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Abstract

This thesis focuses on the analysis of the non-stationary signals using the

time-frequency distribution (TFD). The non-stationary signals contain

time-varying parameters and conventional Fourier transform is not suitable for

analysis of such signals. For such time-varying signals, TFD plays an important

role for analysis. The TFDs provide information about the time-varying frequency

components present in the signal. In this thesis, the Wigner-Ville distribution

(WVD) method is studied to obtain the TFD of the signal. Theoretically, the

WVD provides an infinite resolution in time and frequency domains. Due to

bilinear nature of the WVD, it contains cross terms in time-frequency

representation (TFR) for non-stationary signals.

This thesis presents two methodologies to reduce the cross terms in WVD for

the analysis of non-stationary signals. These proposed methodologies are suitable

for reducing cross terms in the analysis of non-stationary signals when their

monocomponents are well separated in frequency domain for linear and non-linear

frequency modulated (NLFM) signals, respectively. In the first proposed method,

variational mode decomposition (VMD) decomposes a multicomponent,

non-stationary signal into a number of sub-signals. These sub-signals have been

converted into analytic sub-signals using the Hilbert transform. After this WVD

has been computed to obtain the TFD of each analytic sub-signal. The summation

of these computed TFD of all sub-signals provide cross terms free TFD of

non-stationary signals.

In signals where the monocomponents are NLFM signals include intra cross terms

in its TFD. To remove these cross terms, we need to introduce another method called

time domain decomposition (TDD). The TDD further segments the modes obtained

after decomposition of the NLFM signals using VMD in time domain and after that

WVD is applied on each obtained sub-band to obtain the TFD of each component

of the segment. At last, the final WVD has been obtained by summation of all the

obtained WVDs. Now, this obtained WVD does not contain cross terms.
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The results of the proposed method imply that cross terms are successfully

suppressed in TFD of a multicomponent non-stationary signal. These results are

compared with different methods such as smoothed pseudo Wigner-Ville

distribution (SPWVD), Born-Jordan distribution (BJ), and Choi-Williams

distribution (CWD). The proposed method have provided better TFR for the

studied multicomponent non-stationary signals. The result are also presented in

terms of Renyi information for the studied signals.
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Chapter 1

Introduction

In today’s life, we find the non-stationary signals in many fields including radar,

biomedical engineering, communication, speech analysis, sonar, heart sound

analysis, and many others. Non-stationary signals are the signals which have

parameters as a function of time. These signals can be represented as a

combination of monocomponent non-stationary signals [1].

1.1 The need for a time-frequency distribution

(TFD)

In general, there are two types of representation for signals: time-domain (t) and

frequency-domain (f). Fourier transform helps us to obtain frequency domain from

time domain and vice-versa. In this transform, variables t and f are treated as

mutually exclusive. To obtain representation in terms of one variable, the other

variable is "desegregated out". In time-frequency representation (TFR), time and

frequency are not mutually exclusive but are present together. Therefore, the time-

frequency distribution (TFD) based representation is localized in time domain and

frequency domain.

The evaluation of these signals in frequency domain or time domain do not give

the complete information. Along these domains, the investigation in

time-frequency (TF) domain called time-frequency signal analysis and processing

(TFSAP) is required for getting information of non-stationary signals [2] and such
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signals are represented by using TFD [3]. TFD shows the distribution of energy of

the signal over the two-dimensional TF plane.

Various TFR based techniques are known [4, 5, 6] and are applied in many

areas such as communications [7], speech signal processing [8], feature extraction

for classification [9], biomedical signal processing [10, 11], motor diagnosis [12],

seismology [13], and heart sound analysis [14]. The time-frequency toolbox is used

for the implementation of studied TFD methods which has been is given in [15].

1.2 Overview of the existing techniques

There are different methodologies used to observe the TFD of signals [16] for example

short-time Fourier transform (STFT) [17, 18], Hilbert-Huang transform (HHT)[19],

wavelet transform (WT)[20, 21], modified empirical mode decomposition (EMD) and

variational mode decomposition (VMD) (mEMD-VMD), Wigner-Hough transform

[22], empirical wavelet transform (EWT) [13] and Wigner-Ville distribution (WVD).

Since, Fourier transform (FT) has zero resolution in time domain and very high

resolution in frequency domain. The STFT can be used to overcome this problem

by windowing in TFD but provides fixed resolution in both time and frequency

domain [17, 23]. A short frequency Fourier transform based fast technique is used

to obtain the resolution similar to STFT laterally [24]. HHT based method for

TFR is empirical in nature [25, 26]. The time-scale representation of the signal

using WT is additionally different type of TFR [27]. In WVD, the autocorrelation

is performed over signal before applying FT. It is used to analyze the time-varying

signal in TF plane [28]. Recently, a TFR technique is presented in which eigenvalue

decomposition of Hankel matrix (EVDHM) is taken into consideration for signal

decomposition [29] which is suitable for complex signals in [30].

WVD has extremely high resolution in both time and frequency domain but its

performance is degraded because of occurrence of cross terms [31, 32]. The cross

terms appear because of its quadratic nature [33]. The appearance of these cross

terms makes it difficult to recognize the auto-terms present in the signal. Hence, it is

required to suppress the cross terms present in the signal. Two kinds of cross terms
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take place in WVD: one is intra cross terms and other one is inter cross terms. Cross

terms occurs in non-linear frequency modulated (NLFM) signals which are known

as intra cross terms and cross terms occurs in linear frequency modulated (LFM)

multicomponent signals which are known as inter cross terms [33] [34]. Cross terms

can not be removed totally, but it can be suppressed using various techniques [35].

