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ABSTRACT

Deep Packet Inspection (DPI) is a commonly used network traffic monitoring tech-

nique which finds applications in variety of network management activities. Two

prominent use cases of DPI are in traffic classification and security monitoring. DPI

based traffic monitoring techniques screen the payload or content within network pack-

ets to identify applications and detect security issues like worm breakouts. Network

management activities based on DPI are known to be accurate and at the same time

computationally expensive. In this thesis, we seek to design effective DPI based net-

work traffic monitoring methods for three tasks - traffic classification, zero day attack

detection in web traffic and detecting spam users in Voice over Internet Protocol

(VoIP) network.

DPI based traffic classification methods generate application signatures using in-

variant payload content. Both supervised and unsupervised methods are proposed in

the literature for this task. We propose three DPI based traffic classification methods

namely RDClass, BitCoding and BitProb in this thesis. RDClass is an unsuper-

vised traffic classifier which automatically identifies a set of keywords for an application

when presented with unknown network flows. It finds the relative distance between

identified keywords to generate application specific signatures. RDClass is designed

to handle only text based protocols as it requires identifying meaningful keywords from

network flows. BitCoding and BitProb are supervised traffic classification methods

proposed to handle all types of application protocols (text, binary, open standard and

proprietary). These two methods generate application specific bit level signatures by

identifying invariant bits from network flows of a particular application. We experi-

ment with two publicly available datasets and one private dataset containing traffic of

a variety of applications and show that these methods can classify applications with

very high accuracy.

Detecting zero day attacks is usually done with payload based anomaly detection

systems. We propose two DPI based anomaly detection methods, Rangegram and

OCPAD, to detect zero day attacks in web traffic. Rangegram and OCPAD generate



short sequences from benign application packet payloads and find deviations in occur-

rence range or probability of short sequences to identify anomalous packets (attacks).

We evaluate the detection performance of both the detection methods with few HTTP

based attacks and show that they can detect anomalies in the web traffic accurately.

We propose a DPI based method SpamDetector to detect VoIP spam callers. It

uses DPI to extract a set of call related parameters from Session Initiation Protocol

(SIP) packets. Using these call parameters, it generates a directed weighted graph

representing social interaction among the users. SpamDetector identifies nodes which

are different from their local neighborhood as anomaly and hence as spam users. We

evaluate the detection performance of SpamDetector with a large simulated user base

and show that it can detect the spam users with a good detection rate.
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Chapter 1

Introduction

Network traffic monitoring has several applications including network management,

identifying security issues, behavioural analysis, etc [53]. Network packets carry appli-

cation data and monitoring these packets gives insight into what type of applications

are being used and type of data being carried. Other prominent use of traffic monitor-

ing is in identifying security issues with behavioral profiles of users and applications

[69]. Tools like Intrusion Detection Systems (IDSs) [110] are used for this purpose.

In general, traffic monitoring can be done at two levels. At an abstract level, traffic

statistics are used to draw inferences and in a detailed analysis, actual content of net-

work traffic is inspected as described below.

I. Statistical Methods: Statistical network traffic monitoring methods inspect the

traffic at an abstract level by analyzing only packet headers. Details like IP addresses,

port numbers, flow level details, inter-arrival time between packets, etc. are used

for this purpose. These monitoring methods can be used to identify cases like worm

breakouts, port scanning, etc. These methods are computationally less expensive and

can also be used when application data is encrypted.

II. Deep Packet Inspection (DPI) based Methods: DPI based traffic monitor-

ing methods inspect the protocol header as well as data contained within a packet.

For example, a packet carrying HTTP data can be identified with certain keywords

taken from the HTTP payload. Due to this, these methods can not be used to monitor

encrypted application data. Despite of this limitation, DPI based methods are widely
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used for traffic monitoring as they are more accurate compared to statistical methods

[40, 48].

Rest of this chapter is organized as follows. In Section 1.1, we give an overview

of DPI and its applications for different purposes. In Section 1.2, we present the

motivation behind the research work presented through this thesis. We give a summary

of thesis contributions in Section 1.3 and in Section 1.4, we give the outline of the rest

of the thesis.

1.1 Deep Packet Inspection (DPI) and Its Appli-

cations

DPI is a traffic monitoring method which inspects the protocol header as well as

content within a packet. DPI inspects the content of packets passing through a given

checkpoint like IDS sensors, URL filtering engines, etc. Some of the popular tools [33]

which use DPI to monitor the network traffic are Protocol and Application Classifica-

tion Engine (PACE) [20], OpenDPI [18], L7-filter [12], nDPI [16], Libprotoident [13],

Network Based Application Recognition (NBAR) [15] and Snort [23]. DPI based traf-

fic monitoring methods find their applications in various fields such as network traffic

classification, network security and management, etc. These applications of DPI are

described below.

1.1.1 Network Traffic Classification

Network traffic classification [41, 43] is an automated process which categorizes

traffic into different classes based on the application/service. Traffic classification

is performed for purposes such as bandwidth allocation, defining security rules, etc.

For example, live streaming applications and applications which involve sending files,

multimedia, etc. have different bandwidth requirements and thus, should be treated

differently. For this purpose, it is necessary to differentiate the traffic generated from

these applications using appropriate network traffic classification methods. Traffic
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classification is also used to filter the traffic generated from applications that violate

network policies [95]. Various traffic classification methods use DPI to analyze the

content of the packets passing through a checkpoint. Based on the packet content,

these methods identify the packet as belonging to a particular application. For exam-

ple, a DPI based firewall can classify a HTTP packet by analyzing the content of its

payload.

1.1.2 Network Security

An adversary on Internet can harm a benign end user or a network by infecting

it with malicious programs. The adversary can bind such malicious programs either

to a genuine application executable files or simply attach it to an image and send

the resulting file to the end user. In order to detect the traffic generated by such

malicious programs, Intrusion Detection Systems (IDSs) [102] are deployed within

the network. Broadly, IDSs can be categorized into two classes as follows:

Signature based IDSs: In these types of IDSs, signatures of various mali-

cious applications and their actions are stored in a signature database. An alarm

is generated when any application and/or its activity matches with any signature

in the database. Snort [23] and Bro [88] are the two popular open source signature

based IDS. These tools allow to write signatures using keywords, regular expressions

and also their position within the payload along with packet header parameters and

the direction of packet (incoming and outgoing). These IDSs use DPI to extract

the payload content from the packet under consideration and compare it with the

signatures stored in the database to detect malicious activity.

Anomaly based IDSs: Anomaly based IDSs detect network intrusions by identi-

fying anomalies in the network traffic. These IDSs operate in two phases - training

and testing phases. During training phase, DPI is used to extract candidate features

to create a normal traffic profile using which IDS is trained. These features are in

the form of keywords, n-grams, bit sequence, etc. During testing phase, IDS creates

profiles using the same candidate features and compares it with the normal profile
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generated during training phase. If the profile generated during testing phase differs

significantly from the one generated during training phase, IDS detects the presence

of anomalous traffic in the network and thus, raises an alarm.

1.1.3 Network Management

DPI is widely used for network management tasks such as load balancing [111] in

specific applications like VoIP. Load balancing refers to efficiently distributing incom-

ing network traffic across a group of back-end servers, also known as a server farm. For

load balancing, payload of the packets is first analyzed by a load balancer using DPI

to find out the details such as type of application, attached multimedia, etc. Based on

these details, the load balancer forwards the packets to one of the multiple back-end

servers.

1.2 Motivation

Internet penetration is increasing across the globe. This is reflected from the fact

that more than half of the world’s population has access to Internet today [7]. Figure

1.1 [7] shows the continuous growth in the number of Internet users in last 23 years. To-

day Internet is used for variety of applications such as online gaming, video streaming,

e-mail, e-commerce, banking, etc. There are millions of mobile applications developed
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for different mobile platforms [28, 103]. All these applications generate a heteroge-

neous mix of network traffic. Every application has some requirements of Quality of

Service (QoS) in terms of jitter, end to end delay, etc. for its useful usage. Further

these applications need to be monitored for security compliance and any violations

need to be detected. This can be done by traffic monitoring as described previously.

Inspecting only packet header or statistics based methods are computationally less ex-

pensive and are recently shown to be less accurate [86]. This lead to the development

of Deep Packet Inspection (DPI) based network monitoring methods. These methods

analyze the actual content of packet and thus, give more accurate results. However,

there are few limitations of using DPI based methods for network traffic monitoring.

First, analyzing the packet payload is proved to be computationally expensive. Sec-

ond, analyzing the actual packet content also hinders users’ privacy. Third, with the

development of applications which use binary or proprietary protocol, the DPI based

methods eventually fail to monitor the traffic. Thus, we argue that a DPI based net-

work traffic monitoring method should possess the following two properties:

A. Maximum Accuracy by Examining Minimum Payload Content: Nor-

mally DPI based methods use entire payload content of a packet for inspection. This

provides good accuracy but it comes with the cost of high computational overhead

and compromises users’ privacy. Thus, the traffic monitoring method should require

inspecting minimum payload content without compromising with the accuracy.

B. Protocol Agnostic: It is desirable that a DPI based traffic classification method

should be able to accurately classify different types of text-based, binary and/or pro-

prietary protocols.

An important application of Deep Packet Inspection is in the area of Zero Day

attack detection (attacks which are not seen before). DPI based methods analyze

the payload portion of incoming network traffic to identify attacks carrying malicious

content.

In this thesis, we propose different DPI based network traffic monitoring methods

possessing these properties for three different purposes - 1) Network traffic classifica-

tion, 2) Zero day attack detection in web traffic and 3) Profiling user behavior and
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detecting spam users in VoIP network traffic. The proposed methods can analyze

network packets with less computational overhead and thus, can be deployed in the

real networks for real time monitoring.

1.3 Thesis Contribution

In this thesis, we describe new methods for network traffic classification, zero day

attack detection in web traffic and VoIP spam detection using DPI. The contribution

of our thesis are as follows:

I. Byte Level Payload Analysis for Network Traffic Classification: Traffic

classification approaches proposed in the literature use only a set of keywords to iden-

tify the applications which leads to misclassification. Thus, as our first contribution,

we propose RDClass, an automated content based traffic classifier, for classifying

network flows1. RDClass uses a set of keywords extracted from an application flow

and uses the relative distance between these keywords to generate application specific

signatures. These signatures are then used for traffic classification. We represent the

set of keywords and their relative distances in the form of a state transition machine

called Relative Distance Constrained Counting Automata (RDCCA). This state tran-

sition machine can check both ordering of keywords and their relative distance within

the payload to classify the flow under consideration. RDClass can automatically

extract a set of keywords from the application flows and find their relative ordering

to generate RDCCA when presented with unknown application flows. We experiment

with different public and private datasets containing traffic generated from a variety of

applications and show that RDClass has better classification performance as compared

to previously known traffic classification methods which use only ordering of keywords.

II. Bit Level Payload Analysis for Network Traffic Classification: With the

1Flow is the combination of packets having same source IP address, destination IP address, source

port number, destination port number and transport layer protocol
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number of proprietary network protocols on the rise and many of them using bit level

encoding, byte level signatures are not effective in identifying applications. Thus, we

propose two supervised bit-level traffic classification methods BitCoding and BitProb

that can generate application specific signatures using only first n bits extracted from

a flow. Our first method BitCoding encodes generated signatures of each application

in order to compress them and then transforms the compressed signatures into a

state transition machine called Transition Constrained Counting Automata (TCCA).

This TCCA is subsequently used for classification purpose. Since BitCoding considers

only invariant bits while matching application signatures, this increases the chances

of signature overlap which may lead to misclassifications. However, our second

method BitProb considers the occurrence probability of bit values at each position

without omitting any bit value during signature match due to which it can identify

applications more accurately. Similar to BitCoding, BitProb also transforms the

generated signatures into a state transition machine called Probabilistic Counting

Deterministic Automata (PCDA). Our proposed methods generate short application

specific signatures and thus, are computationally less expensive. We evaluate the

classification performance of BitCoding and BitProb on two public and one private

datasets containing different text, binary and/or proprietary protocols and furnish

the results. We show that both these methods can classify the applications with

very high accuracy independent of the protocol type which makes them protocol-type

agnostic. We extend our experiments and show that these methods can be ported

from site to site with little compromise in detection performance. We also compare

our proposed methods with recently proposed traffic classification methods and show

that our methods outperform the previous methods.

III. Zero Day Attack Detection in Web Traffic: The attacks whose sig-

natures are not known to traffic monitoring systems such as IDS are commonly

known as zero day attacks. As our third contribution, we propose two methods -

Rangegram and OCPAD to detect zero day attacks in web traffic. As a represen-

tative, we choose web traffic as attacks against HTTP are very common. Our first
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payload based anomaly detection method Rangegram has two phases of operations

- training and testing phases. During training phase, Rangegram generates n-grams

(short sequences of length n from a string) from a set of benign packets and finds

the occurrence frequency range of generated n-grams in a packet and stores it in

our proposed efficient data structure called Min-Max-Tree. During testing phase,

n-grams are extracted from a test HTTP packet. These n-grams are compared

with n-grams stored in Min-Max-Tree and those n-grams which are not found in

Min-Max-Tree or their occurrence frequency within the packet is not in the normal

range are counted. If this count is greater than a threshold, Rangegram considers the

packet as anomalous. Our second anomaly detection method OCPAD uses a version

of Multinomial Bayesian one class classification technique for accurately detecting

anomalous payloads. In particular, OCPAD uses likelihood of each n-gram occurrence

in a payload of known non-malicious HTTP packets as a measure to derive the degree

of maliciousness of a packet. OCPAD also has two phases of operations as training

and testing phases. During training phase, OCPAD generates the likelihood range of

each n-gram occurrence from every packet and stores it in our proposed efficient data

structure called Probability-Tree. During testing phase, if the n-grams generated from

the payload of HTTP packet under consideration is not found in the database or

its likelihood of occurrence in a packet is not in the range generated during training

phase, OCPAD considers the packet as anomalous. We evaluate the detection

performance of both the detection approaches (Rangegram and OCPAD) on three

publicly available attack datasets and one normal dataset generated in our testbed

setup. We show that both of our proposed methods outperform a closely related work.

IV. Detecting Spam Callers in VoIP Network Traffic: As our last con-

tribution, we propose SpamDetector, a graph based method to detect VoIP spam

users in a network. SpamDetector uses DPI to extract some parameters from Session

Initiation Protocol (SIP) (an application layer VoIP signaling protocol) [69] packets.

These details are further used to generate Call Detail Record (CDR) of VoIP users.

Subsequently, CDR is used to obtain a set of call parameters and create a directed,
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weighted call graph (who call whom graph). SpamDetector uses the generated call

graph for spam user detection. SpamDetector identifies anomalies in the graph by

considering the local neighbourhood of a node and assigns a label based on how

similar the node is in comparison to its neighbours. To find how similar a node

is with its neighbours, SpamDetector uses a parameter called Spam Outlier Factor

(SOF). If the calculated SOF of the node under consideration is greater than the

threshold SOF of a neighbouring node, it votes the node under consideration as

spam. In a similar way, other neighbouring nodes also votes the considered node

as normal or spam depending on their threshold SOF. If the spamming votes are

found in majority, SpamDetector eventually declares the node as spam. We evaluate

the detection performance of SpamDetector by creating a large simulated user base

and show that it can detect the spam users with a very high accuracy. We also

compare SpamDetector with one of the recent and closely related work and show that

SpamDetector outperforms it.

1.4 Organization of Thesis

The rest of this thesis is organized as follows:

Chapter 2: In this chapter, we discuss previously known DPI based methods

for the purpose of network traffic classification, zero day attack detection and VoIP

spam detection.

Chapter 3: In this chapter, we describe our first contribution RDClass that uses

keywords specific to application layer protocols and relative distance between the

consecutive keywords to classify applications.

Chapter 4: In this chapter, we describe two traffic classification methods BitCoding

and BitProb which generate bit level signatures and subsequently use it for traffic

classification.

Chapter 5: In this chapter, we describe two methods Rangegram and OCPAD to

detect zero day attacks in web traffic using n-gram analysis on HTTP packet payload.
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Chapter 6: In this chapter, we describe a graph based method SpamDetector to

detect VoIP spam users by analyzing calling behaviour of VoIP users.

Chapter 7: This chapter summarizes the work presented in this thesis and provides

directions to future work in this area.
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Chapter 2

Literature Survey

Deep Packet Inspection (DPI) is a crucial task in network management and network

security domains. Several network management related tasks such as traffic classifica-

tion [50, 82] and Quality-of-Service (QoS) of applications [35] can be enhanced if an

efficient payload analysis scheme is deployed in the monitored network. Also, several

network security monitoring tools like Intrusion Detection Systems use DPI for iden-

tifying intrusions [50]. As discussed in the last chapter, in this thesis, we propose DPI

based methods for three different tasks - 1) Network traffic classification, 2) Zero day

attack detection in web traffic and 3) Detecting spam callers in VoIP network traffic.

Several works in the literature discuss methods that use DPI for the above tasks. We

categorize these methods into different classes as shown in Figure 2.1. In this chapter,

we review some of the methods which are closely related to DPI based methods pro-

posed in this thesis. We also discuss few shortcomings in previously known methods,

implications and research gaps in this area which motivated us to pursue the work

presented in this thesis.

The structure of the rest of this chapter closely follows Figure 2.1. In Section 2.1,

we describe previously known methods for network traffic classification. We discuss

anomaly detection systems used to detect zero day attacks in the network traffic in

Section 2.2. In Section 2.3, we describe previously known methods to detect spam

callers in the VoIP network. In Section 2.4, we finally conclude the chapter by de-

scribing the research gaps in this area which motivated us to pursue the work presented
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Figure 2.1: Deep Packet Inspection Taxonomy

in rest of the thesis.

2.1 Network Traffic Classification

Several approaches have been proposed in the literature for traffic classification

using payload analysis. These approaches can be divided into two different categories

- i) Byte level and ii) Bit level payload analysis. Most of the approaches available in

the literature use byte level payload analysis for traffic classification. However, due

to various drawbacks in byte level payload analysis based approaches, researchers in

the networking community have recently started following a paradigm shift towards

developing bit level payload analysis based traffic classification approaches. In this

section, we first describe previously known byte level payload analysis based works

and their limitations. Subsequently, we discuss approaches that use bit level payload

analysis for traffic classification.
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2.1.1 Byte Level Payload Analysis for Traffic Classification

For network traffic classification, byte level payload analysis methods extract byte

level information such as keywords and n-grams from the payload. Keywords are

the most frequently occurring words in the flow payloads of any application protocol

while n-grams are the sub-sequences extracted from the payload. For example, an

SMTP payload is shown in Figure 2.2 and the keywords and n-grams that can be

extracted from this payload are shown in Table 2.1. In this subsection, we describe

220 ****************************************************** 
HELO mayank.iiti.ac.in 
250 mx.google.com at your service 
MAIL FROM:<mayank@example.com> 
250 2.1.0 OK m3si6722943pay.168 - gsmtp 
RCPT TO:<nikhiltripathi684@gmail.com> 
250 2.1.5 OK m3si6722943pay.168 - gsmtp 
DATA 
354 Go ahead m3si6722943pay.168 - gsmtp 
Received: by mayank.iiti.ac.in (Postfix, from userid 1000) 
                   id 9371E220678; Tue, 25 Oct 2016 19:14:59 +0530 (IST)
Date: Tue, 25 Oct 2016 19:14:59 +0530 
To: nikhiltripathi684@gmail.com 
Subject: This is the subject line 
User-Agent: s-nail v14.8.6 
Message-Id: <20161025134459.9371E220678@mayank.iiti.ac.in> 
From: mayank@example.com (mayank)  

Hello World 
.
250 2.0.0 OK 1477383056 m3si6722943pay.168 - gsmtp 
QUIT 
221 2.0.0 closing connection m3si6722943pay.168 - gsmtp 

Figure 2.2: Simple Mail Transfer Protocol Payload

Table 2.1: Keywords and n-grams Extraction from a Simple Mail Transfer Protocol

Payload

Type Example

Keyword extracted from SMTP payload HELO, MAIL, FROM, RCPT, TO, DATA

n-gram of size 2 generated from “HELO” string “HE”, “EL”, “LO”

previously known methods which extract these byte level information from payloads

to classify network traffic.

Rule Based Classification: Rule based network traffic classification methods

13



extract keywords from the payload. These keywords are then utilized to form rules

or signatures which are further used for classification purpose. These rules can

be in the form of automata, regular expressions, trees, substring sequences, etc.

Laser [84] is one such method that generates application signatures using Longest

Common Subsequences (LCSs) from each application trace. Figure 2.3 shows the

method of generating LCS. The generated LCSes are then used as signatures and

HTTP 200 OK Server Lime Wire Content-type Image ...

HTTP 200 OK Server Morpheus
OS Content-type Video ...

HTTP 200 OK Server Content-type

Applying Modified LCS

Figure 2.3: Generating Longest Common Subsequences [84]

matched against test application flow using Deoxyribo Nucleic Acid (DNA) sequence

matching algorithm used in bioinformatics [85] for traffic classification. However, it is

cumbersome to maintain up-to-date signatures for a large number of applications. To

overcome this issue, Ye et al. proposed AutoSig [120] which automatically generates

application signature by extracting multiple common substring sequences from sample

flows of the same application. These substrings use adaptive merging algorithm

to form regular expressions. These regular expressions are then used as signatures

for application classification. Since AutoSig can generate application signatures

automatically, it saves a lot of time on manual analysis and updates signatures in

time. Laser and AutoSig generate signatures of very large length because of this,

matching test flow payload against these signatures either takes a very long time to

complete, or requires prohibitively large space. As a result, these methods are not

appropriate for traffic classification in real networks. As a solution to this problem,
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authors in [122] proposed CUTE which generates lightweight regular expressions

from weighted keyword set. This weighted keyword set is generated by assigning

weights to the words based on their appearance frequency for each application. These

lightweight regular expressions result into faster traffic classification. However, in

a recent work, [104], authors argued that methods such as Laser [84] and CUTE

[122] which extract application signatures based on longest common substrings in

application flows, suffer from high false-positive and false-negative rates due to

the lack of context in signatures. Authors, thus, proposed a solution SANTaClass

[104, 105] which uses keywords and its sequence in payload for protocol identification.

SANTaClass starts with zero knowledge of protocols and takes payload of unidentified

flows and automatically identifies the required keywords and their sequence in the

payload to generate Prefix Tree Acceptor (PTA). Each PTA is a signature for an

application which is subsequently used for classification. However, the drawback of

this method is that it does not consider the position of the keywords in the payload

and keywords with same sequence can be found in the payload of other application

protocol also but at different position. For example, to identify BitTorrent protocol,

SANTaClass [104, 105] generates two keywords namely ‘BitTorrent’ and ‘protocol’

and search for these keywords (appearing in order) in any given payload. However,

these two keywords appear in order not only in BitTorrent protocol payload but it

can also appear in a HTTP payload. By comparing these two keywords, BitTorrent

protocol can be correctly identified but HTTP can also be classified as BitTorrent

protocol. This results into misclassification. In order to resolve this issue, in Chapter

3 of the thesis, we propose a traffic classification method RDClass which uses relative

distance between selected keywords. For example, in a BitTorrent protocol payload,

the terms ‘BitTorrent’ and ‘protocol’ appear at the beginning of payload and in a

HTTP payload, they can appear at arbitrary positions but within the first few bytes

of the payload. Thus by incorporating the ordering and relative distance between the

keywords, our method RDClass is able to classify the network traffic more accurately

as described in Chapter 3 of this thesis.
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N-gram based Traffic Classification: N-grams are the subsequences of length

‘n’ which are extracted consecutively from any string. An n-gram of size 1 is known

as unigram, size 2 as bigram, size 3 as trigram and so on. For example, trigrams

that can be generated from the string ‘Hello World’ are ‘Hel’,‘ell’,‘llo’,‘lo ’, ‘o W’,

‘Wor’, ‘orl’ and ‘rld’. For traffic classification, these n-grams are first extracted from

the application payload and then used as features in various statistical and machine

learning based models. Pro-Decoder [116] and Securitas [125] are two such methods

which generate n-grams from payload content and combine them to form keywords

based on the latent relationship between n-grams. These two methods rely on the

fact that the probability distribution of n-grams generated from payload content of

applications exhibit skewness in the distribution with few n-grams appearing more

frequently and others appearing rarely. This skewness in the distribution allows to

use the frequently appearing n-grams as a method of identifying applications. This

is done by treating content of any protocol as a message made up of words and each

word is made up of n-grams. By estimating the conditional probability of appearance

of an n-gram given that a particular word has appeared in a message, the n-grams

necessary to generate keywords are identified. Subsequently these keywords are

aligned to form signature for application. However, Pro-Decoder [116] and Securitas

[125] are highly computationally expensive as they use iterative algorithms to generate

keywords. Wang et al. proposed ProHacker [117, 118] which is a non-parametric

approach to identify applications in the network traffic. ProHacker first extracts the

different order n-grams from the payload of application flows. These n-grams are

then combined using Pitman–Yor process [96] to form keywords. These keywords

are the vector of n-grams that can be used to distinguish the network traces of

individual protocols. These keywords are passed to ensemble learning algorithm

called Tri-training [127] for training. This trained model is then used for classification.

Payload Structure Based Classification: Some of the network traffic clas-

sification methods proposed in the literature show that the traffic belonging to

different application layer protocols can be classified by identifying payload structure
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of protocols. This is because many application layer protocols follow Backus Naur

Format (BNF) [93]. BNF is a meta-syntactic notation procedure used to specify the

syntax of application layer protocol. BNF is used when a word and its related descrip-

tion is required. For example, in SMTP, a word is always mapped to a description

in the format “word: description”. Table 2.2 shows some words and their meaning

present in SMTP payload. Similar to SMTP, other application layer protocols such

Table 2.2: Simple Mail Transfer Protocol Payload Keywords and Their Meaning

Word Description

MAIL FROM Sender’s E-mail ID

RCPT-TO Receiver’s E-mail ID

DATA Variable length data

as HTTP and FTP follow some structure and this structural information is leveraged

for traffic classification. AutoFormat [75] is one such method which assumes that

each protocol and its associated fields are expressed in Backus Naur Form (BNF).

