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ABSTRACT

KEYWORDS:
Dalitz plot, Decay Matrix, Matrix element of decay

In the present thesis work, we report the results of Dalitz plot analysis of the
hadronic decay ' — n #+ 7~ using CLAS detector through the photoproduction
reaction v p — 7' p. The dynamical information about the three-body decay of
any meson can be obtained by studying the decay matrix and Dalitz plot is a tool
to perform the study. The Dalitz plot is a scatter plot to study decay dynamics of
a meson decaying into three bodies. As the three-body decay has two degrees of
freedom, one can define two linearly independent variables X and Y to represent

the decay in the phase space as:

(1)

(my +2m,) T,
My Q

Where T,,, T+ and T,- are the kinetic energies of the particles n, 7% and 7~

Y = ~1 2)

respectively in the rest frame of the " meson and Q = T5++7T,-+T;,. The m,, and

m, are the masses of  and m mesons respectively.

The obtained Dalitz plot phase-space is parameterized with a general
parametrization function given in equation (3), which gives the amplitude of the

n — n ©" 7 decay. The square of decay amplitude is given by,

f(X,Y)=M?=A(1+aY +bY? + cX +dX?). (3)

Where a, b, ¢ and d are the Dalitz plot parameters of the decay and A is the
normalization constant. The parameters give information of the resonances, in-

termediating particles and interactions among the decay of final state particles.
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Physical observables e.g. decay width, phase shifts, quark mass ratio and param-
eters quantifying interactions can also be calculated from the Dalitz plot param-
eters. Also, a precise measurement of these parameters is needed for the correct

input to the theoretical distribution of the effective chiral Lagrangian.

Current status of experimental data on ’ — n 77 7~ decay is based on the
following: the VES Collaboration, which has reported the Dalitz plot parameters
of ' = n ™ 7~ with 14.6 x 103 events in charge exchange (7~ p — 7 p) and 7 x 103
events in diffraction like production (7~ N — 1’ 7~ N), the BESIII Collaboration
has also reported 7 — n 7t 7~ decay parameters (eT e — 77 7~ J/i — 0
v) with 43826 + 211 events with better precision compared to VES. The two
measurements disagree with each other and with the theoretical calculation of
the parameters. Our Dalitz plot analysis of ' — n 7" 7~ decay from the CLAS
g12 dataset is based on 160090 events and subsequent decay of ' — n " 77,
which has the competitive statistics to study the parameters with low statistical
errors. An important component of the Dalitz distribution in the decay n" — n
7t 77 is the invariant mass of the 7+ and 7~ mesons (M(7n+ 7—)) which is also
presented and compared to various theoretical models. This component is sensitive

to intermediating particles and interactions among the final state mesons.

The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson
Lab (JLab), Newport News, Virginia, USA has performed the “g12” experiment
and collected the data during March - June 2008. The data is recorded using
the CEBAF Large Acceptance Spectrometer(CLAS) detector and further used to

perform the analysis.

The complete reaction under study is

‘“vyp—=1(—=nat77)p” and events
with one proton, one 7, one 7~ and any number of neutral particles are selected
as skim condition out of all events available in “g72” dataset. In this analysis n and
1’ mesons are reconstructed as a missing particle. The 1’ meson is reconstructed
with the information of incident photon, target proton and final state proton and
it is represented as M, (p). Similarly,  reconstruction uses incident photon, target

proton and final state particles such as the proton, 7t and 7~ and it is denoted

as M, (pm+m-). The threshold energy for the production of 7 meson is 1.45 GeV

vil



and the production cross-section of the ’ meson drops significantly after 3.6 GeV.
Hence the analysis is performed with all events with an incoming photon energy

from the threshold of 1.45 up to 3.6 GeV.

The Pluto [v5.42] event generator developed by the HADES collaboration
is used in this analysis for the simulation. The 5 x 108 yp — 7' p — n 7t
7~ p events are generated using Pluto along with a model which is close to the
real scenario. The incident photon beam is given a bremsstrahlung nature to
reproduce the bremsstrahlung photon beam distribution of the incident photons.
To make the simulation more realistic the measured differential cross-section of
the 1" meson is used as input during event generation. The output of the Pluto
with the above-mentioned model is first extracted in the standard CLAS “gamp”

files and then processed with CLAS simulation suit in the following order:

The gamp files are first converted into the format of the PART bank con-

taining the event.

e GSIM (Geant3-based simulation): GSIM in CLAS simulates the decay tracks

14 7

of particles and finally the digitized information is sorted in other “raw

banks from the PART bank.

e GPP (GSIM post-processor): The events are passed through GPP, which
smears detector signal more accurately to reflect the actual resolution of

g12 data and simulate the experimental conditions.

e alc: Finally the events are passed through alc, which is a reconstruction
program for the simulated data. The same program is used during data

reconstruction.

The next step is to improve the identification of the particles and signal
to background ratio using conditions and corrections. All these conditions and

corrections which are implemented in this analysis for data and simulation are

listed in Table 1.

This work used a Dalitz plot which has 30 bins in X and 30 bins of Y, which
gives a total of 900 bins in Dalitz plot. Out of these 900 bins, those bins which fall

viil



Table 1: The list of conditions and corrections implemented to the g12 data and

simulation.

“g12” Experiment data Simulation
Photon Multiplicity NA

Beam Energy Correction NA
Momentum Correction NA
Removal of bad TOF paddle Applicable
Geometric Fiducial Cut Applicable
Kinematic Fit (1% probability cut) Applicable
Vertex Length Cut (-70 < v, < -110 | Applicable
cm)

Vertex cross-sectional radius (/v2 + v2 | Applicable
< 2 c¢m)

Timing Cuts on proton, 7% and 7~ | Applicable
(tyert(TOF) and tye(Tagger) + 1.0

ns)

| €08 Ocenter—of—mass of 7' | < 0.85 Applicable
| M.(p 7+ m—) - 0.547 | < 0.015 GeV | Applicable

X




Table 2: Dalitz plot parameters from both the fit methods.

Acceptance correction method | Smearing matrix method
a -0.1511 £ 0.0068 -0.1508 £ 0.0069
b -0.1583 4+ 0.0115 -0.1514 + 0.0120
c 0.0138 + 0.0092 0.0128 + 0.0094
d -0.0780 + 0.0121 -0.0813 + 0.0127
X2/ndf | 1.18 1.16

outside the phase space of decay or bins with very low acceptance (< 0.5%) are
rejected. Finally, out of 337 bins are subtracted for background and a background
subtracted Dalitz plot is obtained for further analysis and calculation of Dalitz

plot parameters.

Once all the conditions and corrections are implemented, a background sub-
traction is performed to extract the n” — n 7t 7~ events and eliminate all other

channels which lead to the same final state of one proton, one 7% and one 7.

To cross-check the analysis and increase the confidence of the results, the

Dalitz plot parameters are calculated with the following two different methods:

e Acceptance correction method: The ' — n #™ 7~ decay contribution for
each Dalitz plot bin is corrected for acceptance, without considering the

migration of events from one bin to other.

e Smearing matrix method: In this method, the fits are performed directly to
the Dalitz plot from data along with a function. This function takes care
of the acceptance in the same bin and also acceptance due to the migration

from neighboring bins using a smearing matrix.

The number of bins selected along the Dalitz variables X and Y are higher
than the resolution of these variables, so these two independent methods yield
similar Dalitz plot parameters within the statistical errors, which also serves as a
cross-check to the analysis. The calculated Dalitz plot parameters a, b, ¢ and d

from both the methods are given in Table 2.



In this thesis, the dominant decay mode of n’ which is 0’ — n 77 7~ is
studied. The decay also produces ' — 37 decay which is an isospin violating

0 meson. This effect arises from the

mode and it is through a mixing of 7° - 7
light quark mass differences. Hence this study is an indirect probe to understand
the decay dynamics of mesons. This decay information is studied with the help
of a Dalitz plot distribution. The results from this Dalitz plot distribution is then

compared to reported experiments.

To gain more confidence over extraction of events from the experiment, a
measurement of the cross-section of 7’ is also done and compared to the previous
g11 measurement. The generated events used in the analysis were also modeled
very carefully to appear as close to nature. A very sensitive background subtrac-
tion is performed to both the smooth and in-peak backgrounds. The goodness
of fit is reflected in the x?/ndf of each bins which is above 0.5 and below 2 even
for the bins with low statistics. Also, the fit to the whole Dalitz plot yields a
reasonable x?/ndf of 1.16, which shows the quality of the fit. The Dalitz plot
parameters are calculated with two independent methods and matches within the
statistical errors from both the methods because of the choice of wide binning,
which is 3 times more than the resolution of Dalitz variables X and Y. The choice
of the binning is a result of the optimization of the total number of events and the
resolution of the Dalitz variables. The “Smearing matrix method” being a more
realistic approach has been used to present the final Dalitz plot parameters and

to perform systematic studies in the analysis.

A comparison of the g12 Dalitz plot parameters with the other experimental
results is shown in the Table 3. The parameters a and b from the CLAS ¢72 mea-
surement are consistent within 1 ¢ to the results reported by the VES and shows
disagreements with the BESIII parameters. The parameter ¢ which indicates C-
parity violation in the strong interaction when it deviates from zero. In the present
analysis, the ¢ parameter is consistent to zero within 1.5 . The parameters ¢ and
d from ¢g12 measurement is consistent with both the experiments. The Dalitz plot
parameters are also compared to neutral decay mode of the " meson, the ' — n
70 70 decay for the measurements from the GAMS, A2 Collaboration at MAMI

and the BESIII Collaboration. Our parameters for ' — n 7™ 7~ decay show de-
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viation by 4 standard deviations from all the measurement of neutral decay mode
of " meson for the Dalitz parameters a and b. Our measurement seems to agree
within statistical limits for the parameter d to both the recent measurements from

A2 Collaboration at MAMI and the BESIII Collaboration.

A comparison of the ¢g12 Dalitz plot parameters with the U(3) Chiral effective
theory is shown in the Table 4. The value of b and d from ¢/2 measurement as
well as from the previous measurements largely deviate from zero. However, the
framework U(3) chiral unitary approach and U(3) chiral effective field theory in
combination with a relativistic coupled-channels approach predict b and d to be
zero which recommends the theory to include the final state interaction corrections
in the chiral model for pseudoscalar mesons. The theory* in the Table 4 is resulting

from theoretical fits which include the VES data.

The ' — n 7t 7~ decay is also used to study a scalar intermediate particle.
The 7' and 1 meson are pseudoscalars and both has an isospin (I) of 0. The isospin
I, for both the 7t and 7~ is 1. Due to the conservation of 3" component of the
isospin (I3), the ' meson can decay into 77 and 7~ through an intermediate
scalar meson. Hence, we looked at the invariant mass of 7 7~ distribution and
compared it to the theoretical distribution which considers intermediate states of
decays. A good sensitivity to the parameters of the ¢ meson decay to the 7"
7~ in the ¥ — n «" 7~ decay is found and compared to the Nonlinear Sigma
Model Lagrangian (NLSM) and Generalized Linear Sigma Model (GLSM). The
right-centered distribution of the acceptance corrected invariant mass of 7+ 7~
mesons, M(7m+ 7—) distribution from CLAS g12 data is due to the ¢ contribution.
However, in the absence of ¢ meson from the NLSM, the centeredness of M(7-+

m—) shifts from right towards the left.
The organization of the thesis is as follows:

Chapter 1 provides the introduction to fundamental particles and basic
forces within the Standard Model, thereon the formation of hadrons and the prop-
erties of the pseudoscalar meson 7' and its decay to n 7™ 7~ are discussed. Later
on, the Chiral Perturbation Theory is explained for pseudoscalar mesons and the

n — n 7" 7 decay along with its applicability and reason behind the acceptabil-

xii



Table 3: Comparison of g12 Dalitz plot parameters of the ¥ — n 7% 7~ decay
with various experimental results.

Parameter | VES BESIII BESIII CLAS
(Old) (New) gl2

a -0.127 4 | -0.047 £ |-0.056 =+ |-0.151
0.016 +|0.011 =+ |0.004 =+ |+ 0.007
0.008 0.003 0.002 Bt

b 0106 =+ | -0.069 =+ |-0.049 =+ |-0.151
0.028 +[0.019 40006 =+ |+ 0012
0.014 0.009 0.006 0000

¢ 0.015 =+ |0.019 =+ |0.0027 +|0.013
0.011 =+ |0.011 =+ |0.0024 =+ |+ 0.009
0.014 0.003 0.0018 iRyt

d -0.082 4 | -0.073 =+ |-0.063 =+ | -0.081
0.017 +[0.012 +|0004 =+ |+ 0013
0.008 0.003 0.003 0055

x*/ndf 1.13 1.05 1.16

Table 4: Comparison of g12 Dalitz plot parameters to the theoretical predictions.

Theory* Theory Theory CLAS g12

a -0.093 -0.116 + | -0.116 + | -0.151 +
0.024 0.011 0.007

b -0.059 0.000 £ 0.019 | -0.042 + | -0.151 +
0.034 0.012

c 0.013 £ 0.009

d -0.003 0.016 £ 0.035 | 0.010 £ 0.019 | -0.081 +
0.013

X% /ndf 1.16

xiii



ity of the theory. At this point the theoretical foundation of the problem is set,
so we moved on to explain a Dalitz plot and how it is used to extract the decay
parameters. Finally, the current status of the study and importance of the results

are discussed.

Chapter 2 covers the details of the experimental facility directly related to
the analysis. It includes the CEBAF accelerator, hall B photon tagger, the CLAS
detector and subdetectors, triggers and data acquisition. Additionally, it will also
explain how the raw data from various subdetectors are interpreted and prepared

for performing data analysis.

Chapter 3: The recorded, pre-sorted and calibrated data available on the
JLab data farms and the required corrections and selections with the help of anal-
ysis programmes to reconstruct v p — n'(— n 7" 77) p decay events are explained
here. The chapter also gives a brief summary of the g72 run, the simulation frame-
work and series of events selection criteria along with the corrections required for

the reconstruction of these events.

Chapter 4: This chapter explains detailed steps involved in obtaining the
Dalitz plot and the Dalitz plot parameters for the ' — n 7t 7~ decay. We
performed the background subtraction in two steps, first the non-resonant back-
ground subtraction and second, the in-peak background reduction using the realis-
tic Monte-Carlo simulations. Then we moved on to explaining how the background
subtracted Dalitz plot is fitted to a general parameterization using two different
and independent methods along with acceptance correction to obtain the final

Dalitz plot parameters.

Chapter 5: This chapter shows in details the calculation of the systematic
errors from all the different sources and our criterion on deciding which among
those sources should be considered to be the part of final result. The error which
cannot be explained by the statistical fluctuations of the measurement were finally
added to the results after adding all the systematic errors from the sources in

quadrature.

Chapter 6: This chapter concludes the final Dalitz plot parameters along

with all the experimental errors and the invariant mass distribution of pions using

Xiv



CLAS g12 experiment. The significance of the results, conclusion and outlook
of the analysis and its comparisons to other theories and experiments are also

covered in this chapter.
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Chapter 1

Introduction

This chapter gives an introduction to the fundamental particles and basic forces
within the Standard Model. The thesis is based on the study of the Dalitz plot for
etaprime (') decay (— n % 77), so the formation of hadrons and the properties of
the pseudoscalar meson 1’ and its decay ton 7+ 7~ are discussed. Later, the Chiral
Perturbation Theory is explained for pseudoscalar mesons and its applicability to
n — n 7" 7 decay is discussed. At this point, the theoretical foundation of the
problem is well defined. So, we explain a Dalitz plot and how it is used to extract
the decay parameters. Finally, the current status of the study and the importance

of the results are discussed.

1.1 Motivation

Quantum Chromodynamics (QCD) is the theory of strong interaction. There has
been a lot of work and progress in the field of perturbative QCD which is a part of
high energy physics. However, the scientific community has less understanding of
particle behavior in the low energy regime or the non-perturbative QCD regime.
We do not have a complete explanation for phenomena like quark confinement and
asymptotic freedom [1]. Strong interaction is also responsible for the production
of pseudoscalar mesons. However, the theory does not give a suitable explanation
for the higher mass of the 1’ meson compared to other pseudoscalar mesons. Due
to the axial U(1) anomaly and heavier mass of the meson, the " is not a Goldstone

boson in the chiral limit [2].

The Jefferson Lab (JLab) at Newport News, USA has an accelerator facility,

which provides a very suitable range of energies for production and detection of



light pseudoscalar mesons. We, as a part of the “Light Meson Decay CLAS,
Approved Analysis (LMD-CAA)” group, study the low energy QCD regime using

the data from the facility, and share the following common objectives:

Transition form factor of different light mesons

Dalitz plot analysis of different hadronic decay channels of light meson

Branching ratio calculation of different rare decay channels

Different symmetry violating decay channel

e Mixing angle between different mesons

The present thesis work is focused on understanding the decay of the pseu-
doscalar meson 7 into n 7+ 7. A Dalitz plot is used here to study the decay,
which contains kinematical information of the decay. A better understanding of
these plots will help physicists to avoid tedious calculations and reject the incor-
rect interpretation of the experimental effects. The results will be particularly
useful to give inputs to hadronic spectroscopy problems and develop the theoret-

ical distributions of effective or the non-perturbative QCD [3].

1.2 The Standard Model (SM)

The whole visible universe is made up of subatomic particles which are bound
together with four unique kinds of interactions among them. The SM of parti-
cle physics describes the electromagnetic, weak and strong interaction excluding
gravity among all these interactions. The SM of particle physics is one of the
most accepted theories that describes all known fundamental particles and the
interactions between them except gravity. The Fig. 1.1 shows all the fundamental
quarks, leptons and the gauge bosons along with their respective mass, charge and

spin.

The majority of particles in the visible universe are composed of six quark
flavours in three different colors (Red, Blue and Green), six leptons and anti-

particles of both quarks and leptons, which are the building blocks of all matter



Figure 1.1: Six quarks include up, down, strange, charm, top and bottom. Six
leptons are the electron, electron neutrino, muon, muon neutrino, tau and tau
neutrino. The gauge bosons are photon, gluon, z boson and w boson. Image
Source: [4]

except the dark matter. The dynamics of these particles are governed by interac-

tions, mediated by another class of particles, known as gauge bosons [5].

The weak interactions are short ranged and with low interaction strength.
The mediators of these forces are heavy and short-lived W+ and Z vector bosons.
The quantum electrodynamics (QED) governs the electromagnetic interaction,
which is a long (infinite) range force because of the massless charge carrier particle,

known as “photon”.

The quantum chromodynamics (QCD) which shares a common analogy to
the QED in terms of particle’s charge and mediator boson is the theory of strong
interaction which is responsible for the existence of nuclei and composite particles.
The six flavours of quark are categorized in three generations: the “up quark”
(u) and the “down quark” (d) form the first generation, the “charm quark” (c)
and “strange quark” (s) form the second generation and the “top quark” (t) and
“bottom (or beauty (b)) quark” form the third generation [6]. Out of these,
only the light “up” and “down” quarks form the key constituents of stable visible
matter. Quarks come with three different “color” charges analogous to “electric”

charge in QED and the quark composition in a composite system (exception is

3



quark-gluon plasma (QGP)) or particle is always colorless (quark confinement).
The strong force is very short ranged with high interaction strength which is
mediated by gluons carrying the “color” charges. These gluons are available in
8 physical gluonic states which forms a color-SU(3) octet [1]. The interaction
strength of strong force between quarks (o, = g2 /47, where ¢ is effective coupling
constant) is very different from other interactions, a colorless particle becomes
asymptotically weaker when energy increases or distance decreases, this gives rise
to a unique feature of QCD called the asymptotic freedom. It was discovered and
described in 1973 by Frank Wilczek and David Gross and separately by David
Politzer in the same year. The discovery of asymptotic freedom in the theory of the
strong interaction facilitate them the shared Nobel Prize of physics in 2004 [7]. The
Fig. 1.2 shows the QCD coupling constant given below as a function of momentum

transfer along with experimental data versus theoretical prediction.

