
PREDICTIVE CLOCK SKEW

REDISTRIBUTION METHODOLOGY FOR

IMPROVED TIMING QOR

M.Tech. Thesis

By

SANJAY SHARMA

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JUNE, 2019

PREDICTIVE CLOCK SKEW

REDISTRIBUTION METHODOLOGY FOR

IMPROVED TIMING QOR

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

Master of Technology

by

SANJAY SHARMA

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JUNE, 2019

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my extreme gratitude to my research

supervisor Dr. Santosh Kumar Vishvakarma, Associate Professor IIT Indore and

ShriKrishna Nana Mehetre Sr. Engineering Manager at Seagate. At many stages in the

course of this research project I benefited from their advice, particularly so when exploring

new ideas. Their positive outlook and confidence in my research inspired me and gave me

confidence.

The many hours that I spent at the college have been very stimulating and enriching, and

thanks to the wonderful people that I have been privileged to interact with. Particularly, I

would like to thank Mr. Mahesh Kumawat , Phd. Scholar IIT Indore, Apoorv Srivastav

and Himanshu Soni for the great discussions that we had in the lab and for useful

comments that improved my work significantly.

I would like to thank the great people of the Seagate community. The divine inspiration

from the Tech Events and study session gave me the confidence and power to stand up

against the difficulties that I faced in the course of my Project. At last, I would like to thank

IIT Indore for providing the essential research facilities for my research work. I gratefully

acknowledge the contribution of all the faculty members and staff of Electrical Engineering

for their help and support. I would also like to express my sincere gratitude to Ministry of

Human Resource and Development (MHRD), Government of India for providing the

Teaching Assistantship during the course of M.Tech.

I

DEDICATION

“This thesis work is dedicated to my uncle Rajesh Kumar”

II

Abstract

The functionality of a digital IC depends upon whether its design meets the required timing

specifications or not. Though meeting these timing requirements remains a priority throughout the

physical design flow but the final design step which specifically deals with meeting these

requirements is timing closure.The conventional way of meeting these timing specifications is by

adjusting the data path delay. Data path is made faster to fix the setup timing violations. Though

this methodology is able to fix setup violations but it has a disadvantage as it increases the area

and power consumption of the design. This technique doesn’t uses the positive slack available in

the design , so the available positive slack becomes a wastage during timing closure and this can

also limit the speed of the design. During timing closure, when such available slacks are

recovered and used, then use of standard cells having low threshold voltage is also reduced.

Hence distribution of such positive slack improves overall system performance. The work

presented in this thesis talks about an algorithm which predicts the positive slack available across

the design during synthesis and then redistribute these slack values across timing critical paths to

remove their timing violations. These skew values are later used during physical implementation

of design so that placement of cells is done in accordance with these skew values. This also helps

the design to operate at high frequency. The results shows better timing QoR as we see reduction

in total negative slack, worst negative slack and also in the number of violated timing paths.

Runtime increases compared to the conventional methodology but not by a significant amount.

III

TABLE OF CONTENTS

LIST OF FIGURES VI

LIST OF TABLES VII

ACRONYMS VIII

Chapter 1: Introduction 1 - 4

Chapter 2: Review of Past Work and Problem Formulation 5 - 10

2.1 Standard Synthesis Flow 5

2.2 Objective of synthesis 7

2.3 Conventional timing optimization in synthesis 7

2.4 Conventional Timing Closure 7

2.5 Useful skew 8

2.6 Conventional design flow with useful skew 10

Chapter 3: Proposed Methodology 11 – 24

3.1 Proposed Design Flow 11

3.2 Details of proposed work 13

 3.2.1 Input arguements for useful_skew_proc 14

 3.2.2 Calculating the updated_timing_path_slack 14

 3.2.3 Detailed skew adjustment flow 15

3.3 First_order_slack_redistribution 17

3.4 Second_order_slack_redistribution 18

3.5 Issue with Second_Order_slack_redistribution 19

3.6 Proposed Second_Order_slack_redistribution 20

Chapter 4: Results and Discussion 25 – 32

4.1 Timing QoR comparision after initial compile 25

4.2 Timing QoR comparision after synthesis 25

4.3 Results comparision after CTS 26

 4.3.1 Timing QoR for max_path_violations 27

 4.3.2 Timing QoR for min_path_violations 27

 4.3.3 VT distribution comparision after CTS 27

 4.3.4 Area and Power comparision after CTS 28

4.4 Results Comparision after Routing 28

 4.4.1 Timing QoR for setup violations after routing 29

 4.4.2 Timing QoR for hold violations after routing 29

 IV

 4.4.3 VT_distribution comparision after routing 30

 4.4.4 Area and power comparision after routing 30

 4.4.5 Runtime comparision of complete design flow 30

Chapter 5: Conclusion and Future Scope 33 - 34

APPENDIX 35 - 62

REFERENCES 63

 V

 LIST OF FIGURES

Chapter 2: Review of Past Work and Problem Formulation 5 - 10

 2(1) Standard Synthesis Flow 5

 2(2) Typical R2R timing path 8

 2(3) Timing path without useful skew 9

 2(4) Timing path with useful skew 9

 2(5) Conventional PD flow with useful skew 10

Chapter 3: Proposed Methodology 11 – 24

 3(1) Proposed Methodology 11

 3(2) Block diagram of useful_skew_proc 13

 3(3) Path type 15

 3(4) first_order_slack_redistribution 17

 3(5) second_order_slack_redistribution 18

 3(6) issue with second order 19

 3(7) Case_1 for proposed algorithm 21

 3(8) Case_2 for proposed algorithm 21

 3(9) Case_3 for proposed algorithm 22

 3(10) Case_4 for proposed algorithm 23

 3(11) Case_5 for proposed algorithm 23

 3(12) loop in skew search path 24

 3(13) self loop in skew search path 24

 VI

 LIST OF TABLES

Chapter 4: Results and Discussion 25 – 32

 4(1) Timing QoR comparision after initial compile 25

 4(2) Timing QoR comparision after synthesis 26

 4(3) Timing QoR comparision for max_path after CTS 27

 4(4) Timing QoR comparision for min_path after CTS 27

 4(5) VT distribution comparision after CTS 27

 4(6) Table for area and power comparision after CTS 28

 4(7) Timing QoR for setup after routing for conventional flow 29

 4(8) Timing QoR comparision for setup after routing for design 29

 flow with proposed useful_skew_proc

 4(9) Timing Qor for hold after Routing with conventional flow 29

 4(10) Timing QoR for hold after Routing for design flow with 30

 useful _skew_proc

 4(11) Table for VT distribution comparision after Routing 30

 4(12) Area and power comparision after Routing 30

 4(13) Runtime comparision 31

 VII

ACRONYMS

WNS – worst negative slack

TNS – total negative slack

NVP – number of violated timing paths

DC – Design compiler

ICC2 – IC Compiler 2

PT – Primetime

PnR flow – placement and route flow

QoR – quality of result

RTL – register transfer logic

CTS – clock tree synthesis

ECO – Engineering change order

VT – Threshold voltage

G.tech – generic technology

SPEF – standard parasitic exchange format

R,C – resistance, capacitance

R2R – register to register timing path group

HVT – high threshold voltage

SVT – standard threshold voltage

LVT – low threshold voltage

 VIII

1

 Chapter 1

 Introduction

Most of the digital electronic systems in today’s time employ digital IC’s as one of their

key components. An IC can implement a simple logic gate to a complex design like a CPU

processor. Depending upon the application of digital system, its circuit formulation takes

place. Digital system design in today’s time has three things in focus:-

 First one is the area occupied by the design should be as low as possible i.e. the circuit

design should be compact.

 Second one is the performance of the design in terms of speed should be as optimum

as possible i.e. circuit should be able to operate at higher frequencies.

 Third one is the power consumption, high speed circuit always has issue in terms of

leakage power, so with speed power should also be kept in mind

Digital IC design has a standard flow of design steps which is called digital design flow or

physical design flow. This flow comprises of basically two individual standard flows one

is logic design which is also called as frontend design and other one is physical design

which is also called backend design. The logic design includes specifying the basic

functionality of the design in terms of a HDL (hardware description language) whether its

VHDL or Verilog or System Verilog , converting that specification into an RTL (register

transfer logic) code and then doing synthesis of that RTL code to convert it into a gate

level netlist that contains standard cells, macros, input- output pads and their

interconnection to each other. In physical design, the netlist along with some other inputs

(like timing constraints, standard cell libraries, tech file etc.) are given as an input to the

physical implementation tool and after going through a standard flow of design steps like

floorplanning, partitioning (generally done at the top level itself), power planning,

placement, CTS and routing. Different sanitary checks are done before and after each step

to verify the design implementation. After routing, if needed ECO is done, design testing is

done and then finally the design is taped out in terms of GDSII file. Doing timing analysis

at the end of certain design steps is also a very important part of physical design flow.

The performance of a digital system such as “system on chip” depends upon the clock

frequency at which it operates. Systems operating at higher frequencies are better in terms

of overall performance. Continuous advancements has been made in design technology for

2

the fabrication of such high performance systems. The design technologies are scaled

down rapidly over the past few decades so as to fabricate IC’s that can operate over the

frequency range of hundred’s of MHz to GHz. But one of the critical issue faced by the

physical design engineers while designing the layout of such high performance systems is

meeting the required timing specifications. These specifications are necessary to met

otherwise the digital design will not work properly. Meeting these timing requirements

becomes more and more difficult as the system clock frequency increases. So improving

the timing quality of design remains a key objective across entire design flow. So timing

closure becomes a very important part of VLSI design flow. The timing optimization is

done both during the synthesis as well as during physical implementation of design.

