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ABSTRACT

Keywords: Halley’s method, Gamma distribution, Newton’s method, Schwarzian

Newton method.

The dissertation in three chapters presents interesting results on convergence of

Newton’s method, Halley’s method and Schwarzian Newton’s method and their

applications to find the inversion of gamma distribution. This dissertation also

presents an interesting numerical simulation result by comparing the iterative

methods Newton’s method, Schwarzian Newton’s method and Average Newton’s

method.

Chapter 1 provides basic results towards the convergence of Newton’s method

and the development of various modification of Newton’s method.

Chapter 2 presents the Schwarzian Newton’s method and its nonlocal conver-

gence property and its application to find the inversion of gamma distribution.

This chapter is based on the recent work of J. Segura.

Chapter 3 presents the numerical simulation results by comparing various New-

ton’s methods. In this section, the Schwarzian Newton’s method is applied to the

normal distribution and generalize gamma distribution.
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CHAPTER 1

INTRODUCTION

Finding the zeros of a nonlinear function is one of the oldest and important

problems in mathematics. One of the famous results of Abel [5] ensures that

polynomial of degree greater than or equal to five can not be solved by radicals.

Similarly finding the zeros of transcendental function is a much more difficult job.

Recently, finding zeros and inversion of special functions that are the solutions

of second order differential equation have attained a lot of attention due to their

frequent appearance in various science and engineering problems. For example,

Airy’s function is used in transmittance of Fabry-Perotinter-ferometer, Marcum-

Q-function and its generalization are used in the detection theories for radar sys-

tems and wireless communications. Additionally, Marcum-Q-function is also used

in the error performance analysis of digital communication problems and the error

function is used in determining the bit error rate of digital communication etc.

Similarly, elliptic integrals of first and second kind and Fresnal integral are some

of the special functions which are very frequently appear in numerous practical

problems. For example, Fresnal integral has been used in the calculation of elec-

tromagnetic field intensity in an environment where light bends around opaque

objects. Furthermore, special functions also play an important role in probability

and statistics. For example, the gamma function, beta function and their vari-

ations, appear very frequently in probability and statistics. Even some of the

special functions have been found advantageous to express the solution of some

important differential equations. Though these special functions have numerous



applications, there is still a critical need to evaluate these special functions nu-

merically. There is also a challenge to find their inversion numerically. Developing

mathematical techniques to find the zero of nonlinear function is a vital step to

solve real life problems. Iterative methods such as bisection method, successive

iteration method, secant method, Newton’s method and their variation are widely

used to find the zeros of nonlinear functions. The aim of this section is to sum-

marize some basic results for Newton’s method to find the zeros of a real valued

function.

1.1. Newton’s Method

Newton’s method is one of the iterative scheme to find the zeros of nonlinear

function which converges faster than the bisection method, successive iteration

method and secant method. Though this method studied by Newton in 1669

for finding the zeros of polynomial, this idea was used by Heron [2] to find the

square root of a positive number. More specifically, he used the iterative scheme

xn+1 = 1
2

(
xn + a

xn

)
to find the square root of a positive number a. Mesopotamia

[1] also used these iterative procedure to find the square root of a positive number

a before 1500 B.C.

In 1669, Newton demonstrated this procedure to find the zeros of the cubic

polynomial f(x) = x3 − 2x− 5 = 0. Newton’s demonstration is as follows:

Step 1 Start with an initial guess x0 = 2.

Step 2 Improve the initial guess by adding α to x0. The value of α is obtained by

solving the linear equation 10α − 1 = 0 i.e. α = 0.1. This linear equation

is obtained by neglecting the higher order terms of degree greater than or

equal to two from the relation g(α) = f(2 + α) = 0.
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Step 3 This value is further improved by adding β with x0 + α. The value of β is

obtained by solving the linear equation 11.23β+0.061 = 0 i.e. β = −0.0054.

This linear equation is obtained by neglecting the higher order terms of

degree greater than or equal to two from the relation h(β) = g(β+0.1) = 0.

Step 4 Improve this value by adding γ with x0 + α + β. The above procedure is

repeated and we obtain γ = 0.00004853.

Thus x0 + α + β + γ = 2.09464853 is the new approximation for the zero of

f(x) which is close to zero of f(x). It is interesting to note that

α = x1 − x0 = − f(x0)

f ′(x0)
(1.1)

β = x2 − x1 = − f(x1)

f ′(x1)
.(1.2)

Thus the Newton’s method can be summarized as follows: If xk is an approx-

imation for the zero x∗ one can get the improved approximation xk+1 by adding

xk+h, where h is the solution of the linear equation f(xk)+f ′(xk)h = 0. Raphson

independently provided the iterative scheme xk+1 = xk − f(xk)
f ′(xk)

in 1690 for finding

the zero of polynomial of the form f(x) = x3 − ax− b.

1.1.1. Geometrical interpretation of Newton’s method

From Figure 1.1, one can conclude that tan q = f(x0)
x0−x1 . The geometrical in-

terpretation of derivative leads to f ′(x0) = tan q. Using these relations one can

get x1 = x0 − f(x0)
f ′(x0)

. Thus to find x2 draw the tangent line at (x1, f(x1)). The

point of intersection of tangent line and the x-axis will be taken as x2. Moreover,

x2 = x1 − f(x1)
f ′(x1)

. Repeat the above procedure to obtain the better approximation

for the zero of f(x).

3



Figure 1.1. Geometrical interpretation of Newton’s method

It is interesting to note that one can obtain the Newton’s method from Taylor’s

series representation for the given function f(x). Let x be an approximation to

the zero x∗ of f(x). From Taylor’s series one can have

0 = f(x∗) = f(x+ h) = f(x) + hf ′(x) +O(h2)(1.3)

where h = x∗ − x. Note that if x is very close to x∗ then h will be very small.

Consequently, one can neglect the higher order terms O(h2) to obtain the value

h = − f(x)
f ′(x)

. Thus x+ h will be better approximation than x to x∗. Consequently,

this leads to the iterative procedure xn+1 = xn − f(xn)
f ′(xn)

, n = 0, 1, 2, · · · .