1
(33 = 2Ny) In(Q*/Adep)

as(Q) = (1.1)

where Q is the energy exchange and Ny is the number of quarks and flavours.
The Agep is a scale factor. Thus, quarks interact strongly at low energy (high
momentum transfer) and consequently, perturbative calculations are not allowed
due to large coupling constant which introduces divergence in the perturbative
expansions. The Agep simply defines the scale for strong interaction physics
dividing it into two regimes; one, with low energy non-perturbative QCD (Effective
Theory) and other with high energy QCD where perturbative calculations are still

valid.
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Figure 1.2: The QCD coupling constant vs the energy exchange for various exper-
imental data and theoretical predictions. Image Source: [9]

1.3 Hadrons

The hadrons are colorless particles that are made of two or three quarks. The
hadrons with three quarks result into a colorless state called baryons, whereas, a
hadron formed by a quark and anti-quark pair is called a meson. These quark con-
tents of a particle allow SM to assign quantum numbers to the hadrons and often
denoted as JPC¢. Here J = L+S is the total angular momentum containing orbital

L+1 and

angular momentum L and spin S, while the parity is denoted by P = (—1)
charge conjugation by C = (—1)%*5 [10]. The SM model explains all hadrons ob-
served in nature as a combination of different quarks and the interactions holding

them together.

The mesons can be further classified depending on the J and P shown in
Table 1.1. The present work, however, is focused on understanding pseudoscalar
meson. The pseudoscalar mesons form an SU(3) group representation, through a
combination of light quarks (u,d,s) and thus, producing nine different states which
are further grouped in an octet and a singlet state. The nonet of the pseudoscalar
mesons are shown in Fig. 1.3, where the charge (Q) increases towards the right

and the strangeness (S) increases towards the upward direction.

bt



Table 1.1: The table shows different types of mesons depending on their quantum
numbers.

Type S L J|Jr
Scalar Meson 11 0|07F
Pseudoscalar Meson |0 0 - 0|0~
Axial Vector Meson |0 1 + 1]1%
Vector Meson 1 0 - 1|17
Tensor Meson 11 + 2|2

Q=-1 Q=0 Q=+1

Figure 1.3: The nonet of pseudoscalar mesons.: [11]

1.3.1 17 pseudoscalar meson

The 1" meson is the heaviest pseudoscalar meson with a mass of 957.78 + 0.06
MeV/c?, decay width (7) of 0.196 & 0.0009 MeV and configuration JF¢ = 0=,
The 1’ meson is not a pure singlet or an octet, rather it is a linear combination of

the singlet (n;) and octet (ng) state and the 6 is the mixing angle.

ut +dd + ss
= 1.2
m \/g ( )

uit + dd — 2s8
= - 1.3
78 \/6 ( )
n' = cos(0).n, + sin(6).ng (1.4)

6



Table 1.2: Major decay modes of i meson.

Decay modes of 7/ Branching Ratio (%)
T 42.6 £ 0.7

Tt

p v (including non-resonant 7+ 7~ ) | 28.9 + 0.5
7070 g 22.8 + 0.8
w "y 2.62 £ 0.13

1.3.2 7’ decay modes

The ' — n «* 7~ decay is the dominant decay mode of the heaviest pseudoscalar
meson 7. The major decay modes of ' meson are shown in Table 1.2 [12]. The
study of the prominent decay mode can help to understand the quark contents,
general behaviour pseudoscalar meson, quark mass ratios and thereby allowing
one to develop a theory which works at low energy non-perturbative QCD regime.

The decay width for  — n 7+ 7~ modes can be written as:

, ) 1
T(n —>777r+7r):2ml/|M|2dqb (1.5)
My

where phase space volume element is d¢ and M is the matrix containing interac-
tions. The masses of the intermediate o (550 MeV), fy (980 MeV) and aq (983.5
MeV) resonances are either less than or comparable to 7' meson mass [13]. The
contributions of these resonances in the decay can be represented by Feynman

diagrams shown in Fig. 1.4.
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Figure 1.4: The Feynman diagram showing different ways in which the decay of
7' — n 7w 7 can occur (a) the non-resonant decay, (b) decay with scalar o and
fo meson resonances and (c) with scalar ay meson resonance [13].

1.4 Chiral Perturbation Theory (ChPT) for

Pseudoscalar Meson

The chirality is a symmetry where the left-handed and right-handed operations
are observed independently. The ChPT is an elegant theory which provides a
framework to study the mesons at very low energies, and the chiral symmetry acts
as an exact symmetry and valid for non-perturbative QCD. The chiral symmetry
is a very useful concept and applicable to quarks u, d and s as they have small
masses and takes part in low-energy hadronic interactions. In this effective theory,
the Lagrangian has a SU(3), x SU(3)g chiral symmetry. This symmetry, when
broken in the ground state, gives the eight massless Goldstone bosons: (70, K+,
K° KO ) [14], as expressed in equation 1.6. These eight massless bosons serve
as the effective degrees of freedom for the theory instead of the most fundamental

particles, the quarks and the gluons. Within the theory, the pseudoscalar mesons
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gain their masses from the spontaneous breakdown of the chiral symmetry. The
Lagrangian (£) during the spontaneous breakdown of the chiral symmetry changes

its symmetry from SU(3), x SU(3)g to SU(3)y .

Locp(q,q,9) — Ef fective theory — Leppr(m, K, n) (1.6)

These processes can be defined with the Feynman tree-level diagrams and
the expansion of the Lagrangian is in order of momenta which saves the theory
from being divergent. The expansion of the Lagrangian where subscripts refer to

the order of momentum is given below:

Lowpr = Lo+ Ly + Lg+ ... (17)

The lowest order of the Lagrangian (Loppr o or £2) in ChPT is given by

F? F?B,

Lonprio = I”(@MUW”U) + ”2 tr(M(UT +U)) (1.8)

where F); is pion decay constant, has a value of 92.2 MeV in the chiral limit, By
is a constant appearing in the mass term of the pseudoscalar mesons, U is the

unitary matrix given below:

70+ \%77 2t V2K
U(®) = exp(i®/Fr)p = | /o~ —n04 \/%77 V2K (1.9)
~ 0 2
| V2KT V2R o |



and M is the quark matrix, M= | o 4, 0

Some of the applications of lowest order Lagrangian L5, which considers the
simplest tree-level diagrams, are 7+ — p* v, decay and 7 — 7 scattering. Similar

applications of £4 and Lg can also be found in the references [15, 16].

The observed mass of the 7 meson in nature is much higher than the other
pseudoscalar mesons, which is due to axial U(1) anomaly [17, 18]. The axial U(1)
anomaly of the QCD Lagrangian prevents the corresponding pseudoscalar singlet
from being a Goldstone boson and in fact, the anomaly suggests that lightest
pseudoscalar candidate should be the 1’ meson, which is not the case. So, a
conventional ChPT does not include the " meson. One of the way to include 7’
meson is extending the chiral SU(3); x SU(3)g symmetry to U(3); x U(3)g as
shown in Fig. 1.5. The ChPT calculations using a tree level diagram do not seem
to explain the experimental observables from the Lagrangian £, only. So, one has
to look for the higher order of the Lagrangian, and hence the tree level diagrams
from the Lagrangian £4 and loops with vertices from £, along with a framework

of large N. ChPT [19] are discussed. The fourth order Lagrangian £, is given by,

Ne

L, =
T 19902

Tr{%[UTé?NU, U0, U2 + (9,(U10,0)?2 — 200, (U0,0))°}  (1.10)

So far the 7 meson description is exclusively taken care within the effective
theory. The Lagrangian can then be modified to take care of hadronic decay mode

n — n ot 7. Where, the £4 gives the major contribution which is given below:

N 2 (cos(f) — v/25sin(6))(cos(d) + v/2sin(h)) 9
19272 F, 6 (1.11)

{0,m'0,m0,m.0,7 + 2.0,m' O,n0,w.0,7}

ﬁint =

10
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Figure 1.5: Pictorial presentation of symmetry breaking in the pseudoscalar meson
nonet. Image Source: [20]

0 can be measured using

The decay rates of n’ = n 7t 7~ andn/ = n '«
equation 1.11. The decay rates are (' — n 7" 77) = 195 keV and 7(f — n 7°
7%) = 105 keV [21]. The investigation of these decays with the U(3) ChPT up
to fourth chiral order including one-loop corrections produces 7(n' — n 7™ 77) =
84.4 keV and 7(n' — n 7% 7°) = 42.2 keV [2], which are close to the experimental
measurements of 7(n — n 77 77)=90 + 8 keV and 7(y — n ¥ 7°) = 42 + 4

keV [22]. These comparisons show the genuineness and are the reason behind the

acceptability of ChPT.

The ChPT Lagrangian straight away produces the ' — n 7% 7~ decay
amplitude. In this thesis, the experimental measurement of ' — n 7" 7~ decay
amplitude is studied, which is accessible by studying the decay amplitude of Dalitz
plot phase-space and parameterized to quantify and compare with the theoretical

calculations.

1.5 Dalitz Plot for a Three Body Decay

A three body decay of the ¥’ — n 77 7~ can be specified with three final state

four-vectors P, P and P! for each final state scalar particle. The three four-
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Table 1.3: The number of degrees of freedom for a meson undergoing three body
decay to scalar particles.

Constraints Degrees of freedom

3 four-vectors 12

4-momentum conservation | -4

3 masses -3
3 Euler angles -3
Total 2

vectors produce 12 parameters, however, the three body decay also has constrains
shown in Table 1.3. Therefore, we see that the three body decay of the meson

leaves two degrees of freedom to explain the phase-space of the decay.

A Dalitz plot is a scatter plot introduced by Richard Dalitz. One of the
important achievement of the earlier time was that the Dalitz plot could solve
the “7-6 puzzle” of particle physics. The two particles with the same masses and
lifetimes with a violation of the parity conservation (P) in the decay mode, were
long thought to be two different particles. Finally, a Dalitz plot resolved it. To-
day we identify both states with K where the parity symmetry is broken. A
Dalitz plot where the variables are the function of the decaying particle masses
with very less number of events is called an “Old Dalitz plot” [23]. The primitive
application of these plots was to know the spin and the parity of the decaying
particle, which resulted in information like intermediate resonances and identifica-
tion of particles. With the advancement of experimental capabilities, Dalitz plots
are now produced with a large number of events and low statistical fluctuations,
referred as “new Dalitz plot”, which are capable of enhancing even the slightest
variations in the event distribution. These modern Dalitz plots are quantified with
different parameterizations and evaluated for precise determination of the param-
eters. This information serves as inputs to problems in hadronic spectroscopy.
The parameters allow one to study and understand resonances, predict effective
potentials, intermediating particles and interactions in the decay. Physical observ-
ables like decay width, phase shifts, quark mass ratio and parameters quantifying

interactions can also be calculated from the Dalitz plot parameters [24-27].
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In the current measurement of the Dalitz plot containing purely kinematic
informations of the phase-space is described using two variables X and Y given

by,

V3(Tpr — Ty-)

X = 5 (1.12)
 (my+2mg) T,
o= S -6"—1. (1.13)

Where, T)), Tr+, and Ty are the kinetic energies of the particles , 7" and 7~
respectively, in the rest frame of the 7" meson and Q = T,++71,-+T,, m, and
m, are the mass of n and 7 mesons, respectively. The Dalitz plot of ' — 7
7T 7~ decay is shown in Fig. 1.6. The information of any decay is accessible by
studying the amplitude of the phase-space. So, the decay amplitude of Dalitz plot
phase-space is parameterized with the general parameterization function given in

equation 1.14.
f(X,Y)=M?=A(l+aY +bY? + cX +dX?). (1.14)

Where, a, b, ¢, and d are the Dalitz plot parameters of the decay and A is the

normalization constant.

Figure 1.6: Dalitz plot distribution for the decay of ' — n «# 7.
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1.6 Present Status

Current status of experimental data on ' — n 7" 7~ decay is based on the
following: the VES Collaboration, which has reported the Dalitz plot parameters
of ' — n 7" 7~ with 14.6 x 10° events in charge exchange (7~ p — 1’ p) and
7 x 10? events in diffraction like production (7~ N — 1 7= N) [28], the BESIII
Collaboration has also reported o — n 7" 7~ decay parameters in et e~ — 7+ 7~
J/v — n' v with 43826 £ 211 events [29] with better precision compared to VES.
There are also calculations from theory using U(3) chiral unitary approach [24]
and U(3) chiral effective field theory in combination with a relativistic coupled-
channels approach [30]. The two measurements disagree with each other and with
the theoretical calculation of the parameters [30]. The previous experimental

measurements and theoretical calculations are shown in Fig. 1.7.

Experimental
BESIII, Phys. Rev. D 83, 012003 (2011)
- —— —_—— e
VES, Phys. Lett. B 651, 22 (2007,
—.— —.— S—— ) — —.— ys. Le (2007)
Theoretical
: Nucl. Phys. A 716, 186 (2003)
Eur. Phys. J. A 26, 383 (2005)
0 0 0
Eur. Phys. J. A 26, 383 (2005)
Illllllllllll llllllllllllllllll llllllllllllllllllll llllllllllllllllll
-0.15 -0.1 005 115 -01 005 0 0 001 002 003 -01 -005 0 0.05
a b ¢ d

Figure 1.7: Comparison of different experimental and theoretical calculations for
Dalitz plot parameters of ¥ — n 7+ 7~ decay.

In this thesis, we present results of Dalitz plot analysis of the decay ' —

n 't 7~ from the CLAS ¢12 dataset. The analysis is based on more than 1.5K
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events of photoproduction and subsequent decay of n’ — n 7« 7~, which has the
competitive statistics to study the parameters with reduced statistical errors. It
is a complementary independent measurement to cross-check the parameters with

almost an order of magnitude higher statistics.
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Chapter 2

Experimental Setup

The Dalitz plot analysis of 7 — n 7+ 7~ decay is done with events collected by
the g12 run data recorded at Thomas Jefferson National Accelerator Facility or
Jefferson Lab (JLab) located in Newport News, Virgina, USA. This high statistical
data provided the reaction v p — (7') p — (n) ™ 7~ p for the Dalitz plot analysis,

where the particles in parenthesis are not directly detected.

JLab is a national laboratory of United States, funded by the U.S. Depart-
ment of Energy (DOE) and it has a motto of “Exploring the nature of matter”.
JLab has Continuous Electron Beam Acceleration Facility (CEBAF) accelerator
with three experimental halls (A, B, and C) in the facility. The Ariel view of the
JLab is shown in Fig. 2.1 and very recently, the accelerator beam energy has been
upgraded to 12 GeV and a new experimental hall (D) has been developed. The
production of the high-quality photon beam for the experiment is achieved using

CEBAF accelerator and finally obtained in the hall-B.

This chapter will cover the details of the experimental facility directly related
to the analysis. It includes the CEBAF accelerator, hall B photon tagger, the
CLAS detector and subdetectors, Triggers and data acquisition. Additionally, it
will also explain how the raw data from various subdetectors are interpreted and

prepared for performing data analysis.
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Figure 2.1: Bird’s-eye view of the JLab accelerator site. Image Source: [31]

2.1 CEBAF Accelerator

The CEBAF at JLab provides polarized electron beam of up to 6 GeV with an
average current of up to 200 A to all the experimental halls. The polarized electron
source from the injector is circulated in the racetrack shaped accelerator of 1.4 km
in length with a pair of superconducting linear accelerators (LINAC) connected

to each other by two arc sections that also contain steering magnets.

The injected electrons come from electron gun with a laser which radiates the
GaAs photocathode system and produces the bunches of electrons. The electron
gun has three lasers, one for every experimental hall thus giving the freedom
to choose polarizations and control current for the experiments at different hall.
The incident laser is pulsed at every 2 ns and then passed through an optical
chopper to improve the separation of the bunches by 667 ps in time and 90 m
in length. Both the LINAC’s have 168 Superconducting Radio Frequency (SRF)
Niobium (Nb) cavities as shown in Fig. 2.2. The superconductivity is achieved
by liquid helium refrigeration of Nb cavity to a temperature of approximately
2.1 K, at this temperature the Nb looses electrical resistance and behaves as a
superconductor. Klystrons are used to make radio frequency (RF) standing waves
inside these cavities thus creating the accelerating potential for the electrons. The

whole subsystem is synchronised in a way to give an overall frequency of 1497
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MHz to the RF waves inside the cavity.

The two arc sections have in total 9 recirculating arcs, the electron bunch
once inside the LINAC can be passed up to five times completing passages through
all the 9 recirculating arcs to achieve maximum energy of 6 GeV. The beam
energy in each hall can be controlled by choosing the number of laps of electron
bunches. The electrons from the accelerator are then passed to all the three halls
simultaneously and the RF-timing of the electron beam bunch is also recorded [33]
before sending it to the halls. The schematics of the CEBAF accelerator with

different components are shown in Fig. 2.3.

Figure 2.2: A pair of typical CEBAF superconducting cavity (top), and the ac-
celerator has 338 such cavities. A pictorial representation of the standing wave
inside the cavity (bottom) through which the electron bunch propagates. Image
Source: [32]
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Figure 2.3: The CEBAF along with the position of installed components in the
facility. Image Source: [31]

2.2 Hall B Photon Tagger

The experimental hall B is the house to the CLAS experiment where the g72 run
data is taken. The hall B serves to convert the electrons into photons through the
bremsstrahlung process and it also tags those photons which are used later in the
experiment. The complete diagram of Photon Tagger system with the sub-parts is
shown in Fig. 2.4. The electron beam from the CEBAF facility passes through a
gold (Au) foil radiator of 10~ radiation length. The prime reason behind choosing
Au is that it has a heavy nucleus which produces sufficient Coulomb field for the
incoming electrons. The interaction of an electron with the nucleus results in the
production of photons thus decelerating electrons and transfer of some negligible

energy to the gold atom.

A dipole magnet of 1.75 T separates the deviated electrons while the photons
remain undeflected. The dipole magnet with its field strength is constructed in a
way that it throws electrons which do not radiate to follow a circular arc directed
into a shielded beam dump below the floor of hall B. However, the interacted
electrons curl depending on momentum and magnetic field, and finally moves
toward the scintillator hodoscope along the flat focal plane downstream. The

curling of electrons gives it a characteristic angle depending on the energy of an

19



electron.