One of the conventional way of doing timing optimization during synthesis is adjusting

the delay of the data path so as to remove timing violations. To remove setup violations,

the delay of the data path is reduced by replacing the standard cells having high VT with

the one having low VT . This technique successfully removes the setup timing violations

but the issue is increase power consumption because of the low VT cells. Also in this

case, the positive slack available in design is not utilized so that becomes a kind of wastage

at the time of timing closure during physical implementation of design. This also limits the

capability of that design to operate at higher frequency. Also this increases the area of

the overall design.

The other method to deal with this issue is the use of skew available in design. Generally,

clock signal is considered ideal during RTL synthesis, this consideration works for low

speed designs but this can cause issues for high speed designs. Some skew should be

considered while doing synthesis as it brings synthesis closer to actual physical

implementation of clock during CTS. Skew values are calculated during physical

implementation and are fed back to the DC flow and hence entire design flow runs again.

This increases the overall runtime. Skew numbers can be calculated after synthesis as well

and again running the DC flow. But as the data path is already optimized during first

synthesis , this limits the overall effect of skew adjustment.

This thesis work describes a methodology that redistributes the useful skew available

across the design during synthesis itself to improve timing of the design. So there is no

feedback loop from implementation stage and hence no need of re-synthesis in this case.

The skew numbers calculated during synthesis are fed to the placement and CTS design

3

steps as part of timing constraints to effect the standard cell placement and timing

optimization during CTS to improve timing of the overall design. This also reduces area

required and also improves power consumption of design. Upcoming chapters will talk

about physical design flow, the build up to the problem statement, proposed skew

adjustment algorithm in detail and also a detailed analysis and discussion is on results and

final conclusion along with possible improvements that can be made to the algorithm in

the coming future.

Appendix contains some tcl proc’s that are used in useful_skew_search script. These

proc’s helps the useful_skew_proc to perform smaller functions like finding number of

violated paths, getting information like startpoint, endpoint and violated slack value and

arranging them in decreasing order of violated slack value in a list, updating the list with

new values e calculating updated slack value available for any timing path etc.

In last manuals for various implementation and analysis tool, books and articles that are

referred during this thesis work are mentioned.

4

5

 Chapter 2

Review of Past Work and Problem Formulation

2.1 Standard Synthesis Flow:-

 Fig. 2(1) Standard Synthesis Flow

6

Synthesis is done to convert the RTL code to gate level netlist. The netlist contains logical

functionality of design. It contains standard cells that may be a combinational gate or a

combinational logic like adder, subtractor or a sequential logic like latch, flip-flop,

registers etc along with their interconnection.

Brief description of the steps mentioned in above figure is:-

1. Analyze:-

 Design compiler reads the RTL code and checks if all the syntaxes written

are correct or not. Also checks whether the operands used in a syntax belongs to

correct datatype or not.

2. Elaborate:-

 Designs to be synthesized are hierarchical in nature. There hierarchies are

explored in this step. In elaboration, analyzed RTL files are mapped into technology

independent G.TECH cells. Arithmetic operations are converted into adders,

subtractors etc. with the help of designware libraries.

3. Link design:-

 Here all parts of design are linked and all references are resolved.

4. Compilation:-

 In this step the design is compiled to perform a number of

optimizations like timing, area and power optimizations. These optimizations are done

based on design constraints feed to the compiler.

5. DFT insertion:-

 Since after physical implementation of the design, it needs to be

tested, for that reason, scanchains, clock gating etc. are inserted into the design. During

this step, timing , area, power constraints are also fed to compiler.

6. Increamental Compile:-

 Design can be compiled any number of times

depending upon whether the timing, area and power requirements are met or not. In

this step, we can use a number of optimization techniques to improve timing. If only

area or power optimization is to be done, that is also possible.

7. Write out:-

 A number of files are written out during this step as output of synthesis:-

Netlist, .upf file, scandef file, .v file, .ddc file and also a number of timing constraints

files.

7

2.2 Objective of synthesis:-

 The main objective of synthesis is to provide the best

possible seed i.e. netlist for the PnR flow. This can only be done if degree of

correlation is high between the synthesis and PnR tool. Providing aspect ratio, flooplan

etc. physical design constraints and skew values helps in achieving this correlation.

2.3 Conventional timing optimization in synthesis:-

 Timing optimization in case of

synthesis simply means removing the timing violations present in the design. The

conventional synthesis methodology improves by replacing the high VT cells with low

VT cells in the data path. So whatever optimization is done that is done only in data

path. This generates two issues, first one is , using low VT cells or high speed cells in

place of slow or high VT cells increases leakage power. Second issue with this

approach is the useful or positive skew present in different timing paths in a design

remains unused which can limit the ASIC design CPU’s to operate from higher

frequencies. Also in conventional DC flow, the clock skew is ideal that is zero. So all

the flip flops, latches present in the design gets triggering clock edges at the same time.

This is not a good assumption as during actual physical implementation, there is

always some clock skew in the design. This approach hence contributes to increase in

total number of timing violations. Hence to increase the correlation between the

synthesis and PnR tool, it is very important to consider some skew during synthesis,

that can increase the correlation between two tools. Hence timing closure becomes a

bit easier compared to the conventional approach of design flow.

2.4 Conventional Timing Closure:-

 This step is done after completion of the PnR flow

i.e. after routing. After routing, the netlist generated from routing along with timing

constraints are given to the Primetime. SPEF files (Standard Parasitic Exchange

Format) are generated using Star RC tool. These files contains parasitic information i.e.

R, C extraction information which is used by Primetime or PT for calculating net

delays etc. PT generates both QoR and max/min timing reports. QoR tells about

overall timing quality of the design. Max timing reports helps in analysing the data and

clock path to fix setup violations and same is done using the min timing report for

8

fixing the hold violation. Now, to fix setup violations, the data path has to be fast, to

fix hold violations, data path has to be slower.

Fixing of setup violation can be done in two ways:-

1. Faster the data path

2. Delay the clock path of endpoint or faster the clock path of startpoint

Conventional timing closure talks about first approach, where sizing of cells is done to

make a path faster or slower. But its consequences are in terms of area and power

penalty as explained earlier.

 startpoint cell to be sized endpoint

 Fig. 2 (2) typical R2R timing path

In above figure, FF stands for flip-flop. The positive slack available in this case is

wasted. And even if this positive slack is used here, since synthesis is already done so

the effectiveness of using the second approach of clock path optimization will be very

less. Hence utilizing useful skew available during the synthesis itself becomes

important. Skew value generally which are given during synthesis are calculated after

running the complete design flow right from synthesis to PnR flow and then

calculating the skew numbers from the CTS stage or the routing stage. This approach

helps in improving the timing QoR of the design but

 again this approach also has issues that affects the overall performance and runtime of

entire design flow.

2.5 Useful skew:-

 Useful skew is that skew which is intentionally introduced in the

design to improve its overall timing quality. It may completely remove a setup or hold

9

violation or can reduce the value of violation. Both way, we are improving the timing

QoR.

 Fig. 2 (3) timing path without useful skew

Suppose the clock period is of 10ns . So in case of fig. 2(3) the data should be available

before or at 10ns for register FF2. But we can clearly see that at the first data path

path_1, delay is of 11ns. Hence there is a timing violation of 1ns. But in case of

path_2, delay is of just 5ns. So data become available at input of FF3 register at 5ns.

So there is a positive slack of 5ns. This positive slack can be used to remove timing

violation at path_1 as shown below:-

 Fig. 2 (4) timing path with useful skew

In this case of above figure 2(4) , now along with clock delay of 10ns , an additional

delay of 2ns is added with the help of a buffer. Now net clock path delay becomes 12ns

and while the data path path_1 delay remains 11ns. Hence data at the same FF2

register is now available 1ns earlier to the clock edge which will now come at 12ns. So

this path now has a positive slack of 1ns. Now if we look at data path path_2, the

buffer delay gets added to the data path delay of path_2, so the net path delay becomes

7ns for path_2 but still as the clock edge will come at 10ns. Hence still there is some

positive slack of 3ns.

10

So, it is now clear that we can remove a timing violation by utilizing the useful skew

available in the design. As there is no cell sizing, so leakage power can also be

reduced.

2.6 Conventional design flow with useful skew:-

 Fig. 2(5) Conventional PD flow with useful skew

In conventional design flow, the skew calculation is done after CTs or routing. Then

those skew numbers are fed back to the synthesis tool and again the entire flow needs

to run till routing to see the effect of applied skew on timing. But the issue with this

approach is that synthesis is already done one time before the skew calculation, so the

data paths during timing optimization are already optimized by the design compiler. So

the net effect of using the useful skew methodology reduces. For already optimized

data paths , cell sizing is already done so leakage power will increase for such timing

paths and also this will effect area utilization after completion of timing closure during

signoff. Another disadvantage of this approach is design flow will run two times hence

runtime increases. But the methodology which is being proposed in this thesis work,

doesn’t need any feedback of skew numbers during synthesis, improves runtime of the

design flow, final design will take less area and will also consume less power. Next

chapter will talk about the proposed methodology in detail.