The following definition helps us to quantify how much faster an iterative scheme

converge to the zero of a nonlinear function f(x).

4



Definition 1.1.1. [2] Let (xn) be a sequence of real numbers that converges to x∗.

If ∃ positive constants c and α and an integer n0 ∈ N such that

|xn+1 − x∗| ≤ c|xn − x∗|α ∀ n ≥ n0

then we say that the order of convergence is α at least.

Interesting example is provided in [2] to show that Newton’s method may not

converge to the zero of the nonlinear function. In other words, the convergence

of Newton’s method depends on the initial approximation. Hence the study of

convergence analysis of Newton’s method is very important. In literature two

types of convergence analysis results are available for Newton’s method namely

local convergence theorem and semilocal convergence theorem. If one assumes the

existence of zeros of the nonlinear function f(x) and proves the convergence of the

Newton’s iterative scheme, then this type of convergence theorem is known as local

convergence theorem. If one assumes sufficient condition on the initial guess and

proves the convergence of Newton’s iterative scheme as well as the existence of zero

of f(x), then this type of convergence theorem is known as semilocal convergence

theorem.

The first semilocal convergence theorem for Newton’s method was proved by

Cauchy in 1829. The Cauchy’s version semilocal convergence theorem is given

below.

Theorem 1.1.1. [12]

Let X = IR, f ∈ C2, x0 ∈ X, f ′(x0) 6= 0, σ0 = − f(x0)
f ′(x0)

, η = |σ0|,

I =
〈
x0, x0 + 2σ0

〉
≡

[x0, x0 + 2σ0] if σ0 ≥ 0,

[x0 + 2σ0, x0] if σ0 < 0

5



and |f ′′(x)| ≤ K in I. Then the following results hold: If 2Kη < |f ′(x0)|, then

f(x) = 0 has a unique solution x∗ in I. Also if |f ′(x)| ≥ m in I and 2Kη < m,

then the Newton’s sequence xk starting from x0 satisfies the following:

|xk+1 − xk| ≤
K

2m
|xk − xk−1|2, k ≥ 1

and

x∗ ∈
〈
xk, xk + 2σk

〉
,

where, σk = −f(xk)/f
′(xk) = xk+1 − xk, so that

|x∗ − xk| ≤ 2η
(Kη

2m

)2k−1

(k ≥ 0).

One of the local convergence theorem for Newton’s iterative scheme is given

below.

Theorem 1.1.2. [2]

Let f ′′ be a continuous function and r be a simple zero of f . Then there is a

neighborhood of r and a constant C such that if Newton’s method is started in that

neighborhood, then the Newton’s iterative method converges and satisfies

|xn+1 − r| ≤ C|xn − r|2.

Though the convergence of the Newton’s iterative scheme is very sensitive to

the initial guess, but if the nonlinear function f(x) is convex or concave then it

provides a greater flexibility in selecting the initial guess. To find the zeros of

convex function one can use the following theorem.

Theorem 1.1.3. [2]

Let f ∈ C2(R). If f is strictly increasing, strictly convex and has a zero then the

Newton’s iteration converges from any starting point to the unique zero of f(x).

6



In the above theorem convex property of the nonlinear function f(x) is as-

sumed throughout the real line. By assuming the convex property of the nonlinear

function on a closed and bounded interval the convergence of the Newton’s iterative

scheme studied in the following theorem.

Theorem 1.1.4. [6](Theorem 2.1)

Let f ′′ be a continuous function and f ′ 6= 0 in a neighborhood of an simple zero

r, namely, in [α0, β0] say. If f ′(x) > 0, f(α0) < 0, f(β0) > 0, α0 < β0 and

f ′′(x) > 0, then there exist monotone sequences {αn}, {βn} satisfying

(1.4) α0 < α1 < α2 < ... < αn < r < βn < ... < β1 < β0,

which are generated by the iterative schemes

(1.5) f(βn) + f ′(βn)(βn+1 − βn) = 0

(1.6) f(αn) + f ′(βn)(αn+1 − αn) = 0.

Moreover, the sequences {αn}, {βn} converge to the unique zero r quadratically.

Proof. From (1.5) for n = 0 and f(β0) > 0, we have

0 < f(β0)− [f(β0) + f ′(β0)(β1 − β0)]=−f ′(β0)(β1 − β0),

hence β0 > β1 as f ′(β0) > 0. Similarly one can get α1 > α0. In the next step we

prove that α1 < r < β1. Using relation (1.5) we have

0 = f(r)− f(β0)− f ′(β0)(β1 − β0)

= f ′(σ)(r − β0)− f ′(β0)(β1 − β0) > f ′(β0)[r − β0 − β1 + β0]

0 > f ′(β0)(r − β1),

Thus β1 > r. Using similar argument one can show that r > α1. Consequently,

α0 < α1 < r < β1 < β0.

7



Using induction, we can show (1.4) holds. Hence {αn} is an increasing sequence

and bounded above by α. Similarly {βn} is a decreasing sequence bounded below

by r. Thus ∃ α and β such that {αn} converges to α and {βn} converges to β.

Using the continuity of f ′ and the relations (1.5) and (1.6) ensure that f(α) =

0 = f(β). The monotone property of the function in the interval [α0, β0] guarantees

that α = β = r.

Now we show that the sequences {αn}, {βn} converge quadratically to r. Since

[f ′(x)]−1 and f ′′(x) are continuous function, ∃ a contant K such that

sup
x,y∈[α0,β0]

|f ′(x)−1f ′′(y)| ≤ K

Note that

|r − αn+1| = |r − αn + [f ′(βn)]−1f(αn)|

= |[f ′(βn)]−1[f ′(βn)(r − αn) + f(αn)− f(r)]|

= |[f ′(βn)]−1[f ′(βn)(r − αn) + f ′(ζ)(αn − r)], ζ ∈ (αn, r)|

= |[f ′(βn)]−1[(r − αn)(f ′(βn)− f ′(ζ)]|

< |[f ′(βn)]−1[(r − αn)(f ′(βn)− f ′(αn)]|

< |[f ′(βn)]−1[(r − αn)f ′′(ζ1)(βn − αn)]|

≤ K|r − αn|[βn − r + r − αn]

= K|r − αn|2 +K(βn − r)(r − αn)

≤ K|r − αn|2 +
K

2
(βn − r)2 +

K

2
(r − αn)2

=
3K

2
|r − αn|2 +

K

2
|βn − r|2

|r − αn+1| <
3K

2
[|r − αn|2 + |βn − r|2].

