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Abstract

Electromyogram (EMG) signals are proved very useful in identification of

neuromuscular diseases. In proposed work, we came up with a new method for the

analysis and classification of normal and abnormal EMG signals to identify

neuromuscular diseases. First, we have obtained all motor unit action potentials

(MUAPs) from EMG signals. Extracted MUAPs are then decomposed using

iterative filtering decomposition method. Intrinsic mode functions (IMF) obtained

from iterative filtering method, are considered for analysis and classification

purpose. Features like Euclidean distance quadratic mutual information

(ED-QMI), Cauchy-Schwartz quadratic mutual information (CS-QMI), cross

information potential (CIP) and correntropy (COR) are computed for each level of

IMFs separately. For the analysis of EMG signals, statistical analysis has been

performed by the Kruskal-Wallis statistical test. From the results obtained after

analysis process, we have observed that the iterative filtering decomposition

method is better and provides statistical significant difference in normal and ALS

EMG signals. For classification, the calculated features are given as an input to the

three different classifiers: repeated incremental pruning to produce error reduction

(JRip) rules classifier, reduces error pruning (REP) tree classifier and random

forest classifier for the classification of normal and ALS EMG signals. The results

obtained from classification process show that this classification method is very

efficient and provided very accurate classification of normal and ALS EMG signals.
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Chapter 1

Introduction

Human beings are apparently the most complex life forms on this planet. Millions

of tiny components, each with its very own identity, working simultaneously in an

organized way. The human body is a solitary structure but it is composed of millions

of smaller structures of cells, tissues, organs and various systems such as nervous,

skeletal, muscular systems [1].

The muscle system comprises of different muscle types, each of which plays a

vital part in the body’s function. When nerves and muscles work together, the

system they make is recognized as the neuromuscular system. The neuromuscular

system contains all the muscles in the body and nerves work for them. When human

body makes any movement, it needs communication in between the brain and the

muscles [2]. The nervous system provides that link for communication between

brain and muscles. Nerves have cells known as neurons which deliver messages from

the brain to the muscles through the spinal cord. These neurons are known as

motor neurons. The motor neurons are capable of discharging a chemical, which

is grabbed by the muscle fiber. This informs the muscle fiber to contract, which

makes the muscles move. Due to any reason, if neurons became unhealthy and dead

then communication between brain and muscles breaks down [3, 4]. This condition

is known as neuromuscular disorder or neuromuscular disease.

Neuromuscular diseases (NMD) are mostly described by progressive muscular

impairment resulting in loss of ability of movement, being wheelchair-bound,

swallowing difficulties [5, 6] weakness of respiratory muscles and lastly, death due

1



to respiratory failure. According to statistics, about 1 in 3500 of the population

around the world is expected to have a NMD present in childhood or in later life

[7]. Progressive NMD are characterized by muscle impairment which gets worse

over months and resulting a significantly reduced life expectancy and eventually

death in a couple of years. Amyotrophic lateral sclerosis (ALS) is an example of

such type of disease [8]. According to statistics, ALS is the cause of five deaths in

every 100,000 people of ages 20 or older [9]. Till now, there is no cure available for

ALS. So it is desirable to detect the ALS at early stage to increase the life

expectancy of patient suffering from ALS.

The objective of this thesis is to distinguish normal and ALS electromyogram

signals using iterative filtering method. This chapter provides a brief insight to

NMDs, ALS, EMG signals, and various methods of EMG signal classification.

1.1 Human body structure

For proper understanding of NMDs, we have to first know about human body

structure and parts of body which are directly involve in NMDs. So in this section,

we will discuss about neuromuscular system and skeletal muscles and how they

affect the human body that causes NMDs.

1.1.1 The neuromuscular system

The nervous system and muscles working combinedly to permit movement, is

known as the neuromuscular system [10]. The nervous system functions as both

the controlling and communicating system of the body. This system includes

numerous excitable linked cells called neurons that interact quickly and specifically

with distinct components of the body through electrical signals. The nervous

system has three primary components which are: the brain, the spinal cord and

the peripheral nerves. Neurons are the fundamental structural unit of the nervous

system which can have variable shape and size. Neurons are extremely specific

cells that transmit messages from one portion of the body to another in the form

of nerve impulses [11].
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A muscle consists of groups of specific cells capable of contraction and relaxation.

These specific cells have the primary purpose of generating forces, motions, and the

capacity to interact such as speech, writing, or other forms of expression. Muscle

tissues have elasticity and extensibility properties. Muscle tissues are capable of

receiving and responding to stimulation and can truncate or contract [11]. There are

three kinds of muscle tissue that can be recognized based on composition, contractile

characteristics, and control systems: (i) skeletal muscle, (ii) soft muscle, (iii) cardiac

muscle. The EMG is often used for skeletal muscle study.

1.1.2 Skeletal muscles

Skeletal muscle is such a voluntary muscle which implies that its functions can be

actively controlled. It is linked to the bone and builds a separate organ of muscle

tissue, blood vessels, tendons and nerves that surrounds our bones and makes it

possible to move [12]. A skeletal muscle corresponds to the combination of various

bundles of cells combined to each other called muscle fibers. Muscle fibers are

cylindrical and generally have more than one nucleus [13]. Skeletal muscles function

in a multitude of ways. Skeletal muscle’s primary role is to transform chemical energy

into mechanical energy to generate strength and power, keep posture, and produce

motion through contraction and relaxation that affects the body’s operations [14].

Skeletal contractions of the muscle pull tendons that are connected to the bones.

If muscle contraction creates shortening of the muscle, then bone moves and thus

the body part attached to that bone also moves [15]. Skeletal muscle contraction

is initiated by impulses in the neurons to the muscle and is generally controlled

voluntarily. Skeletal muscle fibers are well supplied with neurons for contraction.

This particular sort of neuron is called a "motor neuron" and it approaches muscle

tissue but is not linked to it in fact. Usually one motor neuron is able to stimulate

many muscle fibers [11]. The electrical activities of muscle contraction and relaxation

can be evaluated by EMG.
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1.2 Neuromuscular diseases

NMD is a very wide name that includes many diseases and disorders that impair the

functioning of the muscles or their immediate control of the nervous system, either

directly or indirectly [16, 17]. Problems with central nervous control can trigger

muscle stiffness or some degree of paralysis, depending on the nature and place

of the trouble. Parkinson’s disorder, various sclerosis, Huntington’s disorder, and

Creutzfeldt-Jakob disorder are some examples of central disorders. Spinal muscle

atrophies are lower motor neuron diseases, while ALS is a combined disease of upper

and lower motor neuron.

There may be various explanations for neuromuscular illnesses such as:

autoimmune disorders, genetic disorders, certain types of collagen disease,

exposure to environmental chemicals, poisoning including heavy metal poisoning.

A mutation in your genes can also cause NMDs. In most of the cases, cause of

NMD is unknown. There is no cure for many NMDs. However, medications can

help to improve symptoms, boost mobility and can extend the life of patient

suffering from NMD [18, 19].

1.2.1 Amyotrophic lateral sclerosis

ALS is a motor neuron disease that selectively impacts motor neurons. Motor

neurons are regarded as the cells that regulate the body’s voluntary muscles.

Voluntary muscles make motions such as speaking, chewing, and walking. ALS is

described by rigid muscles, twitching muscles, and gradually deteriorating

weakness due to reduction of muscles in size. This makes it difficult for the patient

to talk, swallow, breathe and the patient eventually dies [20].

ALS affects the upper motor neurons as well as the lower motor neurons. Both

types of neurons either degenerate or die, and no longer send messages to muscle.