A scintillator hodoscope along the flat focal plane downstream detects the
scattered electrons, and it consists of two separate planes of scintillator detectors.
The first detector plane is called the E-plane, where E denotes the energy. This
plane contains 384 narrow scintillator paddles of 20 ¢m in length, 4 mm thick and
range from 6 to 18 mm in width. These paddles are arranged in an overlapping
fashion and give the energy resolution of the E-plane which is 0.1% of the incident
electron beam energy. Consequentially, the electron energy can be measured by
knowing the paddle position through which an electron passed, and thereby allows
the determination of the radiated Bremsstrahlung photon E, energy via. simple

energy conservation as:

E’y = ECEBAF + EScattered

where FEcgpar is the electron energy from the CEBAF and Escqitereq is the mea-
sured electron energy from the E-planes. About 20 cm beneath the E-plane there
is also another set of planes called the T-plane to measure the timing information.
This scintillator plane has 61 paddles, and each paddle is 2 cm thick and provides
a time resolution of 110 ps. The paddles are organized into two groups, the first
has 19 narrower counters spanning the photon energy range from 75% to 95% of
the incident electron energy, and the second group has 42 counters spanning the
range from 20% to 75%. The paddle widths along the plane are varied to com-
pensate for the 1/E, behavior of the bremsstrahlung process so that the counting
rate remains constant. The timing resolution obtained from these counters is of
the order of 110 ps, and within this resolution it is possible to identify and tag the
photons using the T-plane information along with RF-timing information from
the electron beam bunch. The T-plane information is also crucial to calculate the
event vertex or the interaction time, and the instant of time when all the parti-
cles produced after interaction left the target. Photons in the energy range from
20% to 95% of the electron beam energy can be tagged by this photon tagging
system and is shown in Fig. 2.5 along with the position of the counters. Finally, a

collimation system with interspaced sweep magnets clean up any charged particle
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background generated in the collimator walls, before the photon beam proceeds
toward the target cell. A detailed information of the hall B photon tagging system
is explained in the paper [33].

COLLMATOR
i SVEEP MAGNETS
[1 L] /et
SHELDNG
i j TAGOER MAGNET BEAM LINE
i 10 CLAS
™~
VACUUM BOX
P
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Figure 2.4: A complete assembly of the hall B Tagger system with the location

of the radiator, hodoscope enclosure, collimators, shielding, and beam dump en-
trance. Image Source: [33]
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Figure 2.5: The photon tagging system with the position of E and T counters,
along with the measured electron energy range. Image Source: [33]

2.3 CLAS Detector

The CLAS detector [34] is placed inside the Experimental hall B. It is an onion-
shaped detector with different layers of subdetector. Considering the CLAS de-
tector geometry in spherical coordinate where beam direction being the z-axis,
the azimuthal angle divides the detector as six different identical and independent
sectors. The CLAS detector along with the subdetectors are shown in Fig. 2.6.
The CLAS detector is specially optimized for detection of charged particles with
~ 37 coverage with a radius of 4 m. The different subdetectors along with the

experimental target are described in this section and are also listed below:

—_

. g12 Target Cell

2. Start Counter

3. Superconducting Toroidal Magnet
4. Drift Chambers

5. Time of Flight
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Figure 2.6: The CLAS detector along with the position of various subdetectors.
Image Source: [35]

2.3.1 g¢g12 Target Cell

A cylindrical cell of 40 cm in length and 4 ¢cm in diameter filled with unpolarized
liquid hydrogen (IH,) is used as a fixed target, which served atomic protons as the
target to the experiment. The geometry of target cell is shown in Fig. 2.7. The
cell body is made of Kapton which is 5 pym thick and the two ends are made of
Aluminium. In the ¢g712 experiment, the Target Cell was placed 90 cm away from

the CLAS center.

2.3.2 Start Counter

Start Counter measuring the start time (ST) entirely surrounds the target region

and it is the first detector encountered by the particles after the interaction. It
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Figure 2.7: The target cell used for the g72 run. Image Source: [36]

has a length which is equal to the target length of 40 cm, and there is a total
of 24 scintillator paddles divided into the six sectors of CLAS. Each independent
CLAS sector has four such independent scintillator paddles, and all the scintillator
paddles are bent inward around the downstream end of the target to provide total
coverage. The signal from the scintillator paddles is collected by the phototubes
attached to the upstream ends as shown in Fig. 2.8. The acrylic light guides taper
is connected to a photomultiplier tube (PMT). The PMT signals from the 24
start counter are sent to ADC’s and CAMAC discriminator and the discriminated
output finally reaches to the trigger logic in order to get recorded. The hexagonal
support shell holds the six sectors mounted on them independently, while the other
accessories like base with the flange, the light guides, PMT’s and housings were
placed in a way that it does not block the good and useful acceptance region of
CLAS detector. The time resolution calculated for the subdetector comes out to

be < 380 ps.

The timing information from the Stant Counter is very important to this
analysis as it allows to calculate the velocity of the produced particle by knowing
timing difference and distance between the TOF and ST. The timing information
from Stant Counter, timing counters of the tagger and RF also helps to calculate
more important information like the events and particles production vertex, cor-
rect beam photon associated with an event etc. The logic of the timing counters
of the tagger with the ST allows users of the facility to record only events within

a certain photon energy range.
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Figure 2.8: Start counter surrounding the target cell and connections of the pho-
tomultiplier tube. Image Source: [37]

2.3.3 Superconducting Toroidal Magnet

One of the most crucial parts of the detector is the superconducting toroidal mag-
net which produces the magnetic field inside the detector. The charged particles
produced after the interaction experiences the magnetic field. The field deviates
the particles from its linear trajectory depending on the strength and direction of
field. From the deviated trajectory along with the help of the tracking detectors,
the momentum of the particle is computed. Charged particle when suffer mag-
netic field, it bend outwards laterally, and so the possibility of a crossover from one
sector to the other is minimal. In the default or normal field mode, the positively
charged particles bend backward and negatively charged particles bend forward.
The strength varies downstream as well as radially. The highest magnetic field
strength is in the forward direction behind the target and near the beamline and
it is lower in the downstream region and further away from the detector in the
radial direction as shown in the map given in Fig. 2.9. The magnet subsystem
has six kidney-shaped superconducting torous coils arranged around the beamline
and are separated by each other azimuthally by 60°. The magnet on a whole is
approximately 5 m in diameter. Each of the six coils has four layers of 54 wind-
ings of aluminum and is kept at a superconducting temperature of ~ 4 K using

CEBAF helium refrigerator.
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Figure 2.9: Contours of a constant absolute magnetic field for the CLAS toroid in
the midplane between two coils. The strength of the CLAS magnetic field (kG),
at the azimuthal center of a sector versus radial distance from the beamline z
coordinate (in cm). Image Source: [34]

2.3.4 Drift Chambers

The Drift Chambers tracks the charged particle produced after the interaction and
deviation by the magnetic field. The Drift Chambers has three regions. Region
one, is the nearest to the interaction region and the inner-most chamber, it is at a
position radially below the torus coils where magnetic field is the weakest. Region
two, is mounted with the magnets cryostats where the magnetic field is the highest
and the maximum deviation of the particle is measured at this point. The Region
three, is positioned outside of the torus coils, and at the farthest distance from the
target, and the magnetic field is again weak here. The regions in an x-z plane of
the CLAS detector are shown in Fig. 2.10. These three regions give the tracking
information of the particle from a point with almost no magnetic field, to a point
of highest magnetic field (highest deflection) and again at a point after suffering
the highest deflection. All these points help to give the complete trajectory of the

particle inside the known magnetic field.

Each Drift Chamber has two superlayers, one with axially oriented wires
(relative to the magnetic field direction) and another with wires oriented at a 6°

stereo angle (for azimuthal information). Each superlayer has six layers of wire
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and every layer has 192 wires arranged as hexagonal drift cells. Each such cell has
20 m gold-plated tungsten sense wires in the middle acting as the positive terminal
and is surrounded with 140 m gold-plated aluminum alloy field wires acting as the
negative terminal. The gas inside the Drift Chamber is a mixture of 90% Argon
and 10% CO,, the mixture of gas has ionization property, high drift velocity and is
non-flammable in nature. The single wire’s position resolution is 330 pym and the
momentum resolution is ép/p < 0.5% for 1 GeV/c and the resolution decreases

with increasing polar angle, because of the magnetic field strength.

TOF Counters

Drift Chambers
Region 1
Region 2
Region 3

Main Torus Coils

Figure 2.10: The x-z-plane of CLAS showing the relative positions of the three
sets of drift chambers can be seen, the first one near the target (Region 1), the
second one between the magnet coils (Region 2), and the third one outside the
magnets (Region 3). Image Source: [34]

2.3.5 Time of Flight

The Time of Flight (TOF) is the outermost detector of CLAS with six segments,
one for each sector. It measures the time instant of the outgoing charged particle
from the detector and it is located approximately four meters away from the CLAS
center. The TOF acts as a scintillator wall in each sector. It has four panels and
a total of 57 bars of TOF-counters which are varying lengths and widths. These

counters are arranged in a fashion such that their lengths project perpendicularly
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onto the beamline. The counters in the most forward region have a scattering angle
of less than 45° and the counters vary in length from 32-276 cm and the width is 15
cm. The counters in the region of scattering angle more than 45° vary from 271-
445 c¢m in length and are 22 cm in width. The TOF paddles orientation in a single
sector with respect to the beam direction is shown in Fig. 2.11. The signals from
the scintillators are collected via photo-multiplier tubes (PMTs) mounted at each
end of the bars. The timing resolution is 80-160 ps, depending on the length of the
bar where the longer bars has the worse resolution. Using the time information
from TOF and ST, and the knowledge of path length allows one to calculate the
velocity of a particle. In addition, the momentum of the particle is also known
from the Drift Chambers. With this information in hand, one can calculate the
mass of the particle, which helps in performing the particle identification. The
TOF-system has a very crucial role in this analysis, and it is also a part of the

Level 1 trigger [34].

Figure 2.11: A single sector of the CLAS TOF. Image Source: [34]
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2.4 Triggers in g12 and the Data Acquisition in
CLAS

During the operation of experiments, a lot of background noise arises from un-
known sources like cosmic radiation passing through subdetectors and noise due
to electronics. A trigger system sets a criterion to decide on which events should
be recorded. The triggering is not only done to remove the background noise
described above, but it is also used in a way to optimize and synchronise the real-
world limitations in computing power and data storage capacity rates. One of the
important components of the g2 experimental trigger is the Field Programmable
Gate Array (FPGA), which allows the use of the trigger with multiple conditions.
FPGA allows a total of twelve different trigger conditions together, and also allows
modification of the trigger condition during the running of the experiment. The
trigger conditions are signals from various subdetectors which have to be present
for a certain event to be recorded. The signals from the subdetectors in CLAS
sum up to = 40,000 readout channels for each trigger. A discriminator monitor
attached to each channel defines a threshold, and any signal needs to exceed this
defined threshold in order to be recorded. The signal allowed by the discriminator
is regarded as events from the physics interaction which are digitized by two types
of hardware. The time to digital converter (TDC) records the time at which a
signal arrives and the analog to digital converter (ADC) digitizes an analog signal
by counting the number corresponding signals. The TDC and ADC can handle
multiple signals parallely and write their output to a single data stream. Software
processes running on server clusters communicate with each TDC and ADC and
assemble their data stream into an event-based data format which is then stored in
a disk array. So, the trigger decides the events to be saved, and these signals with
information from all the subdetectors are collected and written to the tapes by
the Data Acquisition System (DAQ) in CLAS. The DAQ in CLAS during the ¢12
run recorded events at a speed of 8 kHz. The raw digitized data from the different
electronics are processed by series of CLAS offline reconstruction programs and
modules. The processing finally converts the raw digitized data into event based

separated in time information, along with the information of individual particles
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with PID and signals from all different subdetectors produced in the reaction.
After this offline reconstruction of events, the data is used for analysis to achieve

the physics goals.

2.5 Data Reconstruction and Particle

Identification

The process of reconstruction of the raw data and converting it to a format where
it is suitable to perform physics analysis is called cooking. The raw data from sub-
detectors are first calibrated and then processed through program “alc” program
for reconstruction in g72. The signal from a subdetector in each sector is analysed
separately. The hits in the DC regions form clusters and a hit-based-tracking is
performed on the DC to find a trajectory based on the information of all three
regions. The hit-based tracking is only a preliminary process and a lot of tracks
are not identifiable to physical events, as many hits comes from unknown sources
referred as noise. So, a time-based tracking is applied to the hits based information
to match the corresponding TOF paddles. TOF which gives timing information
are read out by TDC is used to set an upper limit to the time of the drift-chamber
hits. The DC hits are checked individually with the upper limit, and each hit is
verified in increasing time order as the track moves away from the target. This
time-based tracking results in elimination of noise hits, clusters and tracks not
associated to a physical event. After these eliminations, the remaining clusters of
tracks are refitted number of times for precise momentum measurement and event
vertex measurement, which is determined by the distance of closest approach of
the track to the beamline. The time-based tracking algorithm has sets of tracking
parameters obtained from best fits, correlating hits from same events and coinci-
dence from the ST are then extrapolated to other subdetectors. The final stage
of reconstruction is the identification of these hits as particles after knowing their

mass and charge. The mass can be calculated using the timing and momentum
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information given below:

t - tver ex
m = cp*/B* and B = TOFTt (2.1)

where ¢ is the speed of light, p is the momentum, [ is the length traversed by
the particle, tror and t,ee. are TOF and propagated ST time respectively. The
calculated mass and charge gives the particles identification (PID) to the tracks.

The classification is given below:

(

7, if m < 0.3 GeV/c® and charge = &

K%, if 0.35 <m < 0.65 GeV/c? and charge = +
PID = (2.2)

pE, if 0.8 <m < 1.2 GeV/c? and charge = +

|, if 1.75 <m <22 GeV/c?.

In cases of mismatch or unavailability of complete information, the recon-

structed masses lie between these cuts and, therefore, classified as unknown.
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Chapter 3

Event Selection & Simulation

The event selection begins with recorded, presorted and calibrated ¢g12 data avail-
able on the JLab data farms. Events are selected further in a way that there are
one or more beam photons (Z,Ypeam), target proton (pPrarget), & single 7, 7~ and
recoiled proton (p). These events are then processed using series of modules devel-
oped by CLAS collaboration along with various conditions and selections which
taps the v p — n/(— n 77 7#) p decay events. Similar final state backgrounds

originating in the " meson region are also referred here as reconstructed events.

The Monte-Carlo event generation and the recipe involved using the specific
CLAS modules, conditions and selections to obtain the accepted Monte-Carlo
events are also explained. By and large, the chapter will cover the event recon-
struction process of the g72 data and simulation. A flow diagram showing the

steps involved is also shown below in Fig. 3.1.
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Figure 3.1: Pictorial diagram of the procedure involved to select ' — n 7 7~
events in data and simulation.

3.1 ¢g12 Run

The ¢g12 experiment collected the data during March - June 2008 and recorded
26 x 107 events with the production trigger. It recorded 626 production rumns,
37 single-prong runs, and 3 special calibration runs. The table of all runs are
available in “G12_procedures_working_version.pdf” [38, 39] along with the detailed
trigger information. Finally, a total of 660 runs are used in the analysis and the
particular run numbers used are provided in Appendix A. Runs which are taken for
special calibrations such as normalized, zero-field, empty-target and for different
subsystems are not used in this analysis. The fixed target ¢72 experiment has an
energy of the photon beam ranging from 1.142 GeV to 5.425 GeV. This analysis
is performed using all the events from 1.455 up to 3.6 GeV because the beam
threshold energy for the production of 7" meson is 1.455 GeV and the production
cross-section of the 7" meson drops significantly after 3.6 GeV. Calibrated data
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in “root” [40] format with all events arranged as per the run number, event

number, and PID along with all other information recorded by the experiment are

4

used for the analysis. The complete reaction under study is “~v p — n'(— n 7t

7

7~) p”, and events with one proton, one 77, one 7~ and any number of neutral
particles are selected as skim condition out of all events available in g72 dataset.
In this analysis 7 and 1’ mesons, are reconstructed as a missing particle. The 7/’
meson is reconstructed with the information of incident photon, target proton,
and final state proton and it is represented as M, (p). Similarly, n reconstruction

uses incident photon, target proton, and final state particles proton, 7, and 7~

which is denoted as M, (pr+7-).

3.2 Simulation

The Pluto simulation framework [v5.42] developed by the HADES collabora-
tion [41] was used to generate hadronic physics reaction for this analysis [42].
Pluto is a very suitable Monte-Carlo event generator for the low energy regime
to study the hadronic decays. The 5 x 108 vy p — ' p — n ©" 7~ p events are
generated using Pluto along with a model which is close to the real scenario. The
incident photon beam distribution is given a bremsstrahlung nature and to make
the simulation even more realistic, the measured differential cross-section of the 7’
meson [43] is fed as input during event generation [44]. The initial events gener-
ated by the process is called the generated Monte Carlo events. These events are
then processed by the CLAS algorithms, which produces the same effect as the
actual detector environment. The processed events by the algorithm are called
the accepted Monte-Carlo events. The generated Monte-Carlo events with the
above mentioned model are first extracted in the standard CLAS format called
the “gamp” files and are then processed with CLAS simulation suit in the following

order:

e The gamp files are first converted into the special CLAS format called the
PART bank containing the event. The sole reason behind storing the events

in a PART bank is that the CLAS programs require it.
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e GSIM (Geant3-based simulation): GSIM in CLAS simulates the decay tracks

of particles and finally the digitized information is sorted in other “raw

banks from the PART bank.

e GPP (GSIM post-processor): The events are passed through GPP, which
smears detector signal more accurately to reflect the actual resolution and

to simulate the experimental conditions.

e alc program: Finally the events passed through alc, which is a reconstruc-
tion program for the simulated data. The same program is used during data

reconstruction.

A complete description of these reconstruction steps can be found in the

reference [38].

3.3 ¢12 Corrections

In order to perform precise measurement of variables which will be later used in
the analysis, one has to remove any inefficiency involved in the experiment to a
maximum possible extent. In the ¢g712 experiment these inefficiencies were thor-
oughly studied and taken care by the set of g12 corrections. The g12 corrections
were derived from the exclusive 7, 7= and proton reaction (y p — 7t 7~ p). A
description of corrections to the analysis is given below, however, for a detailed

description follow the reference cited in [38].

e Beam Photon Multiplicity: The CEBAF at Jefferson lab accelerates elec-
trons in bunches which are separated by a time interval of 2.004 ns. When
an electron bunch reaches hall B, the RF timing is recorded. The electrons
then interact with the radiator material gold (Au) and are deviated towards
the tagger counters [33] due to the magnetic field strength, where the time
instant of the electron hitting the counter is recorded. The interactions be-
tween electron and radiator produce bremsstrahlung photons which travel
towards the target and hit the start counter, which records the start time.

A matching of the start time, RF time and tagger time instant enable to tag
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in-time photons. Due to multiple electrons producing many photons, the
matching is satisfied more than one time in an event, giving more than one
in-time photon. Finally, all the photons which fall within a timing window
are recorded. The timing window corresponds to a difference between the
time instant recorded by the tagger and start counter. This timing window
difference is 1.002 ns. The relative numbers of the event with different beam
photon multiplicities within the timing window are shown in Fig. 3.2. There
are approximately 12 % events in the dataset which has more than one in-
time photons after the skim selection. These multiple photons in a single
event are considered to be individual events with different combinations of

the same final state particles in the analysis.

0.9
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Figure 3.2: Normalized plot showing relative number of event versus number of
beam photons within the 2.004 ns timing window.

e Energy Loss Correction: A charged particle produced inside a target mate-
rial suffers from energy loss due to ionization in the medium, while passing
through the matter on its way. The energy loss is proportional to the dis-
tance traversed by the particle and the density of the medium, and can be
explained by the Bethe-Bloch equation [45]. These corrections were in-
cluded in the “eloss” package written by Eugene Pasyuk, Research Professor
at Arizona State University, and included in the “CLAS software package”.

