
Novel Hardware Architecture for Deep

Learning and Computer Vision

M.Tech. Thesis

By

VISHAL BHARTIY

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

INDORE
JUNE 2019



(This page is intentionally left blank)



Novel Hardware Architecture for Deep

Learning and Computer Vision

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

Master of Technology

Communications and Signal Processing

by

VISHAL BHARTIY

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

INDORE

JUNE 2019

III



(This page is intentionally left blank)



INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION
I hereby certify that the work which is being presented in the thesis entitled

NOVEL HARDWARE ARCHITECTURE FOR DEEP LEARNING AND COM-
PUTER VISION in the partial fulfillment of the requirements for the award of the
degree of MASTER OF TECHNOLOGY and submitted in the DISCIPLINE OF
ELECTRICAL ENGINEERING, Indian Institute of Technology Indore, is an au-
thentic record of my own work carried out during the time period from July, 2017 to
June, 2019 under the supervision of Dr. Santosh Kumar Vivhvakarma, Associate Pro-
fessor, Indian Institute of Technology Indore.

The matter presented in this thesis has not been submitted by me for the award
of any other degree of this or any other institute.

Signature of the student with date
VISHAL BHARTIY

This is to certify that the above statement made by the candidate is correct to the
best of my/our knowledge.

Signature of the Supervisor of
M.Tech. thesis # 1 (with date)

Dr. Santosh Kumar Vishvakarma

Signature of the Supervisor of
M.Tech. thesis # 2 (with date)

VISHAL BHARTIY has successfully given his M.Tech. Oral Examination
held on 1st July, 2019.

Signature(s) of Supervisor(s) of M.Tech. thesis Convener, DPGC

Date: Date:

Signature of PSPC Member # 1 Signature of PSPC Member # 2

Date: Date:

V



(This page is intentionally left blank)



ACKNOWLEDGEMENTS

I would like to sincerely thank Dr. Santosh Kumar Vishvakarma, my thesis supervisor

and advisor for the last two years of my M.Tech. He has been very supportive since

day one and I am grateful to him for devoting his time in guiding and motivating me to

make the right decision when overwhelmed with options, or in moments of distress. I

am thankful to him for providing me with the opportunities that shaped my M.Tech to

be as it is today. I would also like to thank Ph.D. scholars Gopal Raut for his technical

guidance in the first year. The discussions with my batchmates, especially, Pallab, Anil,

Abhishek, Himanshu, Richa and Sarika were enriching.

I sincerely acknowledge the support of IIT Indore and MHRD for supporting my M.Tech.

by providing lab equipment and facilities, and TA scholarship, respectively.

Last but not the least, my work would not have been possible without the encouragement

of my parents, whose tremendous support helped me stay positive and overcome the

worst of hurdles. To them, I will forever be grateful.

VII



(This page is intentionally left blank)



DEDICATION

Dedicated to my parents

IX



(This page is intentionally left blank)



Abstract

An on-chip Neural Network Accelerator is becoming more popular in recent

years as they have proved to be the one of best algorithms for various important detec-

tion and classification problem in image, speech and many more never ending applica-

tions in intelligent system design. While their on-chip presence is desired, their heavy

computational demand stands still as barrier in making the next big steps in System on

Chip design. Although hardware accelerators for artificial neural networks are often

not very complex designs yet a tradition design approach have not been very fruitful as

they often end up taking large silicon area and power. Researchers have indicated that

fixed point processing element can result in significant reduction in resources utiliza-

tion with a rather negligible impact on accuracy. An artificial neural network (ANN)

is very popular for a many problems that are very difficult for the other computational

model like image processing, pattern recognition, prediction and classification. The

use of hardware architectures can have the more parallel structure of ANNs for desire

optimize performance or reduce the cost of the implementation, particularly for appli-

cations demanding high parallel computation. However, many unique disadvantages

is with the hardware platforms such as limitations with high data precision which has

relation to hardware cost of the necessary computation, and the reconfigurability in the

hardware implementation compared to software. Many error resilient applications can

be approximated using multi-layer perceptron (MLP) with insignificant degradation in

output quality on hardware platforms. Field programmable Gate Arrays (FPGAs) and

Application Specification Integrated Circuit (ASICs), have edge over Graphics Process-

ing Units (GPUs) on cost. This work presents a high in literature, the challenge is to

investigate an ANN architecture, especially in pattern recognition with less hardware

and high performance
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Chapter 1

Introduction

The artificial intelligence is the intelligence possessed by machines to demonstrate the

cognitive abilities which are comparable to the intelligence displayed by humans as well

as animals. The field was founded on the fact that human intelligence can be precisely

defined and hence, machines can simulate these definitions. Before understanding the

concept of artificial intelligence, its necessary to understand the concept of intelligence

in general

1.1 Intelligence

Human intelligence has been the main focus of researchers because of the higher cog-

nitive abilities and high level of self-awareness. This includes the capability to learn,

form concepts, understand, reasoning, pattern recognition, planning, problem-solving,

language for communication. The study of intelligence is not free from controversy

and researchers to have disputes over the certainty of possession of intelligence in an-

imals and plants. Many researchers have produced enough evidence that animals also

possess some kind of intelligence. One evidence is the presence of g factor in non-

humans. G factor is a psychometric parameter which can be estimated in both humans

and non-humans. Since g factor contributes directly to the standard IQ primitives and

hence there is enough evidence in support of different kinds of intelligence. Human

Intelligence is the set of mental qualities which are the ability to learn from experi-
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ence, to adapt a new situation, understanding and handling of new concepts and ability

to use them to manipulate the environment. Historically, Psychologists have different

opinions about the definition of intelligence, which mainly fell into two categories one

being one’s ability to think abstract and others being able to learn and answer correctly

to questions. In modern psychology, it is well agreed that the ability to adapt to the

environment is the fundamental key to understand intelligence. Theories of intelligence

are mainly classified based on cognition and the structured process by which the mind

functions, based on this there are four theories of intelligence

1.1.1 Psychometric Theory of Human Intelligence

It is a structured theory to understand the intelligence and uses the composite data from

mental tests such as analogies, classification, series completion etc. Because psychome-

tric theory relies on the data from mental testes and thus is quantifiable. The weakness

in one area may be the cause of strong abilities in another area e.g., one’s vulnerability

in mathematics is the cause of their strong reasoning and vice versa

1.1.2 Cognitive Theory of Human Intelligence

When evaluating test scores of psychometric test, one can reach a misleading conclu-

sion. For example, if a person doesn’t have a strong vocabulary, then he/she may not

perform well in verbal reasoning test, and hence the evaluation score will indicate that

the person has weak reasoning abilities and therefore the wrong conclusion of his/her

intelligence. Thus cognitive theory states that intelligence is a mental operation per-

formed on representation or images of scenarios and abstract operations performed on

those images to conclude.

1.1.3 Cognitive contextual theory of human Intelligence

This theory was first proposed by Howard Gardner and explained the existence of mul-

tiple – intelligence. According to this theory there exists eight separate intelligence also

knows as ‘spheres of intelligence’ namely linguistics, musical, logical-mathematical,
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spatial, bodily-kinesthetic, interpersonal, intrapersonal, naturalistic. Any individual

possesses some fraction of each sphere and cognitive profile for each is unique. Thus it

is impossible to quantify one’s intelligence with data like IQ scores.

1.1.4 Biological Theories of Human Intelligence

Biological theory also known as reductionism theory states that [1] understanding of

intelligence is only possible by understanding of its biological basis. Biological theory

mainly falls in three catagories namely Hemispheric , Brain wave studies, Blood Flow

studies

1.2 Artificial Intelligence

The artificial intelligence aims to design the “intelligent agents”. The intelligent agents

are defined as any system that possess abilities such as perception of their environment

and plan and executed action such that it optimizes its chance of succeeding.

The research in the artificial intelligence have the areas that study the following traits:

1) Learning: One of the simplest form of learning is based on trails and error.

Machine or program try random approaches to solve a problem and when it finds

correct solution it memories it. One example of this kind of learning is a computer

program which solves mate-in-one chess problem. Program tries random moves

until it succeeds and then it stores that solution so that it can use it next time. This

kind of learning is useful when ai encounters problem that it has learned in past

but fails to generalize [1]. Implementation generalization in ai it’s a hard problem.

In generalization, ai most be able to apply past experience to solve problems of

new kind citeMichie1994. For example, by learning past form of a verb “learn”

ai should be able to find past form of “jump” by concluding that it need to add

“ed” at the end.

2) Reasoning:The reasoning is to draw meaningful conclusions from a set of mean-

ingful expressions through an argument or situation. Reasoning is clarified as de-
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ductive or inductive. The basic difference between these two kinds is that in case

of deductive reasoning if the premises is true that means the conclusions based

upon the premises will also be true while in inductive reasoning, the conclusion

developed over a true premise need not be true. Therefore, deductive reasoning is

used in fields such as mathematics and logic where bigger conclusions are drawn

based on some axioms and rules. On the other hand, inductive reasoning is used

in science and engineering because models defined in present may be overruled

by new concepts in future.

3) Problem Solving:Problem solving in contrast with ai may be is termed as sys-

tematic set of actions from a range of meaningful action to achieve a defined goal.

Special purpose and general purpose are the two kinds of problem solving tech-

niques in ai. Special purpose techniques are used to solve a particular problem

where in general purpose technique, ai try to perform step by step actions from a

well defined set in order to reduced the difference between it’s current state and

desired solution

4) Perception:In perception, environment it’s scanned by the means of various sen-

sory organs which can be real or artificial and the meaningful conclusion is made

from finding the correlation amount various objects present. Also the percep-

tion is influenced by the angle of observation, intensity of illumination within the

scene and the contrast with surroundings. Examples of these includes deep neural

neural networks which have shown significant impact in making visual sensing

meaningful to help autonomous vehicle and robots to roam around.