Several applications of WVD are in signal classification [36, 37], gear fault diagnosis

[38], detecting the patterns of ventricular late potentials [39], electromigration noise

analysis [40], calibration of power frequency harmonic analyzers [41], identification

of machine noise [42], speech processing [43, 44], measurement of transient signals

[45], and physiological data [46].

Various techniques are given for the cross terms elimination in WVD [47, 48, 49,

50]. The Fourier-Bessel series expansion (FBSE) based technique for cross terms

elimination in WVD is introduced in [28] [51]. A filtering technique using tunable-Q

wavelet transform (TQWT) is applied for the elimination of cross terms inWVD [33].

A pseudo WVD (PWVD) based cross-term removal technique is given for signals

having only two monocomponents signals [52]. The issues of PWVD are resolved in

smoothed pseudo WVD (SPWVD) method but compromising the resolution [53]. A

method based on EWT is also presented [54]. A method based on EMD and HHT

is also introduced for cross-term reduction.

In this thesis, the aim is to remove cross terms in multicomponent LFM and

NLFM signals. The VMD [55, 56, 57] method is used for subdividing, which

results in narrow-band components (NBC) for a multicomponent non-stationary

signal. These NBCs need to satisfy the conditions of a intrinsic mode function

(IMF) [58] and the gained NBC, are concentrated at the center frequencies. It

shows that VMD segments the signal and also provides the information about the

center frequencies. Various applications of VMD are in enhancement of speech

signals [59], instantaneous voiced/non-voiced detection in speech signals [58],

denoising the signals [60, 61, 62, 63, 64], specific emitter identification [65],

analysis of bearing fault [66, 67], rotor system fault [68], in seismic TFR [69].

VMD depends on the constrained variational optimization problem and it can be

changed into an unconstrained optimization problem and afterward the solution of

3



it can be given by using a strategy called alternate direction method of multipliers

(ADMM) [56].

This VMD based method does not generate accurate results for NLFM signals.

Therefore, a new method time domain decomposition (TDD) is introduced and an

improved method is proposed in this thesis to suppress the cross terms based on

the both methods VMD and TDD. This improved method successfully reduces the

cross terms occurred in WVD of NLFM signals.

1.3 Motivation

The analysis of a non-stationary signal helps in understanding the properties of

the system. Therefore, an efficient method is required for analyzing the signal and

extracting all the information carried by the non-stationary signal. The TFR

provides information about the changing pattern of the frequency of the signal.

This information helps to understand the properties of a system. To find the

frequency components of a signal FT is used, but FT fails to find any information

regarding variations in the signal characteristics [70, 71, 72]. Therefore, it is not

suitable for analysis of the non-stationary signals. Hence, a method is required to

analyze these signals. The STFT is used for the analysis of non-stationary signals.

In STFT, signal is separated into a small time intervals with the help of a window

function and Fourier analysis is done for each segment. Then, the energy density

over the TF plane is plotted [73]. The result of STFT strongly depends on the

choice of window function used in it. The resolution provided by the STFT is

fixed. Since, the nature of the spectrogram is quadratic, it suffers from the cross

terms for the closely placed frequency components [74]. The fractional Fourier

transform is also introduced for the analysis of these signals [75].

Another suitable method for the analysis of non-stationary signals is WVD. In

WVD, windowing is not required. Theoretically, WVD provides an infinite

resolution in time and frequency domain. It is not linear in nature which

introduces cross terms in its output with significant amplitude and when there is

more than one component present in the input signal, which distort the transform

4



domains. This effect of cross terms might have serious effects in some applications,

such as speech analysis because speech can be modelled as a sum of the amplitude

modulated (AM) and frequency modulated (FM) signals corresponding to center

frequencies. Therefore, an effective method to suppress the cross terms and

improvement of the frequency resolution, without disturbing the desired properties

of TFD is required.

Due to this problem of the occurrence of cross terms, it is necessary to decompose

the non-stationary signal into small sub-signals (modes). So in this thesis, a method

is used to reduce the cross terms of WVD, and a need to find an efficient methodology

for the analysis of non-stationary signals, served as the motivation for this work.

1.4 Organisation of the thesis

The thesis contains five chapters that start with Chapter 1, which presents a brief

introduction about time-frequency analysis (TFA) and the need for the analysis of

signals, then an overview about the existing methods followed by the motivation

for the research work. In Chapter 2, a detailed explanation of different TFR

methods and VMD is discussed. Chapter 3, includes the proposed method to

reduce the cross terms in WVD based TFR of non-stationary signals. In Chapter

4, simulation results and discussion have been provided for different signals. In this

chapter performance of the proposed method is also compared with other method

using Renyi information. Finally the last chapter of the thesis, Chapter 5 consists

of the conclusion and the future work.
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Chapter 2

Time-Frequency Distribution and

Variational Mode Decomposition

In this chapter WVD, VMD and other TFD techniques which have been used for

comparison are explained.

2.1 Wigner-Ville distribution (WVD)

In WVD, the autocorrelation operation is performed before applying FT [28].

Theoretically, it provides infinite resolution and practically very high resolution

[31].