AutoFormat correlates the usage of each byte in payload with its associated binary

executable code for identifying header fields in the packet. Since each field content

is processed differently, the fields of an application can be uniquely identified by

simply looking at their usage. Once fields are identified, their combination defines the

protocol as per BNF format. Ferdous et al. [47] also proposed a method to classify

various types of SIP messages in VoIP traffic by performing structural analysis of

SIP headers. Since SIP follows BNF format, lexicon are extracted from SIP header

and passed as features to Support Vector Machine (SVM) for training. The trained

model is then used for classification. The limitation of these methods is that they

can identify an application layer payload only if it follows BNF structure. There are

many new peer-to-peer, binary and proprietary application protocols like BitTorrent,

Dropbox, etc. which do not follow BNF and hence these methods can not classify

these application layer protocols. Also, these methods require reverse engineering

a protocol implementation which is a time-consuming, tedious and error-prone process.

Classification using Machine Learning Algorithms: Machine learning
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methods use features such as bag of words, subsequences or the payload content

as a whole from different application layer protocols. During training phase, these

methods create a profile of each application layer protocol using extracted features

and then the generated profile is used for traffic classification during testing phase.

Patrick et al. [60] proposed one machine learning based traffic classification method

called Automated Construction of Application Signatures (ACAS) which extracts

first ’n’ bytes of payload and generates a binary feature vector of size n × 256 by

setting each feature to either 0 or 1 based on whether a particular byte is present

in the payload or not. This feature vector is subsequently fed to three statistical

machine learning algorithms for classifying network traffic. However, in [49], authors

argued that ACAS [60] is computationally expensive and can be made lightweight

by changing feature set. They proposed a new method KISS which uses Stochastic

Packet Inspection (SPI) for payload based traffic classification. KISS is specifically

designed for identifying applications which uses UDP as layer 4 protocol. This

method aims to classify the applications by analyzing application layer protocol

header. Therefore, KISS first extracts few initial bytes of an application layer

protocol header. The header fields of application protocol are identified by statistical

characterization of byte values. This is done using Chi-Square statistical test. The

byte values at different fields are passed as feature vector to Support Vector Machine

(SVM) [56] for training. After training, this model is used for traffic classification.

This method is designed to classify only UDP based applications and thus, can not

classify TCP based applications.

2.1.2 Bit Level Payload Analysis for Traffic Classification

Network traffic classification methods which generate signatures using byte level

content [76, 115, 122] do not perform well on binary protocols such as DNS, NTP, SSH

and RPC. Even if some of the known byte level payload analysis based approaches

such as SANTaClass [104, 105] can classify traffic belonging to binary protocols, they

require extracting large amount of payload content (first 1024 bytes in case of SAN-

TaClass). This results into two serious concerns. First, parsing such a large payload
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content is computationally expensive and second, it affects user’s privacy. To address

these issues, researchers in the networking community attempted to extract only ini-

tial few bits from the payload for traffic classification. Yuan et al. proposed one such

bit level payload analysis based approach called BitMiner [124] that generates appli-

cation specific signatures using bit-level data. BitMiner generates bit-level signature

by learning the association between the bit value and the position of bit within the

payload. Those bit values which appear more than a certain threshold number of

flows are expressed using extended regular expressions as signature. The generated

bit level signatures for some of the applications are shown in Table 2.3 [124]. These

Table 2.3: Example BitMiner Signatures [124]

Applications Application Signature

Skype ^(002 0x02) + (002 0 0&002 4 1&002 5 1&002 6 0&002 7 1) ∗ $

Xunlei (Thunder) ^(001 0 0&003 0 0&003 1 1&003 2 0) ∗ $

Google Hangouts ^(000 0 1&000 1 0&001 1 1&001 3 0) ∗ $

signatures are then used for classification purpose. In another such approach called

BitsLearning [123], which is an extended idea of BitMiner [124], authors used ma-

chine learning algorithms to learn the bit values and their positions. In particular, the

authors proposed two methods BitFlow and BitPack based on two types of features

extracted from application flows. In BitFlow, features are extracted from first ‘n’ bits

of each application flow and in BitPack, features are extracted from first ‘m’ bits of

first few packets of each flow. These features are then passed to decision tree algorithm

for learning which is then used for classification. Authors showed that BitPack per-

formed slightly better than BitFlow. Since traffic classification using bit level payload

analysis is a recent approach, only preliminary work has been done in this area and

a comprehensive evaluation of this method is still lacking. Thus, in Chapter 4 of this

thesis, we propose two bit level payload analysis based methods called BitCoding and

BitProb that uses only a small number of initial bits of flows to generate signatures of

different application layer protocols. We test the proposed classification method while

taking 20 protocols into account and report the results.
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2.2 Anomaly Detection Systems for Zero Day At-

tack Detection

Payload analysis is also used for detecting anomalies in network traffic [50, 68].

However, it is a challenging task to detect zero day attacks as signatures corresponding

to them are not known before hand. Several schemes are proposed in the literature to

detect these attacks. These detection methods have two phases of operation - training

and testing phases. During training phase, a normal traffic profile is generated by

extracting features such as n-grams, bag of words, sequence of words, etc. from

normal traffic. The generated profile is then used to detect anomalies in the network

during testing phase. We classify the previously known methods of zero day attack

detection into two categories as follows:

Score Based Detection Methods: A class of anomaly detection methods

generate a score from the n-grams extracted from the normal traffic. During training

phase, a database of n-grams is created as part of training model and in the testing

phase, n-grams extracted from the packet under consideration are compared with

n-grams stored during the training phase. An anomaly score is then generated based

on how many n-grams of considered packet are found in the training database. If

this score is more than a predefined threshold, the packet is detected as anomalous.

PAYL [114] is one such method which uses 1-gram to extract 256 features with their

respective frequencies from normal traffic. Each feature corresponds to one of the 256

ASCII values. Average of all the feature vectors is called centroid and represents the

normal profile of an application. In order to decide a packet as normal or malicious,

authors used a simplified version of Mahalanobis distance. This measure finds the

distance between feature vector of the packet under test with the centroid. Any

packet having a distance larger than the predefined threshold value with respect to the

centroid is labeled as anomalous. In [112], authors extended PAYL to detect worms

in the network traffic. In this work, packets in incoming and outgoing traffic are

correlated to detect worms as they propagate in the network which results into high
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similarity between a pair of an incoming packet and outgoing packet in the traffic.

PAYL is used to find those packets whose 1-grams have overlapping frequencies

between incoming and outgoing traffic. If such 1-grams are seen in a higher number,

the packet under consideration is reported as anomalous. However, PAYL can be

evaded using mimicry attacks [51] wherein an adversary can launch attack in such a

way that the malicious traffic is almost similar to the normal traffic used for training

purpose. To resolve this issue, Wang et al. proposed Anagram [113] which uses

n-grams generated from all the packets of training dataset and stored in the space

efficient bloom filters [4] and for detection, a score is assigned to each packet which

is the ratio of n-grams which are not found in bloom filter to the total number of

n-grams in the packet. If a packet gets score higher than a predefined threshold score,

the packet is detected as anomaly. Anagram was shown to be space efficient and can

thwart mimicry attacks [113]. However, recent experiments [87] have shown that it is

possible for an adversary to bypass Anagram by having conversation with target for

a while to discover randomization mask and subsequently use this to craft packets.

The anomaly detection methods described earlier use lower order n-grams because

higher order n-grams suffer from curse of dimensionality [89]. However, it is also known

that higher order n-grams show higher accuracy because they avail more number of

features for anomaly detection. In this direction, Hubballi et al. [65] described a

score based anomaly detection model which stores higher order n-grams from training

dataset with their corresponding frequencies. Several bins of frequencies are created

using a clustering algorithm and a score is assigned to each bin. Each n-gram from

test packet found in a particular bin receives score of the bin. A scoring function is

proposed to calculate the score of a packet which combines scores of all n-grams. If

anomaly score of a packet is greater than a preset threshold, the packet is detected

as anomalous. PCkAD [32] by Angiulli et al. is another such approach which uses

higher order n-grams for anomaly detection. PCkAD uses the position and frequency

of n-gram within payload to identify anomalous packets. During training, n-grams are

extracted from the payload of packets found in normal traffic. Locations and frequency

of these n-grams are used to create a normal profile. If a test packet contains too many
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unseen n-grams or the location of the seen n-grams differ considerably from the normal

profile, the packet is considered as anomaly. To check these deviations, PCkAD uses

Mahalanobis distance. One of the issue with this approach is that its dependency on

location of n-gram within payload is prone to false alarms as the same n-gram can

occur at different positions in the packet payload.

Zero day attacks can evade previously described n-gram analysis methods which

use either binary approach to find n-grams in the database or use absolute frequency

values for deriving anomaly score. However, such approaches may result into higher

false detection rates. Thus, in chapter 5 of this thesis, we propose a zero day attack

detection approach called Rangegram that considers the minimum and maximum

appearance frequency of a particular n-gram generated from a packet in training

dataset and finds deviations from this range to detect anomalies.

Machine Learning based Methods: There are several methods in the liter-

ature that use machine learning algorithms to detect zero day attacks. Due to the

scarcity of labeled datasets and skewed distribution of normal and malicious content

in network traffic, many of these methods use one class classification methods. In

these methods, features are extracted from the normal application payload and

provided as input to one class classification algorithms for training purpose. After

this, the trained profile is used to detect anomalous packets/flow in network traffic

during testing phase. In [89, 90], authors proposed a detection method McPAD

that uses multiple one class Support Vector Machines (SVMs) to detect anomalous

packets by majority voting. During training phase, McPAD uses modified form of

n-grams called nv grams which are substrings of a string in which each substring of

length ‘n’ is separated from other substring of length ‘n’ by length ‘v’. By varying

parameter ‘v’, each payload gets represented in different feature space. For each

value of ‘v’, the generated features are passed into a different one class SVM for

training. During testing, nv grams generated from packet under consideration are

passed to the trained SVM according to the value of ‘v’. Majority of votes from

different SVMs decide whether the packet is normal or anomalous. However, the
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major drawback of this method is that it requires training of multiple one class SVMs.

In [34], authors proposed HMMPayl that uses multiple hidden markov models for

classification. Görnitz et al. [57] suggests a much larger performance improvement

with a novel machine learning algorithm based on unsupervised learning method.

Similarly authors of [83] experimented with different distance measures and used χ2

hypothesis testing method [121] to report improved performance over [34].

Similar to the previously known score based anomaly detection methods, the ma-

chine learning based approaches described above also rely on the presence or absence

of n-grams in the database generated during training phase to detect anomalies in the

traffic. As a result, these methods are also prone to false alarms. Thus, in Chap-

ter 5 of this thesis, we propose a method called OCPAD wherein we adapt one class

Multinomial Naive Bayes classifier for the purpose of anomaly detection.

2.3 VoIP Spam Detection

VoIP spam detection methods proposed in the literature analyze payload of

packets belonging to signaling protocols such as Session Initiation Protocol (SIP) [94],

H.323 [77], etc. These spam detection methods extract call features like call duration,

time of call, caller-callee pair, call frequencies, etc. to detect the VoIP spam. In this

section, we discuss previously known methods that analyze signaling protocol payload

to detect VoIP spam.

Analyzing Signaling Protocol Payload: Signaling protocols use various

types of messages to manage VoIP calls. For example, SIP, which is a text based

light-weight signaling protocol, makes use of INVITE and BYE messages for call

establishment and call disconnection respectively. Various call parameters such as

call-id, caller-id, callee-id, call duration, etc. can be extracted by processing SIP

header. SIP is considered as most popular signaling protocol [70, 97] and thus, most

of the VoIP spam detection methods are proposed in the literature considering SIP

as the signaling protocol. We discuss these VoIP spam detection methods in the next
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paragraph.

Authors of [62, 67] proposed methods which maintain different lists of users such as

white list and black list and calls are allowed or rejected based on these lists. In white

list, subscriber (callee) stores only those caller-ids which are allowed to make a call to

the callee where as in black list, subscriber stores those caller-ids which are blacklisted

by the callee and are not allowed to make a call to it. These blacklisted caller-ids

are considered as potential spam call generators. These lists are maintained and

updated manually which is tedious, error prone and also difficult to update frequently.

Thus, a determined spam user can make use of a new caller-id each time it calls a

particular callee. To overcome this issue, Hansen et al. [62] introduced the concept

of maintaining a grey list whose behaviour depends on the circumstances of the calls.

A caller receives a busy signal on its first call attempt and the phone of the callee

does not ring. However, if the caller is reattempting to reach the callee, the caller is

allowed to get connected to the callee as it is likely that a normal user (human) is

actually interested in talking to user on the opposite side. However, this may result

into blocking of important calls also. Another limitation of this method is that since

these lists are populated with entries manually, it is difficult to maintain them.

Along with the list based approaches, few works in the literature proposed methods

that prevent spam calls in a VoIP network by analyzing calling patterns of VoIP users

and subsequently use it for allowing or disallowing calls. A call is allowed if the

current call pattern is similar to the previous call pattern of a caller. However, if the

current call pattern is deviated from the last one, the call is blocked. Features like call

frequency and average call duration are used to compare previous call with the current

one [99]. In another work, Sengar et al. [98] used parameters such as time and day of

calling and the call duration to create a pattern and then used Mahalanobis Distance

[64] as a metric to differentiate the current call pattern from the previous one in order

to detect spam calls. Few other approaches in the literature extract features such as

call duration and frequency of calls and provide it as input to various machine learning

algorithms for training purpose. Once the detection model is trained, it is used for

detecting spam callers in VoIP networks. In [37], authors used three call parameters -
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call frequency between a caller and a callee, call duration between a caller and a callee

and number of outgoing partners associated with a caller - to calculate a trust score

for a pair of caller and callee. Using this trust score, a global reputation is calculated

for each caller. Based on this global reputation, clusters are generated using K-means

clustering algorithm. After this, a predefined threshold is used to separate the cluster

containing spam users from the clusters containing normal users. In another work

[119], Wu et al. proposed an approach that uses a modified version of MPCK-Means

[63] to detect spam calls. Similarly, Toyoda and Sasase in [107] proposed an approach

that extracts different set of features from the VoIP traffic and feed it to random forest

algorithm to detect spam calls.

A class of works in the literature also proposed reputation based approaches

wherein buddy lists are used to collect user ratings and these ratings are then used to

generate reputation scores. The generated scores decide the acceptance or rejection

of a call from a caller. Various parameters such as social network linkage between

users and feedback from users are used to generate scores. These schemes require an

appropriate reputation threshold to detect spam calls. If the reputation of a user is

less than the predefined threshold, a user is considered as spam user. In this direction,

Dantu and Kolan [45, 73] use trust, reputation and friendship of the calling party and

recipient’s mood to generate a score. In [39], authors proposed a reputation based

approach in which reputation of a caller is built on the basis of its call duration with

a callee. Authors introduced a parameter named as call credential which decides the

level of trust for a user. Call credential is the ratio of average call duration between a

pair of caller and callee to the overall average call duration of the caller. Authors also

designed an algorithm called CallRank which manages the call credential of users and

changes the values calls after calls. This algorithm declares a user as spam user if its

call credential goes below a predefined threshold. The drawback of this approach is

that it is dependent on only one call parameter (i.e. call duration) for detecting spam

users. Azad et al. [36] also proposed a reputation based approach to detect VoIP

spam but used more than one call parameter in their work. Authors used call dura-

tion, interaction rate, and caller out-degree distribution to establish a trust network
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between VoIP users across the network. These call parameters are used to calculate a

score called Direct trust score for a pair of users (caller to callee). This score is then

used to calculate reputation of a caller by normalizing trust scores of all the users

in its database. A threshold reputation is then decided using reputation of normal

users. If the reputation of a particular user goes below a predefined threshold, s/he is

considered as a spam user. This approach is tested by generating artificial calls from

a set of users designated as spam users. However, authors of [36] mentioned that if

a community of VoIP users contains spam users less than 10% of the total users, the

proposed approach may not be able to detect them.

Most of the previously proposed reputation based approaches [106, 107] use average

values of features such as number of calls, call duration, etc. due to which they may fail

to detect spam users if a determined spam user maintains these averages using artificial

calls. For example, to maintain call duration average, a spam user can generate some

calls of large duration to other spam users and hence avoid detection. To overcome

this issue, in chapter 6 of this thesis, we propose SpamDetector, a graph based anomaly

detection approach, that can identify such determined spam users too by taking the

one-to-one neighbourhood relationship (in a graph) into account and by identifying

nodes which have different behavioural patterns compared to its neighbour nodes.

2.4 Conclusion

With this literature review, we attempted to highlight the gaps that exist in pay-

load analysis based methods for three different purposes - network traffic classifica-

tion, zero day attack detection and VoIP spam detection. We discussed how previously

known traffic classification methods suffer from drawbacks such as high computational

complexity, false classification and hindering users’ privacy. Similarly, the known zero

day attack detection methods are also prone to generate false detection results either

due to binary comparison or mimicry attacks. We also discussed how existing VoIP

spam detection methods can be evaded by a determined spam user. Thus, it is evident

from the existing literature that there is need of developing payload analysis based
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traffic classification methods which have low computational overhead and can identify

applications accurately. Also, there is a need for developing anomaly detection meth-

ods which can detect anomalies in the network traffic accurately with false detection

rates as low as possible.

Taking motivation from the existing research gap in the literature, we present dif-

ferent traffic classification and anomaly detection methods in the subsequent chapters

of this thesis.
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Chapter 3

Byte Level Payload Analysis for

Network Traffic Classification

3.1 Introduction

Network traffic classification is performed for various network management

purposes such as defining security policies and implementing QoS rules. For accurate

classification, well-defined signatures for different protocols/applications must be

known before hand. New application layer protocols require new signatures so that

signature database is up-to-date and coverage is comprehensive. However, a report

[100] suggests that nearly 50% of Internet traffic belong to unknown or proprietary

applications whose details of design are not made public. This results into lack of

availability of signatures for these applications which makes the traffic classification

difficult. Also, it is tedious to manually generate signatures for all applications

given large number of applications [104]. This strongly advocates the need for a

traffic classification method which can automatically extract features unique for each

application and generates signature using the extracted features. Few works [105, 125]

recently proposed in the literature generate signatures of different applications using a

set of potential keywords and their positions in the packet payload. These signatures

are subsequently used for traffic classification. However, as discussed in Section 3.2.1

of this chapter, simply using potential keywords and their ordering in a flow may
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lead to misclassifications. Taking motivation from this, in this chapter, we describe a

new traffic classification method called RDClass in which we first extract keywords

automatically and subsequently measure the relative distance between the extracted

keywords to form more accurate protocol identities. The idea has its motivation in

the fact that, each application has keywords in certain specific portion of the payload.

We show that the use of relative distance of keywords increases the accuracy of

classification compared to other similar methods [105, 125] which simply use ordering

of keywords. Our contributions in this chapter are as follows.

1. We describe a robust payload based traffic classifier called RDClass for ap-

plication layer protocol detection. RDClass is completely automated and can

generate unique keywords for protocol identification when presented with payloads of

different application.

2. We define a new state transition machine RDCCA which uses both keywords and

their relative distance to generate signature for each application.

3. We evaluate the classification accuracy of RDClass by testing it against applica-

tions which use either TCP or UDP as transport layer protocols.

4. We perform experiments using different applications and compare RDClass’s

performance with other related methods and show that the relative distance

measurement minimizes the misclassifications.

Rest of this chapter is organized as follows. In Section 3.2, we describe the mo-

tivation and working of proposed traffic classifier. In Section 3.3, we describe the

experiments performed to evaluate the classification accuracy of the proposed classi-

fier. Finally the chapter is concluded in Section 3.4.

3.2 Proposed Traffic Classifier

Several rule-based techniques [84, 104, 120, 122] have been proposed in the liter-

ature to classify network traffic. These techniques generate rules for each application

from keywords frequently occurring in the application flows. In this section, we first
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present the motivation behind proposing RDClass in terms of limitations of the pre-

viously known rule-based traffic classification techniques and subsequently describe

the working of RDClass.

3.2.1 Motivation

As described earlier in Section 3.1, several network classification techniques in the

literature [105, 125] generate an ordered list from extracted keywords of payload and

use it to generate application signature.

1. Scenario 1: Consider two sample payloads generated from flows of BitTorrent

protocol and HTTP as shown in Figures 3.1 and 3.2 respectively. To identify

1 : BitTorrent protocol . . . . . . . . . . . V . i  . . < . . . . . . . . . . . .  - 
UT1610- . . / j5c . . @ . . . BitTorrent protocol . . . . . . . . . . . V . i . 
. < . . . . . . . . . . . . - UT1610- . . . 9 . . pw . . . . . . . - . . dl : ei0e1 : 
mdel:0_47309e1 : v14 : . Torrent 1.6.1e..  

Figure 3.1: BitTorrent Payload

1 : GET http://stackoverflow.comiquestions/990677/implementing- 

     bittorrent-protocol HTTP/1.1  

2 : Host: stackoverflow.com  

3 : Use Mozilla / 510 ( X11 ; Ubuntu ; Linux x86_64 ; rv:49.0 )  

     Gecko/20100101 Firefox/49.0  

4 : Accept : text/html, application/xhtml + xml, application/xml;q=  

     0.9, */* ;q=0.8  

5 : Accept-Language: en-US, en;q=0.5  

 
 Figure 3.2: Hyper Text Transfer Protocol Payload

BitTorrent protocol, techniques described in [105, 125] generate two keywords

namely “BitTorrent” and “protocol” and search for these keywords (appearing in

order) in any given payload. However, as we can see from both the figures, these

two keywords appear in the same order in both BitTorrent and HTTP payload

31



as a result there is a chance that HTTP packet is identified as belonging to

BitTorrent protocol.

2. Scenario 2: Consider two sample payloads generated from SMB and FTP

protocols as shown in Figure 3.3 and Figure 3.4. An SMB protocol signature

contains keywords “SMBr, SMBs and NTLMSSP” (shown in bold fonts in the

figure) in order. This can lead to misclassification with the sample FTP flow

shown in Figure 3.4 as it contains all the keywords of SMB protocol in the same

order. These keywords within FTP flow originate from a file content which is

transferred using FTP protocol.

  1 : 220 Domain FTP Server Ready
  2 : USER anonymous
  3 : 331 Anonymous login ok, send your complete email address as your password.
  4 : PASS <password>
  5 : 230 Anonymous access granted, restrictions apply.
  6 : LIST
  7 : 150 Opening data channel for directory list.
  8 : 226 Transfer successful.
  9 : PASV
10 : 227 Entering Passive Mode (10,203,4,50,4,29)
11 : SIZE /../SMB-Logs/Requesters/SMBR/Server/SMBs/NTLMSSP.txt
12 : 213 0

1 : SMBr..C..PC NETWORK PROGRAM 1.0.
     MICROSOFT NETWORKS 1.03..MICROSOFT NETWORKS 3.0..
     LANMAN1.0..Windows for Workgroups 3.1a..LM1.2X002..
     DOS LANMAN2.1..LANMAN2.1..Samba..NT LANMAN 1.0..NT LM 0.12......
     SMBs.....................Cy..........02.......J...........`H..+......>0<..0..
     .NTLMSSP........`.... .......%...VNET3BLU.U.n.i.x...S.a.m.b.a

Figure 3.3: SMB Payload

  1 : 220 Domain FTP Server Ready
  2 : USER anonymous
  3 : 331 Anonymous login ok, send your complete email address as your password.
  4 : PASS <password>
  5 : 230 Anonymous access granted, restrictions apply.
  6 : LIST
  7 : 150 Opening data channel for directory list.
  8 : 226 Transfer successful.
  9 : PASV
10 : 227 Entering Passive Mode (10,203,4,50,4,29)
11 : SIZE /../SMB-Logs/Requesters/SMBR/Server/SMBs/NTLMSSP.txt
12 : 213 0

1 : SMBr..C..PC NETWORK PROGRAM 1.0.
     MICROSOFT NETWORKS 1.03..MICROSOFT NETWORKS 3.0..
     LANMAN1.0..Windows for Workgroups 3.1a..LM1.2X002..
     DOS LANMAN2.1..LANMAN2.1..Samba..NT LANMAN 1.0..NT LM 0.12......
     SMBs.....................Cy..........02.......J...........`H..+......>0<..0..
     .NTLMSSP........`.... .......%...VNET3BLU.U.n.i.x...S.a.m.b.a

Figure 3.4: FTP Payload with SMB Keywords

To prevent such misclassifications, we use relative distance between selected key-

words. For example, in a BitTorrent protocol payload, the terms “BitTorrent” and

“protocol” appear at the beginning of payload but in HTTP payload, they can appear

at any arbitrary position and the same applies to SMB and FTP protocols too. Thus,
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by incorporating the ordering and relative distance between the keywords, we design

a new state transition machine to classify the network traffic more accurately. In the

next few subsections, we describe the working of our proposed classification technique

RDClass and how it generates the state transition machines for different applications.

3.2.2 RDClass Working

RDClass has 3 main components - i) Flow Reconstruction, ii) Term Extraction

and iii) State Transition Machine for Flow Classification. These components are

shown in Figure 3.5 and working of these components is elaborated below:

Flow  
Reconstruction

Term Extraction

State  
Transition
Machine

Label of Flow

Use Flow for
Training

Network Packets

Classified

Unclassified

Figure 3.5: RDClass Components

1. Flow Reconstruction: A network flow is a series of packets exchanged be-

tween two hosts in their sequence of generation. These hosts are identified by two

unique IP addresses. A flow is uniquely identified by the 5 tuple as SrcIP, DstIP,

SrcPort, DstPort, Protocol. These terms carry the following meaning:

All the packets with complete payload from the identified TCP/UDP flow are taken

for the subsequent stage of signature generation. A TCP flow starts with a three-way
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SrcIP Source IP address of host

DstIP Destination IP address of host

SrcPort Source Port number

DstPort Destination Port numbers and

Protocol Layer 4 Protocol (TCP/UDP)

handshake and results in a bidirectional flow of packets between two hosts (A and B)

as shown below.

(A) 99K [SY N ] 99K (B)

(A) L99 [SY N/ACK] L99 (B)

(A) 99K [ACK] 99K (B)

To terminate the established TCP connection, the communicating hosts exchange

FIN packets. Thus, the packets exchanged after connection establishment but before

its termination belong to one TCP flow. In case of a UDP flow, all packets sharing

the same source IP address, source port, destination IP address and destination port

having an inter packet arrival timing less than δ are considered as part of one flow.

The threshold δ is a user defined threshold and is fixed suitably.

