0.4 — @—@—® Discharge (ms) 0.4
w - -~ o 4000 — I initial snow (m w.e.) —_
< [ [ New snow (m w.e.) @
E 2 E Ralntal (m w.e.) £
a0 £ E
2 s 2 =
G 2 35 2
2 o 2 a
(a] o
—0.2 0.2
2000 |
“ I
0 \ . 0 o ! 1 1 o,
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month Month

Figure 3.10 Monthly hydrograph of total discharge (black line) and depth of
different components contributing to the total discharge: Initial snow (blue),
new snow (sky blue), and rainfall (light green) over 2003-2018 for Chhota
Shigri Catchment (A) and Chandra-Bhaga Basin (B). The pie chart shows the

percentage contribution of each component.

The percentage contribution of snowmelt as initial snow from SCA to
total discharge was highest with 89% and 74% in Chhota Shigri Catchment
and Chandra-Bhaga Basin, respectively. The contribution of monthly
snowmelt from the SCA was maximum over July in both the study regions in
agreement with the maximum monthly mean temperatures (Figure 3.3). As
expected, the contribution of total snow melt (initial snow + new snow) to total
discharge was significantly more in the Chhota Shigri Catchment (90%)
compared to the Chandra-Bhaga Basin (78%) (Figure 3.10). Whereas the
contribution of new snow was higher in Chandra-Bhaga Basin (4%) as
compared to the Chhota Shigri Catchment (1%). The higher melt contribution
of new snow in the Chandra-Bhaga Basin was due to the higher temperatures
at the lower zones (below 3900 m a.s.l.) than Chhota Shigri Catchment, which
promotes the melting of new snow. As expected, the rainfall contribution to
total discharge was higher (22%) in the Chandra-Bhaga Basin than in the
Chhota Shigri Catchment (10%) due to the lower elevation zones (below
3900m a.s.l.) that favour more rainfall due to higher temperatures.

The monthly depth (new snowmelt + initial snowmelt + rainfall) was

maximum in July as 0.49 + 0.03 m w.e. and 0.27 + 0.02 m w.e. for Chhota
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Shigri Catchment and Chandra-Bhaga Basin, respectively (Figure 3.10A and
3.10B). The total annual depth (1.34 £ 0.01 m w.e.) in Chhota Shigri
Catchment was more than the Chandra-Bhaga Basin (0.93 + 0.05 m w.e.)
because the higher Teri¢ (1 °C at above 3900 m a.s.l. and 2°C at below 3900 m
a.s.l.) in the Chandra-Bhaga Basin compared to Teit (0.1 °C) in the Chhota
Shigri Catchment results in a relatively higher amount of snow available for
melt from snowfall (section 3.4.1). Snow takes relatively more time to
contribute to the discharge and sometimes may not produce melt due to limited
degree days and become part of storage that is nullified at the end of each
calendar year, a limitation of the SRM discussed in section 3.4.7. Due to the
lower Terit (0.1 °C) a larger portion of precipitation is considered as rainfall in
Chhota Shigri Catchment which directly contributes to the discharge and
further results in higher depth than Chandra-Bhaga Basin.

3.4.5 Decadal discharge patterns

Studies suggest that volumetric and seasonal changes are occurring in the HK
river runoffs due to climate change (Azam et al., 2021; Lutz et al., 2014).
Though our simulation period is short (2003—-2018), the decadal variations in
discharge were analysed by comparing two time periods of equal length as
2003-2010 and 2011-2018. A higher discharge was found over 2011-2018
period than 2003-2010 period in both Chhota Shigri Catchment and Chandra-
Bhaga Basin. The mean monthly discharge in the Chhota Shigri Catchment
increased by 8% from 1.1 £ 0.2 m%/s to 1.2 = 0.3 m%/s over 2011-2018 as
compared to 2003-2010. Similarly in the Chandra-Bhaga Basin, the mean
monthly discharge increased by 2% from 54.9 + 11.2 m*/s to 56.2 + 13.9 m®/s
over 2011-2018 as compared to 2003-2010. In both the study regions, the
maximum monthly discharge occurred in July (Figure 3.11). The maximum
monthly discharge increased by 11% from 4.4 £ 0.7 m®/s to 4.9 + 0.7 m*/s for
the Chhota Shigri Catchment and by 9% from 184.1 £ 25.9 m%/s to 201.8 +
24.8 m*/s for the Chandra-Bhaga Basin in 2011-2018 as compared to 2003—
2010 (Figure 3.11A and 3.11B).

46



Chapter 3

A. Chhota Shigri catchment B. Chandra Bhaga Basin
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Figure 3.11 Decadal comparison of discharge with precipitation, temperature,
and snow cover area over the two time periods 2003-2010 (blue color) and
2011-2018 (red color) for Chhota Shigri Catchment (A) and Chandra-Bhaga
Basin (B).

In the Chhota Shigri Catchment, the mean monthly discharge over June-
August increased by 11% from 4.3 + 0.64 m*/s in the 2003-2010 to 4.8 + 0.76
m?/s in 2011-2018 (Figure 3.11A). This increased discharge was due to the
increased temperature in 2011-2018 (3.3 °C) as compared to 2003-2010 (2.7
°C) over June—August (Figure 3.11), having almost the same SCA in both
periods (53% and 54%). Conversely, the discharge decreased in September
over 2011-2018 as compared to 2003-2010 due to the lower SCA (64% as
compared to 71%), even having a higher temperature by 0.2 °C in 2011-2018
(Figure 3.11A). In the Chandra-Bhaga Basin, the mean monthly discharge also
increased in summer by 11% from 126.5 + 20.6 m*/s over 2003-2010 to 140.4
+ 30.4 m’/s over 2011-2018, except in September (Figure 3.11B). This
increment in summer discharge resulted due to the increased precipitation
from 882 mm in 2003-2010 to 1023 mm in 2011-2018 (over June—August)
and increased SCA (over May-June) from 63% in 2003-2010 to 66% in 2011-
2018 (Figure 3.11B). Similarly, in September the decreased precipitation by
27 mm and decreased SCA (37% as compared to 44%) resulted in lower
discharge in the basin (Figure 3.11B). Though the summer discharge

increased, the winter discharge decreased in both the study regions over 2011-
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2018 period. In the Chhota Shigri Catchment the variations were negligible (<
1%) whereas in the Chandra-Bhaga Basin the winter discharge showed a
significant decrease of 32% from 7.9 + 5.2 m*/s over 2003-2010 to 5.3 £ 3.4
m?>/s over 2011-2018 due to the decreased temperature over January—April by
0.6 °C in 2011-2018 and decreased SCA (56% as compared to 60%) over
October-December (Figure 3.11B). In line to section 3.4.3, the decadal
analysis also suggested a large control of summer temperature and summer
SCA in the Chhota Shigri Catchment and summer SCA and summer
precipitation in Chandra-Bhaga Basin, for discharge generation in summer,
and winter temperature and winter SCA control on winter discharge in the
Chandra-Bhaga Basin.

Further, the hydrograph is also slightly shifted in early summer
approximately by 10 days in the Chhota Shigri Catchment and 20 days in the
Chandra-Bhaga Basin. The early onset of discharge or the seasonality shift
was also observed in previous studies in the Indus Basin (Immerzeel et al.,
2010; Tahir et al., 2011; Lutz et al., 2014; Hasson, 2016). In this study, the
change in seasonality occurred due to the higher temperatures and higher SCA
in the early summer months (May and June) and also the early occurring
precipitation peak in March over 2011-2018 as compared to April over 2003—
2010 (Figure 3.11). Similar to our study (Lutz et al., 2014) and (Immerzeel et
al., 2010) also highlighted the increased precipitation and shift in the snowmelt
peak (due to high temperature) as the main cause of the seasonality shift in the

Indus Basin.

3.4.6 Sensitivity analysis
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Figure 3.12 Sensitivity analysis results for Chhota Shigri Catchment (A) and

Chandra-Bhaga Basin. The X-axis shows the percentage variation in the values
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of each parameter and the Y-axis shows the corresponding simulated mean

daily discharge values.

In the Chhota Shigri Catchment, the simulated discharge was almost
equally sensitive to ‘a’ and Cs with a sensitivity of 0.098 and 0.099 m?/s,
respectively (Figure 3.12A, Table 3.3). Other parameters Cr, and LRs showed
mean sensitivities of —0.011 m?/s, and 0.015 m?¥/s, respectively, whereas the
model is less sensitive to ‘x” and Terit (Table 3.3). Parameters ‘y’ and time lag
showed no impact on simulated discharge in the Chhota Shigri Catchment. In
the Chandra-Bhaga Basin, the simulated discharge was most sensitive to Cs
with a sensitivity of 5.2 m?®/s followed by ‘a’ with a sensitivity of 5.0 m?/s
(Figure 3.12B, Table 3.3) whereas among the other parameters the model is
more sensitive to Cr, and LR as compared to ‘x” and Tcrit with ‘y’ and time
lag have no impact on simulated discharge, similar to the Chhota Shigri
Catchment (Table 3.3). Other studies by Siemens et al. (2021) and Panday et
al. (2014) also found that the parameters Cs, Cr, x’, and ‘y’ have substantial
control over the simulated discharge. The analysis showed almost linear
changes in the simulated discharge with variations in each sensitive parameter
value except for parameter ‘x’ (Figure 3.12). The simulated discharge varied
significantly when the parameter value of ‘x’ increased from 10% to 20% and
became constant after this. Whereas it showed no significant change in the
discharge when the value of ‘x’ was reduced. This varying pattern was due to
the maximum limit of k as 0.99 in WinSRM (section 3.3.2), which restricts the
value of ‘x” and ‘y’ according to the maximum value of k. A significant impact
of LR was found on simulated discharge, which is also highlighted by Jain et
al. (2010) and Panday et al. (2014). In this study, daily temperature LRs were
used which were observed in the Chhota Shigri Catchment, which is among
the sensitive parameters in both the study regions. The adopted daily LR values
enable the SRM to capture the seasonal variations in the discharge (Figure 3.8)
which is not possible with constant LR values over a year. The daily LRs
reduce the possibility of errors in the extrapolated temperature values which
directly affects the snowmelt in the different seasons. The overall mean
uncertainty in the simulated daily discharge was found as + 0.2 m®/s and + 12.1

m?/s for Chhota Shigri Catchment and Chandra-Bhaga Basin, respectively.
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Table 3.3 List of model parameters and their sensitivities for the Chhota Shigri Catchment and Chandra-Bhaga Basin (Case-III)

Parameters Sensitivities (m?/s)
Chhota Shigri Catchment Chandra-Bhaga Basin

X —0.0004 -0.79
Runoff coefficient for snow (Cs) 0.099 52
Runoff coefficient for rain (Cr) —0.011 1.06
Degree day factor (a) 0.098 5.0

Critical temperature (Teri) —0.00002 —0.18
Lapse rate (LR) 0.015 1.3

* Parameters ‘y’ and time lag showed no impact on discharge
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3.4.7 Model limitations and transferability of catchment-scale
calibrated model parameters to basin scale

In section 3.4.1, the model limitations and transferability of catchment-scale
calibrated model parameters to basin-scale discharge simulation in the same
basin were introduced and investigated in this section in detail. The simulated
daily discharge in the Chhota Shigri Catchment was underestimated (41% and
34%) over the calibration (2010-2013) and validation (2014-2015) periods,
respectively (Figure 3.5A, 3.5B, Figure 3.7A). The SRM does not involve the
baseflow and glacier melt runoff contribution to the total discharge. Given that
the Chhota Shigri Catchment is highly glacierized (47%), base flow
contribution can be neglected (Srivastava and Azam, 2022b). However, glacier
melt contribution cannot be ignored, and probably this is the reason for the
underestimation in simulated discharge as glacier provides significant runoff
contribution through glacier melt (around 21% of the total runoff; (Srivastava
and Azam, 2022b). In line, the simulated discharge in Case-III for the
Chandra-Bhaga Basin was also underestimated (12% over 2004-2005 and 9%
over 2006). The relatively less underestimation in the Chandra-Bhaga Basin is
probably associated with the less glacierized area (25%) in the Chandra-Bhaga
Basin as compared to the Chhota Shigri Catchment (47%). Another reason for
this underestimation in SRM simulated discharge in both the catchment and
basin scale could be the stored snow at higher altitudes (above zero-degree
isotherm) which does not melt at the end of the year and cannot be added to
the next successive year’s simulation in the SRM scheme.

Conversely, when the calibrated model parameters from Chhota Shigri
Catchment were applied to simulate the discharge from the Chandra-Bhaga
Basin, the simulated discharge in Chandra-Bhaga Basin in Case-1 and Case-II
was overestimated (83% and 74%) by the SRM over 2004-2006 (section 3.4.1;
Figure 3.6 A, B). The overestimation in simulated discharge could partially be
due to the parameter values which may not be applicable for lower elevation
zones (below 3900m a.s.l.) in Chandra-Bhaga Basin. The precipitation phase
(snow vs rain) patterns over Chhota Shigri Catchment and lower zones of
Chandra-Bhaga Basin (below 3900 m a.s.l.) are quite different as the Chhota

Shigri Catchment receives frequent snowfall while the Chandra-Bhaga Basin
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is having relatively more rainfall frequency due to the inclusion of the lower
altitudes in the basin. The values of Tt in Case-I (0.1 °C) and Case-II (1.5 °C
) are lower than the calibrated value of Tcrit in Case-III (2 °C) for lower zones
of Chandra-Bhaga Basin. These lower values of Teit (Case-I and II) are
expected to convert a large portion of precipitation into rainfall instead of
snowfall as in Case-III. This extra amount of rainfall considered in Case-I and
Case-II due to lower Teit contributes to the overestimation of simulated
discharge while the additional snowfall in Case-III due to higher Tcrit may not
be melted out completely. Further, the higher value of Csused in Case-1 (0.75)
and Case-II (0.5) for lower zones (below 3900 m a.s.l.) also causes the
discharge overestimation in the Chandra-Bhaga Basin in Case-I and Case-II
because these values are higher than the calibrated value (0.4) at the basin
(Case-III). Similarly, the value for Cr, which directly increases the discharge,
is also higher in Case-I (0.7) and Case-II (0.75) than the calibrated value (0.5)
in Case-III.

Though the underestimation in the Chhota Shigri Catchment and
overestimation in the Chandra-Bhaga Basin (Case-1 and Case-II) can also
partially be attributed to the high uncertainty of up to 25% in field discharge
measurements in the turbulent Himalayan rivers (Eeckman et al., 2017). Our
analysis clearly indicates that even after applying the SRM in a data-plenty
catchment, the calibrated model parameters at the catchment scale may not be
transferable to basin scale discharge simulation, even in the same basin
therefore utmost care must be taken while using model parameters from other

basins for the SRM applications.

3.4.8 Comparison with other studies

Previous studies estimated the discharge from the Chhota Shigri Catchment
using a simplified glacio-hydrological model (Azam et al., 2019; Srivastava et
al., 2022). In agreement with those studies, a dominance of snowmelt in the
hydrology of the Chhota Shigri Catchment is suggested. Further, similar to our
study, summer temperature was also one of the main drivers for discharge
generation in the Chhota Shigri Catchment (Azam et al., 2019). The mean
monthly hydrograph showed the maximum discharge in July (Figure 3.10A)

however the peak of snowmelt runoff was found in July and total runoff in
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August in (Azam et al., 2019). This is because SRM does not consider glacier
ice melt in the simulation of discharge and the runoff generation is solely due
to snow melt (from SCA and fresh snow) that peaks in July. In August, the
snow cover is usually melted out up to 5000 m a.s.l. (Mandal et al., 2020) and
ice is exposed to higher summer temperatures that contribute to runoff
providing peak discharge (Azam et al., 2019). The rainfall contribution in the
Chhota Shigri Catchment as 10% of the total discharge is similar to the
previous study by (Srivastava and Azam, 2022b), showing a 10% combined
contribution of rainfall from glacierized and nonglacierized areas.
Hydrological studies are not available in the whole Chandra-Bhaga Basin, but
a few studies cover the Chandra Basin (59% of Chandra-Bhaga Basin). These
studies also showed a peak discharge in July (Singh et al., 2020, 2021b;
Gaddam et al., 2022) similar to our study (Figure 3.10B). The increased
discharge volume in 2011-2018 shown in this study is in agreement with the
study by (Immerzeel et al., 2013) in the Baltoro watershed in the Indus Basin.
Further, the seasonal shift observed in decadal hydrographs in our study has
already been highlighted by some other studies in different regions of the Indus
Basin (Immerzeel et al., 2010; Tahir et al., 2011; Lutz et al., 2014; Hasson,
2016).