Now, for a non-stationary signal r(t), the mathematical model for the WVD is

given as follows [76, 77, 78, 79, 8]:

WVD(t, ω) =
∫ +∞

−∞
r
(
t+ τ

2

)
r∗
(
t− τ

2

)
e−jωτdτ (2.1)

In eq. (2.1), r∗(t) represents complex conjugate of r(t). In the above equation it

can be seen that WVD is bilinear in behaviour and because of this, cross terms

are introduced in WVD for the NLFM monocomponent signal or multicomponent

signal. Suppose signal r(t) contains (n0) modes, where n0 = 1, 2, 3, . . . .N0. The
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signal r(t) is expressed as follows:

r(t) =
N0∑
n0=1

rn0(t) (2.2)

The WVD of the signal r(t) is given as follows [80]:

WVD(t, ω) =
N0∑
n0=1

WVD(t, ω) + 2
N0−1∑
k=1

N0∑
l=k+1

<[WVDrkrl(t, ω)] (2.3)

In (2.3), the first term represents auto-terms and second term represents cross terms

in WVD. Total ’N0’ auto-terms and
(
N0
2

)
cross terms. The occurrence of cross terms

in WVD makes it difficult to retrieve auto-terms of signal. Furthermore, it makes

the transform domain complex to explain [81, 82, 83]. In this manner, it is necessary

to remove cross terms for getting auto-terms of signal.
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Figure 2.1: Plots of the: (a) Signal x[n] in time domain, (b) WVD of signal x[n],
(c)Magnitude spectrum of x[n]

In order to explain WVD, we have considered following signal for study:

x[n] = cos
(200πn

1000

)
+ cos

(640πn
1000

)
(2.4)
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The signal x(n) contain two components whose frequency are constant over time,

and separated in frequency domain. The range of n varies from 0 to 500. The

graphical representation of x[n] in time-domain is shown in Fig. 2.1(a). Whereas

its WVD is shown in Fig. 2.1(b) and the magnitude spectrum of the signal is shown

in Fig. 2.1(c).

2.1.1 Properties of WVD

WVD is the most widely used TFD because of its properties. WVD satisfies several

key properties of a joint energy density, but it is not guaranteed that the values are

non-negative for all the signals in the TF plane. Positive values can be enforced by

applying smoothing operation, this also removes the cross terms and perhaps lead

to known positive quadratic distributions.

The properties of WVD are listed below [91].

1. Real-valuedness: WVDi(t, w) is real-valued for all i, t and w. Further, WVD

of the real signals is symmetric.

2. Marginality: The WVD satisfies the marginals in time and frequency domain.

Time marginal (TM): The instantaneous power of WVD at a given time

is the integration of WVD of a signal along the time axis.

Frequency marginal (FM): The energy spectrum is given by integrating of

WVD of a signal along the time axis.

3. Global energy: The total energy of the signal is given by integrating WVD

over both time and frequency.

4. Non-negativity: It is the main property (or rather a drawback) of WVD.

In WVD positivity is not guaranteed because it satisfies the marginals and

there is no positive quadratic distribution exists that satisfies the time and

frequency marginal integrals. To achieve the non-negativity, marginality has

to be sacrificed.

5. Covariance: The two types of covariances are as follows:

8



Time-shift covariance: Shifting of time by some amount in the signal

creates the shifting of time by same amount in the WVD of the signal.

Frequency-shift covariance: Shifting of frequency by some amount in the

signal creates the shifting of frequency by same amount in the WVD of the

signal.

6. Time delay (TD): The TD is given by the mean of the WVD with respect to

the time.

7. Instantaneous frequency (IF): For an analytic signal, the IF is given by the

mean of the WVD with respect to the frequency.

8. Finite support: WVD satisfies the support as both time support (TS) and

frequency support (FS)

The TS of WVDi(t, w) is limited by the duration of the signal i(t) which

is non-zero over a finite interval t1 < t < t2 and zero outside an interval i.e for

t < t1 and t > t2. then WVDi(t, w) is also zero for t < t1 and t > t2.

The FS of WVDi(t, w) is limited by the bandwidth of the signal i(t). i.e

if the FT of i(t) = i(w) is non-zero over a finite interval w1 < w < w2 and zero

outside an interval i.e for w < w1 and w < w2. then WVDi(t, w) is also zero

for w < t1 and w < t2.

9. Unitarity property: The WVD satisfies the unitary property. i.e it preserves

the inner products.

2.1.2 Drawbacks of WVD

The three main drawbacks of WVD are [91]:

1. Non-local nature of WVD: Uniform weighting is given to instants in future

and past.

2. Lack of positivity: The values of WVD may be positive or may be negative in

TF plane.
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3. Cross terms: If the signal have more than one frequency then its WVD is

constitute of cross-components.

2.2 Variational mode decomposition (VMD)

The VMD is a non-recursive method which is applied for multicomponent signal

decomposition. It is an adaptive technique. An input signal G(t) is decomposed into

a set of ’i’ number of segments gi(t) are called modes. This analysis uses frequency

related insights. In addition to the decomposition of the signal, it also calculates

center frequencies ωi, where i = 1, 2, 3, ..., I and the bandwidth in spectral domain

is considered as a particular sparsity property of every mode while reconstructing

the original signal. For calculating the bandwidth of a sub-signal, VMD method

uses the constrained optimization problem. Constrained optimization algorithms

use the single-variable and multi-variable optimization algorithms repeatedly and

simultaneously maintain the search effort inside the feasible search region. Region

is decided by the lower and upper bounds. Steps required to compute the bandwidth

of a component are explained as follows:

1. The positive frequency spectrum of the gi(t) mode is obtained by applying

Hilbert transform (HT).

