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Abstract

Respiratory rate (RR) and heart rate (HR) are vital parameters that show signs of

abnormal human breathing activity. There are various techniques for extracting RR

and HR. In addition to oxygen saturation (SpO2) and cardiac rate measurement, the

photoplethysmography (PPG) signal can be used to obtain breathing information that

prevents the additional measurement sensor from being used. An algorithm has been

suggested for the extraction of RR and HR from PPG signals using Fourier-Bessel series

expansion based empirical wavelet transform (FBSE-EWT) in this work. We have

taken 310 and 632 epochs of simultaneous recorded PPG and breathing signals from

MIMIC and capnobase databases in order to investigate the efficiency of the suggested

algorithm. RR extraction from PPG signals by FBSE-EWT shows that the root

mean square errors (RMSEs) for both MIMIC and capnobase databases are 0.48549

breaths/minute and 0.92545 breaths/minute. For HR, RMSEs are 2.39632 beats/min

and 1.444 beats/min for both MIMIC and capnobase databases, respectively. These

findings show that the suggested FBSE-EWT method is more accurate in estimating

RR in comparison to other existing techniques.
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Chapter 1

Introduction

A pulse oximeter is an optical medical device allowing the noninvasive monitoring of

cardiopulmonary parameters. In clinical and home care applications, this is easy to

use device, usually in the form of a fingertip clip, has been widely used to acquire and

display heart rate (HR), respiratory rate (RR), and arterial blood oxygen saturation

(SpO2) [4]. When the pulsatile waveform, such as photoplethysmogram (PPG) [5, 6],

yielded by one excitation wavelength in the pulse oximeter [7,8] sensor is further inter-

preted, many other physiological parameters can be derived. The PPG records change

in blood volume over a certain length of vascular tissue, and this volumetric signal is

driven by the blood pressure waveform and also constrained by the compliance of the

vascular walls. Hence, intuitively there exists a strong correlation between the photo-

plethysmographic waveform and the blood pressure waveform and correlation has been

addressed in the literature [9–11]. A PPG can be considered as a series of continuous

snapshots of the circulatory system with respect to blood volume, and the character of

these snapshots is determined by the measurement site of the pulse oximeter. Hemo-

dynamics (the study of the circulation [12], including cardiac hemodynamics [13] and

arterial hemodynamics [14]) guide the physiological and mathematical relationship be-

tween blood flow, blood velocity, blood pressure, blood volume, and other cardiac and

arterial characteristics [15–17]. Due to its non-invasive nature, pulse oximetry is a

popular technique of patient monitoring. The comprehensive physiological data that

is accessible through its use is another advantage of this model. While measurements
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of arterial oxygen saturation (SpO2) [18] and cardiac HR are typically carried out by

pulse oximeter, the information on HR and RR [19] can also be taken from sensor data.

This provides a major benefit in remote patient surveillance, because wearable surveil-

lance systems are smaller for portability and field use by delivering all physiological

measurements on a single sensor [20, 21]. In particular, measurements of SpO2, HR,

and RR have been investigated since critical patient data has known during medical

diagnoses [22,23].

Much efforts have been devoted over the last few years towards developing efficient

algorithms for determining RR and HR from PPG signals. The scope of this thesis

is to examine the potential of using Fourier-Bessel series expansion (FBSE) based

empirical wavelet transform (EWT) (FBSE-EWT) for extraction of RR and HR. This

chapter provides a brief introduction to the PPG signal, circuit, and an overview of

the literature on existing methods for determining HR and RR from PPG signals.

1.1 Photoplethysmography (PPG)

PPG is a method of applying a light source and a light sensor on the opposite or on

the same side of peripheral body parts such as finger (Fig. 1.2), ear lobe, or toe [24],

for measuring the alterations in light intensity that passes through the tissue [25].

The alterations in light intensity are mainly due to the change in the volume of the

absorbing materials and due to the scattering effects of light. It is a low cost, simple,

portable, and non-invasive technology [26, 27], usually used for measuring percent

oxygen saturation, blood pressure, and cardiac output, and to understand autonomic

nervous system function, and peripheral vascular disease in clinical settings. If the light

source and the sensor are both placed on the same side of the body part, then the type

of probe is called a reflectance probe [28], while if they are placed on opposite sides then

it is called a transmittance probe. Reflectance probe measures the intensity of light

reflected by the tissue sample, while transmittance probe measures the attenuation of

incident light intensity after its passes through the sample. The interaction of light with

tissue sample is explained by several optical processes such as scattering, absorption,

reflection, transmission and florescence [29, 30]. The attenuation of light is mainly
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caused by changes in blood volume and in the orientation of blood vessels [31], and

it’s wall movement. Thus, a typical PPG signal is related to the study of the circulation

of blood through the body parts. The light absorption of tissue elements is shown in

the Fig. 1.1. This signal comprises of two main components: alternating current (AC)

and direct current (DC). AC is the pulsatile component as detected by the light sensor,

pertaining to the synchronous changes in the blood volume with each heart beat. DC

component, on the other hand, is related to the slowly changing baseline depending

on respiration, sympathetic nervous system activity and thermoregulation [29]. In

Fig. 1.2, we have shown the operations of PPG sensors for finger application.

Figure 1.1: Absorption of light by tissue components [1].

Figure 1.2: Light transmitted into the finger is reflected back and detected by a photo
diode [2].
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1.2 SpO2 Measurement

Injuries in an accident often impact the heart and lung of a patient immediately and

often lead to blood loss, hemothorax, pneumonothea and other hazardous illnesses

conditions [32]. SpO2 measurements are used regularly to identify such hypoxic oc-

currences before tissues and organs suffer irreversible harm.

1.2.1 HR Measurement

HR is an essential measurement during any type of trauma assessment as it estimates

patient’s current stability. Therefore, this kind of measurement is extremely essential

for a fighting medic to quickly evaluate the stability of the victim [32–34].