2. Term Extraction: All the packets of a flow are taken and payload portion of

every packet is extracted and concatenated to get a flow payload which is then parsed

to generate terms. RDClass uses newline character, white space and special character

as delimiter for parsing. For example if a flow fi has payload content “This is my first

payload”, the set of terms generated from this are {This, is, my, first, payload}.

3. Processing Terms with State Transition Machine: The set of terms gener-

ated by term extractor is given as input to a set of state transition machines (there

may be one or more state transition machines for every application) where each ma-

chine has transitions defined with the frequently occurring terms (frequently occurring

byte sequences or keywords) of an application. Each such state transition machine

makes allowed transitions after reading terms generated from payload and a flow is

classified (labeled) if any of the state transition machine reaches to an accepting state.

If none of the state transition machines are able to reach an accepting state, the flow
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is not classified. We provide the formal definition of the state transition machine and

its working in the next subsection.

3.2.3 State Transition Machine for Flow Classification

We propose a new state transition machine called “Relative Distance Constrained

Counting Automata” (RDCCA) which acts as a signature for the application and

hence subsequently can be used to classify applications. RDCCA has the ability to

see specific terms in a certain order and enforce constraints on their relative distance.

Relative distance and ordering of keywords is enforced by RDCCA with a counter

at each state. The machine revisits a state if a non keyword term is read. It also

has the ability to count the number of times a state has been revisited and validate

a transition only if counter value is in a defined range. The counting ability of the

machine is required to see how many other terms appear in between two selected terms

(which are found to be invariant across flows of an application). RDCCA is formally

defined using six tuple as M = (Q,Σ, C, δ, q0, F ) where

Q : A finite set of states

q0 ∈ Q : An initial state

Σ : A finite set of input symbols

C : A finite set of Counters with each ci ∈ C taking values in N
⋃

0

F ⊆ Q: Is a set of final states

δ : A set of transitions defined as δ : Q× C × Σ→ Q× (C → C)

where each transition δi ∈ δ is defined using six tuple as 〈qi, qj, c, σ, φ(ci), Inc(cj)〉 with

the elements representing

qi : Current state

qj : Next state

ci : Counter value at the state qi

σ ∈ Σ : Input symbol

φ(c) : Is a constraint on counter value ci at state qi on this transition
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Inc(cj) : Is a function which initialize the counter in the next state qj to

a new value

For our implementation, we use Σ as set of terms possible in any payload. It can be

noticed that each term is a combination of alphanumeric characters and each term

is of variable length which results into an infinite possible terms. However for the

machine, alphabet set needs to be finite. We address this by calculating the length

of largest term appeared in the training set of that application flow and including all

combination of alphanumeric characters upto that length in Σ.

RDCCA accepts a set of strings (after reading terms from payload) starting from

start state to a final state. The set of strings accepted by the RDCCA is the language

generated by it and is denoted as L ⊆ Σ∗. The string acceptance can be interpreted

as a recursive process. For example, the string with S = σ1, σ2, · · · , σn is read by

machine with a set of transitions δ∗(q0, σ1, σ2, · · · , σn) where δ∗ denote the extended

transition function which is defined recursively as δ(δ∗(q0, σ1, σ2, · · · , σn−1), σn). Each

payload is processed and terms are read to check whether it contains a valid string

that RDCCA accepts. An example RDCCA generated (how to generate application

specific RDCCA is described in next subsection) to identify BitTorrent protocol is

shown in Figure 3.6. In this RDCCA, there are three states (q0, q1, q2) and two

q0 q2q1

BitTorrent, [0 : 0] protocol, [0 : 0]

Figure 3.6: RDCCA Generated for BitTorrent Protocol

transitions as shown in Table 3.1. In the beginning, the machine starts at state q0

Table 3.1: Transitions of BitTorrent RDCCA

Current State Next State Input Symbol Counter Constraint

q0 q1 BitTorrent [0:0]

q1 q2 protocol [0:0]

and initializes counter c0 at q0 to 0. The first transition is from state q0 to q1 and this
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transition occurs on reading term “BitTorrent” and there is a constraint on minimum

and maximum counter value of c0 at state q0 which in this case is [0:0]. A counter

value of 0 indicates the state q0 is not revisited and in turn implies that there are

no other terms preceding the term “BitTorrent” in the flow and it is the very first

term to appear in the payload of a flow. When transition δ1 fires, it sets the counter

value c1 at q1 to 0. Second transition is from the state q1 to q2 and has symbol of

“protocol”. This keyword also has a constraint of [0:0] which means that there are no

revisits at state q1 also and the keyword “protocol” immediately follows the keyword

“BitTorrent”. Often RDCCA may have self loops at states which are indicated with

wildcard “*” as input symbol and - symbols for constraints. The wild-card “*” in

this case takes a slightly different meaning of matching any symbol (term) in payload

except those which have an explicit labeled outgoing edge from that state. The “-”

symbol means there is no constraint on the transition.

3.2.4 RDCCA Generation from Unknown Flows

As discussed in previous subsection, RDClass generates RDCCA from a set of

unlabeled network flows. In this subsection, we describe how RDClass automatically

generates new set of RDCCA instances for classification of applications. Following

are the important considerations for design of RDClass while generating machine

instances.

1. Input to this phase is extracted terms of unlabeled flows.

2. Keywords are selected by processing only initial few bytes of payload which

pertain to mostly application header, it contains terms which appear in majority of

the flows. Such frequently appearing terms are used to generate application specific

state machine instances.

The architectural components of RDClass state transition machine generation

phase is shown in Figure 3.7. It has five components as described below.

1. Flow Binning: We can recall that RDClass learns and extracts right key-
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Keyword
Generation

Keyword Filtering
and Enhancement

Relative Distance
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Unlabeled
Flows 

RDCCA Generation

Figure 3.7: RDCCA Generation from Unknown Flows

words from unknown flows. Thus any flow which is not classified by classifier in the

previous step is passed to binning component which groups similar flows together.

There will be many bins which represent unknown application flows and the idea of

collecting sufficient number of flows is to identify right keywords which are invariant

across the flows. This step is critical for extracting right set of keywords and

hence generating a state transition machine with right sequence of keywords and

constraints. If clustering is inefficient, it results into clusters containing flows of

multiple protocols which eventually leads to poor traffic classification. To cluster

payloads, this component calculates a similarity score between payloads. In order to

calculate the similarity between payloads of two flows, the terms of two payloads are

compared with each other. Similarity between two flows fi and fj is calculated using

Equation 3.1.

Simij =
|fi

⋂
fj| × 2

|fi|+ |fj|
× 100 (3.1)

This equation calculates the ratio of common terms in two flows and sum of the

total terms in both the flows. Let us begin with the first training flow f1 and set

a threshold value of flow similarity for binning as 70%. Let P1 be the payload in
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the first flow f1 with content as “This is my first payload”. The terms set of P1

contains alphanumeric words extracted from P1 and can be represented as termP1 =

{This, is,my, first, payload}. Since P1 is the first payload, it is stored in a new partial

bin say B1. Now let P2 be the payload corresponding to the second flow f2 with content

as “This is my second payload”. The terms set of P2 also contains alphanumeric words

extracted from P2 and can be represented as termP2 = {This, is,my, second, payload}.

The similarity score between f1 and f2 is calculated from Equation 3.1 using termP1

and termP2 . As there are 4 common terms and total 10 terms (5 in each flow), the

similarity score between f1 and f2 is calculated as 80% (((4×2)/10)×100). As this

value is greater than the predefined threshold value (70%), P2 is stored in the same

partial bin B1 with payload P1. Let P3 be the payload corresponding to the third flow

f3 with content as “This is your third payload”. The term set of P3 can be represented

as termP3 = {This, is, your, third, payload}. The similarity score between f3 and each

payload in partial bin B1 is now calculated. The similarity scores between f1 and f3

and f2 and f3 are calculated as 60% each. Since these values are below the predefined

threshold value, P3 is not stored in the partial bin B1 but stored in a new partial bin,

say B2. This clustering step continues until sufficient number of flows are there in a bin

to extract meaningful set of keywords. Thus, there are many incomplete clusters/bins

generated during this phase when it accumulates unknown flows. Thus for every new

flow fn, similarity between fn and all existing Partial Bins (PBs) is calculated and

fn is put into that partial cluster with which it has maximum similarity (average of

similarities between every flow in that bin and the flow under consideration). This

clustering step is represented in Algorithm 3.1. This algorithm takes flows along with

two thresholds as input. One threshold is for minimum similarity between bin and a

flow to be included in the bin and second is a threshold on minimum number of flows

required in a bin to forward the flows of a bin to keyword generation component. For

each new flow received, it calculates the similarity with each of the partially clustered

flows and adds flow into that bin with which it shares maximum similarity and this is

done only if this similarity is greater than a predefined threshold. Otherwise, a new

partial bin (an entry in PB) is created and maintained. After successful addition of
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Algorithm 3.1 Binning Flows
Input: A set of unclassified flows f1, f2, · · ·

Input: Simthreshold - Minimum similarity threshold between flow and bin

Input: Binthreshold - Minimum number of flows in a bin for keyword extraction

Output: A set of clusters/bins of flows

1: while ! interrupted do

2: fnew ← Receive a new unclassified flow from classifier

3: PB ← List of Partial Bins

4: for all bi ∈ PB do

5: Calculate Simnbi
6: end for

7: Simmax ← Maximum similarity combination Simnbj
8: if Simmax ≥ Simthreshold then

9: Add fn to bin bj

10: flowcount ← GetFlowCount(bj)

11: if flowcount ≥ Binthreshold then

12: Forward bin bj to Keyword Generation component

13: Remove bj from PB

14: end if

15: else

16: Create a new bin bnew with fn and add it to PB

17: end if

18: end while

flow into a bin, it checks if the number of flows in the bin has crossed the minimum

number of flows and based on this, it either forwards flows of bin to keyword generation

component or keeps it in PB list.

It is worth noting that, computing similarity between two whole payloads is com-

putationally expensive as packets can be of arbitrarily large size1 and moreover, we

need to compute similarity between flows instead of packets. This makes it computa-

tionally even more prohibitive. To address this issue, several previous works [104, 105]

proposed approaches wherein first few bytes of flows were used to estimate the similar-

ity. These works also showed that processing first 1024 bytes of a flow is good enough

to find similarity2. We also confirm this observation in our experiments.

2. Keyword Generation: Keyword generation takes flow cluster (in the form of

extracted terms) generated in the binning phase as an input to generate keywords.

To identify keywords from set of terms, the probability of occurrence of each term

is calculated as in Equation 3.2. All terms whose probability is greater than certain

threshold are considered as keywords. For example, if payload of a flow fi is “Hello

1Ethernet network has an MTU of 1500 bytes, thus each packet can have approximately 1500

bytes
2If the payload length of a flow is less than 1024 bytes, whole payload is considered
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World..!! How @re you 123.” then the term set generated is { Hello, World, How, re,

you, 123 } and if a second flow fj=“Hello World” then term set of this flow is { Hello,

World}. Considering only these two flows, the probability of term “Hello” is 100%

and that of “you” is 50%.

P (termi) =
Number of flows having termi

Total number of flows
(3.2)

3. Keyword Filtering and Enhancement: In the keyword generation phase

discussed previously, only the probability of occurrence of a term is used for selecting

a keyword. In some cases although a term is having high probability, it may not be

a suitable candidate for keyword. For example, terms which denote time, machine

names, software name, etc do not make good keywords. Thus, these ill suited

keywords are removed in this keyword filtering and enhancement phase. This is

necessary because if these dependencies change over time, the state transition machine

fails to detect applications correctly. In our implementation, we used a dictionary of

“bad words” to filter such ill-suited terms. Following are some of the criteria we used

for filtering keywords:

(i) Removing pure numeric terms: All keywords which contain only numbers such as

“001”, “702”, etc are removed.

(ii) Removing short terms: All keywords which contain only lower case letters, having

length less than 3 and does not form strong adjacency pair with any other keyword

are removed. Strong adjacency here indicates those keyword pairs which are always

adjacent to each other in all payloads.

(iii) Removing time dependent words: Time dependent terms include name of days

(“Sunday”,“sun”, “Monday”, “mon”, etc.), months (“january”, “jan”, “february”,

“feb”, etc.) and other time dependent words (hrs, min, sec, hours, minutes, seconds,

etc.). These may change over a period of time and hence do not qualify to be good

keywords. Hence these terms are also filtered from the keyword set.

(iv) Removing application dependent words: Words like “Mozilla”, “Explorer”,

“Asterisk” or any word describing name of software. It also contains names of

operating systems like “Windows”, “Ubuntu”, “Kali”, etc. and architectures “x64”
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and “x86” also do not make good candidate for keywords and these are also filtered.

(v) Adding mutually exclusive terms: RDClass selects keywords on the basis of

occurrence probability. The drawback of RDCCA is that it eliminate some of the

important words. For example, in HTTP protocol, GET, PUT, POST, DELETE, etc.

methods are mutually exclusive. It is also seen that majority of flows contains GET

keyword whereas other terms like PUT or POST occur less frequently. Therefore,

they never get converted from term to a keyword. Therefore, these terms are added

manually in the keyword set.

4. Relative Distance Calculation: One of our main contribution in this

chapter is the use of relative distance between keywords along with their ordering.

Relative distance of two selected keywords ki and kj is the number of other terms

appearing in the payload between these two keywords. Consider a sample payload

shown in Figure 3.8. This payload is of Simple Mail Transfer Protocol (SMTP) used

220 ****************************************************** 
HELO mayank.iiti.ac.in 
250 mx.google.com at your service 
MAIL FROM:<mayank@example.com> 
250 2.1.0 OK m3si6722943pay.168 - gsmtp 
RCPT TO:<nikhiltripathi684@gmail.com> 
250 2.1.5 OK m3si6722943pay.168 - gsmtp 
DATA 
354 Go ahead m3si6722943pay.168 - gsmtp 
Received: by mayank.iiti.ac.in (Postfix, from userid 1000) 
                   id 9371E220678; Tue, 25 Oct 2016 19:14:59 +0530 (IST)
Date: Tue, 25 Oct 2016 19:14:59 +0530 
To: nikhiltripathi684@gmail.com 
Subject: This is the subject line 
User-Agent: s-nail v14.8.6 
Message-Id: <20161025134459.9371E220678@mayank.iiti.ac.in> 
From: mayank@example.com (mayank)  

Hello World 
.
250 2.0.0 OK 1477383056 m3si6722943pay.168 - gsmtp 
QUIT 
221 2.0.0 closing connection m3si6722943pay.168 - gsmtp 

Figure 3.8: Simple Mail Transfer Protocol Payload

for email communication. As usual, terms are generated by parsing this payload with

white space and special character as delimiters. The set of terms generated from

the first 3 lines of payload are {HELO, mayank.iiti.ac.in, 250, mx.google.com, at,

your, service, MAIL, FROM, mayank, example, .com}. If HELO and MAIL are two
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selected keywords then the relative distance between these two is 6.

Relative distance calculation component takes filtered set of keywords as input and

finds a range of relative distance values. For example, if there are 20 flows within a

cluster/bin, for a particular pair of ordered keywords ki and kj the relative distance is

calculated for each flow and the minimum and maximum value of these distances are

subsequently used as permissible range of separation between ki and kj. Output of

this component is a list of filtered keywords and their permissible relative distances.

If the filtered keyword set is K ={k1, k2, · · · kn} and this set is ordered, their relative

distances set is Rdist={[dmink0,k1, d
max
k0,k1], [dmink1,k2

, dmaxk1,k2
], · · · , [dminkn−1,kn

, dmaxkn−1,kn
]}

For example, consider 3 SMTP flows which are having keywords as HELO, MAIL,

FROM, RCPT and TO and the relative distance between first term of payload (say

B) and HELO is calculated as 2, 6 and 10 in the three flows. Similarly, the relative dis-

tance between HELO and MAIL is calculated as 3, 6 and 4, relative distance between

MAIL and FROM is calculated as 0, 0 and 0, relative distance between FROM and

RCPT is calculated as 5, 6 and 4 and relative distance between RCPT and TO is calcu-

lated as 0, 0 and 0 in the three flows. This set is ordered and their relative distances set

is Rdist={[2B,HELO, 10B,HELO],[3HELO,MAIL, 6HELO,MAIL],[0MAIL,FROM , 0MAIL,FROM ],

[4FROM,RCPT , 6FROM,RCPT ],[0RCPT,TO, 0RCPT,TO]}

5. RDCCA Generation: As described previously, we generate a novel state tran-

sition machine which enforces constraints on ordering and relative distance between

selected keywords. This machine when fully constructed and put into use reads pay-

load content from incoming flows and labels them if it is able to transition from start

state to a final state.

To construct RDCCA, the ordered pairs and their relative distances are received

from previous phase and a state transition machine is generated with n+ 1 states for

a set of keywords of size n. The state q0 is denoted as start state. The (n+ 1th) state

qn (if all keywords in the list are ordered in the sequence in which they are appearing

in the payload) is marked as final state. The keyword ki is the input symbol for

transition between qi and its next state qi+1 and this transition will have counter

constraint set to [dminki,ki+1
, dmaxki,ki+1

]. Considering the example given in previous step, we
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have 5 keywords and thus RDCCA in this case has 6 states. If the keyword HELO

is the input symbol for transition between q0 and its next state q1 as shown in Figure

3.9 then this transition will have counter constraint set to [2B,HELO, 10B,HELO].

q0 q1 q2

q5

q3 q4

∗, −

HELO, [2 : 10]

∗, −

MAIL, [3 : 6] FROM, [0 : 0] RCPT, [4 : 6]

∗, −

TO, [0 : 0]

Figure 3.9: Sample RDCCA for Simple Mail Transfer Protocol

3.2.5 Complexity Analysis

As described previously in Section 3.2.4, computing similarity between two pay-

loads is computationally expensive. Thus, in this subsection, we describe the asymp-

totic complexity of each component of RDClass model. Table 3.2 shows the com-

plexity of each component of our proposed model indicating which steps are done in

training (offline) mode and testing (online) mode.

Table 3.2: Component-wise Complexity of RDClass

Component Name Complexity Online/Offline Explanation

Flow Reconstruction O(l× p) Both l= number of flows, p = number of packets in the

trace.

Term Extraction O(j) Both j = total number of bytes in the payload of test flow

Flow Classifier O(m× t) Online m= number of state transition machines and t =

number of terms in the payload of test flow

Flow Binning O(t log t) Offline n = number of terms in the flow.

Keyword Generation O(f×t) Offline f = number of flows in bin. t = number of terms in

flow.

Keyword Filtering and Enhancement O(k log k) Offline k = number of words in the set of keywords

Relative Distance Calculation O(t) Offline t = number of terms in the flow

RDCCA Generation O(1) Offline Relative distance and ordering of keywords is found

in previous step. Just convert this into a graph

1. Flow Reconstruction: Flow reconstruction inspects each packet header and adds

it into appropriate flows. If there are l flows and p packets then it has a complexity
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of O(l × p).

2. Term Extraction: Term extraction reads entire payload once and identifies sep-

arator (delimiter) to parse the payload and scanning payload once it is sufficient for

this operation, hence its complexity is O(j) where j is length of payload.

3. Flow Classifier Flow classifier is a state transition machine and it has to match

every term with every possible instance of state transition machine. In the worst case,

it has a complexity of O(m × t) where m is number of machine instances and t is

number of terms in a flow.

4. Flow Binning: Flow binning component needs to find the intersection of number

of terms in two flows which can be implemented by sorting the two sets separately

which involves a complexity of O(t log t) + O(t log t) for flow 1 and flow 2 each con-

taining t terms and O(t) time is needed to check the term equivalence. Thus, the

overall complexity is O(t log t).

5. Keyword Generation: Keyword generation needs to count the number of flows

containing a particular term which can be done in O(f×t) time where f is the number

of flows in bin and t is the number of terms in the flow.

6. Keyword Filtering and Enhancement: Keyword filtering and enhancement

component requires matching set of keywords with set of bad words list. It has a

complexity of O(k log k) where k is number of keywords (or bad words) in the list

which has similar operations as that of binning component.

7. Relative Distance Calculation: Relative distance calculation also needs to scan

the payload one more time identifying the position of keyword which has complexity

of O(t) where t is number of terms in payload.

8. RDCCA Generation: This component creates RDCCA by encoding identified

keywords and their relative distances which can be performed in constant time.

3.3 Experiments

In order to evaluate the performance of RDClass, we conducted experiments using

three different datasets which are either publicly available or generated in our testbed
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setup. In this section, we first describe how the first dataset is generated in our testbed

setup and also present the details of other two public datasets. Subsequently, we

present the experiments conducted to evaluate the classification accuracy of RDClass

and report the obtained results.

3.3.1 Testbed Setup and Dataset Description

To evaluate the classification accuracy of RDClass, we performed experiments on

three different datasets. First dataset was generated in Networks and Security Lab of

IIT Indore and contains flows belonging to five applications - BitTorrent, Dropbox,

Hypertext Transfer Protocol (HTTP), Session Initiation Protocol (SIP) and Secure

Shell (SSH). We used the testbed setup similar to the one shown in Figure 3.10.

The setup consisted of three computers, each having configuration as Intel Core

PC-1 PC-2

PC-3

Figure 3.10: Testbed Setup used to Generate Dataset

i5-4590 processor with clock rate of 3.30 G Hz and 8 GB of physical memory. All

these computers were running Ubuntu 16.04 LTS operating system. We captured

the generated dataset using tcpdump tool [24]. The details of how these flows were

generated are as follows:

1. BitTorrent: We used only one computer to generate BitTorrent traffic. The

flows of this application were generated by downloading some open source “.iso” files

from BitTorrent application [3]. The “.torrent” files of these “.iso” files were first
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downloaded from website https://isohunts.to/ and then given as input to BitTorrent

application in order to download the required content. The resulting traffic was then

collected using tcpdump for 1 hour.

2. Dropbox: Here also we used only one computer from the testbed setup. We first

installed Dropbox software [6] and provided the required credentials so that software

can synchronize with the server. We then used few files which we put in dropbox and

removed from dropbox at intervals for synchronization. Simultaneously, we started

capturing the flows belonging to Dropbox and stopped the capture after 2 hours.

3. HTTP: Here also we used only one computer from the testbed setup. The flows

belonging to HTTP were generated by browsing top 200 websites from a computer

according to Alexa rankings [1]. The generated traffic was captured for 3 hours.

4. SIP: To generate SIP traffic, we designated one PC in our setup as VoIP PBX [27]

installed with Asterisk version 11.18.0 [2]. Other two machines were client machines

mimicking two enterprises. We created 90 simulated users using these two client

machines. These users were created using a modified version of VoIP Bot program

that uses Jain SIP API [8] and Java Media Framework [9]. The created users were

executed as threads such that each thread acted as a VoIP user to make and receive

calls. In total, there were approximately 500 VoIP calls made with each call duration

varying from 1 minute to 10 minutes. We captured the generated traffic for about 2

hours.

5. SSH: To generate the SSH traffic, we again used the whole testbed setup. In

one of the PC, we installed OpenSSH server [19] and in other two computers which

were designated as SSH clients, we created few user accounts and established SSH

connections from each of the two clients to the server. The resulting traffic was

captured for approximately 30 minutes.

The flows belonging to each of these five protocols were captured in the form of

pcap traces.

Our second dataset is a publicly available dataset made available by Digital Cor-

pora [5]. This dataset has traffic of 4 text based protocols - Dropbox, HTTP, SIP

and SMTP and contains about 110 thousand application flows. Third dataset is also
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made publicly available by FOI Information warfare lab [17]. This dataset has traffic

of 5 text based application protocols - CLDAP, FTP, HTTP, POP and SMB and con-

tains about 29 thousand application flows. Henceforth in this chapter, we name the

first, second and third dataset as private, public-1 and public-2 dataset respectively.

We divided each dataset into two parts such that the first part was used for training

purpose in which signature of each application layer protocol was generated while the

second part was used for testing purpose. The details of the private, public-1 and

public-2 datasets such as their size and number of flows in training and testing phases

are shown in Tables 3.3, 3.4 and 3.5 respectively. In the next subsection, we describe

Table 3.3: Private Dataset Statistics

Protocol Flows for Training Size (in MB) Flows for Testing Size (in MB)

BitTorrent 001816 145.8 001892 218.4

Dropbox 003005 059.3 003010 192.3

HTTP 127444 117.3 131474 431.5

SIP 000678 068.6 000695 109.6

SSH 002208 006.2 002000 005.5

Total 135151 397.2 139071 957.3

Table 3.4: Public-1 Dataset Statistics

Protocol Flows for Training Size (in MB) Flows for Testing Size (in MB)

Dropbox 00014 000.1 00026 000.3

HTTP 52164 207.5 53354 210.3

SIP 00676 069.5 00694 105.6

SMTP 01510 031.5 01574 032.3

Total 54364 308.6 55648 348.5

Table 3.5: Public-2 Dataset Statistics

Protocol Flows for Training Size (in MB) Flows for Testing Size (in MB)

CLDAP 1820 00.4 1782 00.4

FTP 4378 23.1 4376 20.1

HTTP 0872 01.1 0856 01.3

POP 0994 00.4 1050 00.8

SMB 6322 21.2 6222 21.9

Total 14386 46.3 14286 44.5

the experiments performed to evaluate the classification performance of RDClass and

present the obtained results.
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3.3.2 Evaluation

We wrote a Java program to implement RDClass. This program was run on a

computer having Ubuntu 16.04 LTS operating system and Intel Core i5 quad-core

processor and 4 GB physical memory. The program uses jNetPcap programming

library [10] to read and process packets from traces. jNetPcap library also has a mod-

ule for bidirectional flow reconstruction. We used this module for reconstructing flows

from packets in our experiments. During training phase, RDClass started with zero

knowledge of any application and generated RDCCA instances for each application

using the training dataset. We measured the classification performance of RDClass in

terms of Recall. Recall is the ratio of flows correctly labeled as a particular applica-

tion (True Positive (TP)) to the total number of flows (TP + False Negative (FN))

belonging to that application and is given by Equation 3.3

Recall =
TP

TP + FN
(3.3)

We performed three experiments as homogeneous, heterogeneous and grand

experiments with the previously described three datasets to assess the classification

performance of RDClass. In our experiments, we selected first 1024 (n = 1024) bytes

of the flow for generating signatures. The details of these experiments and obtained

performance results are described below

1. Homogeneous Experiment: In the homogeneous experiment, we used the

training portion of each of the three datasets (Private, Public-1 and Public-2) to

generate signatures for each of the protocols. The other portion of the same dataset

is used as the testing dataset. In this experiment, Recall obtained for each protocol

in private, public-1 and public-2 datasets are shown in Tables 3.6a, 3.6b and 3.6c

respectively. From these results, we can notice that RDClass has an average Recall

greater than 99% and thus, this experiment suggests that RDClass performs very

well if the testing dataset is from the same site as that of training dataset.