Muscles gradually weaken, start twitching, and waste away (atrophy) as they are

unable to operate. The brain ultimately loses its capacity to initiate and regulate

voluntary motions [21]. ALS is a progressive disease, meaning that with time the

symptoms get worse. Most individuals with ALS die from respiratory failure,
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generally within 3 to 5 years of initial symptoms. About 10 % of individuals with

ALS, however, can survive for 10 years or more [22, 23].

ALS is a worldwide prevalent NMD. ALS can affect people of all races and ethnic

backgrounds. Although the disease may strike at any age, symptoms develop most

frequently between the ages of 55 and 75 years. Men are slightly more probable to

develop ALS than females. A majority of ALS instances with no obviously related

risk variables appear to happen at random. The cause is not known in 90 to 95 %

of instances, but it is thought that genetic and environmental factors are involved.

[24]. Approximately 5-10 % of all instances of ALS are familial, which means that an

person acquires the illness from their parents. Generally speaking, the family form

of ALS needs only one parent to transmit the disease-responsible gene. Mutations in

more than a dozen genes have been discovered to cause familial ALS. The National

Institute of Neurological Disorders and Stroke (NINDS) found that some instances

of familial ALS were correlated with mutations in the SOD1 (superoxide dismutase

1) gene. Researchers proposed that exposure to toxins during warfare or severe

physical practice may be grounds for the danger of developing ALS [20, 24].

No medical test can provide a definitive ALS diagnosis. However, the existence

of symptoms of upper and lower motor neurons firmly indicates the disease’s

existence. There is currently no cure for ALS and there is no efficient therapy for

stopping or reversing disease progression. However, some medicines and

treatments are accessible that can help manage symptoms, prevent unnecessary

complications and make it easy to live with the disease [20]. Riluzole and

edaravone have been approved by the U.S. Food and Drug Administration (FDA)

to treat ALS. Riluzole is believed to decrease motor neuron harm by reducing

glutamate concentrations [25]. In addition to the medication, some therapies such

as physical therapy, speech therapy, nutritional support and breathing support are

helpful in increasing the lifespan of ALS patients.
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1.3 Electromyogram signal

The EMG signal is a biomedical signal that measures the electrical potential

produced in the muscles in the form of voltage and current during its contraction

and relaxation [26]. The nervous system always controls muscle operations such as

contraction and relaxation. Therefore, the EMG signal is a complex signal which is

controlled by nervous system and depends on the anatomical and physiological

characteristics of the muscle [11].

An EMG detects the electrical potential produced by muscle cells when the

cells are electrically or neurologically activated. EMG signals can be evaluated to

identify medical abnormalities, activation level or to evaluate biomechanics of human

or animal movement [27, 28]. Fig. 1.1 displays a normal EMG signal plot.

Figure 1.1: Plot of normal EMG signal.

1.3.1 The motor unit action potentials

Motor unit action potential (MUAP) plays a major part in the analysis of EMG

signals. A motor unit is defined as one motor neuron and all the innervating

muscle fibers to it. When a motor unit fires, the impulse is transferred from motor

neuron to the muscle and is known as an action potential. The neuromuscular

junction is recognized as the region where the nerve contacts the muscle. After the

action potential is transferred throughout the neuromuscular junction, an action
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potential is elicited in all the innervated muscle fibers of that specific motor unit.

The summation of all this electrical activity is called as a motor unit action

potential [29].

EMG signals are basically comprised of superimposed MUAPs from several motor

units (MUs). For a proper analysis, the measured EMG signals must be decomposed

into their constituent MUAPs [30]. MUAPs collected from various motor units tend

to have distinct shapes, whereas MUAPs collected from the same motor unit by the

same electrode are typically analogous. MUAP size and shape are predominantly

based on the location of the electrode with respect to the fibers and may therefore

appear to be distinct if the electrode shifts position. In addition, the amplitude

of the action potential relies on multiple variables such as: muscle fiber diameter,

distance between active muscle fiber, and electrode filtering characteristics in human

muscle tissue [31]. The peak-to-peak amplitude of an MUAP in a normal muscle

may range from a few microvolt with a typical value of 500 µV to 5mV potential

[32]. MUAPs shapes and firing rates in EMG signals provide a significant source of

information for neuromuscular disorder diagnosis.

1.3.2 Nature and electrical characteristics of EMG signals

The EMG signals are characterized as non-stationary and non-linear signals and

influenced by the basic and utilitarian qualities of muscles [33]. The EMG signal

appears random in nature. The electrical source is the potential of muscle membrane

which is about −90mV [34]. The EMG potential measured, ranges from 50 µV to

30mV which also depends on the muscle being observed. Typically, the repetition

rate of firing of motor unit of a muscle is about 7Hz− 20Hz and depends on the

factors like: size of the muscle, previous axonal damage and other factors. The

damage to motor units can be estimated between the range of 450mV to 780mV

[35]. Fig. 1.2 displays characteristics of EMG signal.
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Figure 1.2: Characteristics of EMG signal [36].

According to De Luca [37], the energy distribution of EMG signal is generally

within the range of 0Hz to 400Hz in frequency domain. The most of dominant

components lie within the range of 50Hz − 150Hz. Outside the 0Hz − 500Hz

frequency range, EMG signals are unusable as the energy is less than electrical noise

level [38].

1.3.3 Recording of EMG signal

To obtain accurate EMG signals, it is very important to record the signals correctly.

Skin preparation is a very significant phase before the needle electrode is inserted.

Typically, skin preparation includes just cleaning the skin with an alcohol pad. The

real positioning of the needle electrode can be challenging and depends on a number

of variables such as: particular muscle choice and muscle size. The EMG signal is

weaker when an individual has more body fat. The ideal location for placing the

EMG sensors is at the belly of the muscle i.e. longitudinal midline [39].

There are two approaches to record EMG signal: (a) non-invasive electrode

method (b) invasive electrode method. When EMG signals are obtained from

electrodes directly positioned on the skin, this is known as non-invasive electrode

method and EMG signal obtained from this method is known as surface EMG

signal (sEMG). Either a pair of electrodes or an array of multiple electrodes can be

used to record surface EMG. Minimum two electrodes must needed as EMG

recording gives the potential difference between two distinct electrodes.

Sometimes EMG signals are obtained through wire or needle electrodes
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positioned directly into the muscle, this method of recording EMG signal is known

as invasive electrode method and EMG signal obtained from this method is known

as intramuscular EMG signal. To conduct intramuscular EMG recording, a range

of distinct kinds of electrodes can be used. The easiest technique is a monopolar

needle electrode. This may be either a fine wire inserted into a muscle with a

reference surface electrode or two fine wires inserted into muscle referenced to each

other [11, 40].

1.3.4 Processing of EMG signal

The signal recorded for single contraction using single electrode can mathematically

be represented as follows [41]:

Et =
N∑
k=1

Mk(t) + n(t) (1.1)

where Mk describes the voltage contributing function measured over the time of

contraction, of a motor unit potential k from the total N MUPs. M termed as

motor unit potential train (MUPT) which is the summation of all MUPs and the

n(t) shows the presence of noise. Because the raw EMG signal carries noise, the

raw EMG signal must be processed. So raw EMG provides valuable information

but it is in useless form, the information is only useful if it can be quantified. In

order to obtain the correct and meaningful EMG signal, different signal processing

techniques are applied to raw EMG signal.

The raw EMG signal recorded with help of electrodes is first picked up and

amplified. As a first phase amplifier, a differential amplifier is typically used.