Useful

Skew

Number

number

11

 Chapter 3

 Proposed Methodology

3.1 Proposed Design Flow:-

 Fig. 3 (1) Proposed Methodology

useful_skew numbers

12

The design flow shown in above figure is very similar to the conventional design flow

except the introduction of useful skew calculating proc after initial compile during

synthesis. What this tcl procedure doing is that after initial compile is completed by

synthesis tool, it calculates the positive slack available for the violated timing paths (where

setup violation has occurred), and uses that calculated useful skew to remove timing

violations. Hence the synthesis tool has now skew numbers to play with for timing

optimization. So instead of datapath optimization , now the tool will look to optimize clock

path based on the given skew. Hence there will be no cell sizing i.e. no replacing of low

speed cells with high speed cells. So, the issues such as increase in leakage power that

contributes to increase in overall power consumption will get eradicated. The overall area

requirement of the design also reduces. Since the positive slack available is now being

utilized, hence the issue caused by this positive slack when if not utilized can limit the

frequency of operation of a CPU of a ASIC design get resolved. Apart from this, one can

see that there is no feedback from CTS OR routing stage to synthesis, so it is a

unidirectional flow, no need of re-spinning the synthesis in this case. Hence runtime of the

overall design flow improves which is another added advantage with this methodology. So

we are getting better timing QoR, improvement in power consumption and area

requirement along with the improved runtime. What else can be asked from a design flow.

The challenge that comes with this methodology is the prediction of useful skew during

synthesis, because from the diagram we can see that the calculated skew numbers are fed

as timing constraints during placement and CTS. Since placement and CTS are physical

implementation stages, so whether actually that much skew will be available there or not,

so we have to be very careful while predicting the useful skew. Now why skew calculation

is done after initial compile only and not before because during initial compile only the

mapping of generic technology cells to a target technology happens. Skew calculation can

be done after DFT insertion as well but then improvement in timing will be less because

then violation due to DFT insertion will also comes into the picture and our motive is to

improve timing for “functional” mode and not for “mbist” mode. Apart from this,

calculated useful skew is fed to the “placement” stage because we want the placement of

standard cell to be in accordance with the skew numbers. Also these numbers are fed

during CTS as well because during CTS, clock tree is formed, and hence for affecting the

clock tree formulation, we have to provide this skew information to the PnR tool. That’s

how, correlation is achieved between the synthesis and PnR tool which makes the digitl

design efficient.

13

3.2 Details of proposed work:-

 Fig. 3(2) Block diagram of useful_skew_proc

The above diagram explains the basic flow of skew calculating procedure. The first step is

to provide input arguements. The runtime of the proc script and timing quality of the

design depends upon the values of these arguements. Second stage is to find out the

information about violated R2R timing paths as this script focuses on improving the timing

QoR for Register to Register paths only. The next step is to check whether the startpoints

and endpoints for each violated R2R paths are constrained or not because tool can only

optimize constrained timing paths so this is a very important step. Next step is to search for

useful skew based on value of violation for each path. So, first the proc will look for

required skew in first order and if that skew not enough, then skew will move towards

second order search. Finally, a tcl file is generated that contains the all calculated skew

14

values, that skew is sourced by synthesis tool and also during placement and CTS by

physical implementation tool.

3.2.1 Input arguements for useful_skew_proc:-

These input arguements are neede so that the user can control the timing quality and

runtime of the design according to his requirements. So these arguements makes the

procedure much more flexible. Following are the input arguements :-

 target_slack – violated slack value should become less than or equal to this

value after skew adjustment.

 target_slack_for_borrow – lowest value of violated slack for which slack can

be borrowed.

 slack_to_borrow_from_max_path – from the available positive max-path

slack value, how much percentage of slack can be borrowed.

 slack_to_borrow_from_min_path – from the available positive min-path

slack value, how much percentage of slack can be borrowed.

 maximum_iteration – maximum number of times that proc can run, this is

done to avoid infinite loop.

 max_path_margin – minimum positive slack that must be available at the

sequential cell after skew adjustment in case of max-path.

 min_path_margin – minimum positive slack that must be available at the

sequential cell after skew adjustment in case of min-path.

3.2.2 Calculating the updated_timing_path_slack:-

 Whenever a skew value is retrieved,

if that skew value is applied at the that time only when it is obtained, then we don’t need to

do anything to calculate updated slack as the synthesis tool will automatically update the

timing and will calculate next skew value with updated timing. But since timing update

after applying a skew value takes its own time, so this increases the runtime of skew

calculating proc drastically. To avoid this problem, we can write a tcl procedure which will

calculate the updated skew value based on previously calculated skew. So the tool doesn’t

need to calculate the updated slack after updating the timing hence, runtime will reduce

drastically for the useful_skew_proc. Algorithm given below explains the updated skew

calculating procedure:-

15

 Using report_timing calculate the slack_value.

 Check if startpoint is already delayed or early or no slack applied till now:-

 if { startpoint delayed } {

 slack_value == slack_value – applied_skew

 } elseif {startpoint early} {

 slack_value == slack_value + applied_skew

 } else {

 slack_value == slack_value

 }

 Check if endpoint is already delayed or early or no slack applied till now:-

 if { endpoint delayed } {

 slack_value == slack_value + applied_skew

 } elseif {endpoint early} {

 slack_value == slack_value - applied_skew

 } else {

 slack_value == slack_value

 }

Note:- The above written algorithm also helps in finding the useful for startpoints

and endpoints.

3.2.3 Detailed skew adjustment flow:-

 Fig. 3 (3) Path type

In above figure :-

 Forward Path:- Register to startpoint of violated path

16

 Backward Path:- Endpoint of violated path to register

Here is the complete flow sequence of skew calculation:-

Step_1: Assign values to the input arguements of useful_skew_proc as per required

timing QoR.

Step_2: Filter out all violated reg_to_reg timing paths:-

 Create a R2R path group with “group_path” command whose source should be

clock pin of a register and should end at data pin of a register.

 Use “report_qor” to find out total no. of violated R2R timing paths

 Use “report_timing” to find out startpoint, endpoint and violated slack value for

each such timing path.

 Prepare a list whose each row has startpoint, endpoint and violated slack value of a

particular timing path. List should be prepared in decreasing order of slack value.

 Startpoint and endpoint should have valid timing constraints, this is must as

unconstrained timing paths can’t be optimized by the tool.

Step_3: check for unconstrained forward and backward paths and categorize them in one

of the four possible scenarios mentioned below:-

 Both forward and backward paths doen’t have valid timing constraints

 Only forward path has valid timing constraints.

 Only backward path has valid timing constraints.

 Both forward and backward path has valid timing constraints.

Step_4: Based on one of the timing constraint scenario found in step 3, the proc decides

which kind of skew adjustment can be done as given below:-

 If both startpoint and endpoint doesn’t have valid timing constraints then there is

no meaning of skew adjustment as tool can’t optimize unconstrained paths.

 If only the startpoint has valid timing constraints then skew calculation can be done

only on the forward path not backward path.

 If only the endpoint has valid timing constraints then skew calculation can be done

only on the backward path not forward path.

17

 If both startpoint and endpoint has valid timing constraints then skew calculation

can be done on both forward and backward paths.

Step_5: Start the skew search algorithm. This algorithm searches for useful skew

depending upon the required skew value in two ways:-

 First_Order_slack_redistribution

 Second_Order_slack_redistribution

The overview of this skew search algorithm is given with the help of if_else condition

below:-

 If { required_slack <= startpoint_slack , endpoint_slack

 and sum_of_both_slacks } {

 Run first_order_slack_redistribution

 } else {

 Run second_order_slack_redistribution

 }

3.3 First_order_slack_redistribution:-

 adjacent_forward_path violated_path adjacent_backward_path

 Fig. 3(4) first_order_slack_redistribution

First order slack redistribution means, the algorithm will look only on the

adjacent_forward_path and adjacent_backward_path to the violated timing path. If

positive_slack of any of the two adjacent_path or sum of their individual slack value mets

18

the required slack value, then there is no need of going towards second order skew

adjustment. Hence the skew search for such a timing path will stop at the first order itself.

Following are the cases covered by first_order_skew_redistribution:-

Case_1: required_slack <= endpoint_positive_slack

 Delay the endpoint by required_slack

Case_2: required_slack <= startpoint_slack

 Early the startpoint by required_slack

Note: Case_2 also covers one more scenario that if no slack is available at the endpoint

side.

Case_3: required_slack <= sum of startpoint and endpoint positive slack

 Delay the endpoint by positive slack available

 remainng_slack_required = required_slack – endpoint_slack

 Early the startpoint by remaining_required_slack

If we can see, first we try to delay endpoint then if neede early the endpoint.

This is to avoid worsening of hold violations as useful skew effects hold violations exactly

opposite of setup violations.

3.4 Second_order_slack_redistribution:-

 Fig. 3(5) second_order_slack_redistribution

Skew search algorithm uses second_order_slack_redistribution when no skew is available

in case of first order search or the retrieved useful skew is not enough to meet the required

19

slack value. Second order means the algorithm will go deep into the endpoint side or

startpoint side along the chain of registers to met the required slack. It will adjust skew

values not only for the adjacent forward and backward paths but also the other forward

backward paths. In above figure, P2 is violated timing path, P1 and P3 timing paths

belongs to the first order search while P0 and P4 belongs to the second order search.