2. Heterogeneous Experiment: In heterogeneous set of experiments, we used the

training portion of each dataset to generate signatures for application protocols in
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Table 3.6: Recall for Homogeneous Experiments

(a) Private Dataset

Protocol Recall (in %)

BitTorrent 100.00

Dropbox 100.00

HTTP 099.23

SIP 099.98

SSH 100.00

(b) Public-1 Dataset

Protocol Recall (in %)

Dropbox 100.00

HTTP 098.37

SIP 099.13

SMTP 100.00

(c) Public-2 Dataset

Protocol Recall (in %)

CLDAP 100.00

FTP 100.00

HTTP 099.29

POP 099.04

SMB 098.50

that dataset. The testing portions of the other two datasets were used to calculate

the Recall. The idea was to assess robustness of signatures generated in classifying

applications when presented with dataset collected from different sites3. The benefit

of using data-sets from different sites is that, if the signatures are generated from

the dataset of same site, it may have site dependent words such as User-Agent for

HTTP can be Mozilla or User-Agent of SIP can be Asterisk. These words can become

keywords (if selection is automated as is the case with RDClass) as they appear in

nearly all flows of the application. However, multiple sites are likely to have different

end devices and software which can avoid these site specific terms to be selected as

keywords. Therefore we used datasets generated from multiple sites.

Tables 3.7, 3.8 and 3.9 show the Recall for the cases where the signatures were

generated with only the training portion of the Private, Public-1 and Public-2

datasets and tested with testing portion of the other two datasets respectively.

Table 3.7: Recall for Training with Private Dataset and Testing with Public-1 and

Public-2 Datasets

(a) Public-1 Dataset

Protocol Recall (in %)

Dropbox 100.00

HTTP 099.17

SIP 099.91

(b) Public-2 Dataset

Protocol Recall (in %)

HTTP 99.34

It is worth noting that, in this set of experiments, testing was done only for the

overlapping set of protocols (training and testing). We can notice from the three

tables that in all the cases of cross evaluation, Recall is over 98% which indicates that

3All three datasets are collected from different sites
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Table 3.8: Recall for Training with Public-1 Dataset and Testing with Private and

Public-2 Datasets

(a) Private Dataset

Protocol Recall (in %)

Dropbox 100.00

HTTP 099.08

SIP 100.00

(b) Public-2 Dataset

Protocol Recall (in %)

HTTP 99.78

Table 3.9: Recall for Training with Public-2 Dataset and Testing with Private and

Public-1 Datasets

(a) Private Dataset

Protocol Recall (in %)

HTTP 98.99

(b) Public-1 Dataset

Protocol Recall (in %)

HTTP 99.57

the generated signatures were robust in detecting applications when presented with

datasets from other sites.

3. Grand Experiment: In grand experiment, we merged the training portion

of all the protocols of the three datasets and generated a grand training dataset. This

grand training dataset is used to generate RDCCA for each protocol. During training

phase, RDClass automatically generated an instance of RDCCA for each protocol

and we observed that it took approximately 175 seconds to process 210 thousand

application flows as shown in Table 3.10 to generate RDCCA for each protocol whose

flows were present in the training dataset. Figures 3.6, 3.11, 3.12, 3.13, 3.14, 3.15,

Table 3.10: RDCCA Generation Time

Protocol Training Time (in seconds)

BitTorrent 011.134

CLDAP 001.135

Dropbox 023.484

FTP 008.968

HTTP 064.396

POP 000.975

SIP 053.747

SMB 006.905

SMTP 003.055

SSH 001.997

Total time 175.796
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3.16, 3.17, 3.18 and 3.19 show the RDCCAs generated for BitTorrent, SMTP, HTTP,

SIP, SMB, CLDAP, Dropbox, FTP, POP and SSH respectively after successful

training.

q0

q1

q2

q3 q4 q5 q6

EHLO, [2 : 10]

HELO, [2 : 10] MAIL, [3 : 6]

MAIL, [3 : 6]

FROM, [0 : 0] RCPT, [4 : 6] TO, [0 : 0]

∗,−

∗,−

∗,−

∗,−

Figure 3.11: RDCCA Generated for Simple Mail Transfer Protocol

For testing purpose, we used the three dataset’s respective testing portions and

also a combined dataset (of all the three testing portions) to evaluate the performance.

Table 3.11 shows the Recall for each protocol. We can notice from this table that,

RDClass show an average Recall rate of more than 99%.

Table 3.11: Recall for Grand Experiment

Protocol Recall(in %)

BitTorrent 100.000

CLDAP 100.000

Dropbox 100.000

FTP 100.000

HTTP 098.138

POP 099.047

SIP 099.568

SMB 098.505

SMTP 100.000

SSH 100.000

We further evaluated the robustness of RDCCAs generated for each protocol with

a n×n evaluation where each flow of every protocol in the testing portion of dataset is

given as input to every RDCCA. This evaluation shows the uniqueness of RDCCA’s

keywords and their ordering in identifying applications. Table 3.12 shows the classi-
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q0

q1

q3

q4q2 q5 q6

q7

q8q9q10q11

GET, [0 : 0]

POST, [0 : 0]

HTTP, [1 : 78]

HTTP, [1 : 78]

PUT, [0 : 0] HTTP, [1 : 78] Host, [1 : 1] User, [3 : 7]

Agent, [0 : 0]

∗,−

∗,−

∗,−

∗,−
∗,−

Accept, [9 : 21]

∗,−

Language.[0 : 0]keep, [6 : 27]

∗,−

alive, [0 : 0]

Figure 3.12: RDCCA Generated for Hyper Text Transfer Protocol

q0 q1 q2 q3 q4

q5q6

OPTIONS, [0 : 0] SIP, [1 : 1] tag, [2 : 8] Contact, [3 : 18]

Call, [2 : 15]

ID, [0 : 0]

∗,− ∗,− ∗,−∗,−

Figure 3.13: RDCCA Generated for Session Initiation Protocol

q0 q1 q2 q3
SMBr, [6 : 6] SMBs, [19 : 23] NTPMSSP, [2 : 2]

∗,− ∗,− ∗,−

Figure 3.14: RDCCA Generated for Server Message Block
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q0 q1 q2 q3

q4

DnsDomain, [3 : 5] Host, [2 : 2] DomainGuid, [1 : 5]

NtV er, [0 : 2]

∗,− ∗,− ∗,− ∗,−

Figure 3.15: RDCCA Generated for Connectionless Lightweight Directory Access

Protocol

q0 q1 q2 q3 q4

q5

host, [0 : 0] int, [0 : 0] version, [2 : 2] port, [5 : 5]

namespace, [2 : 2]

∗,− ∗,− ∗,− ∗,− ∗,−

Figure 3.16: RDCCA Generated for Dropbox

q0 q1 q2 q3 q4

q5q6

FTP, [2 : 2] Server, [0 : 0] V ersion, [0 : 0] ready, [10 : 15]

USER, [0 : 0]

PASS, [4, 17]

∗,− ∗,− ∗,− ∗,− ∗,−

∗,−

Figure 3.17: RDCCA Generated for File Transfer Protocol
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q0 q1 q2 q3 q4

q5

OK, [0 : 0] Dovecot, [0 : 0] ready, [0 : 0] USER, [0, 3]

PASS, [0, 4]

∗,− ∗,− ∗,− ∗,− ∗,−

Figure 3.18: RDCCA Generated for Post Office Protocol

q0 q1 q2 q3 q4

q5q6

SSH, [0 : 0] OpenSSH, [0 : 0] SHA, [4 : 7] libssh, [0 : 0]

ecdh, [0 : 2]

diffie, [0 : 1]

∗,− ∗,− ∗,− ∗,− ∗,−

∗,−

Figure 3.19: RDCCA Generated for Secure Shell
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fication performance of ten application layer protocols used in our grand experiment.

An entry in a particular row and column indicates the number of flows of column

Table 3.12: n× n Evaluation Matrix for Flow Classification in RDClass

Bit-

Torrent

CL-

DAP

Drop-

box

FTP HTTP POP SIP SMB SMTP SSH Unclassified

(1892) (1782) (3036) (4376) (185684) (1050) (1389) (6222) (1574) (2000)

BitTorrent 1892 0 0 0 0 0 0 0 0 0 0

CLDAP 0 1782 0 0 0 0 0 0 0 0 0

Dropbox 0 0 3036 0 0 0 0 0 0 0 0

FTP 0 0 0 4376 0 0 0 0 0 0 0

HTTP 0 0 0 0 182228 0 0 0 0 0 3456

POP 0 0 0 0 0 1040 0 0 0 0 10

SIP 0 0 0 0 0 0 1383 0 0 0 6

SMB 0 0 0 0 0 0 0 6129 0 0 93

SMTP 0 0 0 0 0 0 0 0 1574 0 0

SSH 0 0 0 0 0 0 0 0 0 2000 0

header classified against RDCCAs of row header. For example, the first column Bit-

Torrent has 1892 number of flows in testing dataset and all of them are correctly

classified as BitTorrent by the corresponding RDCCA and none of these flows are

classified as any other protocol. Similar interpretation is done for other cases too. We

can notice that there is no case where one protocol is interpreted as other protocol

which indicates that generated RDCCAs are robust. However there are some flows

which are not classified. For example, 10 out of 1050 flows of POP are not classified

while rest of the 1040 flows were classified correctly.

3.3.3 Performance Comparison and Discussion

We compared classification accuracy of RDClass with a recent network traffic

classification method SANTaClass [104] on our grand dataset. SANTaClass is an

unsupervised learning method which automatically generates signature from network

flow. In this method, keywords are extracted from flow payload and arranged in the

same sequence in which they occur in the flow. These sequences are then called as

signatures. Each application protocol has unique signature which is used for classifica-

tion purpose. We experimented with SANTaClass on our dataset and the obtained

classification results are shown in Table 3.13. We can notice that this method re-

sulted into few signature overlaps (shown in red colour in Table 3.13). The reason
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Table 3.13: n× n Evaluation Matrix for Flow Classification in SANTaClass

Bit-

Torrent

CL-

DAP

Drop-

box

FTP HTTP POP SIP SMB SMTP SSH Unclassified

(1892) (1782) (3036) (4376) (185684) (1050) (1389) (6222) (1574) (2000)

BitTorrent 1892 0 0 0 0 0 0 0 0 0 0

CLDAP 0 1782 0 0 0 0 0 0 0 0 0

Dropbox 0 0 3036 0 0 0 0 0 0 0 0

FTP 16 0 0 4352 0 0 0 8 0 0 0

HTTP 10 0 0 0 182212 0 0 6 0 0 3456

POP 0 0 0 0 0 1040 0 0 0 0 10

SIP 0 0 0 0 0 0 1383 0 0 0 6

SMB 0 0 0 0 0 0 0 6129 0 0 93

SMTP 0 0 0 0 0 0 0 0 1574 0 0

SSH 0 0 0 0 0 0 0 0 0 2000 0

for signature overlap was that the signature generated by SANTaClass checks only

sequence of keywords and the same sequence was found in other protocol signatures

too particularly with those having smaller number of keywords in their signatures. On

the other hand, RDClass checks the sequence as well as the relative position of the

keywords which did not result into false classifications.

3.3.4 Limitations

From the experimental results presented in this chapter, it can be concluded that

RDClass can classify applications with very high accuracy. However, there are also

few limitations of the proposed approach as described below:

1. Keyword Filtering and Enhancement: RDClass’s performance is based on

accurate keyword selection and hence, presence or absence of ill suited or important

keywords respectively has an impact on its performance.

2. Classification of Text based Protocols Only: RDClass is designed to classify

text based protocols only. For binary protocols, this model is not suitable. RDClass

currently cannot handle such protocols hence it can be best used along with another

method which purely works on header and flow level statistics to deal with such

traffic.
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3.4 Conclusion

In this chapter, we described a DPI based traffic classification method called

RDClass. This method is automated and can select keywords automatically when

presented with unknown application payloads. RDClass uses relative distance be-

tween keywords along with their ordering to accurately identify application flows. A

new state transition machine which enforces constraints on ordering and their relative

distances of keywords was also proposed. We performed extensive experiments with a

range of applications and showed that RDClass can accurately identify applications.

However, RDClass is limited to classifying only text based protocols and it can not

classify binary protocols. Thus, in next chapter of the thesis, we overcome this issue

by proposing a traffic classification approach that can classify both text as well as

binary protocols.
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Chapter 4

Network Traffic Classification

through Encoded Bit Level

Signatures

4.1 Introduction

Traditional network traffic classification methods extract byte level information

from the application flows to generate the signatures. However, an important

challenge for classifying network flows is to capture the signatures which are unique

and minimal in length as signature length governs the computational overhead.

Some recent works [105] propose to automate the signature generation process for

application network traffic classification addressing these concerns. However, there is

a surge in data-transfer formats and increasingly network protocols and applications

are encoded at the bit-level. This makes the byte-level signatures ineffective in traffic

classification. Few works [123, 124] recently proposed in the literature generate ap-

plication signatures at bit level granularity of payload. However, traffic classification

using bit level payload analysis is a recent approach and only preliminary work has

been done in this area. Borrowing motivation from this, we propose two DPI-based

bit-level signature generation methods for accurate traffic classification. Our methods
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generate bit-level signatures using first n bits of bidirectional flows belonging to an

application. Our contributions in this chapter are as follows.

1. We propose BitCoding and BitProb which are bit-level signature based ap-

plication classification methods.

2. Our proposed methods are computationally less expensive as they generate

signatures from the first n bits of bidirectional flow. Our experiments show that even

with first 40 bits of flow, the proposed methods can accurately identify applications.

3. BitCoding and BitProb translate the application signatures into state transi-

tion machines called Transition Constrained Counting Automata (TCCA) and

Probabilistic Counting Deterministic Automata (PCDA) respectively for bit-level

comparison with application flows.

4. We perform extensive experiments on three different datasets consisting of text

based protocols, binary protocols and proprietary protocols to assess the performance

of proposed classification methods and show that the proposed methods are protocol-

type agnostic.

5. We perform cross evaluation of the proposed methods on datasets from different

sites and show that they are able to classify flows with a small compromise in Recall.

Rest of this chapter is organized as follows. In Section 4.2, we describe the work-

ing principle of BitCoding and BitProb. We describe the experiments performed to

evaluate the classification performance of proposed methods in Section 4.3. In Section

4.4, we compare the classification performance of BitCoding and BitProb with some

of the prior works. We end this chapter with concluding remarks in Section 4.5.

4.2 Proposed Traffic Classification Methods

As discussed in the last section, we propose two bit-level signature based applica-

tion classification methods BitCoding and BitProb. In this section, we first describe

the motivation behind proposing these methods which is subsequently followed by the

explanation of working of these methods.
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4.2.1 Motivation

The choice of generating application signatures using bit-level content is motivated

by the fact that there is a surge in data-transfer formats and increasingly network

protocols and applications are now encoded at the bit-level. For example, consider

the first 32 bits of NTP packet structure shown in Figure 4.1. The first two bits (0th

LI VN Mode Stratum Poll Precision

0 1 4 7 15 23 31

Figure 4.1: First 32 Bits of Network Time Protocol Packet Structure

and 1st) indicate whether the last minute of the day will have a leap second or not.

Next 3 bits indicate the version number of NTP and the bits from 5 to 7 indicate

different modes of NTP. In this case, even if the mode of NTP is changed (hence

change in bit positions of 5 to 7), we can still use the first 5 bits to guess the protocol

or even if the first two bits are changed, the bits corresponding to version number

(which are not likely to change) can be indicators of protocol type. Thus, the bit-level

details can be used for robust signature generation1.

4.2.2 BitCoding

Our first application identification/traffic classification technique BitCoding uses

signatures generated from bit-level content of flow payload to identify different ap-

plication flows. These signatures are efficiently encoded so as to reduce the total

signature length. These encoded signatures are converted into a state transition ma-

chine. BitCoding uses first n bits from bidirectional flow to generate signatures. The

first step for signature generation is bidirectional flow reconstruction from network

traffic. Subsequent to the reconstructed flow, first n bits of the flow are extracted for

signature generation. In the next two subsections, we describe signature generation

from training data and classifying flows from generated signatures.

1Bit-level signatures guarantee a lower bound performance of byte-level signatures for the same

content length.
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4.2.2.1 Signature Generation and Encoding

BitCoding generates application specific signatures with training data. This

process has four stages - 1) Flow Reconstruction, 2) Bit signature generation, 3)Run

Length Encoding and 4) State Transition Machine construction. These four stages

are shown in Figure 4.2 and elaborated subsequently.

Flow  
Reconstruction

Bit Signature
Generation

Run Length
Encoding

TCCA Generation

Network Packets of Application

Bit Signature for Application

Figure 4.2: Bit-level Signature Generation for BitCoding

1. Flow Reconstruction: The bidirectional TCP and UDP network flows are

constructed using the method discussed in Section 3.2.2 of the Chapter 3. Once the

bidirectional flows are reconstructed, they are given as input to the next stage.

2. Bit Signature Generation: BitCoding generates application specific bit

signatures using a set of invariant bits of the payload selected in the previous stage.

Assuming there are K (K ∈ I) such bidirectional flows of an application in training

set, it collects the first n bits from each of the K bidirectional flows of application A

and generates n bit signature ASig for that application. The first n bits of the ith flow

(1 ≤ i ≤ K) are of the form f i1, f
i
2, · · · , f in. All K flow extracts are used for generating
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signatures as follows. The jth bit [1, n] position of every flow extract are used to

decide the jth signature bit of ASig. The jth signature bit is set to 0 if the jth bit of

every flow (1 ≤ j ≤ K) has a value of 0 and the jth signature bit is set to 1 if the jth

bit of every flow (1 ≤ j ≤ K) has a value of 1. If some of these bit positions have 0’s

and 1’s, the jth signature bit is set to *. The signature generation method is shown

in Table 4.1 where each si is a signature bit. A sample application bit signature

Table 4.1: Flow Extracts and Signature Generation

Flow 1 f 1
1 f 1

2 .... f 1
n

Flow 2 f 2
1 f 2

2 .... f 2
n

Flow 3 f 3
1 f 3

2 .... f 3
n

. . . . .

. . . . .

Flow K fK1 fK2 .... fKn

Signature s1 s2 .... sn

1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 * * * 1 1 1

b0 b1 bn

First n bits 
of flows 

Bit Signature

Flow 1

Flow 2

Flow 3

Figure 4.3: Bit Signature Generation

generation using bits is shown in Figure 4.3. In this example, there are 3 flows each

with 20 bits and are used for signature generation. The first bit of all the three flows

are having a value of 1, thus this bit is included in the signature as 1. Also the next

7 bits of each of the flows are also having 1’s, hence the next 7 signature bits are also

labeled with 1’s. Similarly the bit positions from 9-14 of all the 3 flows are having 0’s
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and hence the signature bits 9-14 also will have 0’s in these positions. The 15th bit of

flow 1 is having a bit value of 1, flow 2 is having a value of 0 and flow 3 is having a

value of 1. Hence the corresponding bit in signature is set to * (indicating 0/1 and

insignificant for detecting this application). Similar labeling is done with remaining

bits and the final signature generated is 11111111000000 ∗ ∗ ∗ 111.

3. Run-length Encoding: We can notice that signature bits consist of 1’s, 0’s

and *’s and each signature is of n bits. For efficient representation, storage and

comparison purposes, we perform Run-length Encoding (RLE) [91] of these n bits.

RLE is a technique used in loss-less data compression. RLE reduces the size of a

repeating string of characters by specifying number of repetitions. In RLE, runs of

data i.e. sequences of the same data value in many consecutive data elements are

stored as a single value and count of number of times that data value is repeated

is stored. Consider the signature sequence for the above example which has bit

values of 11111111000000 ∗ ∗ ∗ 111 and after encoding with RLE, it is converted to

8W6Z3 ∗ 3W where W and Z represent bit values of 1 and 0 respectively.

4. Transition Constrained Counting Automata (TCCA) Generation: Sub-

sequent to the RLE, an encoded signature needs to be compared with network traffic

flows to identify applications. For this purpose, we convert the encoded bit signature

into a new state transition machine Transition Constrained Counting Automata

(TCCA). This TCCA is the final bit signature for an application. To create TCCA

of an application, the compressed RLE bit signature of that application is given as

input. The machine TCCA is formally defined as M = (Q,Σ, C, δ, q0, F ) where

Q is a finite set of states

Σ is a finite set of input symbols

C is a finite set of Counters with each ci ∈ C taking values in N
⋃

0

δ is a set of transitions defined as δ : Q× C × Σ→ Q× (C → C)

q0 ∈ Q is an initial state

F ⊆ Q is a set of final states

Each transition δi ∈ δ is a six tuple 〈qi, qj, c, σ, φ(ci), Inc(cj)〉 with the elements rep-
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resenting

qi is current state

qj is next state

ci is counter value at the state qi

σ ∈ Σ is an input symbol

φ(ci) is a constraint (invariant condition) on counter value ci at state qi on

this transition

Inc(cj) is a function which initialize the counter in the next state qj to a

new value

A sample TCCA generated with a 20 bit compressed signature generated in the last

step is shown in Figure 4.4. There are 5 states in the TCCA labeled from q0 to q4

q0 q1 q2

q3q4

1, 0 ≤ C0 ≤ 8, C0 ← C0 + 1

0, C0 == 8, C1 ← 1

0, C1 == 6, C2 ← 1

1, C1 == 6, C2 ← 1

0, 0 ≤ C1 ≤ 6, C1 ← C1 + 1 1, 0 ≤ C2 ≤ 3, C2 ← C2 + 1

0, 0 ≤ C2 ≤ 3, C2 ← C2 + 1

1, C2 == 3, C3 ← 1

1, 0 ≤ C3 ≤ 3, C3 ← C3 + 1

1, C3 == 2, C4 ← 1

Figure 4.4: TCCA Generated for the Example Signature 8W6Z3*3W

with q0 being start state and q4 being final state. Each state has a counter (C0 to

C4) which will be initialized to a new value every time a transition visits the state.

The machine starts in state q0 with counter at q0 being set to 0, read bits from test

flow and makes allowed transitions to reach the final state. The transitions of TCCA

have an input symbol (bit value) and a constraint on counter value which acts as a

guard and the transition is allowed only if the constraint is satisfied (evaluated to be

true). For example, in Figure 4.4, state q0 has a transition defined to itself (self loop)
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on input 1. This transition has a constraint on counter value of C0 being in between

0 to 8. This constraint maps the requirement of reading 8 consecutive 1’s in the flow

at the beginning, while incrementing the counter value by 1 each time it is traversed.

The next transition from q0 to q1 is on input 0 and is valid only when the counter

value at C0 is 8 (having read 8 consecutive 1’s) and sets the counter C1 at q1 to 1

(read a 0 after 8 consecutive 1’s). Whenever there is * in signature, it will have two

transitions one with input 0 and other with input 1 both increment the counter values

at the next states. Similarly all bits and their positions are enforced by TCCA. The

training algorithm (TCCA generation for an application A) is shown in Algorithm

4.1. The inputs given to this algorithm are the network traffic of application A and

Algorithm 4.1 TCCA Generation for Application A
Input: Network Traffic of Application A

Input: n- Number of Bits

Output: TCCA for Application A

1: while There are Packets to Read do

2: pkt ← ReadPacket()

3: Flows ← FlowReconstructor(pkt)

4: end while

5: FlowCount ← GetFlowCount(Flows)

6: for t = 1 to FlowCount do

7: BitString ← GetBitString(FTest, n)

8: BitCode ← UpdateBitCode(BitString, t)

9: end for

10: EncodedBitCode ← RLE(BitCode)

11: TCCA ← ConstructTCCA(EncodedBitCode, n)

12: Return TCCA

the value of n for extracting first n bits from each bidirectional flow. The output

of this algorithm is the TCCA for application A. This algorithm reads the packets

of an application A and reconstructs the bidirectional flows. Subsequently, it counts

the total number of flows. From each flow, the algorithm extracts BitString which

is the first n bits of that flow. After this, the algorithm finds the invariant bits in

BitString and updates BitCode accordingly. Once updated BitCode is obtained

after analyzing all BitStrings, RLE is applied to it which is then used to construct

TCCA. ConstructTCCA function starts with a start state, reads the EncodedBitCode

and constrains the counters according to it. Subsequently, it adds the next state and

repeats the process till final state.
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4.2.2.2 Flow Classification

Similar to signature generation process, in flow classification phase too, bidirec-

tional flows are first reconstructed. Subsequently, first n bits of the flow are extracted

for comparison with TCCAs generated for different applications as shown in Figure

4.5. Each of these TCCAs is in their respective start states and the n bits from a test

Flow
Reconstruction

Bit Extraction

Bit  
Signature

Matching with
TCCA

Network Packets

Application Identification

Unidentified Application

Figure 4.5: Flow Classification in BitCoding

flow Ftest are given as input (a bit at a time from first to last bit) to all the application

signatures/TCCAs. Every TCCA makes allowed transitions and the flow is labeled

with application A if the corresponding TCCA of application A reaches the final state.

If none of the TCCAs reach the final state, the flow is labeled as unclassified. Consider

two example bit sequences as 11111111000000101111 and 00111111000000101111. The

first sequence 11111111000000101111 which is given as input to the TCCA of Figure

4.4, it is easy to see that it reaches the final state as it contains eight 1’s in the begin-

ning and six 0’s next, subsequent three bits are accepted invariably and then the last

three digits are 1’s. However second sequence is not accepted by TCCA as it starts

with a 0 and there is no transition with input 0 when the counter C0 is 0 at state q0.