Additional amplification phases may follow if necessary. Filtering is performed

after amplification to filtered out low-frequency or high-frequency noises or other

available artifacts. Before the signal is displayed or stored, the analog to digital

converter converts the signal into a digital form. The user is often interested in the

signal amplitude. The signal is therefore often rectified and averaged in some

format to show the amplitude of EMG signal [42].
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1.4 Existing methodologies

To diagnose the neuromuscular diseases various methodologies have been proposed

by researchers which are based on analysis of EMG signal such as artificial neural

network based analysis, machine learning and pattern classification algorithms [43],

numerous transforms, various decomposition techniques, feature extraction through

different techniques, different type of classifiers have been used to analyze the EMG

signal in the past.

Various concepts for EMG signal classification such as Bayesian techniques

[44, 45, 46, 47, 48], neural network modeling [49, 50], support vector machines

(SVM) [51], and multilayer perceptron (MLP) [52] have been used. To diagnose

neuromuscular diseases, a technique based on continuous wavelet transform

(CWT) has been suggested in which an automatic system for classification of

EMG signals [53]. Segmentation is performed by CWT and for the classification

multi-channel artificial neural network (ANN) has been used. This method is

effective to reduce the effect of noise but failed to classify overlapping MUPs.

A technique based on wavelet neural networks (WNN) and feedforward error

backpropagation artificial neural networks (FEBANN) classifiers has been developed

and accuracies achieved by this technique are 98.7 % and 88 % respectively [54].

A method based on empirical mode of decomposition (EMD) has been employed

for decomposing the EMG signal into its natural components and the amount of

irregularity within each component is determined by Kolmogorov complexity (KC).

After extraction of features, SVM classifier has been used to classify neuropathy,

myopathy, and normal subjects [55, 56].

For the detection of ALS disease, various methods have been developed. A

method has been proposed for calculation of the features to distinguish abnormal

EMG signal in which neuromuscular disease classification has been done by

calculating mel frequency cepstrum coefficient (MFCC) of MUAPs [57]. Tunable-Q

wavelet transformation (TQWT) based features for classification of ALS and

healthy EMG signals has been presented in [58]. A method for classification of

amyotrophic lateral sclerosis disease based on convolutional neural network (CNN)
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and reinforcement sample learning algorithm has been proposed in [59]. Another

wavelet transform based technique for characterizing EMG signals in terms of

singularity was provided in [60]. A method based on EMD for feature extraction

was used on the EMG signal directly [59]. For EMG signal analysis, the wavelet

packet transform was also applied [61]. By applying attributes directly to

non-overlapping frames obtained from EMG signals, classification of NMDs can be

conducted [62]. A frame can have multiple MUAPs, attributes are evaluated for

further assessment on each MUAP [63].

Another technique for the detection of abnormal EMG signals based on TQWT

was provided. In this method, MUAPs are decomposed into their components and

then features are calculated straight from MUAPs and decomposed components [64].

In another technique, high energy discrete wavelet transform (DWT) coefficients

with maximum value were extracted from the EMG data frame-by-frame and K-

nearest neighbors (KNN) has been used as classifier [65]. Pattern classification

technique with two-fold features extraction technique also has been used for EMG

signal classification [66]. The outlier based method also has been presented [67].

EMG signal classification has also been done by fuzzy logic [68]. EMG signal analysis

has also been done by eigenvalue decomposition of Hankel matrix (EVDHM) in [16].

1.5 Motivation

There are numerous NMDs that affect the spinal cord, muscles and nerve cells in

the brain and hence affect the movement of human body. These disorders can result

in spasticity or some degree of paralysis. World health organization (WHO) studies

show that around 1 billion individuals worldwide suffer from NMDs. NMD like

ALS is a progressive NMD which gets worse over time and results in a significantly

reduced life expectancy and eventually death within a few years.

According to statistics, ALS is the cause of five deaths in every 100,000 people

of ages 20 or older. There is no cure available for ALS till now. Early detection

and diagnosis of these illnesses through clinical examination is therefore essential to

understand the nature of the disease and possible therapy of these illnesses. EMG
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signal is a very useful tool for ALS diagnosis. Visual identification of EMG signals

is a difficult and time-consuming activity that motivates the designing of automatic

identification methods for ALS and normal EMG signals analysis and classification.

There are different techniques previously have proposed for the analysis and

classification of various NMDs. Although all the above described methods are good

for diagnosis of NMDs but there is always a scope to develop a more accurate and

reliable method which can be more effective to diagnose these diseases with less

complexity. So keeping these things in mind, a method has been proposed in this

thesis which requires less number of features to be extracted for the analysis and

classification of EMG signals to distinguish between normal and ALS EMG signals.

The proposed method can be very useful for assisting doctors in the diagnosis of

NMDs.

1.6 Objective

The goal of this thesis is to utilize the iterative filtering method for the decomposition

of EMG signals to distinguish between normal and abnormal EMG signals and to

get high accuracy of classification by computing less number of parameters.

For EMG signal analysis and classification, many features have been used

previously. And for classification, various classifiers have been used for a number of

distinguishing parameters. In this modern era, there is a need to develop

techniques which would be less complex and give results in a more accurate way.

So this is the objective of the presented work in this thesis, that even by computing

one or two parameters, we can easily distinguish among different classes of EMG

signals and can classify EMG signals of different classes with high accuracy.

1.7 Thesis organization

The rest of the thesis is organized systematically and in easily understandable

manner .

Chapter 2 presents the background of iterative filtering method and also provides

the algorithm for the same.
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Chapter 3 provides the detailed information about database which is used for our

experiment and study on EMG signals. It also presents the proposed methodology

for EMG signal analysis and classification in detail.

Chapter 4 presents the obtained results and graphs. Results are organized in the

form of tables for easy observation.

Chapter 5 discusses about the conclusions drawn from the whole study. It also

gives the insight to the future scope of this work.

1.8 Summary

This chapter gives a insight of skeletal muscles, neuromuscular system of human

body and NMDs. In this chapter, we have discussed about EMG signals and

MUAPs. The electric characteristics and nature of EMG signal and recording and

processing of EMG signals are discussed briefly. The motivation for doing this

thesis work and what are the objectives of this research work are also discussed in

this chapter. At the end, thesis organisation is presented.
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Chapter 2

Iterative filtering

This chapter presents a brief description about the Iterative filtering (IF) method

and its significance in decomposition of non-linear and non-stationary signals. We

also discussed why traditional empirical mode decomposition (EMD) method is

replaced by IF method for decomposition.

2.1 Introduction to iterative filtering

Analysis of non-linear and non-stationary signals like EMG signal is a challenging

task. The analysis methods need to be local, adaptive and stable in order to

extract features from these signals. Several decomposition techniques for analyzing

non-linear and non-stationary signals have been proposed over the past years. The

decomposition of the signal can be achieved in two ways: through iteration or

optimization [69]. Huang introduced the first such iterative algorithm, the EMD

[70], in 1998. The purpose of this method is iteratively decomposing a signal into a

finite sequence of simple components known as IMFs with separated frequency in

the time domain. However, this method is unstable under perturbations. So one

other method known as iterative filtering was proposed as an alternative algorithm

for EMD [71].

IF is an iterative approach which decomposes a nonlinear and non-stationary

signal into a finite number of simple oscillatory components [71]. The obtained

components from the IF method are known as IMFs. An IMF is a function which
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satisfies following two conditions [70]:

1. The number of extrema and the number of zero crossings must be equal or at

most vary by one.

2. Considering an upper envelope that connects all the local maxima and a lower

envelope that connects all the local minima of the function, their mean must

be zero at any point.

The iterative structure used in EMD method is known as sifting process which is

extremely adaptive to data as a minute change in data results in different EMD.

In this iterative process, the mean operation of the upper envelope and the lower

envelope gives the moving average which is given by cubic splines that connects local

maxima and local signal minima respectively. Since cubic splines are utilized in the

iteration, this method is not stable under perturbations. Since the EMD method

inspires IF, algorithm of IF method utilizes a similar structure as EMD method, But

IF uses moving average in the sifting process which is determined by the convolution

of that signal with low pass filters. IF method remains stable under perturbations

[69]. An additional advantage of IF over traditional EMD is that it can be extended

easily to higher dimensions.