If the heart contracts during systole, the systemic circulation forces extra blood

bolus. These regular blood volume distortions bring pulsating components into the

PPG signal. Individual pulses are the same as heart contractions, with favorable

peaks in systoles and adverse peaks at the end of diastolic times. The frequency of

the pulsative element should also be observed as the frequency corresponds to the HR

of the subject.

1.2.2 RR Measurement

The RR is an essential measurement for diagnosis. Substantially increased or decreased

RR values may show impending damage changes in a person’s status during injury or

trauma [32]. Thus, before arrival at a medical facility, these measurements have been

identified as a helpful triage instrument and are essential to medical staff [35].

There are presently many techniques to monitor a subject’s RR. In most cases,

direct airflow through the mouth or nasal passage or chest or abdomen expansion is

measured because of respiratory stress [36, 37]. The devices that are typically used

for these measures are thermistors and pressure transducers. It can measure variation

in thoracic impedance, resistive slashes, and pressure bulbs in order to record the

development in the chest or abdomen by means of oral and nasal airflows. These

respiratory activity surveillance techniques are unfit for application in a hostile combat
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setting since mild concentrations of activity can impact its precision. Moreover, the

equipment used is often unmanageable and patients can prevent them from doing

ordinary operations. The function of the pulmonary system affects cardiovascular flow

and blood volume directly. Consequently, respiratory activities affect the PPG signal.

The complexity of the cardio-pulmonary interactions means that the PPG waveforms

have been modified several times [38].

1.3 Basic circuit for PPG recording

For acquisition of the PPG signal the signal must be collected from the patient’s body.

Therefore the PPG signal is necessary for use on the instruments so as to prevent

the movement artifacts as much as possible. The noise has a significant influence on

quality and readability of the PPG signal because it shows small amplitudes, i.e. the

environment, the condition of a patient, respiration or motion cause multiple noises in

the PPG signals. Every noise form includes a number of different frequencies [39,40].

For example, the range of frequencies for HR and RR are 0.75-2.5 Hz and 0.05–0.75

Hz, respectively and the frequency of movement artifacts induced by movement of

patient is 0.1 Hz. The PPG sensor is made up simply with a light emitting diode

(LED) and a phototransistor receiver. Filtering and amplification circuits are also to

be used for the assessment of this signal. In [41], the signal in the phototransistor is

filtered with a low pass filter to eliminate high frequency noise. In addition, the DC

monitoring technique was used to remove the DC component of the signal. After that

[42, 43], another low pass filter used to remove the DC component and the artifacts.

This signal will then be subtracted from the original signal and amplified by amplifier.

Finally, an operational amplifier is used to amplify gain [44–47]. We have shown basic

circuit implementation in flow chart in Fig.1.3.
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Figure 1.3: PPG instrumentation [3].

1.4 Overview of the existing techniques for extrac-

tion of RR and HR from PPG signals

Nakajima et al. [48, 49], suggested extraction of RR from PPG signal using simple

band pass filter. Some researchers have done RR and HR estimation by dominant

frequency using spectral analysis, which are as follows:

• Fast Fourier Transform (FFT) based method [28,50,51].

• Yule–Walker algorithms based approach [52,53].

• The Welch periodogram based technique [54,55].

• The short-time Fourier transform based method [56,57].

• The Lomb–Scargle periodogram based approach [58,59].

• Sparse signal reconstruction based technique [60,61].

Some other methods have been described below to estimate dominant frequency.

Addison et al. [62,63] calculated respiratory frequency of a scalogram using the contin-

uous wavelet transform. Shephali et al. [64–66] has used weighted multi signal oscilla-

tor based least-mean-square algorithm to calculate respiratory frequency. In [67, 68],
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authors used adaptive notch filter to calculate instantaneous RR. Mirmohamadsadeghi

et al. [69,70] used an adaptive band pass filter to estimate instantaneous RR and HR.

In [71–73], authors used a bank of notch filters to calculate HR and RR for a single

signal or multiple signals. Another method to calculate dominant frequency is autore-

gressive all-pole modeling i.e. either the highest magnitude pole [74], or the lowest

frequency pole [75–77].

Extraction of respiratory and heart information from PPG signal is actually encour-

aged by the work of many researchers. In [78–80], the authors proposed a secondary

level feature decoupling based method to RR and HR. In their study, the authors used

12 subjects to validate their method. In [65, 78, 81], authors used the time-frequency

domain based approach for RR and HR estimation of healthy subjects. In [82–84], au-

thors used empirical mode decomposition (EMD) but this method was semi-automatic

and this method requires manual selection of intrinsic mode function (IMF). Mode-

mixing [85] is a limitation of the EMD method. In [86], authors used multi scale

principal component analysis (MSPCA) and they have used less subject. MSPCA

is a complex method to extract RR and HR from PPG signals. Nilsson et al. [87],

have used band pass filter but they explained that the results are not good because

of movements. In another work, Karlen et al. [88] have been proposed a method

which is very sensitive for noise and the amplitude of the PPG signals can be easily

corrupted by noise. In [85, 89], authors have applied ensemble EMD with principal

component analysis (PCA) (EEMD-PCA) on PPG signals. The obtained IMFs in this

method have information about the RR and HR. After that, they have used PCA for

the selection of significant IMFs. These proposed works have been delivered significant

contributions to the literature.