2. Shift the frequency spectrum of a mode to baseband by multiplying with an

exponential function which is tuned to the corresponding computed center

frequencies.

3. The H1 Gaussian smoothness of the demodulated signal is applied to obtain

the bandwidth of each mode, i.e. the L2-norm of the gradient [66, 84].

The resulting constrained variational problem are defined as given below:

min
{gi},{ωi}

{
I∑
i=1

∥∥∥∥∂t [(δ(t) + j

πt

)
∗ gi(t)

]
e−jωit

∥∥∥∥2

2

}

Where
I∑
i=1

gi(t) = G(t)
(2.5)
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The lagrangian multiplier λ and the penalty factor α are applied to transform the

constrained optimization problem Eq. 2.5 into unconstrained optimization problem.

The unconstrained optimization problem can be written as follows:

L ({gi},{ωi}, λ) :=α
∑
i

∥∥∥∥∂t[(δ(t)+ j

πt

)
∗ gi(t)

]
e−jωit

∥∥∥∥2

2

+
∥∥∥∥∥G(t)−

∑
i

gi(t)
∥∥∥∥∥

2

2
+
〈
λ(t), G(t)−

∑
i

gi(t)
〉 (2.6)

Solution of Eq. 2.5 is calculated as the saddle point of the Eq. 2.6 using the strategy

ADMM. Next mode and corresponding updated center frequency can be calculated

using the following expressions:

ĝn+1
i (ω) =

Ĝ(ω)−∑k 6=i ĝk(ω) + λ̂(ω)
2

1 + 2α(ω − ωi)2 (2.7)

ωn+1
i =

∫∞
0 ω|ĝi(ω)|2dω∫∞
0 |ĝi(ω)|2dω (2.8)

In Eq. 2.7 and 2.8, Ĝ(ω), ĝk(ω), λ̂(ω), and ĝ(n+1)
i (ω) are the FT of G(t), gk(t), λ(t),

and g(n+1)
i (t) respectively. Eq. 2.7 includes the Wiener filter structure [56, 58, 59,

66, 84, 85, 86].

The MATLAB program for VMD method is provided in [87]. Information

parameters in this VMD code given as an input are the required number of modes

(i), total DC components, the signal in time domain whose decomposition requires,

the balancing parameter of the data-fidelity constraint (α), the convergence

criterion tolerance (tol), time step of the dual ascent (tau), and the center

frequency initialization ω (init). To converge, this given strategy utilized 500

iterations [58].

2.2.1 Input parameters in VMD method

1. Input signal (s): The signal in the time domain whose decomposition into

sub-signals/modes is needed.

2. Penalty factor (α): The penalty factor in the VMD method is inversely

proportional to the bandwidth of the components present in the input signal.
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There is no sharp rule to choose the value of α since the value essentially

depends on the amplitude and the noisiness of the data. The larger value of

α is not effective to estimate the center frequencies of the components with

precision and the lower value of α is not good for noise robust components

analysis. To extract the fewer components with the accurate value of center

frequencies, a lower value of α is preferred.

3. The time step of the dual ascent (τ): The parameter τ in the VMD method

is used to control the Lagrangian multiplier λ i.e τ governs how quickly the

λ accumulates the reconstruction error. Widely used values of τ is either 0

or 0.1. a high value of τ is not preferred because it may lead to fast freezing

of the modes. The relation between τ and λ can be given by mathematical

expression shown below [56]:

λ̂n+1(ω)← λ̂n(ω) + τ

(
m̂(ω)−

∑
k

ŷn+1
k (ω)

)
, for all ω ≥ 0 (2.9)

If the exact reconstruction of a signal is not required for the analysis of the

signal using VMD, then the outcome of the λ can be nullified by taking the

value of τ equal to zero.

4. The number of modes to be extricate (K): To sub-divide a signal using VMD

method, the initial information about the number of modes K is needed.

5. The numbers of DC components (DC): The input parameter DC in VMD

method is used to find or extricate the DC components present in the signal.

6. The tolerance for convergence criterion (tol): The input parameter tol is used

for the convergence in VMD method. It manage the reconstruction error of

the mode.

7. The initial frequencies for the extracted modes (ωinit): The ωinit has two

initial values ωinit = 1 and ωinit = 0 for initialization of frequencies. ωinit = 1

represents the initialization based on uniform distribution. Whereas ωinit = 0

represents the zeros.
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2.2.2 Example for VMD method

The process of VMD is explained earlier. Now the results of VMD are shown by

considering an example of a signal shown in Fig. 2.2(a). The mathematical

expression is given by below equation:

f = 1
79

(
sin

((
πn

40

)
+ 155

)2n
50

)
+ 1

79

(
sin

((2πn
80

)
+ 99

)
n

100

)
(2.10)

Input parameters namely α, τ , K, DC, ωinit and tol have been fixed to 60, 0, 3,

0, 1, 10−7. This means VMD decomposes this signal into three modes. Mode 1

is represented by Fig. 2.2(b), mode 2 is represented by Fig. 2.2(c) and mode 3 is

represented by the Fig. 2.2(d). After decomposition, the signal is reconstructed by

adding all three modes together. The reconstructed signal is shown in Fig. 2.2(e).