3.5 Conclusions

The daily discharge series from the Chandra-Bhaga Basin and Chhota Shigri
Catchment was reconstructed over the period 2003—-2018 using SRM. Analysis
showed that SRM efficiently simulated the discharge over the calibration and
validation period. The mean annual discharge was found as 1.2 + 0.2 m%/s and
55.9 + 12.1 m’/s over 2003-2018 for the Chhota Shigri Catchment and
Chandra-Bhaga Basin, respectively. The analysis suggests the overall
discharge was mainly controlled by the summer temperature and summer SCA
in the Chhota Shigri Catchment whereas by summer SCA and summer
precipitation in the Chandra-Bhaga Basin. The decadal comparison showed
that the mean discharge increased in 2011-2018 as compared to the mean
discharge in 2003-2010 and also the hydrograph shifted in the early summer
by 10 days in the Chhota Shigri Catchment and 20 days in the Chandra-Bhaga

Basin associated with the higher mean temperature, higher SCA in early

53



Chapter 3

summer, and early precipitation peak in 2011-2018. Sensitivity analysis
showed that the simulated discharge was equally sensitive to ‘a’ and Cs in the
Chhota Shigri Catchment and most sensitive to Cs in the Chandra-Bhaga
Basin. The daily LRs used in this study enable the SRM to capture the seasonal
variations in discharge and further increase the model efficiency by simulating
the discharge peaks accurately due to the varying LRs.

For the first time, the transferability of catchment-scale calibrated
parameters to the basin-scale simulation of discharge was systematically
checked using SRM. For this assessment, the model calibration was done on
the data-plenty catchment of Chhota Shigri Glacier and calibrated parameters
were then applied to the Chandra-Bhaga Basin in different case scenarios. This
resulted in a large overestimation in the simulated discharge from the basin.
Our analysis clearly showed that even though the model parameters in SRM
are calibrated with plenty of field data at the catchment scale, their application
to the basin-scale runoff simulation, even in the same basin, may not be
applicable. Care must be taken while adopting the model parameters for SRM
from other basins, especially for the ungauged basins. The calibrated SRM for
the Chandra-Bhaga basin and the Chhota Shigri Catchment can be used to
forecast future discharge and its patterns under various climate change
scenarios. With a combination of an automatic calibration process and high-
resolution snow cover product the efficiency of SRM can be improved in

future work.
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Chapter 4
Snow and glacier melt contributions from
the Gangotri Glacier System and their

climatic controls

4.1 Introduction

The snow and ice reserves of the Himalaya-Karakoram (HK) are essential
water resources for the downstream populations, contributing to major rivers
like the Indus, Ganga, and Brahmaputra (Azam et al., 2021; Nepal et al., 2023).
Significant climatic changes have been observed in recent decades in the HK
region, resulting in noticeable changes in the cryosphere and the hydrological
cycle (Zhan et al.,, 2017; Krishnan et al., 2019). These changes have
significantly altered the dynamics of glacier-fed hydrological systems,
accelerating glacial retreat and shifting seasonal discharge patterns, which
have profound implications for both upstream and downstream water
availability (Lutz et al., 2014; Jackson et al., 2023; Srivastava et al., 2024).
Hence, understanding the contribution of glacier and snowmelt to regional
hydrology is crucial for assessing the sustainability of water resources in HK
river basins.

Hydrological modelling studies in the HK have been conducted at large-scale
basins, focusing primarily on the Indus, Ganges and Brahmaputra rivers
(Immerzeel et al., 2010; Lutz et al., 2014; Khanal et al., 2021). However, these
studies remain limited and face several challenges, (1) the scarcity of in-situ
data for model calibration and validation, (2) difficulties in separating
discharge contributions from snowmelt and ice melt, (3) the problem of

equifinality, where different sets of model parameters yield similar outputs,
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leading to uncertainty in discharge estimates and (4) the general exclusion of
glacier dynamics, mainly due to the unavailability of ice thickness and velocity
data (Azam et al., 2021). The issue of equifinality, in particular, can be
addressed using a multi-tier calibration approach that incorporates multiple
datasets, such as glacier mass balance, discharge, and snow cover area (Beven,
2016; Eeckman et al., 2019; Azam et al., 2021). To improve the accuracy of
discharge estimates, long-term in-situ data, multi-tier model calibration, and
glaciohydrological models incorporating glacier dynamics are critically
needed in HK.

Few studies have examined small-scale basins or catchments where field
data such as river discharge, local meteorology and glacier mass balance are
available. These studies offer valuable insights into snow and ice melt
contributions and runoff patterns (Singh and Jain, 2002; Singh et al., 2021a;
Srivastava and Azam, 2022b; Singh et al., 2023; Soheb et al., 2024; Srivastava
et al., 2024). They typically employ semi-distributed or fully distributed
models to estimate discharge contributions from snowmelt, glacier melt, and
rainfall.

At the small catchment scale, one of the most studied glacier systems is
the Gangotri Glacier System (GGS) in HK. GGS discharge has been analyzed
using in-situ discharge measurements, environmental isotopes, and
hydrological models such as SNOWMOD, HBV, and Spatial Processes in
Hydrology (SPHY) (Haritashya et al., 2006; Singh et al., 2006, 2008, 2011;
Rai et al., 2019; Salim and Pandey, 2021; Singh et al., 2023; Arora et al.,
2024). A previous study discussed GGS discharge patterns using in-situ
measurements over 2000-2003, emphasizing the critical role of glacial melt in
sediment transport and the strong relationship between temperature, discharge,
and sediment yield (Haritashya et al., 2006; Singh et al., 2006). Another study
employed SNOWMOD, a temperature index model, to simulate snowmelt
runoff using a hydro-meteorological database established near the glacier
snout over four melt seasons (2000-2003) (Singh et al., 2008). To explore the
time lag between melt generation and runoff emergence at the Gangotri
Glacier outlet, hourly discharge and temperature data were collected near the
snout (~4000 m) for three melt seasons (2004-2006) to analyze diurnal

variations in water storage and runoff (Singh et al., 2011). Additionally, to
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quantify the fractional contributions of snowmelt and glacier melt, isotope-
based hydrograph separation was applied for the ablation period of 2005 (Rai
et al., 2019). The glacier melt runoff was modelled from 2010 to 2019 using
MODIS satellite data and the SNOWMOD model within a GIS framework
(Salim and Pandey, 2021). Another study by Singh et al. (2023) coupled
GlabTop2 and SPHY models to understand the impact of glacier thickness
change on the runoff of GGS over 2011-2020. Recently, a semi-distributed
conceptual hydrological model (HBV) was applied to evaluate the
contributions of snowmelt, glacier melt, and rainfall runoff over 2013-2019
(Arora et al., 2024). While these studies have provided valuable insights into
GGS, long-term discharge analysis, evolution of meltwater contribution and
understanding of the climatic drivers affecting GGS are still lacking.

To address these research gaps, the present study combines remote
sensing datasets with hydrological modelling and focuses on long-term
discharge analysis to provide a more reliable and comprehensive
understanding of GGS hydrology since 1980. The SPHY model is applied to
reconstruct long-term discharge and is calibrated using a two-tier approach by
using Gangotri Glacier geodetic mass balance and in-situ discharge measured
at Bhojbasa (3 km downstream from the Gangotri Glacier snout). The major
objectives of this study are: (i) to develop a long-term GGS discharge series
and assess snow and glacier melt contributions since 1980, (ii) to assess
volumetric and seasonal changes in GGS discharge using decadal analysis, and

(111) to understand the climatic drivers influencing GGS discharge.

4.2 Study area and climate conditions

The study area consists of the GGS, which includes Meru (7 km?), Raktavaran
(30 km?), Chaturangi (75 km?) and the largest glacier Gangotri (140 km?)
(Figure 4.1). The GGS forms the headwater of the upper Ganga basin and
contributes to the streamflow of the Bhagirathi River in the central Himalaya.
It was selected due to its hydrological and regional importance within the
Ganga basin, where comprehensive assessments of long-term melt partitioning
and its climatic controls remain limited despite extensive prior studies. This
study considers the discharge measurement site at Bhojbasa (30.95°N,

79.05°E; ~3800 m a.s.l.) as the discharge outlet (Figure 4.1). GGS covers an
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area of 549 km?, between the elevation range 3767 and 7072 m a.s.l. (Figure
4.1). GGS has 48% glacierized area (~264 km?) as per GAMDAM glacier
inventory (Sakai, 2019), among which ~23% is debris covered area (Scherler
et al., 2018). GGS receives precipitation from the WDs during winter (October
to April) and from ISM during summer (May to September) (Singh et al.,
2005; Arora et al., 2024). The average seasonal rainfall (May to October) is
around 260 mm, with an average mean temperature of 9.4 °C for the period

2000-2003 (Singh et al., 2005; Arora et al., 2024).
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Figure 4.1 Study area (A) Country boundaries, (B) Gangotri Glacier System
with the discharge measurement site at Bhojbasa (green star), and glaciers
from the GAMDAM inventory shown in black; and (C) Area-altitude
distribution of glacier area (black) and total area (red) in the GGS.

4.3 Dataset

4.3.1 Meteorological data

The Indian Monsoon Data Assimilation and Analysis (IMDAA) reanalysis
gridded precipitation and temperature data were downloaded from the
National Centre for Medium Range Weather Forecasting (NCMRWF)
database over 1979-2020 (https://rds.ncmrwf.gov.in/dashboard/download).
IMDAA is a regional atmospheric reanalysis dataset available ata 12 % 12 km

spatial resolution since 1979, covering the Indian subcontinent (Rani et al.,
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2021). It assimilates a significantly larger set of Indian observations, of which
some had not been used in any previous reanalysis, through a 4D-Var system
and demonstrates improved representation of orographic precipitation,
monsoon onset and withdrawal, and mesoscale convective systems (Rani et
al., 2021). The IMDAA reanalysis accurately captures key features of ISM.
IMDAA data has been used for different purposes, such as discharge
modelling, drought assessment, and climate trend analysis over the Himalaya
in the last few years, including a study specifically focused on GGS,
demonstrating its suitability for high-altitude hydrological modelling (Singh
et al., 2023; Gupta et al., 2024; Ahmed et al., 2024). IMDAA data was
preferred in this study due to its high spatial resolution (12 km) and its specific
development for the Indian subcontinent, making it more suitable for
hydrological studies compared to coarser resolution global reanalysis
products. The hourly IMDAA temperature and precipitation data were
aggregated from hourly to daily resolution for the model simulations. These
raw data were bias-corrected using in-situ temperature and precipitation
measurements recorded at Bhojbasa from May to October during 2000-2003
(Figure 4.1; (Singh et al., 2005). For bias correction, a linear regression
equation was developed between the mean monthly values of raw IMDAA
data and in-situ data for the period 2000-2003 and derived the monthly scale
factors for temperature as well as precipitation. These factors were then used
to bias-correct the raw IMDAA temperature and precipitation data over 1980

to 2020.

4.3.2 In-situ discharge data

The in-situ daily discharge data was available from May to October at the
Bhojbasa site in GGS over 2000-2003 (Figure 4.1; (Singh et al., 2005)).
Discharge was measured using the area velocity method. The cross-section
area of the channel was determined with the help of sounding rods at the
beginning of the melt season and was rechecked at the end, while flow velocity

was measured using wooden floats (Haritashya et al., 2006).

4.4 Methodology
4.4.1Spatial Processes in Hydrology (SPHY) model
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The Spatial Processes in Hydrology (SPHY) model is a spatially distributed,
raster-based hydrological model designed to simulate key processes such as
snow and glacier melt, rainfall-runoff, evapotranspiration, soil moisture
dynamics, and groundwater recharge (Terink et al., 2015). SPHY is written in
the Python programming language using the PCRaster dynamic modelling
framework (Terink et al., 2015). The model can operate at different temporal
and spatial scales. The model comprises different modules, including glacier,
snow, groundwater, dynamic vegetation, simple routing, and lake/reservoir
routing (Terink et al., 2015), which can be activated or deactivated based on

study area requirements.
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Figure 4.2 Flowchart showing the overall methodology, including input data,

model setup, calibration and validation for glaciohydrological modelling.

The SPHY model uses a degree day approach to simulate discharge
from snowmelt and glacier melt, making it suitable for data-scarce regions
with limited long-term field measurements (Terink et al., 2015). To determine
the liquid or solid form of precipitation, SPHY uses a critical temperature
(Terit). The precipitation phase is assigned as solid (snowfall) if the daily mean
temperature in a cell is less than Tcrit, otherwise, it is classified as rainfall (eq.
4.1).

{Psnow = Piotal » Prain = 0 if Tavg < Terit

. 4.1
Prain = Protal » Psnow = 0 if Tavg > Terit (+1)

Where Psnow (mm) is the precipitation as snowfall, Prin (mm) is the
precipitation as rainfall, Tavg (°C) is the mean air temperature, and Teit (°C) is

the critical temperature threshold for precipitation to fall as snow.
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When simulating discharge, rainfall and snowfall are handled
differently. Snowfall contributes to snow storage, which is updated based on
accumulation, melt and refreezing. Rainfall is partially transformed into
surface runoff depending on the losses through infiltration, with infiltrated
water contributing to baseflow depending on soil properties.

For glacier melt, SPHY distinguishes between clean ice and debris-
covered ice, which melt at different rates. Multiple studies across glacierized
regions have shown that despite slower melt rates, debris-covered glaciers can
have similar mass loss due to the presence of features such as ice cliffs and
supraglacial lakes (Buri et al., 2016; Miles et al., 2016; Hussain et al., 2022).
In GGS, Gangotri Glacier exhibits such features in its lower ablation zone
(4,000-4,750 m a.s.l.), contributing an additional 32% to ablation (Hussain et
al., 2022). In SPHY, it is not possible to apply a different degree day factor for
debris (DDFaebris) for different glaciers or at different elevation zones since it
is a grid-based model. Hence, the same DDFgeniis and degree day factor for
clean ice (DDFic) was calibrated and applied to all glaciers within GGS.
However, a sensitivity test was performed for the selected DDFgebris (section
4.4.4).

The snowmelt and glacier melt are calculated based on degree day
factors, for which the following equations are used (Hock, 2003) (eq. 4.2):

Tan * DDFSnow/ice/debris if Tavg >0

0 if Ty <0 (4.2)

Melt = {

Where DDFsnowrice/debris 1S the degree day factor for snow, clean ice and debris,
respectively and Tavg is the average daily temperature.

The SPHY model simulates soil water processes by dividing the soil into
three layers: the root zone, subzone, and groundwater layer (Terink et al.,
2015). Since SPHY operates on a daily time step, it does not capture short-
term rainfall intensity variations and therefore, emphasizes the saturation
excess runoff process (Hewlett, 1961) rather than the Hortonian runoff
(Corradini et al., 1998; Beven, 2004). Lateral flow is modelled where slopes
are steep and soils are permeable, occurring only when water content exceeds
field capacity (Beven, 1981; Beven and Germann, 1982; Sloan and Moore,
1984). Water moves stepwise from the root zone to the subzone and

groundwater layer, similar to the SWAT model (Neitsch et al., 2009).
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Groundwater recharge, which may include glacier melt, often faces delays
influenced by groundwater depth and soil properties, modelled using an
exponential decay weighting function (Venetis, 1969; Sangrey et al., 1984).