This classification procedure is shown in Algorithm 4.2. Algorithm 4.2 classifies the
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Algorithm 4.2 Classifying Network Flows
Input: LISTTCCA - List of TCCAs for all applications

Input: FTest- Test Flow

Output: Label of FTest

1: Size ← SizeOf(LISTTCCA)

2: BitString ← GetBitString(FTest)

3: for t=1 to Size do

4: MatchString(BitString, LISTTCCA[t])

5: end for

6: if LISTTCCA[t] at final state then

7: Label FTest is of Application t

8: else

9: Label FTest as Unknown Application

10: end if

network flow under consideration. The inputs given to this algorithm are the list of

TCCAs and a test flow. The output of this algorithm is the labeled test flow. This

algorithm first counts the number of TCCAs generated by Algorithm 4.1 and then

extracts BitString in the same way it is extracted in Algorithm 4.1. Subsequently, the

algorithm compares the binary string with the application signature using its TCCA.

If the binary string of test flow reaches to the final state (accept state) then the flow

is classified as belonging to that application. Otherwise, the algorithm declares the

test flow as unclassified (unknown application).

4.2.2.3 Addressing Signature Overlap

It has to be noted that every application has one signature. While short signa-

tures are computationally less expensive (for both storage and comparison) and as

number of applications increases, there are chances of signature overlap i.e. two dif-

ferent applications having same signatures. This leads to misclassification of flows

of one application as other one2. This can be addressed by increasing the signature

length of applications. These two are contradictory goals (short signatures and no

overlap) to be achieved together. To avoid such overlaps we compute the similar-

ity between signatures of different applications using a form of Hamming Distance

(HD). Hamming distance is measured between two strings of equal length and its

value is the number of bit positions at which the corresponding bits are differing. It

2Signature overlap is a common problem in firewalls and intrusion detection systems
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is worth noting here that bit signatures also contain *s along with 0s and 1s. We

do a minor change in the standard calculation of HD between a pair of signatures,

which is ignoring * bits from the comparison. We name this changed distance mea-

surement as Relaxed Hamming Distance (RHD). An example RHD calculation is

shown in Figure 4.6. In this figure, there are two bit signatures and the corresponding

RHD is 3. We measure the RHD between every pair of applications and find that

1 1 1 1 1 1 1 1 0 0 0 0 0 0 * * * 1 1 1

1 0 1 1 0 1 1 1 0 0 1 0 0 0 * 1 * 1 1 1

0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Bit Signature 1

Bit Signature 2

RHD of 1 and 2

Figure 4.6: RHD Calculation between Bit Signatures

the reason for cross signature matching is due to low RHD between them. We label

those signatures which exhibit maximum similarity (or minimum distance) with other

signatures as weak signatures. In order to improve the classification performance, we

identify a set of application signatures which show maximum similarity and increase

the signature lengths only for those protocols.

4.2.2.4 Complexity Analysis of BitCoding

Our proposed traffic classification method BitCoding has different modules such

that some complexity is associated to each of them. Table 4.2 shows the complexity of

each module of BitCoding which is also indicating the steps done in training (offline)

mode and testing (online) mode.

1. Flow Reconstruction: Flow reconstruction needs to inspect each packet

header and adds it into appropriate flows. If there are l flows and p packets then it

has a complexity of O(l × p).

2. Bit Extraction: Bit extraction has to read the first n bits which is a constant

time operation, hence its complexity is O(1).
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Table 4.2: Module-wise Complexity of BitCoding

Module Name Complexity Online/Offline Explanation

Flow-Reconstructor O(l× p) Both l= number of flows, p = number of packets in the trace.

Bit Extractor O(1) Both Constant number of bits to be read from the payload training

flow

Bit Signature Generation O(K) Offline For K flows of an application

RLE O(X) Offline Need to read n bits for an application and there are X appli-

cations

TCCA Generator O(X) Offline Convert RLE into a graph for X applications

Flow Classifier O(m× n) Online m= number of machines and n = number of bits in the payload

of test flow

3. Bit Signature Generation: Bit signature generation has to operate on all flows

of an application. If there are K flows of an application then complexity of signature

generation is O(K) as number of bits is constant n for every application which is

O(1) operation.

4. Run-Length-Encoding (RLE): RLE has to read n bits of signature which is

O(1) operation for each application and for X different applications, it is O(X).

5. TCCA Construction: TCCA construction is just the encoding of RLE

signature into a state transition machine which can be done in constant time O(1)

and as there are X applications, total complexity is O(X).

6. Flow Classification: Test flows are classified by TCCA and it has to match

every bit with every possible instance of TCCA. This, in the worst case, has a

complexity of O(m× n) where m is number of machine instances and n is number of

bits in a flow.

It has to be noted that we do not consider variant bits (represented by ‘*’) while

comparing application signatures and ignores them from comparison even if very small

number of flows are having different values. Thus, there will be few misclassifications

(as shown later in experiments section). So we propose another bit-level traffic clas-

sification method BitProb that considers the occurrence probability of bit values at

each position without omitting any bit value during signature comparison.
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4.2.3 BitProb

Our second bit-level traffic classification method BitProb is also a supervised learn-

ing method where bit-level signatures are generated from bit sequences of a particular

application and subsequently used for identifying flows belonging to that application.

These signatures are converted into a state transition machine called as Probabilistic

Counting Deterministic Automata (PCDA). BitProb uses first n bits from bidirec-

tional flows to generate signatures. The motivation for BitProb is to use those bits

which are not consistently either ‘1’ or ‘0’ (‘*’) and are not used in BitCoding. By

using their probability values of a bit being either ‘1’ or ‘0’ these bits also partici-

pate in decision making. The first step for signature generation is bidirectional flow

reconstruction from network traffic. Subsequent to the reconstructed flow, first n bits

of the flow are extracted for signature generation. In the next two subsections, we

describe signature generation from training data and classifying flows from generated

signatures.

4.2.3.1 Signature Generation

BitProb generates application specific signatures with training data. This process

has three stages - 1) Flow Reconstruction, 2) Bit Signature Generation and 3) State

Transition Machine construction. These three stages are shown in Figure 4.7 and

described below.

1. Flow Reconstruction: The bidirectional TCP and UDP network flows are

constructed using the method discussed in Section 3.2.2 of the Chapter 3. Once the

bidirectional flows are reconstructed, they are given as input to the next stage.

2. Bit Signature Generation: BitProb takes K bidirectional flows belonging to an

application A and generates n bit signature ASig for that application. Subsequently

it calculates the probability of a particular bit bi at ith position (1 ≤ i ≤ n) having a

value of 1 and also 0 i.e. P (bi = 1) and P (bi = 0) (P (bi = 0) = 1 − P (bi == 1)). A

sample probability calculation is shown in Figure 4.8 where three hypothetical flows of
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Figure 4.7: Bit-level Signature Generation for BitProb

an application are considered for deriving bit probability values. After bit probability

values of all n bits are calculated, these bit probability values are used to generate an

automata represented as a directed graph as shown in Figure 4.93. This graph is a

binary tree with every intermediate node representing one of the two possible cases

i.e. either probability of a ‘1’ is read or a ‘0’ is read next. The path from root node

to a leaf node indicates the probability with which the bit sequence leading to that

leaf node appears in that application. Thus every possible bit string (of length n)

has a probability of occurrence in that application. For example, consider the first

four bits of example sequence shown in Figure 4.8. The first bit has P (b1 = 1) = 1

and P (b1 = 0) = 0. These two are represented with two transitions from root node

to two nodes q2 and q1 respectively. Similarly the second bit probability values

P (b2 = 1) = 1 and P (b2 = 0) = 0 is denoted with four transitions - two from each

of the first level nodes q2 and q1 respectively. It can be noticed that, the above

representation is not space efficient and it will have 2n−1 number of states for a n bit

signature. Thus the above automata is a candidate for optimization. We can notice

that certain transitions in the above transition diagram have zero probability values

which means that there is a zero probability of that automaton taking that transition

3Only first 4 bits out of 10 bits are considered for space constraints
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1 1 0 0 1 1 1 0 1 0

1 1 0 1 1 1 0 0 1 0

1 1 0 0 1 1 0 0 0 0

1.0 1.0 0.0 0.34 1.0 1.0 0.34 0.00 0.66 0.00

First n bits 
of flows 

Probability of 1

Flow 1

Flow 2

Flow 3

Probability of 0 0.0 0.0 1.0 0.66 0.0 0.0 0.66    1.0 0.34 0.00

Figure 4.8: Bit Probability Calculation

and hence all the descendant states can be safely removed as they are never visited.

This pruning will reduce the size of automaton considerably as network protocols

usually have fixed values at fixed positions particularly in the fields of header. A

pruned state transition diagram for the above four bit signature is shown in Figure

4.10. We can see that this automaton has only six states as opposed to thirty one

in the previous case. Further, we also propose another optimization for encoding

these signatures which is merging consecutive same value bit positions with same

probability to one state. This is similar to the RLE used by BitCoding to encode

signatures. In the above example, first two bits b1 and b2 values are 1 with probability

of 1 i.e. P (b1 = 1) = P (b2 = 1) = 1. These two can be merged by having a counter at

the first state. The resulting state transition machine is shown in Figure 4.11. With

these two optimization incorporated, we define a new state transition machine and

give an algorithm to directly construct it from the probability bit values in the next

phase.

3. Probabilistic Counting Deterministic Automata (PCDA) Generation:

We define a new state transition machine called Probabilistic Counting Deterministic

Automata (PCDA) to represent the probabilistic bit signatures. This state transition

machine takes the bit probability values and convert them into a probabilistic state

transition machine. PCDA is formally defined as

M = (Q,Σ, C, δ, P, q0, F ) where
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Figure 4.9: Probabilistic Bit Signature as a State Transition Machine

Each transition δi ∈ δ is a six tuple 〈qi, qj, c, σ, φ(ci), Inc(cj)〉 with the elements

representing

The transition probabilities of the machine are governed by the following Equation

4.1. ∑
σ∈Σ

δ(qi, σ) = 1 (4.1)

The PCDA is a machine which generates a set of strings starting from start state

to an accepting state. The set of strings generated by the PCDA is the language

generated by it and is denoted as L ⊂ Σ∗. The string generation can be defined as

a recursive process. For example the string with S = σ1, σ2, · · · , σn can be generated

as δ∗(q0, σ1, σ2, · · · , σn) where δ∗ denotes the extended transition function which is

defined recursively as δ(δ∗(q0, σ1, σ2, · · · , σn−1), σn). While generating a string if qi is
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q0 q2 q6

q27

q28

q13
1, 1.0 1, 1.0 0, 1.0

0, 0.34

1, 0.66

Figure 4.10: Pruned State Transition Diagram for First 4 Bits

q0 q1

q2

q3

0, C0 == 2, 1.0, C1 = 1

1, C0 < 2, 1.0, C0 = C0 + 1 0, C1 == 1, 0.34, C2 = 1

1, C1 == 1, 0.66, C3 = 1

Figure 4.11: Pruned and Merged State Transition Diagram for First 4 Bits

Q A finite set of states

q0 ∈ Q Is an initial state

Σ Is a finite set of input symbols

F ⊆ Q is a set of final states

C Is a finite set of Counters with each ci ∈ C taking values in N
⋃

0

δ Is a set of transitions defined as δ : Q× C × Σ→ Q× (C → C)

P Is a set of transition probabilities with pij(σ) → R+ corresponding to a

transition δ(qi, σ) = qj for σ ∈ Σ
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qi Current state

qj Next state

ci Counter value at the state qi

σ ∈ Σ Input symbol

φ(c) Is a constraint on counter value ci at state qi on this transition

Inc(cj) Is a function which initialize the counter in the next state qj to a new

value

the current state and σk is the input symbol, the next state is chosen according to

the probability of transitions defined. Thus any string S ∈ Σ∗ (|S| ≤ n) is generated

with a probability given by Equation 4.2. Later, during flow classification, we use

this probability of a string to decide whether a test string belongs to the application

represented by PCDA.

P (S) =
n∏
i=0

p(qi, σi+1) (4.2)

The training algorithm (PCDA generation for an application A) is shown in Algo-

rithm 4.3. The inputs given to this algorithm are the network traffic of application A

Algorithm 4.3 PCDA Generation for Application A
Input: Network Traffic of Application A

Input: n- Number of Bits

Output: PCDA for Application A

1: while There are Packets to Read do

2: pkt ← ReadPacket()

3: Flows ← FlowReconstructor(pkt)

4: end while

5: FlowCount ← GetFlowCount(Flows)

6: for t = 1 to FlowCount do

7: BitString ← GetBitString(FTest, n)

8: BitProb ← UpdateBitProb(BitString, t)

9: end for

10: PCDA ← ConstructPCDA(BitProb, n)

11: Return PCDA

and the value of n for extracting first n bits from each bidirectional flow. The output

of this algorithm is the PCDA for application A. This algorithm reads the packets

belonging to application A and reconstructs the bidirectional flows. Subsequently, it

counts the total number of flows. From each flow, the algorithm extracts BitString

which is the first n bits of that flow. After this, the algorithm calculates the prob-
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ability of each bit at its respective position which is then used to construct PCDA.

Since our input strings are of finite length with n being the order of 40 to 80 bits

(see experiments section), we used a heuristic method to add transitions and states

incrementally. ConstructPCDA function starts with one start state and reads one bit

probability at a time to decide one of the two things, either merge it with existing

state with a self loop or create one/two state(s) and subsequently adding one/two

transitions to the newly created states.

4.2.3.2 Flow Classification

BitProb classifies network flows as belonging to different applications as shown in

Figure 4.12. For this, it uses the probabilistic bit signature represented as PCDA in

Flow
Reconstruction

Bit Extraction

String  
Probability >
Threshold  

Value

Network Packets

Application Identification

Unidentified Application

PCDA

YES

NO

String  Probability
Calculation using

Figure 4.12: Flow Classification in BitProb

the previous phase. The first phase of classification is to reconstruct the bidirectional

flows as in training phase and extract first n bits of binary string. This test binary

string is given as input to all the signatures (all PCDAs) and is classified as that

application to whose PCDA it has maximum occurrence probability exceeding the
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threshold probability for that application. This classification procedure is shown in

Algorithm 4.4. This algorithm classifies the network flow under consideration. The

Algorithm 4.4 Classifying Network Flows
Input: LISTPCDA - List of PCDAs for all applications

Input: Aδ - Probability threshold vector for all applications

Input: FTest- Test Flow

Output: Label of FTest

1: Size ← SizeOf(LISTPCDA)

2: BitString ← GetBitString(FTest)

3: for t=1 to Size do

4: ProbS ← CalculateProb(BitString, LISTPCDA[t])

5: if t == 1 then

6: CurrentProb ← ProbS

7: CurrentApp ← t

8: else if ProbS > CurrentProb then

9: CurrentProb ← ProbS

10: CurrentApp ← t

11: end if

12: end for

13: if CurrentProb ≥ Aδ [t] then

14: Label FTest is of Application t

15: else

16: Label FTest as Unknown Application

17: end if

inputs given to this algorithm are the list of PCDAs and probability threshold vector

Aδ for all applications and a test flow. The output of this algorithm is the labeled test

flow. This algorithm first counts the number of PCDAs generated by Algorithm 4.3

and then extracts BitString in the same way it is extracted in Algorithm 4.3. Subse-

quently, the algorithm calculates the string probability value ProbS for the test flow

as in Equation 4.2 using each PCDA over BitString. It calculates the ProbS values

of the test flow with every PCDA and remembers its highest value and associated

PCDA. If this ProbS value is greater than the threshold value of that application,

current flow is classified as belonging to that application. Otherwise, the algorithm

declares the test flow as unclassified (unknown application).

4.2.3.3 Complexity Analysis of BitProb

Our proposed traffic classification method BitProb has different modules such

that some complexity is associated to each of them. Table 4.3 shows the complexity

of each module of BitProb which is also indicating the steps done in training (offline)
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mode and testing (online) mode.

1. Flow Reconstruction: For bidirectional flow reconstruction, BitProb has

to inspect each packet header and add it into appropriate flow. If there are l flows

and p packets, then it has a complexity of O(l × p).

2. Bit Extraction: Since extracting first n bits from the reconstructed payload is a

constant time operation, the complexity of bit extraction is O(1).

Table 4.3: Module-wise Complexity of BitProb

Module Name Complexity Online/Offline Explanation

Flow Reconstruction O(l× p) Both l= number of flows, p = number of packets in the trace.

Bits Extraction O(1) Both Constant number of bits to be read from the payload training

flow

Bit Signature Generation O(K) Offline For K flows of an application

PCDA Generation O(X) Offline Generate PCDA for X applications

Flow Classification O(m× n) Online m= number of machines and n = number of bits in the payload

of test flow

3. Bit Signature Generation: Bit signature generation module has to operate

on all the flows of an application. Thus, if there are K flows of an application,

complexity of signature generation is O(K).

4. PCDA Generation: PCDA generation module generates PCDA from the bits

and their respective probabilities which can be done in constant time O(1) and as

there are X applications, total complexity is O(X).

5. Flow Classification: Test flows are classified by PCDA and it has to match

every bit with every possible instance of PCDA. This, in the worst case, has a

complexity of O(m× n) where m is number of machine instances and n is number of

bits in a flow.

4.3 Experiments and Results

To evaluate the classification performance of BitCoding and BitProb, we used three

datasets. One dataset was generated in our testbed setup while the other two datasets

are publicly available. In this section, we first describe how the first dataset was

generated in our testbed setup and present the details of other two public datasets.
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Subsequently, we present the experiments conducted to evaluate the classification

performance of BitCoding and BitProb and report the obtained results.

4.3.1 Dataset Description

For our experiments with BitCoding and BitProb, we used three different datasets

containing flows belonging to 20 different application layer protocols listed in Table

4.4 along with their types (text/binary, open/proprietary). The first dataset was

Table 4.4: Application Protocols used in the Experiments

Abbreviation Protocol TCP/UDP Type Proprietariness

BACnet Building Automation and Control network UDP Binary ASHRAE

BitTorrent Bit torrent protocol TCP Text No

BJNP Used to communicate with printer UDP Binary Canon

BOOTP Bootstrap protocol UDP Binary No

CUPS Common Unix Printing System UDP Text Apple Inc.

DNS Domain Name System UDP Binary No

Dropbox Dropbox LAN Sync protocol UDP Text Dropbox

GsmIp GSM over Internet protocol TCP Text No

HTTP Hyper Text Transfer Protocol TCP Text No

Kerberos Kerberos protocol UDP Binary No

MWBP Microsoft Windows Browsing Protocol UDP Text Microsoft

NBNS NetBIOS Name Service UDP Binary No

NBSS NetBIOS Session Service TCP Binary No

NTP Network Time Protocol UDP Binary No

POP Post Office Protocol TCP Text No

QUIC Quick UDP Internet Connections UDP Binary No

RPC Remote Procedure Call TCP Binary No

SIP Session Initiation Protocol UDP Text No

SMTP Simple Mail Transfer Protocol TCP Text No

SSH Secure Shell TCP Binary No

generated by adding flows belonging to SMTP and DNS protocols to the private

dataset described in chapter 3. SMTP and DNS flows were generated using the same

testbed setup we used in chapter 3 to generate dataset. Generation of SMTP and

DNS network traffic from the testbed setup is described below.

1. SMTP: We configured Postfix SMTP server [22] with default configurations

on one of the system of our testbed setup. Using this server, mails were exchanged

and the resulted traffic was collected at server using tcpdump [24] with SMTP as

filter.

2. DNS: We ran tcpdump [24] on all the three systems of the setup for about an
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hour with DNS as protocol filter. The network traces captured from each system was

then merged using mergecap [14].

The flows belonging to these two protocols were captured in the form of pcap traces

and merged to the private dataset described in chapter 3 which contained flows of

BitTorrent, Dropbox, HTTP, SIP and SSH protocols. Thus, the resulting pcap trace

contained flows of seven protocols, thereby, forming the first dataset which was to be

used for our experiments. Second and third datasets are publicly available. One of

this public dataset is from ‘Digital Corpora’ [5] and the other one is provided by ‘FOI

Information Warfare Lab’ [17]. For the subsequent discussion, we name the first,

second and third datasets as Private, Public-1 and Public-2 datasets respectively.

In the next two subsections, we describe the experiments performed to evaluate the

classification performance of BitCoding and BitProb respectively.

4.3.2 Evaluation of BitCoding

To evaluate the classification performance of BitCoding, we divided each dataset

into nearly equal parts (approximately 50% for every protocol) and used the first part

for generating signatures and the other part for testing the detection performance.

The statistics of flows in each case (training and testing) for every protocol and for

each dataset are shown in the Tables 4.5, 4.6 and 4.7.

Table 4.5: Private Dataset Statistics

Protocol TCP/UDP Flows for Training Size (in MB) Flows for Testing Size (in MB)

BitTorrent TCP 01578 245.8 01582 150.4

DNS UDP 65158 005.7 65528 005.7

Dropbox UDP 02256 098.2 02276 153.4

HTTP TCP 97668 220.4 97756 328.3

SIP UDP 01218 194.1 01280 191.4

SMTP TCP 01194 010.1 01216 022.9

SSH TCP 02208 006.2 02212 006.2

Total - 171280 780.5 171850 858.3

We implemented BitCoding as a standalone Java program with jNetPcap

programming library [10]. We used training portion of each protocol taken from each

of the three datasets and generated signatures for every protocol. These signatures

were then used for classification of traffic flows. We used Recall as a measure of
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Table 4.6: Public-1 Dataset Statistics

Protocol TCP/UDP Flows for Training Size (in MB) Flows for Testing Size (in MB)

BACnet UDP 00018 000.097 00022 000.074

BJNP UDP 00068 000.026 00076 000.031

BOOTP UDP 00162 004.400 00172 004.500

CUPS UDP 00090 000.107 00094 000.218

DNS UDP 50938 012.900 51700 011.100

Dropbox UDP 00050 000.109 00052 000.319

HTTP TCP 35928 151.100 35936 133.600

MWBP UDP 00016 000.565 00014 000.574

NBNS UDP 01964 007.800 01964 007.500

NTP UDP 00402 000.652 00402 000.141

QUIC UDP 00186 000.110 00254 000.115

SMTP TCP 01040 010.100 01042 009.900

Total - 90862 187.996 91728 168.072

Table 4.7: Public-2 Dataset Statistics

Protocol TCP/UDP Flows for Training Size (in MB) Flows for Testing Size (in MB)

BOOTP UDP 0182 00.080 0182 0.096

DNS UDP 1926 00.865 1916 1.200

GsmIp TCP 0018 00.007 0018 0.015

HTTP TCP 0514 04.800 0506 9.000

Kerberos UDP 1338 01.600 1344 1.900

NBNS UDP 0578 00.853 0580 0.680

NBSS TCP 0754 02.700 0746 3.900

NTP UDP 0400 00.145 0404 0.648

POP TCP 0112 00.035 0114 0.036

RPC TCP 0014 00.020 0014 0.141

Total - 5836 11.105 5824 17.616

classification performance for BitCoding. We performed three experiments with

the above three datasets to assess the detection performance of BitCoding. In our

experiments, we selected first 40 (n = 40) bits of the flow for generating signatures.

Another point worth noting with BitCoding is that if there are few flows which

are corrupted or incomplete, these may influence the signature generation due to

mismatch in bit positions. One way to address this issue is to filter such flows from

training set or use a threshold on percentage of times a particular bit is either 1 or

0. In our experiments, we used second approach by setting threshold to 99%4. The

three experiments and results obtained are furnished below.

1. Homogeneous Experiments: In the homogeneous experiments, we used

the training portion of each of the three datasets (Private, Public-1 and Public-2) to

generate signatures for each of the protocols. The other portion of the same dataset

4All results shown in this chapter are with this threshold, although there are only few protocols

which had incomplete/corrupted flows.
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was used as the testing dataset. The Recall obtained for each protocol is shown in

Table 4.8.

Table 4.8: Recall for Homogeneous Experiments

(a) Private Dataset

Protocol Recall (in %)

BitTorrent 100.00

DNS 099.69

Dropbox 100.00

HTTP 099.23

SIP 097.97

SMTP 100.00

SSH 100.00

(b) Public-1 Dataset

Protocol Recall (in %)

BACnet 095.45

BJNP 100.00

BOOTP 100.00

CUPS 093.61

DNS 099.93

Dropbox 100.00

HTTP 097.54

MWBP 100.00

QUIC 100.00

NBNS 099.59

NTP 100.00

SMTP 100.00

(c) Public-2 Dataset

Protocol Recall (in %)

BOOTP 100.00

DNS 099.79

GsmIp 100.00

HTTP 100.00

Kerberos 100.00

NBNS 098.97

NBSS 098.91

NTP 100.00

POP 100.00

RPC 100.00

From these results we can notice that, BitCoding has an average rate of Recall

greater than 99%. This experiment suggests that BitCoding performs very well if

the testing dataset is from the same site as that of training dataset.

2. Heterogeneous Experiments: In heterogeneous set of experiments, we used

the training portion of each dataset to generate signatures for application protocols

in that dataset. The testing portion of the other two datasets are used to calculate

the Recall. The idea is to assess robustness of signatures generated in detecting

applications when presented with dataset collected from other sites5. Tables 4.9,

4.10 and 4.11 show the Recall for the cases where the signatures were generated

with only the training portion of the Private, Public-1 and Public-2 datasets and

tested with testing portion of the other two datasets respectively. It is worth noting

here that, in this set of experiments testing is done only for the overlapping set of

protocols (training and testing). This experiment gives an idea of how robust the

generated signatures are “in not including site specific information in the signatures”.

For example, some protocols include the name of hosts, user names, etc in the

communication. If the training data is collected from a particular site there is a

chance that these keywords also be part of invariant bits of signature which should be

5All three datasets are collected from different sites
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Table 4.9: Recall for Training with Private Dataset and Testing with Public-1 and

Public-2 Datasets

(a) Public-1 Dataset

Protocol Recall (in%)

DNS 100.00

Dropbox 100.00

HTTP 099.52

SMTP 100.00

(b) Public-2 Dataset

Protocol Recall (in%)

DNS 095.19

HTTP 093.28

Table 4.10: Recall for Training with Public-1 Dataset and Testing with Private and

Public-2 Datasets

(a) Private Dataset

Protocol Recall (in%)

DNS 096.39

Dropbox 100.00

HTTP 095.96

SMTP 100.00

(b) Public-2 Dataset

Protocol Recall (in%)

BOOTP 100.00

DNS 094.99

HTTP 091.69

NBNS 099.68

NTP 100.00

Table 4.11: Recall for Training with Public-2 Dataset and Testing with Private and

Public-1 Datasets

(a) Private Dataset

Protocol Recall (in%)

DNS 096.39

HTTP 093.89

(b) Public-1 Dataset

Protocol Recall (in%)

BOOTP 090.69

DNS 099.93

HTTP 099.93

NBNS 099.59

NTP 099.51
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avoided. We can notice from the three tables that in all the cases of cross evaluation,

Recall is over 90% (with many having 95 to 100%) which indicates that the generated

signatures are indeed robust (with little compromise in performance) in detecting

applications when presented with data from other sites.