5) Language:Language is a system of spoken, manual or written symbols by which

human beings expresses themselves. According to Henry Sweet, an English pho-

netician and language scholar, “Language is the expression of ideas by means

of speech sounds combined into words. Words are combined into sentence, this

combination answering to the ideas into thoughts” Several computer program are

able to responds in human language but that doesn’t mean the program actually

understands language. It’s just that the program has reached a level of sophistica-

tion that it’s response in human Language is indistinguishable from human.

6) Ability to Move Objects: AI is widely used in manipulation of objects such as
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robotic arms [2],industrial controllers etc.Proper planning is used to break down

motion into several small primitives [3].Smaller the primitives, more complicated

motion planning as indicated by Maravec’s Pardox [4]

1.2.1 Methods and Goals in AI

1) The neats and the scruffiest:Logic in ai was introduced by John McCarthy in

late 50s and early 60s [5]. Neat and scruffy are the two different types of ai

researches. Neats consider that ai solutions should be clear, elegant and have

correctness while scruffies believe that computational complexity makes intelli-

gence too complicated to have any logic. Gerald Sussman said that” using precise

language to describe inherently imprecise concepts doesn’t make them any more

precise”.In 1975 , Minsky [6] described that scruffy ai researchers are using con-

structs which are” common sense” . These constructs are not logical but fits

well in contrast with everything we think and see. He named these structures as

“frames” which would be adopted many years later in object oriented program-

ming as the idea of inheritance

2) Symbolic VS Connectionist Approach:These are two approaches that are Top-

to down and Bottom-up approaches. In symbolism, the top to down approach,

the researcher tries to achieve the mimic intelligence by exploring the cognition,

and they do not explore the underlying neural structure. On the other hand, Con-

nectionist tries bottom-up approach, and they design artificial neural Networks to

explore the intelligence

3) Strong AI and Weak or Applied AI: Philosophy of strong AI was first Intro-

duced in 1980 by John Searle. Strong AI research aims to build the machines that

have thinking ability which can not be distinguished from that of human. Strong

AI is an ambitious and challenging domain. Weak AI is the feasible applied AI

in commercial uses of intelligent system design.
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1.2.2 Turing Test

Turing test was developed by Alan Turing, the father of Computer science in 1950 to

determine whether a machine is capable of thinking like a human or not. Turing test

involves three participants who is an interrogator, a computer, and a human foil. The

interrogating person asks questions to the machine through keyboard or mouse etc. and

machine must try to impose as if it is a human. The interrogator is allowed to ask

any kind of question, and human foil must help the interrogator to make the correct

decision. If at the end of the test machine succeeds to impose as a human, then if passes

the Turing test. Untill now no AI machine or program have been able to pass the turing

test without any dilution.

1.3 Early Milestones: The AI Winter

In 1940 from the invention of the programmable digital computer, scientists inspired to

design an electronic brain. Philosophers tried to explain human’s process of thinking

as the manipulation of symbols. During 1956, at Dartmouth College, an AI workshop

was founded. Many of the aspiring scientists were part of that, and millions of dollars

were funded. But their anticipation for the time required to produce some benchmark

progress was greatly underestimated. In 1970s , researchers ran into some very funda-

mental limits and they were able to overcome it by the next decades. These problems

were:

1) Limited computer power: It was argued that computers are still too weak in

memory and processing speed to possess any kind of intelligence. One of the

examples of barrier in Computing power was Ross Quillian’s work on natural

language processing. He was successful in his research, but memory could only

demonstrate twenty words. Modern computer vision application requires 10000

to 1000000 MIPS, which was nowhere near possible in that time. Even the

fastest supercomputer Cray-1 in 1976 was able to perform only a maximum of

130 MIPS.
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2) Combinatorial complexity:Progressing on cook-levin theorem, Richard Karp,

in 1972, demonstrated that there are many problems that can only be solved in

exponential time complexity and the optimum solution for this problem will re-

quire an unfeasible amount of time.

3) Lower Databases:Many AI applications will require a huge amount of data of

the same kind and the ai application must be about to identify at least some hidden

constructs of it. Researchers soon learned that this would require a huge amount

of data which was not possible back in the 70s.

4) Moravec’s paradox:AI researchers encountered a very fundamental problem in

the area of vision and robotics that it is comparatively easy for computers to solve

the complex mathematical and geometrical problem than to solve a basic problem

of vision such as recognition of face or crossing obstacles without bumping into

them.

5) Frame and Qualification Problems:John McCarthy and other AI researchers

who used logic concluded that it is not possible to present ordinary deductions

which involve planning or reasoning without changing the underlying logic itself.

Hence they developed new logics such as non-monotonic logic, which are capable

of capturing and representing defeasible inferences which allow reasoners to draw

a tentative conclusion.

1.4 Machine Learning

Machine learning (ML) is the process by which a software or machine learns to process

a task without instructions sets. ML is used on a set of data known as “training data”

and draws a mathematical models for it. Based on this model it detects the new input

and produces the appropriate output Arthur Samuel in 1959. the ML is best suited for

the task which are so complex and diverse that instructions code can not be written for

image classification if we want to classify the image of say few animals, how can we

write image code to classify a cat image from a dog image that can have infinitely large

number of postures if you have a cat picture in which it is only partially visible say it
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is partially under the blanket? So the software must learn the underlying relationship

among the different picture and draw a mathematical model which can classify a new cat

pic from the pics of other animals or objects.The idea to learn from training data set fall

broadly under two categories one is called supervised learning and other is unsupervised

learning. Apart from that many researchers uses some hybrid of the two methods.

Below we shall have a closer look at the two methods:

1.4.1 Supervised learning

In SL algorithm works by building mathematical models of the data that contains some

label for both input and desired output. Thus optimization is applied for given input

output sets. This kind of learning is used for a wide range of classifiers, ranking systems,

image detections etc.

1.4.2 Unsupervised learning

In unsupervised learning, algorithm will optimizes the mathematical models by using

the unlabelled data i.e., only input is available. Data clusters analysis is an important

application of unsupervised learning.

ML is done on some model which can be a software or a hardware and software

(HW/SW) co-design. These models are trained through training data for an specified

task. Below is some detailed description of these algorithms

1.4.3 Artificial Neural networks

Artificial Neural Networks (ANN) are biological brain inspired neural networks comes

under the bottom-up or connectionism approach of AI. An artificial Neural Networks

is a connected network of Artificial Neurons. Each connection through neuron called a

synaptic connection transmits signal from one artificial neuron to others. Each neural

synaptic connection has some weight that gets optimized during the training of data.

So when training if finished over a large data set, we have a highly optimized model
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of ANN which have great accuracy. Convolution Neural Networks- Convolution neural

networks (CNN) are similar to ANN but are capable of doing advanced classification.

Unlike ANN, CNN are not brain inspired algorithm. CNN are inspired by visual cortex

of mammals and how the brain detects images through vision. CNN models are the

hottest topics these days since it’s win of ImageNet challenge in 2012 [7].

1.4.4 Support Vector Machines

Support Vector Machines (SVM) are the type of ML models which represent training

data into an N dimensional hyperspace and tries to find out the optimum plan that divide

the space space into two. Thus new data set falls under either of the two sides other the

decision space.

1.4.5 Bayesian Networks

A Bayesian network is a network that is used to draw a probabilistic model of the

possible outcomes through a directed acyclic graph. Bayesian Networks which mod-

els sequences of one type are called dynamic Bayesian networks and generalization of

Bayesian Networks are influence diagrams.

These were the few of many Machine learning algorithms. The discussion of ML algo-

rithms are not limited to these algorithms. Many more robust algorithms are there these

days which are widely used by computer scientists which are out of the scope of this

thesis.

Our discussion will move towards the implementation of these algorithms on the plat-

forms which doesn’t have massive GPU power. Development of hardware architecture

to execute these algorithms over an ASIC and FPGA is the primary research goal so that

they can be used in a huge variety of application in the domain of intelligent system de-

sign. In the next section we will discuss about the so called ML accelerators which is

term used to describe the use of optimum hardware to accelerate these computationally

heavy algorithms.
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1.5 ML Accelerators

ML accelerators are hardware which process or co process the Machine learning algo-

rithms especially Neural Networks. Earlier attempts of ML accelerators were making

the Use of Digital signal processing to do pixel to pixel multiplication and accumula-

tion. Acceleration on computers are achieved by graphic processing units or GPUs but

since the rise of CNN more dedicated chips are being developed. Following is a brief

discussion of different approaches of ML accelerators.

1.5.1 Heterogeneous Computing Platforms

Heterogeneous Computing refers to a platform on which several dedicated hardware are

integrated together for example a CPU coupled with GPU and DSPs.A FPGA embedded

with processor over a single chip.Since the approach of ANN or CNN is similar to that

of image processing, the basic computational unit such as GPUs which are designed

to perform image and video processing are very efficient to implementation of these

algorithms. But this comes with a lot of trade-off such as cost and area and space. We

simply can not use GPU as coprocessor for a cellphone SoC thus industry is working

on working ASIC to integrate them on their platform.