To calculate the total discharge for each cell, various discharge
components are combined (Figure 4.2) (eq. 4.3). These components include
snowmelt (Qs), Glacier melt (Qg), rainfall-runoff (Qr), and baseflow (Qg).
Rainfall-runoff is calculated as the sum of surface runoff and lateral flow from
the first soil layer. The total discharge (Qr) is calculated using the following
equation:

Qr= Qs+ Qe+ Qr+ QB (4.3)

To obtain discharge at the outlet, Qr is routed through a flow direction
network map (Terink et al., 2015). This map is generated using PCRaster in
combination with DEM, which helps in delineating the river network
accurately. Additionally, the model requires a glacier table that includes details
about the initial glacier thickness and specifies whether a particular model cell
is debris-covered or not to calculate glacier melt, including both clean ice and
debris-covered ice. Most existing studies have suggested that a 250 m spatial
resolution is suitable for obtaining reasonable modelling results in large-scale
analysis across the HK region (Singh et al., 2021b; Srivastava et al., 2024).
However, a coarser resolution may lead to the omission of small glacierized
areas, especially when they occupy only a fraction of a grid cell, potentially
resulting in the underestimation of glacier extent. Using a finer resolution not
only offers more detailed outputs but also enhances the accuracy of the
analysis by more precisely capturing smaller glaciers. Therefore, the model
was run at a spatial resolution of 100 m x 100 m to reduce such limitations

(Figure 4.2).

4.4.2SPHY model inputs

SPHY model involves several raster data layers such as digital elevation model
(DEM), land use/land cover (LULC), soil maps and glacier maps at a spatial
resolution of 100x 100 m (Figure 4.3). Most of the input layers used in this
study were derived from remote sensing products, which offer high-resolution,
spatially continuous data essential for initializing glaciohydrological model in

data-scarce region such as the GGS. The Shuttle Radar Topographic Mission
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(SRTM) DEM (30m) was used in GlabTop2 model to calculate the initial ice
depth. The GAMDAM glacier inventory was used for the glacier map
developed by (Sakai, 2019). LULC layers were derived from the Globe Cover
land cover map for the year 2009, created by the European Space Agency
(ESA)

(https://www.esa.int/ESA_Multimedia/Images/2010/12/ESA s 2009 global

_land cover map) (Figure 4.3). A high-resolution soil map (250 m?) and
related  parameters  from  HiHydroSoil  version 1.2 (2016)
(http://soilgrids1km.isric.org/) were used (Figure 4.3). The debris cover map
was derived from supraglacial debris cover Geo Forschungs Zentrum (GFZ)
data services (Scherler et al., 2018) for the preparation of glacier table and to

differentiate a cell as debris covered or debris free.

ol

C D
. i 4 »
= & ’L'
o 5473 oy 7043 4
S 1 m3is Ml 3745 mas.l d

Accuflux DEM Glaciers

oy 81

— 31.‘
L 3073

Latitude

5 e <
— 0 Degree

Slope

oy 039 1440

0.26 mmimm il 164 mmid i .36 mmimm e 0 mm/mm
Topsoil Field Topsoil Saturated Topsoil Saturated Topsoil Permanent
Capacity Hydraulic Conductivity Content Wilting Point

P

0.
oy 570 oy 073 _ | o 0.5

L 0.25 mmimm

e 143 mmid Sl 0.46 mm/mm B .04 mmimm

Suhst_)il Saturate_d_ Subsoil Saturated Topsoil Wilting Subsoil Field
Hydraulic Conductivity Content Point Capacity

Figure 4.3 Input raster maps for SPHY model at 100m spatial resolution.

4.4.3 Model Calibration
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In the SPHY model, both automatic and manual calibration could be
performed (Terink et al., 2015). The automatic calibration was applied in the
present study. The SPHY model parameters were altered within the plausible
ranges, as mentioned in Table 4.1. The model parameters were calibrated using
a two-tier approach using in-situ discharge over 2000-2003 and geodetic mass
balance over 2000-2019 for GGS (section 4.4.3.1 and 4.4.3.2), the geodetic
mass balance offered a broader calibration period and reinforced the two-tier
calibration approach.

To check the performance of the model, the model calibration was
done by considering the different performance criteria such as coefficient of
determination (R?) (eq. 4.4), root mean square error (RMSE) (eq. 4.5),
percentage bias (PBIAS) (eq. 4.6), Nash—Sutcliffe model efficiency
coefficient (NSE) (eq. 4.7) and Kling—Gupta efficiency (KGE) (eq. 4.8), which

were calculated using the following equations:

R2 = [ . {(0; —0") * (S; — ")} 44)
VI (0 = 02 T (S — S')?
RMSE = \/ =10 = S* (4.5)
n
=108 —0)
PBIAS = ==————- %100 (4.6)
i=1 0;
NSE = 1 2100, = $)? 4
T TIn0-07 &7
KGE=1—- (@ -12+ (a—1)2+ (B —1)2 (4.8)

where n, O, Si, O, S', 1, o and P are the number of observations, in-situ
value, modelled value, mean in-situ value, mean modelled value, Pearson
correlation coefficient, term representing the variability of prediction errors
and bias term, respectively. a is ratio of standard deviation of modelled and
in-situ values (os/ 0,) and B is ratio of mean modelled value to mean in-situ

value ( S/ O’). R? lies between 0 to 1, NSE and KGE lie between —eo to 1.

4.4.3.1 In-situ Discharge
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The SPHY model parameters such as glacier melt runoff factor (GlacF),
rootzone thickness, sublayer thickness, groundwater layer thickness, saturated
ground water content, capillary rise, alphaGyw, deltaGw and recession
coefficient were calibrated using the in-situ daily discharge available at the
Bhojbasa site for GGS over 2000-2003 (May to October) (Figure 4.3). The
modelled daily discharge of GGS showed a good agreement with the in-situ
daily discharge at Bhojbasa after calibration over 2000-2003 (May to October)
(R?=0.77, RMSE = 31.68 m%/s, PBIAS = —2.88%, NSE = 0.61 and KGE =
0.51; Figure 4.4).
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Figure 4.4 Regression plot between the daily in-situ and modelled discharge

over the period 2000-2003 for GGS.

4.4.3.2 Geodetic mass balance

Geodetic mass balance represents glacier-wide mass change, derived by
differencing DEMs to estimate glacier thickness change which is then
converted to mass using standard density assumptions (Cogley, 2009; Huss,
2013). These estimates provide spatially distributed, temporally integrated
measurements of glacier mass changes. However geodetic estimates are often

available for a multi-annual scale hence do not provide inter-annual variability
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(Cogley, 2009). These estimates are particularly valuable for model calibration
in data-scarce regions like Himalaya (Zemp et al., 2009; Gardner et al., 2013).
In this study, high-resolution, bias-corrected geodetic mass balance data from
(Hugonnet et al., 2021) were used for Gangotri Glacier over 2000-2019 to
calibrate the SPHY model. The latest version of SPHY, version 3, used in the
present study includes glacier dynamics. It provides the annual ice thickness
change, from which the glacier annual mass balances can be calculated
(Khanal et al., 2021). After calibrating some of the model parameters of snow
and glacier module with in-situ discharge (section 4.4.3.1), the rest of the
model parameters such as snow storage capacity (SSC), the critical
temperature for snow/rain (Tit), degree day factor for snow (DDFsnow), degree
day factor for ice (DDFic.) and degree day factor for debris (DDF gebris) were
calibrated with the available geodetic mass balances for the four different
periods, i.e. 2000-2004, 2005-2009, 2010-2014 and 2015-2019 from
(Hugonnet et al., 2021) of Gangotri Glacier (Figure 4.3). While calibrating,
these model parameters were varied within the plausible ranges mentioned in
Table 4.1. The calibrated model parameters are selected when the difference
between the geodetic mass balance and modelled mass balances was minimal
over 2000-2019 (Table 4.1). After calibration, the difference between the
geodetic mass balance and modelled mass balance were 0.09, 0.05, —0.03 and
0.05 m w.e. for 2000-2004, 2005-2009, 2010-2014 and 2015-2019,
respectively, with a mean difference of 0.04 m w.e. over 2000-2019 for

Gangotri Glacier.

4.4.4 Model Validation

The SPHY model was validated against the improved 8-day MODIS snow
cover product (ICIMOD, 2023) over the period 2002—2020 on a monthly scale
(Figure 4.2). The improved MODIS snow cover product was generated using
MODIS Terra and Aqua 8-day snow cover products MODI10A2 and
MYD10A2 collection 6.1 (C61), respectively for High Mountain Asia and is
freely available at ICIMOD regional database system
(https://rds.icimod.org/DatasetMasters/BulkDownload/1973819). The data is
available at 8-day temporal resolution and 500 m spatial resolution over the

period 2002-2022 (ICIMOD, 2023). This product was generated by reducing
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the overestimation caused by MODIS sensors and underestimation caused by
cloud cover in MODIS snow cover products (Muhammad and Thapa, 2020).
The mean monthly snow cover area (%) i.e. the percentage of GGS area
covered with snow, was extracted from the improved MODIS snow cover
maps and SPHY derived snow cover maps over 2002—2020 for validation
(Figure 4.5). The monthly comparison between the SPHY derived and
improved MODIS snow cover (%) showed good agreement (R?> =0.79, RMSE
=12.75%, PBIAS = 12.33%, NSE = 0.65 and KGE = 0.62; Figure 4.5).
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Table 4.1 Model parameters used in the SPHY model for the Gangotri Glacier System with its range, sensitivity range, uncertainty range,

calibrated values and sensitivities.

Paramete Calibrate . Sensitivity Sensitivity
Parameters Uncertainty range 3
r range d value range (m°/s)
Snow storage capacity 0-1 0.05 0.045-0.055 0.045-0.055 —0.22
(SSC)
Degree day factor for snow
2.5~ . .04-6.1 .04-6.1 1.4
(DDFunow) (mm/d°C) 5-8 5.6 5.04-6.16 5.04-6.16 8
Degree day factor for clean
2.5 . .93-8.4 .93-8.4 .04
ice DDFice (mm/d/°C) 5-8 7.7 6.93-8.47 6.93-8.47 0.0
Degree day factor for snow 25-8 48 432-528 432-528 0.05
DDF gebris (mm/d/°C) ’ ’ ’ ’ ’ ' ’
Critical temperature for ~4t0 4 1.5 0.35-1.65 0.5-2.5 ~3.55
snow/rain Terit (°C)
laci | ff f
Glacier melt runoff factor 0-1 0.81 0.72-0.89 0.72-0.89 0.02
(GlacF)
root zone thickness (mm) 300-1000 817 735-899 735-899 —0.01
. 1000-
sublayer thickness(mm) 2000 1932 1739-2125 1739-2125 —0.01
groundwater layer 1000—
. 2697 2427-2967 2427-2967 0.00
thickness(mm) 4000
saturated groundwater
500-3000 1303 1173-1433 1173-1433 —0.003
content(mm)
Capillary rise max 2-10 6.2 5.58-6.82 5.58-6.82 0.00
(mm/day)
alphaG 0.1-1 0.9 0.81-0.99 0.81-0.99 0.00
deltaG  (days) 0-365 320 288-352 288-352 —0.003
Recession coefficient 0.5-1 0.85 0.77-0.94 0.77-0.94 —0.003
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Figure 4.5 Comparison between the monthly snow cover % derived from
SPHY and improved Snow cover product (ICIMOD, 2023). The inset figure

is a regression plot between SPHY and improved MODIS snow cover %.

The SPHY modelled annual mass balances of Gangotri Glacier
(section 4.4.3.2) were also compared with available annual mass balance
estimates derived using the temperature index model in (Hussain et al., 2022)
over 2000-2019. The comparison between the SPHY and temperature-index
modelled annual mass balances showed a moderate agreement (R?> = 0.40,
RMSE =0.57 m w.e.). The mean modelled annual mass balance was —0.50 m
w.e. compared to —0.90 m w.e. reported by (Hussain et al., 2022) over 2000—
2019. This difference can be attributed in part to the more detailed
hydrological processes represented in the SPHY model, including refreezing
and geometry changes, which were not included in the simplified modelling
approach adopted by (Hussain et al., 2022). Another reason for the discrepancy
lies in the two different values of DDFgebris and DDFice used in the present
study, which fail to account for the additional melt due to the supraglacial lakes
and ice cliff present on Gangotri Glacier, as discussed in section 4.4.1. To
assess the impact, a sensitivity experiment was conducted by using the same
value for DDFqebris and DDFice across all glaciers in GGS. This led to an
increase in the mean annual GGS discharge by 0.42 m*/s (1.5%) and a slightly
more negative mean annual mass balance of Gangotri Glacier as —0.57 m w.e.

(13%) over 2000-2019.
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4.4.5 Uncertainty and sensitivity analysis

To evaluate the sensitivity of GGS discharge to the SPHY model parameters,
sensitivity analysis was performed with a total of 14 parameters including
SSC, GlacF, Teit, DDFsnow, DDFice, DDFgebris, rootzone thickness, sublayer
thickness, groundwater layer thickness, saturated ground water content,
capillary rise, alphaGy, deltaGy and recession coefficient. The sensitivity was
estimated by running the model at each 10% increase and decrease in
parameter values except Terit While keeping other model parameters constant.
For Teit, the parameter values increased and decreased by 1°C to evaluate
sensitivity. One-At-a-Time (OAT) approach for sensitivity analysis was
selected for its computational efficiency and interpretability in the context of
a high-dimensional glaciohydrological model (Heynen et al.,2013). The £10%
perturbation range is consistent with previous studies (Ragettli et al., 2013;
Azam et al., 2019; Srivastava et al., 2024). The sensitivity was calculated using
the modelled GGS mean discharge over 1980-2020 and eq. 4.9 (Oerlemans et
al., 1998).

5 = QTH ; QTL (49)

Here, s is the sensitivity of each parameter, Qtn and QL are the GGS mean
discharge over 19802020 at the highest (+10%) and lowest (—10%) values of
parameters. The sensitivities were estimated over the period 1980-2020.

For the uncertainty estimation, each calibrated model parameter was
altered by £10% of its calibrated value and the uncertainty was estimated using

the error propagation law as follows (Heynen et al., 2013; Ragettli et al., 2013):

n

u = Z (QTH ; QTL)Z (4.10)

Here, u is the overall uncertainty in the modelled discharge, n is the number of
parameters and Qtu and QL are the same as mentioned in the sensitivity

estimation above.

4.5 Results
4.5.1 Annual discharge
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The mean annual discharge from the GGS was computed using the daily
modelled Qr to understand the interannual variability over 1980-2020 (Figure
4.6). The annual Qr varies from 18.9 + 1.4 m?/s in 2015 to 35.9 + 2.4 m%/s in
2010 with a mean annual Qr of 28 £ 1.9 m3/s for GGS over 19802020 (Figure
4.6). The highest annual Qrin 2010 corresponds to the second highest annual
temperature (4°C) associated with higher precipitation (585 mm) (Figure 4.6).
Though the annual temperature in 2009 was maximum (4.2°C) but due to the
reduced precipitation (446 mm), it results in less annual Qr as compared to
2010 (Figure 4.6).

Each discharge component showed different interannual variability
with the mean annual Qs, Qa, Qr, and Qp as 18.0, 5.7, 3.1 and 1.1 m%s,
respectively, for GGS over 1980-2020. Overall, among all the discharge
components, Qs contributes the major portion (64%) to Qt followed by Qg
(21%), Qr (11%) and Qg (4%) over 1980-2020 (Figure 4.7). Despite being the
dominant contributor, Qs showed less interannual variability compared to Qg
(Figure 4.6). Qs varies from 11.6 m%/s in 2016 to 22.6 in 2005, whereas Qg
varies from 1.1 m®/s in 2015 to 12.6 m*/s in 2001 (Figure 4.6). Qg contribution
was maximum in 2001, because of the reduced annual precipitation (492 mm)
and increased annual temperature (3.4 °C) for GGS (Figure 4.6). Interestingly,
Qg was low in 2009 despite similar low precipitation (446 mm) and even
higher temperature (4.2 °C). This contrary result is attributed to higher early
summer temperature in 2001, which triggered more rapid snowmelt and led to
earlier exposure of glacier ice. The extended duration of exposed ice during
summer in 2001 likely contributed to increased icemelt compared to 2009. Qr
contribution was maximum in 2016 because of the higher annual temperature
(3.9 °C), resulting in a large portion of precipitation as rainfall (Figure 4.6). Qs
showed a minimal interannual variability for GGS over 1980-2020 (Figure

4.6).
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Figure 4.6 Annual discharge variability of different discharge components
over 1980-2020, snowmelt (sky blue), Glacier melt (blue), rainfall-runoff
(green), baseflow (grey) with annual precipitation (brown) and temperature
(black line). The annual discharge uncertainties are shown with black error

bars.