These corrections take care of materials like liquid hydrogen, Kapton walls
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of the target, beam pipe, Start Counter, the air between Start Counter and
first set of drift chambers in the path of the particle. This loss is very small
for light particles like electrons or positrons which travel with a velocity close

to “c” compared to heavy particles like protons. So these corrections were

not applied to light particles [46].

Beam Energy Correction: There are two corrections to the incident beam
photon energy, one is due to the mechanical sagging of the tagger planes,
which gives miscalculated energy information of the electron’s energy. In ad-
dition to that, the other is the beam photon energy which is miscalculated
due to tagger magnet shut-off during the ¢12 run period. It was identified
when the missing masses computed for g12 were systematically low depend-
ing on the run number and varied by as much as 10 MeV. The reason behind
this problem was the tagger magnet shut-off around the run 56920 on May
12, 2008. The restarting of the tagger magnet changed the field strength of
the magnetic field due to the residual magnetic field (hysteresis), although
the tagger current was the same. This magnetic field resulted in ¢72 miss-
ing mass fluctuations, as the scattered electrons were directly affected by
the field and consequently gave wrong tagged photon energy. So, there is
a correction to the incident beam photon energy of the affected runs. This
correction is only applicable to the data and not applicable to the simulated

events.

Momentum Correction: This correction arises due to the difference in the
magnetic field of the magnetic field map in the reconstruction software and
the actual magnetic field of the CLAS torus. The correction depends on the
particle type and it varies for different CLAS sectors. It is finally a correction
to the momentum of the charged particles and can be calculated from the
azimuthal angle ¢ of the particle. This correction is only applicable to the

data.

Removal of bad TOF Paddle: The routine removes those paddles which
show a significant drift on the position resolution of any particle using the 0

versus the ¢ map of the detector. This correction takes the sector number
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and paddle number as input and is applicable to both, data and simulation.

Geometric Fiducial Cut: The Geometric Fiducial Cut reject events lying in
regions outside the well behaved acceptance and where simulations cannot
be reproduced reliably. These regions are defined by an upper and lower
limit to the azimuthal angle ¢ between the center of a sector and a particle
track. This cut removes the dead part of the detector from the 8 — ¢ map as
shown in Fig. 3.3. It is applied with the “nominal” option out of the three
options - “tight, loose and nominal” present in the routine. This correction

is applied to both data and simulation [47].
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Figure 3.3: (a) The polar angle of proton (6,) versus azimuthal angle of proton
(¢p) before the fiducial volume cut applied, (b) after the fiducial volume cut and
(c) the events which got eliminated by the cut.

3.4 Event Selection

This upcoming part of the chapter contains the analysis conditions and corrections,
based on the experiment geometry and decay reaction specifics to improve the
identification of the particles, thereby, enhancing the signal to background ratio.
These corrections are applicable sometimes only to ¢g12 data and often to both
the data and simulation. The applicability of these corrections to g12 data and
simulations are listed in Table 3.2 appearing at the end of the chapter for a quick

summary.
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3.4.1 Kinematic Fitting

Kinematic Fitter [48] is a tool used to get rid of unwanted background in the signal
channel and helps to improve the signal to background ratio. Any measurement
with a tool comes with an error, and it can be represented as a vector 177. We can

also define the measurement as,

N=y+e (3.1)

where ¢ denotes the actual value of the measurement without error and € is the
error associated with the measurement. These measured variables for an event
have correlations among them and it can be expressed with constraining equations.
These constraints can also be shown as a function of some unmeasured variables.
The fitter uses the magnitude and error of the measured variables along with
the correlations among variable to obtain the precise x? minimization and the
probability of each event. The constraints are calculated using the method of
Lagrange multipliers through a least-square fit. In a reaction with “k” constraints
and “n” unmeasured variable, the effective number of constraints are (k - n). Such

a x* minimization with (k - n) effective constraints are called a (k - n)-C fit.

The CLAS ¢12 Kinematic Fitter is tuned for the reaction v p — «+ 7~
p, which has four constraints from energy-momentum conservation, three from
momentum and one from energy make it a 4-C fit. In a 4-C fit, all the final
state particles are detected and these fit filters unwanted background which is
used to adjust the measured tracks to coincide with the constraint. The Kine-
matic Fitter takes the “TBER (Track Based Error)” matrix, vertex information
and four-momentum of all particles as input. The vertex information is obtained
from the transformation of measured tracking parameters which are momentum
(p), the dipolar angle (\) and azimuthal angle (¢) of the particle relative to the
sectors plane, and these make the TBER matrix [49]. The Kinematic Fitter with
these inputs return probabilities and x? along with the pull-distribution value of
momentum p, A and ¢ for each particle of every event and the incident photon
energy (E,) of every event. The pull-distributions are the difference between the

measured and the final parameters obtained from the kinematic fit and it is nor-
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Pull (Data) i o | Pull (Simulation) 1 o
Proton p 0.106 | 1.162 Proton p 0.091 | 1.105
Proton A | 0.012 | 0.947 Proton A 0.012 | 1.125
Proton ¢ | -0.031 | 0.999 Proton ¢ -0.027 | 1.031

" p 0.074 | 1.102 " p 0.059 | 1.061
T A 0.039 | 0.974 7t A 0.027 | 1.104
T ¢ -0.059 | 1.029 ) -0.058 | 1.030
T p 0.168 | 1.111 TP 0.157 | 1.076
T A 0.031 | 0.993 T A 0.025 | 1.125
T~ ¢ -0.033 | 1.030 T ¢ -0.022 | 1.028
v E -0.164 | 1.117 v E -0.157 | 1.053

Table 3.1: The table shows the Gaussian mean (u) and width (o) for the pull-
distributions from a 4-C kinematic fit of ¥ p — 77 7~ p to events from data and
simulation after a 1% probability cut.

malized by the quadratic error difference. The pull-distribution of a particle’s
momentum p, A, and ¢ and E, from all the events are fitted with Gaussian, and
the fit parameters (mean and sigma (o)) decide the quality of the covariance ma-
trix. In an ideal case, the Gaussian fitted to the pull-distribution is expected to
return zero mean and o of one, which ensures that the fitter correctly calculates
covariance error matrix. The probability and fitted value of the pulls from data
and simulation for the reaction in equation 3.2 are shown in Fig. 3.4 & 3.5. The
mean and o from the Gaussian fit to the data and simulation after a 1% probability

cut is given in Table 3.1.

yp — T p. (3.2)
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Figure 3.4: The probability and pull-distributions for all the variables (momentum
(p), dipolar angle (A) and azimuthal angle (¢)) of all the particles for a 4-C
kinematic fit to vy p — 7" 7~ p from ¢g12 data after a 1% probability cut.

Kinematic Fit to the Analysis

Kinematic fitting is implemented to the analysis channel in equation 3.3, where

the missing particle is constrained to be an 17 meson. The only constraint here is n

mass and hence it requires a 1-C fit which is particularly useful when some particle

cannot be detected. The ¢g72 Kinematic Fitter requires “tuned parameters” for

the 7%, 7= and p which matches the data in all kinematic ranges of CLAS. Also,

the fitter uses some additional scaling to the simulations to match the resolution

of the final state particles with the data. All these “tuned parameters” and scaling

inputs are obtained from the decay channel in equation 3.2.
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Figure 3.5: The probability and pull-distributions for all the variables (momentum
(p), dipolar angle (A) and azimuthal angle (¢)) of all the particles for a 4-C
kinematic fit to vy p — 7" 7~ p from ¢12 simulation after a 1% probability cut.

P = (M) aissingm™ 7 p.(1C) (3.3)

As the Kinematic Fitter is tuned for a 4-C fit with the same set of final state
particles, so the fitter can be directly implemented to the 1C reaction hypothesis
in Eqn. 3.3. The n meson mass constrained 1-C pull-distributions from data and
simulation after a 1% probability cut is shown in Fig. 3.7 and 3.8 and the mean of
the distribution is centered near to zero is observed as expected. The probability

for the channel is shown in Fig. 3.6 and the magenta line at 0.01 shows the 1%
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probability cut which rejects events spike with very low probabilities. The first
look at the data is available in the form of a M,(p) versus M,(pm+n-) plot in
Fig. 3.9. It shows that the probability cut rejects events which do not follow the
1-C constraint of being an 1 meson and finally one observes n peak with improved

signal to background ratio in Fig. 3.9.(b).
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Figure 3.6: The probability for the 1-C kinematic fit to v p = (Dasissing) ™ 7
p from the ¢72 data and the red line represent the position of the cut on the
probability.

3.4.2 Vertex Cut

In the g12 experiment, the target was positioned -90 cm from the CLAS center.
The target cell was 40 cm long and 2 ¢m in radius and has a form of a cylinder filled
with unpolarized liquid hydrogen [34]. The vertices of an event in the lab system
of the CLAS detector [50] (v,,vy, and v,) are calculated by the backtracking the
charged tracks to its origin. The geometrical information of the target is imposed
on all events production vertices and it discards all events produced outside the
target region. The cuts to confine the events inside the target region is obtained
via the condition that \/m < 2cm and -110 > v, < -70 cm. The Fig. 3.10
shows the v, (target length) and |/v2 + v2 (cross-sectional radius) from data and
simulation along with the position of cuts. Sources of events outside the geometry

of the target are due to the interaction of the beam photon with the target walls
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Figure 3.7: The pull-distributions for all the variables (momentum (p), dipolar
angle (\) and azimuthal angle (¢)) of all the particles (proton, 7% and 7—) and
E., for a 1-C kinematic fit to M, (pmt7—) being 7 meson from ¢12 data after a

1% probability cut.

and its support structures.

One can observe that the number of events varies

inside the target geometry, which is because of varying detector acceptance inside

the target.

3.4.3 Timing Cuts on proton, 7* and 7~

Here, the final state particles in an event are rejected if there is a mismatch of

timing between TOF sub-detector and Tagger counter. The vertex time (t,eq) is

the instant of time when the particle left the target [42]. It can be calculated

in two different ways, the first way is by using the information from the TOF
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Figure 3.8: The pull-distributions for all the variables (momentum (p), dipolar
angle (\) and azimuthal angle (¢)) of all the particles (proton, 7 and 7—) and
E, for a 1-C kinematic fit to M, (pmT7—) being n meson from ¢12 simulation after
a 1% probability cut.

detectors as,
lror
toert(TOF) =1t - —
o ) = tror B

where tror and lrop are the measured time and length of the particle in the TOF
sub-detector. Here, c is the velocity of light in vacuum and /3 is the Lorentz factor

of the particle calculated by knowing the velocity (v) of the particle as 3 = 2.

The second way to obtain the same vertex timing (t,,) is through the tagger
and RF timing information. The timing instant of electrons hitting the radiator

can be calculated by propagating the RF-timing of the electron beam bunch. The
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Figure 3.9: M, (p) versus M,(pm-+n-) distribution (a) before applying probability
cut and, (b) after rejecting events with a probability less than 1%.

time instant of photon crossing the target center (fyoton) can be calculated using
the tagger information and RF-corrected time instant at the radiation. The ¢ynot0n
combined to the ?,,,,, which is the propagation time from the center of the target
to track vertex of the events gives the vertex time using tagger (¢,¢+(Tagger)). It

is given by,

Lyert (Tagger) = Uphoton + tprop-

The difference of the vertex timing t,e.(TOF') and t,e.(Tagger) is shown
in the Fig. 3.11. A cut of &+ 1.0 ns of the timing difference around the mean of
0.0 ns for all the final state particles are placed in both simulation and data to

improve particle identification.

3.4.4 Condition on cosOenter—of—mass of 7' Meson

The generated Monte Carlo events in the simulation are distributed according to
the differential cross sections measured by the previous g1 experiment. However,
the previous measurement shows a drop of acceptance in the higher and lower

region of cos Oenter—of—mass Of ' distribution [43]. This drop in acceptance of the

47



-9
x10v , o 1 1
+ DATA

70
e SIMULATION

60

50
40

Events/1 cm

30
20
10

oIlllllllllIIIIIIIIIIIIIIIIIIII LARRE LA

—140 -120 -100 -80 60 —40 20
V, [em]

._. PR SR PR PR PR
-1 L
FR + DATA

e SIMULATION

=3
o
il
.|.'|'
°

1

1

o

=

*
]

Events/1 cm
S
(—
N

<
>
Y

S
=3
[\%)

LINLEN IL L L L B LN B NL LN B

lllllllllllll

Figure 3.10: The upper plot is v, position and the lower plot is the cross-sectional
radius /v2 + v2 of the v p — 7' (Narissing ™" 7)) P events vertex from data (black)
and simulation (red) and the lines show the position of the cuts in the analysis.

region is from events that travel to the beam pipe in the forward and backward
direction. To take care of events in this region a condition of | cos Ocenter—of—mass Of
1’ | <0.85 is placed in the analysis unambiguously in both the data and simulation.
The elimination of the region from the analysis is made to ensure that there is
no additional inconsistency in the data and simulation from this less understood

region.
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Figure 3.11: [tyert(TOF) - tyert(Tagger)] distribution from the simulation and
data for proton(Upper), 7+ (Middle) and 7~ (Lower), the region between the lines
show position of the cut in the analysis.

3.4.5 Condition on the Measured Missing Mass of 7

Meson

The reconstruction of 7 meson is achieved using the information of the final

state particles by performing a missing mass M, (pm+m—). The distribution of
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M, (pr+m—) shows a clear peak of n meson and background as shown in the
Fig. 3.12. The n meson events are selected from this distribution using a range
on M,(pr+n—) - 0.547 < £20 (0.015 GeV). The 20 condition around the mean
of the distribution ensures that the events are symmetrically picked in the range
from the distribution and this selection decreases the chances of biasness towards
the selection of events. This condition is placed in both data and simulation.
The reason behind the 20 selection is explained by the resolution of the n meson
which is calculated after fitting the difference distribution between the true and

reconstructed values of M, (pr™n~) from the simulation which is shown in the

Fig. 3.13.
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Figure 3.12: The distribution M, (prt7~) from the g12 data.
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Figure 3.13: Difference between true and reconstructed value of M, (prt7~) from
simulation.
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Table 3.2: The list of conditions and corrections implemented to the “g12” data
and simulation:

“g12” Experiment data Simulation
Beam Photon Multiplicity NA

Beam Energy Correction NA
Momentum Correction NA
Removal of bad TOF Paddle Applicable
Geometric Fiducial Cut Applicable
Kinematic Fit (1% probability cut) Applicable
Vertex Length Cut (-110 < v, < -70 cm) Applicable
Vertex cross-sectional radius (/02 + v <2cm) | Applicable
Timing Cuts on proton, 7" and 7~ (| | Applicable
toert(TOF) - tyert(T'agger) | < 1.0 ns)

| €08 Ocenter—of—mass Of 7 | < 0.85 Applicable
| M, (p 7+ m—) - 0.547 | < 0.015 GeV Applicable
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Chapter 4

Data Analysis

This chapter explains the detailed steps involved to obtain the Dalitz plot and
its parameters for the 7 — n 7" 7= decay. In the analysis, the reconstructed
events are first fed to a binned Dalitz plot and then all the bins outside and on
the boundary are removed. The low acceptance bins are also removed after that.
Furthermore, the background subtraction is performed in the remaining bins of
the Dalitz plot. It is performed for two types of background, first the non-resonant
background and second the in-peak background. The in-peak background reduc-
tion is done using realistic Monte-Carlo (MC) simulations. The cross-check of the
simulated model used in the analysis is done by comparing the kinematic vari-
ables from the data and the simulation for all the final state particles. Then the
7’ meson photoproduction cross-section is measured and compared with the pre-
vious measurements. In addition, the Dalitz variables distributions are compared
in various sub-ranges of kinematic variables. The background subtracted Dalitz
plot is then fitted to a general parameterization using two different methods along
with acceptance correction to obtain the final Dalitz plot parameters and finally,
the best method is selected for further study. All these steps are shown as a flow

diagram in the Fig. 4.1.
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Reconstructed i’ — na 7~ events

e Events are feed to the Dalitz plot.
e Dalitz plot bins on and outside the boundary are rejected.

e Dalitz plot bins with low acceptance are removed.

Dalitz plot before background subtraction

Background subtraction in every bin of the Dalitz plot
e Non-resonant background subtraction

e Resonant background subtraction

Dalitz plot after background subtraction

Fit Function A(1+ aY + bY? + c¢X + dX?)

Acceptance Correction Method Smearing Matrix Method

Output: Dalitz plot parameters a, b, ¢ and d

Figure 4.1: Pictorial diagram of the steps involved to obtain the Dalitz plot pa-
rameters .

4.1 Selection of Bins in the Dalitz Plot

In this section, the background subtraction method is explained and finally, a
Dalitz plot of ' — n ©" 7~ events are achieved with the g12 data. A quick

recap of selections imposed to the g12 dataset are as follows:

e Selection of the Beam Photon energy range £, (= 1.45-3.60 GeV)
e ¢12 Corrections
e CLAS ¢12 Kinematic Fitter (probability > 0.01)
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Vertex Cut (-110 em < v, < -70 cm & /02 +v; < 2 cm)

Timing Cut (£ 1.0 ns)

COoSs ecenterfo —mass Of 77/ S 0.85
f

| My(pr+7—) - 0.547 | < 0.015 GeV

The M,(p) distribution after each cut is shown in the Fig. 4.2. The X and Y
variables are calculated for events surviving after these cuts, and then a Dalitz
plot of 30 bins in X and 30 bins in Y are filled with those events. Equal number of
bins in the Dalitz plot are selected as the resolution of the X and Y variables are
of the same order (0.03). The Fig. 4.3 shows the qualitative estimate of X and Y
resolution. The two dimensional Dalitz plot has 900 bins. To keep a better track
of the 2-D Dalitz bins, each bin is assigned a unique single number which is called
the “Global Bin”. The unique global bin number is assigned using a formula given

as:

X + Xmalr

Y +Y,
Global Bin(X,Y) = onor[%] + Nyins. Floor | ]+1. (41)

X10.6.|...|...|...|...|..|...|..|

oton"and g12 Corrections
CLAS.g12 Kinematic.Fifter........ S S

cosh of

: - center-of-mass RS AR A A Freseeseeee
i —— My(prt+m-) Cut : ‘ : :

Events/0.002 GeV/c?
o
—
A

0.88 0.9 092 0.94 0.96 0.98 1 1.02 1.04
M,(p) [GeV/c?]

Figure 4.2: The M,(p) distribution after applying the selections and conditions in
order is listed in the plot.
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Figure 4.3: The figure (a) shows the difference of reconstructed (Xggc) and true
(Xrrur) value of the events versus the number of events and the figure (b) shows
the difference of reconstructed (Yzgc) and true (Yrryg) value of the events versus
the number of events from simulation.

where, X and Y are the central values of a bin, X,,., (1.5) and Y,,., (1.5) are
the maximum values of X and Y respectively. The Ny;,s are the number of bins
(30) chosen along X and Y axis and § is the bin-width (0.1) of each bin. The Floor
is a function that takes as input a real number and gives as output the greatest
integer less than or equal to that number. The N, stands with X in the second
term in Eqn. 4.1, so the consecutive global bin number increases vertically along
the Y-axis of the Dalitz plot. To give a clear picture on how the two-dimensional
Dalitz plot bins translates to a global bin, the Dalitz plot bins are plotted along
with global bin numbers in Fig. 4.4.
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The Dalitz plot of ' — n 7™ 7~ decay has a phase-space boundary. The
boundary of the ’ — n ©t 7~ decay can be calculated from the fact that the addi-
tion of three momenta of particles ﬁn, ]3,T+ and P._ for n, 7t and 7~ respectively

is 0 in the rest frame of 7" meson.
B+ Py +P_=0 (4.2)
Squaring and equating gives:
}_7;72 = ]52+ + P+ Zﬁw_ﬁw_cos(QﬁH’ﬁﬂ_) (4.3)

The cos(&lsﬂ’ﬁﬁ_) determines the boundary and region of the Dalitz plot, and

assumes the maximum value at boundary, when cos(f5 , 5 ) = 1.
P2 — Pry? — Py % < 2P, P, (4.4)

The boundary of the decay ' — n 7« 7~ is given in the equation 4.4. The
boundary of the '’ — n 7" 7~ decay is calculated in this analysis from the MC
generator, which is consistent with equation 4.4. The calculated boundary from
MC is finally a function of Dalitz variables X and Y unlike in equation 4.4. Those
bins which lie completely inside the Dalitz plot boundary and the events inside

those bins are considered for the further analysis.