Similar estimate can be obtained for {βn}. Hence the proof.

8



Remark 1.1.1. Let f ′′ be a continuous function and f ′ 6= 0 in a neighborhood of a

simple zero r, namely, in [α0, β0] say. If f ′(x) < 0, f(α0) > 0, f(β0) < 0, α0 < β0

and f ′′(x) < 0, then there exist monotone sequences {αn}, {βn} satisfying

(1.7) α0 < α1 < α2 < ... < αn < r < βn < ... < β1 < β0,

which are generated by the iterative schemes

(1.8) f(αn) + f ′(βn)(αn+1 − αn) = 0,

(1.9) f(βn) + f ′(βn)(βn+1 − βn) = 0.

Moreover, the sequences {αn}, {βn} converge to the unique zero r quadratically.

1.2. Higher Order Convergence Method

Though Newton’s method converges quadratically, consistent efforts were made

to improve the order of convergence. This subsection provides some of the modi-

fication in Newton’s method which leads to third order convergence.

1.2.1. Halley’s method

One of the well known third order convergence method is given by Halley.

Halley’s iterative method with initial guess x0 can be written as

xn+1 = xn −
2f(xn)f ′(xn)

2[f ′(xn)]2 − f(xn)f ′′(xn)
, n = 1, 2, · · · .

The above iterative method can be rewritten as

(1.10) xn+1 = xn −
f(xn)

f ′(xn)

[
1− f(xn)

f ′(xn)

f ′′(xn)

2f ′(xn)

]−1

.

9



It is clear from (1.10) that as f ′′(x) → 0 Halley’s method approaches Newton’s

method. If f(r) = 0, under suitable assumption one can show that Halley’s itera-

tive scheme satisfies the following inequality

|xn+1 − r| ≤ K|xn − r|3

for some K > 0.

Consequently, Halley’s method has third order convergence.

1.2.2. Newton’s method based on quadrature rules

Though the Halley’s method provides third order convergence, it requires the

evaluation of the second derivative of the function. In this direction, a third order

method will require the evaluation of only the first order derivative was proposed

by S. Weerakoon and T. G. I. Fernando [10]. They obtained the method as follows:

Let f be a smooth function from R to R. By Fundamental theorem of calculus

one can write

(1.11) f(x) = f(xn) +

∫ x

xn

f ′(λ)dλ.

Evaluate the integral using trapezoidal rule. Thus (1.11) becomes

(1.12) f(x) ≈ f(xn) +
1

2
(x− xn)(f ′(xn) + f ′(x)).

Let x = xn+1 = r be the zero of f(x) then (1.12) becomes

(1.13) xn+1 = xn −
2f(xn)

[f ′(xn) + f ′(xn+1)]
.

To make this iterative scheme explicit one can replace f ′(xn+1) by f(xn
∗) where

x∗n = xn − f(xn)
f ′(xn)

.

Thus (1.13) becomes the following iterative procedure

(1.14) xn+1 = xn −
2f(xn)

[f ′(xn) + f ′(x∗n)]
.

This method can be considered as Average Newton’s method.

10



In 2000, S. Weerakoon and T. G. I. Fernando [10] provided the third order

convergence of this method.

One can get a different variants of Newton’s method if one approximate the

integral term in (1.11) by different quadrature formula. M. Frontini and E. Sormani

proved the more general local convergence theorem for Newton’s method based on

quadrature formula.

Theorem 1.2.1. [3] Let f be a sufficiently smooth function and ζ is a simple

zero of f . The order of convergence of the modified Newton’s method xn+1 = xn−
f(xn)∑m

i=1 Aif ′(ηi∗)
, obtained by approximating the integral in (1.11) by an interpolatory

quadrature formula is three. Here τi are knots in [0, 1], Ai are the weights of the

interpolatory quadrature formula used and ηi
∗ = xn − τi f(xn)

f ′(xn)
.

The following theorem is a semilocal convergence theorem for Newton’s method

obtained from the quadrature formula.

Theorem 1.2.2. [4](Theorem 2.2.1)

Let f : R→ R be a differentiable function. Let λi ∈ [0, 1], 1 ≤ i ≤ m be such that∑m
i=1 λi = 1. Assume further that

1. f ′(x0) 6= 0;

2. for some η > 0,|f ′(x0)−1f(x0)| ≤ η;

3. |(f ′(x0)−1(f ′(x0) − f ′(x)))| < ε whenever x ∈ [x0 − 2r, x0 + 2r]. Set c0 =
(λ1+

∑m
i=2 2λi)ε

1−ε , c = 2ε
1−ε such that (1 + c0

1−c)η < r and 0 < 3ε < 1;

4. for some x
(i)
0 ∈ [x0 − r, x0 + r],|

∑m
i=1(λif

′(x
(i)
0 ))−1f(x0)| ≤ η.

Then, the sequence of iterates (xn) generated by

(1.15) xn+1 = xn − (
m∑
i=1

λif
′(x(i)

n ))−1f(xn), x(i)
n = xn −

i

m

f(xn)

f ′(xn)

11



is well-defined, remains in [x0 − r, x0 + r] ∀n ≥ 0 and converges to a unique

solution x∗ ∈ [x0 − r, x0 + r] of the equation f(x) = 0. Moreover, for n ≥ 2, the

following error-estimates hold

|xn+1 − xn| ≤ cn−1c0η,

|xn − x∗| ≤
cn−1c0η

1− c
.

1.3. Normal Form of Second Order Ordinary Differential

Equation.

Consider a second order ordinary differential equation:

(1.16) y′′ + p(x)y′ + q(x)y = 0.