1.5.2 ASICs and FPGA

ASIC and FPGA are the obvious choice in the research field of ML accelerators. FPGA

are widely used for various servers and other usefully applications. In addition of this

modern FPGA have processor embedded within those chips and thus allowing a SW-

HW based co-design. ASICs which have been developed by Intel such as Nervana

and Movidius. NVIDIA has a division working in developing Hardware for Smart

Vehicles. The following chapters contains discussion of the Novel Hardware developed

for Artificial Neural Networks for FPGA or ASICs.
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Chapter 2

FPGA-based Fully Configurable Layer

Multiplexed Artificial Neural Network

Accelerator

Artificial neural network (ANN) is one of the most prominent machine learning tech-

niques and have a wide variety of applications. Despite many decades of research

on high-performance ANN accelerator, still their heavy computational demand has re-

quired specialized architecture for computational acceleration. In this Chapter we dis-

cuss fully multiplexed ANN acceleration aimed to reduce resource requirement and

high computational demand. The efficient look-up-table based hardware implementa-

tion of nonlinear activation function with approximation scheme is also proposed which

have lesser area and delay compared to state-of-the-art. The on-chip memory with op-

timized technique is used to catch input features and weight/bias which reduces the ex-

ternal memory bandwidth requirement. The memory data-flow is dynamically adjusted

to attain high computational throughput for an individual neuron in the architecture.

The FPGA-based ANN core is proposed featuring configurable and layer multiplexed

to reduce inter layer complexity on hardware Zybo board Xilinx Zynq xc7z010clg400

SoC, and running at the 100MHz clock frequency. Proposed ANN architecture is 4

times more power efficient and nearly 0.5 time resources utilized compared to the con-

ventional fully connected ANN technique.
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2.1 Introduction

An artificial neural network has become a very popular algorithm in pattern recogni-

tion since the recent evolution of computer hardware, which fulfilled the high com-

putational power requirement of learning algorithms[8]. One reason is that ANN has

the edge over other prediction techniques is its capability to learn hidden relationship

in heteroscedastic data i.e. highly volatile data with non-constant variance[9]. ANN

is a robust algorithm when it comes to learn from examples, high-level parallelism,

and robustness to noise. This makes ANN a popular choice for image processing and

feature learning, financial forecasting, speech and biomedical signal processing, bio-

metrics, structural and constructional engineering, industry risk monitoring[10]. Due

to its diverse application, ANN it’s applied on various non-linear detection problems

some of which as lane detection, pattern recognition, fault detection and monitoring in

the industry[11][12] and so on. The platform like, who generally do not have access to

high-performance computers are often run by dedicated hardware.

The FPGA based approach has a flexible trade-off among power, reconfigurability, and

processing speed and therefore they are highly flexible and have shorter development

time than ASIC[13]. Moreover, the developers have high control over new generation

FPGA’s SoC which has dedicated hard or soft microprocessor hosts. The implementing

of digital circuits using conventional digital design procedure, tend to take more chip

area on FPGA than the semi-custom or full custom ASIC design approach[14]. Smart

vehicle often requires high computational power while in real-time image processing

on the image provided by car cameras. This type of applications often involves fea-

ture learning and opens up a need for on-chip accelerators[15] which can provide fast

multiplication and accumulation operation on steaming pixels as well as a learning fea-

ture. The features provided by FPGA have the edge over other platforms such as CPU,

GPU on cost in addition efficiency, flexibility to reuse and reconfigure to optimize per-

formance for any specific type of application[16]. Overall, High level of parallel data

processing and easy data access to reduce the overall processing time and its low-cost,

FPGA becomes a natural choice over other platforms. High level of parallel data pro-

cessing and easy data access to reduce the overall processing time and its low-cost,
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FPGA becomes a natural choice over other platforms for ANN implementaation.

The FPGA provides a flexible way to implement artificial neural networks However, its

require more chip area due to their low packing density. Furthermore, FPGA based im-

plementation of ANN requires an appropriate number system to represent the weights

and biases[17]. While designing ANN accelerator on FPGA attention must be paid to

precision, clock frequency, parallelism and limitation to the configuration. The 8-bit,

16-bit, 32-bit or 64-bit floating and fixed point format is used as data width. Whereas,

floating point format will lose more Chip area but provides improved precision while

Fixed point is used when resources are limited and some degree of error can be toler-

ated[18]. In order have a good design of ANN, the approach should be divided into two

parts: Basic ANN core logic and control unit. The core logic is for storing and process-

ing the computation. The weight/bias can be stored on Block RAM, distributed FPGA

memory or even external RAM if present in sufficient amount[19]. The FPGA features,

full control on reiterative learning is achieved and modification in the weights and biases

as well as architecture. Back-propagation is also easily achieved on FPGA[20].

Approximate computing research area has evolved a lot due to the constant increase in

the areas of interest demanding systems be designed with limited silicon area and over-

all less energy consumption but with tolerable errors[21]. The proposed ANN architec-

ture utilities the reconfigurability power of FPGA and is made fully reconfigurable i.e.

number of layers in ANN, type of layer and number of neurons in each layer can be ad-

equately controlled by as per application desire. To maximize the utilization density of

8-bit operands, the LUT units could be added, this in turns optimize the Xilinx on-chip

utilization, this remarkably increases the performance of Xilinx FPGA[22]. Each neu-

ron of ANN having multiplication and accumulation circuit which usually takes most of

the chip area. As a number of neuron increases, the chip area increase and this problem

is more dominant in case of high-resolution image feature processing. The proposed

ANN core unit includes activation functionality and its LUT based realization.

Recent research on FPGA based ANN, many architeture have been proposed [23]

[24][25]. As the parallel structure of FPGAs matches the topologies of ANNs, their

are quite limitations for the implementation of ANNs. While the ANN architecture

is researched well enough, the MAC unit it’s still untouched. This is because the de-
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velopment of ANN has been researched in the software domain but in FPGA based

implementation problem of high energy, expenses arise. The key to resolve this prob-

lem is to have an efficient data representation along with the configurable feature of

MAC. MAC generally takes three inputs which are input features, weights & biases

from its designated data paths. Its contribution to FPGA Based ANN architecture is

summarized in the following three points:

• We confirm that ANN architecture based on approximation techniques are better

when efficient energy consumption is taken into account.

• Optimize configurable MAC unit is designed and presented for layers with dif-

ferent feature.

• Energy Efficient LUT Based peace-wise linear approximate Activation function.

2.2 System Architecture

The many accelerator design have been proposed and implemented based on GPU,

ASIC and FPGA. However General purposes processors are not cost-effective for deep

neural network due to large parallel computation. Thus, among these FPGA based

approach is the best option and FPGA accelerator have the many advantage like good

performance, fast implementation, energy efficient and its reconfigurability[26]. The

detail system overview and on-chip memory architecture of the ANN coprocessor is

described below.

2.2.1 System Overview

System architecture comprises of two main parts i.e FPGA for real-time implemen-

tation and host computer for synthesis & training. Conceptual block level embedded

architecture of ANN accelerator is shown in Fig. 2.1. An on-chip BRAM is used

for weight and bias storage which gives the maximum throughput. Whereas through

BRAM interface, host will read and write the weight/bias memories to the address. The

trained weight/bias constants and image features that have to be classified are feed to
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Figure 2.1: The architecture of the ANN co-processor. The co-processor uses the
ANN core(programmable logic) on-chip BRAM memory banks are used to cache
weights/biases. The computational engine carries out the computation of input data
with trained constants using MAC.

the co-processor. However, for more computational efficiency, the input image data is

converted to the 8-bit fixed point format. The proposed ANN architecture is fully pa-

rameterizable; Define parameters in Hardware Description Language (HDL) code can

modify according to the user. The coprocessor is implemented using fix-point sign-

magnitude representation. The embedded application used DRAM to process the al-

gorithm. The block automation is run by FSM code in ’C’ programing with Xilinx

SDK tool and hardware implementation is done using Vivado. We have done prepro-

cessing on image to reduce the pixel size and used fix-point representation for efficient

computation.
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The configurable ANN core is realized in programmable logic(PL) part of Zynq device.

The input and output side of ANN core are connected to the ARM host processing

system(PS)[27] of Zynq device through AXI interface protocols. The on-chip register

is used to convert serial to parallel and vice versa data interface in the intermediate

stage. The computational operation are performed in MAC block and the weight/bias

for real-time computation will access from the BRAM by the MAC unit. The control

logic is about memory access architecture, finite state machine based (FSM) controlling

logic and an internal signal of the programmable logic data path. The programmable

ANN core is access by the on-chip processor through AXI interface and process to be

performed. The accelerator currently supports a maximum image size of 14×14, 8-bit

serial transmission to the logic core. To process and compress the image to the specified

image size, encoder is used in processing system(PS) side. The multiplexing to reduce

interlayer connection is the unique feature of proposed architecture and additionally

approximation technique. The neural network algorithm was modeled using Xilinx

System Generator for learning and its realization in Xilinx FPGA. The configurable

ANN accelerator can be optimized with a different number of layer.

In supervised learning, for each training input pattern, the network is presented with the

desired output. The proposed ANN core is verified for the popular Modified National

Institute of Standards and Technology (MNIST) database. The key finding of our explo-

ration is that, the deep neural networks can be trained using low-precision fixed-point

arithmetic, provided that the stochastic rounding scheme is applied while operating on

fixed-point numbers. For the digital implementation of neural network, the precision

of the various blocks is an important part. The output resolution will depend on word

length precision. However, effective hardware implementation can be obtained by opti-

mizing the resolution for arithmetic representations.