However, these methods have certain limitations such as involvement of less number

of subjects, mode-mixing problems, and high computational complexity. Hence, we

have formulated a new method to overcome the limitations of the previous works.
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1.5 Motivation

PPG signal is very prone to noise. The most challenging part is to measure the HR

and RR from PPG signals as they are corrupted by motion artifacts. In case of sleep

studies, using optical devices is not a serious problem, but it becomes difficult if the

devices worn during exercise. The sensitivity of the signal decreases because of the

motion between sensor and skin. We can minimize the impact by making the device

attachment to the body more tightly, but not completely. Therefore, PPG signals

become noisy in recording time. Several methods have been developed as a result of

these research efforts. Various non-stationary signal analysis methods have been used

to estimate HR and RR from PPG signals [65,78,82,83,85]. In the existing techniques,

authors used various techniques to decompose signals and applied PCA to calculate

RR and HR from PPG signals. Therefore, existing techniques are computationally

complex. In [65, 78], authors used the time-frequency domain based approach for RR

and HR estimation of healthy subjects. EMD method was semi-automatic and this

method requires manual selection of IMF. In another work, Karlen et al. [88] has

been proposed a method which is very sensitive for noise and the amplitude. In [85],

authors have applied EEMD-PCA on PPG signals. Hence, the motivation here is to

develop such methods, which reduce noise and computational complexity to extract

RR and HR from PPG signals.

1.6 Contributions of the thesis

The major contributions of the work presented in the thesis is described below. FBSE-

EWT based approach is suggested to decompose PPG signals into sub-bands. In the

proposed FBSE-EWT method, Bessel functions are non-stationary in nature and has

been used as basis set. Therefore, this approach is appropriate for assessment of non-

stationary signals like PPG signals. In the proposed method, Gaussian filter [90, 91]

is used to reduce noise from FBSE spectrum. Therefore, the proposed approach has

provided less noisy FBSE spectrum. In the proposed technique, we have divided

databases in the length of 30 seconds. We have compared results of proposed method
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with existing techniques. The proposed approach has provided better performance in

terms of root mean square error (RMSE), box Whishker’s plot, Pearson’s plot, and

Bland-Altmon plot.

1.7 Organization of thesis

The rest of the thesis is organized as follows:

Chapter 2 presents the detailed description of frequency spectrum using FBSE,

boundary detection using scale-space method, EWT, and FBSE-EWT method.

Chapter 3 presents databases and the proposed methodology for RR and HR ex-

traction using FBSE-EWT method.

Chapter 4 presents results and discussions section. In which,we have presented

results of proposed method and comparison of these results with existing methods.

Chapter 5 presents conclusion of whole work. The directions of future research

work are also provided in this chapter.

1.8 Summary

In this chapter, we have discussed about PPG signals in detail. Spo2, RR, and HR

measurements have been discussed. PPG signal comprises two components. AC com-

ponent shows the behaviour of HR. DC component shows the behavior of RR. A PPG

can be considered as a series of continuous snapshots of the circulatory system with

respect to blood volume, and the character of these snapshots is determined by the

measurement site of the pulse oximeter. We have discussed EMD, EMD-PCA and

other existing techniques to extract RR and HR from PPG signals. Existing methods

used PCA for the selection of significant IMFs. Our goal is to reduce computational

complexity and reduce noise from PPG signals.
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Chapter 2

FBSE, Scale Space, EWT, and

FBSE-EWT

2.1 Introduction

In this chapter, we have discussed about FBSE, scale space, Otsu’s method, and

EWT. We have used scale-space based boundary detection method which works on

the concept of local minima. In scale space method, two local minima have been used

to define a meaningful mode that leads to two long scale-space curves whose length is

greater than a threshold. Threshold value has been determined by Otsu’s method. The

FFT spectrum has been replaced with FBSE spectrum for the estimation of optimal

boundary frequencies and improved wavelet based filter bank has been obtained. The

Littlewood–Paley and Meyer’s wavelets have been used to design EWT filters. FBSE

uses Bessel functions as basis functions, which are damped in nature, this makes FBSE

suitable for non-stationary signal analysis. In Otsu’s method, the selection of threshold

value has been performed based on minimization of within-class variance corresponding

to two groups of pixels which are separated by the thresholding operation.
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2.2 FBSE

Many researches have been carried with FBSE method, few of them are discussed

below.

In [92], authors discussed signal processing based on Fourier-Bessel series expan-

sion. In many situations, representing any signal in terms of samples and predefined

function is not desirable. For example, when parameters of interest are more compact

in frequency domain, a signal may be determined by time domain sample values. Many

practical signals are very redundant, for those signals less number of samples can be

used for low bandwidth. For that purpose different transforms can be used such as

FFT and FBSE.

In [93], authors have been proposed a second-order linear time-varying autoregres-

sive (TVAR) method for electroencephalogram (EEG) parametric representation. The

FBSE coefficients have been used to form a feature vector for EEG signal segmenta-

tion. They found a straightforward model for the parametric representation of the

EEG signals by choosing a appropriate data length. This work has presented the full

technique for estimating model parameters.

In [94], authors have overcome the problem of amplitude and frequency modulation

while analyzing multi component signals, which introduce error while estimation of

the modulation functions. They have used FBSE based discrete energy separation

algorithm for component separation, which lead to accurate estimation of amplitude

envelope and instantaneous frequency for multi component signals.

In [95], a new method has been introduced for time-frequency representation of the

signal, which combines the FBSE with the Wigner–Ville distribution (WVD). Applying

WVD directly to a multi component signal leads to cross terms. The FBSE decomposes

a multi component signal and then, WVD method is applied to components of the

signal for analyzing the time-frequency distribution.