By putting

y = u.e−
1
2

∫
p(x)dx,

we get normal form of (1.16) i.e.

u′′ + u

(
− 1

2
p′ − 1

4
p2 + q

)
= 0

where u = ye
1
2

∫
p(x)dx.

For Example: Bessel’s equation is

y′′ +
1

x
y′ +

(
1− n2

x2

)
y = 0.

Normal form of Bessel’s equation is

u′′ + u

(
1 +

1− 4n2

4x2

)
= 0.

12



CHAPTER 2

SCHWARZIAN NEWTON’S METHOD AND ITS

APPLICATIONS

In the direction of improving the order of convergence of Newton’s method

Schwarzian derivative plays a crucial role. In 1993, Julian Palmore [7] studied

the relation between the Schwarzian derivative and Newton’s method. Recently,

J. Segura [9, 8] derived a Newton’s method based on Schwarzian derivative and

applied this technique to find the zero as well as inversion of special function which

is a solution of second order differential equation. This chapter is based on the

work of J. Palmore [7] and J. Segura [9, 8].

2.1. Schwarzian Derivative and Newton’s Method

The following definitions are useful to understand the theorems in later of this

chapter. The Schwarzian derivative of a smooth function f : R → R is given

below.

Definition 2.1.1. The Schwarzian derivative of f is denoted by S[f ] or {f, x}.

It is defined by S[f ](x) = f ′′′(x)/f ′(x)− 3
2
[f ′′(x)/f ′(x)]2 ∀ x ∈ R \ f ′−1(0).

Define

(2.1) tan(λ, x) =
1√
λ

tan(
√
λx) =


1√
λ

tan(
√
λx) λ > 0

x λ = 0

1√
−λ tanh(

√
−λx) λ < 0



and similarly for the inverse function,

arctan(λ, x) = arctan(
√
λx)/
√
λ.

Remark 2.1.1. General functions for which the schwarzian derivative is constant

are

(2.2) Sλ(x) =
tan(λ, x) + P

Q tan(λ, x) +R
.

Proof. Given that schwarzian derivative is a constant λ (say).

(2.3)
1

2

(
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2)
= λ

Now Let

y =
f ′′

f ′

y′ =
f ′f ′′′ − f ′′2

f ′2

=
f ′′′

f ′
−
(
f ′′

f ′

)2

=
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

+
1

2

(
f ′′

f ′

)2

y′ = 2λ+
1

2
y2

2y′ = 4λ+ y2

Integerating both sides we get

1√
λ

arctan(
y

2
√
λ

) = x+ C1.

Solving for y, we get

y = 2
√
λ tan(

√
λ(x+ C1)).

14



Now Putting the value of y, we have

f ′′

f ′
= 2
√
λ tan(

√
λ(x+ C1))

Integerating both sides we get

log(f ′) = 2 log(sec(
√
λ(x+ C1))) + log(C2)

f ′ = sec2(
√
λ(x+ C1))C2.

Integerating both sides we get

f(x) =
C2√
λ

tan(
√
λ(x+ C1)) + C3

=
C2√
λ

[
tan(
√
λx) + tan(

√
λC1)

1− tan(
√
λx) tan(

√
λC1)

]
+ C3

=

C2√
λ

+ C2√
λ

tan(
√
λC1) + C3 − C3√

λ
tan(
√
λx) tan(

√
λC1)

√
λ

1− tan(
√
λx) tan(

√
λC1)

=
tan(λ, x) + P

Q tan(λ, x) +R

where

P =

C2√
λ

tan(
√
λC1) + C3

C2 −
√
λC3 tan(

√
λC1)

Q =
−
√
λ tan(

√
λC1)

C2 −
√
λC3 tan(

√
λC1)

R =
1

C2 −
√
λC3 tan(

√
λC1)

.

Hence the remark.

Remark 2.1.2. General functions for which the schwarzian derivative is zero are

(2.4) S0(x) =
x+ P

Qx+R
.
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Proof. Given that schwarzian derivative is zero.

(2.5)
1

2

(
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2)
= 0

Now Let

y =
f ′′

f ′

y′ =
f ′f ′′′ − f ′′2

f ′2

=
f ′′′

f ′
−
(
f ′′

f ′

)2

=
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

+
1

2

(
f ′′

f ′

)2

y′ =
1

2
y2

Integerating both sides, we get

y =
−2

x+ C

f ′′

f ′
=
−2

x+ C

Solving for f we get

f(x) =
1

C ′
−1

x+ C
+ C ′′

=
−1 + C ′C ′′(x+ C)

C ′(x+ C)

=
x+ P

Qx+R

16



where

P =
CC ′C ′′ − 1

C ′C ′′

Q =
1

C ′′

R =
C

C ′′
.

Hence the remark.

Definition 2.1.2. Let f be a smooth function from R to R. Function g is said to

be Newton’s map of f if g(x) = x− f(x)
f ′(x)

for x ∈ R \ f ′−1(0).

The following theorem due to J. Palmore [7] provides the relation between

Newton’s method and Schwarzian derivative.

Theorem 2.1.1. [7](Theorem 1)

Let g be Newton’s map of a 4 times continuously differentiable function f . Let

ζ ∈ R \ f ′−1(0) be such that f(ζ) = 0. Then we have g′′′(ζ) = S[f ](ζ).

The following theorem due to J. Palmore [7] provides the relation between the

order of convergence of Newton’s method and Schwarzian derivative.

Theorem 2.1.2. [7](Theorem 2)

Let g be a rational function and let ζ ∈ C be a fixed point. Let f be an entire

function such that g is Newton’s map of f , f(ζ) = 0 and f ′(ζ) 6= 0. If f ′′(ζ) = 0,

then Newton’s map has convergence to ζ of order 3 or greater. If S[f ](ζ) = 0, then

convergence of g to ζ has order 4 or greater.

2.2. The Schwarzian Newton’s Method

It is well known that Newton’s method is exact (gives exact root in one itera-

tion) for linear functions. In other words, Newton’s method is exact for functions

17



whose derivative is constant. Recently, J. Segura [9, 8] derived Schwarzian New-

ton’s method based on Schwarzian derivative which is exact for functions whose

Schwarzian derivative is constant. Moreover, J. Segura also studied the nonlocal

convergence properties of Schwarzian Newton’s method. His study also ensures

that the Schwarzian Newton’s method has fourth order convergence. The deriva-

tion of Schwarzian Newton’s method goes as follows.