E.q. Suppose in fig. 3 (5), P2 path is violated by 0.5ns,

 P1 has positive slack of 0.1ns

 P3 has positive slack of 0.2ns

 P0 has positive slack of 0.05ns

 P4 has positive slack of 0.15ns

Since total positive slack of first order paths is 0.3ns, still there is violation of 0.2 ns while

the second order paths have total skew of 0.2ns , hence by including useful skew values

from second order paths, total positive slack becomes 0.5ns and hence required slack value

is met.

3.5 Issue with Second_Order_Slack_Redistribution:-

 Violated_path

 Fig. 3(6) issue with second order

Consider the example shown in above fig. 3(6). In this case, to get useful skew of -0.5ns

delay FF6 by 0.1ns, then delay FF4 by 0.3ns, early FF2 by 0.1 and then early FF3 by 0.2

ns But since FF4 has other endpoints as well, second lowest skew for FF4 is 0.23ns and

third lowest slack is 0.25 ns. For FF3 the second lowest slack is 0.13 ns and third lowest

20

slack is 0.15ns. So when you delay FF4 by 0.3ns , the second and third lowest skew paths

gets violated. Same happens in case of FF3 registers. So by removing the ti ming

violations for one path we are creating four more violations which is not at all a good trade

- off.hence this things needs to be taken into account while searching for useful skew.

Apart from this, there might be case where when algorithm moves across timing paths in

search of skew, due to feedback loop, it may encounter the same register, this can create an

infinite loop. Apart from this , there are self loops as well..So we have to consider case of

such timing loops as well. Another possible issue is what if a register is delayed already

and current requirement to met required slack is to early the register or vice – versa of the

above situation. In this case if we try to early or delay the register by required value , we

will see that earlier removed violations again comes into picture and will come with more

worst value. The reason for this is that, we early or delay the register using

“set_clock_latency” command The proposed work takes into account all such situations

and hence is able to dealt with all such issue highlighted above.

3.6 Proposed Second_Order_Slack_Redistribution:-

 In order to solve above problem

in second order, whenever skew value is adjusted for any register, the maximum skew

value that can be taken for any timing path is the second lowest useful slack value of that

register whether in case of startpoint or in case of end point. By doing this, we can avoid

extra timing path violations that occurs in parallel timing paths because of the skew

adjustment. E.q. in the previous example of figure 3 (6), the FF4 register will be delayed

by 0.25ns instead of 0.35ns even if the timing violation is not completely removed. But by

doing this , we can reduce the value of WNS which is also can be considered as a

improvement in timing QoR. There are few cases that we have to consider in case of

second order so that skew calculation is optimum. There are mainly three scenarios that we

have to consider with this optimized second order approach. Timing improvement not only

done by removing the violation completely but can also be done by reducing the WNS as

well as TNS. Different cases in optimized second_order_search are explained below:-

Case_1: required_slack <= endpoint_second_lowest_slack

In this case, second_lowest_slack for endpoint is greater or atleast equal to the required

slack value. In this case, second_order_slack_redistribution follows the steps given

below:-

21

 Fig. 3(7) Case_1 for proposed algorithm

 Delay the endpoint by required_slack value.

 Repeat step_5 of the skew_adjustment_flow for newly violated path but only at

endpoint side.

 Continue with adjustment until required slack achieved or no positive slack value

left for skew redistribution.

Fig. 3(7) explains such a case, here 0.5ns is needed, lowest positive slack is 0.2ns so the

skew search algorithm will go for second order search. Now the second lowest skew

available for FF4 endpoint is 0.53ns. Hence the algorithm will delay FF4 by 0.5ns.

Case_2: required_slack > endpoint_second_lowest_slack

 Fig. 3(8) Case_2 for proposed algorithm

In this case, the second_lowest_slack can’t meet the skew requirement , hence we have to

look towards startpoint side as well. Steps followed by proc in this case are given below:-

 Delay the endpoint by required_slack value.

 Repeat step_5 of the skew_adjustment_flow for newly violated path but only at

endpoint side.

22

 Continue with adjustment until required slack achieved or no positive slack value

left for skew redistribution.

 After completing search from endpoint side, move towards startpoint side to search

for remaining required slack value.

 First see whether required value can be met with first order slack of startpoint. If

yes, stop there only, otherwise start second order search towards startpoint side.

 The remaining steps are same as for the first case discussed above, the only

difference is that endpoint gets replaced by startpoint.

Fig. 3(7) explains such a case, where 0.5ns is needed but the available second lowest slack

is 0.33ns hence the FF4 will be delayed by 0.33ns and for remaining the tool will look

towards startpoint side.

Case_3: required_slack < startpoint_second_lowest_slack

 Fig. 3(9) Case_3 for proposed algorithm

This case generally arises when either no positive slack is available at endpoint or the

positive slack retrieved from endpoint is not enough to meet the required timing violation.

Again the steps followed by the proc in this case are same as in first case, just the endpoint

gets replaced by startpoint.

 Look for first order skew towards startpoint side or adjacent forward path.

 If first order skew not sufficient then look for second order skew.

In fig. 3 (9), the frist order slack is 0.1ns which is much lower than required 0.5ns but the

second order slack for FF3 is 0.55ns. Hence the Ff3 can be made early by 0.5ns to meet

timing violations.

23

Case_4: required_slack > startpoint_second_lowest_slack

 Fig. 3(10) Case_4 for proposed algorithm

Steps followed are:-

 First lok for any useful skew available at endpoint side

 Then for the remaining slack move towards startpoint side and whatever skew is

available, take that skew value.

In fig. 3(10), at most 0.28ns can be taken from endpoint side in second order, for the

remaining 0.22ns, when skew search algorithm moves towards second order, only 0.15ns

is available.

Case_5: both the adjacent forward and backward path have negative slacks

 Fig. 3(11) Case_5 for proposed algorithm

In this case, tool will move across timing paths both across forward and backward paths

only if the negative slack path has just one such path across all parallel paths otherwise

when the skew adjustment is done for such a path, other negative parallel path becomes

worse by the same value. This is done for each such negative slack path.

24

So in this chapter, we have discussed about the proposed methodology in detail, learned

about various issues and also different possible scenarios. This methodology is relatively a

new approach compared to other skew adjustment techniques discussed in previous

chapters. In the upcoming chapter, we will discuss about the results that we have got in

detail. This approach can also be modified to make it more effective, that will be discussed

in the end during conclusion.

Case_6: Handling a loop in skew search path

 Fig. 3(12) loop in skew search path

If a is loop encountered while searching for the second order slack, then in that case, the

algorithm will stop there only for such a case hence avoiding an infinite loop situation.

Apart from this there might be a self loop possibility, such a situation is also avoided by

this algorithm as it stops searching skew for such cases.

 Fig. 3(13) self loop in skew search path

25

 Chapter 4

 Results and Discussion

Complete design flow is run for the conventional and proposed design methodology right

from synthesis till routing stage of PnR flow. In this chapter, results are shown for

different stages of digital design flow such as after synthesis, clock tree synthesis and

routing. Timing QoR during synthesis for conventional synthesis flow and synthesis with

skew search proc are compared. For CTS and routing , not only timing QoR but also the

area and power comparision along with VT distribution is done for conventional design

flow and proposed design flow. This skew predicting proc is tested on a design which has

approximately 2.5 million standard cells, 85 macros or memory instances and is operating

at a frequency of 725MHz.

4.1 Timing QoR comparision after initial compile with and without skew search

algorithm:-

Timing_parameter Without_skew With_skew

WNS (ns) -0.4 -0.39

TNS (ns) -11466.04 -4430.3

NVP 46908 28890

 Table 4(1) Timing QoR comparision after initial coimpile

From the above table, it is clear that there is significant improvement in timing quality of

design when skew search algorithm is used. If we compare the TNS of the two flows, the

total negative slack (TNS) has reduced from whopping -11466.04 ns to -4430.3 ns. Also

the number of violating paths i.e. NVP has also reduced from 46908 to 28890. There is not

a big improvement in WNS i.e. worst negative slack but still some improvement is there as

well. Hence if we look at overall timing QoR, there is significant improvement in timing

quality of design. The above results are observed at design compiler itself. But since

design compiler is synthesis tool, so for more accurate timing analysis primetime is used.

4.2 Primetime Results after complete synthesis flow:-

 Here the timing Qor of the two flows

i.e. with skew search proc and conventional flow are compared after full synthesis flow.

26

As the results observed at primetime which is basically a signoff tool and also gives more

accurate timing QoR as its specifically designed for performing timing analysis. These

results are for C_worst scenario at 0 degree temperature. This is the worst case scenario as

due low voltage and temperature inversion effect , the delaya get worsen. Also this

scenario indicates high capacitance for smaller nets. We don’t look at best case scenarios

during synthesis as there is no clock information during synthesis and hence clock is ideal

in this case. The table shown below gives timing QoR comparision after synthesis flow for

C_worst_0 scenario:-

Timing_parameter Without_skew With_skew

WNS (ns) -0.17 -0.13

TNS (ns) -40.3 -17.66

NVP 2173 1264

 Table 4(2) Timing QoR comparision after synthesis

From above table we can clearly say that useful skew has been able to improve timing

quality of the design significantly as WNS is reduced from -0.17 ns to -0.13 ns and TNS

is reduced from -40.3 to -17.66 which is around 58% improvement and number of violated

timing paths are reduced from 2173 to 1264 which shows 40% improvement.