Therefore, FBSE-EWT has been used in this work for PPG decomposition. FBSE

technique has been discussed below in detail.

i) Obtain the spectrum using FBSE method: The FBSE-EWT [96] has been applied

11



in order to obtain sub-bands of PPG signal. In FBSE, the number of coefficients for

spectral representation equal to the length of the discrete signal, whereas spectrum

length is half of the discrete signal in Fourier representation [94, 97–99]. Thus, the

frequency resolution is double for FBSE as compared to Fourier transform. The FBSE-

EWT method also requires less computational complexity than EEMD-PCA method

[85]. FBSE-EWT method has been used to decompose PPG signal x(t) into N sub-

bands as follows: i) Obtain the spectrum using FBSE method: Using zero-order Bessel

functions, the FBSE of x(t) is expressed in the following mathematically as [92, 100–

102]:

x(t) =
H∑

i=1

Ci J0

(
βit
H

)
, t = 0,1, ......,H − 1 (2.1)

where, Ci are known as the FBSE coefficients of x(t) which can be expressed as follows

[102–105]:

Ci =
2

H2(J1(βi))
2

H−1∑
t=0

t x(t)J0

(
βit
H

)
(2.2)

where, the J0(.) and J1(.) functions denote the zero and first order Bessel functions,

respectively. The ascending order positive roots corresponding to zero-order Bessel

function (J0(β) = 0) are represented by βi with i = 1,2, .....,H. Here, order i is corre-

sponding to continuous-time frequency fi (Hz) with the peak value as [92,106,107]:

βi ≈
2π fiH

fs
(2.3)

where βi ≈ βi−1 + π ≈ iπ, fs denotes the sampling frequency, and this expression can

be written as [92,108–110]:

i ≈
2 fiH

fs
(2.4)

Here, i should vary from 1 to H for covering the whole bandwidth of x(t).

2.3 Scale space

In [111], authors has detected boundaries in Fourier spectrum by finding local max-

ima but in real time signal, Fourier support has failed to detect accurate boundaries.
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Authors have normalized the spectrum between 0 to π. Then, they have calculated

all the local maxima and detected boundary in between them. This task is effective

when spectrum consists distinct modes. The problem in this method [112] is, it de-

tects boundary equidistance to two successive maxima. An easy way of avoiding this

scenario is by keeping the lowest minima in that segment.

When we look at the spectrum profile of a signal in which a lot of energy is concen-

trated with lots of local maxima but in the same mode. To eliminate this situation, the

logarithm must be used to remove the global trend of the analyzed spectrum before

the detection task. This method is called global trend removing [112]. In this section,

scale space method has been discussed in detail.

Witkin [113] and Koenderink’s [114] methodologies for obtaining a multi-scale rep-

resentation is by inserting an original signal into a family of derived signals. The

parameter m denotes the scale parameter, which describes the current scale level.

For a discrete signal x(n), the scale-space representation can be achieved by evaluat-

ing the x(n) convolution with Gaussian kernel, which can be mathematically expressed

as [115–117]:

δ(h,m) =
P∑

n=−P

x(h − n)z(n; m) (2.5)

where, z(n; t) = 1√
2πm

e
−n2

2m , P = K
√

m + 1 with 3 6 K 6 6, and m is a scale parameter.

Here, the number of minima in the scale-space plane reduces if the scale parameter

(γ =
√

m
m0
, γ = 1,2, ...γmaximum) rises, and no new minima will be appeared. Let N0 is

the total number of initial minima then for each initial minima Gi produces a curve

Ki of length Bi in the scale-space plane. Here, the value of i varies from 1 to N0. The

length (integer) Bi can be mathematically expressed as [118–120]:

Bi = maximum

{
γ

the ith minimum exists

}
(2.6)

The meaningful modes using this concept can be defined in the histogram as follows:

Two local minima have been used to define a meaningful mode that leads to two long

scale-space curves Ki whose length is greater than a threshold T . Thus, the optimal

value of T is required in order to obtain the scale-space curves with a length higher than
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the T . The Otsu’s [121,122] technique has been utilized here for the determination of T

and meaningful modes have been extracted. In Otsu’s method [121,123], the selection

of T has been performed based on minimization of within-class variance corresponding

to two groups of pixels which are separated by the thresholding operation.

2.3.1 Otsu’s method

Otsu’s method [121,123] is described as follows:

Variance is a measure of region’s homogeneity (i.e. low variance between areas with

low uniformity). Otsu’s technique chooses the threshold by minimizing the within-class

variance of the two groups of pixels, which is separated by the thresholding operator.

In next section, we have discussed in detail to determine the threshold value. In this

method, mean and variance have been used to find threshold value.

Means and variances

Consider the histogram with a gray level L (i.e. Pi is a standardized frequency of i for

each gray level value). If the threshold has been set to T , the usual fraction of pixels

to be classified as a background and object can be given as follows [121,123]:

qb(T) =
T∑

i=1

Pi

q0(T) =
L∑

i=T+1

Pi

(2.7)

where, qb(T) + q0(T) = 1. The gray mean value of background and object pixels is

expressed as follows [121,124,125]:

µb(T) =
∑T

i=1 iPi∑T
i=1 Pi

=
1

qb(T)

T∑
i=1

iPi

µ0(T) =
∑L

i=1+T iPi∑L
i=1+T Pi

=
1

q0(T)

L∑
i=1+T

iPi

(2.8)
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The mean gray-level value over the whole image (grand mean) is expressed as follows

[121,126,127]:

µ =

∑L
i=1 iPi∑L
i=1 Pi

=

L∑
i=1

iPi (2.9)

In the whole image, the mean value in gray level is expressed as follows [121,123,128]:

σb(T)2 =
∑T

i=1(i − µb)
2Pi∑T

i=1 Pi
=

1

qb(T)

T∑
i=1

(i − µb)
2Pi

σ0(T)2 =
∑L

i=1+T (i − µ0)
2Pi∑L

i=1+T Pi
=

1

q0(T)

L∑
i=1+T

(i − µ0)2Pi

(2.10)

The variance of the entire image is expressed as follows [121,129,130]:

σ2 =

L∑
i=1

(i − µ)2Pi (2.11)

Within-class variance and between-class variance

The variance σ can be expressed as follows [121,123,131]:

σ2 = qb(T)σb(T)2 + q0(T)σ0(T)2 + qb(T)(µb(T) − µ)2 + q0(T)(µ0(T) − µ)2

= σW (T)2 + σB(T)2
(2.12)

where, σW (T)2 and σB(T)2 has been specified as within-class variance and between-class

variance, respectively.