The acceptance of all the Dalitz plot bins are also calculated. The procedure
of the calculation of the acceptance is discussed in Section 4.6. In order to reject
bins with a very low probability of detection, an acceptance cut is implemented to
the Dalitz plot bins, which rejects all events inside those bins with an acceptance
smaller than 0.5%. The acceptance of the Dalitz plot bins is shown in the Fig. 4.5.
It is observed that the acceptance drops down at higher X and eliminated by the
acceptance cut. It is due to the fact that 7+ curls outward and 7~ curls inward
inside the magnetic field in the CLAS detector [34]. The opposite direction of
curling is because of the opposite charge carried by the particle inside the magnetic
field. A particle which curls inward has a higher possibility of detection since it

has to traverse a larger distance inside the detector compared to a particle curling
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outwards. Hence, 7 meson is expected to have less acceptance when compared
to a 7~ meson. On top of it, 7 meson with higher kinetic energy curls more
outward which makes it more difficult to detect. The explained process can be
seen in the Dalitz plot as well. The higher X region which corresponds to a high

kinetic energy region of the 7+ meson thus suffers from poor acceptance.

x107
—25

—20

15

Acceptance —

Figure 4.5: Acceptance in each bin of the Dalitz plot.

The boundary of the  — n 7" 7~ phase space removes 504 bins out of the
900 bins in a 30 x 30 Dalitz plot. The removal of Dalitz plot bins with less than
0.5% acceptance rejects another 59 bins from the Dalitz plot. Finally, 337 bins
and events inside those bins take part in the further analysis. The background
subtraction are performed to all these 337 bins individually. There are two types

of background present in the data which are described below.

4.2 Non-resonant Background Subtraction

To every Dalitz plot bin considered for the analysis, a non-resonant background
subtraction is performed to the M, (p) distribution. The M, (p) distribution of a
bin is fitted with a Voigtian function explaining the signal and the background
is fitted with a Polynomial of order three. In our experiment, the " meson dis-

tribution actually is a convolution of a Lorentz function with a Gaussian, which

98



2- T T T T F >180: T T T T

o 3 — Voigt+Pol3 | > — Voigt+Pol3 |
s 20 Global Bin: 625, X : 0.5, ¥,: 0.95 Signal E =160 Global Bin: 308, X _: -0.45, Y,: -0.75 ‘- Signal E
o 1 8- Range = + 30 ’ - N 1 Range = = 30 g F
B 1 6_: Mean : 0.956 GeV/c? — V0|gt E ?)1 404 Mean : 0.957 GeV/c? — VO'gt =
€ E o : 0.005 GeV/c? 3 T1o03 1 0.004 GeV/c? F
q>-) 14_; N’Tul,625 = 1976‘: IniPeak ;_ q>>1 20 E NToucs = 191 0; IniPeak o
L 124 Byp,e2s =29 - L1004 Byraos =77 -
1 0‘; Noys = 118 ;‘ 80 Nyg = 754 e
0 mmewe |4 604  mieae -
4—E »?/NDF = 28/37 = 0.75 E 40  #/NDF=61/49=1.24 e
2 # E 207 e
%09 092 094 096 0. T 0709 092 094 096

a b

Figure 4.6: The figure (a) is a fit to a low statistics bin and figure (b) is to the
highest statistics bin of the M, (p) distribution in the Dalitz plot. The symbols
appearing in the figure are described below:

- X, and Y, denotes the central values of Dalitz variable coordinates X and Y for
the global bin number i. - Ny, ,; denotes the total number of events in the global
bin no. ¢ in the 30 range. - Byg,; denotes the number of non-resonant background
events calculated from the smooth non-resonant background subtraction for the
global bin number ¢ in the 30 range. - Brp; denotes the number of in-peak
background events for the global bin number 7 in the 30 range. - N; = Npy; -
(Byr.i + Bipi) is the number of signal events after background subtraction in the
global bin number ¢ in the 30 range. - o; = \/(NTOm- + Byr,i + Brp;) is statistical
error in the global bin number 2.

arise due to the detector resolution of the CLAS detector. So, the ' meson can
be described well with a Voigtian function. The fits to two of the bins out of the
337 fitted bins [51] in the Dalitz plot are shown in the Fig. 4.6. Fits to all the 337
bins are given in Appendix C. The x?/ndf from the fits to all the bins are shown

as a function of global bin numbers in Fig. 4.7.

[
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100 200 300 400 500 600 700
Global Bin

Figure 4.7: Global bin versus the x?/ndf of the fits to the individual bin.
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4.3 In-peak Background Subtraction

In addition to the non-resonant smooth background, an in-peak background is
also present from the channel ¥ —(n — (777 7% & 7t7~))7m "7~ (decay mode
2) and channel 7 — (n — (77 70 & 777 9))7°7% (decay mode 3) given in
the Table 4.1. A calculation of these in-peak background contributions in each
Dalitz plot bin is done by generating all the decay modes with production cross-
section of the 7" meson and a corresponding relative branching ratio [12]. The
1’ decay is named as primary decay and the 7 decay as secondary decay. The
Fig. 4.8 shows the distribution of the generated signal and in-peak background
events in M, (prt7~) and M,(p) mass region, all these modes peaks in the signal
region and the contribution to M, (pr7~) is asymmetric. The first decay mode
in the Table 4.1 is the signal channel for the analysis. In this mode, the secondary
decay is given with a combined branching ratio of 72.9 from 7 into vy (39.41)
and 37° (32.68), as the neutral particles are not included in the analysis and set
of final state particles are the same for both the secondary decays. Similarly, a
secondary decay of 7 meson for decay mode second and third, the branching ratio
is 27.14 for both. The second decay mode has two 77~ and acts as a combinatoric
background channel with a different acceptance and is present within the " meson
mass peak. The third decay mode is a pure in-peak background channel and gives
the same set of final state particles as the signal channel. The source of this
combinatoric background arises from 7 and 7~ decayed through n' — (n)7t7~
and 7' — (n)7°7°, which leaves the 7 and 7~ in both the decays with the similar
available energy. Once the contribution of the signal channel in each bin of the
Dalitz plot is known, then a scaling is performed to the non-resonant background
subtracted spectrum of each Dalitz plot bin [52], and the numbers of events are
estimated in each bin of the Dalitz plot. The 2D Dalitz plot before and after the
background subtraction are shown in the Fig. 4.9.(a) and (b) respectively. The
final Dalitz plot bins with the total number of events used in the further analysis

is shown in the Fig. 4.9.(c) and as a function of global bins in the Fig. 4.10.
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Figure 4.8: The M, (pr+7—) (left)
modes of decay.
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Table 4.1: Decay modes along with their relative branching ratio.
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Figure 4.10: Global bin versus background subtracted ' — n 7 7~ events.
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Figure 4.9: Dalitz plot shown in figure (a) has all events before background sub-
traction and (b) is after bin-wise non-resonant and in-peak background subtrac-
tion. The figure (c) shows the Dalitz plot with global bin number after rejecting
bins with low acceptance, outside and on the boundary bins. The red curve shown
in the figure is the phase space boundary of the ' — n 7 7~ decay.
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4.4 Comparison of Kinematic Variables from

Data and Simulation

The comparison of the kinematic variables are done with 5 x 10® generated events
of the vy p — 7' p — nnt 7 p decay from the simulation and ¢g12 data. The
incident number of beam photon in the event generation model is inversely pro-
portional to the energy of the incident beam photon to produce a bremsstrahlung
nature. The ' meson production angle is also made to follow the differential cross-
section distribution of the n' from ¢11 experiment [43]. To check how well the
simulation explains the g72 data a comparison of the kinematic variables namely
the momentum (P), polar angle (#) and azimuthal angle (¢) for 7, 7~ and p along
with beam photon energy in the center-of-mass (1/s) are shown in the Fig. 4.12,
4.13, 4.14 & 4.11 respectively. The simulated events and ¢g12 data are passed
through all the selection criterion described in Section 3.3 and Section 3.4. The
simulation shows reasonable agreement with the ¢12 data. Even the ¢ distribu-
tion of particles in simulation mimics the sector dependent behavior of data well.

These agreements led us to select this model in simulation for further analysis.

o +,
8000 et e, « Simulation
- . . + g12 Data
7000F Jp
% c +.a ++ 4’0‘
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- = . .
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19 2 2.1 22 23 24 25 26 27
Vs [GeV]

Figure 4.11: Distribution of the number of beam photons as a function of /s,
the center of mass energy. Black points are for data, red points are results of MC
simulation.
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angle (right) for 7~ meson between simulated (red) events and g12 data (black).
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4.5 Comparison of Normalized Cross-section

As a cross-check to the analysis a comparison of the differential cross-section
(do/dQ2) with the cos(#) ey, (in center of mass frame of ') and /s (energy in center
of mass frame) are presented in the Fig. 4.15 for the v p — p 1/ channel. The com-
parison of the differential cross-section from the g12 dataset containing “good” [3§]
run numbers to the g71 data [43] extracted from the Durham database [44] are
presented here. All the comparisons use a common coverage of /s spanning from
1.96 to 2.73 GeV and cos(0), from -0.65 to 0.65 rad. Fig. 4.15(a) shows distribu-
tion /s integrated from 1.96 to 2.73 GeV and used an arbitrary scaling of 0.06.
The Fig. 4.15(b) shows cos(#), distribution integrated from -0.65 to 0.65 rad and

used an arbitrary scaling of 2.6 to normalize.
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Figure 4.15: Comparison of do/dQ2 versus (a) cos(6).n, and versus (b) W (or /s)
for the v p — p 1’ channel from the ¢g12 data and the published results from the

g11 data [43].
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In the present analysis, however, cos(6)., in center of mass frame of 7’ meson
ranges from 0.85 to -0.85 rad and E,(Beam Energy) from 1.45 to 3.6 GeV for the
n — n 't 7 decay. A comparison of acceptance corrected Dalitz variables X
and Y distribution is made with 15 bins in both X and Y in different subranges
of cos(6)em and E,. The X and Y distributions are normalized to the central bin
positioned at zero. Fig. 4.16 shows the distribution of X and Y for the whole
c05(0) e, of 7' from -0.85 to 0.85 rad and then in the subranges from 0 to 0.85 rad
and -0.85 to 0 rad. In a similar way the X and Y distributions are compared for

three E, subranges (1.45 to 1.8 GeV, 1.8 - 2.3 GeV and 2.3 - 3.6 GeV) shown in
Fig. 4.17.
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Figure 4.16: Comparison of normalized and acceptance corrected Dalitz variables
(a) X and (b) Y distribution for ’ — n 7+ 7~ decay for the subranges of cos(9) .,
in center of mass frame of 7'.
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Figure 4.17: Comparison of normalized and acceptance corrected Dalitz variables
(a) X and (b) Y distribution for n” — n 7" 7~ decay for the subranges of E, in
center of mass frame of 7'.
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4.6 Fit Method and Results

In this section following two methods are described which has been used to calcu-

late the Dalitz plot parameters.

e Acceptance correction method

e Smearing matrix method

In the first method, the n — n 7 7~ contribution for each Dalitz plot bin
is corrected for acceptance, without considering the migration of events from one
bin to the other. Whereas, in the second method the fits are performed directly
to the Dalitz plot from data along with a function. This function takes care of
the acceptance in the same bin and also acceptance due to the migration from

neighboring bins using a smearing matrix.

To calculate the acceptance function for both the methods a total of 0.5
billions events were generated with the set of input Dalitz plot parameters a =
-0.150, b = -0.150, ¢ = 0.0 and d = -0.080 in the MC simulation. Many iterations
with different input Dalitz plot parameters were performed and finally, the above
mentioned parameters were used as an input, which is close to the final Dalitz

plot parameter values from this analysis.

In both the methods, a binned Dalitz plot is fitted with a general
parametrization function (A(14+aY +bY?+cX +dX?)) also given in equation 1.14
is used for reporting the Dalitz plot parameters. The fitting is performed with the
least square fitting procedure using MINUIT package available in the ROOT [40],
which minimizes the x? in each bin of the Dalitz plot [53]. The total number of
337 bins are fitted in the Dalitz plot and 5 parameters are included in the fit,
which leads to a number of degrees of freedom (ndf) = 337 - 5 = 332,

4.6.1 Acceptance Correction Method

A calculation of X and Y variable is done for all the events and filled in the 30

x 30 binned Dalitz plot. In every bin of this Dalitz plot, background subtraction
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and elimination of bins are performed as explained in Section. 4.1. Every bin of

this Dalitz plot has been corrected for acceptance.

Calculation of Acceptance

The generated and the reconstructed events are filled separately in two 30 x 30
binned Dalitz plot. Then a calculation of acceptance (¢;) and error on acceptance

(o.,) for each bin are made as follows:

N. .
; = et 45
‘ Ngen,i ( )
EZ'(]_—EZ‘)
. = e 4.6
o, Nos (4.6)

where, Nyc.; and Ny, ; are the number of reconstructed and generated events in
i bin [54]. The error on the acceptance for global bin i are calculated considering

the binomial distribution of events [55].

Acceptance Correction

The number of corrected events (N¢,r;) and propagated error (o¢,,;) for each bin

after the acceptance correction are given by,

N;

Ncmﬂ' = — (47)

€

0 \2 Nio..\2
org — - L . 4.8
9Cor, (aei) + ( €2 ) ( )

Extraction of Parameters

The x? minimization to each bin of the Dalitz plot is done using the equation

X2 _ Z (NCOT,i - f(Xz,}/z)> (49)

OCor,i

given below.

where X; and Y; are the central value of each bin, and f(X;,Y;) denotes the fitted

form of the polynomial for Dalitz plot bin i (i = 1,2, ...,n). The fit includes five
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Table 4.2: The correlation matrix for the Dalitz plot parameters in the acceptance
correction method.

A a b c d

A | 1.000 | 0.324 | -0.661 | -0.051 | -0.465
a | 0.324 | 1.000 |-0.519 | 0.079 | -0.114
b | -0.661 | -0.519 | 1.000 | 0.005 | 0.172
c | -0.051 | 0.079 | 0.005 | 1.000 | 0.727
d | -0.465 | -0.114 | 0.172 | 0.727 | 1.000

free parameters, the fitted values of these parameters and the correlation matrix
are given below :

A : 18915.851235 4+ 112.470024

a : -0.151113 £+ 0.006797

: -0.158291 +£ 0.011547

c: 0.013823 £ 0.009166

d : -0.077950 £+ 0.012170

x%/ndf : 392.7/332 = 1.18

j=p)

The correlation matrix given in the Table 4.2 shows the correlation between
the fit parameters. It shows that parameters a and b have high anti-correlation
among them. The parameters ¢ and d show strong correlation. The overall fit to
the Dalitz plot shows a reasonable y?/ndf of 1.18. These parameters from the fit

are the Dalitz plot parameters.

4.6.2 Smearing Matrix Method

The events are migrated in the neighboring bins due to a varying resolution of
final state particles proton, 7+ and 7~. These migrations are also non-uniform
within the phase space of the ¥ — n #* 7~ decay, as the resolution is energy
dependent phenomena. This method can take care of migrated events from one
bin to the other, by calculating an acceptance in the form of the smearing matrix
(€nm). To calculate the matrix, events are generated in each bin of the Dalitz

plot and the acceptance for all the bins are calculated and stored in the form of
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a matrix. The final matrix contains the pure acceptance of an individual bin and
also the acceptance from neighboring migrated bins. For events generated in the

7% bin, the acceptance is calculated for all i** Dalitz plot bins as shown below:

Nrec,gen@) ])

Nyen(7) (410

EIL 7j =

where Nyecgen(i,j) denotes the number of events reconstructed in it" bin when

events are generated in the j* bin.

Fit to the Dalitz Plot

Similar to the earlier method, a 30 x 30 binned Dalitz plot of the ' — n nt 7~
events from the data is filled after background subtraction and bins are eliminated.
Thereafter a fit to the Dalitz plot is performed with the general parameterization
function as given by the equation 1.14 is performed. The y? minimization of the

Dalitz plot bins are given by,

Nbins Nbins 2
Ni - Z‘: 6i,']vtluzo'r J

O’ .
i—1 Tot,i

where,

the N; is the number of ' — n 7 7~ events in the i** Dalitz plot bin.

€;,; is acceptance in a smearing matrix, which is equal to the acceptance of

5" bin when events are generated in the i*” bin only.

OToti = \/ o+ Zj\gns Niecory ]E”A(fl—_g”) is the total error associated with 7"
) gen,j
Dalitz plot bin assuming binomial distribution and neglecting the contribu-

tion from Nypeory; [56].

Nineoryj = # A(l+aY +bY? + cX +dX?*)dXdY (4.12)

Boundary
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To calculate the integral function given by equation 4.12, the integration

using the Monte-Carlo method is applied within the boundary of the Dalitz plot.

Nineory.j = A # dXdY + Aa # YdXdy + Ab # Y2dXdY

Boundary Boundary Boundary
+Ac # XdXdY + Ad # X2dXdY
Boundary Boundary

Niheory,j = Alar + aag + bag + cay + das)

Where,

] = S@S dX dY

Boundary
a= ¢ YdXdY

Boundary
as = ¢ Y?2dXdY

Boundary
ay= ¢ XdXdY

Boundary
as= ¢ X?dXdY

Boundary
The aim here is to evaluate the integral aq, as, as, ay and as. To accomplish
the task, uniform random numbers are generated in pair of Dalitz variable X and
Y within -1.5 to 1.5 using TRandom3 random number algorithm in the ROOT [40]
framework and saved in a binned two-dimensional histogram. If the generated pair
lies inside the kinematic boundary of the decay then the binned two-dimensional
histogram for each integral is filled, where the integrand becomes the weight of the
histogram. For instance: histogram for integral oy is assigned a weight of 1, the
histogram for integral as is assigned a weight of Y, integral aj is assigned a weight
of Y2 so on and so forth. These histograms for each integral are then divided by
the generated histogram and multiplied by the bin size to give the value of integra-

tion inside the Dalitz plot for each bin. It is later translated into a global binning

and used directly in the equation 4.11. The error from integration is proportional
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to (\/Lﬁ), where, “N” being the sample size, which is safely neglected due to the

generation of 10® events in the MC integration.

Results from the Smearing Matrix Method Fit

The fits to each global bin of the Dalitz plot is shown in the Fig. 4.18 and the fits
to the individual Dalitz plot bins in 30 different X bins for the whole Y range and
vice-versa are shown in the Fig. 4.19 and Fig. 4.20 respectively. The fit results of
the general parameterization to the data Dalitz plot as shown below along with
the correlation matrix is given in the Table 4.3. The correlation matrix shows
strong anti-correlation between a and b and high correlation among variable ¢ and
d. The parameter a or b are very loosely correlated to either of the parameter ¢
and d. A loose correlation among two variables signifies that the measurement of

one parameter does not affect the other.