4.3 Results comparision after CTS:-

 CTS is a physical implementation stage where the clock

tree is built and optimized. At this stage, timing QoR is compared for a number of different

scenarios, C_worst is basically used for shorter nets as capacitance is dominant figure in

the net delay while RC_worst is used for longer nets as resistance also becomes significant

in the net delay for longer nets. Temprature values are 0 and 125 degree celcius. For max

path violations, C_worst_0 is the worst case and for min path violations RC_best_125 is

the worst case. Reason we are checking for hold violation is that skew values used to

improve setup violations worsens the hold violation. As improvement in timing QoR also

includes improvement in hold violations so these violations should have acceptable value .

Hence hold violations should also be kept in check.

 Results are shown in the table below:-

27

4.3.1 Timing QoR for max_path_violations:-

Timing

Parameter

C_worst_0 RC_worst_0 RC_worst_125

Without

skew

With

skew

Without

skew

With

skew

Without

skew

With

skew

WNS(ns) -0.56 -0.45 -0.53 -0.44 -0.34 -0.26

TNS(ns) -5289.2 -4122.1 -3994.7 -3019.9 -384.9 -278.9

NVP 40885 35182 35235 29716 5518 3158

 Table 4(3) Timing QoR comparision for max_path after CTS

4.3.2 Timing QoR for min_path_violations:-

Note:- Scenario used for hold – RC_best_125

Timing_parameter Without_skew With_skew

WNS(ns) -0.01 -0.3

TNS(ns) -57.6 -765.6

NVP 4954 22337

 Table 4(4) Timing QoR comparision for min_path after CTS

4.3.3 VT distribution comparision after CTS:-

VT_group Without_skew With_skew

HVT_30 13101 14528

HVT_35 81143 116818

HVT_40 546242 525264

SVT_30 373659 308365

SVT_35 351816 352407

SVT_40 1075130 1114297

LVT_35 20882 26353

LV T_40 2026 2049

Total 2464084 2460166

 Table 4(5) Table for VT distribution comparision after CTS

28

4.3.4 Area and Power comparision after CTS:-

parameter Without_skew With_skew

Area 3514972.9 3478596.1

Leakage Power(nW) 4.46e+08 4.23e+08

 Table 4(6) Table for area and power comparision after CTS

From table 4(3), we can clearly see that there is a improvement in the setup timing QoR

with proposed methodology as compared to conventional methodology.All the timing QoR

shown for CTS are obtained from primetime hence are very accurate compared to physical

implementation tool like ICC2 or encounter etc.We are seeing improvement in all three

scenarios for WNS, TNS and NVP. The table 4 (4) shows possible disadvantage with this

method as hold violations increases. But the purposed of this proposed work is to improve

setup violations while keeping the hold violations in check. Table 4(5) shows the VT

distribution. Here , the count for different channel length and different VT standard cells is

given. From the above table , we can clearly see that LVT count increases in CTS as tool

tries to incorporate the skew values while building and optimizing the clock tree. Also

HVT count increases for proposed work as HVT doesn’t needed to be sized to LVT cells

to improve setup timing. As discussed in previous chapter that, there should be a

improvement in area and power consumption, table 4 (6) validates this result.

4.4 Results Comparision after Routing:-

This is the final stage of physical implementation and is the best stage to analyze the

overall effect of proposed methodology on timing quality of design. The reason is that

during CTS only clock tree is routed while the delay for data path is still approximated

with global routing. But after this stage datapath also gets routed and hence actual delays

comes into the picture. Just as in case of CTS, at this stage also, timing for both setup and

hold violations for different scenarios will be compared. VT distribution is also compared

along with area and power comparision for conventional and proposed methodologies.

Tables given below shows all such comparisions and we can see the same trend followed

here as was seen in case of CTS. In every corner , we can see that for worst_corners, the

setup timing has improved in case of flow with proposed useful_skew_proc as compared

to conventional flow. When it comes to best case scenarios, again as in case of CTS, the

29

hold scenario has got worse. This was expected that hold will degrade as for now the focus

is to improve setup violations. Table 4(7) gives timing QoR for the setup violations in case

of conventional flow while the Table 4(8) talks of the timing QoR for setup violations in

case of design flow with proposed useful_skew_proc. While table 4(9) and 4(10) will put

light on timing QoR for conventional flow and design flow with useful_skew_proc and

table 4(11), 4(12) and 4(13) talk about the comparision of VT distribution, area and

leakage power consumption and runtime for the conventional flow and flow with

useful_skew_proc.

4.4.1 Timing QoR for setup_violations after routing:-

 Parameters C_worst_0 RC_worst_0 C_worst_125 RC_worst_125

WNS -0.46 -0.37 -0.26 -0.21

TNS -4224.9 -3980.4 -278 -274.7

NVP 37947 35782 4701 4719

 Table 4(7) Timing QoR for setup after routing for conventional flow

 Parameters C_worst_0 RC_worst_0 C_worst_125 RC_worst_125

WNS -0.39 -0.37 -0.26 -0.18

TNS -3672 -3980.4 -189 -219

NVP 32733 35782 3835 3230

Table 4(8) Timing QoR comparision for setup after routing for design flow with

proposed useful_skew_proc

4.4.2 Timing QoR for hold_violations after routing:-

Parameters C_best_0 RC_best_0 C_best_125 RC_best_125

WNS -0.19 -0.19 -0.21 -0.21

TNS -133.9 -145.1 -170.9 -183.9

NVP 3755 3903 4654 4864

 Table 4(9) Timing Qor for hold after Routing with conventional flow

30

Parameters C_best_0 RC_best_0 C_best_125 RC_best_125

WNS -0.25 -0.26 -0.28 -0.29

TNS -1257 -1354 -1576 -1682

NVP 20270 21605 23198 24489

Table 4(10) Timing QoR for hold after Routing for design flow with

useful_skew_proc

4.4.3 VT_distribution comparision after routing:-

VT_group without_skew with_skew

HVT_30 26569 30238

HVT_35 94224 116184

HVT_40 708924 739751

SVT_30 390474 306239

SVT_35 379861 335249

SVT_40 971975 986520

LVT_35 20882 26353

Total 2592994 2540619

 Table 4(11) Table for VT distribution comparision after Routing

4.4.4 Area and power comparision after routing:-

parameter Without_skew With_skew

area 3648045.15 3622606

Leakage_power(nW) 4.51e+08 4.44e+08

 Table 4(12) Table for area and power comparision after Routing

4.4.5 Runtime comparision of complete design flow:-

Runtime in case of conventional design flow generally depends the core area, no. of

standard cells as they directly impact the timing QoR and hence the tool will take its own

time to improve their timing. In case of proposed work, runtime contains extra segment

which is the time taken by the useful_skew_proc to calculate the skew values.

31

Flow type Conventional_flow Proposed_flow

Synthesis flow 39 hrs 46 minutes 44 hrs 46 minures

PnR flow 151 hrs 44 minutes 135 hrs

Total 191 hrs 30 minutes 179 hrs 46 minutes

 Table 4(13) Table for runtime comparision

If we take a look from from table 4(7) to table 4(13), the same trend is followed as in case

of CTS, we are seeing improvement in setup violations for each worst case scenario

whether it is C-worst at a temperature 0 or 125 OR RC_worst at the same temperature

values and we can see degradation in timing QoR for hold violations in case of every best

case scenario whether it is C_best OR RC_best. This was expected that setup will improve

and hold will degrade. Apart from this, we are also seeing improvement in area and

leakage power. Apart from this there is improvement in run time as well approximately of

10 hr, specially in case of PnR flow, because the skew values has improved the timing

QoR, so implementation tool needs less effort in case of proposed design methodology.

But there was increase in synthesis runtime as skew search proc takes his own time to

search for useful skew values. So we are able to obtain required results using the proposed

methodology. The skew search algorithm can be further modified to improve the hold

violations as then we can achieve complete timing QoR improvement. How we can hold

along with setup will be discussed in next chapter.

32

33

 Chapter 5

 Conclusions and Future Scope

In this thesis work, first we talked about the limitations associated with the conventional or

standard design flow such as less optimized timing QoR, increased area requirement,

increase in leakage power, feedback loop from physical implementation stage back to

synthesis and increased runtime. Then we talked about the proposed methodology that

deals with all the problems mentioned above. This method uses useful_skew_proc that

calculates useful skew available in design during synthesis itself not only at the adjacent

forward and backward timing paths but also searches for skew in second order and

distributes that skew value across the design to optimize setup timing violations while

keeping the hold violations in check. The results discussed earlier shows that there is

improvement in setup violations, area improves, leakage power reduces and since there is

no feedback from implementation stages to synthesis has no re-spinning of synthesis and

hence flow becomes unidirectional. As optimized netlist is obtained from synthesis, so

runtime of overall flow reduces as shown in results earlier.

One of the issue with skew calculation algorithm is that hold time worsens, as we have

seen in case of both CTS and routing results for best case scenarios. The algorithm can be

modified in future to improve hold violations as well. One of the reason for hold violation

to occur is thode endpoints where skew value is applied, then timing paths whose

startpoints are such registers, hold violation has occurred in such paths. As the skew values

are calculated with worst corner active, so skew calculation might not be right for such

paths and hence such path needs greater margin for a given hold slack value. Apart from

this, the reverse of the current algorithm to improve violated hold paths can also be done.