2.2.2 Efficient Micro-architecture for Memory Addressing

The reconfigurable architecture is dependant on the design vaiable parameter which are

upgradeable and extend the useful architeture. The proposed ANN core, being highly

reconfigurable and generates weight/bias memory architecture, the memory-based FSM

implemented. The address space for weight and bias memory is unique BRAM inter-
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Figure 2.2: BRAM address for weight and bias memory to be access by the individual
neuron

connect address. This address also contains sub-address of several memory locations

which does not correspond to any physical implementation. Therefore, to avoid read or

write operation on these unimplemented addresses the following schemes are consid-

ered:

• The total number of layers in ANN = P

• The number of neurons or biases in lth layer = N(l)

• Number of inputs to the lth layer = K(l)

The format for weight/bias memory address selection for the individual neuron is de-

scribed in Fig. 2.2. First log2(P) bits represents the layer of which weight and bias is

to be address. Next bit is called select bit, ’0’ corresponds to the following bits repre-

sent weight address whereas ’1’ correspond to the following bits are representing bias

address. After select bit, rest of a bits correspond to weight and bias address RAM.

Bits required for representing layer, select bit and RAM address are represented in Fig.

2.2(a). RAM Address length for lth layer is given by

R_addr(l)= log2N(l) + log2K(l)
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Address length for biases of lth layer is B_addr(l)= log2N(l) similarly the address

length for weight W (n, i) of lth layer corresponding to ith input of nth neuron of the

layer is W_addr(l) = log2K(l) The detailed description of bit count by taking in account

number of layers, weights and neurons is represent in Fig. 2.2(b). Total address length

to access the weight/bias by the co-processor can be expressed as:

Addr(l) = log2P +1+ max[R_addr(l)]

The address representation for reconfigurable architwecture is dependent on parame-

ter specification used in ANN core. The algorithm 1 expressing the footstep for the

selection of weight and bias memory address.

Algorithm 1 On-chip memory architecture for Weight and Bias
Input: In: Gave the BRAM memory address
Output: Out: Reading data from the Input address location

1: Choose log2P bits to indicate a layer in little endian format
2: For a bias choose select bit as one

1) find out the address length required to represent the biases of lth layer by
using:

B_addr(l) = log2N(l)

2) Use bits B_addr(l)−1 down to 0 to address a bias

3: For a weight W (n, i) make select bit as

1) Find weight address length and RAM address length by using following
equations:

W_addr(l) = log2K(l)
R_addr(l) = log2N(l)+ log2K(l)

2) Address using nth neuron using bits R_addr(l)−1 down to W_addr(l)

3) Address the ith input of nth neuron using rest of the bits from W_addr(l)−1
down to 0

2.3 Hardware Implementation of Configurable ANN

A multilayer perceptron consists of neurons in fully connected layers, which are input

and output layers and the layers in between may contains several number of hidden
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layers. Deeper the network, better accuracy with compromising the power efficiency.

Therefore in our proposed design, the maximum number of layers and number of neuron

are user-defined parameters. The proposed ANN architecture is shown in Fig. 2.3

described, the layer1 is conventional which having parallel neuron for the computation

whereas in layer2 is with a single neuron. The layer2 is having a unique architecture

with a single neuron and work as a serialize intermediate between the two conventional

layers. The configurable ANN core layer can be increase and re-synthesize for the deep

feature application. For digital implementation of neural network the precision of the

various blocks is an important part. However effective hardware implementation can be

obtained by optimizing the resolution for arithmetic representations.

2.3.1 Proposed ANN Implementation

ANNs are computationally expensive for data-intensive applications, which may con-

tain a large amount of neurons and several number of parameters. Consequently, a

significant amount of research effort has been spent to implement hardware based neu-

ral networks in order to achieve high energy-efficiency. To overcome the above issues

proposed a configurable ANN accelerator which have two types of layer. The layer1 is

an array of neuron and layer2 is an implemented using single neuron as shown in Fig.

2.3. The second multiplexed layer with single neuron can be reused for multiple neu-

rons of the previous layer and it advantage is better resource utilization. However, its

latency depends on the number of input from the privious layer. The fully connectred

and parallel neuron architecture in layer1 is the most common technique at it is used in

proposed architecture which receives input serially using AXI interface. The method

is adapted from the serialized and Deserialized application to minimize internal traf-

fic[23]. In addition to running back-propagation, this phase selects a network topology

that balances between accuracy and efficiency.

The designed hardware neural network can satisfy the given output constraints with

notable energy gain. Our first experiment is conducted to compare original energy con-

sumptions on memory and computation, and to evaluate the energy benefits of layer

multiplexed ANN against the fully connected implementation. Here we want to em-

phasise that it is necessary to consider both memory and computation to get better
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Figure 2.3: Configurable multiplexed 4 layer ANN core that can be used for pattern
recognition. It consist of array of neuron layer1/3 and intermediate to serialize, layer
multiplexed single neurons layer2. A real-world ANN can have several layer depends
on pattern extraction

energy efficiency on FPGA based neural network designs. The fixed-point format in

place of conventional floating-point representation comes with two advantages, one is

that fixed point computational units are usually fast and consume less hardware and

power resources as compared to floating point format and second advantages is mem-

ory footprint will be reduced thus allowing larger models in given memory capacity.

This dramatically increases data level parallelism and also smaller logic of fixed point

circuits will allow more instantiation for the given area.

The weight and bias memories are stored in BRAM through BRAM port and it com-

municates with ANN core through on-chip processor. The architecture of single neuron

used in the proposed ANN core is shown in Fig. 4.2. ANN architecture is comprised

of intensive MACs units were multiplication and accumulation operation is done and

followed non-linear transformations. This non-linear transformation present along with

MAC unit at each neuron. An optimized LUT for our approx piece-wise linear sigmoid

activation function is implemented.

2.3.2 Dynamic Multiply and Accumulate (MAC) Engine

The fixed point MAC is designed, as floating point MAC have a high complexity and

power consumption. The limitation with fixed-point based system cannot express the
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Figure 2.4: Neuron connection in architecture, xi, wi, b, and f (.) are the input feature,
weight, bias, non-linear function

wide range of variable. We have exploited the basic MAC unit presented in previous

works to have leverage for the operations in ANN algorithm. Modification in MAC

includes constant data path from BRAM and MUX to elaborate control of arithmetic

for learning and run time processing as illustrated in Fig.2.5. The bit length of the

internal MAC paths is depends on the amount of data transmission between on-chip

BRAM and MAC. Moreover, we could exploit fixed-point bit which cover the total

dynamic range of ANN computing. From the previous research analysis[18], 16-bit

data width for weight /bias are sufficient to express the inherent accuracy. To obtain the

minimum size of 8-bit activation function, the MAC unit representation is described as:

al
j = σ(∑ω

l
jkal−1

k +bl
j) (2.1)

Where,

k corresponds to overall neurons in (l-1)th layer. To formulate this equation in matrix

form, we assume a weight matrix ω l corresponding to each layer l. Elements of weight

matrix ω l are weights to the inputs of neurons from lth layer with jth row and kth

column.

When input feature enters to MAC and multiplier enable is active, multiplication is

calculated first. Applying heterogeneous data path to fix-point MAC proposed a config-

urable MAC to design ANN core. As described in Fig. 2.5, configurable MAC is used
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Figure 2.5: The proposed configurable fixed-point MACs with date representation
schema.

for multiplication between the input feature and weight constant. A crucial advantage

here is that the MAC will be used in both types of the layer which are fully connected

and multiplexed. The multiplexed architecture greatly reduced power and resources

utilization than the conventional technique.

The fixed point MAC is designed, as floating point MAC have a high complexity and

power consumption. The limitation with fixed-point based system cannot express the

wide range of variable. The Proposed MAC designed with minimum bit resolution with

higher accuracy with lowest power & area utilization. Fig. 2.6 shows the internal data

path with bit resolution by the configurable MAC architecture. The simple but very

useful principle of multiplexing is used to minimize the interlayer connections. An

optimized configurable MAC is design to suitable for both type of layers. The working

of the proposed design is in two states control by the load line. The load signal is to

configure the data flow path that responsible to set or reset the accumulator i.e. the

accumulator data path for bias constant.

The accumulator and multiplier resisters is depends on the input data width. However

for design purpose we used 8-bit feature input data-width and 16-bit for weight and

Bias. The accumulator registers is taken in such a way that to secure overflow bit. We

have take eight neuron in the layer1 accordingly 3-bits is used to avoid overflow. The

internal MAC paths bit width is admissible to the BRAM data access by MAC unit. We

have design MAC with internal data paths which supports to both layer features. To

specify controls of arithmetic, constant registers and MUXes are used in configurable
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Figure 2.6: The operation of proposed configurable fixed-point MAC in FPGAs. Fig.(a)
shows the operation in multiplexed single neuron in layer2 and Fig.(b) shows the oper-
ation of MAC in array of neuron in Layer1.

MAC design. Fig. 2.6(a) shows the architecture of MAC used by the ANN core in

multiplexed single neuron layer2 and it fully control the parallel data in to serial flow

with the help of adder tree to minimize the interlayer complex connection. The accu-

mulator register is gating controlled by result out instruction to send serialized data to

the array of next layer neurons. Fig. 2.6(b) explains the active data path in layer1, array

of neurons, by multiplication and addition with bias. It is used conventionally for fully

connected layer.

2.3.3 Design of LUT based Sigmoid Activation Function(AF)

Sigmoid Activation Function is a significant part of ANN literature due to its most

accurate non-linear mapping among others. But when it comes to implementation of
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sigmoid in FPGA, it becomes a difficult task. Solutions of the non linear problem are

subject to fast computing ability of neural network.

y = f (x) =
1

1+ e−x (2.2)

The Eq. 2.2 with some modification based on the PWL approximation is realized and

derived in Algorithm. 2. The implementation is best done by appropriate methods to re-

duced Gate Delay and chip area. The idea is to have approximate a non-linear activation

function into a lookup table based piecewise linear (PWL) approximate model.