A 1857201.9098 + 11506.4247
a : -0.1508 + 0.0069

: -0.1514 4 0.0120

1 0.0128 £ 0.0094

d : -0.0813 4 0.0127

x?/ndf : 385.67/332 = 1.16

S

o

Table 4.3: Correlation matrix for the Dalitz plot parameters calculated by the
smearing matrix method.

A a b c d

A | 1.000 | 0.319 | -0.669 | -0.079 | -0.490
a | 0.319 | 1.000 | -0.526 | 0.079 | -0.108
b | -0.669 | -0.526 | 1.000 | 0.013 | 0.185
c [-0.079 | 0.079 | 0.013 | 1.000 | 0.731
d | -0.490 | -0.108 | 0.185 | 0.731 | 1.000
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Figure 4.18: Global bin versus background subtracted ' — n 7 7~ events and
in the red is the fitted function from the smearing matrix method.
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4.7 Selection of the Fit Method

Both the methods yield very close results, primarily because of the reason that
the Dalitz plot uses wide binning roughly three times the resolution of X and Y.
All the required quantities to reproduce the results of both the methods are listed
in Appendix B. The correlation matrix from both methods shows similar correla-
tions among the variables. The parameters a and b being function of variable Y
are ¢ and d being function of variable X is expected to have a correlation among
them which is observed in both matrix in the Table 4.2 & 4.3. The fits in both
the methods yield a x?/ndf which is closer to 1. The advantage of Acceptance
Correction Method over Smearing Matrix Method are the space and time com-
plexity of the computation. Acceptance Correction Method utilizes less memory,
computation time and power when compared to Smearing Matrix Method. How-
ever, the Smearing Matrix Method Fit presents a more accurate way to deal with
the acceptances separately from the generated and the reconstructed bins after
migration. Hence, the Smearing Matrix Method fit has been accepted as the way
forward to present the final results as well as to do the systematic studies for

further analysis.
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Chapter 5

Systematic Errors

Any measurement with some tool, instrument or method comes with an error
which cannot be removed. These errors are described in the chapter as system-
atic errors. These errors are generally tedious to exactly quantify and sometimes
the exact source of error is challenging to point out in the final output of the
measurement. An estimate of the highest contribution is generally considered
and added as a variance to the measurement. In order to calculate systematics
from the sources, different datasets are created by varying only one condition at
a time. These datasets are sometimes independent or dependent determined by
the source of systematic error. Hence, in this thesis the sources of systematic
errors are divided into two types, first, assuming the different dataset for sources
to be independent and second, the different dataset for sources to be dependent.
Systematic calculations for these type of sources are different and presented in
two distinct sections. The calculation of the Dalitz parameters are done using the
smearing matrix method and the error estimates are different for these two types
of systematic error sources. The final section summarizes the final systematic

errors of each parameter.

This chapter describes in details the calculation of the systematic errors for
the sources and is also shown in Fig. 5.1. All the sources does not contribute to
the systematics, but it depends on the magnitude of the error [57]. Errors which
are large and cannot be explained by the statistical fluctuation of the measure-
ment finally contribute to the result by adding all the errors from the sources in

quadrature.
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Sources of Systematic Error

)

Considering subsets to be independent Considering subsets to be dependent

v v

1. Beam Energy
2. Photon Multiplicity

1. Bin Width . Kinematic Fitting

=~ W

2. Sector Systematics . Vertex Condition

ot

. Timing Condition
. c05(0)em of ' meson

. M, (pm+m-) Selection

o N O

. Fits to Signal and Background

Figure 5.1: Pictorial diagram enumerating the sources of the systematic errors
studied.

5.1 Independent Subsets for a Source

In this section, the systematical effects have been studied for the conditions and
selections. The following two systematics are studied assuming that the sources

of systematic errors are uncorrelated.

e Bin Width

e Sector Systematics

Different configuration for the above factor is studied and Dalitz plot parameters
are calculated for each of the configuration from the smearing matrix method.
The systematic error is then calculated as the weighted standard deviation, thus
the weighted mean (z) and standard deviation (o,) for parameter z; with error

[19ehi

0., for the configuration “” is given by,

i=mazr x; i=maz (z;—T)>
Doict o3 Dl T

r = - v — i
T = Zi:maa} L’Ux Zi:max 1
=1 o2, =1 o2,
1

(5.1)
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5.1.1 Bin Width

The present section is meant to analyse the effect on the choice of binning on the
Dalitz plot parameters. This analysis used an optimum binning based on 160090
n — n 7t 7 events from the ¢12 data. The optimization is between the quality
of the fits of the individual Dalitz plot bins and maximum ndf of the Dalitz plot
parameters. Finally, in the standard analysis, a bin width of &~ 3¢ is used which
corresponds to a 30 x 30 bins ranging from -1.5 to 1.5 for X and Y variables.
The reason behind the selection of equal numbers of bins for X and Y is the same
resolution of X and Y variables. Further, the Dalitz plot binning are allowed to
vary from 25 x 25 bins to 35 x 35 bins for the systematic studies. The Dalitz
plot parameters are extracted keeping all the other conditions fixed for all these
11 different configurations of different binning in which the standard 30 x 30 bins
being the central configuration. The systematic error is calculated as the weighted
standard deviation, thus, the weighted mean (Z) and standard deviation (o) of

«s
1

parameter x; with error o, for the configuration is given by,

The value of the Dalitz plot parameters for all configurations along with the

calculated systematic error is given in the Table 5.1 and also shown in the Fig. 5.2.

5.1.2 Sector Systematics

The CLAS detector comprises of six different sectors with different acceptance
and resolution, which makes every sector acts as an individual detector. To study
the systematic arising from different CLAS sectors, six different configurations
are studied, wherein, a single sector is excluded every time and the Dalitz plot

parameters are calculated. It is repeated for all six sectors, the weighted mean (Z)
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Table 5.1: The number of bins for the calculation of the systematic error and the
corresponding Dalitz plot parameters.

Bins a b c d x?%/ndf

25 x 25 | -0.153 +|-0.152 £ | 0.020 + |-0.068 =+ | 2B =
0.007 0.013 0.009 0.013 1.27

26 x 26 | -0.155 £ | -0.152 £ | 0.018 =+ |-0.081 + | 2% —
0.007 0.012 0.009 0.012 1.05

27 x 27 | -0.157 £ | -0.153 £ | 0.024 =+ |-0.071 + | 2E =
0.007 0.012 0.009 0.013 1.25

28 x 28 |-0.163 £ | -0.151 =+ | 0.014 =+ |-0.074 £ | B0 =
0.007 0.012 0.010 0.013 1.25

29 x 29 |-0.156 £ | -0.152 £ | 0.014 =+ |-0.085 + | 3K =
0.007 0.012 0.009 0.012 1.15

30 x 30 |-0.151 £ | -0.151 £ | 0.013 =+ |-0.081 + | 35 =
0.007 0.012 0.009 0.013 1.16

31 x 31 |-0.153 £ | -0.149 £ | 0.017 =+ |-0.078 + | L0 =
0.007 0.012 0.010 0.013 1.18

32 x 32 [-0.161 £ | -0.148 £ | 0.008 =+ |-0.089 + | £ =
0.007 0.011 0.010 0.013 1.14

33 x 33 |-0.156 £ | -0.153 £ | 0.011 =+ |-0.084 + | £:32 =
0.007 0.012 0.010 0.013 1.12

34 x 34 | -0.157 £ |-0.149 £ | 0.012 =+ |-0.081 + | HLL =
0.007 0.012 0.010 0.013 1.12

35 x 35 | -0.163 £ |-0.147 + | -0.002 + | -0.096 + | £5° =
0.007 0.012 0.010 0.013 1.04

I -0.157 -0.151 0.014 -0.080

+ 0, 0.0038 | 0.0020 | 0.0064 | 0.0075
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Figure 5.2: The four figures (a), (b), (¢) and (d) shows the Dalitz plot parameters
a, b, ¢, and d respectively, calculated for 25 x 25 bins to 35 x 35 bins for the X
and Y variables. The green lines show the results of the standard analysis (30 x
30 bins) and the blue lines depict the weighted mean value.

and standard deviation (o,) for parameters x; with error o,, are used to give the

systematic error for the CLAS sectors. The value of the Dalitz plot parameters

for six different configurations along with the calculated systematic error is given

in the Table 5.2 and also shown in the Fig. 5.3.
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Table 5.2: Systematic errors in the Dalitz plot parameters from different combi-
nations of five sectors of CLAS detector, excluding one sector each time.

Excluded a b c d x?%/ndf

Sector 1 | -0.153 =+ | -0.145 4 | 0.011 =+ |-0.081 + | 3/ =
0.008 0.014 0.011 0.014 1.09

Sector 2 | -0.142 £ | -0.145 4 | 0.007 =+ |-0.082 + | 3N =
0.008 0.013 0.011 0.014 1.11

Sector 3 | -0.150 =+ | -0.149 £ | 0.009 =+ |-0.083 + | 2820 —
0.008 0.013 0.011 0.014 1.12

Sector 4 | -0.164 =+ | -0.152 4 | 0.008 =+ |-0.081 + | BLH! =
0.008 0.013 0.010 0.014 1.08

Sector 5 | -0.156 =+ | -0.160 =+ | 0.011 =+ |-0.086 + | 35 =
0.008 0.013 0.011 0.015 1.21

Sector 6 | -0.146 =+ | -0.146 =+ | 0.021 =+ |-0.071 + | 30320 —
0.008 0.013 0.010 0.014 1.12

z -0.152 -0.150 0.011 -0.081

+ 0, 0.0071 | 0.0053 | 0.0048 | 0.0046
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Figure 5.3: The four figures (a), (b), (¢) and (d) shows the Dalitz plot parameters
a,b,c and d respectively. The parameters a,b,c and d are calculated after excluding
one sector each time for six different sectors in CLAS . The green lines show the
results of the standard analysis and the blue lines depict the weighted mean value.
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5.2 Dependent Subsets for a Source

In this section, those sources of systematic errors are studied which are correlated
because independent datasets cannot be created for them. In these systematic
studies, a single condition is changed at a time from the standard condition of the
analysis for the whole dataset. Here, parameter error D P, is of the same order of
the standard parameter errors D Py, so a new parameter ADP [57] is calculated

as follows,
DPy;— DP,

Ostd

ADP = ’ : (5.4)

If this new parameter ADP is greater than 1, then the systematic error is calcu-

lated for the source corresponding to this parameter.
These studies include the following sources of systematic errors:
e Beam Energy
e Photon Multiplicity
e Kinematic Fitting
e Vertex Condition
e Timing Condition
e cos(f) in the Center of Mass Frame of the 7' meson
o M, (pm+m-) Selection

e Systematics from Fits to Signal and Background

5.2.1 Beam Energy

In the present analysis, the beam energy of the photon (E,) from the standard
analysis is ranging from the threshold energy of the 1" meson, 1.455 GeV to 3.6
GeV because the ’ meson photo production drops after 3.6 GeV. The different
subranges of the photon beam energy versus the number of ' — n 7" 7~ events
are shown in the Fig. 5.4. This leaves four subsets of £, while keeping all other

conditions unchanged.
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1.455 to 3.2 GeV

1.455 to 3.4 GeV

1.455 to 3.8 GeV

1.455 to 4.0 GeV

The reason behind selecting these overlapping subsets is that the Dalitz plot has a
systematic dependency on a number of events and number of bins chosen. There-
fore, choosing different subranges will not only drastically decrease the number of
events to do the analysis, but also affect the fitting performed to the individual bins
and the number of bins in the Dalitz plot. This will complicate the determination

of systematic errors.

The systematic error is calculated from the difference between the standard
analysis and the most deviated value of the parameters from these sets. The value
of the Dalitz plot parameters for these four different sets are given in Table 5.3

and can be seen to have no effect on the parameters.
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Figure 5.4: The different subranges of photon beam energy (E,) range versus
background subtracted numbers of the 7 meson events.
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Table 5.3: The different subranges of beam energy (

Dalitz plot parameters.

E.) and the corresponding

E, a Aa | b Ab | ¢ Ac | d Ad | x*/ndf

range

(in

GeV)

Standard| -0.151 -0.151 0.013 -0.081 BT —
+ + + + 1.16
0.007 0.012 0.009 0.013

1.455- | -0.153 | 0.3 | -0.148 | 0.3 | 0.010 | 0.3 |-0.077 | 0.3 | 28350 —

3.2 + + + + 1.16
0.007 0.012 0.009 0.013

1.455- | -0.153 | 0.3 | -0.146 | 0.4 | 0.010 | 0.3 | -0.079 | 0.2 | £2H —

3.4 + + + + 1.21
0.007 0.012 0.009 0.013

1.455- | -0.149 | 0.3 | -0.156 | 0.4 | 0.015 | 0.2 | -0.075 | 0.5 | L =

3.8 + + + + 1.16
0.007 0.012 0.009 0.013

1.455- | -0.149 | 0.3 | -0.155 | 0.3 | 0.014 | 0.1 | -0.079 | 0.2 | 300 =

4.0 + + + + 1.19
0.007 0.012 0.009 0.013
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5.2.2 Photon Multiplicity

In the standard Dalitz plot analysis, the multiple beam photons in a single event
are considered as individual events, which is already explained in Section. 3.3.
Due to these combinations, there are 12 % more events than best-timed photon
events. The Dalitz plot parameters are obtained for a set of events containing
only the best-timed photon and compared to the standard Dalitz plot parameters
in order to check the systematic error. The value of the Dalitz plot parameters
is given in the Table 5.4. The parameters a and d seems to be affected by the
selection of best-timed photon and their difference with the standard Dalitz plot
parameters are taken as the systematic error. The systematic error comes out to
0

be asymmetric with a value of o, = 00, and o4 = 100, for parameter a and d

respectively.

5.2.3 Kinematic Fitting

The standard analysis used a pull probability greater than 1% for all the selected
events. To understand the systematics from this cut the pull probability cut is
varied with an increment of 5% in four sets. The Dalitz plot parameters for all
the sets are listed in the Table 5.5. It comes out that the pull probability greater

than 1% has not contributed to the systematic error.

Table 5.4: The Dalitz plot parameters are calculated considering one photon in
each event, and the chosen photon happens to be the best-timed photon.

Set a Aa | b Ab | c Ac | d Ad | x*/ndf

Standard| -0.151 -0.151 0.013 -0.081 BT =
+ + + + 1.16
0.007 0.012 0.009 0.013

Best- | -0.142 | 1.3 | -0.157 [ 0.5 | 0.017 | 0.4 | -0.066 | 1.2 | 2528 —

time + + + + 1.02

v 0.007 0.012 0.010 0.013
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Table 5.5: A list of pull probability cut on the kinematic fitter and the correspond-
ing Dalitz plot parameters.

KF Set | a Aa | b Ab | ¢ Ac | d Ad | x?/ndf

Standard| -0.151 -0.151 0.013 -0.081 BT =
+ + + + 1.16
0.007 0.012 0.009 0.013

5% -0.147 | 0.6 [ -0.152 | 0.1 | 0.016 | 0.3 |-0.073 | 0.6 | 3B =
+ + + + 1.18
0.007 0.012 0.010 0.013

10% -0.144 | 1.0 | -0.159 | 0.7 | 0.019 | 0.7 | -0.069 | 0.9 | 256 —
+ + + + 1.10
0.007 0.012 0.010 0.013

15% -0.144 | 1.0 [ -0.156 | 0.4 | 0.018 | 0.6 | -0.074 | 0.5 | 322 =
+ + + + 1.05
0.007 0.013 0.010 0.014

20% -0.147 | 0.6 | -0.151 | 0.0 | 0.015 | 0.2 | -0.072 | 0.7 | 3T8 =
+ + + + 0.97
0.007 0.013 0.010 0.014

5.2.4 Vertex Condition

A cut on the target length along the z-vertex (-110 ecm < V, < -70 cm) and the
radius (/(V2+V2) < 2.0 cm) of the target was placed to ensure that the v

and proton reaction takes place within the target dimension. The resolution of

V, and /(V2+ Vf) are 1 cm and 0.5 cm respectively. The systematic study is

performed by varying V, and / (V.2 + VyZ) cut independently within the resolution
without changing any other cut. The parameter values for these studies are listed

in Table 5.6.

It is found that the V, and /(V2 + V) cut does not give any systematics

to the measurement.

5.2.5 Timing Condition

The time difference | (tyeri(TOF) - tyeri(Tagger)) | less than equal to 1.0 ns on the
detected final state particles p, 77 and 7~ was used in the standard analysis as

shown in the Fig. 3.11. The systematic error is calculated by varying the standard
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Table 5.6: The event vertex cut V, and the |/(V,2 + V;?) cut are varied within the

resolution and the corresponding Dalitz plot parameters.

Set a Aa | b Ab | ¢ Ac | d Ad | x*/ndf

Standard| -0.151 -0.151 0.013 -0.081 BT =
+ + + + 1.16
0.007 0.012 0.009 0.013

-109< | -0.158 | 1.0 [ -0.144 | 0.6 | 0.011 | 0.2 |- 0.3 | M =

V., <71 | £ + + 0.085+ 1.17
0.007 0.012 0.010 0.013

(VZ +|-0.154 | 0.4 |-0.140 | 0.9 | 0.013 | 0.0 - 0.0 | 2200 —

VHYE |+ + + 0.0814 1.17

<15 |0.007 0.013 0.010 0.014

Table 5.7: The list of timing cuts used in the systematic error calculation and the
corresponding Dalitz plot parameters.

Set a Aa | b Ab | ¢ Ac | d Ad | x*/ndf

Standard| -0.151 -0.151 0.013 -0.081 B =
+ + + + 1.16
0.007 0.012 0.009 0.013

08ns | -0.155 | 0.6 |-0.148 | 0.3 | 0.007 | 0.7 |- 0.4 | 1349 —
+ + + 0.0864 1.23
0.007 0.012 0.010 0.013

12ns | -0.154 | 0.4 |-0.152 | 0.1 | 0.011 | 0.2 - 02| 851 =
+ + + 0.079+ 1.22
0.006 0.012 0.009 0.013

cut by £0.2 ns (at 0.8 ns and 1.2 ns), the corresponding Dalitz plot parameters
from these sets are given in the Table 5.7. It is found that timing cut does not

contribute to systematic error.

5.2.6 cos(f) in Center of Mass Frame of the 1’ meson

The analysis used cos(f) in center of mass frame of the 7' from -0.85 rad to 0.85
rad. To calculate the systematic error arising from this variable, the Dalitz plot
parameters are calculated for three subranges in which the cos(6) in center of mass
frame of i’ varied from -0.8 to 0.8, -0.75 to 0.75, and -0.7 to 0.7 and is given in

the Table 5.8, while, all other conditions remain unchanged. The systematic error
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Table 5.8: The cos(#) (in the center of mass frame of the ' meson) window is varied
to calculate the systematic error and the corresponding Dalitz plot parameters.