Determining the threshold

As σ does not rely in its complete variability on T , the T that minimizes σW (T)2 will

be T that maximizes σB(T)2 σB(T)2 can be rewritten as follows [121,132]:

σB
2 =
[µ(T) − µqB(T)]2

qB(T)q0(T)
(2.13)

where µT =
∑T

i=1 iPi and that maximizes σB
2 will be the threshold T .
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2.4 Empirical wavelet transform

EWT is a process of signal decomposition with adaptiveness in the process by using

modes. EWT [111] is developed by the Jerome Gilles in 1998 motivated from EMD

proposed by Huang et al. [133]. The process of the EWT is performed in the following

way:

1. The frequency components of the signal are computed using Fourier transform

(FT).

2. The Spectrum is segmented into N continuous segments centred around Wn by

assuming Fourier spectrum in [0, π].

3. The wavelet and scaling function are related to every segment in the form of

band pass filter functions. The segmentation provides the scheme flexibility as

per the signal analysis.

For each obtained segment, the wavelet and empirical scaling functions have been de-

signed as band pass filters. The Littlewood–Paley and Meyer’s wavelets have been used

to design these filters [111, 120, 134, 135]. The mathematical expressions of empirical

scaling and wavelet functions in frequency domain are as follows [111,136,137]:

λi(W) =


1 , if |W | ≤ (1 − µ)Wi .

cos
[
πσ(µ,Wi)

2

]
, if (1 − µ)Wi ≤ |W | ≤ (1 + µ)Wi .

0 ,otherwise.

(2.14)

ϑi(W) =



1 , if (1 + µ)Wi ≤ |W | ≤ (1 − µ)Wi+1.

cos
[
πσ(µ,Wi+1)

2

]
, if (1 − µ)Wi+1 ≤ |W | ≤ (1 + µ)Wi+1.

sin
[
πσ(µ,Wi)

2

]
, if (1 − µ)Wi ≤ |W | ≤ (1 + µ)Wi .

0 ,otherwise

(2.15)
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Where σ(µ,Wi) = φ

[
(|W |−(1−µ)Wi)

2µWi

]
and φ(n) is an arbitrary function defined as [111,

138–140],

φ(n) =


0 , if n ≤ 0.

φ(n) + φ(1 − n),∀ n ∈ [01].

1 , if n ≥ 1.

(2.16)

The condition of tight frame for µ is expressed as follows [100,111,141]:

µ < minimumi

(
Wi+1 −Wi

Wi+1 +Wi

)
(2.17)

Afterward, to obtain the approximation and detail coefficients, inner product has

been applied to the wavelets and scaling function with analyzed signal, which are

mathematically expressed as [94,111,142,143],

χM,ϑ(i, t) =
∫

M(τ)ϑi(τ − t)dτ (2.18)

χM,λ(0, t) =
∫

M(τ)λ1(τ − t)dτ (2.19)

Where, the detail coefficients are represented as χM,ϑ(i, t) for ith oscillatory level and

approximation coefficients are represented as χM,λ(0, t). Finally, the reconstruction of

these sub-band signals can be expressed as follows [111,134,144]:

f0(t) = χM,λ(0, t) ∗ λ1(t) (2.20)

fi(t) = χM,ϑ(i, t) ∗ ϑi(t) (2.21)

Where, symbol (∗) represents convolution operation. In equations 2.20 and 2.21, ap-

proximate sub-band signal represented as f0(t) and detail sub-band signal represented

as fi(t) of ith level.
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2.5 FBSE-EWT method

In the proposed method, The FBSE is used in order to obtain the frequency spectrum

of the analyzed signal. The FFT based spectrum is not used in the EWT method for

the boundary detection and spectrum segmentation purpose. FBSE coefficients are

useful for the spectral analysis of non-stationary signals because of the nonstationary

nature of Bessel functions. It has been observed that FBSE spectrum has compact

representation as compared to conventional Fourier representation and avoids win-

dowing for spectral representation. Thereafter, scale-space based boundary detection

approach was applied to find meaningful modes based on that we have found bound-

aries and to segment the FBSE spectrum which result in improved EWT based filter

bank and sub-band signals are obtained. The mechanism of EWT is based on the

formation of adaptive wavelet-based filters. The wavelet-based filters provide support

to the spectrum information location of the analysed signal. FBSE-EWT method has

been depicted in Fig. 2.1.

Figure 2.1: FBSE-EWT method.
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2.6 Summary

In this chapter, FBSE, scale-space, Otsu’s method, and EWT have been discussed

briefly. In FBSE method, Bessel functions have been used as bases. Because of Bessel’s

non-stationary nature, FBSE coefficients are helpful for the spectral assessment of non-

stationary signals. In FBSE, the number of coefficients for spectral representation

equal to the length of the discrete signal, whereas spectrum length is half of the

discrete signal in Fourier representation [100, 145]. Thus, the frequency resolution is

double for FBSE as compared to FT. Scale-space method has been used for spectrum

segmentation. In scale space method, two local minima have been used to define a

meaningful mode that leads to two long scale-space curves whose length is greater

than a threshold. Threshold value has been determined by Otsu’s method. The

selection of threshold value has been performed based on minimization of within-class

variance corresponding to two groups of pixels which are separated by the thresholding

operation. After that, EWT has been discussed. In EWT, the wavelet and empirical

scaling functions have been designed as band-pass filters and the Littlewood–Paley

and Meyer’s wavelets have been used to design these filters.
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Chapter 3

Datasets and Proposed Method

3.1 Introduction

In this chapter, we have discussed about MIMIC and capnobase databases and pro-

posed method in detail. 310 and 632 epochs have been used from MIMIC and cap-

nobase databases, respectively. FBSE has been used for frequency spectrum represen-

tation. Then, scale-space method has been used for boundary detection. After that,

EWT based filter bank has been used for the extraction of sub-bands. In the pro-

posed method, FBSE-EWT method has been used to extract RR and HR. Only first

and second sub-bands have information about respiratory and heart activity. Using

this method, we have reduced computationally complexity of existing methods. In

this chapter, Whisker’s plot, Pearson’s plot, Bland-Altman plot and RMSE have been

used for performance evaluation to compare with existing methods.