On observing the reconstructed signal we observe that it is similar to the original

signal with negligible error. Fig. 2.3(a) shows the magnitude spectrums of signal,

Figs. 2.3(b-d) show the magnitude spectrums of all three modes and magnitude

spectrum of reconstructed signal is shown in Fig. 2.3(e)

2.3 Smoothed pseudo Wigner-Ville distribution

It is also called modified WVD. In WVD expression (2.1), the range of τ is from −∞

to +∞ which is not practical in real life applications. So, the integral in the WVD

is modified to include a window function. When a smoothing window is moving

forward over the WVD of a signal in the direction of increasing frequency then it

gives a new distribution known as PWVD [88, 89, 90]. Smoothing window is moves

forward in the direction of both increasing time and frequency, then it gives another

distribution known as SPWVD [91, 92, 93].

The equation for PWVD of the signal b(t) in the time domain is given as:

PWVDb(t, ω) =
∫ +∞

−∞
b
(
t+ τ

2

)
b∗
(
t− τ

2

)
w
(
τ

2

)
w∗
(
τ

2

)
e−jωτdτ (2.11)
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Where w(t) is the window. It helps in weakening the strength of the cross terms in

the time domain by performing the frequency-smoothing operation. However, the

cross terms are present in the frequency domain and these existing cross terms can

be reduced by using the time-smoothing function resulting in SPWVD and it can

be represented by the below expression [94],

SPWVD =
∫ +∞

−∞
ŵ(t− t′)PWVD(t′, ω)dt′ (2.12)

where, ŵ(t) represent the time smoothing function. In the above equation, an infinite

length expression is converted into a finite length expression.

2.3.1 Drawback of SPWVD

The window function used in SPWVD helps in removing the cross terms. The

drawback of the windowing is that the more you smooth the WVD, the resolution

will suffer more and more in time domain, frequency domain and TF domain.

Therefore, the resolution of the SPWVD is poor.

2.4 Born-Jordan (BJ) distribution

The Born-Jordan distribution is also a type of bilinear TFD introduced to suppress

the cross terms present in WVD due to its quadratic nature. It satisfies the marginal

property. The kernel function used in it can be given as follows [95]:

p(θ, τ) =
sin( θτ2 )

θτ
2

(2.13)

This distribution gives the high resolution in TFR and its mathematical expression

is given as [95],

TFDBJ(t, f) = 1
2π

∫ 1
| τ |

e−j2πfτ
∫ t+ |τ |

2

t− |τ |
2

r
(
u+ τ

2

)
r∗
(
u− τ

2

)
dudτ (2.14)
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2.5 Choi-Williams distribution

The Choi-Williams distribution (CWD) is a type of bilinear TFD similar to WVD.

The distribution used the exponential kernel to remove the cross terms therefore it

also called as exponential distribution. The kernel function used in CWD can only

filter out the cross terms that result from the components that differ in both time

and frequency center [96]. To obtain the determining function A(u, τ) the kernel

function can be modified by multiplying an exponential term as follows [54]:

A(u, τ) =
∫ +∞

−∞
a(Θ, τ)ejπΘudΘ (2.15)

The expression of CWD is as follows:

CWD(t, f) =
∫ ∫ +∞

−∞
r
(
u+ τ

2

)
r∗
(
u+ τ

2

)
A(u− t, τ)e−j2πfτdudτ (2.16)

The kernel function and determining function can be expressed as:

a(Θ, τ) = e
Θ2τ2
σ (2.17)

A(t, τ) =

√
σ
π

2τ e
σt2
4τ2 (2.18)

Where σ is positive parameter controlling the concentration of CWD(t, f)

around the origin of the TF plane. Hence large value of σ results in less smoothing.

The above three discussed methods can be explained with the help of the

following example, which we used to compare with our proposed method.

Let us consider the signal x[n] taken in WVD section which is mathematically

expressed in Eq. 2.4. WVD of x[n] is shown in Fig. 2.1(b). The TFD of x[n] using

SPWVD, BJ and CWD are shown in Figs. 2.4(a), 2.4(b) and 2.4(c).
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Figure 2.4: Plots of the: (a) TFD of x[n] using SPWVD, (b) TFD of x[n] using
BJ, (c) TFD of x[n] using CWD

2.6 Summary

In this chapter various TFD methods are explained in detail: WVD, SPWVD, JB

and CWD. Along with these, VMD is also discussed, which is used for decomposing

the signal into sub-signals. The drawback of WVD is that it provides cross terms

in TFR. SPWVD, BJ and CWD are some of the methods used for reducing cross

terms in TFR.

In this chapter, the TFR using SPWVD, BJ and CWD is shown by considering

two signals. The results obtained using these methods are compared with the result

of WVD. By comparing the results, it can be concluded that SPWVD, BJ and CWD

provide cross-term free TFR, but the resolution is poor.
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Chapter 3

Proposed Methods for Cross

Terms Free TFR

3.1 Introduction

The TFR obtained using WVD has cross terms in it. So in order to suppress these

cross terms, method proposed in this thesis which is based on VMD. This method

has some limitations, to overcome these limitations another method with some

modifications to previous one is used. VMD is used for the decomposition of a

signal into NBC. In addition with that, obtained NBC are concentrated around

center frequencies. These NBCs need to satisfy the conditions of IMF. This shows

that VMD subdivide the signal as well as it additionally provides information

about the center frequencies. VMD has numerous uses such as: enhancement of

speech signal [59], instantaneous voiced/non-voiced detection in speech signals [58],

denoising the signal [60, 61, 62, 63, 64], specific emitter identification [65], analysis

of bearing fault [66, 67], fault of rotor system [68], seismic time-frequency analysis

[69].