Set a Aa | b Ab | ¢ Ac | d Ad | x?/ndf

Standard| -0.151 -0.151 0.013 -0.081 BT =
+ + + + 1.16
0.007 0.012 0.009 0.013

+0.8 -0.153 | 0.3 [-0.144 | 0.6 | 0.020 | 0.8 |-0.079 | 0.2 | 386 —
+ + + + 1.15
0.007 0.012 0.010 0.013

+0.75 | -0.149 | 0.3 | -0.149 | 0.2 | 0.026 | 1.4 [-0.079 | 0.2 | 228 —
+ + + + 1.0
0.007 0.013 0.010 0.013

+0.7 -0.153 | 0.3 | -0.145 | 0.5 | 0.026 | 1.4 | -0.071 | 0.8 | 3852 —
+ + + + 111
0.008 0.013 0.010 0.014

contributes asymmetrically to the parameter ¢ only (systematic error of ¢, o, =

00).

5.2.7 M,(pn+mn-) Selection

The systematic error from the cut on the missing mass of | M, (pr+m—) - 0.547 |
less than equal to 0.015 GeV/c? is calculated. The cut window is varied by 0.005
GeV/c? to the standard selection window in order to calculate systematic error.
The parameter values are given in the Table 5.9. The parameters ¢ and d are
sensitive to the cut, and the systematic error on the cut is calculated by taking
the difference between the standard result and the two results. The systematic

_ +0.007 +0.014 £

error comes out to be asymmetric with a value of 0. = T and o4 = “5015

parameter ¢ and d respectively.

5.2.8 Systematics Error from Fits to the Signal and the
Background

The systematic uncertainty from the polynomial fit to the background and a

Voigtian fit to the signal are estimated here. A polynomial fit of second and
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Table 5.9: The M, (pm+n-) cut window varied to calculate the systematic error

and the corresponding Dalitz plot parameters.

Set a Aa | b Ab Ac | d Ad | x*/ndf

Standard| -0.151 -0.151 0.013 -0.081 e
+ + + 1.16
0.007 0.012 0.009 0.013

10 MeV | -0.157 | 0.9 | -0.154 | 0.3 | -0.005 | 2 |-0.095 | 1.1 | 2280 —
+ + + 0.92
0.007 0.013 0.010 0.013

20 MeV | -0.148 | 0.4 | -0.147 [ 0.3 0.020 | 0.7 | -0.066 | 1.2 | 41T —
+ + + 1.23
0.007 0.012 0.010 0.013
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Figure 5.5: The figure (a) M,(p) distribution of a bin is fitted with a polynomial
of second order and figure (b) is the same bin fitted with a polynomial of fourth

order in the Dalitz plot.

fourth order is done to the background in the experimental data while keeping all

other conditions unchanged. The Fig. 5.5 shows a fit to the background of a low

statistics bin with second and fourth order polynomial. The signal is also fitted

with a Gaussian function instead of the Voigtian function and the background is

fitted with a third order polynomial, keeping all other conditions unchanged and

is shown in the Fig. 5.6. The Dalitz plot parameters calculated from different

background fits and the signal fit are listed in the Table 5.10. It is found that the

fits do not contribute to the systematic error.
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Table 5.10: The M, (pm+m-) cut window varied to calculate the systematic error
and the corresponding Dalitz plot parameters.

Set a Aa | b Ab | ¢ Ac | d Ad | x*/ndf
Standard| -0.151 -0.151 0.013 -0.081 ;I =
+ + + + 1.16
0.007 0.012 0.009 0.013
pol-2 -0.154 | 0.4 | -0.146 | 0.4 | 0.005 | 0.9 | -0.090 | 0.7 | 8BL2 =
+ + + + 1.16
0.007 0.012 0.009 0.013
pol-4 -0.151 | 0.0 [ -0.152 | 0.1 | 0.008 | 0.6 | -0.088 | 0.5 | 31 —
+ + + + 1.20
0.007 0.012 0.009 0.013
Gauss | -0.158 | 1.0 | -0.149 | 0.2 | 0.004 | 1.0 | -0.090 | 0.7 | 222 —
+ + + + 0.70
0.007 0.013 0.010 0.013
%22 "'_'""""""—Gauss+PoI35 %1805"'.""""" '—Gauss+PoI3§
E ?(8) Global s;::gs::,i(g:”o.ss, Y,:0.95 Signal ; 31 60_E Global BF:;I;::B;)EC;;OAS, Y,:-0.75 Signal
3 16 Mean : 0.957 GeV/c? — Gauss E E140_2 Mean : 0.957 GeV/c? — Gauss
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Figure 5.6: The figure (a) is the fit to a low statistics bin and the figure (b) is to
the highest statistics bin of the M, (p) distribution in the Dalitz plot, where the
signal peak is fitted with a Gaussian function.
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5.3 Total Systematics

The systematic error for bin width and CLAS sector is directly calculated from
the weighted standard deviation of the different configurations. The possible sys-
tematic error from the different cuts are considered only when the Dalitz plot pa-
rameters cannot be explained by the statistical error of the standard parameters
and it is beyond the understanding. The systematic error arising from different
sources are listed in the Table 5.11. The errors obtained from these studies are
both symmetric and sometimes asymmetric. The total error on each parameter
is obtained by adding the upper and lower bound separately for all the sources in

quadrature and then taking their square root as shown below:

— 2 2 2
O-ITUtal - \/stourcel + O—xsouTCEQ _'_ O—xsou'rce:; (55)

where, 04,,,,, stands for the total systematic error on the parameter r. oy,
stands for the error from source 1. The same calculation is done separately for

both the upper and lower bound error to a parameter.

Table 5.11: Systematic errors on the Dalitz plot parameters.

Syst Err. a b c d
Bin Width 4+ 0.0038 | 4+ 0.002 | 4+ 0.0064 | & 0.0075
Sector 4+ 0.0071 | & 0.0053 | 4+ 0.0048 | 4 0.0046
Photon Multiplicity | 99, — — oos
co8(0)em of 7' - - 0o -
M, (pm +7—-) - - Toots | foois
Total Tootn | fooosr | Tooer | Tooeso
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Chapter 6

Results and Outlook

This chapter presents the final Dalitz plot parameters of ¥ — n 7+ 7~ decay using
the CLAS ¢g12 data. The conclusion of the analysis is discussed and it includes
comparisons of results to other experiments. In addition to that, an investigation
to understand the decay of intermediate o meson (' — o 1) to 77 and 7~ in
the n’ — n 7" = decay mode is presented and compared to different theoretical

models.

6.1 Final Dalitz plot parameters

The final Dalitz plot parameters of the ’ meson through subsequent decay of " —
n 7t 7 using the CLAS ¢12 photoproduction dataset along with the statistical

and systematical errors are reported below :

a : -0.151 + 0.007 (Stat) £3:99% (Syst)
b:-0.151 & 0.012 (Stat) *390¢ (Syst)
c: 0.013 £ 0.009 (Stat) 005 (Syst)
d : -0.081 £ 0.013 (Stat) T9-917 (Syst)

6.2 Conclusion and Summary

In this study, the decay of ¥ — n 7t 7~ is studied with a total of 160090 events
which survived after all conditions. The statistics reported here is three times

higher than the highest statistics reported by BESIII collaboration [29]. The
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decay of these events are studied with a Dalitz plot and the results from the fit
to the Dalitz plot are reported as Dalitz plot parameters. The measurement of
the Dalitz plot parameters are dominated by systematic error. The fit to the
Dalitz plot yields a reasonable x?/ndf of the value 1.16 which shows the quality of
the fit is good. However, there is another recent measurement of the Dalitz plot
parameters for the ¥ — n 7" 7~ decay again by BESIII collaboration [58] which
used a total of 351016 events.

The thesis also presents two unbiased methods to calculate the Dalitz plot
parameters described in Sec. 4.6. The “Acceptance correction method” does not
consider the effects on acceptance from the migration of events from bins during
the reconstruction of an event. The “Smearing matrix method” on the other hand
presents a way to calculate the acceptances more accurately as it takes care of the
migration of the events from nearby bins. The results, however, matches within
the statistical errors from both the methods because of the choice of wide binning.
The bin width is 3 times the resolution of both Dalitz variable X and Y in both
the methods. The choice of the binning is based on the optimization of the total
number of events and the resolution of the Dalitz variables. The “Smearing matrix
method” being a more realistic approach has been used to present the final Dalitz

plot parameters and to perform systematic studies in the analysis.

A comparison of the g12 Dalitz plot parameters with the other experimental
results are shown in the Table 6.1. The parameters a and b from the CLAS ¢g12
measurement are consistent within 1 standard deviation to results reported by the
VES [28] and shows disagreements with the parameters provided by BESIII [29,
58] experiment. The Dalitz parameter ¢ has direct physical significance which
indicates C-parity violation in the strong interaction. A value of ¢ closer to zero
indicates that the C-parity is conserved in the strong decay of ¥ — n «# 7.
In the measurement, it is found that ¢ parameter is consistent to zero within
1.5 standard deviation. The parameters ¢ and d from the g72 measurement is
consistent with both the VES [28] and the BESIII [29, 58] experiment. The Dalitz
plot parameters from n’ — n 7t 7~ decay are also compared to neutral decay
mode of 1’ meson, the  — n 7° 7% decay [58-60], are given in the Table 6.3.

In the isospin limit, the two channels are expected to yield the same Dalitz plot
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parameters. Both, the recent measurements from the A2 Collaboration [60] at
MAMI and the BESIII Collaboration [58] have shown agreement among them.
However, the recent measurement from the BESIII [58] shows a discrepancy of
2.6 standard deviations for the parameter a in the charged and neutral decay
modes of ¥ — n m 7 decay. The present work, however, seems deviated by
4 standard deviations from the recent results for the Dalitz parameters a and b.
Our measurement seems to agree within statistical limits for the parameter d. One
of the reasons behind the deviation of most measurements for Dalitz parameters
a and b with the CLAS ¢12 could be that we could not detect all the final state
particles. The reconstruction of the  meson as a missing particle affects the Dalitz
variable Y. This is reflected in the Dalitz plot parameters a and b because these

parameters are the coefficients of Dalitz variable Y.

A comparison of the ¢g12 Dalitz plot parameters with the U(3) chiral effective
theory is shown in the Table 6.2. The value of b and d from g12 measurement as
well as from the previous measurements largely deviate from zero. However, the
framework U(3) chiral unitary approach [24] and U(3) chiral effective field theory
in combination with a relativistic coupled-channels approach [30] predicts b and
d to be zero. Therefore, the present analysis recommends the theory to include
final state interaction corrections in the chiral model for pseudoscalar mesons [24].
The Theory [30]* in the Table 6.2 is resulting from theoretical fits which include
VES data. A comparison of these (from theory and experiment) parameters are

also shown in Fig. 6.1, where the errors shown are statistical only.

6.2.1 Invariant Mass of 77 7~ Distribution

Apart from the goal of the thesis which is to perform the measurement of the Dalitz
plot parameters for the ’ — n 7+ 7~ decay, we also studied the scalar intermediate
particle arising from the same decay. The 1’ and 1 mesons are pseudoscalars and
both have an isospin (I) of 0. The isospin I, for both the 77 and 7~ is 1. Due to
the conservation of 3" component of the isospin (I3), the 5’ meson can decay into
77 and 7~ through an intermediate scalar meson as shown in the Fig. 6.2. Hence,

we looked at the distribution of 7% 7~ invariant mass and compared it to the
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Table 6.1: Comparison of ¢12 Dalitz plot parameters of the ' — n 7+ 7~ decay
with various experimental results.

Parameter | VES [28] | BESIII BESIII CLAS

(O1d) [29] | (New) [58] | g12

a -0.127 +|-0.047 +|-0.056 =+ |-0.151
0.016 =+ |0.011 =+ |0.004 =+ |+ 0.007

0.008 0.003 0.002 o0

b 0106 + | -0.069 + |-0.049 + |-0.151
0.028 +[0.019 +|0006 =+ |+ 0012

0.014 0.009 0.006 0000

¢ 0.015 =+ |0.019 =+ |0.0027 + | 0.013
0.011 +[0.011 =+ |0.0024 + |+ 0.009

0.014 0.003 0.0018 My

d -0.082 4 | -0.073 =+ |-0.063 =+ | -0.081
0.017 +[0.012 +|0004 =+ |+ 0013

0.008 0.003 0.003 o055

x%/ndf 1.13 1.05 1.16

theoretical distributions which consider intermediate states of the decays [61, 62].
A good sensitivity to the parameters of the o (slightly fy) meson decay to the

Tt

7~ in the n’ — n 7t 7 decay is observed and shown in the Fig. 6.3. The
figure also shows a comparison of the Nonlinear Sigma Model (NLSM) [13, 63]
and Generalized Linear Sigma Model (GLSM) [63, 64]. The NLSM is shown
with and without the contribution from ¢ meson. The inclusion of ¢ meson to
NLSM changes the centeredness of M(m+ m—) from center to right. The right-
centeredness of the distribution with the acceptance corrected invariant mass of

the 7 7~ mesons (M(7n+ 7—)) from CLAS ¢12 data and NLSM thus indicates a

clear presence of o meson [13, 65-67].
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Table 6.2: Comparison of ¢12 Dalitz plot parameters of the ' — n 7+ 7~ decay
with various theoretical predictions.

Parameter | Theory [24] | Theory [30] | Theory [30]*| CLAS

gl2
a -0.093 -0.116 +|-0.116 4+ |-0.151 =+
0.024 0.011 0.007 *50%%
b -0.059 0.040.019 | -0.042 + |-0.151 =+
0.034 0.012 *5000
c 0.013 =+
0.009 3037
d -0.003 0.016 =+ |0.010 +|-0.081 =+
0.035 0.019 0.013 5035

x%/ndf 1.16

Table 6.3: Comparison of ¢12 Dalitz plot parameters of the ' — n 7+ 7~ decay
with various experimental results of the ' — n 7° 7% decay.

Parameter | GAMS A2 BESIII [58] CLAS
47 [59] Col. [60] g12

a -0.066 =+ | -0.074 =+ | -0.087 =+ |-0.151
0.016 +|0.008 =+ |0.009 =+ |+ 0.007
0.003 0.006 0.006 o0

b -0.063 + |-0.063 + |-0.073 + |-0.151
0.028 +[0.014 +|0014 =+ |+ 0012
0.004 0.005 0.005 0000

¢ 0.107 + | ... 0.013
0.096 + +  0.009
0.003 0020

d 0.018 =+ |-0.050 =+ |-0.074 =+ | -0.081
0.078 +[0.009 +|0009 =+ |+ 0013
0.006 0.005 0.004 o055

x2/ndf 0.93 1.09 1.16
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Figure 6.1: Comparison of different experimental (with stat errors) and theoretical
measurements for Dalitz plot parameters of ¥’ — n 7t 7~ decay.

o mmmmm S m oo

Figure 6.2: Feynman diagram showing the decay of a scalar meson to 7+ 7~ for
the n’ — n 7 7 decay channel.
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Figure 6.3: The M(7 + 7m—) distribution from CLAS g12 data is compared to the
NLSM and GLSM.

6.3 Outlook

In this thesis, the experimental results of Dalitz plot analysis of the decay ' — 7
7T 7~ are presented. This analysis is based on the CLAS ¢12 data collected during
photoproduction experiment v p — 1’ p for the center-of-mass energy from 1.9 to
2.76 GeV at JLab. The analysis is based on the highest statistics data collected for
this channel in comparison to the other experiments reported so far, except for the
most recent BESIIT measurement [58]. The CEBAF has been recently upgraded to
12 GeV [68], along with CLAS detector, which is expected to produce more high-
quality data. These new experimental data will further improve the measurement
of Dalitz plot parameters with higher accuracies. In addition to that, the signature
of ¢ meson evidences for this channel will encourage the scientific society to gain

more insight about the meson.
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Appendix A

List of runs included in the

analysis

The list of all the “good” runs recorded by the ¢I2 experiment is given
in “G12_procedures_working_version.pdf” along with all intricate triggers used and

other details. The file can be accessed at url:

https://clasweb.jlab.org/rungroups/gl2/wiki/images/f/f0
G12_procedures_working_version.pdf [38].
All the corrections used in the data and simulations have been agreed upon by

the ¢g12 collaboration and used in the analysis unanimously. The run numbers

specifically used are listed in Table below.
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Run Number

Run Number

Run Number

Run Number

56363-56363

96365-56365

56369-56369

56384-56384

56386-56386

56401-56401

56403-56406

56408-56408

56410-56410

56420-56422

56435-56436

56441-56443

56445-56450

56453-56462

56465-56465

56467-56472

56476-56476

56478-56483

56485-56487

56791-56794

56798-56802

26804-56815

56821-56827

26831-56835

26838-56839

26841-56845

56849-56849

26853-56862

26864-56866

56869-56870

26874-56875

56877-56877

56879-56879

56897-56908

96910-56919

56921-56930

56932-56940

56948-56956

108

56489-56490

56499-56499

56501-56506

96508-56510

56513-56517

56519-56542

96544-56550

56555-56556

96559-56559

56561-56564

56573-56583

96585-56593

96605-56605

596608-56612

56614-56628

56630-56644

56646-56646

96653-56656

56660-56661

56958-56958

56960-56975

26977-56983

56985-56986

56989-56989

56992-56994

56996-57006

57008-57017

57021-57023

57025-57027

57030-57032

57036-57039

57061-57069

57071-57073

57075-57080

57094-57097

57100-57103

57106-57108

57114-57152




Run Number

Run Number

56664-56670

56673-56675

56679-56681

56683-56633

56685-56697

56700-56708

56710-56744

56747-56772

26774-56778

56780-56784

d6787-56788

57155-57156

57159-57168

d7170-57185

57189-57229

D7233-57239

57249-57253

57255-57258

57260-57268

57270-57288

27290-57291

57293-57312
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Appendix B

Data points

All the information required to obtain the Dalitz plot parameters for the accep-
tance correction method are listed here. Starting from global bin no. i, its central
co-ordinates of Dalitz plot variables X; and Y;, the number of events and error
in the bin V;, 0; respectively before and after Ne,.i, 0cori acceptance correction
and the acceptance ¢; of the bin. One can also use the data to obtain Dalitz plot
parameters using the smearing matrix method. The required smearing matrix