Let f be a smooth function which satisfies the second order ordinary differential

equation

(2.6) f ′′(x) +B(x)f ′(x) = 0

Let

(2.7) Φ′′ + ΩΦ = 0, Φ =
f√
f ′

be the corresponding normal form of the second order ODE.

Hence

Ω = −1

4
B2 − 1

2
B′ =

1

2

(
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2)
=

1

2
{f, x},

where {f, x} is the Schwarzian derivative of f with respect to x. Note that the

zeros of f and the zeros of Φ are same. One can rewrite (2.7) as

(2.8) y′(x) = 1 + Ω(x)y2(x), y(x) =
Φ

Φ′

Let Ω(x) > 0. Let α be the simple zero of f . Hence it is a simple zero of Φ.

Consequently α is a zero of y(x).

Using (2.8) we get,

x− α =

∫ x

α

y′(t)

1 + Ω(t)y2(t)
dt ≈ 1√

Ω(x)
arctan(

√
Ω(x)y(x)).(2.9)

Thus one can endup with the iterative scheme

(2.10) xn+1 = xn −
1√

Ω(xn)
arctan(

√
Ω(xn)y(xn)).

This iterative scheme is known as Schwarzian Newton’s method.

18



Remark 2.2.1. If Ω < 0, then the Schwarzian Newton’s method becomes

(2.11) xn+1 = xn −
1√
|Ω(xn)|

artanh(
√
|Ω(xn)|y(xn)).

Remark 2.2.2. It is interesting to note that Halley’s method for finding zero of

f is nothing but the Newton’s method to find the zero of Φ. One can get this

conclusion from the following relation.

xn+1 = xn −
Φ(xn)

Φ′(xn)
≈ xn −

2f(xn)f ′(xn)

2[f ′(xn)]2 − f(xn)f ′′(xn)
.(2.12)

Remark 2.2.3. From equation (2.10) and equation (2.11) one can easily conclude

that as the Schwarzian derivative approaches zero, Schwarzian Newton’s method

approaches Halley’s method.

Remark 2.2.4. From equation (2.9) it is easy to conclude that Schwarzian New-

ton’s method is exact for function whose Schwarzian derivative is constant.

Theorem 2.2.1. The order of convergence of SNM is 4.

Proof. Let Ω > 0 and g(x) = x− 1√
Ω(x)

arctan(
√

Ω(x)y(x)).

To prove the theorem it is enough to show that g′(α) = g′′(α) = g′′′(α) = 0,

where α is a zero of f(x).

SNM is xn+1 = g(xn),

where g(x) = x− 1√
Ω

arctan

(
√

Ω Φ
Φ′

)
.

Now Let ω(x) =
√

Ω(x), h(x) = Φ(x)
Φ′(x)

, which satisfies the Riccati

equation i.e.

(2.13) h′(x) = 1 + (ω(x)h(x))2.

So g(x) becomes

g(x) = x− 1

ω(x)
arctan(ω(x)h(x)).
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Now

g′(x) = 1−
[ ω(x)

1+(ω(x)h(x))2
(ω(x)h′(x) + h(x)ω′(x))− arctan(ω(x)h(x))ω′(x)

ω(x)2

]

= 1−
[ ω(x)2

1+(ω(x)h(x))2
+ ω(x)h(x)ω′(x)

1+(ω(x)h(x))2
− arctan(ω(x)h(x))ω′(x)

ω(x)2

]
=
ω′(x)

ω2(x)

[
arctan(ω(x)h(x))− ω(x)h(x)

1 + (ω(x)h(x))2

]
= q(x)[K(p(x)],

where q(x) = ω′(x)
ω2(x)

, p(x) = ω(x)h(x) and K(z) = arctan(z)− z
1+z2

.

Now

K(0) = K ′(0) = K ′′(0) = 0, K ′′′(0) = 4,(2.14)

p(α) = 0, p′(α) = ω(α)(2.15)

g′′(x) = q(x)K ′(p(x))p′(x) +K(p(x))q′(x)

g′′′(x) = q(x)K ′(p(x))p′′(x)+q(x)K ′′(p(x))p′(x)2+K ′(p(x))q′(x)p′(x)+K(p(x))q′′(x)+

q′(x)K ′(p(x))p′(x)

g(4)(x) = q(x)K ′(p(x))p′′′(x)+p′′(x)[q(x)K ′′(p(x))p′(x)+K ′(p(x))q′(x)]+2q(x)K ′′(p(x))p′(x)p′′(x)+

p′′(x)2[q(x)K ′′′(p(x))p′(x) + K ′′(p(x))q′(x)] + K ′(p(x))[q′(x)p′′(x) + p′(x)q′′(x)] +

q′(x)p′(x)2K ′′(p(x)) +K(p(x))q′′′(x) + q′′(x)K ′(p(x))p′(x) +K ′(p(x))[q′(x)p′′(x) +

p′(x)q′′(x)] + q′(x)p′(x)[K ′′(p(x))p′(x)]

Now from equation (2.14) and equation (2.15) we get

g′(α) = g′′(α) = g′′′(α) = 0

and

g(4)(α) = 4ω(α)ω′(α)

= 2Ω′(α)
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which proves the theorem.

The following theorem ensures the covergence of Halley’s method for finding

zeros of the function f .

Theorem 2.2.2. Let Φ be a sufficiently differentiable function in some interval J

satisfying Φ′′ + ΩΦ = 0, Φ′ 6= 0, and Φ(α) = 0 for some α ∈ J . If Ω < 0 in J ,

then Halley’s method converges monotonically to α for any starting value x0 ∈ J .

2.2.1. Geometrical interpretation of the Halley’s method and Schwarzian

Newton’s method.

The Halley’s method and Schwarzian Newton’s method can be obtained from

osculating curves for function f . The following definition provides the formal

definition for osculating curves for the function f .