Also this algorithm distributes useful skew for those paths that belongs to same clock

domain. If there is a path whose startpoint and endpoint belongs to different clock

domains, no skew adjustment for such paths. Hence cross clock domain skew distribution

is not possible with current skew search algorithm. This is also something that needs to be

improved. Hence the proposed methodology has solved some issues of conventional

approach but still there is scope for improvement as well in terms of improvement in hold

violation and also in cross clock domain adjustment.

34

35

 APPENDIX

1. proc to find no. of violated R2R paths:-

proc number_of_R2R_paths_violated {} {

set experiment_dir_path "./Final_Script_2"

report_qor > $experiment_dir_path/report_qor.rpt

set aa [sh grep "Scenario " $experiment_dir_path/report_qor.rpt]

set bb [sh grep "Timing Path Group" $experiment_dir_path/report_qor.rpt]

set cc [sh grep "No. of Violating Paths:" $experiment_dir_path/report_qor.rpt]

set max_paths 0

foreach a [split $aa \n] b [split $bb \n] c [split $cc \n] {

if {[regexp func [lindex $a 1]] && [regexp R2R [lindex $b 3]]} {

set max_paths [lindex $c 4]

break

}

}

set max_paths [expr {int ($max_paths)}]

puts "max_paths are $max_paths"

return $max_paths

}

2. proc to generate list containing violated paths

proc S_E_S { memory_list } {

set experiment_dir_path "./Final_Script_2"

36

report_timing -group R2R -scenarios func -delay_type max -max_paths

[number_of_R2R_paths_violated] -significant_digits 6 >

$experiment_dir_path/report_timing_post_compile.rpt

set aa [sh grep "Startpoint:" "$experiment_dir_path/report_timing_post_compile.rpt"]

set bb [sh grep "Endpoint:" "$experiment_dir_path/report_timing_post_compile.rpt"]

set cc [sh grep "slack" "$experiment_dir_path/report_timing_post_compile.rpt"]

set start_end_slack ""

foreach a [split $aa \n] b [split $bb \n] c [split $cc \n] {

if { [mem_reg_info [lindex $a 1] $memory_list] == 0 && [mem_reg_info [lindex $b 1]

$memory_list] == 0} {

set violated_slack "[lindex $c 2]"

if {$violated_slack < 0} {

lappend start_end_slack "[lindex $a 1] [lindex $b 1] $violated_slack"

}

}

}

set start_end_slack_length [llength $start_end_slack]

puts "start_end_slack length is $start_end_slack_length"

return $start_end_slack

}

3. proc to check timing path with same clocks for startpoint and endpoint:-

proc matching_clocks_of_SP_EP {reg_name_1 reg_name_2} {

set experiment_dir_path "./Final_Script_2"

37

report_timing -group R2R -scenarios func -delay_type max -significant_digits 6 -from

$reg_name_1/CK -to $reg_name_2/D > $experiment_dir_path/report_timing.rpt

set clock_line [sh grep "clock" $experiment_dir_path/report_timing.rpt]

set i 0

foreach ss [split $clock_line \n] {

incr i

if {$i == 3} {

split $ss \n

set sp_clock [lindex $ss 1]

}

if {$i == 5} {

split $ss \n

set ep_clock [lindex $ss 1]

}

}

if {$sp_clock == $ep_clock} {

return 1

} else {

return 0

}}

4. proc with all violated path info can cure self_loop:-

proc vio_path_info_FROM_TO {reg_name_1 reg_name_2 list_macro} {

set experiment_dir_path "./Final_Script_2"

38

if { [mem_reg_info $reg_name_1 $list_macro] == 0 && [mem_reg_info $reg_name_2

$list_macro] == 0 && $reg_name_1 != $reg_name_2} {

report_timing -group R2R -scenarios func -delay_type max -significant_digits 6 -from

$reg_name_1/CK -to $reg_name_2/D > $experiment_dir_path/report_timing_slack.rpt

set non_R2R_check "not_empty"

set a [open $experiment_dir_path/report_timing_slack.rpt r]

while {[gets $a line]!= -1} {

if {[regexp "No" $line]} {

set non_R2R_check ""

}

}

if {$non_R2R_check != ""} {

close $a

set slack_line [sh grep "slack" $experiment_dir_path/report_timing_slack.rpt]

split $slack_line \n

set vio_slack [lindex $slack_line 2]

if {[matching_clocks_of_SP_EP $reg_name_1 $reg_name_2]} {

return "$vio_slack"

} else {

echo "start_point and endpoint has different clocks"

return ""

}

} else {

39

close $a

return ""

}

} else {

return ""

}

}

5. proc for all low skew information with self loop taken care of in endpoint side:-

proc low_skew_information {reg_s list_macro already_done_startpoints

already_done_endpoints} {

if { [mem_reg_info $reg_s $list_macro] == 0 } {

set experiment_dir_path "./Final_Script_2"

report_timing -group R2R -scenarios func -delay_type max -max_paths 1000 -

significant_digits 6 -from $reg_s/CK > $experiment_dir_path / report_timing1.rpt

set non_R2R_check "not_empty"

set a [open $experiment_dir_path/report_timing1.rpt r]

while {[gets $a line]!= -1} {

if {[regexp "No" $line]} {

set non_R2R_check ""

}

}

if { $non_R2R_check != "" } {

 close $a

40

 set start_end_pos_slack_list ""

 set ff [sh grep "Endpoint:" $experiment_dir_path/report_timing1.rpt]

set gg [sh grep "slack" $experiment_dir_path/report_timing1.rpt]

foreach f [split $ff \n] g [split $gg \n] {

lappend start_end_pos_slack_list "$reg_s [lindex $f 1] [lindex $g 2]"

}

if {[reg_match_to_list_with_2_elements $reg_s $already_done_startpoints]==0 &&

[reg_match_to_list_with_2_elements $reg_s $already_done_endpoints]==0} {

set i 0

foreach start_end_pos_slack_line $start_end_pos_slack_list {

set reg_e [lindex $start_end_pos_slack_line 1]

set slack_v [lindex $start_end_pos_slack_line 2]

if { [reg_match_to_list_with_2_elements $reg_e $already_done_endpoints] == 1} {

set latency_set_1 [lindex [get_list_elements $reg_e $already_done_endpoints] 1]

set slack_v [expr {$slack_v + $latency_set_1}]

lset start_end_pos_slack_list $i 2 $slack_v

}

if { [reg_match_to_list_with_2_elements $reg_e $already_done_startpoints] == 1 } {

set latency_set_1 [lindex [get_list_elements $reg_e $already_done_startpoints] 1]

set slack_v [expr {$slack_v - $latency_set_1}]

lset start_end_pos_slack_list $i 2 $slack_v

}

incr i

41

}

} elseif {[reg_match_to_list_with_2_elements $reg_s $already_done_startpoints]==1} {

set latency_set [lindex [get_list_elements $reg_s $already_done_startpoints] 1]

set i 0

foreach start_end_pos_slack_line $start_end_pos_slack_list {

set reg_e [lindex $start_end_pos_slack_line 1]

set slack_v [expr { [lindex $start_end_pos_slack_line 2] + $latency_set }]

lset start_end_pos_slack_list $i 2 $slack_v

if { [reg_match_to_list_with_2_elements $reg_e $already_done_endpoints] == 1} {

set latency_set_1 [lindex [get_list_elements $reg_e $already_done_endpoints] 1]

set slack_v [expr {$slack_v + $latency_set_1}]

 lset start_end_pos_slack_list $i 2 $slack_v

}

if { [reg_match_to_list_with_2_elements $reg_e $already_done_startpoints] == 1 } {

set latency_set_1 [lindex [get_list_elements $reg_e $already_done_startpoints] 1]

set slack_v [expr {$slack_v - $latency_set_1}]

lset start_end_pos_slack_list $i 2 $slack_v

}

incr i

}

} else {

set latency_set [lindex [get_list_elements $reg_s $already_done_endpoints] 1]

set i 0

42

foreach start_end_pos_slack_line $start_end_pos_slack_list {

set reg_e [lindex $start_end_pos_slack_line 1]

set slack_v [expr { [lindex $start_end_pos_slack_line 2] - $latency_set }]

lset start_end_pos_slack_list $i 2 $slack_v

if { [reg_match_to_list_with_2_elements $reg_e $already_done_endpoints] == 1} {

set latency_set_1 [lindex [get_list_elements $reg_e $already_done_endpoints] 1]

set slack_v [expr {$slack_v + $latency_set_1}]

lset start_end_pos_slack_list $i 2 $slack_v

}

if { [reg_match_to_list_with_2_elements $reg_e $already_done_startpoints] == 1 } {

set latency_set_1 [lindex [get_list_elements $reg_e $already_done_startpoints] 1]

set slack_v [expr {$slack_v - $latency_set_1}]

lset start_end_pos_slack_list $i 2 $slack_v

}

 incr i

}

}

set start_end_pos_slack_list [lsort -real -index 2 $start_end_pos_slack_list]

set lowest_slack ""

set lowest_slack_2nd ""

set lowest_slack_reg ""

if {[mem_reg_info [lindex $start_end_pos_slack_list 0 1] $list_macro] == 0} {

if {$reg_s != [lindex $start_end_pos_slack_list 0 1]} {

43

if {[matching_clocks_of_SP_EP $reg_s [lindex $start_end_pos_slack_list 0 1]]} {

set lowest_slack [lindex $start_end_pos_slack_list 0 2]

set lowest_slack_reg [lindex $start_end_pos_slack_list 0 1]

if {[llength $start_end_pos_slack_list]>=2 && [mem_reg_info [lindex

$start_end_pos_slack_list 1 1] $list_macro] == 0 } {

if {$reg_s != [lindex $start_end_pos_slack_list 1 1]} {

 if {[matching_clocks_of_SP_EP $reg_s [lindex $start_end_pos_slack_list 1 1]]} {

set lowest_slack_2nd [lindex $start_end_pos_slack_list 1 2]