VMD is based on constrained variational optimization problem and to find the

solution of this, first problem is changed into an unconstrained optimization problem.

The solution of this problem can be solved by using a convex optimization method

called ADMM.

In another method a new method TDD is used. TDD is used for sub-dividing sub-
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Figure 3.1: Proposed method 1 for disappearance of cross terms in WVD

signal obtained from VMD in the time domain. In both proposed methods, WVD

and VMD methods are used. Explanation of these methods are provided in Chapter

2

3.2 Proposed method

In this section, two methods are introduced to suppress the cross terms present in

TFR of the signal. First method is based on the VMD method and second one is

based on the both methods TDD and VMD. The need of introducing second method

and the advantage of using second method over the first method are also provided.

3.2.1 Proposed method 1

In this proposed method, to get cross terms free TFR, the signal is subdivided into

N number of modes with the help of VMD method. Working process of VMD is
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explained earlier (Section 2.2). Thereafter WVD of these sub-signals is computed.

Finally, by taking the summation of WVD of all the sub-signals, the resultant WVD

is obtained which is free from cross terms. In this way, the cross terms in WVD is

suppressed with the help of this proposed methodology.

The block diagram of the proposed method 1 is shown in Fig. 3.1

3.2.2 Proposed method 2

In this proposed method, above explained method is improved so that it can be also

applicable on NLFM signals to remove the intra-interference. In this TDD method is

introduced after the VMD method. The sub-signals obtained after applying VMD,

contains the component which are not separated in time domain. This non separable

components results in cross terms. So to remove these cross terms TDD is used.

TDD segments the input sub-signal into monocomponents which are disjoint in

time-domain [33]. After the TDD, WVD is applied on each segmented sub-signal

and in the end, the WVD of all the obtained segmented-components are added to

obtain a cross terms free WVD.

The block diagram of the proposed method 2 is shown in Fig. 3.2

The energy based method is used in TDD. In this energy based method, cumulative

energy of the signal at each sample gives information about the presence of the

components. Instead of taking square of the signal directly, the cumulative sum

of squares of signal is taken. By doing this it can reduce the errors due to the

zero-crossings in segmentation of the components of signals. The mathematical

expression of the cumulative sum CSl[n] is given as [33]:

CSl[n] =
n−1∑
k=0

M2
l [k] (3.1)

Where Ml are the modes obtained from the VMD method. Smoothing of the

cumulative energy function of signal can be done with the help of the moving average

filter. This can be done to reduce the zero-crossings occur during the disjoint of the

components in time domain in same mode of VMD.

The filtered output of the moving average filter is represented by FCSl[n] and it is
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Figure 3.2: Proposed method 2 for disappearance of cross terms in WVD
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given by the following expression [33]:

FCSl[n] = 1
2N + 1

N∑
k=−N

CSl[n+ k] (3.2)

After the filtering operation, differentiation operation has been performed on the

filtered output of the moving average filter (FCSl[n]). The derivative of FCSl[n] is

denoted by DFCSl[n] and it is computed as follows:

DFCSl[n] = FCSl[n]− FCSl[n− 1] (3.3)

Now again the smoothing operation is performed on the DFCSl[n] and

normalization of the smoothed DFCSl[n] can be done. After performing all these

operations, thresholding can be done by comparing the normalized DFCSl[n] with

the chosen threshold value Cth as follows.

Fl[n] =


1, DFCSl[n] > Cth

0, DFCSl[n] 6 Cth

(3.4)

It is clear from the above expression that Fl[n] = 1 when DFCSl[n] > Cth which

indicates the presence of the component in the segmented sub-signal (sub-mode)

and Fl[n] = 0 when DFCSl[n] 6 Cth which indicates the absence of the component

in the sub-modes. The modes or sub-signals obtained by decomposing the signal

with the help of VMD method is given as an input to TDD.

Sub-signal may carry the components separated in the time domain in the same sub-

signal. So, the information about the location of these component can be found by

observing the value of FCSl[n]. If the components are present then for that interval

the value of FCSl[n] would be increasing, whereas the value of FCSl[n] remains

unchanged or constant if the components are not present. As we observe that the

value of Fl[n] depends on the DFCSl[n] (derivative of the FCSl[n]). Therefore,

the value of Fl[n] = 1 is only when the FCSl[n] is increasing which indicates the

existence of the component and the value of Fl[n] = 0 is only when the FCSl[n] is

constant which indicates the non-existence of the component.
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This sequence of one’s and zeros have been used for finding the starting and the

terminating locations of the components in the same sub-signal obtained from VMD

method in order to separate them in time domain. The value of threshold Cth

depends on the noisiness of the signal. If the signal is noisy then the value of Cth is

larger as compared to the value of Cth chosen for noise-free signal.

3.2.3 Summary

In this chapter, two methods: proposed method 1 and proposed method 2 are

discussed. The proposed method 1 to suppress cross terms in VMD based WVD is

discussed in the first section of this chapter. This method has some limitation,

that this method is not suitable to reduce intra cross terms. The aim of the

proposed method 1 is to suppress the cross terms in multicomponent LFM signals.