Definition 2.2.1. [11] An osculating curve is a plane curve from a given family

that has the highest possible order of contact with another curve. That is, if F is

a family of smooth curves, C is a smooth curve (not in general belonging to F),

and p is a point on C, then an osculating curve from F at p is a curve from F that

passes through p and has as many of its derivatives at p equal to the derivatives of

C as possible.

Theorem 2.2.3. [9](Theorem 2.2)

Let S0(x) be as in (2.4) and define y(x) = S0(x − xn). The HM (1) is ob-

tained by setting y(xn) = f(xn), y′(xn) = f ′(xn), y′′(xn) = f ′′(xn) and y′′′(xn) =

f ′′′(xn)(thus determining the three constants) and obtaining xn+1 from y(xn+1) = 0.

The three constants are given by

P =
2f(xn)f ′(xn)

D(xn)
, Q =

−f ′′(xn)

D(xn)
, R =

2f ′(xn)

D(xn)
,(2.16)
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where

(2.17) D(xn) = 2f ′(xn)2 − f(xn)f ′′(xn).

Proof. Given that

y(x) =
x− xn + P

Q(x− xn) +R

and

f(xn) = y(xn) =
P

R
.(2.18)

S ′0(x) =
R− PQ

(Qx+R)2

y′(x) =
R− PQ

(Q(x− xn) +R)2

f ′(xn) = y′(xn) =
R− PQ
R2

(2.19)

S ′′0 (x) =
(−2Q)R− PQ

(Qx+R)3

y′′(x) =
(−2Q)R− PQ

(Q(x− xn) +R)3

f ′′(xn) = y′′(xn) =
(−2Q)R− PQ

R3
(2.20)

Solving equations (2.18), (2.19) and (2.20), we get the desired value of P, Q and

R.

Now putting

y(xn+1) = 0

xn+1 − xn + P

Q(xn+1 − xn) +R
= 0

xn+1 − xn + P = 0.
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Putting the value of P we get

xn+1 − xn +
2f(xn)f ′(xn)

2f ′(xn)2 − f(xn)f ′′(xn)
= 0

xn+1 = xn −
2f(xn)f ′(xn)

2f ′(xn)2 − f(xn)f ′′(xn)

which is Halley’s method.

The following theorem due to J. Segura [9] provides the geometrical interpre-

tation of Schwarzian Newton’s method i.e. it can be obtained from osculating

curves for the function f.

Theorem 2.2.4. [9](Theorem 2.3)

Let Sλ(x) be as in (2.2) and define y(x) = Sλ(x − xn). The SNM (2) is ob-

tained by setting y(xn) = f(xn), y′(xn) = f ′(xn), y′′(xn) = f ′′(xn) and y′′′(xn) =

f ′′′(xn)(thus determining the three constants) and obtaining xn+1 from y(xn+1) = 0.

The constant λ is given by

(2.21) λ = Ω(xn)

and the other three constants P,Q and R are as in Theorem 2.2.3.

2.2.2. Non-local convergence properties of the Schwarzian Newton’s

method.

Schwarzian Newton’s method posses some good non local convergence proper-

ties. In this subsection, nonlocal convergence theorem and a comparison between

Halley’s method and Schwarzian Newton’s method due to J. Segura [9] is pre-

sented.

Theorem 2.2.5. [9](Theorem 2.7)

Consider f ′ 6= 0 , f ′′′ continuous in an interval J and α ∈ J be such that f(α) = 0,

the following hold.
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• Let {f, x} be decreasing in I = [a, α] ⊂ J , then the SNM converges mono-

tonically to α for any starting value x0 ∈ [a, α]. If {f, x} > 0 in part of

the interval, the same is true if, in addition, the SNM iteration satisfies

g(a) > a.

• Let {f, x} be increasing in I = [α, b] ⊂ J , then the SNM converges mono-

tonically to α for any starting value x0 ∈ [α, b]. If {f, x} > 0 in part of

the interval, the same is true if, in addition, the SNM iteration satisfies

g(b) < b.

Corollary 2.2.1. [9](Theorem2.8)

Consider f ′ 6= 0 , f ′′′ continuous in an interval J and α ∈ J be such that f(α) = 0,

if {f, x} has one and only one extremum at xe ∈ J and it is a maximum, then

• If {f, x} is negative the SNM converges monotonically to α starting from

x0 = xe.

• If (xe − α)(xe − g(xe)) > 0 the SNM converges monotonically to α starting

from x0 = xe.

Theorem 2.2.6. [9](Theorem 2.9)

The steps of the SNM (xn+1 − xn) are of the same sign and greater (smaller) in

absolute value than those for HM when {f, x} is negative(positive).

2.2.3. Application of Schwarzian Newton’s method

In this section the SNM is successfully applied for finding the inversion of

central gamma distribution function. This function appears very frequently in

probability. Consider the central gamma distribution function

F (a, x) =
1

Γ(a)

∫ x

0

ta−1e−tdt, a > 0, x > 0.
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Let a ≥ 1. Consider the problem of numerical inversion of central gamma

distribution as f(x) = F (a, x)− p.

It is easy to verify that f satisfies the second order ODE

(2.22) f ′′(x) +B(x)f ′(x) = 0

with

B(x) = 1 +
1− a
x

.

The normal form of our differential equation is

(2.23) Φ′′ + ΩΦ = 0

where Ω(x) = −1
4

(
1 + 21−a

x
+ a2−1

x2

)
and Φ(x) = exp(x

2
)x

1−a
2 f(x).

When a = 1, Ω is a constant. Hence when a = 1 the SNM is exact.

We claim Ω < 0 ∀x > 0.

As

a > 1

1− a < 0

2− 2a < 0

1− 2a < −1

a2 + 1− 2a < a2 − 1

a2 + 1− 2a

x2
<
a2 − 1

x2(1− a
x

)2
<
a2 − 1

x2

1 +
(1− a

x

)2
+ 2

1− a
x

< 1 +
a2 − 1

x2
+ 2

1− a
x(

1 +
1− a
x

)2

< 1 +
a2 − 1

x2
+ 2

1− a
x

Hence Ω < 0 ∀x > 0.
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Note that Ω′(x) = 1
2x3

(x(1− a) + a2 − 1). Consequently, x = a+ 1 is the only

relative extremum. The second derivative of Ω at a+1 is (1−a)
2(a+1)3

which is negative.