In piecewise linear approximation, the non-linear model is divided into several approx-

imate linear segments. The approximation induces error in all neural networks. Re-

searches done in[28] and[29] shows that non-linear activation function increase learn-

ing performance and provide higher accuracy. However, implementation of non-linear

activation function will lead to high silicon area consumption and reduced the speed

of operation. Therefore by using a non-linear activation function in designing ANN

hardware will lower the area consumption and improves speed.

The piecewise nonlinear approximation is similar to the PWL method with the differ-

ence that nonlinear approximation is used in each segment. This method is used in[30]

to approximate the sigmoid function and scheme 4 of[31] is proposed for approximating

both sigmoid and hyperbolic tangent.
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Table 2.1: LUT based Activation Function Implementation

Features/Resources Utilization Avalable
LUT 1 17600
FF 1 35200

BRAM 0.5 60

Algorithm 2 LUT Based piecewise linear Sigmoid AF (8-bit)

Input: In: Integer range (2n−1) downto 0;
Output: Out: Encoded N-bit output

1: The excitation function is highly nonlinear, unique procedure needed to obtain an
LUT of minimum size. Let n be the input bit Activation function, will having 2n

number of LUT values,

2: Let x1 & x2 be the lower and upper limits of the input range and the range of output
(y) is between 2−N and 1−2−N , It is found that x1=+ln(2n−1) and x2=−ln(2n−1)

3: To produce change in quantize output (∆y) equals to 2−n for the log-sigmoid acti-
vation function, the change in input (∆x) i.e Gap between the two input points for
N-bit LUTs.

(∆x) =
2× Input Margin

2n (2.3)

4: Generation of Look-Up-Table (Slope at the origin=0.5).

for index In −2n−1 to 2n−1-1 do

y <=
2.0

1.0+ exp
(
−4.0×Slop
InputRange

)
×x
−1 (2.4)

x := x+ input scale(∆x); . . . add scale value
end for

2.3.4 Benchmark Methodology for Hardware implementation

We have used the popular mixed national institute of standard (MNIST) handwritten

digit recognition dataset [32] in test and verification of our hardware design as well as

in simulation model. For hardware implementation reduced bit width as well as approx-

imate computation, is usually adopted for efficient design implementation. Reduced bit

width incorporates truncation of bits, rounding off an energy efficient output of each op-

erator. Proposed ANN core feature is a piecewise linear log-sigmoid activation function

and truncation of product obtained by multiplication. The accurate simulation model is

used to verify the architecture with specified bit width, approximate customized hard-

ware.

27



Table 2.2: Resource Utilization for XC7Z010clg400

Features/Resources Utilization Available Utilization%
LUT 4071 17600 23.13

LUT-RAM 591 6000 9.90
FF 4591 35200 13.50

BRAM 2 60 3.33

2.3.5 Hardware Evaluation and Verification of the Proposed Accel-

erator

A throughput of every clock cycle produced the valid Output data. The input data is

sent serially to the on-chip reconfigurable ANN core. If data are transmitted to the

ANN accelerator with validation key, the core used weight and bias memory which

contained in the memory block(BRAM). The fix-point format is used to performed

computation and achieved good performance. In the proposed architecture overflow

issues are avoided by saturating the result to the most positive or negative values when

needed to reduce the bit length.

The FPGA-based approach in [23],[33] proposed an FPGA-based reconfigurable accel-

erator, which provides higher performance compared to a CPU-based software imple-

mentation of ANN. The previous architecture implementation performance results are

compared with proposed architecture by introducing the layer multiplexing technique

to serialized intermediate data. The output at the core is generated with a throughput of

each clock cycle. The check-bit (validation) is asserted for every clock cycle with valid

output. The internal layer signal and intermediate resister are sized to obviate overflow.

The proposed ANN core has been validated through simulation and FPGA base runtime

application.

2.4 Results and Discussion

FPGA platform environment (Zybo xc7z010clg400) is used to implement proposed

ANN architecture. The Xilinx Zybo (xc7z010clg400) FPGA contains 4,400 logic slices,

each logic cell include four 6-input LUTs and 8 flip-flops additionally it provide 240

28



Table 2.3: Dynamic Power Comparision for FPGA based 4 layer ANN Accelerator

Dynamic Power
Layer Multiplexed

Power (mW)
Fully Connected

Power (mW)
Saving

power %
Clock 18 30 40
Signal 7 39 82
Logic 6 17 64

BRAM 1 2 50
Total 32 88 63

KB of BRAM.

The resource utilization by the proposed configurable 4-layer(8-1-8-10) ANNs is shown

in table2.3 as it mapped into the xc7z010clg400 FPGA device. The clock frequency is

optimize and operates up to 100MHz and worst pulse width slack for four layer network

is 3.75ns. The resource utilization by the architecture is increases proportionally with

deeper neural network. It is possible to implement more deeper ANN network i.e to

integrate larger nodes in the same SoC by reducing the bit width of weight and bias

memory. For instance we experience the 8-bit width of weight and bias instead of 16-

bit in order to get more deeper network. If we use lower precision(9-bit) for weight

and bias width more deeper network can be achievable in the same resources but in the

previous research[18], [34] state that lower than 16-bit width is not appropriate for the

weight and bias precision in terms of accuracy.

The implemented design suitable for computing and get maximum throughput, the im-

age size is used 14× 14 = 196 pixel image which achieved by processing the original

image. By comparing the results of the proposed architecture with the conventional

fully connected ANN for the same layer, we have the following observation: The en-

ergy consumption of implementation configurable NN core is 01% compare to overall

embedded application. The table 2.2 describes the details about resources utilization by

the proposed ANN core. To save the power and get the maximum accuracy we used

lowest bit precision in layer multiplexed ANN. However it gives 63% power saving by

compare to fully connected with same precision architecture shown in Table 2.3.
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2.5 Conclusion

The configurable, high performance and highly scalable FPGA-based layer multiplexed

ANN architecture have been implemented which more efficient to accelerate the feed-

forward neural network. The proposed accelerator using a full pipeline architecture

dramatically accelerates the batch learning. In addition, the proposed pipeline archi-

tecture realize multilayer network with the minimum resource. To stored weight/bias

we used on-chip BRAM memory, and thereby improved computational throughput and

power efficiency unlike DRAM used by previous configurable ANN.

To further enhance the architecture performance, we also apply a low power approxi-

mation and LUT based technique. The proposed FPGA device based architecture im-

plemented and operates at 100MHz moreover for each clock gets the output at the ANN

core. The proposed architecture is 4 times more power efficient 0.5 times resource uti-

lized as a comparison to the conventional approach. By using on-chip BRAM memory

to store weight and bias and thereby improved computational throughput and power

efficiency unlike DRAM used by previous state-of-the-art.
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Chapter 3

Efficient Low-Precision CORDIC

algorithm for Hardware

Implementation of Artificial Neural

Network

An efficient FPGA or ASIC based hardware implementation of deep neural networks

face the challenge of limited chip area, and therefore an area efficient architecture is re-

quired to fully harness the capacity of parallel processing of FPGA and ASIC in contrast

to general purpose processors. In literature, the challenges are to investigate a general-

ized mathematical model and architecture for neuron block in an ANN implementation.

We have proposed a generalized architecture for neuron implementation based on the

shift-and-add algorithm, collectively known as Coordinate Rotation Digital Computer

(CORDIC) algorithm, having a wide range of application. The look-up-table (LUT)

based approach with a shift-and-add algorithm is an alternative technique for poly-

nomial approximation and implementation. This chapter explains how the CORDIC

algorithm works and investigates the power and area efficient versatile computational

unit for ANN application. The derived model proves that for the hyperbolic tangent

function required a double pseudo-rotation and additional subtraction compares to the

sigmoid function. In this reference versatile approach based optimized sigmoid activa-

tion function is implemented. The function is synthesized and validate on Xilinx zynq
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Figure 3.1: Artificial single neuron model architecture

XC7Z010clg400 SoC and result reveals the minimum resources utilization.

3.1 Introduction

Many researchers developed attractive hardware architecture for real-time inference of

deep neural network. An artificial neural network (ANN) is very popular for many

problems that are very difficult for the other computational model like image process-

ing, pattern recognition, prediction, and classification [35]. The use of hardware archi-

tectures gives a more parallel structure of ANNs for the desire to optimize performance

or reduce the cost of the implementation, particularly for applications demanding high

parallel computation. Consequently, a significant amount of research effort has been

spent on the hardware implementation of neural networks to achieve high energy and

area efficient. However, many unique disadvantages are with the hardware platforms

such as limitations with high data precision which has relation to hardware cost of the

necessary computation, and the reconfigurability in the hardware implementation com-

pared to software [15]. The neural network has been implemented using both software

and hardware. However, researchers focused on hardware implementation as it is faster

than the software part.

The implementing of digital circuits using conventional digital design procedure tends

to take more chip area on Field Programmable Gate Arrays (FPGAs) than the semi-

custom or full custom Application Specific Integrated Circuits (ASICs) design ap-

proach [14]. Moreover, it is efficient, flexibility to reuse and reconfigure to optimize

performance for any specific type of application [16]. The main focus of this article

is on accelerating ANN on small-sized FPGAs [36], each neuron contains a compu-
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tational unit having multiply-accumulate (MAC) followed by activation function (AF).

Whereas, each MAC unit is relatively expensive in terms of power and area of hard-

ware floor area (i.e., large numbers of gates) in FPGA and ASIC. The architecture of

the computational unit and type of AF is the choice for design. However, the mostly

“sigmoid” or “squashing” functions are used which compresses an infinite input sig-

nal range to finite output signal range, e.g., [-1, +1]. Research on ANN architecture is

well enough; the MAC unit is still untouched. Many methods are implemented for el-

ementary function evaluation like look-up-table based interpolation [37], CORDIC and

Polynomial approximations.