3. Grand Experiments: In grand experiments, we merged the training portion

of all the protocols of all the three datasets and generated a grand training dataset.

This grand training dataset was used to generate the signatures for each protocol.

For testing purpose, we used the three dataset’s respective testing portions and also

a combined dataset (of all the three testing portions) to evaluate the performance.

The signatures generated after the run length encoding (RLE) in this case are shown

in Table 4.12. These signatures are subsequently converted into TCCA. One such

Table 4.12: Signatures Generated for Different Protocols with n = 40 Bits in Grand

Experiments

Protocol Signature

BACnet 1W6Z1W4Z4*11Z1W1*1Z1*1Z1*1Z1*1Z2*1Z1*

BJNP 1Z1W1Z1W5Z1W2Z3W2Z1W2Z1W1Z1W2Z1W1Z1W11Z1W

BitTorrent 3Z1W2Z2W1Z1W4Z1W2Z2W1Z1W2Z1W1Z3W1Z1W3Z1W1Z1W1Z1W2Z

BOOTP 6Z2*7Z1W5Z2W8Z9*

CUPS 2Z2W2*1Z1*2Z2W1*4Z1*1W5*1Z1*1W5*1Z1*1W1*1Z3*

DNS 17*6Z1W1*15Z

Dropbox 1Z4W1Z2W2Z1W3Z1W2Z2W1Z1W4Z2W1Z4W1Z3W2Z2W

GsmIp 1Z1W1Z2W1Z1W2Z1W4Z1W2Z1W1Z2W4Z1W3Z1W9Z1W

HTTP 1Z1W1Z5*1Z1W2Z1*1W1*1W1Z1W1Z5*1Z6*2Z2*1Z4*

Kerberos 1Z8*4Z2*5Z20*

MWBP 3Z1W3Z1W4Z1*1Z1W1Z16*2W6Z

NBNS 17*1Z1*1Z2*1Z1W3Z1*12Z

NBSS 1*6Z1*16Z16*

NTP 7*1W5Z3*3Z13*8Z

POP 2Z1W1Z1W1Z2W1Z1W2Z4W1Z1W2Z1W1Z2W2Z1W6Z1W2Z1*1W2Z

QUIC 1Z15*6Z1W1Z16*

RPC 1W24Z1W4*2Z2W6*

SIP 1Z1W1Z5*1Z1W1Z5*1Z1W1Z1*1Z3*1Z2*1Z1W2*1W1Z7*

SMTP 2Z2W2Z1W3Z2W2Z1W3Z2W6Z1W6Z1*1W1Z3*1Z

SSH 1Z1W1Z1W2Z2W1Z1W1Z1W2Z2W1Z1W2Z1W5Z1W1Z2W1Z1W2Z2W2Z1W1Z

TCCA for DNS protocol is shown in Figure 4.13. The time taken to generate the

signatures and converting them to TCCA in each case are also shown in Table

4.136. The time taken to generate the signatures depends on the number of flows in

the training dataset as from every flow bits are extracted and processed to derive

6We show the signatures and TCCA for this case as this experiment is comprehensive
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q0 q1 q2

q3q4

0, 0 ≤ C0 ≤ 17, C0 ← C0 + 1

1, 0 ≤ C0 ≤ 17, C0 ← C0 + 1

0, C0 == 17, C1 ← 1 1, C1 == 6, C2 ← 1

0, 0 ≤ C1 ≤ 6, C1 ← C1 + 1

0, C2 == 1, C3 ← 1 1, C2 == 1, C3 ← 1

0, 0 ≤ C3 ≤ 14, C3 ← C3 + 1

0, C3 == 14

Figure 4.13: TCCA Generated for DNS with 40 Bit Length Compressed Signature

“17*6Z1W1*15Z”

Table 4.13: Signature Generation Time for Grand Experiments

Protocol Training time (in seconds)

BACnet 00.445

BJNP 00.414

BitTorrent 04.018

BOOTP 00.704

CUPS 00.500

DNS 34.500

Dropbox 03.367

GsmIp 00.288

HTTP 46.416

Kerberos 01.226

MWBP 00.373

NBNS 01.820

NBSS 00.871

NTP 00.815

POP 00.368

QUIC 00.493

RPC 00.237

SIP 03.629

SMTP 01.587

SSH 01.502

Total time 103.573
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the signature. We can notice that BitCoding is very fast in processing flows and

generating signatures. Even for HTTP with 134110 number of flows in training set,

it is taking less than a minute to generate the signature. Table 4.14 shows the Recall

rate for four different experiments. We can notice that the results are similar to the

previous cases (with many having Recall close to 100%). We can also notice that,

Recall has improved for many protocols compared to heterogeneous experiments,

indicating signatures are more robust.

Table 4.14: Recall for Training with Grand Dataset

Protocol Grand Dataset Private Dataset Public-1 Dataset Public-2 Dataset

BACnet 095.45 - 095.45 -

BJNP 100.00 - 100.00 -

BitTorrent 100.00 100.00 - -

BOOTP 100.00 - 100.00 100.00

CUPS 093.61 - 093.61 -

DNS 099.75 099.69 100.00 097.91

Dropbox 100.00 100.00 100.00 -

GsmIp 100.00 - - 100.00

HTTP 098.18 098.44 097.42 091.69

Kerberos 100.00 - - 100.00

MWBP 100.00 - 100.00 -

NBNS 099.44 - 099.69 098.96

NBSS 098.90 - - 98.90

NTP 100.00 - 100.00 100.00

POP 100.00 - - 100.00

QUIC 100.00 - 100.00 -

RPC 100.00 - - 100.00

SIP 097.96 097.96 - -

SMTP 100.00 100.00 100.00 -

SSH 100.00 100.00 - -

4.3.2.1 Measuring Robustness of Signatures with Cross Application Flows

As discussed earlier in Section 4.3, signatures of one application might match with

the flows of other applications. The chances of this cross signature matching increases

as number of protocols increase particularly with short signature lengths. To un-

derstand the robustness and uniqueness of signatures generated by BitCoding, we

performed an experiment with n×n signature matching. In this experiment, we eval-

uated the flows of one application protocol with signatures of all other protocols. For

this experiment, we used the grand experiments dataset (both training and testing).

The results of these experiments are summarized in the Table 4.15. The rows in the
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table show the number of flows of type, indicated in the column, matched against the

signature of protocol in the row. For example, the third column BitTorrent has 1582

number of flows in testing dataset and 1582 of them are matched with BitTorrent sig-

nature. Similarly the second row first column has a value of 0 indicating none of BJNP

flows are matched against signatures of BACnet. Similar interpretation was done for

other cases too. We can notice that there are indeed some cases where signatures of

one protocol match with flows of other protocols (shown in red colour). For example,

out of 119144 flows of DNS, 116646 flows match with NBNS protocol.

As described in Section 4.3, we identified weak signatures by computing the

Relaxed Hamming Distance (RHD) between the signatures generated. We com-

puted the RHD values between every pair of application protocol signatures gener-

ated. The RHD values obtained are shown in Table 4.16. We can notice that most

of the cross signature matching happened with those applications whose signatures

have a zero RHD values (Ex. DNS and Kerberos). However there were few cross

signature matching even with non-zero distance values too (28 HTTP flows matching

with CUPS). We manually screened these flows and noticed that these were either

incomplete or corrupted just like the ones found in training set.

4.3.2.2 Effect of Number of Bits and Number of Flows on Signature Qual-

ity

The quality of generated signatures is governed by two important parameters -

Number of bits and Number of flows. In this section, we study the impact of these

two parameters on the quality of signatures generated. First study is on increasing

the number of bits used for signature generation and second is the number of flows

used for signature generation. These two are elaborated below.

1. Effect of Increasing the Number of Bits: As we noticed in the last

section (with n × n evaluation experiment and RHD calculation), there are indeed

few cases where flows of one type of protocol are matched with signatures of other

type of protocol leading to incorrect classification or at-best a guess of application
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(matching with more than application signature). In this section, we provide results

of the experiments done to find the effect of increasing the signature bits. We

performed experiments by increasing the number of bits from 40 to 80 and 120 and

evaluated the number of cross signature matches for those cases which showed cross

matching in previous experiment (n × n evaluation). Table 4.17 shows the new

signatures generated with 80 bits of payload extract. Table 4.18 shows the number

Table 4.17: Signatures Generated for Different Protocols with n = 80 Bits

Protocol Signature

BACnet 1W6Z1W4Z4*11Z1W1*1Z1*1Z1*1Z1*1Z2*1Z1*2Z2*1Z1*2Z2*3W1*3W1*1W1*4W1*1Z3*1Z1*1Z2W6*

CUPS 2Z2W2*1Z1*2Z2W1*4Z1*1W5*1Z1*1W5*1Z1*1W1*1Z3*1Z1*1W1*1Z3*1Z1*1W2Z1*1Z1*1Z1*1W2*1Z2*1Z1*1W1*5Z1*

1W2*2Z1*

HTTP 1Z1W1Z5*1Z1W2Z1*1W1*1W1Z1W1Z5*1Z6*2Z2*1Z4*1Z7*1Z7*1Z7*1Z7*

DNS 17*6Z1W1*22Z1W14Z1*17Z

Kerberos 1Z8*4Z2*5Z31*1Z28*

MWBP 3Z1W3Z1W4Z1*1Z1W1Z16*2W6Z1W1Z1W1Z1W5Z1*1Z1*1Z3*1Z1*1Z4*8Z1W3Z1W1Z1W1Z

NBNS 17*1Z1*1Z2*1Z1W3Z1*19Z1*15Z1*16Z

NTP 7*1W5Z3*3Z13*15Z1*2Z14*15Z1*

of signatures matched for the protocol type which had issue with 40 bits signature.

We can notice that even with 80 bits too, the cross signature matching continued,

Table 4.18: Matrix for n× n Evaluation Scenario with n = 80 Bits

BACnet CUPS DNS HTTP Kerberos MWBP NBNS NTP Unclassified

BACnet 20 0 0 0 0 0 0 0 0

CUPS 0 94 0 14 0 0 0 0 0

DNS 0 0 117400 0 0 0 0 0 1744

HTTP 0 0 0 131756 0 0 0 0 2442

Kerberos 0 0 1710 0 1338 0 36 382 6

MWBP 0 0 0 0 0 14 0 0 0

NBNS 0 0 116646 0 0 0 2530 0 14

NTP 0 0 1792 0 0 0 42 796 10

however the number of cross matching cases decreased as compared to the previous

case. Similarly, Table 4.19 shows the signatures generated with 120 bits of payload

extract (for only those cases which had cross matching even with 80 bits signature)

and Table 4.20 shows the cross signature matching performance. We can notice that

with signature length of 120 bits, the cross signature matching issue is completely

addressed. We computed the RHD values between all pairs of protocols and the

distances are shown in Table 4.21.We can notice that there are no zero RHD values in

this case which also justifies the no cross signature matching. With this experiment,

we can conclude that for different protocols, we need signatures of different lengths.
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Table 4.19: Signatures Generated for Different Protocols with n = 120 Bits

Protocol Signature

CUPS 2Z2W2*1Z1*2Z2W1*4Z1*1W5*1Z1*1W5*1Z1*1W1*1Z3*1Z1*1W1*1Z3*1Z1*1W2Z1*1Z1*1Z1*1W2*1Z2*1Z1*1W1*

5Z1*1W2*2Z1*1Z1*1W2*1Z2*1Z1*1W5*1Z1*1W5*2Z1W5*2Z1W2*3W

DNS 17*6Z1W1*22Z1W14Z1*36Z5*1Z7*1Z7*

Kerberos 1Z8*4Z2*5Z31*1Z39*1Z5*1Z1*2Z4*1Z3*1Z2*5Z3*

NBNS 17*1Z1*1Z2*1Z1W3Z1*19Z1*15Z1*31Z1*2Z1W6Z1W3Z3*1Z1W1Z5*

NTP 7*1W5Z3*3Z13*15Z1*2Z14*15Z18*1Z10*1Z3*3Z1*2Z2*

Table 4.20: Matrix for n× n Evaluation Scenario with n =120 Bits

CUPS DNS Kerberos NBNS NTP Unclassified

CUPS 94 0 0 0 0 0

DNS 0 117374 0 0 0 1770

Kerberos 0 0 1226 0 0 118

NBNS 0 0 0 2530 0 14

NTP 0 0 0 0 788 18

For correct detection of application, this length needs to be empirically found out.

One way to address this is to generate a signature for an application and test it for

overlap with RHD values and increase the length if there is a overlap. As BitCoding

uses RLE to compress the signature bits for efficient representation, we computed

the compression ratio achieved by RLE for signatures of different lengths. The

compression ratio is the ratio of length of signature in the RLE encoded signature to

the length of signature before RLE. This is given by Equation 4.3.

CompressionRatio =
Length After RLE

Length Before RLE
(4.3)

Figure 4.14 shows the compression ratio achieved by RLE for 5 different protocols7.

We can notice that increasing the length of signature bits achieve better compression

ratio. Similar observations were made for other protocols too.

2. Effect of Number of Flows on Signature Quality: As we generate signatures

from the payloads of training application flows, the number of flows present in the

training dataset is an important parameter for generating quality signatures. It is

a natural question to ask how many flows are required to generate good signatures.

To understand this, we performed an experiment with different number of flows to

generate the signatures and tested the performance using our grand dataset. Figure

7We show for only 5 protocols here for clarity
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Figure 4.14: Compression Ratio Achieved for Different Protocols

4.15 shows the effect on the Recall with different number of flows for four protocols.

We can notice that for two of the protocols (Dropbox and SSH) the Recall rate is
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Figure 4.15: Effect of Number of Flows on Recall

100% from the beginning. However with other two protocols it gradually increases

and approaches to 100% after 256 and 512 number of flows. The same trend is shown

with other protocols too. Thus we can infer that, for few protocols, small number of

flows are sufficient for generating the signatures and for others relatively more (few

hundred) are required to generate good signatures.
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4.3.3 Evaluation of BitProb

To evaluate the detection performance of BitProb, we divided each dataset into

nearly two equal halves such that one part was used for training while other part was

used for testing purpose. The training part of each dataset was further divided into

the ratio of 2:1 where the first part was used for signature generation while second part

was used for threshold string probability value calculation. The statistics of dataset

division for all three datasets is given in Table 4.22, 4.23 and 4.24.

Table 4.22: Private Dataset Statistics

Protocol Flows for Training Size (in MB) Flows for Threshold Setting Size (in MB) Flows for Testing Size (in MB)

BitTorrent 01041 162.228 00537 083.572 01582 150.400

DNS 43004 003.762 22154 001.938 65528 005.700

Dropbox 01482 065.500 00774 032.700 02276 153.400

HTTP 64460 145.464 33208 074.936 97756 328.300

SIP 00803 128.106 00415 065.994 01280 191.400

SMTP 00788 006.666 00406 003.434 01216 022.900

SSH 01457 004.092 00751 002.108 02212 006.200

Total 113035 515.814 58245 264.686 171850 858.300

Table 4.23: Public Dataset-1 Statistics

Protocol Flows for Training Size (in MB) Flows for Threshold Setting Size (in MB) Flows for Testing Size (in MB)

BACnet 00011 00.064 00007 00.032 00022 00.074

BJNP 00044 00.017 00024 00.008 00076 00.031

Bootp 00103 02.970 00059 01.430 00172 04.500

CUPS 00058 00.072 00032 00.035 00094 00.218

DNS 33619 08.514 17319 04.386 51700 11.100

Dropbox 00032 00.073 00018 00.036 00052 00.319

HTTP 23712 99.726 12216 51.374 35936 133.60

MWBP 00010 00.372 00006 00.192 00014 00.574

NBNS 01296 04.950 00668 02.250 01964 07.500

NTP 00265 00.435 00137 00.217 00402 00.141

QUIC 00124 00.075 00062 00.039 00254 00.115

SMTP 00686 06.666 00354 03.434 01042 09.9000

Total 59960 123.934 30902 64.062 91728 168.072

Table 4.24: Public Dataset-2 Statistics

Protocol Flows for Training Size (in MB) Flows for Threshold Setting Size (in MB) Flows for Testing Size (in MB)

Bootp 0120 0.063 0062 0.031 0182 0.096

DNS 1271 0.570 0655 0.294 1916 1.200

GsmIp 0011 0.004 0007 0.002 0018 0.015

HTTP 0339 3.168 0175 1.632 0506 9.000

Kerberos 0883 1.056 0455 0.544 1344 1.900

NBNS 0380 0.569 0198 0.284 0580 0.680

NBSS 0497 1.782 0257 0.918 0746 3.900

NTP 0262 0.097 0138 0.048 0404 0.648

POP 0073 0.023 0039 0.011 0114 0.036

RPC 0009 0.013 0005 0.006 0014 0.141

Total 3845 7.345 1991 3.760 5824 17.616
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We also implemented BitProb as a standalone Java program with jNetPcap pro-

gramming library [10]. We used first (larger) portion of training dataset taken from

each of the three datasets and generated signatures for every protocol. We used the

second (smaller) portion of the training dataset from each of the three datasets to

calculate the threshold string probability value. The testing dataset is then used for

classification. We used Recall as a measure of classification performance for BitProb.

Recall is the ratio of flows correctly labeled as a particular application to the total

number of flows belonging to that application.

Similar to BitCoding, we performed three experiments using these datasets to

evaluate the classification performance of BitProb also. In our experiments, we

extracted first 40 bits (n=40) to generate probabilistic signatures and calculated

threshold values. We performed three types of experiments namely Homogeneous

experiments, Heterogeneous experiments and Grand experiments. The details of

these experiments and the results obtained from each experiment are presented below.

1. Homogeneous Experiments: In the homogeneous experiment, we used

training part and testing part of same dataset (Private, Public-1 and Public-2) for

evaluation. The Recall obtained for each application protocol is shown in Table 4.25.

We can notice that the average Recall is more than 99% for homogeneous experiment.

Table 4.25: Recall for Homogeneous Experiments

(a) Private Dataset

Protocol Recall (in %)

BitTorrent 100.00

DNS 099.97

Dropbox 100.00

HTTP 099.99

SIP 100.00

SMTP 100.00

SSH 100.00

(b) Public-1 Dataset

Protocol Recall (in %)

BACnet 100.00

BJNP 099.99

BOOTP 100.00

CUPS 100.00

DNS 099.98

Dropbox 100.00

HTTP 099.92

MWBP 100.00

QUIC 100.00

NBNS 099.90

NTP 100.00

SMTP 100.00

(c) Public-2 Dataset

Protocol Recall (in %)

BOOTP 097.70

DNS 099.34

GsmIp 100.00

HTTP 100.00

Kerberos 100.00

NBNS 100.00

NBSS 100.00

NTP 100.00

POP 100.00

RPC 100.00

The results indicate that BitProb showed very high accuracy for homogeneous
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experiment.

2. Heterogeneous Experiments: In the heterogeneous experiment, we used

training part of one dataset whereas we used testing part of other two datasets for

evaluation. We performed this experiment to evaluate the robustness of signatures

Table 4.26: Recall for Training with Private Dataset and Testing with Public-1 and

Public-2 Datasets

(a) Public-1 Dataset

Protocol Recall (in%)

DNS 100.00

Dropbox 100.00

HTTP 100.00

SMTP 100.00

(b) Public-2 Dataset

Protocol Recall (in%)

DNS 097.91

HTTP 100.00

Table 4.27: Recall for Training with Public-1 Dataset and Testing with Private and

Public-2 Datasets

(a) Private Dataset

Protocol Recall (in%)

DNS 098.54

Dropbox 100.00

HTTP 099.50

SMTP 100.00

(b) Public-2 Dataset

Protocol Recall (in%)

Bootp 100.00

DNS 095.20

HTTP 098.82

NBNS 100.00

NTP 099.50

Table 4.28: Recall for Training with Public-2 Dataset and Testing with Private and

Public-1 Datasets

(a) Private Dataset

Protocol Recall (in%)

DNS 096.40

HTTP 099.89

(b) Public-1 Dataset

Protocol Recall (in%)

Bootp 095.83

DNS 099.93

HTTP 099.93

NBNS 099.99

NTP 100.00

i.e. whether signatures generated from one site can classify the flows of same

application protocol on other sites8 or not. These results are shown in terms of

8All three datasets belong to different sites
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Recall in Table 4.26, 4.27 and 4.28 where the signatures were generated with only

the training portion of the Private, Public-1 and Public-2 datasets and tested with

testing portion of the other two datasets respectively. This experiment was important

because some protocols contain site information like host machine name, user name,

etc. which may become a part of signature and it needs to be avoided. From the

results, we can notice that minimum Recall obtained is greater than 95% which

indicates that the generated signatures are indeed robust (with little compromise in

performance) in detecting application protocols when presented with data from other

sites.

3. Grand Experiments: In the grand experiment, we merged the training part

of all the datasets and generated a grand training dataset. From this dataset, we

generated signatures in the form of PCDA for each application protocol. Time taken

to generate the signatures for this experiment for different protocols are shown in

Table 4.29. The time taken to generate the signatures depends on the number of

Table 4.29: Training time for Application Protocols

Protocol Training time (in seconds)

BACnet 000.571

BitTorrent 037.134

BJNP 001.068

Bootp 001.670

CUPS 000.934

DNS 068.343

Dropbox 014.227

GsmIp 000.654

HTTP 275.363

Kerberos 007.995

MWBP 000.708

NBNS 003.787

NBSS 002.341

NTP 002.145

POP 000.818

QUIC 001.095

RPC 000.062

SIP 010.553

SMTP 003.234

SSH 003.256

Total time 497.841

flows in the training dataset as from every flow bits are extracted and processed

to derive the signature. We can notice that BitProb is fast having minimum and
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maximum time taken being 0.062 seconds and 275.363 seconds for processing flows

and generating signatures. Subsequently, we calculated threshold string probability

values for each application protocol. These threshold values are shown in Table

4.30. For testing purpose, we used testing part of all three datasets and also the

Table 4.30: Threshold Values for Application Protocols

Protocol Threshold Values

BACnet 4.1943× 10−5

BitTorrent 0.96038263

BJNP 0.91115702

Bootp 4.3783× 10−5

CUPS 3.6323× 10−9

DNS 1.4471× 10−17

Dropbox 0.93933648

GsmIp 1

HTTP 7.2987× 10−26

Kerberos 4.1212× 10−10

MWBP 8.6973× 10−6

NBNS 2.7617× 10−13

NBSS 2.7942× 10−8

NTP 1.1363× 10−10

POP 1

QUIC 1.3882× 10−11

RPC 0.82458621

SIP 2.3409× 10−20

SMTP 0.00423356

SSH 1

combinations of all three datasets. Recall for the grand experiment is shown in Table

4.31.

4.3.3.1 Measuring the Uniqueness of Probability Values and Thresholds

In this subsection, we present the experiments performed to understand the unique-

ness of string probabilities generated and also threshold values. For this experiment

we relaxed the criteria of selecting maximum probability application (PCDA) and

comparing with the probability threshold of that application. Here for every test

application flow, probability value of binary bit string is calculated by giving it as in-

put to every application PCDA and compared with the threshold of that application

against whose the string is matched. The idea was to understand if the probability

values of two bit strings are of two different applications being closer so as to mislead

the classification. The results of these experiments are shown in Table 4.32. The rows
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Table 4.31: Recall for Training with Grand Dataset

Protocol Grand Dataset Private Dataset Public-1 Dataset Public-2 Dataset

BACnet 100.00 - 100.00 -

BJNP 099.99 - 099.99 -

BitTorrent 100.00 100.00 - -

Bootp 097.17 - 093.82 100.00

CUPS 100.00 - 100.00 -

DNS 099.99 100.00 100.00 099.95

Dropbox 100.00 100.00 100.00 -

GsmIp 100.00 - - 100.00

HTTP 098.19 098.64 097.42 091.69

Kerberos 100.00 - - 100.00

MWBP 100.00 - 100.00 -

NBNS 099.44 - 099.69 098.96

NBSS 100.00 - - 100.00

NTP 100.00 - 100.00 100.00

POP 100.00 - - 100.00

QUIC 100.00 - 100.00 -

RPC 100.00 - - 100.00

SIP 100.00 100.00 - -

SMTP 100.00 100.00 100.00 -

SSH 100.00 100.00 - -

in the table show the number of flows of type indicated in the column are evaluated

against the signature (PCDA) of protocol in the row. For example, the sixth column

DNS has 119144 number of flows in testing dataset and 119142 of them are correctly

identified with DNS signature while remaining 2 flows could not be classified as they

fell short of meeting the minimum probability thresholds of DNS. Similar interpreta-

tion can be done for other cases as well. We can notice that there are indeed some

cases where signatures of one protocol match with flows of other protocol (shown in

red colour). For example, out of 119144 flows of DNS 254 flows were matched with

NBNS protocol. However these numbers are very small and manageable.

4.3.3.2 Effect of Number of Flows on Signature Quality

Similar to the experiments performed in BitCoding method, we performed an

experiment in BitProb also to show the effect of varying number of flows of four

protocols on BitProb’s Recall. The results of this experiment is shown in Figure

4.16. We can notice from this figure that for two of the protocols (Dropbox and

SSH), BitProb’s Recall is 100% independent of the number of flows used to generate

signatures. However, for other two protocols, it gradually increases after 256 and 512
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Figure 4.16: Effect of Number of Flows on Recall

number of flows. The same trend is shown with other protocols too. Thus we can

infer that, for few protocols, small number of flows are sufficient for generating the

signatures and for others, relatively more (few hundred) are required to generate good

signatures.

4.4 Performance Comparison and Discussion

We also performed experiments to compare the classification performance of our

proposed methods with two other methods in the literature. In this section, we de-

scribe these experiments and furnish the obtained results.