2.2 Algorithm for iterative filtering

For iterative process, there are two methods for calculation of the moving average. In

first one, the mean function of the upper and lower envelope is taken, which are given

by cubic splines that connects local maxima and local minima of the signal. This

method is similar as EMD process and suffers from unstability under perturbations.

Second method calculates the moving average determined by the convolution of

signal with a low pass filter (like double average filter). In IF method, the second

method is used to calculate the moving average.

The process of extracting IMFs from a signal using IF is explained as follows:

For a given signal s(t) where t ∈ < , let an operator R to make R(s) which

determines the moving average filter of signal s(t). If h(τ) denotes a double average

filter then the moving average of signal s(t) can be determined by [69] as:
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R(s)(t) =

∫ m

−m
s(t+ τ)h(τ)dτ (2.1)

where double averaging filter h(τ), can be given by the following equation:

h(τ) =
(m+ 1− τ |)
(m+ 1)2

, t ∈ [−m, m] (2.2)

If s1 = s and consider a operator O1, n(sn) = snR1, n(sn) = sn+1 which catches

the fluctuations of sn, The 1st IMF can be shown by I1 = limn→∞O1, n(sn), where

R1, n relies upon the mask length mn, which defines the filter length at step n. To

obtain I2 (the second IMF), apply the operators O to the remainder signal s − I1.

Similarly, we obtained the q − th IMF as Iq = limn→∞Oq,n(rn) = rn+1, where

r1 = s − I1 − ... − Iq1. The IF method stops when r = s − I1 − ... − Iq , q ∈ N

turns into a trend signal i.e. the remaining signal r has at most one local maxima

or minima. Thus the signal s(t) can be represented in terms of decomposition as

follows:

s(t) =

q∑
j=1

Ij(t) + r(t) (2.3)

where q represents the number of IMFs into which the signal is decomposed and r(t)

is the remainder trend signal.

IF algorithm contains two nested loops: an inner loop and an outer loop. Inner

loop is to compute each single IMF and outer loop is to derive all the IMFs.

Algorithm for IF method is shown below [69]:

Algorithm 1 IF
1: IMF = {}
2: while the number of extrema of s ≥ 2 do
3: s1 = s
4: while the stopping criterion is not satisfied do
5: compute the filter length mn for sn
6: sn+1(t) = sn(t)−

∫ mn

−mn
sn(t+ τ)hn(τ)dτ

7: n = n+ 1
8: end while
9: IMF = IMF ∪ {sn}

10: s = s− sn
11: end while
12: IMF = IMF ∪ { s}
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The mask length mn can be computed using the following equation [71] :

mn = 2bβN
q
c (2.4)

where β is a parameter generally fixed around 1.6. N is the total number of sample

points in signal sn(t) and q is number of its extreme points. b.c rounds a positive

number to the nearest integer closer to zero.

The mask length mn can be updated at each step of the inner loop. But in

the implemented algorithm, the mask length is computed for the first step and the

same value is used for remaining steps. Using same mask length at all steps of

inner loop ensures that the IMFs obtained from this method have a proper group

of instantaneous frequencies. To get that, O and R should not be dependent on

step number n. So, the 1st IMF can be shown as I1 = limn→∞O
n(s). Where

O(s) = sR(s) and R(s) is given by R(s)(t) =
∫ m
−m s(t+ τ)u(τ)dτ , with mask length

m calculated initially for the internal loop. and u(τ) represents any appropriate

filter function.

The executed algorithm has some termination criterion for internal loop, and we

did not take n =∞. Termination criteria can be defined as follows:

α =
||I1,n − I1,n−1||2
||I1,n−1||2

(2.5)

To stop the algorithm, certain threshold value of α can be used as a stop criteria [70,

72] or the maximum number of iterations can be set in the inner loop. Convergence

of the inner loop of algorithm is guaranteed for periodic signals [70] and was studied

for l∞ functions in [73].

2.3 Summary

In this chapter, we discussed about the IF method and its importance in

decomposition of non-linear and non-stationary signals. We also discussed the

advantages of IF method over tradition EMD method for decomposition and why

we are using IF method for decomposition. The algorithm for IF method is also

17



explained in detail.
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Chapter 3

Database and proposed methodology

This chapter contains the detailed information about the database taken for our

study. Also, this chapter provides information about preprocessing required for

further analysis of EMG signals briefly and also explains the proposed methodology

for analysis and classification of normal and ALS EMG signals in details.

3.1 Database

The database of EMG signals is taken from EMGLAB which is available online

publicly [74]. Miki Nikolic had recorded EMG signals for quantitative analysis of

MUAPs under normal conditions. For signal recording, a concentric needle electrode

with area of 0.07mm2 is used and one surface ground electrode was placed on the

limb. For monitoring the signal, a slight and constant contraction was created in

the muscle. The electrode was put at one location for 11.2 seconds and then moved

to another location.

The EMG signals obtained from the needle were amplified by the amplification

factor of 4000. Since recorded EMG signals were analog in nature, so they had to be

converted in digital form. To digitize the signals, a 16 bit analog to digital converter

is used [74]. This data has the sampling rate of 23437.5Hz. After this, the signals

are filtered by a bandpass filter with lower and higher cut off frequencies of 2 Hz

and 10 kHz respectively.

In order to study the properties of EMG signals and analyze the status of NMD,
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the signals were recorded from five muscles: abductor pollicisbrevis, biceps brachii,

vastus medialis, tibialis anterior, deltoideus, and tensor fascial latae . The EMG

signals were recorded under following usual conditions:

• The signals were recorded at low voluntary (just above the threshold) and

constant level of contraction.

• Visual and audio feedbacks were used to monitor the quality of the signal.

• The EMG signals were recorded at three insertion depths (deep, medium, and

low) from five locations in the muscle [75].

The material consisted of three groups: a normal control group, a group of myopathic

patients, and a group of ALS patients. For our study, we are using normal group

data and ALS group data. The normal control group consists of 10 normal subjects

aged between 21 to 37 years, out of which 4 were females and 6 were males. 6 out

of 10 were in very good physical shape, and the rest, except one, were generally

in good shape. There were no traces or history of NMDs in any subject belongs

to the normal control group. There were 8 patients in the ALS group ; 4 females

and 4 males aged between 35 to 67 years. In addition to ALS-compatible clinical

and electrophysiological symptoms, 5 of them died within a few years from the

beginning of the disease which support the diagnosis of ALS [75]. The brachial

biceps and medial vastus muscles were used in this study because they were the

most frequently investigated muscles in the two patient groups.

3.2 Proposed methodology

In this section, a detailed description of proposed methodology for analyzing and

classifying NMDs has been discussed. Fig. 3.1 and Fig. 3.2 show the block diagrams

of proposed methodology for analysis and classification of EMG signals respectively.
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Figure 3.1: Block diagram for
EMG sigal analysis

Figure 3.2: Block diagram for
EMG signal classification

First step is to extract MUAPs from EMG signals. After obtaining the MUAPs,

IF method was applied to decompose the MUAPs obtained from EMG signals. The

IMFs are obtained from the decomposition of MUAPs. Euclidean distance quadratic

mutual information (ED-QMI), Cauchy Schwarz quadratic mutual information (CS-

QMI), cross information potential (CIP) and Correntropy (COR) features have been

computed for all IMFs. Thereafter, statistical analysis and classification have been

performed.