In many application such as a built-in multiplier or dedicated hardware for sigmoid

function, the CORDIC algorithm is having a good compromise of accuracy versus

speed. The neural network has been implemented on both digital and analog platforms,

but because digital circuits are easy to design, cheaper, and have noise immunity, they

are preferred over analog implementation. For many controllers and FPGAs, logic im-

plementation using the CORDIC algorithm is over four times more efficient [38]. The

size of the LUTs will decide the accuracy of the evaluated function. A CORDIC uses

only adders to compute the result, with the benefit that it can, therefore, be implemented

using relatively basic hardware. The CORDIC algorithm is used especially for trigono-

metric calculation which also can calculate other useful operation such as arithmetic

operation, logarithmic and hyperbolic function calculation, and exponentiation listed

by [39]. The many mathematical functions can be performed on the same hardware

with efficient to reduce gate counts in FPGAs using the CORDIC algorithm.

3.2 Cordic Algorithm Explanation

The CORDIC algorithm is an iterative convergence algorithm that offers effective low-

cost implementation of a all types of complex trigonometric function. A CORDIC

has three inputs, x0, y0, and z0. Depending on the inputs to the CORDIC, various re-

sults can be produced at the outputs xn, yn, and zn. CORDIC can be used to realized

the fast (digital) DSP modules with minimum resources utilization [9]-[11].CORDIC

algorithm is designed in two modes,namely rotation mode and vectoring mode. The
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Figure 3.2: The rotation and pseudo-rotation of a vector of length about an angle with
the origin. The pseudo-rotation is the key idea about the CORDIC circuit for computa-
tion and realization of mathematical functions

vector is rotated through an angle z in rotation mode, where z is decomposed of small

rotating angle.The general equation [40] of CORDIC in rotation mode are as follows.

xi+1 = xi−m · yi ·di ·2−i yi+1 = yi + xi ·di ·2−i

zi+1 = zi−di · tan−12−i zn = z0 + tan−1 (y0/x0)

where di =+1 i f yi ≤ 0 -1 otherwise

The domain of convergence is−99.7◦ < z0 < 99.7◦ because it is the sum of all angles in

the list of Table 4.2. In the rotation mode, the given vector is rotated through an angle h,

where h is decomposed using a finite number of small elementary angles. The CORDIC

rotation and vectoring algorithms having rotation angle between −π/2 and π/2. This

limitation is due to the use of20 for the tangent in the first iteration.m the mode variable,

is included in general equation to realize trigonometric, inverse trigonometric, linear

and hyperbolic functions. Here trigonometric and inverse

trigonometric functions are realized using m = -1. Whereas,linear and hyperbolic func-

tions are realized using m = 0 and 1 respectively.
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Figure 3.3: CORDIC algorithm based proposed architecture for versatile computation

3.3 Exploration of Computational Unit for ANN using

CORDIC algorithm

Each neuron having a computational unit which includes the MAC and activation func-

tion. The multiplications and accumulations are performed in each MAC. Moreover,

multiplier and adder can be implemented with different techniques that are accurate or

approximate depending on the design objective. The objectives are area, power, design

time, reliability, accuracy, etc. The energy and area improvements in operation can be

achieved using the approximation technique. The fixed point Computational Unit/MAC

is designed, as floating point MAC has high complexity and power consumption. The

limitation with the fixed-point based system cannot express the wide range of the vari-

able. Moreover, weight/biased precision selection is one of the important choices in

resource-limited hardware implementation. The MAC operation can be realized using

CORDIC architecture in Linear mode. In linear mode, the mode variable m=0 modifies

the general linear mode equation as follows:

xn = x0 zn = 0

yn = y0 + x0 ∗ z0
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where z0 and y0 represent the corresponding weight and bias value and x0 represents

the input. In Fig. 4.7 shows the input parameters and the look-up-values are stored

in memory. The state machine is needed to generate select signals sel1, sel2 and sel3

to complete the feedback input after each iteration and the counter is incremented and

used for shift operation in next the iteration. The di is generated from the sgn(yi) and

sgn(zi) depending upon whether it is operating on rotation or vectoring mode. The most

significant bit (MSB) will be used to decide the value of signum function which in turn

will decide the whether addition or subtraction should be performed.The multiplier and

accumulator resistors depends on the input data width. Applying heterogeneous data

path to fix-point MAC, the power efficient architeture can be designed using CORDIC

algorithm. Each computational unit is performing their computation update the outputs

from the input in the preceding layer as shown here.

al
j = σ(∑ω

l
jkal−1

k +bl
j) (3.1)

where σ is the squashing function (sigmoid) of computational unit k, corresponds to

overall neurons in (l-1)th layer. To formulate this equation in matrix form, we assume

a weight matrix ω l corresponding to each layer l. Elements of weight matrix ω l are

weights to the inputs of neurons from lth layer with jth row and kth column. The

CORDIC algorithm for multiplication is derived by using a series representation for

weight in the lth layer as shown in Eq. 4.1 as follows:

x j = xk ∗w jk (3.2)

= ω jk ∗
j

∑
i=1

ai ∗2−i (3.3)

=
j

∑
i=1

ω jk ∗ai ∗2−i =
j

∑
i=1

ai ∗ω jk ∗2−i (3.4)

The equation state that x j is composed of a shifted version of weight ω .The unknown

coefficient ai may be found by driving x to zero one bit at a time. If the ith bit of input xk

is non-zero, yi is first right shifted by i bits and added to the current value of x j. When x

has been driven to zero all bits have been examined and x j contains the signed product
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of input vector and weight. The implementation is based on the standard shift and add

multiplication.The calculation is considered for the weight ranges from −1 to +1.

3.4 Activation Function Design Technique

The hardware implement of activation function, various approaches have been pro-

posed. Moreover, these methods are fall in to two categories piecewise linear approx-

imation and Look-up table based approaches [30]. In this work, we consider the four

mostly used approaches to make review concise.

3.4.1 LUTs based implementation by storing function values

The most common method used is look-up tables based hardware implementation of ac-

tivation function. The approximated into discrete values of the function and store in the

LUT. Moreover, LUT implementations required more storage and increasing latency.

3.4.2 LUTs based implementation by storing parameters

The activation function is a continuous function. Instead of storing the function values

directly, this method keeps the function slope and the function intercept in the LUT.

The outlook for implementation is storing function in piecewise with a different slope,

value can be calculated using the equation.

y = kx+ c (3.5)

where k is the slope and c is the function intercept. The output calculation depends on

the above parameters and this approach leads to higher accuracy. However, used data

by the multiplier and adder to calculate the equation needs more storage.
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3.4.3 Approximation in Calculation

The approximation is done in many ways, the exponential function implementation is

expensive but if it is converted into base 2 then efficient to implement. In [41] used the

following a formula to approximate the exponential function.

ex ≈ exp(x) ≈ 21.44x (3.6)

The sigmoid function can be calculated using this approximated function as:

Sigmoid(x) ≈ 1
1+2−1.44x ≈

1
1+ e−1.5x

similarly for tanh function can be calculated using this approximation. Approximation

technique can realized sigmoid and tanh function in single block with different opera-

tion but it requires more clock cycle. Where base-2 calculation and addition/subtraction

required different clock cycle which decreases the overall performance. For the tanh

function required one more clock cycle for an additional block. It takes minimum hard-

ware utilization but has more latency which affects learning period.

3.4.4 Implementation using CORDIC algorithm

The sigmoid function presents a problem for direct hardware implementation since both

the division and exponential operation. The tanh function passes through zero and can

be treated as y = x around to zero unlike to sigmoid function. However, the implemen-

tation of sigmoid function in piece-wise linear (PWL) approximation, the non-linear

model is divided into several approximate linear segments. Research done in [28], [29]

shows that non-linear activation function increases learning performance and provide

higher accuracy. However, hardware implementation of non-linear activation function

will lead to high silicon area consumption and reduced the speed of operation.

The sigmoid or hyperbolic tangent activation function is realized by making mode vari-

able m= -1, and operating in vectoring mode where di will be decided by signum of

yi. The equation for realizing hyperbolic tangent is given by equation of Zn from the

following equation.
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xn = An

√
x2

0− y2
0

yn = 0

zn = z0 + tanh−1(y0/x0)

An = ∏n
√

1−2−2i

The sigmoid function is realized through tan hyperbolic as follows:

sinh(x) =
ex− e−x

2
& cosh(x) =

ex + e−x

2
(3.7)

sinh(x)+ cosh(x) = ex & sinh(x)− cosh(x) = e−x (3.8)

f (x) = tanh(x) =
ex− e−x

ex + e−x (3.9)

g(x) = Sigmoid(x) =
1

1+ e−x =
ex

1+ ex (3.10)

By solving the Equation 3.9 and 3.10, the relation between the tan hyperbolic and sig-

moid is

tanh(x) = 1−2 Sigmoid(−2x) (3.11)

Sigmoid(x) =
1+ tanh(x/2)

2
(3.12)

We should have generalized design for sigmoid function approximation which should

be applicable for a variety of sigmoid function. The tanh function passes through zero

and can be treated as y = x around to zero unlike to sigmoid function [42]. In prin-

ciple, sigmoid and tanh have likely expressive ability, but in practice, sigmoid is just

a activation function with constant. When the output of neuron is restricted [0, 1], the

neuron activation is more likely closed to0.5. The activation range need more satu-

ration with sigmoid than with tanh using the conventional technique [43].However,

the implementation of sigmoid function requires half pseudo-rotation steps compare to

the tan hyperbolic function shown in Equation 3.12.We can conclude that the sigmoid

activation function is the best choice for implementation using the CORDIC algorithm.
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Table 3.1

i
αi = tan−1(2−i)