3.2 Datasets

We have used publicly available two independent datasets: MIMIC and capnobase

datasets for measuring the effectiveness of the suggested approach in this method.
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3.2.1 MIMIC database

The MIMIC dataset [146] is available online which consists of 72 simultaneously

recorded PPG, respiratory, blood pressure, and electrocardiogram (ECG) signals.

Sampling frequency for these signals is 125 Hz. In our method, we have compared

RR extracted from PPG signals with reference RR derived from the respiratory sig-

nal. The main purpose of using this database is that this database has simultaneous

recorded PPG and respiratory signals which help us in verifying the results. In this

work, we have manually selected 310 epochs of 30 seconds duration from simultane-

ously recorded respiratory and PPG signals.

3.2.2 Capnobase database

The capnobase database [147], is another publicly available data set which also con-

sists simultaneously recorded respiratory, ECG, and PPG signals. These signals are

recorded from 29 children and 13 adults at the time of routine anesthesia and elective

surgery in St. Paul’s Hospital and British Columbia Children’s Hospital, respectively

[88,148]. S/5 Collect software (Datex-Ohmeda, Finland) has been used for the record-

ing of this database and sampling frequency of these signals is 300 Hz [88]. In this

work, we have used 632 epochs of 30 seconds duration obtained with simultaneously

recorded respiratory and PPG signals.

3.3 Proposed method

In this chapter, we have explained our proposed a method for analysing PPG signals.

The block diagram of the proposed method FBSE-EWT in order to obtain RR and

HR from PPG signals has been depicted in Fig. 3.1. The analyzed signal’s frequency

spectrum has been obtained using FBSE technique in the proposed technique. The

spectrum based on FT has not been used to detect boundaries and segment the spec-

trum. The FBSE coefficients are helpful for the spectral assessment of nonstationary

signals due to use of Bessel functions which are nonstationary in nature. Compared

with the standard Fourier representation, FBSE spectrum has been found to be com-
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pact and avoids windowing for spectral representation as compared to FT based repre-

sentation. Therefore, scale-space based boundary detection approach has been applied

to segment the FBSE spectrum. After that, EWT based filter bank has been used for

the extraction of sub-bands. The EWT mechanism is based on the development of

adaptive wavelet filters [149].

Figure 3.1: FBSE-EWT technique for extracting RR and HR from PPG Signal
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3.3.1 Decomposition of PPG signal using FBSE-EWT

The FBSE-EWT [96] has been applied in order to obtain sub-bands of PPG signal.

In FBSE, the number of coefficients for spectral representation equal to the length of

the discrete signal, whereas spectrum length is half of the discrete signal in Fourier

representation [94]. Thus, the frequency resolution is double for FBSE as compared to

Fourier transform. The FBSE-EWT method also requires less computational complex-

ity than EEMD-PCA method [85]. FBSE-EWT method has been used to decompose

PPG signal x(t) into N sub-bands as follows:

Step 1: Obtain the spectrum using FBSE method.

Step 2: Segmentation of FBSE spectrum.

Step 3: Obtain sub-bands.

3.3.2 Selection of first sub-band and second sub-band

For 2 to 18 years old young adults and children, the normal range of RR and HR are

8 to 45 breaths/min and 45 to 145 beats/min, respectively. In FBSE-EWT method,

Gaussian filter is used for regularization purpose. This filter reduces noise from the

spectrum of signal. Therefore, we have got only first sub-band and second sub-band

of each epoch is within the range 0.05-0.75Hz and 0.75-2.5Hz, respectively. Hence, we

have only considered first sub-band (sub-band1) and second sub-band (sub-band2) for

further processing and other sub-bands have been rejected out.

3.3.3 Extraction of RR and HR

Since the first and second sub-bands of each epoch expressed the respiratory and

cardiac information then FBSE has been utilized on the first and second sub-bands of

each epoch to extract frequency ( fRR and fHR) and then it was converted to RR and

HR using following mathematical expression [89]:

RR = fRR × 60 (breaths/min) (3.1)

HR = fHR × 60 (beats/min) (3.2)
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We have calculated reference RR and HR manually from the reference respiratory

and ECG signals from MIMIC and capnobase databases. For reference RR and HR

calculation, we have selected data length of 30 seconds from respiratory and ECG

signals, respectively. After that, we have applied FBSE to calculate the dominant

frequency, frequency at which highest peak has obtained in magnitude spectrum.

3.4 Performance evaluation

3.4.1 Pearson’s correlation coefficient

The covariance of two variables P and U is defined as [150]:

Cov(P,U) = E(PU) − E(P)E(U) (3.3)

We can standardize it by separating it from each variable by standard deviation.

This leads to a coefficient known as the Pearson correlation coefficient (PCC). PCC is

the most commonly recognized measure of dependence since the information popula-

tion can be calculated by as follows [150].

ρ(P,U) =
Cov(P,U)
σPσU

(3.4)

where, σ denotes standard deviation. PCC (ρ) is a linear dependency measurement

between two variables P and U . The ρ coefficient ranges from −1 ≤ ρ ≤ +1.

The correlation of Pearson is significantly affected by outliers, unfair variations,

normality, and linearity.