4.5.2 Monthly and seasonal discharge patterns

The mean monthly Qr varies from 0.9 to 129.9 m*/s with an average monthly
discharge of 28 m3/s for GGS over 1980-2020 (Figure 4.7). Qr shows a
significant increase from April and then peaks in July (129.9 m%/s) (Figure
4.7). Similarly, Qs starts increasing in May and peaks in July, similar to Qt
(99.1 m%/s) (Figure 4.7). Whereas Qg starts increasing in June when the snow
line reaches higher elevations and peaks in August (33.4 m®/s) (Figure 4.7). In
GGS, Qr contribution starts increasing from June with the onset of monsoon
in this area and peaks in August (19.2 m%/s), similar to Qg (Figure 4.7). There
is minimal variability in mean monthly Qg with a maximum contribution in
September and October (1.6 m?/s), probably a delayed response of percolation
of glacier meltwater and monsoonal rains during the melt season (June through
September) (Figure 4.7). The average monthly Qs, Qg, Qr and Qg are 18.0 m?/s,
5.7m%/s, 3.1 m%/s and 1.1 m%/s, respectively, for GGS over 1980-2020 (Figure
4.7).
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Figure 4.7 Mean monthly variability of different discharge components for
GGS over 1980-2020. The pie chart shows the percentage contribution of each

discharge component.

The seasonal discharge patterns on GGS were analyzed by considering
two major seasons, summer (May—October) and winter (November—April). Qr
is maximum during summer (54.9 m>/s) while minimum during winter (1.1
m?/s) for GGS over 1980-2020 (Figure 4.7). Qs, Qc and Qg showed a similar
seasonal pattern as Qr, with maximum contribution in summer (36.1, 11.5 and
6.3 m>/s, respectively) and negligible contribution in winter (Figure 4.7). Qg
does not show any seasonal pattern, as its contribution is almost the same in

summer and winter (Figure 4.7).

4.5.3 Decadal discharge patterns

41 years of modelled discharge data was analysed in four decades i.e., 1980—
1990, 1991-2000, 2001-2010 and 2011-2020 to explore the decadal discharge
pattern in GGS (Figure 4.8). Qs contribution to Q decreased from 1980-1990
(73%) to 2001-2010 (52%) but increased again in 2011-2020 (63%), very
similar to the variation in winter precipitation over the four decades in GGS
(Figure 4.8). Qg contribution was almost the same (~22%) in 19801990,
1991-2000 and 2001-2010, whereas it decreased to 16% in the last decade
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2011-2020 (Figure 4.8). The sudden increase in Qs and decrease in Qg in
2011-2020 is mainly caused by reduced winter temperature (—2°C) and
increased winter precipitation (262 mm), leading to high snow accumulation
in winter which subsequently melts in summer as temperature increases
(Figure 4.8). Qr contribution has significantly increased from 2% (1980—
1990) and 9% (1991-2000) to 22% and 17% in 2001-2010 and 2011-2020,
respectively, due to the increase of 0.5 °C in the mean temperature over 2001—
2020 as compared to 1980-2000 in GGS (Figure 4.8). The significant increase
in Qr was also associated with the increased summer precipitation in 2001—
2020 (293 mm) as compared to 1980-2000 (272 mm) and reduced average Qs
in 2001-2020 (57.5%) as compared to 19802000 (69%) (Figure 4.8). Qs
contribution showed a very small decadal change over the four decades from
3% to 5% for GGS (Figure 4.8). Similar observations of decreasing Qs with
increasing Qr were also documented in the previous studies in the other part
of HK (Lutz et al., 2014; Khanal et al., 2021). It was observed that the decadal
Qr varies from a minimum of 26.8 m*/s in 1991-2000 to a maximum of 28.9
m?>/s in 2001-2010, corresponding to the highest mean decadal temperature of
3.4°C in 2001-2010 (Figure 4.8). Qt showed the highest volumetric increase
of 7.8% corresponding to the highest increase in summer precipitation and
temperature rise from 1991-2000 to 2001-2010 (Figure 4.8). The positive
association between temperature increase resulting in an increased discharge,
is consistent with trends observed across HK (Lutz et al., 2014).

The monthly decadal discharge showed a distinct pattern in 1980—-1990
as compared to the last three decades on GGS (Figure 4.8). In 1980-1990, the
monthly Qt peaks in August due to the increased Qs in August corresponding
to the highest winter precipitation over 1980-1990 (264 mm) in GGS (Figure
4.8). In the last three decades (1991-2000, 2001-2010, 2011-2020), the peak
in monthly Qr occurred in July (Figure 4.8). Results showed a shift in
discharge peak post-1990 from August to July (Figure 4.8). Unlike other
months, in August Qs contribution has significantly decreased from 70% in
1980-1990 to 54% in 1991-2000 and 41% in 2001-2010, then again increased
to 57% in 2011-2020 (Figure 4.8). This reduction in Qs during August
occurred because of the increased early summer temperature and reduced

winter precipitation from 1980—-1990 to 2001-2010 (Figure 4.8). There was no
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shift observed in the monthly decadal Qg peaks over 1980-2020 for GGS
(Figure 4.8). There is a significant increase in Qr contribution in July to
September in the last two decades as compared to 1980-2000 due to the
increased summer precipitation associated with higher temperature (Figure

4.8).
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Figure 4.8 Decadal discharge variability and contribution of different
discharge components over 1980-2020, snowmelt (sky blue), Glacier melt
(blue), rainfall-runoff (green) and baseflow (grey) with precipitation (brown)
and temperature (black). Pie charts show the percentage contribution of

different discharge components.

4.6 Discussions
4.6.1 Climatic drivers for GGS discharge
To understand the influence of climate drivers, i.e. precipitation and
temperature on GGS discharge, the correlation coefficients (r) were calculated
between the climate drivers, discharge and its different components over
19802020 (Figure 4.9).

Despite Qs being the dominant contributor to Qr, the annual Qg showed
strong control over annual Qt (r = 0.81), suggesting that GGS discharge
variability was primarily governed by changes in Qg rather than Qs, whose

variability was less aligned with Qr. Additionally, annual Qris also correlated
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with annual Qg (r = 0.57) (Figure 4.9). Summer Qt showed almost the same
relationships as the annual Qt showing its dominant control over GGS
discharge (Figure 4.9). Winter Qr showed the strongest correlation with the
winter and summer Qg (r= 1 and 0.73, respectively) and weak correlation with
winter Qs and winter Qg (r = 0.14 and 0.06, respectively), this indicates that
GGS discharge in winter is mainly driven by Qg (Figure 4.9). Annual Qs
showed a strong correlation with winter precipitation (WP) (r = 0.64) and
moderate negative correlation with winter temperature WT (r = —0.47) (Figure
4.9), possibly because the study region receives almost equal amount of
precipitation in winter but in the form of snowfall which further contributes to
Qs when the temperature rises in summer. The inverse correlation with WT
also reflects that colder winters favour greater snow retention, setting the stage
for enhanced meltwater input during summer. It was also observed that annual
Qg has a strong correlation with WP (r = —0.66), likely because reduced
precipitation in winter (mostly snowfall) leads to increased Qg in summer
(Figure 4.9). The negative relationship indicates that thick snow cover
insulates glacier ice due to its high albedo and delays Qg. In contrast, low
snowfall years expose ice earlier, increasing Qg through greater solar
absorption. Although Qr contributes less during winter, it showed a strong
correlation with WT (r = 0.67), likely because small changes in temperature
around Tt strongly influence precipitation phase (snow/rain) in this season.
Overall, annual Qt showed a strong positive correlation with summer
precipitation (SP) (r = 0.62) followed by WT (r = 0.52) as both of these
climatic drivers influence annual Qg and Qg. Similar control of SP was also
observed on the hydrology of the Dokriani Bamak Glacier catchment
belonging to the same region as GGS (Srivastava and Azam, 2022b).
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Figure 4.9 Correlation matrix for Gangotri Glacier System. The values from
—1 to 1 denote the correlation coefficients (1 denotes the completely positive
correlation, dark blue, and —1 denotes the completely negative correlation,
dark brown). ATo, STo, and WTo = annual, summer, and winter discharge,
respectively; AB, SB and WB = annual, summer and winter baseflow,
respectively; AR, SR and WR = annual, summer and winter rainfall-runoff,
respectively. AG, SG and WG = annual, summer and winter glacier melt,
respectively; AS, SS and WS = annual, summer and winter snowmelt,
respectively; AT, ST and WT = annual, summer and winter temperature,
respectively; AP, SP and WP = annual, summer and winter precipitation,

respectively.

4.6.2 Long-term trend analysis

The long-term Qr, its different hydrologic components (Qs, Qg, Qr and Qg),
mean annual precipitation, temperature and snow cover area (%) were utilized
to analyze the trends over 1980-2020 for GGS (Figure 4.10). For the trend
analysis Men-Kendall test and Sen’s slope estimator method were used (Mann,
1945; Kendall, 1948; Sen, 1968). The M-K test (Z value) assesses whether a

significant trend exists, while Sen’s slope estimator (Q value) quantifies the
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rate of change. These values define the trend only when the p-value is below
0.05 (95% confidence level), otherwise it suggests that no statistically
significant trend is present.

The long-term trend analysis reveals key patterns in discharge, snow
cover and temperature over 1980-2020 for GGS (Figure 4.10). Q1 (Q-value =
—0.006, Z-value = 0.010) does not show a statistically significant trend,
however, the slightly negative Q value suggests a minor decrease in GGS
discharge over 1980-2020, possibly because of the no significant trend
observed in mean annual precipitation (Q-value = 0.262, Z-value = —0.013)
(Figure 4.10). Similarly, Qg (Q-value = —0.037, Z-value = —0.095) shows no
significant trend, but the small negative Q and Z values indicate a slight
decrease in Qg over 1980-2020 (Figure 4.10). In contrast, Qs is significantly
decreasing (Q-value = —0.134, Z-value = —0.327), likely due to rising
temperature trend (Q-value =0.018, Z-value = 0.286) and reducing snow cover
area (Q-value = —0.07, Z-value = —0.315) for GGS over 1980-2020 (Figure
4.10). The snow-covered area decreased by approximately 5% in 2020
compared to 1980. However, it exhibits considerable interannual variability,
with some years showing the increase in snow cover, rather than a uniform
decrease. Qr (Q-value = 0.149, Z-value = 0.471) and Qg (Q-value = 0.015, Z-
value = 0.202) exhibit a significantly increasing trend (Figure 4.10),
suggesting possible shifts in precipitation patterns and hydrological responses

on GGS.
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Figure 4.10 Observed trend in temperature (orange), precipitation (brown),
snow cover area (SCA) (purple), total discharge (black), snowmelt (sky blue),

glacier melt (blue), rainfall-runoff (green) and baseflow (grey) for GGS over
1980-2020.

Similar to these trends, previous studies also observed that the increase
in Qr and Qg is offset by a significant decrease in Qs in the Himalaya (Lutz et
al., 2014; Khanal et al., 2021). Importantly, the mean annual temperature
displays a significant positive trend (Q-value = 0.018, Z-value = 0.286),
aligning with broader warming patterns in the Himalaya (Kumar et al., 2011;
Immerzeel et al., 2012; Nepal and Shrestha, 2015; Srivastava et al., 2024)
(Figure 4.10). These findings suggest that increasing temperature and

decreasing snow cover are influencing different components of GGS
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discharge. Although higher temperature on GGS would typically enhance
snowmelt, the significant concurrent reduction in snow cover on GGS is
limiting snowmelt, while on the other hand, increasing rainfall-runoff on GGS

over 1980-2020.

4.6.3 Sensitivity of discharge parameters

The sensitivity analysis for GGS revealed that the Tt and DDFsnow exhibited
the highest sensitivity, with a sensitivity of —3.5 m’/s and 1.48 m%s,
respectively, corresponding to +1°C and +10% change in Teric and DDFgnow,
respectively (Table 4.1). SSC also showed a higher sensitivity of —0.22 m?/s,
emphasizing a significant influence on Qr whereas DDFqebris, DDFice and
GlacF exhibited moderate sensitivities of 0.05 m?/s, 0.04 m?/s and 0.02 m’/s
(Table 4.1). In line with the present study, the previous studies on hydrological
models also found DDFsnow, Terit, SSC, DDFgebris and DDFjce are among the
most sensitive model parameters (Azam et al., 2019; Fatima et al., 2020;
Srivastava et al., 2024). The parameters related to subsurface flow, such as
root zone thickness, sublayer thickness, groundwater layer thickness, and
saturated groundwater content, showed relatively low sensitivities, indicating

a lesser impact on immediate discharge response (Table 4.1).

4.6.4 Comparison with the other studies

The results from previous studies on GGS were compiled to assess the
reliability of modelled discharge in the present study (Table 4.2). The findings
indicate that snowmelt remains the primary contributor to discharge, followed
by glacier melt, rainfall-runoff and baseflow (Table 4.2). Similar results were
documented in previous studies on GGS (Singh et al., 2008; Rai et al., 2019;
Singh et al., 2023; Arora et al., 2024) (Table 4.2).

A previous study by (Lutz et al., 2014) applied the SPHY model to
simulate discharge in HMA basins over 1998-2007, and the results are freely
available (ICIMOD, 2021). The results for GGS were extracted and the mean
discharge reported by (Lutz et al., 2014) is twice (56 m?/s) as compared to
present study (28 m?/s) (Table 4.2). The reason for this could be the different
spatial resolution of the model used in both the studies and that the model by

(Lutz et al., 2014) was not calibrated at the glacier-catchment scale using field
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measurements. In the present study, the calibration with the in-situ discharge
measurement at the nearest outlet (Bhojbasa) resulted in significantly better
modelled discharge estimates. Another reason could be the high resolution
(0.12° x 0.12°) precipitation and temperature data used in the present study
compared to the coarse resolution (0.5° x 0.5°) data used in (Lutz et al., 2014).

GGS mean discharge observed in the present study (27.7 m*/s) showed
a small difference compared to the results in (Singh et al., 2023) (38.1 m¥/s)
over 2012-2020, this small difference could be attributed by the different
datasets and time period considered for the model calibration (Table 4.2). The
monthly and seasonal discharge patterns observed in the present study are
similar to the monthly patterns reported in the previous studies on GGS (Rai
et al., 2019; Singh et al., 2023). The maximum annual discharge was observed

in 2010 which was also reported by (Salim and Pandey, 2021).
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Table 4.2 Estimates of different discharge components from previous studies on Gangotri Glacier System.

Chapter 4

Mean

Catchment Time period Model/ discharee Snowmelt Glacier Rainfall- Baseflow References
p technique (s ;% (%) melt (%)  runoff (%) (%)
Gangotri 20002004 SNOWMOD - 97 (combined) 3 _ (sz%%% al.,
Gangotri  1998-2007 SPHY 56 7 73 10 10 (L‘%le;)al"
Gangotri 2012-2020 SPHY 38.1 52 27 17 3 (sz%hzg'; al.,

. B B B (Arora et al.,
Gangotri 2013-2019 HBV 56 30 15 2024)

: _ B (Rai et al.,
Gangotri 2005 Isotopes 60 36 4 2019)
Gangotri

Glacier 1980-2020 SPHY 28 64 21 11 4 Present study
System
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4.6.5 Uncertainties and limitations

The modelled GGS discharge exhibit a few uncertainties, which are important
to consider while interpreting the results. The main source of uncertainty arises
from the sensitivity of SPHY model parameters. These uncertainties were
systematically assessed by error propagation law (section 4.4.5; Figure 4.6).
The average uncertainty in the modelled discharge was £1.9 m3/s, with inter
annual variability ranging between +1.4 and +2.4 m3/s over 1980-2020.
Additionally, the differences in glacier area estimates between the different
glacier inventories are also a source of uncertainty in the glaciohydrological
model output. Importantly, understanding and quantifying these uncertainties
enhances confidence in the modelled discharge and allows for more informed
interpretation. It also enables more accurate projections of future water
resources. Such insights are particularly valuable for strategic planning in
glacier-fed basins under evolving climate scenarios.