3.2.1 MUAP extraction

Extracting the MUAPs from the EMG signal involves detecting and identifying

potential from all motor units. If more than one MUAP is superimposed, each

of them should be identified separately so that we can obtain individual MUAPs
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and their firing pattern [76]. MUAPs extraction has been done in three stages: (i)

segmentation (ii) clustering and (iii) resolution [77]. All three stages are explained

below:

• Segmentation: First, EMG signal is partitioned into several time intervals,

then time intervals having MUAPs were searched. These time intervals are

known as segments. There may be one MUAP or many superimposed MUAPs

in a segment [76]. Segments containing superimposed MUAPs are known as

compound segments. Time intervals which do not contain any MUAPs are

called baseline [77]. For segmentation process, a window wd of length 5.6 ms

is applied along the entire EMG signal z(n). Thereafter, the variance of signal

inside that window is calculated. The variance can be calculated by following

equation [78] :

var(k) =
1

w − 1

q∑
j=−q

z2(k + j)−

(
1

w − 1

q∑
j=−q

z(k + j)

)2

(3.1)

Where var(k) denotes the variance of signal z(n) at the kth sample and

calculated for the sample range from −q to q. And w represents the segment

length [76].

A new segment is detected only when the variance calculated inside the window

is greater than a detection threshold. The detection threshold can be estimated

from the amplitude density function of normalized variance signal. MUAPs of

similar size are represented by the local maximum of density function [76, 78].

The detection threshold can therefore be described as the first local minimum

to be searched from the origin, where the smallest MUAPs should be separated

from the noise. The method goes on until the variance becomes less than a

delimiting threshold. The following equation estimates the segment-delimiting

threshold (TL) [77]:

TL = 0.15(TD −Mb) +Mb (3.2)

where TD represents the detection threshold, and Mb represents the mean of

the baseline variance and can be estimated by pre-segmenting the EMG signal

22



with TL = TD/3 [77].

• Clustering: In clustering process, the similar looking segments are clustered

into groups. Segments which have similar shapes are assumed to be MUAPs

from the same motor unit [78]. There may be several segments in a group.

A group which contains five or more segments is known as a potential class

(PCL). A template is chosen from each PCL to represent that PCL, These

selected templates represent the active MUAPs in the EMG signal [78].

The algorithm used for clustering process is a modified nearest-neighbor

clustering algorithm. Which is based on a minimum spanning tree (MST)

and uses heuristically determined tree cutting thresholds to form clusters of

similar-looking segments successively. A distance measure is used to

determine whether two segments are similar in shape. The distance between

two segments each having only one MUAP generated by the same motor

unit, should be small. Whereas the distance between two segments

containing MUAPs from different motor units or between one simple and one

compound segments or between two compound segments, should be large.

The distance between two segments d(s1, s2) can be determined by following

equation [76, 78]:

d(s1, s2) =
var(e)

rms(s1) + rms(s2)
. (3.3)

Where s1 and s2 denotes the two segments to be compared and e is the residue

signal after subtracting the two segments s1 and s2. var and rms represent the

variance and root mean square value respectively. Distance d(s1, s2) uses the

variance of the residual after alignment and subtraction of the two segments

and normalized with the sum of the rms values for the segments. Before

measuring distances, it is necessary to time align the segments. If the lengths

of the two segments are unequal, they are made equal by padding zeros to the

shortest segment [79].

• Resolution: This is the last stage of MUAP extraction process. False

templates and compound segments are resolved in this stage [79]. Some

segments do not belong to any PCL, these segments are considered to be
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compound segments. Some of the PCLs may consist of compound segments

that look very similar, these PCLs are known as false PCLs and their

template is known as false template [77, 79]. The false template and

compound segments are resolved with the help of the templates from the

PCLs. The false PCLs are resolved first, after that the compound segments

are resolved [77].
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Figure 3.3: Plots of extracted MUAPs from (a) Normal EMG signal, (b) ALS
EMG signal.
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All MUAPs have been extracted from EMG signals for both normal and ALS

classes with the help of EMGLAB software [80]. EMGLAB is a Matlab program

designed to view and decompose EMG signals into MUAP trains. It provides a

convenient graphical interface for displaying and editing results. The software is

publicly available at http://www.emglab.net. Fig. 3.3 shows the plots of extracted

MUAPs for both normal and ALS EMG signals.

3.2.2 Decomposition using iterative filtering method

Signal decomposition is the process of resolving a composite signal into its

constituent parts in such a way that the original signal can be reconstructed from

those parts. The aim of signal decomposition is separation of simple components

from composite signals, so that it is easy to extract essential features for further

analysis of EMG signal. Since EMG signals are complicated, it is not a good idea

to extract features from signal directly. So decomposition of EMG signals is a very

important step to get useful and differentiating properties for analysis and

classification purpose.

Several Techniques have been presented for the decomposition of an EMG signal

into its constituent components. In this thesis work, IF is the technique that have

been used to decompose EMG signals. IF is an iterative approach which allows

to decompose a given non-linear and non-stationary signal into a finite number of

simple components. The obtained components from the IF method are known as

IMFs. The IF process has already been discussed in detail in previous chapter.

By using IF method, MUAPs extracted from EMG signals have been

decomposed into IMFs. We have used the MATLAB code of the IF for

decomposition of EMG signals which is publicly available at

http://www.mathworks.com/matlabcentral/fileexchange/53405-iterative-filters.

We have obtained first six IMFs for both normal and ALS class EMG signals.

Extracted IMFs for normal and ALS EMG signals are shown in Fig. 3.4 and Fig.

3.5 respectively.
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Figure 3.4: Plots of a normal EMG signal and it’s first six obtained IMFs.
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Figure 3.5: Plots of a ALS EMG signal and it’s first six obtained IMFs.
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3.2.3 Feature calculation

Since EMG signals are complex in nature, it is not a good approach to apply features

on the EMG signal directly to distinguish between normal and abnormal EMG

signals. Hence the features are applied on the decomposed components of EMG

signal to uniquely distinguish normal and ALS data. In this work, we have studied

four features ED-QMI, CS-QMI, CIP and COR for each level of IMFs separately,

which are extracted from MUAP signal. In this section we have discussed about

these features briefly.

• Euclidean distance quadratic mutual information

The mutual information (MI) of two random variables quantifies the amount

of information obtained about one random variable through observing the

other random variable. When MI measured with only simple quadratic form

of probability density functions (PDFs), then it is known as quadratic mutual

information. So basically, QMI is a measure for statistical dependency between

random variables [81, 82]. The Euclidean distance is straightforward distance

measure for two PDFs, and can be defined as follow [83]:

DED(f, z) =

∫
(f(y)− z(y))2dy (3.4)

Where DED denotes the Euclidean distance between two PDFs f(y) and z(y).

The squared distance between the joint pdf and the factorized marginal PDF

is known as the ED-QMI. ED-QMI for two random variables Y1 and Y2 can be

defined as [83]:

QMIED(Y1, Y2) = DED

[
fY1Y2(y1, y2), fY1(y1)fY2(y2)

]
(3.5)

where fY1Y2(y1, y2) is denotes the joint PDF of Y1 and Y2. And fY1(y1) and

fY2(y2) are the marginal PDFs of Y1 and Y2 respectively.

• Cauchy-Schwartz quadratic mutual information
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CS-QMI is a variant of QMI which is based on the Cauchy-Schwartz distance

between two PDFs. We can calculate the Cauchy-Schwartz distance between

two PDFs by following equation [83]:

DCS(f, z) = log

[∫
f 2(y)dy

∫
z2(y)dy∫

f(y)z(y)dy

]
(3.6)

WhereDCS denotes the Cauchy-Schwartz distance between two PDFs f(y) and

z(y). Based on Cauchy-Schwartz distance, CS-QMI for two random variables

Y1 and Y2 can be defined as follows [83]:

QMICS(Y1, Y2) = DCS

[
fY1Y2(y1, y2), fY1(y1)fY2(y2)

]
(3.7)

where fY1Y2(y1, y2) denotes the joint PDF of Y1 and Y2. And fY1(y1) and fY2(y2)

are the marginal PDFs of Y1 and Y2 respectively.