Degrees Radians

0 45.00 0.7854
1 26.57 0.4636
2 14.04 0.2450
3 7.13 0.1244
4 3.58 0.0624
5 1.79 0.0312
6 0.90 0.0160
7 0.45 0.0080
8 0.22 0.0040
9 0.11 0.0020
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Chapter 4

Low Complexity Approximate

Multiply-Accumulate Unit for

FPGA-Based Artificial Neural

Network Accelerator

Many error resilient applications can be approximated using multi-layer perceptron

(MLP) with insignificant degradation in output quality on hardware platforms. Field

programmable Gate Arrays (FPGAs) and Application specification Integrated Circuit

(ASICs), have edge over Graphics Processing Units (GPUs) on cost. We have dis-

cussed an error resilient MLP by approximation in computation unit. In literature, the

challenge is to investigate an ANN architecture, especially in pattern recognition with

less hardware and high performance. Further, the considerable computational require-

ments stretch the capabilities of even modern computing platforms. Hence, we have

proposed, the power and area efficient novel approximate multiplier and used for ap-

proximating computation unit in the ANN Accelerator. The results are compared with

state-of-the-art available approximate and accurate multipliers used in the neural ac-

celerator. The figure-of-merits of proposed approximate multiplier is of 2.18 times,

however the probability of error is 12.5% only. In this connection, we have used the ap-

proximate technique for tolerable accuracy loss in detection and classification. We have

also used the look-up-table (LUT) based approach to realize the nonlinear activation
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function with approximation scheme with lesser area and delay. Further, the on-chip

memory with optimized technique is being used to access the weight and bias values of

trained ANN network. The design of artificial neural network accelerator is validated

on Xilinx Zynq XC7Z010clg400 SoC, Zybo board at 100 MHz clock frequency.

4.1 Introduction

The main focus of this chapter is on accelerating ANN on small-sized FPGAs, and mit-

igate circuit complexity using approximation in multiplication. In addition we focus on

demonstrating reconfigurable algorithm for BRAM to access the weight and bias. The

target of this application is to minimize the resources utilization and power consump-

tion. Therefore, we design hardware Intellectual Property (IP) core for ANN. The hard-

ware IP core are implemented with Xilinx Vivado, and in multiply-accumulate (MAC)

unit exact multiplier is replace with approximate. In summary, the key contributions of

this work are as follows:

• Design and analysis of the proposed power and area efficient approximate mul-

tiplier to realize the optimized and configurable MAC computation unit used in

ANN accelerator.

• The use of LUT based approach for energy efficient peace-wise linear activation

function implementation helps us to achieve the lesser area of delay.

4.2 Releted Work

ANN are data-flow driven and offer great possibilities to design hardware accelerator

and co-processor for better parallelism. Due to the recent success of deep neural net-

works (DNNs), an ANN for pattern recognition application, the many researcher focus-

ing to accelerate the ANN inference phase using FPGA bases hardware implementation.

Recent research on FPGA based ANN, many architectures have been proposed [44].

The FPGA’s parallel computational architecture matches the topologies of ANNs, even
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their are quite limitations for the ANNs implementation. Furthermore, FPGA based im-

plementation of ANN requires an appropriate number system to represent the weights

and biases i.e. 8-bit, 16-bit, 32-bit or 64-bit floating & fixed point format is used as

data width. However, fixed point is used when resources are limited and some degree

of error can be tolerated [18].

The most typical computational unit in a ANNs is MAC and the hardware implemen-

tation of neural network contain innumerable MAC units. Whereas, each MAC unit

is a relatively expensive in terms of power and area of hardware floor area (i.e., large

numbers of gates) in FPGA and ASIC. Research on ANN architecture is well enough,

the MAC unit is still untouched. Performance of MAC unit contains multiplier and

adder. So, as the multiplier is more complex compare to adder overall performance and

speed of DSP system will determine by the multiplier. The strict need of high precision

for computation, while other parameters is also consider such as hardware complexity,

power dissipation of a design and delay. The application which are error-resilient, ap-

proximate computing are naturally used to achieve great energy and area savings with

minor quality degradation [45]. The approximate arithmetic unit can be employed [21].

The key points to resolve this problem is to have an efficient novel approximate multi-

plier based MAC framework for ANN.

Interesting FPGA implementation schemes, especially using Xilinx FPGAs are de-

scribed in the book edited by Ormandi and Rajapakse [21]. The [46] describes the

usage of dynamic and partial reconfiguration for re-use of chip area on FPGA. Con-

sequently, in FPGAs our primary interest lies in their reconfigurability. Our aim to

transfer the flexibility of parameter (like number of neurons, number of layers, type of

quashing function, etc.) in hardware platform. To be specific, we aim to address some

of these difficulties by developing and implementing a FPGA based implementation of

a ANN with approximate computing. We first characterize the criticality MAC unit un-

der approximation by jointly considering its impact on output and energy consumption,

and then utilize an efficient and effective algorithm for the ANN under a given quality

constraint.
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Figure 4.1: Fully connected efficient artificial neural network (ANN) architecture

4.3 An Architectural Overview

An ANN architecture contains the input, output layer and in between multiple hidden

layers is shown in Fig. 4.1. Each neuron contains a computational unit having MAC

followed by activation function (AF). The set of input signals, within a neural network

transfer from input layer to output layer through multiple hidden layers. The mostly

used ANN architecture is a multi-layered feed-forward network called MLP, i.e., the

nodes (neurons) are dedicated in different layers (like input layer, hidden layers and

output layer). Whereas the information flow is only between adjacent layers [47]. The

architecture of computational unit and types of AF can be used which is application

dependent. However, the mostly “sigmoid” or “squashing” functions is used which is

compress an infinite input signal range to finite output signal range e.g., [-1, +1].
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Figure 4.2: Embedded blocks design with ANN core on Vivado.

In training or testing the neural network, signals at each connection node in between the

layers are updated the weights at each neuron. Those weight values are firmly updated

using known back-propagation algorithm. In this process we are minimizing the cal-

culated error through an optimization technique after each batch of inputs has finished

by flowing through the network. The feed-forward neural network are connected one to

another consecutive layer through the computational unit in forward direction. In this

forward pass operation each computational unit is performing their computation update

the outputs from the input in the preceding layer as shown here.

al
j = σ(∑ω

l
jkal−1

k +bl
j) (4.1)

where σ is the squashing function(sigmoid) of computational unit k, corresponds to

overall neurons in (l-1)th layer. To formulate this equation in matrix form, we assume

a weight matrix ω l corresponding to each layer l. Elements of weight matrix ω l are

weights to the inputs of neurons from lth layer with jth row and kth column.

In brief, an ANN defined by three parameters: (i) The pattern of interconnection in be-

tween the neurons of different layer; (ii) The activation function that converts indefinite

to definite range of outputs; (iii) The learning process for updating the weights of the

interconnections. For the hardware implementation of neural network the precision of

the various blocks is an also the important part. The output resolution will depends on

word length precision. However effective hardware implementation can be obtained by

optimizing the resolution for arithmetic representations. Hardware platforms are, like

FPGAs and ASICs, giving realizable and efficient alternative to GPUs/CPUs for ANN

implementation. Especially, when the applications with strict power and performance

constraints.
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Figure 4.3: MATLAB neural network toolbox to generate graphical user interface net-
works [b18]

4.4 Hardware Implementation

This section describes the architecture of the hardware accelerator for running ANNs

in feed-forward direction. The hardware implementation is done on Zybo board featur-

ing Xilinx Zynq xc7z010clg400 SoC is shown in Fig 4.2. The FPGA has eight high-

performance ports to DDR3 memory. These high-performance ports tap into DDR3

memory using the Advanced eXtensible Interface (AXI) buses. Each AXI direct mem-

ory access (DMA) is bidirectional and can transfer 128 bit data words per clock cycle

per direction. The limitations and features of the design is the foremost considerations

while implemented with control method. The ANN core communication is based on the

AXI specification. There are three different types of interfaces. AXI4 Lite is a light-

weight memory-mapped protocol, same as AXI4. Whereas, communicate and data

sharing between a sender and a receiver done by AXI4 stream which is not memory-

mapped, hence there is no addressing overhead. Due to the data driven flow of ANNs,

we used the AXI4 stream based interfaces input to the ANN core and output from the

core with PS for a high data through put. The data transfer of ANN is depends on ad-

ditional parameter of processing and hence to transport the weight and bias parameters,
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we utilized a memory mapped AXI4 interfaces with an adjusted burst size. While, the

input data to ANN hardware IP core are connected via a simple DMA IP core.

The configurable ANN core is realized in programmable logic (PL) part of Zynq device.

The input and output side of ANN core are connected to ARM host processing system

(PS) of Zynq device through AXI interface protocols. The on-chip register is used to

convert serial to parallel and vice versa data interface in the intermediate stage. The

computational operation are performed in MAC block. The weight and bias for real

time computation will access from the BRAM by the MAC unit. The control system

consist of memory access architecture, finite state machine (FSM) based controlling

logic and internal signal of programmable logic data path. The programmable logic

ANN core is access by the processor through AXI interface at real time processing.