3.4.2 Box-Whisker plot

A box plot is the easy way of representing numeric groups through the five summaries

of numbers, like the least observation, lower quartile (Q1), median quartile (Q2), upper

quartile (Q3), and the largest observation. This plot is used for the evaluation of the

information symmetry. A box Whiskers plot [151] has a central box separated by a
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line with two lines from the box.The size of the centralized box shows the extent of the

bulk of the information while the whisker length demonstrates how long the tails are

stretched. The length of the track has no specific significance; without influencing its

visual effect the track can be produced quite narrow. The median sample is presented

in the box as a row. The whiskers are of the same length and the amount of extreme

information points is distributed equally on each part of the track, if the distribution

is symmetric, then the column is broken in equal halves by the average.

3.4.3 Bland-Altman plot

The Bland-Altman plot [152, 153] (difference plot) is a graphic technique to compare

two measurement methods. The difference between the two databases is compared

to the averages of the two databases in that graphical method. Alternatively, if this

technique is a reference, the differences may be compared to one of the two techniques.

The horizontal lines are drawn at the mean and at the contract boundaries identi-

fied as the mean plus and minus 1.96 times the normal difference.

3.4.4 Root mean square error (RMSE)

We have measured accuracy of proposed method using root mean square error. RMSE

has been calculated for each subject. Equation 3.5 given below describes RMSE.

RMSE =

√√√
1

T

T∑
b=1

[K(b) − N(b)]2 (3.5)

where, K(b) and N(b) represent the median of reference rate and estimated rate re-

spectively for bth epoch and T is the total number of epochs.
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3.5 Overview of FBSE-EWT technique for extract-

ing RR and HR from PPG signal with wave-

forms

We have shown FBSE-EWT base approach for extraction HR and RR from PPG signal

for a epoch.

Step 1: PPG signals which have been shown in Figs. 3.2 and 3.3 for first and

second epochs.
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Figure 3.2: PPG signal of first epoch.
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Figure 3.3: PPG signal of second epoch.

Step 2: Magnitude spectrum using FBSE and spectrum segmentation using scale-
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space which have been shown for both epochs in Figs. 3.4 and 3.5
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Figure 3.4: Segmented spectrum of first epoch using FBSE.
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Figure 3.5: Segmented spectrum of second epoch using FBSE.

Step 3: Sub-bands of first and second epochs which have been shown in Figs. 3.6

and 3.7.
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Figure 3.6: Sub-bands of first epoch.
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Figure 3.7: Sub-bands of second epoch.

Step 4: Extraction of sub-band1 and sub-band2 using EWT method which are

shown in Figs. 3.8 and 3.9 for both epochs, respectively.
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Figure 3.8: First epoch (a) Sub-band1 (b) Sub-band2.
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Figure 3.9: Second epoch (a) Sub-band1 (b) Sub-band2.
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Step 5: RR and HR extraction by using FBSE

For first epoch, RR and HR are 18.7506 breaths/min and 114.75 beats/min, re-

spectively.

For second epoch, RR and HR are 16.7508 breaths/min and 112.752 beats/min,

respectively.

3.6 Summary

In this work, we have used capnobase and MIMIC databases which are available online

and we have proposed FBSE-EWT based approach for the extraction of HR and RR

from PPG signals. In, the proposed method FBSE has been used in place of FFT

because of higher resolution. After that, scale-space technique has been used for

boundary detection of frequency spectrum. Then, EWT based filter bank has been

used for sub-bands extraction. In the proposed method, Gaussian filter is used to

reduce noise from frequency spectrum. In the proposed method, box-Whisker’s plot,

Bland-Altman’s plot has been used to discuss the results. The proposed method has

provided good performance in terms of RMSE and Pearson’s correlation as compared

to EEMD-PCA, EMD-PCA, and other methods.
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Chapter 4

Results and Discussion

In this chapter, we have discussed results of proposed method. Box Whisker’s plot,

Pearson’s plot, Bland-Altman plot, and RMSEs have been discussed using figures and

tables. We have shown box Whisker’s plot, Pearson’s plot, and Bland-Altman plot for

both databases. Using RMSEs, results have been compared with existing techniques.

We have shown box-whisker plot of HR and RR rate extracted from the reference

signal and PPG signal in Figs. 4.1 - 4.4 for MIMIC and capnobase databases, where

HR(R) and HR(D), RR(R), RR(D) represent reference HR and PPG calculated HR,

reference RR, PPG calculated RR, respectively. We have shown median value for

MIMIC and capnobase databases for RR and HR in Table 4.1 for box plots.

Table 4.1: Median, 1st quartile and 3rd quartile value for reference and PPG calculated
RR and HR for MIMIC and capnobase databases

Database RR-Median(1st quartile, 3rd quartile) HR-Median(1st quartile, 3rd quartile)

MIMICRef 16.89(14.92,18.90) 88.845(108.845,61.9093)

MIMICDerived 16.79(14.72,18.90) 88.8902(108.8156,63.2801)

CapnobaseRef 11.75(9.75,18.75) 101.748(129.765,76.75)

CapnobaseDerived 11.75(10.10,18.75) 101.76(129.765,77.25)

Figs. 4.5 - 4.8 have shown the Pearson scatter plots and Bland-Altman plots.