To remove the limitation of the proposed method 1, a new method (proposed

method 2) is introduced to suppress cross terms in the WVD using TDD and

VMD. The detailed explanation of TDD method with mathematical expressions is

given in this chapter. The proposed method 2 is applicable on both

multicomponent LFM signals and NLFM signals.

The experimental results of these methods are shown in the next chapter. It can

be observed that the performance of both the proposed methods are better than

the other methods discussed in Chapter 2.
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Chapter 4

Experiment Results

The efficiency of the proposed method is observed by considering the following

non-stationary multicomponent LFM and NLFM signals. This methodology is also

applied on a real bat-echo signal to observe the performance of this method on real

signals. Also to see the performance, results of this method are compared with the

results of the other methods SPWVD, BJ and CWD. The TFR of all the methods

are also shown with the representative examples.

4.1 Linearly frequency modulated multi-

component signal

The signal f1 having two LFM signals and both the components of f1 are well

separated in frequency domain. A signal f1 is expressed as follows:

f1 = V (cos(Wπn+ 1)Xn) + V (cos(Y πn+ Z)Ln) (4.1)

Where, V = 1
120 , W = 1

2500 , X = 12
8 , Y = 3

200 , Z = 190 and L = 1
250 . In above

equation n ranges from 0 to 500. The signal f1 is displayed in Fig. 4.1 and its WVD

is displayed in Fig. 4.2. It is noticed that cross terms are occurred in between the

auto-terms. The TFR using SPWVD, BJ and CWD are shown in Fig.4.3(a), Fig.

4.3(b), Fig. 4.3(c) respectively. The TFR using proposed method is shown in Fig.

4.3(d) which is cross terms free and only auto-terms are present.
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Figure 4.3: The TFD of f1 utilizing (a) SPWVD (b) BJ distribution (c) CWD (d)
Presented method

Second signal f2 is also having two LFM signals but the rate of frequency

modulation is more for the components of signal f2. The sign f2 is expressed as

follows:

f2 = P (cos(Q1πn+ 1)Q2n) + P (cos(Q3πn+Q4)Q5n) (4.2)

Where, P = 1
99 , Q1 = 1

200 , Q2 = 3
50 , Q3 = 3

100 , Q4 = 188 and Q5 = 1
100 . In Eq.

(4.2), n varies from 0 to 500. The graph of signal f2 is displayed in Fig. 4.4 and

TFD of signal f2 using WVD is displayed in Fig. 4.5. The cross terms is occurred in

between the auto-terms. The TFR using SPWVD, BJ and CWD are shown in Fig.

4.6(a), Fig. 4.6(b), Fig. 4.6(c) respectively. The TFD using the proposed method

is displayed in Fig. 4.6(d), respectively. in these Figs. it can be observe that the

proposed method performs better in comparison with the SPWVD, BJ and CWD

method for LFM signals.
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Figure 4.6: The TFD of f2 utilizing (a) SPWVD (b) BJ distribution (c) CWD (d)
Presented method

4.2 Time-limited constant frequency signal

The signal f3 is made of two time limited constant frequency monocomponents and

it is given by,

f3 = p[t]
7

[
cos

(87πt
166

)
+ cos

(125πt
166

)]
(4.3)

Where, function p[t] bounds the signal f3 in time and it can be expressed as follows:

p[t] =



0, t < 101

1−
[

(t−166)2

5000

]
, 102 ≤ t ≤ 211

0, 212 ≤ t
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Figure 4.8: WVD of f3

The graph of signal f3 is shown in Fig. 4.7 and TFR of signal f3 using WVD
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is displayed in Fig. 4.8. The cross terms free TFD using SPWVD, BJ, CWD and

proposed method for signal f3 are shown in Fig. 4.9(a), Fig. 4.9(b), Fig. 4.9(c), and

Fig. 4.9(d), respectively. All the signals taken for simulation shows the performance

of the proposed methodology in comparison with the WVD and SPWVD, BJ and

CWD method.
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Figure 4.9: The TFD of f3 using (a) SPWVD (b) Born-Jordan distribution (c)
Choi-Williams distribution(d) Presented method

4.3 Bat-echo signal

Another signal is a multicomponent bat-echo signal and this is a natural signal

generated by a large brown bat called Eptesicus fuscus. The components of this

signal are well separated in TF domain. The duration of the bat signal taken into

consideration in proposed method is 2.5 ms, with the sampling period of 7 micro

seconds. The TFA of the bat sonar signal is done in [97].

The plot of the bat-echo is given in Fig. 4.10 andWVD of bat-echo signal is displayed

in Fig. 4.11. The TFR of the bat-echo using the SPWVD, BJ and CWD method

is given in Fig. 4.12(a), Fig. 4.12(b), Fig. 4.12(c) respectively and the cross terms
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free TFR obtained by applying proposed method is given in Fig. 4.12(d).
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Figure 4.10: Graph of bat-echo signal
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Figure 4.11: WVD of bat-echo signal
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Figure 4.12: TFD of bat-echo signal using (a) SPWVD (b) BJ distribution (c)
CWD (d) Presented method

4.4 Linear frequency modulated and non-linear

frequency modulated signal

A two component signal f5 whose one component is LFM and other component is

NLFM. Both the components are well separated in TF domain. The mathematical

expression of signal f5 is given below

f5 = 1
70(cos(4πn

490 + 487) n

480 + 28 cos( πn256)) + 1
80(cos( πn

1200 + 27) n10) (4.4)

The plot of the f5 is given in Fig. 4.13 and WVD of signal is displayed in Fig.