4.4.1 Comparison between BitCoding and BitProb

Our two proposed methodsBitCoding andBitProb perform decently in identifying

the application flows. In order to understand the performance difference between these

two we performed an experiment using grand dataset. We report the results in the

form of confusion matrices as in Table 4.33 and Table 4.34 for BitCoding and BitProb

respectively. We can notice that BitProb has performed better in comparison to

BitCoding. The reason for the better performance of BitProb is attributed to the

contribution of those bits which were otherwise ignored as (‘*’) in BitCoding.
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4.4.2 Comparison with BitF low

We compared the classification performance of BitCoding and BitProb with a

recent method BitF low [123] using our grand dataset. BitF low extracts first n bits

from each flow of an application in training dataset and use AdaBoost machine learning

algorithm [92] for learning the bit patterns. The experiments described in [123] used

first 32 bits for TCP flows and first 40 bits for UDP flows. In our experiments, we

considered 40 bits long signatures to compare the classification performances. Figure

4.17 shows performance comparison in terms of Recall for these experiments. We
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Figure 4.17: Recall Comparison Between BitF low and Proposed Methods

can notice that BitProb performed slightly better as compared to BitCoding for

all protocols but Bootp. Also, both these methods performed consistently well in

comparison to BitF low with some of the protocol flows were not identified at all

by BitF low. One of the reason for under-performance of BitF low is because of

uneven number of flow samples in training dataset and other reason being similar bit

patterns of protocols which exhibit higher similarity when compared with a similarity

measurement (which is common with machine learning algorithms). These issues

are bound to happen in any dataset collected from any network. We believe that

this issue will further aggravate with increase in number of application protocols. In
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contrast, BitCoding and BitProb can generate signatures with limited number of

flows. Further, both these methods can work with variable number of bits for each

protocol which is not possible for machine learning algorithms.

4.4.3 Comparison with ACAS

We compared BitCoding and BitProb with another classical method ACAS [60]

which works with byte level content. ACAS generates feature vector from first ‘n’

bytes of the payload. It generates a binary feature vector of size n× 256 where ASCII

position value (1-256) of a byte at ith position sets the binary value at 256 × i + c[i]

where c[i] is the position value of byte at ith position in payload. Feature vectors

so generated are classified using machine learning algorithms (AdaBoost [92], Naive

Bayes [31], Max-entropy [42]). The authors experimented and reported results for first

64 bytes of payload. We repeated this experiment with public-2 dataset and compared

the performance with 40 bit signatures of BitCoding and BitProb. Figure 4.18 shows

the Recall rate for different approaches. We can notice that BitCoding performed
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Figure 4.18: Recall Comparison Between ACAS and Proposed Methods

better than ACAS for many protocols while BitProb performed better than ACAS

for all the protocols but using orders of magnitude less time and data.
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4.4.4 Discussion

We can notice from the Figure 4.17 and Figure 4.18 that particularly for few

protocols like Bootp, NTP and RPC, BitF low and ACAS showed poor recall rate.

This is because of the less number of flows in training dataset for these protocols as

compared to other protocols in the same dataset. This results into an under trained

machine learning model for these protocols which leads to poor recall rate. However,

there are few other protocols also like BACnet and GSM over IP which has less number

of flows in training dataset but still they showed good recall rate. This is because they

have approximately same binary string sequence in all training flows which are quite

different from the string sequence of other protocols in the training dataset which leads

to their decent recall rate. This observation also shows that our proposed methods

can perform well even if we have less number of flows in training dataset.

4.5 Conclusion

In this chapter, we presented two bit-level application classification methods

BitCoding and BitProb. BitCoding uses first n bits of data extracted from the

payloads of bidirectional flow and subsequently, it encodes the signatures with RLE

and transforms into a state transition machine TCCA for efficient representation and

comparison. Similar to BitCoding, BitProb also uses first n bits of data extracted

from the payloads of bidirectional flow. It then transforms the generated signatures

into a state transition machine PCDA. With extensive experimentation we showed

that bit-level signatures generated by BitCoding and BitProb are robust in detecting

applications and can be ported from site to site with little compromise in detection

performance. Further, we also showed that the signature quality enhances on increas-

ing the number of flows used for signature generation. We also compared BitCoding

and BitProb with a recently proposed bit-level classification method and a byte-level

classification method and showed that our methods outperformed previously known

bit-level and byte-level classification methods.
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Chapter 5

Zero Day Attack Detection in Web

Traffic using Payload Analysis

Application specific attacks are on an ever increasing trend [80]. These attacks

include buffer overflows, command injection attacks, scripting attacks, etc. These

attacks can evade detection from an Intrusion Detection System (IDS) which inspect

only header or flow level data as there may not be any visible changes in patterns

at header or flow level [30]. To detect such application level attacks, anomaly

based detection systems which use payload analysis are proposed [71]. Some of

these methods detect anomalous packets by creating a database of short sequences

(n-grams discussed in Section 5.1.2) from payload of known non-malicious packets

and checking the presence or absence of these sequences in the test packet [113].

However, this approach of binary comparison (presence or absence) is prone to

evasion as discussed later in Section 5.1.1. To overcome this issue, we propose two

methods, Rangegram and OCPAD in this chapter to detect zero day attacks in the

web traffic. As a representative, we choose web traffic as attacks against HTTP are

very common. Both these methods extract n-grams from HTTP packet payload to

detect anomalous packets in web traffic. These methods not only check the presence

or absence of n-grams but also check the occurrence frequencies and probabilities of

n-grams in a packet. Our contributions in this chapter are as follows:
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1. We propose two methods, Rangegram and OCPAD, to detect zero day at-

tacks in web traffic by analyzing payload content of HTTP packets.

2. We propose efficient data structures called Min-Max-Tree and Probability-Tree

used by Rangegram and OCPAD respectively to store n-grams extracted from packet

payload. Along with the extracted n-grams, Min-Max-Tree and Probability-Tree store

the frequency range and occurrence probability range, respectively, of n-grams found

in attack free payloads to create a normal profile.

3. We experiment with two HTTP datasets and report the performance of our

anomaly detection methods in terms of its Recall and False Positive Rate (FPR).

4. We compare the detection performance of both the methods with a closely related

work Anagram [113].

Rest of this chapter is organized as follows. In Section 5.1, we describe the working

of our proposed anomaly detection methods Rangegram and OCPAD. The experiment

details and results are presented in Section 5.2 followed by the conclusion in Section

5.3.

5.1 Proposed Detection Approaches

As discussed in the last section, we propose two anomaly detection methods Range-

gram and OCPAD to detect zero day attacks in web traffic. In this section, we first

describe the motivation behind proposing these two anomaly detection methods which

is subsequently followed by the explanation of working of these methods.

5.1.1 Motivation

Several payload based anomaly detection methods [51, 65, 89, 90, 112, 113, 114] are

proposed in the literature to detect application specific zero day attacks. These meth-

ods work by creating a database of short sequences (n-grams) from payload of known

non-malicious packets of that application. The created database represents the normal

behaviour profile of the application. In order to detect anomalies, short sequences of

a test packet are created and compared against the sequences stored in the database.
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A score is generated either by counting number of n-grams not found in the database

or using their occurrence frequency. This score indicates the degree of deviation from

normal profile. If the score crosses a decided threshold value, the packet is declared

as anomalous. However, the detection method [112] can be evaded using mimicry

attacks [51] wherein an adversary can launch attack in such a way that the malicious

traffic is almost similar to the normal traffic used for training purpose. Moreover, it is

recently observed [87] that anomaly detection method Anagram proposed in [113] can

be bypassed by having conversation with target for a while to discover randomization

mask and subsequently use this to craft packets. Also, Anagram declares a packet as

anomaly if the generated score is greater than a predefined threshold. This approach

of binary comparison (presence or absence) is prone to evasion because an accidental

presence of a short sequence in the normal packet which is otherwise only seen in a

malicious packet may result into misclassification of the malicious packet if only the

sequence’s presence or absence is taken into account. For example, the partial content

of a sample payload of a buffer overflow attack is shown in Figure 5.1. It can be

Figure 5.1: Payload of a Buffer Overflow Attack

seen from this figure that, it contains a large number of ‘A’s inside its payload which

are meant to overflow the buffer of a target process to hijack its execution. If binary

comparison of short sequences is done and by chance one short sequence containing
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only ‘A’s is found in normal profile, this packet is not detected as anomalous as almost

all sequences of this packet are declared as normal. This may result into large number

of false negatives.

Drawing motivation from this, we propose two methods: Rangegram and OCPAD

which also use short sequences to analyze payload content of HTTP packets. First

method Rangegram is a preliminary work towards the detection of zero day attacks.

Rangegram not only checks the presence or absence of short sequences but it also

checks their occurrence frequency range. We also propose another anomaly detection

technique OCPAD which uses a version of Multinomial Bayesian one class classifica-

tion technique for accurately detecting anomalous payloads. In the next section, we

describe the working of these two detection approaches.

5.1.2 Rangegram

Rangegram is an n-gram based zero day attack detection method which uses

statistics of n-grams extracted from payload of a HTTP packet to calculate a score

known as anomaly score. This score is used to identify the anomalous packets.

Rangegram has two phases of operation - training and testing. During training phase,

it creates a normal profile from an attack free dataset. Subsequently, during testing

phase, anomaly score of each test packet is calculated by comparing with normal

profile generated during training phase. If anomaly score is greater than the decided

threshold value, Rangegram labels the test packet as anomalous. In the next few

subsections, we explain the method of generating n-grams from a packet payload

followed by the training and testing phases of Rangegram.

N-gram Generation from Packet Payload: N-gram is a substring of length ‘n’

generated from any string. In our case, payload of a HTTP packet is the string from

which the n-grams are generated. These n-grams form the features of a packet. For

example, if the payload of a packet has the sequence of elements 1, 2, 5, 2, 3, 4, 1 then

2-grams and 3-grams generated from this sequence are 1 2, 2 5, 5 2, 2 3, 3 4, 4 1

and 1 2 5, 2 5 2, 5 2 3, 2 3 4, 3 4 1 respectively. From the given sequence, 3-gram
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generation is shown in Figure 5.2 where a sliding window is used to denote the

generated 3-grams. In general, from a packet with payload length of l with l > n

there will be l − n+ 1 generated n-grams.

Figure 5.2: 3-gram Generation From a Sequence

Training Phase: In the training phase, n-grams generated from the training

dataset (network packet trace) are used to create a model of normal profile. This

model is represented in the form of an efficient data-structure called Min-Max-Tree

which stores each n-gram and its minimum and maximum occurrence frequency in a

packet across training dataset. The idea behind using occurrence frequency range of

n-grams is to increase the Recall and minimize FPR. Formally, Min-Max-Tree is an

n-array tree. The operations that can be performed on Min-Max-Tree are:

• Find(x): This operation returns true if the n-gram ‘x’ is found in the Min-Max-

Tree otherwise returns false.

• Fetch(x): This operation returns the existing minimum and maximum occur-

rence frequency range of n-gram ‘x’ from the Min-Max-Tree.

• Update(x, freqx): This operation updates existing occurrence frequency value

(either minimum or maximum) of n-gram x with its current occurrence frequency

freqx in the Min-Max-Tree.

• Insert(x, freqx): This operation inserts a new n-gram ‘x’ in the Min-Max-Tree

and set its minimum and maximum occurrence frequency value to freqx.

113



Min-Max-Tree can store n-grams of all ranges in one tree using anti-monotonicity

property [61] of n-grams which makes it space efficient. Let us construct an ex-

ample Min-Max-Tree of height 2 and 3 packets with payload values of P1 =

1, 2, 2, 1, 3, 3, 1; P2 = 1, 2, 1, 2, 1, 2, 2; P3 = 1, 1, 2, 3, 3, 2, 2. First, 1-grams and 2-grams

from the payloads of each packet are extracted and then inserted in the tree one by

one. The unique 1-grams of P1 with their current occurrence frequencies are [< 1 : 3 >,

< 2 : 2 >, < 3 : 2 >] and unique 2-grams of P1 with their current occurrence fre-

quency are [< 1, 2 : 1 >, < 2, 2 : 1 >, < 2, 1 : 1 >], [< 1, 3 : 1 >, < 3, 3 : 1 >,

< 3, 1 : 1 >]. Each n-gram is first checked for its previous occurrences using Find(n-

gram) operation. Since all values appeared for the first time, Find(n-gram) operation

always returns false and then Insert(n-gram, freqn−gram) operation is used to insert

each n-gram in the Min-Max-Tree. After P1, 1-grams and 2-grams of P2 are extracted

with their current occurrence frequencies as < 1 : 3 >, < 2 : 4 > and < 1, 2 : 3 >,

< 2, 1 : 2 >, < 2, 2 : 1 > respectively. Here also, all n-grams are first check for

its previous occurrence in the Min-Max-Tree using Find(n-gram) operation. Since 1-

gram ‘1’ occurred previously, Find(1) operation returns true. Hence Update(n-gram.

freqn−gram) operation is performed as Update(1, 3) which updates the occurrence fre-

quency range of 1-gram ‘1’ as [1, 3] in the Min-Max-Tree. Similarly other 1-grams and

2-grams of P2 gets updated or inserted in the Min-Max-Tree. Same step is repeated

for P3. The final tree after inserting payloads of all three packets is shown in Figure

5.3.

Root

2:[2,4]1:[2,3] 3:[0,3]

1:[0,2] 2:[1,1] 2:[0,1] 1:[0,1] 2:[0,1] 3:[0,1]3:[0,1]2:[1,3]1:[0,1]

Figure 5.3: Min-Max-Tree Constructed up to 2-gram

Each node except the root node in the tree is of the form < ai : [min,max] >.
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First component in the node is the ith element of i-gram starting from first node to ith

node and second component is its min-max frequency range. Algorithm 5.1 describes

the procedure for constructing Min-Max-Tree incrementally. It takes network trace

Algorithm 5.1 Min-Max-Tree Generation
Input: Network Trace with Packets P1, P2, · · · , PM
Input: N - Highest order n-grams to be generated.

Output: Min-Max-Tree T

1: for i = 1 to M do

2: length← PayloadLength(Pi)

3: for j = 1 to N do

4: list[1, · · · length− j + 1]← n-grams of order j from Pi

5: a[1, · · · k]← Count distinct n-grams from list and generate pair < nt : freqt >

6: for x = 1 to k do

7: if Find(a[x]) == True then

8: [min,max] = Fetch(a[x])

9: min← Existing minimum frequency for a[x]

10: max← Existing maximum frequency for a[x]

11: if freqa[x] < min then

12: Update(a[x], freqa[x]) by replacing current value of min with freqa[x]

13: else if freqa[x] > max then

14: Update(a[x], freqa[x]) by replacing current value of max with freqa[x]

15: end if

16: else

17: Insert(a[x], freqa[x])

18: end if

19: end for

20: end for

21: end for

containing M packets as input along with highest order of n-grams N and generates

Min-Max-Tree. It reads each packet, finds its payload length and generates n-grams

of order in between 1 and N and updates their min-max range if the n-gram is already

found; otherwise the n-gram is inserted in the tree by initializing its min and max

value to the found frequency in the packet. The min-max range of the packet gives

the occurrence frequency range for each n-gram. Any deviations from this range can

be considered abnormal. It is to be noted that Min-Max-Tree can be constructed in

only one pass.

Testing Phase: During testing phase, Rangegram detects an anomalous packet not

only on the basis of presence or absence of n-gram generated from testing packet in

trained model but also whether these n-grams occur in [min, max] range defined in

the trained model. In the instance of an attack, the content of the malicious packet

is different from the payloads used during training otherwise and/or the occurrences
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frequency of n-grams generated from payloads of such a packet is significantly

different. For example, a buffer overflow attack has several n-grams repeated in the

payload. A sample packet content of a buffer overflow attack is partially shown in

Figure 5.1. We can notice that there is a long run of ‘A’s in the payload which is

rarely seen in any other normal packet. This run of ‘A’s generate several n-grams

with only ‘A’s whose count is larger than what is found in a normal packet. Resultant

skewed range of an n-gram compared to the frequency of same n-gram found in

normal packet is the key for detection. Let us consider a test packet Pt with payload

as Pt = 1, 2, 1, 2, 1, 2, 1, 2. 1-grams extracted from Pt with their current occurrence

frequencies are [< 1 : 4 >,< 2 : 4 >]. First Find(n-gram) operation is performed

to check the presence of n-gram in the Min-Max-Tree and if n-gram is found then

Fetch(n-gram) operation is performed to get the permitted frequency range of that

n-gram. For 1-gram ‘1’, Find(1) operation returns true and Fetch(1) operation

returns permitted frequency range from Min-Max-Tree shown in Figure 5.3. The

permitted frequency range of ‘1’ obtained is [2, 3]. The current frequency of 1-gram

‘1’ in Pt is 4 which is more than the permitted frequency range, therefore this 1-gram

is treated as anomalous 1-gram. This is how anomalous n-grams are identified and

counted in test packets which are then used to calculate anomaly score of the test

packets. If the anomaly score of the test packet is greater than the threshold value

then the packet is identified as anomalous packet.

The procedure used for labeling the packet as either normal or anomalous is shown

in Algorithm 5.2. This algorithm takes a testing packet as input and generates n-grams

of desired order N . The occurrence frequency of each n-gram is found for a particular

value of N. Each n-gram is tested for its presence or absence in the training dataset

(in Min-Max-Tree). If it is present, its min-max range is compared with the range

obtained from testing packet. This is repeated for all n-grams generated from testing

packet and anomaly score is generated using Equation 5.1.

anomaly score =

∑
Anomalous (n-grams)∑
Normal (n-grams) + 1

(5.1)

In this equation, anomalous n-grams refer to those n-grams which are either not
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Algorithm 5.2 Detecting Anomalous Packets
Input: Min-Max-Tree from Training Phase

Input: P - A Packet read from interface

Input: N - Order n-grams to be generated.

Input: α - Threshold for anomaly score

Output: Label of P

1: length← PayloadLength(P )

2: list[1, · · · length−N + 1]← n-grams of order N from P

3: a[1, · · · k]← Count distinct n-grams from list and generate pair < nt : freqt >

4: anomalous count = 0

5: for x = 1 to k do

6: if Find(a[x]) == false then

7: anomalous count← anomalous count + 1

8: else

9: [min,max] = Fetch(a[x])

10: min← Existing minimum frequency for a[x].ngram

11: max← Existing maximum frequency for a[x].ngram

12: if freqa[x] < min or freqa[x] > max then

13: anomalous count← anomalous count + 1

14: end if

15: end if

16: end for

17: anomaly score = anomalous count
length−N−anomalous count+1

18: if anomaly score > α then

19: P is anomalous

20: else

21: P is normal

22: end if

present in the Min-Max-Tree or whose occurrence frequency falls outside the range

stored in the Min-Max-Tree. On the other hand, normal n-grams are the n-grams

which are present in the Min-Max-Tree and their occurrence frequency falls within

the range stored in the Min-Max-Tree. If the anomaly score obtained is more than

a threshold α, the packet is considered as anomalous otherwise it is considered

as normal. We use Laplacian correction method [31] where ‘1’ is added to the

denominator to avoid ‘divide-by-zero’ situation while calculating anomaly score.

Complexity Analysis of Rangegram : Our proposed method Rangegram

has different operations and with each operation is associated some complexity.

Table 5.1 shows the complexity of each operation of Rangegram including the

indication of type of operation i.e. whether the operation is for training(offline) or for

testing(online) or both.

1. Find(x): In this operation, an n-gram is searched in the Min-Max-Tree of
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Table 5.1: Operation-wise Complexity of Rangegram

Operation Name Complexity Online/Offline Explanation

Find(x) O(log(N)) Both N = highest order n-gram generated

Fetch(x) O(log(N)) Both N = highest order n-gram generated

Insert(x, freqx) O(log(N)) Offline N = highest order n-gram generated

Update(x, freqx) O(1) Offline Constant time as this operation only updates the range values in

already fetched n-gram

height N . The value of N is also the highest order of n-grams generated from the

payload and thus, the complexity of this operation is O(log(N)).

2. Fetch(x): This operation returns the frequency range of n-gram ‘x’ by fetching

this n-gram from Min-Max-Tree of height N and hence the complexity is O(log(N)).

3. Insert (x, freqx): This operation inserts an n-gram ‘x’ at the nth level of

Min-Max-Tree of height N . Thus the complexity of this operation is O(log(N))

4. Update (x, freqx): This operation only updates the occurrence frequency of an

already fetched n-gram ‘x’ with its current frequency freqx which is a constant time

operation. Hence the complexity is O(1)

5.1.3 OCPAD

Our second proposed method, OCPAD, is a one class payload based anomaly

detection method to detect anomalies in web traffic. One class classification methods

in machine learning are those methods which require training data of only one class.

Similar to Rangegram, OCPAD also has two phases of operations as training and

testing phases. During training phase, OCPAD generates the occurrence probability

range of each n-gram from every packet and stores it along with the n-gram in

our proposed data structure called Probability-Tree. This tree is similar to the

Min-Max-Tree. However, instead of storing occurrence frequency ranges, it stores

the occurrence probability ranges. This occurrence probability range serves as

an indicator of permitted lower and upper bound probability of occurrence of a

particular n-gram in a packet. During testing phase, if an n-gram generated from

the payload of HTTP packet under consideration is not found in the database or
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its occurrence probability in a packet is not in the range stored in Probability-Tree,

OCPAD considers the n-gram as anomalous. Subsequently, the class of test packet

(i.e. normal or anomaly) is calculated with probability of each n-gram using a

version of Multinomial one class Naive Bayes classifier. In subsequent paragraphs, we

describe Naive Bayes classification algorithm and how we adapt it for OCPAD.

Naive Bayes Classifier: Naive Bayes classifier is a supervised learning algo-

rithm which is based on Bayes rule shown in Equation 5.2.

P (Cj|X) =
P (X|Cj)P (Cj)

P (X)
(5.2)

In the training phase, it reads the feature vectors of d dimension (X = X1, X2, · · · , Xd)

belonging to any of c classes C1, C2, · · · , Cc. Using these feature vectors it estimates

prior probabilities of each Cj and also the conditional prior probability P (X|Cj)s

(where 1 ≤ j ≤ c). In the Equation 5.2, P (Cj) is the prior probability of occurrence

of class Cj, P (X|Cj) is the conditional probability of vector X given that Cj is the

class and P (X) is the probability of feature vector. In the testing stage, the posterior

probability of class Cj given a test vector X is estimated and is denoted as P (Cj|X).

The probability P (X) is calculated by adding the sum of prior probabilities of all

c classes multiplied with conditional probabilities of X given class Cj as shown in

Equation 5.3.

P (X) = Σc
j=1P (X|Cj)P (Cj) (5.3)

This ensures that P (Cj|X) is in between (0,1) and probabilities of all Cj’s given X

(i.e., P (Cj|X)) add up to 1. After calculating posterior probability of all c classes,

the vector X is labeled with the class Ci (1 ≤ i ≤ c) which has the highest posterior

probability among all.

Naive Bayes classifier is prominently used in text classification [72]. Depending on

type of feature vectors used, there are two models of Naive Bayes classifier as Multi-

variate Bernoulli model and Multinomial model [79]. Multivariate Bernoulli model is

used for binary feature vectors where each feature indicates presence or absence of each

word from a dictionary in a document. In the Multinomial model each feature indi-
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cates the number of times each word appears in all the documents of a particular type.

Adapting Multinomial One Class Naive Bayes Classification for OC-

PAD: In OCPAD, the n-grams generated from packet form the feature vectors. We

use Multinomial model for classifying payload data. A feature vector F is generated

from payload content and is denoted by Equation 5.4

F = f(n1), f(n2)...f(nk) (5.4)

where f(ni) is the frequency of ith n-gram (here 1 ≤ i ≤ K) of a particular order

generated from a packet. Since there are 256 ASCII values, k = 256N where N is the

order of n-gram. Probability of each n-gram is calculated using Equation 5.5 where

M is the total number of packets in training dataset.

P (ni|Class) =

∑M
t=1 ft(ni)∑M

t=1

∑k
j=1 ft(nj)

(5.5)

This equation denote the probability as the ratio of frequency of a particular n-gram

from all the M packets to the total number of n-grams from all M packets. Here Class

is either normal or attack. Probability of an n-gram ni’s occurrence in normal or attack

payloads P (ni|Class) can be estimated if both normal and malicious datasets are

available for training. According to Multinomial model, probability of feature vector

F for a class Class is written as in Equation 5.6. This estimates the conditional

probability of each feature vector given the class (normal or malicious) as required by

the Equation 5.1.

P (F |Class) =
k∏
j=1

(P (nj|Class))f(nj) (5.6)

It has to be noted that there is a skewed distribution of normal and malicious

traffic in any network with malicious traffic being marginal fraction of the total

traffic. Further it is difficult to collect an attack or intrusion dataset which covers all

possible attacks against an application. This makes a perfect case for the use of one

class classification methods. In order to train OCPAD, only normal class dataset can

be used and deviations seen during testing can be identified as intrusions. We adapt
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the previously described multinomial method as one class classifier by comparing the

probability of a particular packet payload being normal to a threshold value and if

it is less than threshold value, it can be detected as malicious. However, adapting

this algorithm to our context has few challenges. First challenge is only a small

fraction of n-grams actually appear in the packets of normal dataset compared to the

total number of possible n-grams (which is 256n). This results into many n-grams

probabilities becoming zero. Second is each packet has different length ranging from

0 to 1500 bytes. This results in unequal number of n-grams hence feature vector

F is not of same length consistently. We address these two by modifying the way

probability of each component of F is calculated during training and testing phases

and these changes are elaborated in subsequent paragraphs.

Training Phase: In the training phase, n-grams with their frequencies are

generated from every packet of normal dataset. Frequency of each n-gram is used to

find its probability. Unlike Equation 3.2, we calculate the probability of n-gram as

the ratio of frequency of a n-gram in the packet to the total number of n-grams in

that packet. The modified probability calculation1 is shown in Equation 5.7.

P (ni|Pt) =
f(ni)∑k
j=1 f(nj)

(5.7)

This measure indicates how probable an n-gram is within a packet Pt where 0 ≤ t ≤M .

Thus, for each distinct n-gram there can be maximum of M such probabilities with

each one from a different packet in training dataset.

In order to identify both under occurrence and over occurrence of a particular

n-gram in a packet, we store these probabilities in an efficient data-structure called

Probability-Tree. This tree stores the minimum and maximum occurrence probabili-

ties of each n-gram. Similar to Min-Max-Tree, Probability-Tree also stores n-grams

of different order in a single tree and thus, it is also very space efficient. For-

mally, Probability-Tree is an n-array tree. The operations that can be performed

1This probability calculation helps us to find both over occurrence and under occurrence of n-

grams in a packet.
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on Probability-Tree are:

• Find(x): This operation returns true if the n-gram ‘x’ is found in the Probability-

Tree otherwise returns false.