While the reconstructed discharge provided valuable insights, the study
has few limitations, which can guide future research. A major limitation of the
SPHY model is that it does not include the losses due to sublimation, which
impacts the total discharge of a glacierized catchment. Including sublimation
in future model developments could improve the representation of glacier
melt, particularly in arid and high-altitude zones (Azam et al., 2021). Another
key limitation of the SPHY model is its inability to assign glacier- or elevation-
specific DDFqenris values due to its grid-based setup. This leads to uniform
DDFiebris across all glaciers in GGS, overlooking enhanced melt from
supraglacial lakes and ice cliffs present on the Gangotri Glacier. Incorporating
dynamic debris parameterization could significantly overcome this issue.
While equifinality is an inherent limitation in hydrological models, efforts
were made in this study to minimize its impact. For this, a two-tier calibration
approach was adopted using in-situ discharge and geodetic mass balance,
supported by validation against improved snow cover product (Section 4.4.3,
4.4.4). Although there are some uncertainties and limitations, the use of high-
resolution meteorological datasets, two-tier calibration approach enhanced the

reliability of modelled discharge for GGS.
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4.7 Conclusions

The long-term glaciohydrological studies focusing on climatic drivers
influencing long-term discharge are limited in HK. The present study
addresses this research gap by providing a comprehensive assessment of the
long-term discharge and control of climatic drivers on the hydrology of GGS
from 1980-2020. The contributions from snowmelt, glacier melt, rainfall-
runoff and baseflow were quantified by reconstructing GGS discharge
spanning over four decades (1980-2020) using high-resolution SPHY model,
combined with remote sensing datasets. The two-tier calibration using
geodetic mass balance and field discharge data, along with validation using
improved MODIS snow cover area, significantly increased the SPHY model
reliability for simulating discharge. The findings indicate that snowmelt is the
dominant contributor to GGS discharge, accounting for 64% of the mean
annual GGS discharge (28 + 1.9 m?*/s). Glacier melt contributed 21%, while
rainfall-runoff and baseflow contributed 11% and 4%, respectively. The
highest annual discharge was observed in 2010 with the lowest in 2015 on
GGS over 1980-2020. The monthly discharge starts increasing in April and
peaks in July in GGS. The decadal analysis showed that the maximum decadal
discharge (28.9 m?/s) was observed in 2001-2010 corresponds to the highest
decadal temperature (3.4 °C) over four decades (1980-2020) in GGS. The
decadal mean discharge showed the highest volumetric increase of 7.8% from
1991-2000 to 2001-2010 on GGS. Decadal analysis showed a shift in peak
discharge to July post-1990. Statistical analysis revealed that the hydrology of
GGS is mainly controlled by the summer precipitation, which regulates the
interannual variability of GGS discharge, despite snowmelt being the primary
contributor. This is primarily due to summer snowfall, which increases surface
albedo, suppresses melt during peak ablation even under high temperature, and
thus significantly impacts annual discharge. Long-term trend analysis
indicates an increasing trend in mean annual temperature with a decreasing
trend in snow cover area, resulting in a decreasing trend of snowmelt on GGS
over 1980-2020. Conversely, rainfall-runoff and baseflow have exhibited
increasing trends on GGS, suggesting warming-induced hydrological changes.

Sensitivity analysis revealed that Tcrit and DDFsnow are the highest sensitive
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parameters to GGS discharge over 1980-2020. The findings underscore the
urgent need for continued field monitoring and modelling efforts to enhance
water resource management strategies in glacier-fed river basins. Future
research should focus on integrating high-resolution climate projections and
remote sensing datasets to improve discharge predictions under the changing

climate in HK.
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Chapter 5

Improved snowline extraction method

5.1 Introduction

Glaciers in High Mountain Asia are critical water resources for downstream
communities, yet their response to climate change remains challenging to
monitor (Armstrong et al., 2019; Azam et al., 2021). The Himalaya-
Karakoram (HK) region contains thousands of glaciers, but only a tiny fraction
(38 glaciers, ~0.09%) are monitored in the field (Vishwakarma et al., 2022).
This paucity of in-situ data limits our understanding of glacier changes in these
rugged, heterogeneous terrains (Bolch et al., 2019). Equilibrium line altitude
(ELA) is a key indicator of glacier health, defined as the elevation where
annual accumulation equals ablation; mass balance is zero (Braithwaite and
Raper, 2009; Cuffey and Paterson, 2010). Year-to-year fluctuations in ELA
reflect shifts in climate (primarily temperature and precipitation). Continuous
ELA monitoring is thus crucial for calibrating glacio-hydrological models and
reconstructing mass balance variations (Azam et al., 2021; Srivastava and
Azam, 2022b). However, in-situ estimation of ELA using the traditional
glaciological method (stake networks and snow pits) is laborious and often
challenging on glaciers in remote, high-altitude areas. However, ELA
estimates can be sensitive to the accuracy of digital elevation models and
glacier outlines (Braithwaite and Raper, 2009; Oien et al., 2022). In regions
like the Himalaya, researchers often rely on remote sensing snowline altitude
(SLA) as a proxy for the ELA. The highest SLA at the end of the ablation
season (SLAmax) 1s expected to correspond closely to the ELA (Rabatel et al.,
2012).
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Over the past two decades, remote sensing techniques for extracting
glacier snowlines have advanced considerably (Pelto, 2011; Huss, 2013;
Mernild et al., 2013; Tawde et al., 2016; Rabatel et al., 2017). Early studies
relied on manual delineation of the snowline by visual inspection (Rabatel et
al., 2016; Barandun et al., 2018; Chandrasekharan et al., 2018). Semi-
automated algorithms have since leveraged band ratios and spectral indices
(e.g., NIR/SWIR) for classification, using either fixed thresholds (Rastner et
al., 2015; Racoviteanu et al., 2019) or adaptive thresholding methods like Otsu
algorithm (Rastner et al., 2019; Liu et al., 2021). Multi-step classification
approaches incorporating albedo, slope, or elevation have also been used (Lei
etal., 2012; Naegeli et al., 2019; Barandun et al., 2021). Platforms like Google
Earth Engine have enabled scalable SLA mapping (Liu et al., 2021; Loibl et
al., 2025), and machine learning methods are also developed (Li et al., 2012;
Prieur et al., 2022).

Despite these advances, SLA detection remains challenging due to deep
shadows, crevasses, snow patches, steep terrain, and persistent cloud cover
(Racoviteanu et al., 2019; Rastner et al., 2019). To mitigate such issues,
various filtering techniques have been introduced: cloud cover thresholds,
terrain masks, or filtering based on snow cover fraction (Racoviteanu et al.,
2019; Prieur et al., 2022; Loibl et al., 2025). Some studies restrict SLA
extraction to glacier flowlines (Rabatel et al., 2017; Davaze et al., 2020).

This chapter presents an improved semi-automated snowline extraction
method implemented in Dudh Koshi basin. Our approach builds upon the
method by Racoviteanu et al. (2019) and introduces a robust post-processing
filtering procedure. The primary objectives are: (1) to improve a semi-
automated SLA approach developed previously (Racoviteanu et al., 2019) by
implementing it in Python, adapting it to Sentinel-2/Landsat 8 and adding post-
processing filtering methods; (2) to validate the improved method using high-
resolution Planet/Venus images. The chapter also sets the foundation for
analyzing the SLA-ELA relationship discussed in the next chapter by ensuring

that the snowline data used are temporally consistent across the study area.
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5.2 Study area

Our study area consists of the glacierized Dudh Koshi basin (~3711 km?, 449
to 8761 m a.s.l.), located in the monsoon-dominated central Himalaya (Figure
5.1) (Thayyen and Gergan, 2010). ISM causes maximum precipitation (~80 %
of the annual precipitation) during the summer months (June to September),
Glaciers in these areas are referred to as “summer accumulation type glaciers”
(Bookhagen and Burbank, 2010; Thayyen and Gergan, 2010). The
simultaneous accumulation and ablation in this region introduce challenges to
snowline detection, as SLAs are often indistinguishable due to cloud and/or
temporary snow cover (Brun et al., 2015). During the summer, snowfall is
frequent at higher elevations, while lower elevations may experience rainfall
(Khadka et al., 2024). The post-monsoon period (October—November) marks
a rapid shift to predominantly dry, sunny, and cooler weather, occasionally
disrupted by typhoons that can bring heavy snowfall above 4000 m a.s.l. (Shea
etal., 2015). The winter period (December—February) is characterized by even
harsher conditions, with consistently cold, arid, and windy weather and
minimal snowfall; any deposited snow is often blown away by strong westerly
winds above 5000 m a.s.l. (Wagnon et al., 2013). During the pre-monsoon
period (March—May), weather gradually becomes warmer and wetter, making
this the second wettest season of the year (Khadka et al., 2022). The unique
climatic setting and dynamic surface conditions, including wind-driven snow
redistribution, sublimation, and temporary snow cover make it a highly

dynamic system.
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Figure 5.1 Study area showing the upper Dudh Koshi basin in the central
Himalaya, with glaciers from the GAMDAM inventory shown in cyan (A, B).
The yellow box shows the subset used for validation around the Hinku sub-
basin (n = 177 glaciers) (B). The background image is a false color composite

of the Sentinel-2 image (bands 11,8,4) from 14 Jan 2016 (B).

5.3 Datasets
5.3.1 Remote sensing data

To extract glacier SLAs, sub-monthly, multi-temporal data were used from
Sentinel-2 (denoted hereafter as ‘S2’) and Landsat 8 (‘L8’) sensors for the
period 2016-2022 (Table 5.1). For S2, collection 1 MSI Level-1C (L1C) data
were obtained from Copernicus Open Access Hub, consisting of orthorectified
Top-Of-Atmosphere (TOA) reflectance in cartographic geometry for 13
spectral bands, with 10 m spatial resolution in the visible (VIS) and 20 m in
the shortwave infrared (SWIR) bands. For L8, collection 2, level-1 data were
obtained from the United States Geological Survey (USGS, 2019), which
consists of radiometrically calibrated and terrain-corrected (L1TP) data
provided as scaled Digital Numbers (DN) for 11 bands, with 30 m pixel size
in VIS to SWIR bands. Since L8 has only a 16-day revisit time, there were less
available dates compared to S2 (5-day revisit time). For both sensors, cloud-
free contrast images were selected from post monsoon October to

December/January each year. Atmospheric and topographic corrections were
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performed on all images using the open-access Atmospheric and Radiometric
Correction of Satellite Imagery (ARCSI) software (Bunting and Clewley,
2018), based on the 6S (Second Simulation of a Satellite Signal in the Solar
Spectrum) algorithm, which is a radiative transfer model (Vermote et al.,
1997) (Figure 5.2A). This yielded the standardized surface reflectance for all
the scenes, with deep shadows masked out as NoData.

High-resolution Planet and Venpus data (3—5 m) were used to validate
the S2/L8-derived SLAs over the period 2016-2022. Images from Planet
RapidEye (5 m)/PlanetScope (3 m) consist of multi-spectral data (five and four
spectral bands, respectively, in the VIS/NIR) with a positional accuracy of <
10 m (PlanetLabs, 2021). Level 3A/B data were obtained, which comprises
radiometrically-corrected, orthorectified surface reflectance computed from
TOA radiance products using the 6S radiative transfer model (Vermote et al.,
1997). The Venps sensor acquired images with a two-day revisit time, 5 m
spatial resolution and 12 narrow spectral bands (VIS to NIR) over the period
2017-2020 in our study area. VM1 (Venus Mission 1) products from the first
acquisition phase were freely accessed through the French CNES Theia
website  (https://www.theia-land.fr/en/blog/product/venus/). ~ The  Flat
Reflectance (FRE) products were obtained, which consist of topographic and
radiometric corrected data produced by CNES on the basis on L1C and L1A
TOA reflectance (Theia-Land, 2022). Planet/Venus images were used for the
snowline validation, by selecting the images closest to the dates of the S2/L8
images (~1-2 days). A list of all images used and their specific details are

provided in Table 5.1.

5.3.2 Glacier masks
For the entire Dudh Koshi basin, glacier outlines from the GAMDAM glacier

inventory (Sakai, 2019) were used, constructed using semi-automated
mapping of satellite imagery (Landsat ETM+ imagery from 1999-2003) and
manual corrections. This inventory covers 425 km? of the Dudh Koshi basin,
with a total of 462 glaciers. While there is a mismatch of ~10 years between
the date stamp of these outlines and the period of our analysis, these were used
only as a glacier mask, so this should not affect the SLA extraction routine as

most glaciers have shrunk (Li et al., 2022). For the detailed validation of the
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SLA method in the Hinku sub-basin, the glacier outlines were updated based
on manual delineation on end-of-the ablation season Planet/Venus satellite

imagery from 2" December 2020.

5.3.3 Elevation data

The ALOS Global Digital Surface Model (AW3D30 version 2.2, at 30 m)
(Takaku and Tadono, 2017) was used for the topographic correction and SLA
extraction. This DEM version contained fewer data voids and provided better
shadow rendering in ARCSI in our study area, as reported by (Racoviteanu et
al., 2021). The AW3D30 DEM was also has a high reported vertical accuracy
of ~10 m in our study area (Tadono et al., 2014).

5.4 Methodology
5.4.1 Snowline extraction

This study builds on the method proposed by (Racoviteanu et al., 2019), which
was improved here for a more accurate SLA extraction. Specifically, the
shadowed area was automatically masked out and the Otsu method was used
for automatically selecting distinct thresholds for every satellite image. The
Otsu method is an unsupervised, histogram-based thresholding technique that
determines an optimal threshold by maximizing between-class variance,
enabling objective separation of two dominant pixel classes (Otsu, 1979). In
snowline detection, these classes correspond to snow-covered and snow-free
glacier surfaces with distinct reflectance characteristics. The method’s image-
specific threshold selection makes it well suited for automated SLA mapping
from optical satellite imagery (Liu et al., 2021; Rastner et al., 2019). In the
previous method by (Racoviteanu et al., 2019), shadows were masked using a
single band ratio and the thresholds for surface partitioning were selected on
the basis of visual inspection and prior knowledge (Figure 5.2A). The
automated filtering step introduced in this study (Figure 5.2B) marks a key
improvement over the previous method by addressing challenges such as
shadows, crevasses, snow patches, etc., which often led to erroneous pixels in
previous studies.

The SLA delimitation method used here consists of several steps

implemented as conditional statements in Python (Figure 5.2) and applied over
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the entire Dudh Koshi basin (462 glaciers). The first part (Figure 5.2A)
consists of separating snow and ice from the surrounding terrain using a fixed
threshold based on literature, applied to a band ratio (NIR/SWIR > 1.5, S2:
band 8/11, L8: band 5/6) (Racoviteanu et al., 2009, 2019), followed by NIR
band thresholding automated using the Otsu method (Otsu, 1979) to separate
snow from ice (Racoviteanu et al., 2019). Snow and ice areas were then
buffered and intersected to extract “raw” snowlines as detailed in (Racoviteanu
et al., 2019) (Figure 5.2A). In the second part, the raw SLAs were filtered to
limit known outliers commonly found in both the ablation and accumulation
areas of glaciers in previous studies (Racoviteanu et al., 2019) (Figure 5.2B).
This consisted in: (a) applying a negative buffer of 100 m to the GAMDAM
glacier outlines (Figure 5.2B); (b) applying a threshold between Q3 (third
quartile) and Whislo (lower whisker) on a box plot, chosen on a trial-and-error
basis (Figure 5.2B, C); and (c) applying a sieve filter on the binary image
(SLA/non-SLA pixels) to further minimize common outliers in the
accumulation/ablation areas (for example, the inclusion of false positives in
the accumulation area). For the sieve filtering step, different thresholds were
defined for each sensor (S2: 50 pixels and L8: 30 pixels); these thresholds were
determined by several tests on glaciers of varying sizes (~2 to ~127 km?) to
capture isolated pixel groups of various sizes; (d) SLA extraction with the
output binary image and DEM to yield the “final” SLAs at basin scale (Figure
5.2B). Glacier SLA were calculated as the mean elevation of all the pixels
along the final snowline within the glacier boundary. Sub-basin-wide average
SLA were calculated as an average of all glacier SLAs within the Hinku sub-

basin.