} else {

echo "start_point and endpoint has different clocks"

}

} else {

if {[llength $start_end_pos_slack_list]>=3 && [mem_reg_info [lindex

$start_end_pos_slack_list 2 1] $list_macro] == 0 } {

if {[matching_clocks_of_SP_EP $reg_s [lindex $start_end_pos_slack_list 2 1]]} {

set lowest_slack_2nd [lindex $start_end_pos_slack_list 2 2]

} else {

echo "start_point and endpoint has different clocks"

}

}

}

}

} else {

44

echo "start_point and endpoint has different clocks"

}

} else {

if {[llength $start_end_pos_slack_list]>=2 && [mem_reg_info [lindex

$start_end_pos_slack_list 1 1] $list_macro] == 0 } {

if {[matching_clocks_of_SP_EP $reg_s [lindex $start_end_pos_slack_list 1 1]]} {

set lowest_slack [lindex $start_end_pos_slack_list 1 2]

set lowest_slack_reg [lindex $start_end_pos_slack_list 1 1]

if {[llength $start_end_pos_slack_list]>=3 && [mem_reg_info [lindex

$start_end_pos_slack_list 2 1] $list_macro] == 0 } {

if {[matching_clocks_of_SP_EP $reg_s [lindex $start_end_pos_slack_list 2 1]]} {

set lowest_slack_2nd [lindex $start_end_pos_slack_list 2 2]

} else {

echo "start_point and endpoint has different clocks"

}

}

} else {

echo "start_point and endpoint has different clocks"

}

}

}

return "$lowest_slack_reg $lowest_slack $lowest_slack_2nd"

} else {

45

return ""

}

} else {

close $a

 return ""

}

} else {

return ""

}

}

6. proc to calculate lowest skew for startpoint:-

proc start_low_skew_information {reg_e list_macro already_done_startpoints

already_done_endpoints} {

if { [mem_reg_info $reg_e $list_macro] == 0 } {

set experiment_dir_path "./final_test"

 report_timing -group R2R -scenarios func -delay_type max -max_paths 1000 -nworst

1000 -significant_digits 6 -to $reg_e/D > $experiment_dir_path/report_timing1.rpt

set non_R2R_check "not_empty"

set a [open $experiment_dir_path/report_timing1.rpt r]

while {[gets $a line]!= -1} {

if {[regexp "No" $line]} {

set non_R2R_check ""

}

46

}

if { $non_R2R_check != "" } {

close $a

set start_end_pos_slack_list ""

set ff [sh grep "Startpoint:" $experiment_dir_path/report_timing1.rpt]

set gg [sh grep "slack" $experiment_dir_path/report_timing1.rpt]

foreach f [split $ff \n] g [split $gg \n] {

lappend start_end_pos_slack_list "[lindex $f 1] $reg_e [lindex $g 2]"

}

if {[reg_match_to_list_with_2_elements $reg_e $already_done_startpoints]==0 &&

[reg_match_to_list_with_2_elements $reg_e $already_done_endpoints]==0} {

set i 0

foreach start_end_pos_slack_line $start_end_pos_slack_list {

set reg_s [lindex $start_end_pos_slack_line 0]

set slack_v [lindex $start_end_pos_slack_line 2]

 if { [reg_match_to_list_with_2_elements $reg_s $already_done_endpoints] == 1} {

set latency_set_1 [lindex [get_list_elements $reg_s $already_done_endpoints] 1]

set slack_v [expr {$slack_v - $latency_set_1}]

lset start_end_pos_slack_list $i 2 $slack_v

}

if { [reg_match_to_list_with_2_elements $reg_s $already_done_startpoints] == 1 } {

set latency_set_1 [lindex [get_list_elements $reg_s $already_done_startpoints] 1]

set slack_v [expr {$slack_v + $latency_set_1}]

47

lset start_end_pos_slack_list $i 2 $slack_v

}

incr i

}

} elseif {[reg_match_to_list_with_2_elements $reg_e $already_done_startpoints]==1} {

set latency_set [lindex [get_list_elements $reg_e $already_done_startpoints] 1]

set i 0

foreach start_end_pos_slack_line $start_end_pos_slack_list {

set reg_s [lindex $start_end_pos_slack_line 0]

set slack_v [expr { [lindex $start_end_pos_slack_line 2] - $latency_set }]

lset start_end_pos_slack_list $i 2 $slack_v

if { [reg_match_to_list_with_2_elements $reg_s $already_done_endpoints] == 1} {

set latency_set_1 [lindex [get_list_elements $reg_s $already_done_endpoints] 1]

set slack_v [expr {$slack_v - $latency_set_1}]

lset start_end_pos_slack_list $i 2 $slack_v

}

if { [reg_match_to_list_with_2_elements $reg_s $already_done_startpoints] == 1 } {

set latency_set_1 [lindex [get_list_elements $reg_s $already_done_startpoints] 1]

 set slack_v [expr {$slack_v + $latency_set_1}]

 lset start_end_pos_slack_list $i 2 $slack_v

}

incr i

}

48

} else {

set latency_set [lindex [get_list_elements $reg_e $already_done_endpoints] 1]

set i 0

foreach start_end_pos_slack_line $start_end_pos_slack_list {

set reg_s [lindex $start_end_pos_slack_line 0]

set slack_v [expr { [lindex $start_end_pos_slack_line 2] + $latency_set }]

lset start_end_pos_slack_list $i 2 $slack_v

if { [reg_match_to_list_with_2_elements $reg_s $already_done_endpoints] == 1} {

set latency_set_1 [lindex [get_list_elements $reg_s $already_done_endpoints] 1]

set slack_v [expr {$slack_v - $latency_set_1}]

lset start_end_pos_slack_list $i 2 $slack_v

}

if { [reg_match_to_list_with_2_elements $reg_s $already_done_startpoints] == 1 } {

set latency_set_1 [lindex [get_list_elements $reg_s $already_done_startpoints] 1]

set slack_v [expr {$slack_v + $latency_set_1}]

lset start_end_pos_slack_list $i 2 $slack_v

}

incr i

}

}

 set start_end_pos_slack_list [lsort -real -index 2 $start_end_pos_slack_list]

 set lowest_slack ""

 set lowest_slack_2nd ""

49

 set lowest_slack_reg ""

 if {[mem_reg_info [lindex $start_end_pos_slack_list 0 0] $list_macro] == 0} {

 if {$reg_e != [lindex $start_end_pos_slack_list 0 0]} {

if {[matching_clocks_of_SP_EP [lindex $start_end_pos_slack_list 0 0] $reg_e]} {

 set lowest_slack [lindex $start_end_pos_slack_list 0 2]

 set lowest_slack_reg [lindex $start_end_pos_slack_list 0 0]

 if {[llength $start_end_pos_slack_list]>=2 && [mem_reg_info [lindex

$start_end_pos_slack_list 1 0] $list_macro] == 0 } {

if {$reg_e != [lindex $start_end_pos_slack_list 1 0]} {

if {[matching_clocks_of_SP_EP [lindex $start_end_pos_slack_list 1 0] $reg_e]} {

set lowest_slack_2nd [lindex $start_end_pos_slack_list 1 2]

} else {

echo "start_point and endpoint has different clocks"

}

} else {

if {[llength $start_end_pos_slack_list]>=3 && [mem_reg_info [lindex

$start_end_pos_slack_list 2 0] $list_macro] == 0 } {

if {[matching_clocks_of_SP_EP [lindex $start_end_pos_slack_list 2 0] $reg_e]} {

set lowest_slack_2nd [lindex $start_end_pos_slack_list 2 2]

} else {

echo "start_point and endpoint has different clocks"

}

}

50

}

}

} else {

echo "start_point and endpoint has different clocks"

}

} else {

if {[llength $start_end_pos_slack_list]>=2 && [mem_reg_info [lindex

$start_end_pos_slack_list 1 0] $list_macro] == 0 } {

if {[matching_clocks_of_SP_EP [lindex $start_end_pos_slack_list 1 0] $reg_e]} {

set lowest_slack [lindex $start_end_pos_slack_list 1 2]

set lowest_slack_reg [lindex $start_end_pos_slack_list 1 0]

if {[llength $start_end_pos_slack_list]>=3 && [mem_reg_info [lindex

$start_end_pos_slack_list 2 0] $list_macro] == 0 } {

if {[matching_clocks_of_SP_EP [lindex $start_end_pos_slack_list 2 0] $reg_e]} {

set lowest_slack_2nd [lindex $start_end_pos_slack_list 2 2]

} else {

echo "start_point and endpoint has different clocks"

}

}

} else {

echo "start_point and endpoint has different clocks"

}

}

51

}

return "$lowest_slack_reg $lowest_slack $lowest_slack_2nd"

} else {

return ""

}

} else {

close $a

return ""