Hence Ω attains its maximum at x = a+ 1 which is Ω(a+ 1) = −1
2(a+1)

< 0. Hence

corollary 2.2.1 ensures that the SNM will converge to zero of f(x) if x0 = a+ 1.

For 0 < a < 1 use the change of variable z(x) = log(x) in (2.23). Hence (2.23)

becomes

(2.24)
d2Φ

dz2
− dΦ

dz
+R(z)Φ = 0

where R(z) = −1
4

(e2z + 2ez(1− a) + a2 − 1).

The normal form of (2.24) is Φ̃′′(z)+ Ω̃(z)Φ̃(z) = 0 where Φ̃(z) = 1

e
z
2

Φ(ez) and

Ω̃(z) = −1
4

[e2z + a2 + 2ez(1− a)].

Consequently , Ω̃(z(x)) = −1
4

[x2 + a2 + 2x(1 − a)] < 0 ∀x > 0. It is easy to

verify that x = a − 1 i.e. z = log(x) is the only extremum point for Ω̃. Hence it

does not have any real extremum value. Consequently, Ω̃′ does not change sign for

x > 0. Thus Ω̃′ < 0 ∀x > 0. Let α be the zero of f(x). By Theorem 2.2.5, for any

x0 > 0 such that log(x0) < log(α) the SNM converges to α.
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CHAPTER 3

Numerical Simulation

Finding inversion of special functions is one of the central problems in numer-

ical analysis with many applications. Finding inverse of a function can be seen as

finding zeros of a suitable function. In other words, if one wants to find f−1(α), it

is equivalent to find the zero of a function g(x) where g(x) = f(x)−α. Recently, J.

Segura [9] proposed Schwarzian Newton’s method for finding the zero of a function

which is a solution to a second order differential equation. A detailed discussion

is provided in [9] for finding the inverse of central gamma function, central beta

distribution and the incomplete elliptical integral of second kind. In this section,

using the idea of [9], the inversion of Normal distribution is discussed. This section

also extends the Schwarzian Newton’s method [9] to find the inversion of gener-

alized gamma distribution. This section also provides an interesting numerical

simulation results by comparing Newton’s method, average Newton’s method and

Schwarzian Newton’s method.

3.1. Inversion of Normal Distribution.

In this section, the inversion of cumulative distribution function of Normal

distribution is discussed. The cumulative distribution function Φ of Normal dis-

tribution is given by

Φ(x) =
1√
2πσ

∫ x

−∞
e−
(t− µ
σ
√

2

)2

dt

where µ is mean of distribution and σ is standard deviation.



Let f(x) = Φ(x)−α , where α ∈ (0, 1). Consequently, f satisfies the following

differential equation.

f ′′(x) +B(x)f ′(x) = 0, B(x) =
x− µ
σ

.

Note that

Ω = −1

4
B2 − 1

2
B′

= −1

4

(x− µ
σ

)2

− 1

2σ2

Ω < 0.

Consequently, Ω′(x) = − 1
2σ3 (x− µ) and Ω′′(x) = − 1

2σ3 < 0.

Thus Ω has only one extremum at x = µ, which is maximum. Hence by corollary

2.2.1 for the initial guess x0 = µ, the Schwarzian Newton’s method converges to

the zero of f(x). The zero of f(x) is nothing but Φ−1(α).

S No. µ σ x SM NM AM T1 T2 T3

1. 5 3 6.2922 4 4 3 0.059825 0.018026 0.057159

2. 5 7 8.0151 5 5 3 0.023748 0.017570 0.017260

3. 25 22 34.4760 5 5 3 0.020559 0.008716 0.015228

4. 25 30 37.9218 5 5 3 0.023723 0.008436 0.014324

5. 100 70 130.1509 5 5 3 0.024717 0.008457 0.015759

6. 100 150 164.6091 6 6 3 0.027541 0.030277 0.015288

7. 1000 600 1.2584e+3 6 6 3 0.029290 0.021522 0.035796

8. 1000 1100 1.4738e+3 6 6 3 0.023727 0.007852 0.018042

Table 3.1. Comparison table for CDF of Normal distribution when

α = 2
3
.
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S No. µ σ x SM NM AM T1 T2 T3

1. 20 50 -22.0810 9 9 3 0.059120 0.025797 0.097967

2. 70 50 27.9189 9 9 3 0.013711 0.0380 0.023046

3. 70 100 -14.1621 9 9 3 0.018320 0.024547 0.024856

4. 150 100 65.8379 9 9 3 0.032012 0.029797 0.033761

5. 250 500 -170.8106 10 10 4 0.026628 0.036347 0.044347

6. 700 500 279.1894 10 10 4 0.019391 0.104458 0.029608

7. 500 1000 -341.6212 10 10 4 0.013928 0.023380 0.056030

8. 700 1000 -141.6212 10 10 4 0.021235 0.029702 0.043973

Table 3.2. Comparison table for CDF of Normal distribution when

α = 1
5
.

S No. µ σ x SM NM AM T1 T2 T3

1. 6 3 5.46 3 3 3 0.011371 0.035329 0.057669

2. 6 5 5.0999 3 3 3 0.011608 0.010414 0.022659

3. 6 9 4.3799 3 3 3 0.019088 0.008030 0.010461

4. 6 15 3.2998 4 4 3 0.025483 0.010257 0.011161

5. 6 40 -1.2005 4 4 3 0.028250 0.009705 0.012167

6. 6 55 -3.9007 4 4 3 0.020419 0.017162 0.009093

7. 6 73 -7.1409 4 4 3 0.022754 0.010264 0.011807

8. 6 80 -8.4010 4 4 3 0.023331 0.011013 0.012584

Table 3.3. Comparison table for CDF of Normal distribution when

α = 3
7
.
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S No. µ σ x SM NM AM T1 T2 T3

1. 2 10 11.6742 9 9 3 0.128476 0.039262 0.0736519

2. 8 10 17.6742 9 9 3 0.026881 0.020104 0.038409

3. 20 10 29.6742 9 9 3 0.016834 0.053632 0.026987

4. 50 10 59.6742 9 9 3 0.016123 0.014745 0.018822

5. 200 10 209.6742 9 9 3 0.014272 0.013809 0.021979

6. 520 10 529.6742 9 9 3 0.040001 0.011254 0.020548

7. 1110 10 1.1197e+03 9 9 3 0.060823 0.016459 0.028956

8. 1506 10 1.5157e+03 9 9 3 0.018749 0.013352 0.031925

Table 3.4. Comparison table for CDF of Normal distribution when

α = 5
6
.