5.4.2 Validation

The remote sensing S2 and L8 SLAs were validated in a subset of the Dudh
Koshi basin, the Hinku sub-basin (177 glaciers), by comparing them with
SLAs delineated manually on Planet/Venpus color composites (Planet: bands
4,3,2 and Venpus: bands 11,7,4). This was conducted as a double-blind
experiment by a different analyst, independently of the semi-automated
workflow. Both the semi-automated and the manually-delineated SLAs were

extracted from the AW3D30 DEM using the 2020 Planet glacier mask. The
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mean SLAs were calculated from both datasets on a glacier-by-glacier basis
and their means were compared from 13 common dates (+1 to 2 days) over the
period 2016-2022. The accuracy of the semi-automated SLAs with respect to
the Planet/Venus SLAs was calculated as vertical root mean square error
(RMSEz) and coefficient of determination (R?). Two-sample t-tests were also
performed to evaluate the differences in means between the two samples

(S2/L8 vs. Planet/Venps) and visually investigated outliers.
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Figure 5.2 Flowchart showing the workflow of SLA extraction with all the
inputs, outputs and their thresholds: raw SLA extraction using Otsu
thresholding and buffer intersection (A), automated filtering to get final SLAs
(B); box plot with thresholds (C). Here, Q1, Q3, whislo and whishi represent
the first and third quartile, lowest whisker and highest whisker values,

respectively.

5.5 Results

5.5.1 Performance of the snowline method
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Initially, the raw SLAs exhibited outliers near the glacier ridgelines, crevasses,
shadows and snow patches in the ablation area, etc. The filtering step (Figure
5.2B) allowed the removal of these outliers, an example shown with S2 and
L8 images acquired four days apart (Figure 5.3). The outliers, initially present
around the glacier ridgelines (white arrows in Figure 5.3A and 5.3C) were
removed by the negative buffer applied to glacier boundaries. Similarly, the
outliers with extreme elevation values in the accumulation areas, which fell
outside the 100 m buffer from the ridgeline, were removed using the box plot
filtering (green arrow in Figure 5.3C). The remaining isolated outliers were
removed by sieve filtering (yellow arrow in Figure 5.3A). Most of the
outliers/erroneous pixels were successfully removed, resulting in more reliable

and clearer SLAs (Figure 5.3B, D).

‘Outliers -

— Snowline 3 Glacier boundary

Figure 5.3 Illustration of the SLA filtering step showing raw SLAs (panels A,
C) and the final SLAs (panels B, D) on two randomly selected glaciers in the
Hinku sub-basin for S2 (top row, 20 Oct 2018, bands 11,8,4) and L8 (bottom
row, 24 Oct 2018, bands 6,5,4). Arrows point to outliers near glacier ridgeline

(white) at high elevations (green) and isolated pixels (yellow).
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5.5.2 Validation with high-resolution data at sub-basin scale

For the Hinku sub-basin, final sub-monthly sub-basin-wide average SLA over
2016-2022 are shown in Table 5.1. Sub-basin-wide average SLA was lowest
in 2016 (5484 m) and highest in 2018 (5645 m) (Table 5.1), with a mean of
5575 m over the period 2016-2022. Since the extent of the Planet scenes
varied annually depending on acquisitions, only 381 glacier SLAs out of the
total 1143 glacier SLAs, extracted from S2/L8 over the period 2016-2022
could be compared with the manually-delineated Planet/Venus SLAs in the
Hinku sub-basin (Table 5.1). This correlation was poor in the case of raw SLAs
(non-filtered) (R?> = 0.41, RMSEz = 188.8 m) (Figure 5.4A). However, a good
agreement was found between filtered S2/L8 SLAs and the manually-
delineated Planet/Venus SLAs (R?=0.80, RMSEz = 61.3 m) over 2016-2022
(Figure 5.4B). The year-by-year comparison of final SLAs from S2/L8 vs.
manually delineated SLAs from Planet/Venpus shows variability in R?, ranging
from 0.65 in 2016 to a best fit 0f 0.90 in 2020 (Figure 5.5). This may illustrate
the variability in surface conditions, as it will be discussed later in the
discussion section. The means of the two sets of samples (S2/L8 final SLAs
vs. Planet/Venps) differed by only a few meters (Table 5.1). The differences
were not statistically significant based on the two-sample t-test assuming

unequal variances (p > 0.05, df = 791, where df denotes the degree of

freedom).
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Figure 5.4 Regression between the semi-automated S2/L.8 glacier SLAs and
the manually-delineated Planet/Venus glacier SLAs before and after
automated filtering over the period 2016-2022.
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Table 5.1 Summary statistics for S2/LL8 sub-basin-wide average SLLAs over the Hinku sub-basin (177 glaciers) and validation with
manually-delineated sub-basin-wide average SLAs from Planet/Venpus images (denoted here as PS/VE) + 1-2 days over the period 2016—
2022

Date 4 SLAS SLAs21Ls SLApsvE mean RMSEz R?
(m) (m) diff (m) (m)

2016-01-14 34 5592 5610 18 68.8 0.8
2016-11-19 14 5484 5494 10 82.9 0.7
2016-12-09 26 5543 5574 31 71.4 0.8
2016-12-29 28 5545 5585 40 88.4 0.7
2017-12-09 32 5604 5608 4 45.0 0.9
2017-12-29 37 5604 5602 2 50.0 0.9
2018-10-20 39 5610 5590 20 57.5 0.8
2018-10-24 17 5548 5570 22 65.2 0.6
2018-11-24 39 5614 5605 9 42.8 0.9
2018-11-25 21 5645 5619 26 51.1 0.9
2019-12-04 33 5557 5556 1 60.4 0.8
2020-12-03 32 5598 5593 5 40.5 0.9
2022-12-08 29 5548 5562 14 64.6 0.9

Mean 5575 5579
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marked in red.

The residuals plotted against the averages of manually-delineated SLAs

and semi-automated final SLAs (Figure 5.6A) follow a normal distribution,
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with a mean residual of 4.25 m (Figure 5.6A). The majority of the residuals
(93%) fall within the limits of agreement (£1.96 standard deviation) (Bland
and Altman, 1986), marked as shaded area in Figure 5.6, with only 27 residuals
fall outside the limits of agreement. Some of the outliers in Figure 5.6A are
most likely due to the presence of snow patches in the ablation areas as shown
in Figure 5.7A. In other situations, parts of the glacier surface near the shadow
have a lower reflectance and get misclassified as ice, resulting in false SLAs
near the shadow edge, higher than the actual SLA location (i.e., negative
residuals). Low reflectance crevassed areas shown in (Figure 5.7C) and
spectrally-mixed pixels (snow/ice/shadow) (Figure 5.7D) impact the
reflectance histogram utilized for Otsu thresholding, resulting in multiple
peaks of different reflectance, and a threshold that is either lower or higher
than the optimal threshold needed to effectively separate snow and ice. These
resulted in positive and negative residuals, respectively (Figure 5.6A).
Supraglacial lakes were misclassified as snow due to the high reflectance or
frozen lakes in winter (Figure 5.7B) resulting in snowlines being located at
lower altitudes than the actual snowline, which appeared as positive residuals

in Figure 5.6A.
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Figure 5.6 A) Bland-Altman plot of the average SLAs and the residuals
(manually-delineated SLA minus semi-automated SLA); (B) normal
distribution curve of residuals. The upper and lower limits of agreement

correspond to +1.96 times of standard deviation from the mean residual.
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Figure 5.7Examples of challenging situations where the semi-automated
method failed to accurately detect the SLA: glaciers with snow patches in the
ablation area (A), shadows and supraglacial lakes (B), crevasses (C) and mixed
pixels (snow/ice/shadow) (D). The background images are S2 false color

composites (bands 11,8,4).

5.6 Discussion
5.6.1 Advances and limitations of the SLA method

The proposed SLA extraction method provides promising results, yielding
overall very small differences in means of SLAs when compared to high-
resolution satellite data (Table 5.1). However, these differences do vary on a
year-by-year basis (S2: 1.06 to 23.95 m; L8: 4.36 to 9.74 m) depending on
cloud cover and the quality of images (shadows, etc.). Overall, the
performance of the method applied to basin scale showed good agreement with
the manually-delineated SLAs at the glacier scale (Figure 5.4), with challenges
remaining in different topographic settings (Figure 5.7). The automated
filtering procedure based on the negative buffer, box plot and sieve filter
proposed in this study effectively minimized the outliers around the ridgelines

as well as in the accumulation and ablation areas.
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While the present method shows potential for efficiently detecting
SLAs, it is nevertheless subjected to the limitations of optical data, i.e.,
persistent cloud cover in the central-eastern region of the Himalaya during the
monsoon. Therefore, in such areas, the use of other types of data such as
Synthetic Aperture Radar, which are not affected by clouds, should be tested
(Garg et al., 2022). In the monsoon-dominated areas, any (semi-) automated
method is further challenged by the snowfall and wind re-deposition which
may cover the glacier for part of the ablation season (Brun et al., 2015), as
discussed above. Furthermore, the oversaturation issue due to highly reflective
surfaces (i.e., bright snow) and stripping due to scanline corrector (SLC)
failure in Landsat 7 (ETM+) (USGS, 2024) are general sources of uncertainties
in optical data, but it did not affect this study which used Landsat 8. In this
study, the image selection was quality controlled as much as possible to

minimize the effect of these issues.

5.7 Conclusions

This improved semi-automated method, with Otsu thresholding and an
automated filtering procedure, represents a robust approach for identifying
glacier SLAs from satellite data such as Landsat and Sentinel. It has the
advantage of using only limited input data (freely available DEM and multi-
sensor satellite images), making it suitable for application to multi-spatial
scales, from glacier to basin scale. The automated filtering procedure
implemented in this study is an advancement in the previous semi-automated
SLA delineation routine as it enhances the reliability of SLA estimates by
minimizing errors due to shadows, crevassed areas, snow patches, etc. It
provided high accuracy when compared to high-resolution data despite a few
remaining outliers. Though in this study, the method was implemented on
post-monsoon cloud-free images, the workflow is flexible and can also be used
for other seasons, if images are cloud-free. This holds potential for
investigating snowline evolution throughout the year from glacier to basin
scale. Prospective improvements to separate snow and ice include the addition
of more sophisticated methods based on spectral unmixing (Painter et al.,

2009; Racoviteanu et al., 2021), machine learning-based classification for
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glacier surfaces and/or integration of the method in the Google Earth Engine
platform (Loibl et al., 2025).

The method developed in this chapter lays the foundation for consistent
and large-scale analysis of snowline altitudes across glacierized basins. By
enabling the generation of reliable SLA datasets over time, it enables studying
glacier-climate interactions, mass balance variability, and climate change
impacts with improved spatial and temporal resolution. In the following
chapter, this method is leveraged to reconstruct SLA time series across the
Dudh Koshi basin and to investigate the relationship between SLA and ELA
on Mera Glacier, thereby assessing the reliability of using remotely sensed
snowlines (SLAmax) as a proxy for equilibrium line altitude (ELA) in

monsoon-dominated regions.
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Chapter 6
SLA-ELA relationship in the monsoon-

dominated region

6.1 Introduction

Glacier equilibrium line altitude (ELA) is a robust climatic indicator and a key
proxy for assessing glacier mass balance and long-term glacier health
(Braithwaite and Raper, 2009; Cuffey and Paterson, 2010). Defined as the
altitude at which annual accumulation equals ablation, the ELA reflects the net
outcome of seasonal climate variability. In many glaciated regions, especially
at mid-latitudes, the late-ablation maximum snowline altitude (SLAmax) has
been widely used as a remote-sensing proxy for ELA (Rabatel et al., 2013;
Tawde et al., 2016; Barandun et al., 2018; Chandrasekharan et al., 2018). The
temporal evolution of SLA across glaciers is often closely tied to climate
variables, especially temperature and precipitation. However, in monsoon-
dominated regions such as the central Himalaya, this relationship becomes
more complex (Rabatel et al., 2012; Yuwei et al., 2014). Here, the glacier mass
balance regime is governed by simultaneous summer accumulation and
ablation, driven by strong seasonality in both precipitation and cloud cover
(Wagnon et al., 2013; Sherpa et al., 2017). This duality introduces temporal
and spatial variability in snowline positions, complicating the assumption that
SLAmax approximates ELA. Factors such as episodic summer snowfall, post-
monsoon accumulation, topographic shading, and microclimatic heterogeneity
often result in decoupling between SLAmax and true ELA (Fujita, 2008;
Rabatel et al., 2012; Yuwei et al., 2014; Brun et al., 2015). Furthermore,

persistent cloud cover during the ablation season frequently obscures the
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snowline, introducing observational gaps that challenge consistent monitoring
(Racoviteanu et al., 2019; Barandun et al., 2021).

Despite these complexities, a few studies in High Mountain Asia have
attempted to empirically test the SLA-ELA relationship in summer-
accumulation type glaciers. For instance, Yuwei et al. (2014) and Rabatel et
al. (2012) have shown that while SLAmax remains a useful proxy for ELA, it
often exhibits an offset that varies across years and glacier types. These
deviations highlight the need for high-quality, temporally consistent SLA
datasets—especially in regions with challenging observational conditions like
the Himalaya.

This chapter investigates the SLA-ELA relationship on Mera Glacier,
located in the monsoon-dominated central Himalaya, by leveraging a
reconstructed multi-year SLA dataset. This dataset, generated using the
method developed and validated in Chapter 5, allows us to explore the inter-
annual and sub-monthly variability of SLA and assess the agreement of
SLAmax with field-based ELA estimates from the GLACIOCLIM observatory.
Our analysis focuses on identifying temporal patterns in SLA, quantifying its
elevation offset from ELA across multiple years, and evaluating the

implications for using SLAmax as a proxy under monsoon-dominated region.

6.2 Study area

The assumption that SLAmax = ELA was tested for Mera Glacier (~4.8 km? in
2018, 4940 to 6420 m a.s.l.), located in the central part of the Dudh Koshi
basin within the Hinku Valley (Figure 6.1). Mera Glacier is a small clean
glacier monitored in the field since 2007 within the framework of the
GLACIOCLIM network (Wagnon et al., 2013, 2021). It is north-oriented and
it divides into two branches ~5800 m, referred to as Mera and Naulek (Wagnon
et al., 2013). In this study, only the Mera branch was investigated, which has
a denser network of ablation stakes, offering a-priori field knowledge and
opportunities for comparing the remote sensing SLAs with field-based ELAs.
The mass balance of Mera Glacier is highly sensitive to climatic variations,
with a £1°C change in temperature resulting in a —0.75 + 0.17 m w.e. change
in glacier-wide mass balance and a £20% change in precipitation leading to a

+0.52 £ 0.10 m w.e. change (Khadka et al., 2024).
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Figure 6.1 Study area showing the upper Dudh Koshi basin in the central
Himalaya, with glaciers from the GAMDAM inventory shown in cyan (A, B).
The yellow box shows the subset used for validation around the Hinku sub-
basin (n =177 glaciers) (B). Mera Glacier in this sub-basin is also marked (red
star) (B) and shown in panel C along with the stake locations (red dots). The
background images are a false color composite of the Planet RapidEye image
(bands 5,4,3) from 10 Jan 2016 (C) and Sentinel-2 image (bands 11,8,4) from
14 Jan 2016 (B).

6.3 Datasets
6.3.1 Remote sensing data

This chapter utilizes an extended set of multi-temporal satellite imagery
acquired from the Sentinel-2 (S2) and Landsat 8 (L8), consistent with the
datasets described in Chapter 5. While the previous chapter focused on a
limited number of post-monsoon scenes (October—December) from 2016 to
2022 for method development and validation, the current analysis incorporates
a significantly broader temporal range. Specifically, all available cloud-free
images between April and January during the period 2015-2023 were included
to enable the reconstruction of a detailed SLA time series. All imagery
underwent consistent pre-processing, including atmospheric and topographic

correction, as detailed in Chapter 5. A complete list of all Sentinel-2, Landsat
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8, PlanetScope, and Venpus images used in this analysis is provided in Table

6.1 including the images previously used for method validation in Chapter 5.