• Cross information potential

CIP characterizes the similarity between two PDFs [84]. The information

among distinct random variables is characterized by CIP based on

multidimensional PDFs. CIP can be used to quantify the divergence or the

cross-covariance between the two random variables for two-dimensional PDFs

[85]. The following equation can be used to calculate CIP [86]:

CIP (A,B) =
1

N2

N∑
i=1

N∑
j=1

k(ai − bj) (3.8)

where A and B denotes two random variables data sets with independent

and identically distributed (iid) sample sets {a1.........aN} and {b1.........bN}

respectively, and N is the total number of samples. ai is the ith sample of the

data set A and bj is the jth sample of the data set B. k(ai− bj) represents the

kernel function.

In this present work, we have used the Gaussian kernel with kernel size (σ)

is equal to 1 [87]. We have used the ITL toolbox for the calculation of CIP.

In this ITL toolbox, incomplete Cholesky decomposition is used to calculate
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CIP. Previously, CIP feature has been used for characterization of coronary

artery disease in [87].

• Correntropy

Two different words correlation and entropy are combined together to create

a new term correntropy [88]. COR is the measure of probability of closeness

between two random variables in a neighborhood of the joint space, in a specific

window controlled by the kernel size [89]. COR has many properties that

directly quantify the PDF of data. Suppose a and b are two random variables,

then its parzen PDF can be given by following equation [88]:

Pσ =
1

N

N∑
i=1

kσ(a− b) (3.9)

where kσ(a − ai) represents the Gaussian kernel function. Gaussian kernel is

widely used kernel function which can be given by following equation:

kσ(a− b) =
1√
2πσ

exp

[
−(a− b)2

2σ2

]
. (3.10)

The COR determines the similarity between the signal and the delayed samples

of the signal [89]. COR function for two random variable a and b can be defined

as follow [88]:

COR(a, b) =
1

N

N∑
i=1

1√
2πσ

exp

[
−(a− b)2

2σ2

]
. (3.11)

Previously, COR feature been used for classification of focal

electroencephalogram (EEG) signal [90, 91].

In this thesis work, we have calculated all four features of decomposed IMFs for

both classes separately by taking first sample as a reference from both normal

and ALS class signals. We have used the ITL toolbox for the calculation of all

four features, with kernel size is equal to 1. ITL toolbox is available online at

http://www.sohanseth.com/Home/codes.
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3.2.4 Analysis using Kruskal-Wallis statistical test

Kruskal-Wallis statistical test is also known as Kruskal-Wallis H test or one-way

analysis of variance (ANOVA) on ranks [92, 93]. It is a non-parametric method

to test whether samples originate from the same distribution [94, 95, 96]. Non-

parametric means that the test does not rely on data belonging to any particular

parametric family of probability distributions. Kruskal-Wallis statistical test uses

rank of data instead of data value [97, 98].

Kruskal-Wallis statistical test is considered as non- parametric equivalent of the

ANOVA. It is an extension of the Mann-Whitney U test in which only two classes

can be compared [99], but Kruskal-Wallis statistical test allows us to compare two or

more than two independent samples of equal or different sample sizes. The Kruskal-

Wallis test shows whether there is a significant difference between the groups, but it

will not show which specific groups are statistically significantly different from each

other [100]. The Kruskal-Wallis statistical test looks for the median of groups to

determine whether they are different. Unlike the one-way ANOVA, Kruskal-Wallis

test can also be used for ordinal data.

In Kruskal-Wallis statistical test, H statistic is used [101]. The hypotheses for

test areH0 andH1, whereH0 represents that population medians are equal andH1 is

represents that population medians are not equal. Steps to perform Kruskal-Wallis

statistical test are as follows [102]:

Step 1: First, data is sorted in ascending order for all the samples and then grouped

together in one combined set.

Step 2: Assign ranks to all data points in combined set.

Step 3: Add up different ranks for each sample.

Step 4: H statistic is estimated by following equation:

H =

[
12

S(S + 1)

n∑
q=1

Rq
2

Sq

]
− 3(S + 1) (3.12)

where, S=sum of sample sizes for all samples,
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n = number of samples,

Rq = sum of ranks in the qth sample,

Sq= size of the qth sample.

Step 5: The critical Chi-square (χ2) value is calculated and then compared with H

value obtained from step 4.

Step 6: The p-value is estimated by probability of H being less than or equal to Chi-

square i.e. Pr(χ2
n−1 ≥ H).

In this thesis work, The Kruskal-Wallis statistical test is carried out on the

features calculated from both normal and ALS classes. The data from both classes

is combined into a single series, and a rank is given to all data points in that combined

set. We carried out Kruskal-Wallis test for obtaining the statistical significance(p

< 0.05) of features in diffrent oscillatory levels of the MUAPs obtained from EMG

signals. The Kruskal-Wallis test has also been studied for EEG signal analysis in

[103], and for coronary artery disease identification in [104].

3.2.5 Classification of normal and ALS EMG signals

Classification may refer to the process of predicting the class of given data points, it

involves building a model of classes from a set of records which contain class labels

and known as training data set. The resulting classification model will be capable

of predicting labels for a new set of unlabeled records that have the same features as

the training data. Each distinct label value is referred to as a class. An algorithm

that implements the process of classification is known as a classifier [105].

In this proposed work, we have used three classifiers viz. JRip rules classifier,

REP tree Classifier and random forest, to classify the normal and ALS class EMG

signals. We have used 10-fold cross validation method to classify the data. Cross-

validation is a technique for evaluating predictive models by dividing the original

sample into a training set to train the model and a test set for evaluation. In

10-fold cross-validation, the original sample is randomly divided into 10 equal size

sub-samples. From those 10 sub-samples, a single sub-sample is retained as the

validation data for testing the model, and the remaining 9 sub-samples are used as
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training data. The cross-validation process is then repeated 10 times (the folds).

The 10 results from the folds can then be averaged to produce a single estimation.

The advantage of this method is that all observations are used for both training

and validation, and each observation is used for validation exactly once [106]. The

classifiers used in this proposed work, are discussed below briefly:

• JRip rules classifier:

JRip is one of the basic and popular classifier for classification among different

classes. JRip applies a propositional rule learner which is known as "Repeated

incremental pruning to produce error reduction"(RIPPER), as proposed in

[107].

In JRip algorithm, first all classes are examined in increasing size. After

examination of classes, an initial set of rules for the class is generated using

incremental reduced error JRip. After that all the examples of a particular

decision in the training data treated as a class, and a set of rules that cover

all the members of that class has obtained. Thereafter it proceeds to the next

class and does the same. Repetition is going on until all classes have been

covered [108, 109].

• REP tree classifier:

REP tree classifier is a fast decision tree learning algorithm. It works on the

principle of computing the information gain with entropy and minimizing the

error arising from variance [110]. REP tree applies regression tree logic and

generates multiple trees in altered iterations. Thereafter, it selects the best

tree among all generated trees and considers it as representative.

REP tree classifier builds a decision/regression tree using variance and

information gain. The pruning of that decision tree is done by using

reduced-error pruning with back fitting method. It sorts numeric attribute

values once at the start of the model preparation. This algorithm also deals

with the missing values by dividing the corresponding instances into pieces,

in a similar manner to C4.5 algorithm [111].
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• Random forest classifier: The random forest classifier is a set of decision

tree classifiers, where each classifier is generated using a random vector which

is sampled independently from the input vector [112]. To classify an input

vector, each tree casts a unit vote for the most popular class, and then it

takes the average of the votes received from different decision trees in order to

decide the final class of the test objects [113] . It basically merges the multiple

decision trees to create a wide diversity which leads to the better classification

accuracy [114]. Random forest classifier works efficiently even on the large

data sets.