4.4.1 Design Architecture

In this context, it is gripping to note that at PC-based system how it can be done. The

learned constants weight/bias evaluated for classification problem (MNIST), graphical

user interface is used to generate networks with different feature using the MATLAB

neural network toolbox [48] as shown in Fig. 4.3. The user dependent, one can choose

network type, number of layers, number of neuron in each layer, activation function

etc. The network is generated by considering these inputs. Of course, it is flexible in

terms of data precision, network size and weight/bias constants which are given by the

user configuration. The number of layers generated in a ANN network configuration as

required will achieve by top level design. The ANN core is realized in VLSI hardware

description language (VHDL), with fixed point package [49] proposed by IEEE. The

computation unit consist of signal processing operations and storage component. These

operation done by multipliers, adders, activation function, etc.

For network data representation we used a fixed point notation. Nevertheless, flexible

design philosophy wants for the FPGA based implementation. Please note, this study

is limited to approximate computing technique implementation in feed-forward MLP.

The design is configurable in terms of design parameters like number of layers, number

of neurons, input-output sizes, types of interconnection, etc. However these parameters
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are limited by the hardware resources available, depending on the type of FPGA used.

ANN architecture is comprised of intensive MACs units were multiplication and accu-

mulation operation is done and followed non-linear transformations. This non-linear

transformation present along with MAC unit at each neuron.

4.4.2 Computational Unit

We say one neuron is critical, if small jitter on this neuron’s computation introduces

large final output quality degradation; otherwise, it is resilient. The each neurons hav-

ing computational unit which includes the MAC and activation function. The multi-

plications and accumulations are performed in each MAC. Moreover, multiplier and

adder can be implemented with different techniques that are accurate or approximate

depending on design objective. The objectives are area, power, design time, reliability,

accuracy etc. The energy and area improvements in operation can be achieved using

approximation technique.

4.4.2.1 Multiply-Accumulate Unit

The fixed point MAC is designed, as floating point MAC have a high complexity and

power consumption. The limitation with fixed-point based system cannot express the

wide range of variable. Moreover, weight/biased precision selection is one of the im-

portant choices in resource limited hardware implementation. The proposed MAC de-

signed with minimum bit resolution and approximate multiplier shown in Fig. 4.4 gives

lowest power & area of utilization. The internal data path of MAC unit is depends on

the sequential computation has to be perform by the single neuron and it depends on
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Figure 4.5: The proposed fixed-point 4×2 approximate multiplier

Figure 4.6: The design fixed-point 8×4 using proposed approximate 4×2 multiplier

number of neuron in the previous layer. The working of the MAC design is in two

states control by the load line. The load signal is to configure the data flow path that

responsible to set or reset the accumulator i.e. the accumulator data path with bias. The

multiplier and accumulator resisters are depends on the input data width. However for

design purpose we used 4-bit feature input data-width and 8-bit for weight and bias.

When input feature enters to MAC and multiplier enable is active and multiplication

have been perform.

Applying heterogeneous data path to fix-point MAC, proposed MAC unit with approxi-

mate multiplier is used. The proposed design achieved 1.5× power efficient compare to

accurate multiplier and better than state-of-the-art low power multiplier. We have pro-

posed 4×2 approximate multiplier with minimum gates shown in Fig. 4.5. Selection of

weight precision is used to trade-off the capabilities of the realized ANN model against

the implementation cost [50]. For the higher precision we designed 8×4 using the pro-

posed multiplier as shown in Fig. 4.6 and used in the MAC implementation. A higher

weight precision means fewer quantization errors in the final implementation, while a

lower weight precision leads to simpler designs, greater speed and reduction in area

requirements and power consumption. Result analyzed by synthesizing the multiplier

with approximate and exact multiplication technique.

49



Table 4.1: LUT based Activation Function Implementation

Features/Resources Utilization Avalable

LUT 1 17600
FF 1 35200

BRAM 0.5 60

4.4.2.2 Squashing Function

The sigmoid function presents a problem for direct hardware implementation since both

the division and exponential operation. The practical option in hardware is linearly ap-

proximate the function [51]. In piece-wise linear (PWL) approximation, the non-linear

model is divided into several approximate linear segments. Research done in [28], [29]

shows that non-linear activation function increases learning performance and provide

higher accuracy. However, hardware implementation of non-linear activation function

will lead to high silicon area consumption and reduced the speed of operation. We

should have generalized design for sigmoid function approximation which should be

applicable for a variety of sigmoid function.

It can be concluded that the best approximation method, in terms of resources utilized

and errors introduced, PWL approximation is the option especially when the number of

the neurons that use sigmoid function is larger than the number of the BRAM blocks

available in the FPGA circuit. When the number of neurons is lower than the total

BRAM blocks available in the FPGA circuit, the best way to approximate the sigmoid

function is the lookup table based method. Based on size, speed and accuracy, we

have implemented the linear approximation in resulting activation function shown in

algorithm 2. We include the linear interpolation along with the LUTs. LUT-based ap-

proach works much faster than piece-wise linear approximation, though LUT consumes

memory. So, if there is not much concern about memory, LUT based approach is pre-

ferred e.g., real-time applications motion control and fault diagnosis of induction motor

drive [52] and in our implementations. An analysis of the trade-off between the hard-

ware cost, look-up-table based approximate activation function is also implemented and

its hardware resource utilization as shown in Table. 4.1.
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4.4.3 Hardware Evaluation and Verification of the ANN Accelera-

tor

We have implemented ANN core on FPGA with featuring approximate computation

and embedded block design using PS. A throughput of every clock cycle produced the

valid output data. The input data is sent serially to the on-chip ANN core architecture.

If input feature data are sent to the ANN accelerator with validation key, the core will

access weight and bias data which contained in the memory BRAM while real time

processing. The fix point format is used to performed computation by achieving good

performance. In the proposed architecture overflow issues are avoided by saturating

the result to the most positive or negative values when needed to reduce the bit length.

The output at the core is generated with a throughput of each clock cycle. The check-

bit (validation) is asserted for every clock cycle with valid output. The internal layer

signals and intermediate resisters are sized to obviate overflow. The proposed ANN

core has been validated through simulation and FPGA.

4.5 Results and Discussion

We have discuss this section in two parts, one is effectiveness of approximation in

multiplier and activation function whereas other part is focuses on how its benefit to the

MAC unit and ANN arctitecture on FPGA.

4.5.1 Low Complexity Multiplier Architecture and LUT based PWL

Activation Function

The MAC unit consists of compute part and control unit which is describe in section-

iii (c). Whereas, the compute part consists of multiplier and adder. The approximate

multiplier circuit under test were synthesized using Xilinx Vivado. Table. 4.2 shows

the energy improvements obtain for proposed 4×2 multiplier. The proposed design

achieved energy saving of 4×2 with respect to the accurate multiplier and figure-of-

merits(FOM) is 2.18. The FOM states that the proposed approximate design is 2.18
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Table 4.2: Performance comparison of Proposed approximate comparator

Parameters
FPGA based 4×2 multiplier performance
Proposed approximate Conventional exact

Logic Power 12.8 mW 19.2 mW
Delay 8.195 ns 26.27 ns

Gates Count 13 28
LUTs 3 5

Probability of Error 12.5 % 0.0 %

Figure 4.7: Placement of the reconfigurable ann_core area

times more efficient compares to accurate design. While considering only 12.5% prob-

ability of error. We have designed 8×4 multiplier using the proposed 4×2 multiplier

for the multiply and accumulate unit as shown in Fig. 4.6. The look-up-table based

approximate activation function is also implemented. Moreover its hardware resource

utilization ensures that using the given technique we can implement high resolution

activation function

4.5.2 Hardware Implementation using Approximate MAC

FPGA platform environment (Zybo xc7z010clg400) is used to implement proposed

ANN architecture. The Xilinx Zybo (xc7z010clg400) FPGA contains 4,400 logic slices,
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each logic cell include four 6-input LUTs and 8 flip-flops additionally it provide 240

KB of BRAM. The resource utilization by the proposed configurable 4-layer(8-4-4-1)

ANNs is mapped into the xc7z010clg400 FPGA device is shown in Fig. 4.7. The clock

frequency is optimize and operates up to 100MHz and worst pulse width slack for four

layer network is 3.75ns. The resource utilization by the architecture is increases pro-

portionally as goes deeper with the network size.

The input image is preprocessed to reduce the no of pixels on the PS before it is feed to

the ANN. The implemented design suitable for computing and get maximum through-

put, the image size is used 14×14 = 196 pixel image which achieved by processing the

original image. By comparing the results of the proposed architecture with the conven-

tional fully connected ANN for the same layer, we have the following observation: The

energy consumption of implementation configurable NN core is 01% compare to over-

all embedded application. To save the power and get the maximum accuracy we used

lowest bit precision in layer multiplexed ANN. However it gives 29.5% power saving

by compare to fully connected with same precision architecture shown in Fig. 4.8.

4.6 Conclusion

We have proposed an approximate multiplier and used in multiply-accumulate (MAC).

To further enhance the architecture performance, the LUT based power efficient algo-

rithm is presented to implement the sigmoid. function. The achieved the figure-of-

merits of the proposed multiplier is of 2.18 with 12.5% of probability of error only. We

have also proposed an algorithm for configurable architecture to access the weight and
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bias from on-chip BRAM memory, and thereby improved computational throughput

and power efficiency unlike DRAM [53]. Several approximate multipliers are proposed

in the state-of-the-art which only support for even multiplication like 2×2, 4×4, 8×8

but for odd multiplier like 4×2 the proposed design can support. The gate count and

area for the approximate multiplier is significantly lower when compared with the exact

multiplier. We conclude that the proposed approximate design will offer the possibility

of adding more parallel MAC units in FPGA as well as ASIC based ANN accelerators.

By using on-chip BRAM memory to store weight and bias thereby improved the com-

putational throughput and power efficiency as compared to DRAM used by previous

state-of-the-art [19]. The proposed FPGA based ANN core architecture operates at 100

MHz frequency.
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