Table 6.1 Remote sensing datasets used in this study for the Dudh Koshi study
area over the period 2015-2023

Sentinel-2 MSI, Level L1C

2016-01-14"  2016-04-13  2016-10-30  2016-11-29  2016-12-09° 2016-12-29° 2017-01-08
2017-01-18  2017-04-18  2017-10-15  2017-10-30  2017-11-19  2017-11-24  2017-12-09"
2017-12-14  2017-12-29" 2018-01-03  2018-01-08  2018-01-18  2018-01-23  2018-01-28
2018-04-23  2018-05-08  2018-10-15 2018-10-20° 2018-10-30  2018-11-04  2018-11-09
2018-11-14  2018-11-24" 2018-12-04  2018-12-09  2018-12-14  2018-12-19  2018-12-24
2018-12-29  2019-01-13  2019-01-18  2019-01-28  2019-05-08  2019-10-15  2019-11-19
2019-11-24  2019-12-04"  2019-12-09  2019-12-19  2019-12-24  2019-12-29  2020-01-13
2020-01-23  2020-01-28  2020-04-02  2020-04-12  2020-04-17  2020-10-09  2020-10-24
2020-11-08  2020-11-13  2020-11-18  2020-11-23  2020-11-28  2020-12-03*  2020-12-08
2020-12-13  2020-12-18  2020-12-28  2022-04-12  2022-10-24  2022-11-03  2022-11-13
2022-11-23  2022-11-28  2022-12-03  2022-12-08"  2022-12-18  2022-12-23  2022-12-28
2023-01-07  2023-01-12  2023-01-17  2023-01-22  2023-01-27

Landsat-8 OLI, Collection 2 Level 1 (L1TP)

2015-05-25 2015-07-12  2015-09-30 2015-11-01  2015-11-17  2015-12-19  2016-11-03
2016-11-19°  2017-11-06  2017-11-22  2018-10-24" 2018-11-25"  2019-10-27 2019-11-12
2020-10-29  2020-11-14  2020-11-30  2022-11-04  2022-11-20

Planet RapidEye, Level 3A

2016-01-10

Planet PSS, Level 3B

2016-11-17  2016-12-08  2016-12-30  2017-12-29  2020-12-02  2022-12-08

VENuS VSSC, VM1 mission

2017-12-09  2018-10-21  2018-11-22  2019-12-04

* denotes the images used for method validation in chapter 5

6.3.2 Field data

Field-based ELAs, point mass balance and corresponding snow depths for

Mera Glacier were available from the GLACIOCLIM network over 2007—

2022. Ablation stakes installed on the Mera branch are measured each year at
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the end of the ablation season (generally November) using the glaciological
method (Wagnon et al., 2013). Field-based ELAs are estimated from the
vertical mass balance gradient using stake measurements and elevations from

the 2012 Pleiades DEM as reported in the studies.

6.4 Methodology

The same improved snowline extraction method described in chapter 5 was
used to generate the SLA time series for Dudh Koshi basin. Basin-wide
average SLA were calculated as an average of all glacier SLAs within the
Dudh Koshi basin. To evaluate the reliability of SLAmax as a proxy for ELA
on Mera Glacier, SLAs on same dates as well as SLAmax extracted from S2 and
L8 images were compared with field-based ELAs obtained through direct
mass balance measurements. This comparison was performed for the
hydrological years over 2015-2023. For Mera Glacier, SLAs were masked
from the basin scale final SLAs for all the available cloud-free satellite images
over the period 2015-2023. Field measurements are generally performed
during November at the end of the hydrological year, and our satellite data

overlapped these dates = 1 day.

6.5 Results

6.5.1 Basin- and Glacier-scale snowline fluctuations

Here the fluctuation of the basin-wide average SLAs over the Dudh Koshi
basin and SLAs for Mera Glacier within this basin over the period 2015-2023
are presented (Figure 6.2). The annual basin-wide average SLAmax and glacier
SLAmax for Mera Glacier are given in Table 6.2 and also shown with sub
monthly basin-wide average SLAs in Figure 6.2 and Appendix A Table S1.
Over the Dudh Koshi basin (462 glaciers), a total of 6330 glacier SLAs were
detected over the period 2015-2023 ranging from 5090 m to 5624 m. Of these,
a total of 68 glacier SLAs were detected on Mera Glacier, ranging from 5168
m to 5673 m over the period 2015-2023. The number of glacier SLAs detected
varied annually depending on the sensor’s temporal resolution as well as cloud

cover and surface conditions (Figure 6.2, Appendix A Table S1).
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Figure 6.2 (A) Remote sensing basin-wide average SLAs for Dudh Koshi
basin (blue) and glacier SLAs for Mera Glacier (purple) over the period 2015-
23. SLAmax are marked in red for Dudh Koshi basin and yellow for Mera
glacier. The span of field measurements dates is shown as grey vertical bars
with field-based ELAs as horizontal black line at top. X-axis displays the dates
of field measurements and hydrological years. (B) The scatter plot of basin-

wide average SLAs vs. glacier SLAs on common dates over the study period.

Table 6.2 Basin-wide average SLAmax and glacier SLAmax (Mera Glacier) for
each hydrological year over the period 2015-2023.

Year Basin-wide Glacier Difference
average SLAmax (m)
SLAmax
2014/15 5517 5458 69
2015/16 5481 5366 115
2016/17 5553 5491 62
2017/18 5624 5673 -49
2018/19 5476 5347 129
2019/20 5546 5436 110
2021/22 5506 5389 117
Average 5525 5528 79

Basin-wide average SLAmax ranged from 5476 m in 2019 to 5624 m in
2018 and averaged 5525 m over the period 2015-2023 (Table 6.2, Figure 6.2).
SLAmax of Mera Glacier ranged from 5347 m in 2019 to 5673 m in 2018 and
averaged 5528 over the entire period (Table 6.2, Figure 6.2). The years with
the lowest and highest SLAmax (2019 and 2018, respectively) were consistent
between the basin-wide average SLAmax and glacier SLAmax, although glacier
SLAmax were on average ~79 m lower than basin-wide average SLAmax (Table

6.2). The comparison between Mera Glacier SLAs and basin-wide average
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SLAs shows a good agreement (Person’s r = 0.81), indicating that Mera
Glacier SLA is representative of basin-wide average SLA (Figure 6.2).
Estimated basin-wide average SLAs are within the range of SLAs reported in
a previous study for the same basin by Racoviteanu et al. (2013) (5172-6047
m, mean ELA = 5568 m) based on analysis of December 2005 imagery. Our
results are also in agreement with contemporary ELAs reported in Owen and
Benn (2005) for the same region (5200-5800 m, with a mean value of 5600

m).

6.5.2 Spatial variability of snowline altitude

The spatial distribution of mean SLAs across the Dudh Koshi basin over 2015-
2023 shows pronounced intra-basin variability (Figure 6.3). The mean SLA
ranges from 4842 to 5858 m a.s.l. over 2015-2023. Mean SLAs are generally
lower in the southern part and increases towards the north direction in the
basin. This highlights the strong control of topography and local precipitation
regimes on SLA behaviour. The observed spatial pattern corresponds well with
the established precipitation gradient in the region, whereby windward slopes
receive greater monsoonal accumulation while inner valleys remain
comparatively dry (Sherpa et al., 2017). Grouping glaciers by mean elevation
further highlights differences in SLA behaviour. Mean SLAs rise steadily from
~4950 m in the 49005100 m elevation band to ~5640 m in the 5900—-6100 m
elevation band. However, the relative position of SLA to glacier mean
elevation reveals contrasting glacier sensitivities. In the lowest elevation
bands, SLAs are very close to the glacier mean elevation (offsets of only —6 to
—36 m), indicates small accumulation area and makes these glaciers highly
vulnerable. Mid-elevation glaciers (5300-5700 m) show slightly larger offsets
(=30 to —97 m), suggesting more balanced conditions. By contrast, high-
elevation glaciers (>5700 m) have SLAs far below their mean elevations (—200
to —600 m), indicating substantial accumulation buffers and greater resilience

under present climate.
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Figure 6.3 Spatial distribution of mean SLA over 2015-2023 in Dudh Koshi

basin

6.6 Discussion
6.6.1 Intra- and inter-annual SLA trends

The intra- and inter-annual variability of SLA give insights into the temporal
behavior of SLAs in a monsoon-dominated region. Intra-annual SLA
evolution within each hydrological year showed generally increasing patterns
from April to November, but our results show that none of the trends were
statistically significant for either basin-wide average SLA or glacier SLA
(Mera Glacier), assessed using the Mann-Kendall test with 95% confidence
level (p > 0.05). Remote sensing SLA on Mera Glacier often continue to rise
after the field measurement dates i.e., November. Basin-wide average SLAmax
and glacier SLAmax do not occur on same dates every year but they usually
occur in the post-monsoon to early winter months (December or even in
January) which belongs to the next hydrological year (Figure 6.2A). This is
consistent with the previous studies, which suggest that the SLA observed in

post-monsoon or winter months reflects the previous ablation season due to
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the wind erosion, snow redistribution and sublimation (Wagnon et al., 2013;
Brun et al., 2015). No significant trends were found in inter-annual basin-wide
average SLAmax and glacier SLAmax over the study period, based on Mann-
Kendall test with 95% confidence level (p > 0.05). While our results show
considerable intra-annual variability in SLA and inter-annual variability in
SLAmax, neither show a statistically significant trend over a relatively short

period.

6.6.2 Discrepancies between the remote sensing SLAs and the
field-based ELAs

When comparing field-based ELA and remote sensing SLA on Mera Glacier
on the common dates at the end-of-the-ablation season (i.e. November), large
differences were found, ranging from 161 m for the 2017/18 hydrological year
to 508 m for 2021/22 (Figure 6.2). The average remote sensing SLA over the
period 2015-23 (5377 m) was ~400 m lower than average field-based ELA
(5739 m) estimated using the traditional glaciological method (Wagnon et al.,
2021). These large differences persisted to some extent when comparing
SLAmax (generally occurring at a later date) with and field-based ELAs for all
the hydrological years except 2014/15 (5 m difference) (Table 6.3 and Figure
6.2). However, these were smaller (up to 435 m in 2018/19) than those based
on concomitant SLAs and field-based ELAs as mentioned above. These
mismatches suggest that the remote sensing SLAs (and even SLAmax) do not
fully capture the true ELA on Mera Glacier. To check for potential biases in
the remote sensing SLAs, the impact of spatial resolution and choice of DEM
was evaluated. The comparison of SLAmax estimated from S2/L8 images and
high-resolution imagery on the same or nearby date (1 or 2 days) showed no
significant differences (Table 6.3). Similarly, a sensitivity analysis of remote
sensing SLAs to the choice of DEM (AW3D30 DEM, 30 m spatial resolution
vs. HMA DEM, 8 m) yielded only ~35 m difference (Table 6.3). This is
roughly 10 times smaller than the mean difference of ~400 m between
remotely sensed SLA and field-based ELA (2015-23). This shows that the
choice of DEM did not significantly influence the large negative bias in the

remote sensing SLA values, indicating that other surface processes at play on
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monsoon-dominated glaciers contribute to the low remote sensing
SLAS/SLAmax.

It is hypothesized that the systematic mismatch between the concomitant
SLAs and field-based ELAs on Mera Glacier, (i.e., observed on the same
dates), is due to either snow persisting from the monsoon, or snowfall events
occurring at the end-of-the-ablation season. Mera Glacier, being a summer-
accumulation-type glacier, receives snowfall throughout the summer. While
most of this snow is expected to melt during the monsoon due to higher
temperatures thus exposing the glacier ice over the ablation area, some snow
can persist throughout the post-monsoon. Similarly, any snowfall occurring in
October and November (when temperatures are generally much lower), is
more likely to persist on the glacier surface. Furthermore, throughout the
period October to April, snow is systematically redistributed from the higher
altitudes by the strong winds (Wagnon et al., 2013). The combination of snow
persistence and snow redistribution most likely contributes to the
systematically lower SLAs compared to field-based EL.As observed at the end
of the ablation season. As a result, in most years, the maximum SLA (~ ELA)
may not occur until later in the winter or the following year before the melting
season starts (Brun et al., 2015).

To support this hypothesis, field measurements (snow depths and point
mass balance) on Mera Glacier were examined. Field measurement data show
snow persistence during the November field campaigns, even below the ELA
(Table 6.4). In most years, glacier areas between 5400 and 5600 m showed
negative mass balances; yet, by the end-of-the-ablation season, these areas
remained snow-covered, with average snow depths ranging from ~15 cm
(2019/20) to ~72 cm (2020/21), and an overall mean of ~37 cm except in
2017/18, when snowfall was minimal (a dry year). Consistent with our
hypothesis that late-season/persistent snowfall drives the SLA-ELA
difference, the 2017/18 hydrological year showed the smallest discrepancy
between the remotely sensed SLA and the field-based ELA (161 m) (Figure
6.2), likely due to minimal snowfall over the glacier surface during October—
November, just prior to field measurements. Comparison between SLA and
field-based ELA in 2020/21 could not be performed because the glacier was

completely snow-covered following the typhoon event.

112



Chapter 6

Table 6.3 Comparison of remote sensing (S2/L8 and Planet/Venus) SLAmax with field-based ELAs for Mera Glacier over the period
2015-2023, extracted from AW3D30 (30 m) and HMA (8 m) DEMs

Year Field observation data S2/L.8 SLAmax (m) Planet/Venus SLAmax (m)
Field-based HMA HMA
Measurement date ELA Image date AW3D30 DEM DEM Image date AW3D30 DEM DEM
2014/15 07-09 Dec 2015 5453 14 Jan 2016 5448 5421 10 Jan 2016 5438 5431
2015/16 19-23 Nov 2016 5607 29 Dec 2016 5366 5327 30 Dec 2016 5313 5256
2016/17 06-12 Nov 2017 5748 29 Dec 2017 5491 5448 29 Dec 2017 5564 5544
2017/18 17-25 Nov 2018 5796 04 Dec. 2018 5673 5670 NA NA NA
2018/19 10-15 Nov 2019 5782 04 Dec. 2019 5347 5305 04 Dec 2019 5394 5341
2019720 20-28 Nov 2020 5684 03 Dec. 2020 5436 5417 02 Dec 2020 5449 5404
2021/22 12-16 Nov 2022 5817 18 Dec. 2022 5389 5338 NA NA NA

Table 6.4 Average snow depth H (cm) and mean altitudinal mass balance ba (m w.e.) on Mera Glacier for the hydrological years over the

period 2015-23. Ablation stake measurements were averaged per 100 m elevation bin at altitudes above 5400 m.

Year 2014/15 2015/16 2016/17 2017/18 2018/19 2019/20 2020/21 2021/22

EleV.(m) H ba H ba H ba H ba H ba H ba H ba H ba
5400-5500 18.3 -0.2 64.5 -09 248 -1 0 -13 485 -12 170 -1.3 72 03 625 -14
5500-5600 16.5 64.0 165 -1.1 54 -1 577 -1.1 125 -04 70.5
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This analysis of Mera Glacier suggests that comparing satellite-derived
SLAs with field-based ELAs 1is particularly challenging in monsoon-
dominated regions. In such regions, late-summer snowfall often persists on the
glacier surface due to lower temperatures, leading to systematically lower
SLAs compared to field ELAs. This is evident from the significant
discrepancies observed on Mera Glacier and on other glaciers in the Tian Shan
and tropical regions (Rabatel et al., 2012; Yuwei et al., 2014). In these regions,
due to simultaneous ablation and accumulation processes, remote sensing
SLAs do not accurately capture the true ELA, suggesting that the assumption
that SLAmax = ELA does not hold in such regions.

6.7 Conclusions

This chapter examined the spatio-temporal variability of SLAs at both basin
and glacier scale using a consistent semi-automated method, with a particular
focus on evaluating SLAmax as a proxy for ELA on Mera Glacier. The method,
previously validated over a subset of images in chapter 5, was applied across
a broader set of cloud-free satellite scenes spanning April to January over
2015-2023, enabling the construction of a robust SLA time series. The
proposed SLA extraction method successfully captured the intra- and
interannual evolution of snowlines, revealing important seasonal patterns and
post-monsoon snowline exposures. On Mera Glacier, the method allowed
detailed tracking of SLA fluctuations throughout the hydrological year,
including the detection of SLAmax typically exposed during the dry, post-
monsoon months.