The random forest classifier uses randomly selected features or a combination

of features at each node to grow a tree. For the best split, only selected features

are searched at each node [112]. Each time using a combination of features,

a tree is grown to the maximum depth on new training data. To generate

a random forest classifier, two user defined parameters are required: (i) the

number of features used at each node to generate a tree and (ii) the number

of trees to be grown.

These fully grown trees are not pruned and this is one of the major advantages

of the random forest classifier over other decision tree methods. Studies suggest

that as the number of trees increases, the generalization error always converges

even without pruning the tree and over-fitting is not an issue due to the strong

law of large numbers [115, 116].

In this proposed work, the popular machine learning toolbox Waikato

Environment for Knowledge Analysis (WEKA) has been used for classification. It

is a collection of machine learning algorithms, for data mining tasks. WEKA is

open source software issued under the General Public License that can be

downloaded from https://www.cs.waikato.ac.nz/ml/weka/.

3.3 Summary

In this chapter, we provided the detailed information about the database taken for

our study. MUAPs are extracted from Normal and ALS EMG signals and the whole
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MUAP extraction process is explained in detail. The proposed methodology for

analysis and classification of normal and ALS EMG signals is explained in detail.

Four features ED-QMI, CS-QMI, CIP and COR are calculated and discussed briefly.

For analysis, we used Kruskal-Wallis statistical test for (p <0.05), which is also

explained in this chapter. For classification, three different classifiers JRip rules

classifier, REP tree classifier and random forest classifier are used and discussed

briefly.
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Chapter 4

Results and discussion

This chapter shows the results of EMG signal analysis using Kruskal-Wallis

statistical test in the form of tables and box plots. It also presents the results of

the classification of normal and ALS EMG signals by using three classifiers, in the

tabular form.

4.1 Analysis results

For analysis of EMG signals, we have been carried out Kruskal-Wallis statistical test

on four features ED-QMI, CS-QMI, CIP and COR separately, which are extracted

from normal and ALS EMG signals. All four features mentioned above are computed

for six IMFs i.e. QMIED1 to QMIED6, QMICS1 to QMICS6, CIP1 to CIP6 and

COR1 to COR6 and considered for Kruskal-Wallis test for obtaining the statistical

significance (p < 0.05). Table 4.1 presents the p-value obtained from ED-QMI

feature for six IMFs. Table 4.2 presents the p-value obtained from CS-QMI feature

for six IMFs. Table 4.3 presents the p-value obtained from CIP feature for six IMFs.

Table 4.4 presents the p-value obtained from COR feature for six IMFs. For all the

features, p-value is less than 0.05 and either zero or very close to zero. These results

show that we can easily distinguish between normal and ALS EMG signals with the

proposed methodology.
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Table 4.1: p-value for QMIED feature of first six IMFs.

Features QMIED1 QMIED2 QMIED3 QMIED4 QMIED5 QMIED6

p-value 2.2524× 10−109 6.7073× 10−64 0 0 5.2049× 10−275 1.9133× 10−231

Table 4.2: p-value for QMICS feature of first six IMFs.

Features QMICS1 QMICS2 QMICS3 QMICS4 QMICS5 QMICS6

p-value 8.2216× 10−107 5.3181× 10−75 0 0 2.1800× 10−276 2.1512× 10−217

Table 4.3: p-value for CIP feature of first six IMFs.

Features CIP1 CIP2 CIP3 CIP4 CIP5 CIP6

p-value 0.0407 1.5295× 10−283 0 1.3511× 10−290 1.1558× 10−284 0

Table 4.4: p-value for COR feature of first six IMFs.

Features COR1 COR2 COR3 COR4 COR5 COR6

p-value 7.3062× 10−25 0 1.3189× 10−318 6.0976× 10−277 2.0751× 10−280 4.9407× 10−324
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Box plot is a simple way of representing statistical data on a plot in which

a rectangle is drawn to represent the second and third quartiles, usually with a

vertical line inside to indicate the median value. The lower and upper quartiles are

shown as horizontal lines either side of the rectangle.

The box plots obtained for ED-QMI feature for first six IMFs are shown in Figs.

4.1, 4.2, 4.3, 4.4, 4.5, 4.6. The box plots obtained for CS-QMI feature for first six

IMFs are presented in Figs. 4.7, 4.8, 4.9, 4.10, 4.11, 4.12. The box plots obtained

for CIP feature for first six IMFs are shown in Figs. 4.13, 4.14, 4.15, 4.16, 4.17, 4.18

and Figs. 4.19, 4.20, 4.21, 4.22, 4.23, 4.24 represent the box plots obtained for COR

feature for first six IMFs.
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Figure 4.1: Box plot of QMIED feature of 1st IMFs for normal and ALS EMG
signals.
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Figure 4.2: Box plot of QMIED feature of 2nd IMFs for normal and ALS EMG
signals.
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Figure 4.3: Box plot of QMIED feature of 3rd IMFs for normal and ALS EMG
signals.
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Figure 4.4: Box plot of QMIED feature of 4th IMFs for normal and ALS EMG
signals.
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Figure 4.5: Box plot of QMIED feature of 5th IMFs for normal and ALS EMG
signals.
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Figure 4.6: Box plot of QMIED feature of 6th IMFs for normal and ALS EMG
signals.
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Figure 4.7: Box plot of QMICS feature of 1st IMFs for normal and ALS EMG
signals.
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Figure 4.8: Box plot of QMICS feature of 2nd IMFs for normal and ALS EMG
signals.
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Figure 4.9: Box plot of QMICS feature of 3rd IMFs for normal and ALS EMG
signals.
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Figure 4.10: Box plot of QMICS feature of 4th IMFs for normal and ALS EMG
signals.
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Figure 4.11: Box plot of QMICS feature of 5th IMFs for normal and ALS EMG
signals.
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Figure 4.12: Box plot of QMICS feature of 6th IMFs for normal and ALS EMG
signals.
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Figure 4.13: Box plot of CIP feature of 1st IMFs for normal and ALS EMG signals.
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Figure 4.14: Box plot of CIP feature of 2nd IMFs for normal and ALS EMG signals.
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Figure 4.15: Box plot of CIP feature of 3rd IMFs for normal and ALS EMG signals.
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Figure 4.16: Box plot of CIP feature of 4th IMFs for normal and ALS EMG signals.
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Figure 4.17: Box plot of CIP feature of 5th IMFs for normal and ALS EMG signals.
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Figure 4.18: Box plot of CIP feature of 6th IMFs for normal and ALS EMG signals.
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Figure 4.19: Box plot of COR feature of 1st IMFs for normal and ALS EMG
signals.
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Figure 4.20: Box plot of COR feature of 2nd IMFs for normal and ALS EMG
signals.
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Figure 4.21: Box plot of COR feature of 3rd IMFs for normal and ALS EMG
signals.
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Figure 4.22: Box plot of COR feature of 4th IMFs for normal and ALS EMG
signals.
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Figure 4.23: Box plot of COR feature of 5th IMFs for normal and ALS EMG
signals.
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Figure 4.24: Box plot of COR feature of 6th IMFs for normal and ALS EMG
signals.
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4.2 Classification results

For EMG signal classification, we have given all four calculated features i.e. ED-

QMI, CS-QMI, CIP and COR separately in three different classifiers: JRip rules

classifier, REP tree classifier and random forest classifier, which have been already

discussed in previous chapter. Classification have been done using 10-fold cross

validation method and three distinguishing parameters sensitivity (Sen), Specificity

(Spe) and accuracy (Acc) have been calculated from the features. To calculate these

three parameters, the data after classification is divided into four sets: true positive

(TP), true negative (TN), false positive (FP), false negative (FN). For two classes

normal and ALS, these four terms can be defined as follows:

1. TP: the number of cases actually belong to ALS class and correctly identified

as ALS class.