The obtained values of PCC for RR estimation are 0.99 and 0.99 for MIMIC and

capnobase databases, respectively. We have achieved Pearson correlation nearly 1 for

both datasets so accuracy is good for both datasets. For HR estimation, PCC are 0.86

and 0.88 for MIMIC and capnobase databases, respectively. We have shown Pearson
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Figure 4.1: Box-Whiskers plot of reference and FBSE-EWT based PPG derived RR
for MIMIC dataset.
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Figure 4.2: Box-Whiskers plot of reference and FBSE-EWT based PPG derived RR
for capnobase dataset.
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Figure 4.3: Box-Whiskers plot of reference and FBSE-EWT based PPG derived HR
for MIMIC dataset.
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Figure 4.4: Box-Whiskers plot of reference and FBSE-EWT based PPG derived HR
for capnobase dataset.
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correlation in Table 4.2. In Figs. 4.5 and 4.6, these plots show RR bias of -0.03 and

0.02 along with limits of agreement of -0.56 to 0.49 and -1.7 to 1.7 for MIMIC and

capnobase databases, respectively. In Figs. 4.7 and 4.8, these plots show HR bias of

0.88 and 0.02 along with limits of agreement of -4.4 to 6.2 and -2.2 to 2.3 for MIMIC

and capnobase databases, respectively.
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Figure 4.5: Pearson scatter plot and Bland-Altman plot for comparison of derived RR
to the reference RR for MIMIC dataset.

Table 4.2: RMS error as median, PCC of PPG derived RR and HR with reference RR
and HR for MIMIC and capnobase datasets

Dataset RMS Error PCC

MIMICRR 0.48549 0.99

CapnobaseRR 0.92545 0.99

MIMICHR 2.39632 0.86

CapnobaseHR 1.444 0.88

In previous work [85], first authors decomposed signal and extracted IMFs. After

that, they have applied PCA on IMFs. In our proposed method, we have extracted
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Figure 4.6: Pearson scatter plot and Bland-Altman plot for comparison of derived RR
to the reference RR for capnobase dataset.
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Figure 4.7: Pearson scatter plot and Bland-Altman plot for comparison of derived HR
to the reference HR for MIMIC dataset.

sub-bands after application of FBSE-EWT method and we found that only first sub-

band and second sub-band are in the range of respiration frequency (0.05-0.75 Hz)

and cardiac frequency (0.75-2.5Hz) for each epoch, respectively. After that, we have

applied FBSE on that first and second sub-band in order to obtain RR and HR. We

have compared our obtained results with existing methods in Table 4.3. In Table 4.3,
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Figure 4.8: Pearson scatter plot and Bland-Altman plot for comparison of derived HR
to the reference HR for capnobase dataset.

we have shown our results for both databases, while most of the other techniques have

used the single database for validating their algorithms. It should be noted that the

data length used in other existing methods is not same for the validation purpose.

Hence, we have compared the results of RMSE with data length for each method in

Table 4.3. The obtained RMSEs of RR for FBSE-EWT based method are 0.48549

and 0.92545 for MIMIC and capnobase databases, respectively, which are the lowest

among the other existing methods. The obtained RMSEs of HR for FBSE-EWT based

method are 2.39632 and 1.444 for MIMIC and capnobase databases, respectively. In

our proposed work, the first sub-band and second sub-band fall in the range of 0.05-0.75

Hz and 0.75-2.5Hz for both databases, respectively. Hence, we have used first sub-band

and second sub-band for the extraction of RR and HR in our proposed method. It

should be noted that if more than one sub-band fall in the range of 0.05-0.75 Hz

and 0.75-2.5 Hz for the extraction of RR and HR from other databases. Then, our

proposed method will require merging of these sub-bands which fall in the frequency

range 0.05-0.75 Hz or 0.75-2.5 Hz and mean-frequency parameter [154] can be used
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Table 4.3: Comparison of RMSE for PPG derived RR and HR with other existing
methods. RMSE represented as median (1st quartile, 3rd quartile)

Methods and databases RR-RMSE (breaths/min) HR-RMSE (beats/min) Data length (sec)

FBSE-EWT (proposed), MIMIC database 0.48549(0.21556,1.3409) 2.39632(1.25,3.4576) 30

FBSE-EWT (proposed), capnobase database 0.92545(0.22349,2.2735) 1.444(0.5,1.542) 30

EEMD-PCA [85], MIMIC database 0.89(0,1.78) 0.57(0.30,0.71) 30

EEMD-PCA [85], capnobase database 2.77(0.50,5.9) 0.69(0.54,1.10) 30

Correntropy spectral density (CSD) [148],
0.95(0.27,6.20) 0.76(0.34,1.45) 120

capnobase database
Power spectral density (PSD) [148],

3.18(1.20,11.3) 0.58(0.21,1.17) 120
capnobase database
Smart fusion [88], capnobase database 1.56(0.60,3.15) n/a 32

EMD [83], capnobase database 3.5(1.1,11) 0.35(0.2,0.59) 60

due to narrow band nature of these sub-bands in order to determine the sub-bands

corresponding to this range.
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Chapter 5

Conclusions and Future work

5.1 Conclusions

We have presented a new FBSE-EWT method for extraction of HR and RR from PPG

signals. FBSE spectrum is used for optimum border frequency estimation. Afterwards,

the scale-spaced technique for detecting the spectrum limits has been employed. After

that, EWT based filter bank has been applied for the extraction of sub-bands. In

previous techniques, most of the authors have used single database to validate their

technique. In proposed technique, both databases have been used to validate proposed

algorithm. Most of the authors have used long duration dataset but we have used short

data length which is equal to 30 seconds.

5.2 Future work

In this thesis, we have proposed a method to estimate RR and HR from PPG signals.

Most of the methods have been used long data length greater than 30 seconds for the

estimation of RR from PPG signals. However, our proposed method has applied on

both databases for short data length which is equal to 30 seconds. In the proposed

method there is no need for filtering of IMFs and no need of grouping of IMFs. Hence,

the proposed method requires less computational complexity. Furthermore, the pro-

posed method requires testing on large number of PPG signal databases before it to
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be used in healthcare. In future, we can apply this method on very short data length

less than 30 seconds for the estimation of RR and HR which further reduces the com-

putational complexity of the proposed method. The proposed method can be modified

for other biomedical signals analysis and classification.
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