}

} else {

return ""

}

}

7. proc to calculate avg. value of elements in a list:-

proc slack_avg { input_list macro_list already_done_SP already_done_EP} {

set x [llength $input_list]

set y 0

set i 0

foreach line $input_list {

set z [calculate_updated_slack [lindex $line 1] [lindex $line 0] $already_done_EP

$already_done_SP $macro_list]

if { $z != ""} {

set y [expr { $y + $z }]

52

}

}

return "[expr { $y / $x}]"

}

8. proc to calculating timing path slack:-

proc calculate_updated_slack { reg_e reg_s already_done_endpoints

already_done_startpoints macro_list} {

set slack_v [vio_path_info_FROM_TO $reg_s $reg_e $macro_list]

if { $slack_v == "" } {

return ""

} else {

if { [reg_match_to_list_with_2_elements $reg_e $already_done_endpoints]== 0 &&

[reg_match_to_list_with_2_elements $reg_e $already_done_startpoints]==0} {

if {[reg_match_to_list_with_2_elements $reg_s $already_done_startpoints]==0 &&

[reg_match_to_list_with_2_elements $reg_s $already_done_endpoints]==0} {

 return $slack_v

} elseif {[reg_match_to_list_with_2_elements $reg_s $already_done_startpoints]==1} {

set latency_set [lindex [get_list_elements $reg_s $already_done_startpoints] 1]

set slack_v [expr { $slack_v + $latency_set }]

 return $slack_v

} else {

set latency_set [lindex [get_list_elements $reg_s $already_done_endpoints] 1]

set slack_v [expr { $slack_v - $latency_set }]

 return $slack_v

53

}

} elseif { [reg_match_to_list_with_2_elements $reg_e $already_done_endpoints] == 1} {

 set latency_set_1 [lindex [get_list_elements $reg_e $already_done_endpoints] 1]

set slack_v [expr {$slack_v + $latency_set_1}]

if {[reg_match_to_list_with_2_elements $reg_s $already_done_startpoints]==0 &&

[reg_match_to_list_with_2_elements $reg_s $already_done_endpoints]==0} {

return $slack_v

} elseif {[reg_match_to_list_with_2_elements $reg_s $already_done_startpoints]==1} {

 set latency_set [lindex [get_list_elements $reg_s $already_done_startpoints] 1]

 set slack_v [expr { $slack_v + $latency_set }]

 return $slack_v

} else {

set latency_set [lindex [get_list_elements $reg_s $already_done_endpoints] 1]

set slack_v [expr { $slack_v - $latency_set }]

return $slack_v

 }

} else {

set latency_set_1 [lindex [get_list_elements $reg_e $already_done_startpoints] 1]

set slack_v [expr {$slack_v - $latency_set_1}]

 if {[reg_match_to_list_with_2_elements $reg_s $already_done_startpoints]==0 &&

[reg_match_to_list_with_2_elements $reg_s $already_done_endpoints]==0} {

return $slack_v

} elseif {[reg_match_to_list_with_2_elements $reg_s $already_done_startpoints]==1} {

54

set latency_set [lindex [get_list_elements $reg_s $already_done_startpoints] 1]

set slack_v [expr { $slack_v + $latency_set }]

return $slack_v

} else {

set latency_set [lindex [get_list_elements $reg_s $already_done_endpoints] 1]

set slack_v [expr { $slack_v - $latency_set }]

return $slack_v }}}}

9. proc for deleting a line in a file:-

set file_1 or 2 or 3 [open ./sasharma/project_work/post_comple/file_to_modify w]

proc delete_line {file_with_path pattern} {

set file_name [open $file _with_path r]

set duplicate_file [open ./Final_Script_2/tempfile w]

while {[gets $file_name line] >= 0} {

if {![regexp "$pattern" $line]} {

puts $duplicate_file $line

}

}

close $duplicate_file

close $file_name

sh mv ./Final_Script_2/tempfile $file_with_path }

10. proc to put a dummy variable "empty" in a empty list:-

proc check_for_empty_list { list_name } {

if {[llength $list_name] == 0 } {

55

set list_name "empty"

}

return $list_name

}

11. proc to make a list empty if it contains dummy variable "empty" is present:-

proc set_empty_list { list_name } {

set element_1 [lindex $list_name 0]

if { [regexp "empty" $element_1] } {

set list_name ""

}

 return $list_name

}

12. proc for matching a reg to a reg:-

proc reg_match { pattern_1 pattern_2 } {

if {$pattern_1 == $pattern_2} {

 return 1

} else {

return 0

}}

13. proc for matching register to a list of registers:-

proc reg_match_to_list { pattern_1 list_input } {

set list_input [set_empty_list $list_input]

set ret 0

56

if { [llength $list_input] > 0} {

foreach pattern_2 $list_input {

if { $pattern_1 == $pattern_2} {

set ret 1

break

}

}

}

return $ret

}

14. proc to match with a list with each of it:-

proc reg_match_to_list_with_2_elements { pattern_1 list_input } {

set list_input [set_empty_list $list_input]

 set list_input_length [llength $list_input]

 set ret 0

 if { [llength $list_input] > 0} {

 foreach line_list_input $list_input {

 set pattern_2 [lindex $line_list_input 0]

if { $pattern_1 == $pattern_2} {

 set ret 1

 break

 }

 }

57

 }

 return $ret

}

15. proc for indentifying memory_registers:-

proc mem_reg_info { pattern mem_list} {

if {[reg_match_to_list $pattern $mem_list]} {

return 1

} else {

return 0

}

}

16. proc for getting already applied value by matching register to a list of registers:-

proc get_list_elements { pattern_1 list_input } {

set list_input [set_empty_list $list_input]

foreach list_line $list_input {

set pattern_2 [lindex $list_line 0]

if { $pattern_1 == $pattern_2} {

return "[lindex $list_line 0] [lindex $list_line 1]"

 break

 } else {

 continue

}

}}

58

17. proc for updating a value in a list whose contains sublist and pattern matched

with always firstst element of sublist:-

proc update_value_in_list { pattern_1 value list_input } {

set i 0

set list_input_1 $list_input

foreach list_line $list_input_1 {

set pattern_2 [lindex $list_line 0]

if {$pattern_1 == $pattern_2} {

lset list_input_1 $i 1 $value

break

}

incr i

}

return $list_input_1

}

18. proc for updating a value in a output_list:-

proc update_value_in_output_list { pattern_1 value list_input } {

set j 0

set list_input_2 $list_input

foreach list_line $list_input_2 {

set pattern_2 [lindex $list_line 2]

if {[regexp $pattern_1 $pattern_2]} {

 lset list_input_2 $j 1 $value

59

 break

}

incr j

}

return $list_input_2

}

19. proc for modifying a list by matching to a another list:-

if {0} {

proc match_list_to_list { list_to_modify list_with_match } {

 set i 0

 set list_1 $list_to_modify

 set list_1_index ""

 set list_2 $list_with_match

 foreach line_list_1 $list_1 {

 set pattern_1 [lindex $line_list_1 1]

 set j 0

 foreach line_list_2 $list_2 {

set pattern_2 [lindex $line_list_2 2]

if { $pattern_1 == $pattern_2 } {

set list_2 [lreplace $list_2 0 0]

lappend list_1_index $i

break

} else {

60

 incr j

 }

 }

 incr i

 if { [llength $list_1] == 0 || [llength $list_2] == 0 } {

 break

 }

 }

 set list_1_index [lreverse $list_1_index]

 foreach hihi $list_1_index {

 set list_1 [lreplace $list_1 $hihi $hihi]

 }

 return $list_1

}

}

20. proc for matching a file to a file:-

proc match_files { file_1_with_path file_2_with_path } {

set list_1 [open $file_1_with_path r]

set list_2 [open $file_2_with_path r]

set list_1_mo [split [read $list_1] \n]

set list_1_up [lreplace $list_1_mo end end]

set list_2_mo [split [read $list_2] \n]

set list_2_up [lreplace $list_2_mo end end]

61

set j 1

set list_1_length [llength $list_1_mo]

set list_2_length [llength $list_2_up]

puts $list_1_mo

puts "$list_1_length $list_2_length"

while {1} {

foreach xx $list_1_up {

split $xx \n

set string_1 [lindex $xx 1]/CK

foreach yy $list_2_up {

split $yy \n

set string_2 "[lindex $yy 2]"

if {$string_1 == $string_2} {

puts $j

}

}

if {$j > $list_1_length} {

break

}

incr j

}

break

}

62

close $list_1

close $list_2

}

63

 REFRENCES

1. Design Compiler User Guide

2. IC Compiler 2 User Guide

3. Primetime User Guide

4. Solvnet – Synopsys User Group

5. Chee Jau Soon, Wang Bo, Predictive clock skew redistribution methodology for

improved timing QoR, Intel Technology, Asia Pte. Ltd. , Singapore

6. J. Bhasker, Rakesh Chadha, Static Timing Analysis for Nanometer Designs, Springer,

978-0-387-93819-6 (ISBN)

64

	be5e765cd71b392ee8ea441a3b6e913f07a8a5c935cfe6930dd98574becd6fbf.pdf
	ab3950cc91fe489dde6fbfad8cb6321fa6b0a621625a171192a8880e01ed30ea.pdf
	be5e765cd71b392ee8ea441a3b6e913f07a8a5c935cfe6930dd98574becd6fbf.pdf