4.14. The TFR of the f5 using the SPWVD, BJ and CWD method is given in

Fig. 4.15(a), Fig. 4.15(b), Fig. 4.15(c) respectively and the cross terms free TFR
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obtained by applying proposed method is given in Fig. 4.15(d).
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Figure 4.13: Graphical representation of signal f5
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Figure 4.14: The TFD of f5 using WVD
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Presented method

4.5 Performance evaluation

To illustrate the performance of the proposed method, Renyi information measure

is taken into consideration. By comparing the value of Renyi information for TFR

of different signals obtained from the different methods and proposed method,

performance of the proposed method can be judged. The mathematical expression

for Renyi information is as follows [98, 99, 100, 101, 102, 103]:

Rα = 1
1− α log2

( I∑
i=−I

J∑
j=−J

[Cs(i, j)]α
)

(4.5)

In above expression, Cs(i, j) is a TFD of Cohen’s class and α is the order of

information. The value of the alpha chosen is 3. This measure gives the

complexity and information content in time-varying signals in its TF plane. Lower

the value of Renyi information results in the better TFD. The computed value of

Renyi information for TFR obtained from the SPWVD, BJ, CWD and proposed
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method are given in the Table 4.1.

Table 4.1: The Renyi information for TFR obtained using different methods

Renyi information
Methods f1 f2 f3 f4 f5
SPWVD 3.60 3.78 1.36 2.6836 3.6370

Born-Jordan distribution 3.53 3.70 1.28 2.62 3.58
Choi-Williams distribution 3.59 3.77 1.34 2.66 3.62

Proposed method 1.02 0.99 0.76 1.2826 1.7503

The values of the Renyi information measure is low for the presented

methodology when compared with the values of SPWVD, BJ and CWD. It means

that the proposed methodology gives better TFD as compared to the SPWVD, BJ

and CWD which is also shown by the graphical representation of the signals in

experiment results.

4.6 Summary

In this chapter the experimental results are discussed and the performance of the

proposed method is also shown using the Renyi information.

The results of the proposed methods are compared to the results of SPWVD, BJ

and CWD method and Renyi information is calculated for all the methods. From

the obatained results it is observed that, the proposed method gives better results

and low value of the performance measure parameter.

36



Chapter 5

Conclusion and Future Work

5.1 Conclusion

The non-stationary signal has many applications in real life. It is necessary to

find the information in it and to extract the information or message carried by the

signal, TFR are used. Many methods are discovered for TFR of the signals as

discussed in Chapter 1. The WVD is one of them which is used for TFR of the

signal as discussed in this thesis. The WVD has advantages over the other methods

like it gives good resolution, no need of window function. But, there is always an

issue with this method due to the quadratic nature of WVD. The quadratic terms

present in WVD rises the problem of occurring interference between the components.

These components result from the interference are known as cross terms. Another

terms present in the WVD are called as auto-terms and the required information is

present in the auto-terms of the WVD. The analysis of auto-terms in TF domain is

an important factor for signal understanding. The existence of cross terms mislead

the auto-terms. Therefore, to get the auto-terms, it is necessary to remove the cross

terms from the WVD of the signals so that message carried by that signal can be

extracted. This issue of the WVD is removed in SPWVD, BJ and CWD but these

methods provide poor resolution.

In this thesis two methods are proposed to reduce the cross terms present in

the WVD of the signal. Proposed method 1 is based only on the VMD method.

Whereas, proposed method 2 is based on VMD as well as TDD. VMD is used for the
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segmentation of the signal whose information have to be extracted. WVD and VMD

methods are explained in detail in Chapter 2 and the proposed methods are explained

in Chapter 3. In proposed method 2, TDD is used for the decomposition of the sub-

signals obtained from the VMD into the segments in time domain. Thereafter, WVD

is applied on every segments and add to get the cross terms free TFR.

The simulation results given in the Chapter 4 of this thesis shows that the

methods proposed in this thesis successfully eliminates the cross terms of the

WVD, which is the main aim of the proposed methods of the thesis. Results

obtained from the proposed methods are compared with the results of the

SPWVD, BJ and CWD. It shows the methods proposed in the thesis give the good

resolution and better performance as compared to other TFR method. To judge

the performance of the proposed methods, Renyi information is used. It can be

observed that proposed methods give the lowest value of Renyi information which

proves that proposed methods are better.

On observing the experiment results it can be concluded that the methodology

presented in this thesis to suppress the cross terms in WVD of non-stationary

multicomponent signals works well. Experimental examination has been conducted

on signals in order to show the effectiveness.

5.2 Future work

In this thesis, it can be seen that the proposed methods is introduced for the

suppression of the cross terms occurred in the WVD of the multicomponent

non-stationary signals whose components are well separated in time-frequency

domain. In future expand the application of the proposed methods by using it for

the analysis of multicomponent non-stationary signals whose components are not

well separated in time-frequency domain i.e signals having the intersection of the

components in time-frequency domain. In future, this method can be extended for

analysis of noisy signals.

This method can further be used for the classification of the signals like

classification of normal and abnormal classes of physiological signals, seizure and
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non-seizure electroencephalography (EEG) signals, photoplethysmogram (PPG)

signals, electromyogram (EMG) signals, etc. In the classification of signals, the

proposed methods can extract the features of the signals and based on these

features classification can be performed.
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