However, when SLAmax values were compared with field-based ELA
measurements, systematic discrepancies were observed, with SLAmax
consistently lower than ELA. This indicates that the common assumption
SLAmax = ELA does not hold true for summer accumulation-type glaciers such
as Mera Glacier. The mismatch is explained by frequent fresh snowfalls, wind-
driven snow redistribution and sublimation which obscure the actual
equilibrium line and contribute to overestimating the accumulation area when
using optical imagery. These findings highlight the limitations of relying

solely on remote sensing-derived SLAmax as a proxy for ELA in monsoon-
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dominated regions. At the same time, the study underscores the value of using
a consistent, scalable, and semi-automated SLA extraction method to capture
snowline dynamics. In conclusion, while SLAmax offers useful insights into
glacier surface conditions, its use as an ELA proxy in regions with complex
climatic regimes must be approached with caution. Efficient, validated SLA
estimation methods remain essential for monitoring glacier behavior and

climate sensitivity in High Mountain Asia.
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Chapter 7

Conclusions and future work

7.1 Conclusions

This thesis presents an integrated assessment of snow and glacier melt
hydrology in the Himalaya, addressing some of the most pressing challenges
associated with modelling meltwater contributions, evaluating the reliability
of remote sensing-derived indicators, and understanding regional hydrological
responses to climate change. The work combines temperature-index models
and spatially distributed glaciohydrological modelling with remote sensing
and field data across three climatically diverse Himalayan basins: Chandra-
Bhaga Basin in the western Himalaya, Gangotri Glacier System and Dudh
Koshi basins in the central Himalaya. The chapters are organized to
progressively tackle model calibration and parameter transferability, long-
term melt reconstruction, remote sensing method development, and validation
of glacier equilibrium line estimation.

The modelling tests conducted in the Chandra-Bhaga Basin highlight
critical limitations in applying parameters calibrated at smaller catchments to
larger or more complex basins. Specifically, parameters tuned using detailed
observations from the well-monitored Chhota Shigri Glacier Catchment were
found to produce reliable discharge simulations within the catchment but
failed to replicate discharge dynamics accurately when applied to the broader
Chandra-Bhaga Basin. Discharge was substantially overestimated, indicating
that parameter sensitivity, catchment area characteristics, glacier cover
distribution, and local climate play important roles in model parameter
transferability. This finding reinforces the need for caution when applying

temperature-index models such as SRM across different spatial scales.
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Although SRM remains a practical and low-data-requirement tool for
glaciohydrological modelling, its effective application requires basin-specific
calibration, especially in the heterogeneous and data-scarce Himalayan terrain.

The subsequent chapter shifts focus to the long-term hydrological
behaviour of the Gangotri Glacier System (GGS), one of the largest and most
studied glacier systems in the central Himalaya. Using the Spatial Processes
in Hydrology (SPHY) model, forced by bias-corrected IMDAA reanalysis
data, the study reconstructs snow and glacier melt contributions from 1980 to
2020. A two-tier calibration approach utilizing both in-situ discharge (2000—
2003) and geodetic glacier mass balance (2000-2019) was implemented to
reduce parameter equifinality and enhance model robustness. Results reveal
that snowmelt was the predominant contributor to total streamflow (64%),
followed by glacier melt (21%), rainfall runoff (11%), and baseflow (4%). A
decadal shift in the timing of peak discharge from August to July was also
observed, which is attributed to increased temperature and declining winter
snowfall. Interestingly, although temperature has increased during the study
period, glacier melt contributions remained stable, while snowmelt showed a
declining trend due to shrinking snow cover. These results suggest a complex
interplay between warming-induced melt acceleration and the reduction in
available snowpack, illustrating different response of cryospheric components
to climatic change.

Building upon these modelling efforts, the next chapter of the thesis
introduces a refined, semi-automated methodology for extracting snowline
altitudes (SLAs) from optical satellite imagery. Recognizing the limitations of
SLA extraction in high-relief, cloud-prone regions, a new workflow was
developed in Python, incorporating atmospheric and topographic corrections,
dynamic thresholding using the Otsu method, and post-processing filters to
eliminate erroneous pixels caused by shadows, crevasses, snow patches, and
steep slopes. The methodology was implemented over the Dudh Koshi basin
using Sentinel-2 and Landsat imagery and validated using high-resolution
Planet and Venus satellite data. In this chapter, the method was applied
specifically to post-monsoon satellite images when clearer atmospheric
conditions prevail to assess its accuracy and reliability. By applying the

approach across hundreds of glaciers, including a dense validation subset in
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the Hinku Valley, the workflow demonstrated its ability to extract consistent
SLAs across sub-monthly timescales despite difficult conditions. This chapter
not only offers a replicable framework for large-scale SLA monitoring in the
monsoon-dominated Himalaya but also sets the stage for improved integration
of satellite-derived SLAs in glaciohydrological models and mass balance
studies.

The final chapter focuses on evaluating the long-held assumption that
the end-of-ablation season SLA (SLAmax) is a suitable proxy for equilibrium
line altitude (ELA), particularly in monsoon-dominated glacier systems.
Expanding the temporal scale of the dataset, SLAs were extracted across the
full period from April to January to develop a robust seasonal SLA time series
for Dudh Koshi basin as well as Mera Glacier. This extended dataset was then
used to identify SLAmax for each year and compare it systematically with field-
based ELA measurements from the GLACIOCLIM monitoring network. The
results clearly show that SLAmax consistently underestimates ELA in this
region, challenging the validity of this proxy relationship in summer
accumulation-type glaciers. This underestimation is attributed to dynamic
surface processes including frequent monsoonal snowfall, snow redistribution
by wind, sublimation, and temporary snow cover over ablation zones. These
conditions disrupt the typical melt—accumulation transition zone visibility and
render remote sensing-based SLA proxies unreliable without region-specific
corrections. The chapter demonstrates that assumptions validated in temperate
or mid-latitude settings may not be held in the monsoon-dominated Himalaya,
underscoring the importance of field-based validation.

Together, the findings of this thesis converge on several overarching
themes. First, model calibration must be highly localized in glacierized regions
due to the steep spatial gradients in topography, climate, and glacier cover.
Second, multi-criteria calibration using independent datasets (e.g., discharge
and geodetic mass balance) significantly improves model credibility in data-
scarce regions. Third, while remote sensing offers unparalleled spatial and
temporal coverage, the interpretation of glacier surface features such as SLAs
requires a deep understanding of local meteorological and glaciological
processes. Finally, the combined use of multi-criteria calibration in

hydrological modelling, advanced remote sensing, and in-situ observations
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forms a powerful trio for understanding and anticipating hydrological change
in Himalaya Karakoram. The insights from this thesis contribute to
methodological improvements in modelling and monitoring snow and glacier
melt contributions and offer a scientific foundation for developing climate-
resilient water resource strategies in the Himalaya. They also provide
transferable frameworks for other glacierized regions globally, where similar
data limitations and climatic variability pose significant challenges to

hydrological forecasting and glacier mass balance assessment.

7.2 Limitations of the study

Despite providing robust insights into snow and glacier melt processes across
contrasting Himalayan basins, the thesis work is subject to some limitations
related to data availability, methodological assumptions, and the intrinsic
constraints of modelling and remote sensing approaches in complex mountain
environments.

Following are some limitations of this thesis work:

e Precipitation forcing relied on reanalysis datasets and an elevation-
based extrapolation approach, which are subject to known
uncertainties in complex orographic terrain and propagate uncertainty
into simulated snow and glacier melt contributions

e The SPHY model does not explicitly account for sublimation losses,
which may be non-negligible in high-altitude glacier environments,
and applies spatially uniform debris-related degree-day factors,
limiting the representation of glacier- and elevation-specific melt
enhancement associated with heterogeneous debris cover

e Optical satellite data used for SLA extraction are affected by persistent
cloud cover, terrain shadows, and reflectance saturation, which
constrain the temporal continuity of SLA estimates despite rigorous

quality control

7.3 Future work

The complex and rapidly changing cryospheric and hydrological conditions in
the Himalaya demand sustained scientific attention through new data sources,

improved modelling approaches, and expanded spatial and temporal coverage.
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Future research must adapt to the dynamic challenges posed by climate

variability, technological innovations, and the growing importance of regional

water security. Several key directions emerge from current gaps and

challenges that can guide future research in this field.

Following are some possible future works:

Future work should focus on developing transferable hydrological model
parameterizations that reduce dependence on local calibration, thereby
enabling broader application across diverse regions and scales

Approaches such as statistical regression, physical scaling laws, or machine
learning can be explored to relate model parameters directly to
physiographic and climatic controls, improving scalability and applicability
in ungauged basins

Future studies can extend the multi-criteria calibration approach used here
by incorporating additional datasets and evaluation metrics, improving
parameter reliability and model robustness

Integrating energy-balance components would address key limitation of the
current model and enable more realistic simulation of glacier melt and other
runoff components

Applying this modelling framework to multiple Himalayan basins would
enhance the consistency and reliability of long-term discharge
reconstructions across diverse climatic settings

On the remote sensing front, further automation and scaling of SLA
extraction methods represent a promising direction. Building upon
threshold-based and post-processing approaches, future research could
incorporate machine learning classifiers, spectral unmixing, or time-series
trend analyses to identify SLA under more challenging conditions such as
high cloud frequency, variable surface albedo, or complex shadow
Systematic, multi-site investigations across diverse Himalayan settings are
needed to assess the validity of the SLAmax = ELA assumption, and to guide
necessary corrections in cases where the assumption does not hold
Integration of diverse high-resolution satellite datasets to advance multi-
dimensional glacier monitoring thereby improving both temporal and

spatial resolution
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In the broader climate and water management context, future efforts
should focus on downscaling model outputs to support basin-scale water
allocation, reservoir operations, and early warning systems, ensuring that
meltwater projections translate into actionable adaptation strategies for
downstream communities. At the same time, addressing persistent data gaps
through expanded in-situ networks, low-cost sensors, and enhanced data-
sharing will remain essential. By advancing process-based modelling, remote
sensing automation, and regional parameter estimation, future research can
bridge the gaps between data, methods, and applications, thereby
strengthening the resilience of Himalayan water systems under a changing

climate.
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This appendix contains Table S1, which provides values for all the processed

SLAs for Dudh Koshi basin over the period 2015-2023

Table S 1 Summary statistics of S2/L8 basin-wide SLAs for the Dudh Koshi
basin (462 glaciers) over the period 2015-2023; basin-wide SLAmax is marked
in bold

Date #SLAs Min.(m) Max.(m) Mean (m) STD (m)
2015-05-25 6 5107 5309 5208 21.0
2015-07-12 24 5145 5517 5354 98.4
2015-09-30 21 5033 5377 5239 95.0
2015-11-01 22 4954 5419 5222 117.4
2015-11-17 49 5056 5682 5444 148.2
2015-12-19 11 5096 5505 5352 120.3
2016-01-14 95 5052 5833 5517 142.5
2016-04-13 97 4971 5583 5381 123.7
2016-10-30 88 4989 5678 5403 146.7
2016-11-03 44 5032 5604 5396 137.2
2016-11-19 46 5454 5695 5438 122.7
2016-11-29 88 4994 5724 5434 144.3
2016-12-09 95 5096 5747 5468 133.6
2016-12-29 91 5084 5780 5481 145.1
2017-01-08 58 4658 5620 5364 1743
2017-01-18 73 4754 5704 5411 155.7
2017-04-18 30 5082 5575 5329 137.2
2017-10-15 99 5157 5734 5470 134.5
2017-10-30 70 4818 5596 5357 163.6
2017-11-06 39 5090 5673 5402 130.3
2017-11-19 93 4992 5684 5420 151.4
2017-11-22 46 5024 5791 5460 165.1
2017-11-24 67 5016 5773 5470 163.1
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2017-12-09 88 5216 5807 5523 141.0
2017-12-14 88 5229 5820 5528 140.4
2017-12-29 88 5137 5854 5553 150.4
2018-01-03 50 4653 5704 5381 2132
2018-01-08 27 4855 5713 5400 192.7
2018-01-18 28 4863 5648 5383 178.4
2018-01-23 37 4854 5708 5340 2003
2018-01-28 81 4680 5655 5393 187.4
2018-04-23 4 4865 5448 5249 1226
2018-05-08 43 4898 5438 5265 105.1
2018-10-15 85 5102 5672 5473 121.0
2018-10-20 99 5145 5817 5573 1284
2018-10-24 37 5204 5702 5506 136.9
2018-10-30 95 5110 5795 5544 139.8
2018-11-04 90 5119 5737 5508 135.2
2018-11-09 75 5227 5740 5545 120.4
2018-11-14 95 5239 5821 5558 132.5
2018-11-24 92 5252 5820 5586 116.1
2018-11-25 40 5253 5856 5617 141.2
2018-12-04 89 5256 5900 5624 131.8
2018-12-09 89 5144 5843 5559 153.6
2018-12-14 62 5031 5680 5448 159.5
2018-12-19 50 4661 5607 5290 194.1
2018-12-24 59 5129 5559 5371 109.4
2018-12-29 36 5005 5617 5402 155.4
2019-01-13 63 4887 5704 5433 1673
2019-01-18 64 4877 5592 5372 152.6
2019-01-28 68 4625 5794 5411 2130
2019-05-08 62 4900 5527 5323 139.0
2019-10-15 80 4811 5690 5356 174.1
2019-10-27 29 4982 5462 5278 120.1
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2019-11-12 37 5210 5579 5393 109.4
2019-11-19 87 4960 5699 5406 144.4
2019-11-24 27 5228 5627 5419 119.3
2019-12-04 100 4984 5752 5476 151.8
2019-12-09 77 5033 5615 5398 130.9
2019-12-19 49 4627 5537 5263 184.3
2019-12-24 46 4651 5577 5335 184.4
2019-12-29 46 4907 5611 5364 161.8
2020-01-13 54 4578 5590 5298 2045
2020-01-23 63 4952 5788 5467 1833
2020-01-28 56 4594 5580 5319 1877
2020-04-02 19 4657 5303 5131 157.0
2020-04-12 26 4642 5254 5089 160.0
2020-04-17 24 4820 5345 5176 1245
2020-10-09 65 4842 5436 5262 1414
2020-10-24 45 4855 5425 5197 134.5
2020-10-29 41 5300 5814 5409 120.2
2020-11-08 106 5072 5804 5494 153.6
2020-11-13 108 5058 5806 5533 138.0
2020-11-14 50 5197 5815 5527 143.8
2020-11-18 79 4722 5677 5408 177.5
2020-11-23 100 4974 5673 5454 142.4
2020-11-28 86 4891 5656 5411 164.2
2020-11-30 47 5125 5690 5480 139.3
2020-12-03 105 5013 5824 5525 146.2
2020-12-08 923 5078 5814 5544 140.9
2020-12-13 27 4815 5682 5373 186.1
2020-12-18 91 5078 5829 5546 136.3
2020-12-28 26 4912 5636 5362 203.4
2022-04-12 99 4965 5630 5404 145.8
2022-10-24 71 4858 5562 5304 162.1
2022-11-03 74 4874 5619 5340 145.4
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2022-11-04 33 5099 5665 5432 151.6
2022-11-13 91 5015 5695 5404 143.7
2022-11-20 47 5097 5658 5430 138.6
2022-11-23 99 4973 5744 5447 147.2
2022-11-28 96 4968 5721 5429 143.0
2022-12-03 100 4977 5735 5455 146.8
2022-12-08 97 5059 5786 5481 148.4
2022-12-18 71 5183 5647 5438 115.4
2022-12-23 24 4655 5602 5309 215.3
2022-12-28 80 5018 5763 5449 149.7
2023-01-07 25 4885 5634 5297 163.7
2023-01-12 34 5091 5649 5394 158.2
2023-01-17 72 5227 5781 5506 122.4
2023-01-22 35 4673 5652 5324 215.8
2023-01-27 19 4953 5555 5295 162.5
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