2. TN: the number of cases actually belong to normal class and correctly identified

as normal class.

3. FP: the number of cases actually belong to normal class but incorrectly

identified as ALS class.

4. FN: the number of cases actually belong to ALS class but incorrectly identified

as normal class.

On the basis of above four terms, the three parameters viz. Acc, Sen and Spe

can be defined as follows:

• Acc: The Acc can be defined as the ability to differentiate the ALS class and

Normal class correctly. It is the ratio of the number of correct assessment to

the number of all assessments. Mathematically, it can be represented as:

Acc =
TP + TN

TP + TN + FP + FN
(4.1)

• Sen: The Sen can be defined as the ability to determine the ALS class correctly.

It is the the ratio of the true positive assessment to the total number of positive
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assessments. Mathematically, it can be represented as:

Sen =
TP

TP + FN
(4.2)

• Spe: The Spe can be defined as the ability to determine the Normal class

correctly. It is the the ratio of the number of true negative assessment to the

total number of negative assessments. Mathematically, it can be represented

as:

Spe =
TN

TN + FP
(4.3)

We have calculated Acc, Sen and Spe for all four features ED-QMI, CS-QMI,

CIP and COR obtained from all six IMFs, with three different classifiers: JRip rules

classifier, REP tree classifier and random forest classifier. The three parameters

viz. Acc, Sen and Spe obtained from classification process are shown below in the

tabular form.

Table 4.5 shows the classification results when we have used only one feature

to classify Normal and ALS EMG signals. The results are shown for five different

features: (i) ED-QMI feature calculated for 3rd IMFs (ii) CS-QMI feature calculated

for 3rd IMFs (iii) CIP feature calculated for 6th IMFs (iv) COR feature calculated for

2nd IMFs (v) COR feature calculated for 6th IMFs. Among all features, the above

mentioned five features are giving the best results.

Table 4.6 shows the classification results when we have used two features to

classify Normal and ALS EMG signals. We have tried different combinations of

two features and the below mentioned five feature combinations are giving the best

results. The results are shown for five different combination of two features which

are: (i) CIP feature calculated for 6th IMFs and COR feature calculated for 2nd

IMFs (ii) COR feature calculated for 2nd IMFs and COR feature calculated for 6th

IMFs (iii) CIP feature calculated for 3rd IMFs and CIP feature calculated for 6th

IMFs (iv) ED-QMI feature calculated for 3rd IMFs and COR feature calculated for

2nd IMFs (v) CS-QMI feature calculated for 3rd IMFs and COR feature calculated

for 2nd IMFs.
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Table 4.5: Classification results by using only one feature.

Features Classifiers Spe (%) Sen (%) Acc (%)

QMIED3 JRip 99.7 95.3 97.8

REP tree 99.6 95.3 97.7

Random forest 97.8 95.9 97.0

QMICS3 JRip 99.6 95.3 97.7

REP tree 99.4 95.7 97.8

Random forest 96.8 96.0 96.4

CIP6 JRip 94.7 100 96.9

REP tree 94.7 99.6 96.8

Random forest 96.6 95.1 95.9

COR2 JRip 94.2 99.8 96.5

REP tree 94.0 99.9 96.5

Random forest 94.5 93.3 94.0

COR6 JRip 94.7 99.6 96.7

REP tree 94.7 99.9 96.8

Random forest 96.7 94.2 95.6
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Table 4.6: Classification results by using two features.

Features Classifiers Spe (%) Sen (%) Acc (%)

CIP6+COR2 JRip 99.9 99.8 99.8

REP tree 99.7 99.9 99.7

Random forest 99.9 99.8 99.8

COR2+COR6 JRip 99.8 99.6 99.7

REP tree 99.6 99.8 99.7

Random forest 99.8 99.7 99.7

CIP3+CIP6 JRip 99.3 99.9 99.5

REP tree 99.3 99.9 99.5

Random forest 99.4 99.6 99.4

QMIED3+COR2 JRip 98.7 97.1 98.0

REP tree 98.4 97.1 97.8

Random forest 98.7 98.3 98.5

QMICS3+COR2 JRip 98.5 97.2 97.9

REP tree 98.8 96.6 97.8

Random forest 98.7 98.1 98.4
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Table 4.7: Performance Comparison with other methods.

Features Classifiers Acc (%)

MFCC based method, (2014) [57] KNN 92.5

TQWT based method, (2018) [58] LS-SVM 95

CNN based method, (2017) [59] CNN 96.8

Proposed method Random forest 99.8

Table 4.7 shows the performance comparison of our proposed method with other

previously existing methods for classification of EMG signals, which indicates that

our proposed method is better for the classification of normal and ALS EMG signals.

4.3 Summary

In this chapter, we presented the results obtained from analysis and classification

process for four features: ED-QMI, CS-QMI, CIP and COR of normal and ALS EMG

signals in the form of tables and graphs. For analysis, Kruskal-Wallis statistical test

is performed for p <0.05. The p values obtained for all four features are presented

in the form of tables separately. And the box plots obtained from all four features

are also presented in this chapter. For classification of EMG signals, we have used

three different classifiers: JRip rules classifier, REP tree classifier and random forest

classifier. In this chapter we discussed about three classification parameters briefly.

These three parameters have been calculated for all features. The best classification

results are shown in the form of tables for when we are using only one feature for

classification and for when we are using two features for classification.

The obtained analysis and classification results show that our proposed method

is very much capable of distinguishing between normal and ALS EMG signals and

very accurate for classify EMG signals.
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Chapter 5

Conclusion and future work

In this proposed work, we have been presented a methodology for analysis of EMG

signals and for classification of normal and ALS EMG signals. The extracted MUAPs

from EMG signals are decomposed into first six IMFs for both classes and then ED-

QMI, CS-QMI, CIP and COR features have been calculated.

Kruskal-Wallis statistical test is performed to analyze EMG signals for p is less

than 0.05. We have obtained p = 0 for QMIED3, QMIED4, QMICS3, QMICS4, CIP3,

CIP6 and COR2. For remaining features also, p-values obtained are very less than

0.05 and very close to zero. The box plot obtained for these features are also signifies

the difference in the ALS and normal signals. From these observations, we can easily

say that this proposed methodology is good enough to analyze the EMG signals and

with this proposed method, we can easily distinguish between normal and ALS EMG

signals.

For EMG signal classification, we have given ED-QMI, CS-QMI, CIP and COR

features in three different classifiers: JRip rules classifier, REP tree classifier and

random forest classifier. Classification have been done using 10-fold cross validation

method and three distinguishing parameters Sen, Spe and Acc have been calculated

from the features. The classification results obtained show that even with only one

feature we got the maximum Acc of 97.8%, and the highest Spe and Sen obtained

are 99.7% and 100% respectively. The Acc is increased upto 99.8% when we use

only two features for classification and highest Spe and Sen obtained are 99.9% and

99.9% respectively. These classification results show that our proposed methodology
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is good enough to classify normal and ALS EMG signals very accurately.

On the basis of results obtained for analysis and classification of EMG signals,

it can be easily concluded that IF decomposition method is very efficient with even

less number of features extracted. This methodology can help in differentiating

abnormal and normal EMG for diagnosis of subjects.

In future, the proposed method can be studied for analysis and classification of

other biomedical signals corresponding to normal and abnormal classes.
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