Table 3.1 to table 3.4 provide the numerical simulation results for various al-

gorithms applied on CDF of Normal distribution. Throughout the tables SM, NM

and AM denote the number of iterations taken by Schwarzian Newton’s method

[9], Newton’s method and Average Newton’s method [10] respectively. T1, T2 and

T3 denote the time (in seconds) taken by the algorithms Schwarzian Newton’s

method, Newton’s method and Average Newton’s method respectively.

3.2. Generalized Gamma Distribution

In [9], the inverse of the cumulative distribution function of central gamma

distribution is discussed using Schwarzian Newton’s method. In this section, we

extend this result to cumulative distribution function of generalized gamma distri-

bution. The cumulative distribution function of generalized gamma distribution
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is given by

P (a, p, x) =
γ(a

p
, xp)

Γ(a
p
)

where γ(a
p
, xp) =

∫ x
0
t
a
p
−1e−t

p
dt and Γ(a

p
) =

∫∞
0
t
a
p
−1e−tdt

Let f(x) = P (a, p, x)− α. It is easy to verify that f satisfies the following second

order differential equation.

f ′′(x) +B(x)f ′(x) = 0, B(x) = pxp−1 − a

px
+

1

x
.

Note that

Ω = −1

4
B2 − 1

2
B′

(3.1) Ω = −p
2x2p−2

4
+

1

4x2

(
1− a2

p2

)
+
xp−2

2
(a− p2).

Lemma 3.2.1. If p <
√

2a− 1 and 1 ≤ p < a, then Ω < 0 for x > 0.

Proof. From (3.1)

Ω = −p
2x2p−2

4
+

1

4x2

(
1− a2

p2

)
+
xp−2

2
(a− p2)

(3.2) Ω =
1

x2

(
− p2x2p

4
+

1

4

(
1− a2

p2

)
+
xp

2
(a− p2)

)
.

Let xp = t, then equation (3.2) becomes

Ω(t
1
p ) = 1

t
2
p

(
− p2t2

4
+ t

2
(a− p2) + 1

4

(
1− a2

p2

))
.

Note that using the hypothesis p <
√

2a− 1 and 1 ≤ p < a, the discriminant of(
− p2t2

4
+ t

2
(a− p2) + 1

4

(
1− a2

p2

))
is negative. Consequently, Ω does not have any

real zeros. Thus Ω(x) has same sign for x > 0. Using the following limit

31



lim
x→0

Ω(x) = lim
x→0
−p

2x2p−2

4
+

1

4x2

(
1− a2

p2

)
+
xp−2

2
(a− p2) = −∞,(3.3)

one can conclude that Ω(x) < 0 for all x > 0. Hence the result.

Lemma 3.2.2. If p <
√

2a− 1 and 1 ≤ p < a, then Ω(x) has only one extremum

i.e. maximum.

Proof.

Ω′(x) =
−p2(p− 1)

2
x2p−3 +

1

2x3

(
a2

p2
− 1

)
+

1

2
(a− p2)(p− 2)xp−3

(3.4) Ω′(x) =
1

x3

(
−p2(p− 1)

2
x2p +

1

2

(
a2

p2
− 1

)
+

1

2
(a− p2)(p− 2)xp

)
.

Use the change of variable xp = t, in equation (3.4) which leads to

Ω′(t
1
p ) = 1

t
3
p

(
−p2(p−1)

2
t2+ 1

2
(a−p2)(p−2)t+ 1

2

(
a2

p2
−1
))

. Note that the discriminant

of the quadratic polynomial is (p2− a)2(p− 2)2 + 4(p− 1)(a2− p) which is always

positive. Hence Ω′ has two real roots.

Consider the first real root

t1 =
(p2 − a)(p− 2) +

√
(p2 − a)2(p− 2)2 + 4(p− 1)(a2 − p)
−2p2(p− 1)

< 0.

This root can be neglected as our focus is only on positive real axis. The other

root is

t2 =
(p2 − a)(p− 2)−

√
(p2 − a)2(p− 2)2 + 4(p− 1)(a2 − p)
−2p2(p− 1)

> 0

Consequently, xp = t has only one real root. Thus x0 =

(
(p2−a)(p−2)−

√
(p2−a)2(p−2)2+4(p−1)(a2−p)
−2p2(p−1)

) 1
p

is the only extremum of Ω(x) which is maximum.
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Hence for the choice x0 as the initial guess Schwarzian Newton’s method will

converge to the zero of f(x) by corollary 2.2.1. The zero of f(x) is nothing but

P−1(α).

S No. a x SM NM ANM T1 T2 T3

1. 2 1.3051 3 4 4 0.007161 0.006621 0.014429

2. 3 2.1915 5 5 4 0.009937 0.008383 0.016406

3. 5 4.0196 10 10 9 0.022883 0.030964 0.033505

4. 6 4.9485 26 26 24 0.052943 0.034876 0.067967

5. 8 6.8235 673 702 613 0.585162 0.513897 1.355498

Table 3.5. Comparison table for CDF of Central gamma distribu-

tion when α = 3
8
.

Table 3.5 provides the numerical simulation results for various algorithms ap-

plied on CDF of central gamma distribution. Here SM, NM and AM denote the

number of iterations taken by Schwarzian Newton’s method [9], Newton’s method

and Average Newton’s method [10] respectively. T1, T2 and T3 denote the time (in

seconds) taken by the algorithms Schwarzian Newton’s method, Newton’s method

and Average Newton’s method respectively.
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