from simulation will be made available on request to the email: sghosh@jlab.org.
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283(-0.55(-0.55(620.41|33.67 3.34 18672.56/1008.48 346(-0.35(-0.35(550.01|32.89 3.18 17217.35|1033.97
284|-0.55|-0.55|639.63|35.11| 3.29 [19712.73|1064.66 347|-0.35|-0.35|508.11{30.49| 3.22  |15947.56| 942.97
285|-0.55|-0.55/602.36(33.58| 3.26  [18902.97(1023.76 348|-0.35|-0.35|550.94(31.39| 3.20 |17057.74| 982.36
286|-0.55|-0.55|570.30(32.24| 3.30 |17299.68| 976.29 349|-0.35|-0.35|545.80(33.74| 3.22 [16778.23[1051.42
287|-0.55|-0.55|569.53|35.02| 3.35 [17127.65[1042.48 350|-0.35|-0.35|587.41|32.41| 3.16 [18322.37(1028.43
288(-0.55(-0.55(638.95|33.54 3.35 19210.88| 999.05 351(-0.35(-0.35(558.10|31.87 3.20 17190.99|1001.25
289|-0.55|-0.55|581.55(31.15| 3.40 |16992.38| 916.84 352|-0.35|-0.35|513.55(29.74| 3.22 |15866.28| 926.23
290(-0.55|-0.55|577.25(33.39|  3.36 |17212.77| 991.44 353|-0.35|-0.35(492.47(29.52| 3.10 |15486.88| 960.80
291|-0.55|-0.55|501.63(28.85| 3.29 |15083.60| 881.26 354|-0.35|-0.35440.23|27.16| 3.16 |13748.63| 863.02
292|-0.55|-0.55|538.70(30.62| 3.33 |16216.55| 918.56 355|-0.35|-0.35|387.80(26.87| 3.06 |12475.25| 883.37
203|-0.55|-0.55|527.47(31.02| 3.34 |15746.94| 928.19 356/-0.35|-0.35|386.57(26.07| 3.08 |12356.06| 850.51
294|-0.55|-0.55|440.99(29.31| 3.33  |13209.44| 879.31 367|-0.25|-0.25|726.96(36.57| 3.60 [20349.97(1012.06
295|-0.55|-0.55|456.66(29.79| 3.31 |13718.36| 901.69 368|-0.25(-0.25|736.26(37.84| 3.54 [21052.76[1067.05
308(-0.45(-0.45(753.70|38.21 3.71 20344.22(1028.48 369(-0.25(-0.25(636.52|35.09 3.38 18620.93|1041.77
309|-0.45|-0.45|693.55(|37.26| 3.69 [18974.13[1009.03 370|-0.25|-0.25|616.28|34.69| 3.32 [18679.48(1042.42
310(-0.45|-0.45|680.42|36.68| 3.52 [19652.28(1037.23 371|-0.25|-0.25|616.43|34.72| 3.29 [18811.41[1056.16
311|-0.45|-0.45|619.70(33.97| 3.42 |18135.59| 991.83 372|-0.25|-0.25|648.18(35.27| 3.19  [20269.07[1104.58
312|-0.45|-0.45|683.01|36.95| 3.34 |20751.20(1101.17 373|-0.25|-0.25|626.94(33.93| 3.14 [19830.86(1081.73
313|-0.45|-0.45(625.69(33.29| 3.30 |18899.47|1008.17 374/-0.25|-0.25|589.91(33.47| 3.11 |19255.52|1072.07
314|-0.45|-0.45|603.31|32.93| 3.23 [18696.60(1020.46 375|-0.25|-0.25|515.50(31.63| 3.10 [16927.68[1016.68
315|-0.45|-0.45|544.49(31.68| 3.27 |16768.24| 966.27 376/-0.25|-0.25|554.41|33.76| 3.05 [18283.52(1107.15
316(-0.45(-0.45(647.35|35.65 3.26 20076.65(1090.25 377(-0.25(-0.25(530.71|30.78 3.07 17393.03|1002.28
317|-0.45|-0.45|611.53|34.12| 3.25 [18719.66(1049.96 378|-0.25|-0.25|566.67|33.10| 3.10 [18173.36(1069.31
318-0.45|-0.45|612.76(32.52| 3.24 [18572.84[1007.53 379-0.25|-0.25|582.83(33.42| 3.08 [18806.13[1088.02
319|-0.45|-0.45|591.91|32.50| 3.23 [18114.17[1010.73 380(-0.25|-0.25(549.79|31.82| 3.14 |17474.16|1013.51
320(-0.45|-0.45|518.67(29.96| 3.35 |15356.45| 897.46 381|-0.25|-0.25|488.00(29.53| 3.07 |15945.73| 959.04
321(-0.45(-0.45(556.14|33.31 3.36 16633.48| 990.01 382(-0.25(-0.25(547.29|32.01 3.10 17456.04|1035.29
322|-0.45|-0.45|517.42|29.57| 3.32 |15681.95| 888.77 383|-0.25|-0.25|497.83(29.60| 3.08 |16117.51| 961.77
323|-0.45|-0.45|518.29(29.18| 3.26 |15770.14| 898.27 384/-0.25|-0.25|428.12(27.05| 3.02 |13815.49| 901.62
324|-0.45|-0.45(|484.30(29.12| 3.30 |14561.60| 885.66 385-0.25|-0.25|391.46(25.47| 2.93 |13128.21| 874.69
325|-0.45|-0.45|401.82(25.97| 3.24 |12267.61| 804.34 386/-0.25|-0.25(428.40(26.90| 2.85 |14669.31| 949.13
337|-0.35|-0.35|723.51(36.45| 3.75 |19323.00| 971.57 397|-0.15|-0.15|741.83|36.55| 3.52 [21098.13[1038.46
338|-0.35|-0.35|734.38(37.41| 3.67 |20125.21|1018.44 398-0.15|-0.15|708.59(37.25| 3.41 [20837.32[1091.82




e

e; * 1072

(%) i Ncor,i |oCor,i
399(-0.15|-0.15|634.31|35.86| 3.36 [19116.15[1062.91
400(-0.15|-0.15|601.74|35.44| 3.24  [18793.71[1090.92
401[-0.15|-0.15(592.02|33.88| 3.12 [19144.74(1082.80
402|-0.15|-0.15|592.31|35.88| 3.11 |19180.69|1149.97
403[-0.15|-0.15(581.01|32.76| 2.92 |19747.73|1123.42
404|-0.15|-0.15|603.37|33.62| 2.95 [20043.65[1144.55
405|-0.15|-0.15|510.48|31.30| 2.97 [17340.05[1053.58
406(-0.15|-0.15|548.71|31.61| 2.99 [18331.15(1056.96
407|-0.15|-0.15|548.74(33.37|  3.00 [18320.64[1111.91
408|-0.15|-0.15|588.57(33.37| 2.98 |19891.38|1117.97
409|-0.15|-0.15|517.02|31.45| 2.98 [17059.72(1061.38
410|-0.15|-0.15|455.73(28.11|  2.99 |15317.99| 939.48
411(-0.15(-0.15[509.56|29.67 2.98 17002.31| 998.64
412]-0.15|-0.15(466.68|28.31| 2.98 |15623.68| 948.81
413-0.15|-0.15|464.58(28.24| 2.89 |15755.52| 983.87
414[-0.15|-0.15(397.28(27.94| 2.81 |14002.75| 995.94
415-0.15|-0.15|407.37|25.74| 2.78 |14364.13| 930.64
416/-0.15|-0.15|333.22(24.14| 2.70 |12030.52| 902.59
427/-0.05|-0.05|711.11|36.34| 3.45 [20996.89(1049.76
428|-0.05|-0.05|662.04|36.22| 3.35 [19832.78(1079.65
429(-0.05(-0.05(580.18|34.35 3.24 17987.08|1059.04
430(-0.05|-0.05|520.64(32.91| 3.17 [16736.05[1033.38
431|-0.05|-0.05|530.67|31.80| 3.04 [17377.42(1046.53
432|-0.05|-0.05|556.59(32.46| 2.89 [18993.74[1127.51
433|-0.05|-0.05|537.02(33.87| 2.92  [19024.99(1150.13
434/-0.05|-0.05|520.79(30.55| 2.81 [18514.55[1087.02
435|-0.05|-0.05|580.24(33.10| 2.85 [20336.97(1163.49
436/-0.05|-0.05|523.87(30.33| 2.80 |18621.93|1085.70
437(-0.05(-0.05(463.26|29.24 2.86 16128.67|1024.53
438|-0.05|-0.05|545.58(32.78| 2.81 [19658.36(1164.48
439/-0.05|-0.05|484.94(29.82| 2.84 [17240.11[1048.56
440|-0.05|-0.05|533.27|29.95| 2.86 [18473.85(1049.85
441|-0.05|-0.05|529.54(30.70| 2.76 |18684.90|1119.60
442(-0.05|-0.05(479.55|28.78|  2.76 |17112.12(1047.27
443|-0.05|-0.05|409.00{27.26| 2.78 |14634.02| 984.04
444|-0.05|-0.05|348.50(24.11| 2.59 |13195.74| 934.43
445|-0.05|-0.05|366.25(25.61| 2.60 |13955.74| 986.57
446|-0.05|-0.05|315.35(24.39| 2.53  |12401.39| 967.30
457/0.05 | 0.05 |610.09(33.73| 3.27 [18702.48(1030.96
458/ 0.05 | 0.05 |630.27|34.08| 3.12  [19737.56(1098.49
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() N; o Ncori |oCor,i
459(0.05(0.05|568.45(32.89| 3.10 |18357.18/1058.55
460(0.05(0.05|538.16(33.13|  2.90 |18735.30|1138.97
461[0.05|0.05|541.30(31.79| 2.88 |18755.74|1104.23
462(0.05(0.05|572.60(33.10| 2.81 |20761.83|1172.95
463/0.05(0.05(576.28(32.31| 2.71 |21512.83|1189.50
464/0.05(0.05(515.28(/30.21| 2.69 |19057.62|1122.84
465(0.05(0.05/495.89(30.20| 2.72 |18168.56|1113.20
466(0.05|0.05|450.26(30.56| 2.62 |17107.44|1168.82
467(0.05(0.05/508.81(30.87| 2.65 [19304.15/1161.00
468(0.05(0.05|455.33(29.68| 2.69 |17111.69|1099.05
469(0.05(0.05/509.11(31.26| 2.65 [19163.79(1181.03
470(0.05(0.05/466.01(29.12| 2.63 [17349.98|/1113.80
471(0.05|0.05(432.60(27.77 2.64 16494.55|1048.51
472/0.05(0.05(444.20(29.15| 2.56 |16867.47|1144.83
473/0.05(0.05/392.76(26.06| 2.51 |15679.75|1038.08
474(0.05|0.05/319.02(23.30| 2.44 |13020.01| 956.58
475(0.05(0.05|364.78(25.16| 2.39 |14903.76|1059.40
476/0.05(0.05|325.04(23.73|  2.30 |13796.38/1041.31
487(0.15(0.15|553.20(32.07| 3.09 |18056.30|1036.38
488]0.15(0.15/624.57(34.20| 3.00 |20900.62|1136.49
489(0.15|0.15|573.68|35.08 2.92 20323.92(1189.23
490(0.15(0.15|506.88(31.89| 2.79 |17896.09|1145.00
491[0.15(0.15|529.98(31.84| 2.74 [19014.97|1165.78
492(0.15(0.15|506.58(30.81| 2.62 |19506.67|1175.51
493(0.15(0.15|477.85(29.67| 2.58 |18761.67|1146.77
494(0.15(0.15|446.33(28.73|  2.56 |17436.53|1122.45
495(0.15(0.15(461.87(29.70| 2.52 [18197.39|1183.19
496(0.15(0.15|448.80(28.87| 2.48 [18123.92|1163.81
497/0.15(0.15(447.49(28.89| 2.47 |18135.15(1171.09
498(0.15(0.15(472.14(29.53| 2.49 [19098.36|1183.98
499(0.15(0.15|429.48(26.58| 2.48 |16927.16|1076.85
500[0.15(0.15|446.85(28.13| 2.46 |18088.06|1147.05
501[0.15(0.15(411.07|27.04| 2.42 [16875.97|1118.79
502|0.15(0.15(377.62|24.42| 2.34 [15796.99(1049.51
503/0.15(0.15|335.06(25.79| 2.30 [14700.38(1120.13
504(0.15(0.15/319.81(22.72| 2.18 [14370.00|1047.29
505(0.15(0.15/273.50(22.68| 2.09 |12763.56|1092.48
506(0.15(0.15/226.92(20.67| 2.11 |10536.22| 986.12
517(0.25(0.25|539.27|31.06| 2.90 |18668.62|1069.85
518/0.25(0.25|551.48(31.85| 2.75 |19871.82|1162.98
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() N; o Ncor,i |oCor,i () N; i | *x Ncor,i |oCor,i
519/0.25/0.25(510.44[31.90| 2.72 |18725.38|1172.99 580(0.45(0.45|397.32(26.81| 2.14 |18021.72|1262.18
520(0.25(0.25(480.02[30.13| 2.63 |18390.91|1145.77 581/0.45|0.45(400.81|27.15| 2.11 |18999.18|1287.81
521[0.25(0.25/496.93(31.92| 2.49 [20120.33|1281.16 582(0.45|0.45(357.50(26.09| 2.01 |17869.14|1293.16
522(0.25(0.25(439.71(28.50| 2.43 |18059.90|1174.67 583/0.45|0.45(396.88(26.78| 1.90 |20751.74|1413.83
523(0.25(0.25(480.78(29.82| 2.40 |20047.62|1240.72 584/0.45(0.45/429.90(28.39| 1.89 [23021.95|1497.86
524/0.25(0.25(480.17|31.08| 2.31 |21178.07|1339.99 585(0.45(0.45|349.77|26.16| 1.83 |19626.27|1421.45
525(0.25|0.25(420.69(27.48| 2.33 |18235.77|1173.50 586/0.45|0.45(306.44]25.29| 1.81 |16866.66|1398.95
526(0.25(0.25(419.92(26.98 2.29 18153.03|1180.50 587(0.45|0.45(319.04|25.40 1.75 18195.69|1452.76
527/0.25|0.25(383.33|27.58| 2.28 |16761.51|1207.36 588(0.45|0.45(317.56(24.67| 1.75 |18325.62|1404.54
528(0.25(0.25(387.64(25.70| 2.27 |17165.33|1132.37 589/0.45]0.45(284.88(23.48| 1.73 |16796.47|1353.91
529(0.25(0.25(409.47|28.57| 2.24 |18141.20|1277.52 590/0.45|0.45(283.61(21.96| 1.69 |16626.84|1306.32
530(0.25|0.25(407.72|27.97| 2.22 |18130.72|1260.96 591/0.45|0.45(253.41(21.79| 1.59 |16106.97|1370.60
531(0.25|0.25|356.08(24.37 2.16 16406.87|1132.83 592(0.45|0.45(248.34(21.39 1.48 16361.30|1458.79
532(0.25|0.25(366.28|25.53| 2.10 |16915.10|1226.73 593/0.45|0.45(236.37(19.38| 1.45 |16417.10|1335.26
533/0.25/0.25(303.66(22.94| 1.96 |15073.23|1177.14 594/0.450.45(180.13]18.54| 1.33 |13214.16|1400.14
534/0.250.25(301.71[21.59| 1.90 |15520.10|1143.88 595(0.45(0.45|154.00{17.03| 1.22 |12353.40|1404.21
535(0.25(0.25(249.89(20.93| 1.81 |13526.71|1159.03 608|0.55|0.55|406.73]28.45| 2.12 |19438.69|1339.51
536/0.25/0.25(222.89(19.62| 1.75 |12376.21|1130.44 6090.55/0.55(387.44]28.40| 2.00 |19664.93|1412.32
547/0.35|0.35(527.74]30.89| 2.70 |19735.98|1140.25 610/0.55|0.55(345.60(26.88| 1.91 |18299.65|1403.89
548/0.35|0.35(490.56(31.96] 2.60 |19025.84|1227.05 611/0.55|0.55(376.74|26.44| 1.83 |20312.77|1446.41
549(0.35|0.35(536.46(32.40 2.51 21570.21(1286.95 612(0.55|0.55(297.05(23.34 1.73 17749.70|1336.79
550/0.35|0.35(454.32(29.66| 2.39 |18927.57|1244.58 613]0.55(0.55/316.21(24.94| 1.67 [19126.76|1486.49
551/0.35]0.35(484.85[31.39| 2.30 |21549.85|1354.96 614/0.55|0.55(300.42|24.53| 1.64 |18632.00|1494.71
552(0.35|0.35(376.34]26.41| 2.23 |16912.18|1183.07 615/0.55|0.55(277.52|22.64| 1.58 |17369.54|1439.67
553/0.35|0.35(429.75(28.50| 2.15 |19911.67|1329.80 616/0.55|0.55(246.50(21.71| 1.50 |16601.02|1441.18
554/0.35]0.35(383.77(26.23| 2.10 |18073.30|1253.40 617/0.55/0.55(272.82(23.26] 1.52 |18070.98|1533.28
555/0.35|0.35(379.38(27.98| 2.09 |18179.74|1334.84 618/0.55|0.55(304.56(23.10| 1.46 |20576.00|1582.27
556/0.350.35(361.19(25.31| 2.10 |17457.34|1203.44 619/0.55|0.55(275.29(21.65| 1.40 |19635.23|1548.18
557[0.35|0.35(463.86(28.15 2.06 22346.91(1373.20 620(0.55|0.55(221.26(20.37 1.35 15847.67|1515.54
558(0.350.35(351.73]25.50| 2.00 |17414.88|1278.15 621/0.550.55(221.77]19.86| 1.29 |17099.67|1540.90
559/0.35]0.35(320.21(22.80| 1.95 |16271.73|1176.30 622/0.550.55(164.52[17.13| 1.17 |13951.58|1469.34
560/0.35|0.35(290.94(25.59| 1.93 |15087.33|1321.85 623/0.55(0.55/164.50(17.93| 1.12 |14796.61|1602.43
561/0.35|0.35(282.83(22.43| 1.88 |14761.27|1199.41 6240.55|0.55(137.70(15.57| 1.02 |13195.67|1533.31
562(0.35|0.35(329.77|24.21 1.80 18499.77|1339.39 625(0.55|0.55(118.01|15.30 0.96 12156.86|1597.87
563/0.350.35(238.22(20.29| 1.68 |14121.57|1206.64 639/0.65|0.65(343.88(25.22| 1.76 |19472.79|1437.73
564/0.350.35(271.58(21.83| 1.61 |16780.55|1363.13 640/0.65|0.65(330.47|24.57| 1.65 |19825.13|1491.49
565/0.350.35(223.96(19.90| 1.56 |14177.60|1284.95 641[0.65(0.65|273.90(22.54| 1.54 |17948.97|1454.86
566/0.350.35(202.57|17.98| 1.50 |13297.17|1209.45 642(0.65|0.65(268.33(23.36| 1.49 |18368.06|1556.13
578(0.45]0.45(441.45(29.57| 2.34 |18698.63|1265.84 643/0.65|0.65(320.32(23.99| 1.42 |22706.02|1681.54
579(0.45(0.45|426.52(28.77| 2.25 [19411.87|1272.36 644/0.65(0.65|254.02(22.80| 1.36 |18634.62|1682.29




Xi‘Yi

€; * 1072

() N; o, Ncor,i |oCor,i
645(0.65(0.65/215.22[19.51| 1.31 |16526.82|1488.00
6460.65|0.65(230.75(20.72| 1.30 |17690.53|1597.36
647(0.65(0.65/248.30(21.95| 1.22 [20821.43|1791.39
648/0.65|0.65(210.64]19.93| 1.16 |18073.66|1711.63
649(0.65(0.65/185.07(18.25| 1.08 |16828.86|1697.08
650(0.65(0.65|164.42(16.42| 1.06 |15411.13|1546.86
651/0.65|0.65(203.33|17.74| 1.00 |20478.13|1765.99
652(0.65|0.65(155.28(15.52 0.93 16668.46|1663.48
654/0.65|0.65117.30(13.29| 0.80 |14567.32|1670.01
669(0.75/0.75(251.45(20.70|  1.45 |17392.24|1421.70
670/0.75|0.75(263.88(22.76| 1.35 |19562.36|1684.53
671/0.750.75(223.76(21.41| 1.28 |17421.42|1667.30
672/0.75(0.75|258.12(22.09| 1.22 |21478.57|1807.91
673/0.75/0.75261.90(21.50| 1.18 |22301.68|1828.16
674/0.75/0.75|185.70(18.23| 1.13 |16776.61|1612.48
700{0.85(0.85(209.50(19.25|  1.07 |19738.40|1800.41
701|0.85(0.85(184.73|17.47| 1.01 |17923.94|1738.85

115



Appendix C

Plots of individual bins in the

Dalitz plot

The 337 fitted Dalitz plot bins are made available in ascending global bin number.
All the relevant information in the plot are also given in Appendix B in tabular

form.
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Global Bin: 77, X : -1.25, Y,: 015
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