• Fetch(x): This operation returns the existing minimum and maximum occur-

rence probability range of n-gram ‘x’ from the Probability-Tree.

• Update(x, P (x)): This operation updates existing occurrence probability value

(either minimum or maximum) of n-gram x with its current occurrence proba-

bility P (x) in the Probability-Tree.

• Insert(x, P (x)): This operation insert a new n-gram ‘x’ in the Probability-Tree

and set its minimum and maximum occurrence probabilities value to P (x).

Probability-Tree can also store n-grams of all ranges in one tree using anti-

monotonicity property [61] of n-grams which makes it space efficient. Let us con-

struct an example Probability-Tree of height 2 and 3 packets with payload values of

P1 = 1, 2, 2, 1, 3, 3, 1; P2 = 1, 2, 1, 2, 1, 2, 2; P3 = 1, 1, 2, 3, 3, 2, 2. First, 1-grams and

2-grams of the payloads of each packet is extracted and then inserted in the tree

one by one. The unique 1-grams of P1 with their current occurrence probabilities

[< 1 : [0.42] >, < 2 : [0.28] >, < 3 : [0.28] >] and unique 2-grams of P1 with their cur-

rent occurrence probabilities are [< 1, 2 : [0.16] >, < 2, 2 : [0.16] >, < 2, 1 : [0.16] >,

< 1, 3 : [0.16] >, < 3, 3 : [0.16] >, < 3, 1 : [0.16] >]. Each n-gram is first checked for

its previous occurrences using Find(n-gram) operation. Since all values appeared for

the first time, Find(n-gram) operation always returns false and then Insert(n-gram,

P(n-gram)) operation is used to insert each n-gram in the probability tree. After P1, 1-

grams and 2-grams of P2 are extracted with their current probabilities as [1 : [0.42] >,

< 2 : [0.57] > and < 1, 2 : [0.5] >], [< 2, 1 : [0.33] >, < 2, 2 : [0.16] >] respectively.

Here also, all n-grams are first checked for its previous occurrences in the Probability-

Tree using Find(n-gram) operation. Since 1-gram ‘2’ already occurred previously,

Find(2) operation returns true. Here, Update(n-gram, P(n-gram)) is performed as

Update(2, 0.57) which updates the permitted probability range of ‘2’ as [0.28, 0.57]
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in the Probability-Tree. Similarly other 1-grams and 2-grams pf P2 gets updated or

inserted in the Probability-Tree. Same step is repeated for P3. The final tree after

inserting payloads of all three packets is shown in Figure 5.4

Root

2:[0.28,0.57]1:[0.28,0.42] 3:[0,0.42]

1:[0,0.33] 2:[0.16,0.16] 2:[0,0.16] 1:[0,0.16] 2:[0,0.16] 3:[0,0.16]3:[0,0.16]2:[0.16,0.5]1:[0,0.16]

Figure 5.4: Probability-Tree Constructed up to 2-gram

Each node except the root node in the tree is of the form < ai : [Pmin, Pmax] >.

First element in the node is the ith element of i-gram starting from first node to

ith node and second component is its min-max probability range. Algorithm 5.3

describes the procedure for constructing Probability-Tree incrementally. It takes a

Algorithm 5.3 Probability-Tree Construction
Input: Network trace with packets P1, P2, · · · , PM
Input: N - Highest order n-grams to be generated.

Output: Probability-Tree T of height N

1: for t = 1 to M do

2: length← PayloadLength(Pt)

3: for j = 1 to N do

4: list[1, · · · length− j + 1]← n-grams of order j from Pt

5: totalngrams← size of list

6: a[1, · · · k]← Generate probabilities of distinct n-grams from list and generate pair 〈ni : P (ni)〉

7: for x = 1 to k do

8: if Find(a[x]) == True then

9: [min,max] = Fetch(a[x])

10: min← Existing minimum probability for P (a[x])

11: max← Existing maximum probability for P (a[x])

12: if P (a[x]) < min then

13: Update(P (a[x])) minimum probability with P (a[x])

14: else if P (a[x]) > max then

15: Update(P (a[x])) maximum probability with P (a[x])

16: end if

17: else

18: Insert(a[x], P (a[x]))

19: end if

20: end for

21: end for

22: end for

set of M packets from training dataset as input along with highest order of n-grams
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N and generates Probability-Tree. It reads each packet, finds its payload length

and generates n-grams of a particular order (in between 1 and N) and subsequently

generates a list of unique n-grams and their corresponding probabilities. If the n-gram

is already found in the Probability-Tree, probability values are used to update each

n-gram’s probability range in the tree otherwise the n-gram is inserted in the tree

by initializing its minimum and maximum probabilities to the probability of n-gram

from current packet.

Testing Phase: In the testing phase, feature vectors are generated from each

test packet in the same way it is generated in training phase. Using the prior

probabilities, each of these feature vectors (packets) are classified as either normal

or anomalous. In OCPAD, anomalous packets are detected not only by the presence

or absence of n-gram but depends on the probabilities of n-grams in the training

dataset. Similar to the training phase, each n-gram’s probability is calculated as the

ratio of count of each n-gram to the total number of n-grams from that packet. Using

individual n-gram’s probabilities, we calculate the probability of each vector which is

termed as Packet Probability (same as P (normal|F )). Packet Probability is equal

to the product of probabilities of n-grams found in that packet. One key change in

the calculation of the probability of a packet is that we consider only anomalous

n-gram’s probability. We consider an n-gram as normal if the n-gram is found in the

Probability-Tree and its probability is within the range of probabilities i.e., within

[Pmin, Pmax] probability. However, if an n-gram is not found in the Probability-Tree or

its probability is not in the [Pmin, Pmax] range in the Probability-Tree, it is considered

as anomalous. The anomalous n-gram’s probability is multiplied with that of the

current packet’s probability. This variation serves two purposes. First, it determines

the packets with large number of anomalous n-grams considering the occurrence range

of each n-gram and second, the underflow problem that arises when large number of

probabilities are multiplied which is a common issue with Bayes classifier.

Given the assumption that an attack packet’s payload is different from the nor-

mal one or it may contain n-grams with different frequency in the payload, it results
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into more number of unseen n-grams or over/under occurred n-grams. This reduces

the value of Packet Probability, hence it detects malicious payloads of type shown in

Figure 5.1. When this packet’s probability is calculated, these repeating n-grams does

not fall within the [Pmin, Pmax] range of probability found in the tree and hence is de-

tected as anomaly. Let us consider a test packet Pt with payload as Pt = 1, 2, 1, 2, 1, 1, 9

whose Packet Probability is to be calculated for 1-gram. 1-grams extracted from Pt

with their current occurrences probabilities are < 1 : 0.57 >,< 2 : 0.28 >,< 9 : 0.14.

First Find(n-gram) operation is performed to check the presence of n-gram in the

Probability-Tree and if n-gram is found then Fetch(n-gram) operation is performed

to get the permitted probability range of that n-gram. For 1-gram ‘1’, Find(1) op-

eration returns true and Fetch(1) operations returns the permitted probability range

for 1-gram ‘1’ from the Probability-Tree as shown in Figure 5.4. The permitted prob-

ability range obtained is [0.28, 0.42]. The current probability of 1-gram ‘1’ is 0.57

which is more than the permitted probability range, therefore this 1-gram is treated

as anomalous. Moreover, when Find(9) operation is performed on n-gram ‘9’ it re-

turns false because 1-gram ‘9’ is not found in Probability-Tree. Therefore this 1-gram

is also considered as anomalous. This is how anomalous n-grams are identified and

used to calculate Packet Probability of the test packets. If the Packet Probability

of the test packet is less than the threshold value then the test packet is identified as

anomalous packet.

The procedure used for labeling the packet as either normal or anomalous

is shown in Algorithm 5.4. This algorithm takes a testing packet as input and

generates n-grams of desired order N . The probability of each n-gram is found

for a particular value of N . Probability of each n-gram is tested with the range of

Probability-Tree. If it is present within range, n-gram is assigned with probability 1

whereas when it is found out of range then its own probability is used for calculation

of Packet Probability. This is repeated for all n-grams generated from testing packet

and each packet is assigned a probability. If the packet’s probability obtained is less

than the threshold α, the packet is considered as anomalous.
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Algorithm 5.4 Detecting Anomalous Packets
Input: Probability-Tree from training phase

Input: P - A packet read from interface

Input: N - Order n-grams to be generated.

Input: α - Threshold for a Feature Vector

Output: Label of P

1: length← PayloadLength(P )

2: list[1, · · · length−N + 1]← n-grams of order N from P

3: totalngrams← size of list

4: a[1, · · · k]← Generate probabilities of distinct n-grams from list and generate pair 〈ni : P (ni)〉

5: Probability(F ) = 1

6: for x = 1 to k do

7: if Find(a[x]) == False then

8: Probability(F ) = Probability(F )× P (a[x])

9: else

10: [min,max] = Fetch(a[x])

11: min← Existing minimum probability for P (a[x])

12: max← Existing maximum probability for P (a[x])

13: if P (a[x]) < min or P (a[x]) > max then

14: Probability(F ) = Probability(F )× P (a[x])

15: else

16: Probability(F ) = Probability(F )× 1.0

17: end if

18: end if

19: end for

20: if Probability(F ) < α then

21: P is anomalous

22: else

23: P is normal

24: end if

Complexity Analysis of OCPAD: Our proposed method OCPAD has dif-

ferent operations and with each operation is associated some complexity. Table 5.2

shows the complexity of each operation of OCPAD including the indication of type

of operation i.e. whether the operation is for training(offline) or for testing(online) or

both.

1. Find(x): In this operation, an n-gram is searched in the Probability-Tree of height

N . The value of N is also the highest order of n-grams generated from the payload

and thus, the complexity of this operation is O(log(N)).

2. Fetch(x): This operation returns the probability range of n-gram ‘x’ by fetching

this n-gram from Probability-Tree of height N and hence the complexity is O(log(N)).

3. Insert (x, P (x)): This operation inserts an n-gram ‘x’ at the nth level of

Probability-Tree of height N . Thus the complexity of this operation is O(log(N))

4. Update (x, P (x)): This operation only updates the occurrence probability of an

already fetched n-gram ‘x’ with its current probability P (x) which is a constant time
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operation. Hence the complexity is O(1)

Table 5.2: Operation-wise Complexity of OCPAD

Operation Name Complexity Online/Offline Explanation

Find(x) O(log(N)) Both N = highest order n-gram generated

Fetch(x) O(log(N)) Both N = highest order n-gram generated

Insert(x, freqx) O(log(N)) Offline N = highest order n-gram generated

Update(x, freqx) O(1) Offline Constant time as this operation only updates the range values in

already fetched n-gram

5.2 Experiments and Results

In order to evaluate the detection performance of Rangegram and OCPAD, we

conducted experiments on two datasets containing web traffic. First dataset contained

only normal web traffic while the second dataset contained attack traffic. In the

following subsections, we first describe the generated dataset details followed by the

detection performance of proposed methods. Subsequently, we present a comparative

study between the proposed methods and one of the closely related work Anagram

[113].

5.2.1 Dataset Description

We used two datasets to evaluate the detection performance of proposed methods.

The first one was normal dataset containing attack free HTTP packets while the

second one was attack dataset containing malicious HTTP packets. The details of

these datasets are described below.

Normal Dataset: This dataset was collected in our departmental network of

IIT Indore. This network presently serves more than 600 users. Network traffic

was collected at the gateway of this network for 3 hours. We collected only web

traffic by putting appropriate HTTP filter in the traffic capturing tool tcpdump

[24]. There were total of 1082336 packets in this dataset and the dataset size was

127



1002 MB approximately. This dataset was divided into 3 parts. First part was used

for generating normal profile (Min-Max-Tree for Rangegram and Probability-Tree

for OCPAD), second part was used for finding the threshold α for each value of N

(n-gram order) and the third part was used for testing purposes to obtain the FPRs

of Rangegram and OCPAD. Statistics of this traffic are shown in Table 5.3.

Table 5.3: Statistics of HTTP Normal Dataset

Type Size (in MB) Number of Packets

Training 0787 0838876

Threshold Setting 0074 0089151

Testing 0141 0154309

Total 1002 1082336

Attack Dataset: We used attack dataset provided by authors of [66, 89] for

our experiments. This dataset has 3 types of attacks as follows.

1. Generic attacks: This part contains traces of 64 attacks. It contains few buffer

overflow and remote execution attacks mounted against a web server.

2. Shell-code attacks: This part contains traces of shell-code attacks executed

against web servers.

3. CLET attacks: This part contains trace of attacks generated using an evading

tool CLET [21].

Statistics of this dataset are shown in Table 5.4.

Table 5.4: Statistics of HTTP Attack Dataset

Type Size (in KB) Number of Attacks Number of Packets

Generic 0216.8 64 174

Shell-code 0125.5 11 087

CLET 1126.4 96 780

5.2.2 Training Phases of Rangegram and OCPAD

The training dataset contained 838876 packets as shown in Table 5.3. In the train-

ing phase, we constructed Min-Max-Tree and Probability-Tree for Rangegram and OC-

PAD respectively. To construct Min-Max-Tree and Probability-Tree, we wrote a Java
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program that uses jNetPcap programming library [10] to process the network traces

in tcpdump format and generate Min-Max-Tree and Probability-Tree. This Java pro-

gram was executed on a machine running Ubuntu 14.04 operating system and having

quad-core processor (i5-pro) with 4 GB of RAM. The program took approximately

8 and 10 minutes for generating Min-Max-Tree and Probability-Tree respectively. In

order to establish the fact that only a fraction of total number of possible n-grams

actually appeared in the dataset, we collected statistics for number of distinct n-grams

for different values of N. Table 5.5 shows the value of N, number of distinct n-grams

found from training dataset, total number of possible n-grams for that order and

fraction of appeared n-grams to the total possible n-grams. We can notice that, as

the value of N increases, the fraction decreases considerably. The distinct number

of n-grams generated during training phase shows the total number of nodes at each

level of Min-Max-Tree and Probability-Tree where level is decided by the value of N

in n-grams.

Table 5.5: Fraction of n-grams seen for Distinct Values of N

Value of N Distinct n-grams Maximum Possible n-grams Fraction

1 97 256 37.891%

2 9313 65536 14.211%

3 893979 16777216 5.328%

4 8558096 4294967296 0.199%

5 24964563 1099511627776 0.002%

6 48713732 281474976710656 0.00000017%

5.2.3 Threshold Calculation

As discussed earlier in Section 5.1.3, a threshold value α was used to differen-

tiate normal and anomalous packets. Instead of deciding the value of α manually,

we derived the value experimentally. To calculate the threshold value, we used the

second part of the normal dataset containing 89151 packets. We represent the thresh-

old values for Rangegram and OCPAD as αRangegram and αOCPAD respectively. For

Rangegram, we first calculated the anomaly score of each packet and subsequently,

threshold αrangegram was set to the average of all the anomaly scores calculated from

all the normal packets and adding standard deviation to it. Similarly for OCPAD,
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we first calculated the Packet Probability of each packet and subsequently, thresh-

old αOCPAD was set to the average of all the probabilities calculated from all the

normal packets and subtracting standard deviation from it. We added standard de-

viation in Rangegram but subtracted standard deviation in OCPAD because if the

anomaly score is high, the chance of Rangegram detecting a test packet as anomaly is

also high. However, if the Packet Probability is less, the chance of OCPAD detecting

a test packet as anomaly is high. Threshold values calculated for different values of

N are shown in Table 5.6.

Table 5.6: Threshold Values for Different Values of N

Value of N αrangegram αOCPAD

1 0.00024 0.9966

2 0.00135 0.9417

3 0.00293 0.4706

4 0.02682 0.1682

5 0.04926 0.0038

6 0.08340 0.0017

5.2.4 Testing Phases of Rangegram and OCPAD

The third part of normal dataset containing 154309 packets and the entire attack

dataset were used for testing purpose. Figures 5.5a, 5.5b, 5.5c and 5.5d show the

percentage of anomalous n-grams of order 3 in a packet belonging to Generic, Shell-

code and CLET attack datasets and normal dataset respectively. We can notice that

packets belonging to attacks contained more number of anomalous n-grams compared

to normal packets. This fact was exploited by Rangegram and OCPAD to detect

anomalous packets in the web traffic.

The detection performance of both the approaches is determined by the Recall for

each attack type and FPR for normal dataset. Recall and FPR are calculated using

equation 5.8 and 5.9 respectively.

Recall =
TP

TP + FN
(5.8)

FPR =
FP

TN + FP
(5.9)
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Figure 5.5: Percentage of Anomalous 3-grams in (a) Generic Attack (b) Shellcode Attack

(c) CLET Attack and (d) Normal Dataset

In these equations, TP , TN , FP and FN are as follows:

True Positive (TP ): Attack packets correctly detected as attack

True Negative (TN): Normal packets correctly detected as normal

False Positive (FP ): Normal packets incorrectly detected as attack

False Negative (FN): Attack packets incorrectly detected as normal

Recall of Rangegram and OCPAD for Generic, Shellcode and CLET attacks is shown

in Figures 5.6a, 5.6b and 5.6c respectively. It can be noticed from these figures that

in case of lower order n-grams (e.g. 1-grams and 2-grams), Rangegram gives better

detection performance as compared to OCPAD for CLET attack. However, in case

of higher order n-grams, OCPAD gives better detection performance as compared to
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Figure 5.6: Recall of Rangegram and OCPAD for (a) Generic (b) Shellcode and (c)

CLET Attack

Rangegram for CLET attack. For all other attacks, OCPAD gives better detection

performance as compared to Rangegram irrespective of the order of n-gram.

5.2.5 Comparison with Anagram

We also compared the detection performance of Rangegram and OCPAD with a

closely related work Anagram [113] in terms of Recall and FPR. Anagram computes

the ratio of n-grams generated from the testing packet but not found in the database to

the total number of n-grams of the packet as the anomaly score. Figure 5.7a shows the

Recall of Anagram, Rangegram and OCPAD for generic attack. We can notice from

the figure that both of our proposed methods achieved significantly higher Recall as

compared to Anagram. Anagram’s poor performance was due to the binary approach

of finding the n-grams (i.e. presence/absence) in the database. Figure 5.7b shows

the FPR comparison of Rangegram, OCPAD and Anagram on our normal dataset

containing 154309 packets. It can be noticed from the figure that FPR of Anagram

is slightly lower as compared to Rangegram and OCPAD. Nevertheless, FPR of our

methods is still within acceptable limits (i.e. less than 0.2%).

We can notice from the Figure 5.7a that both of our proposed methods achieved

significantly higher recall as compared to Anagram. Anagram’s poor performance

was due to the binary approach of finding the n-grams (i.e. presence/absence) in the

database. Moreover, payload of the packets in generic attack dataset mostly contains
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Figure 5.7: Performance Comparison of Anagram and Proposed Methods in terms of

Recall and FPR

the high occurrences of A. Since the occurrences of uni-gram, bi-gram and tri-gram

having continuous A is common in an attack payload, the binary approach of finding

n-grams fails here and the anomalous packets are not detected for 1-grams, 2-grams

and 3-grams. However, the detection is possible if 4-grams and higher orders of n-

grams are considered. On the other hand, our proposed methods, Rangegram and

OCPAD check the occurrence frequency and occurrence probability of n-grams for

detecting anomalous packet. In the generic attack dataset, as the occurrence frequency

and occurrence probability of A′s are much higher in the attack dataset as compared

to their values found in training dataset, our approaches can detect anomalous packets

for any order of n-gram.

5.2.6 Sensitivity Analysis

As discussed in Section 5.2, both of our proposed methods Rangegram and OCPAD

use threshold values αRangegram (anomaly score) and αOCPAD (Packet Probability)

respectively to differentiate between a normal packet and an anomalous packet. The

accuracy of both these methods depend on these chosen threshold values and thus, it

is important to choose them wisely in order to obtain high Recall but low FPR. To

understand the impact of threshold values on the detection performance, we varied

the threshold value and calculated Recall and FPR of both the methods for different
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orders of n-grams. The effect of varying the threshold value and n-gram order on the

detection performance of Rangegram is shown in Figures 5.8a, 5.8b, 5.8c and 5.8d.

In these figures, ‘a’ and ‘th’ are the average anomaly score and standard deviation
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Figure 5.8: Sensitivity Analysis for Rangegram

respectively. We can notice from these figures that independent of the attack type

and the n-gram order, as the threshold anomaly score increases, Recall decreases.

Moreover, FPR also decreases with increase in threshold anomaly score independent

of n-gram order. Thus, the threshold anomaly score is chosen in such a way that

Rangegram should achieve high Recall but low FPR. In case of OCPAD, the effect of

varying the threshold value and n-gram order on the detection performance is shown

in Figures 5.9a, 5.9b, 5.9c and 5.9d. We can notice from these figures that indepen-

dent of the attack type and the n-gram order, as the threshold Packet Probability

increases, Recall increases. Moreover, FPR also increases with the increase in thresh-

old Packet Probability. Thus, the threshold Packet Probability is chosen in such a
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way that OCPAD achieves high Recall but low FPR.
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Figure 5.9: Sensitivity Analysis for OCPAD

5.3 Conclusion

Zero day attacks can evade state of the art payload anomaly detection methods

which use either binary approach to find n-grams in the database or use absolute

frequency values for deriving anomaly score. Thus, in this chapter, we described two

new methods, Rangegram and OCPAD for detecting anomalous packets in web traffic.

Unlike the previous methods, our proposed methods not only check the presence or

absence of n-grams instead also check the occurrence frequency and probabilities of

n-grams occurring in a packet. We experimented with one normal HTTP dataset and

one publicly available attack dataset and showed that our proposed methods could

detect different attack packets in HTTP traffic with high accuracy. We also compared
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the detection performance of our proposed methods with Anagram and showed that

our methods outperformed Anagram in terms of Recall.
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Chapter 6

Detecting Spam Callers in VoIP

with Graph Anomalies

6.1 Introduction

Internet telephony or Voice over IP (VoIP) is a cheaper alternative for tele-

phone communication compared to traditional Public Switched Telephone Networks

(PSTN). In addition to supporting voice calls, VoIP also provides services like

messaging, video calling, etc. The transmission of voice and multimedia content

between users is carried over Internet Protocol (IP) networks. A VoIP call usually

has a call setup/signaling operation (control plane operation) and subsequently

media transmission session (data plane operation). Signaling is used to establish and

disconnect calls. There are various signaling protocols like H.323, Session Initiation

Protocol (SIP) [26] and others for this purpose. Of late, SIP has become a de-facto

standard [44] signaling protocol because of its simplicity and easy implementation.

SIP is an application layer signaling protocol which can establish, modify and termi-

nate connection in Internet Telephony. For data transmission, most VoIP systems

use Real time Transmission Protocol (RTP) . Growing popularity of VoIP and its low

cost communication render it as a lucrative choice for spam users [39, 108]1. Spam

1There are other known threat vectors to VoIP systems like flooding and coordinated attacks

[54, 55], billing attacks [126], user enumeration, spoofing and man-in-the-middle attacks [46].
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calls are made either through recorded audio files which are played during the call

or by a customer care executive who speaks after dialing a number. There are also

automated softwares available for generating such calls by taking a list of user-IDs

as input. These calls may be promotional calls related to some business offers and

are generally termed as SPam Over Internet (SPIT) calls. These calls are annoying

to most VoIP users and need to be filtered. Many spam call detection methods use

history and reputation [36, 67, 101] of a user as a metric to identify spam users. In

this direction, authors of [106, 107] proposed methods which first extract a set of call

details from SIP payload using DPI and subsequently use them to obtain parameters

such as calling frequency, number of calls, call duration, etc. to detect spam users.

However, these methods use only average values of these features and hence they fail

to work if a determined spam user maintains these averages by generating artificial

calls among spam users as discussed in Section 6.3.1. To address this issue, we

describe a method that uses DPI to analyze SIP2 packets in order to identify spam

users in VoIP system. Spam user detection is performed using a form of social

interaction among the users. The social interaction status of a user is collected from

the history of calls made or received by that user and the calls’ frequency, direction,

etc. This interaction between users is represented as a weighted graph and to identify

the spam users, we identify anomalies in the graph. The anomalies can be identified

due to the fact that spam users usually have different interaction features like making

more frequent calls, large number of calls, shorter duration calls, etc. as compared to

normal users. Thus, these features when used to derive appropriate weights on edges

help differentiate the spam users. In specific, our contributions in this chapter are:

1. We identify a set of differentiating call characteristics of normal and spam

users and propose a mechanism to convert these features into weighted graphs.

2. We describe a graph anomaly detection system to identify spam users using the

weighted graph. This system identifies anomalies in the graph by considering how

2We analyze SIP due to the fact that it is most popular and widely used signaling protocol for

VoIP [97]
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similar the node is compared to its neighbourhood.

3. We perform experiments with two different VoIP call datasets generated using

a large number of simulated VoIP users and show that the proposed method can

successfully identify the spam users.

Rest of this chapter is organized as follows. In Section 6.2, we describe the working

of SIP and how it is used for VoIP call setup. Our proposed method SpamDetector

is elaborated in Section 6.3. We describe the experiments conducted to evaluate the

detection performance of proposed method in Section 6.4. Finally, we conclude this

chapter in Section 6.5.

6.2 Session Initiation Protocol (SIP)

SIP is a signaling protocol which is used for VoIP call establishment, call manage-

ment and call disconnection. SIP is the most popular VoIP signaling protocol as it is

a text-based light weight protocol. Different building blocks of VoIP setup are shown

in Figure 6.1 and are as follows:

1. User agent: These are VoIP phones with a valid Uniform Resource Indicator

Figure 6.1: Voice over IP Building Blocks
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(URI). These URIs represent user names used by the VoIP users. Multimedia sessions

are established and terminated between user agents.

2. Registrar server: The user agents register with a registrar server when they

connect to network and also update their location periodically.

3. Location server: The location server stores different locations of user agents

which are identified by their IP addresses. There can be more than one location asso-

ciated with a user.

4. Proxy server: The proxy server forwards the connection requests to the intended

recipients on behalf of user agents.

5. Redirect server: If a user has more than one location, the redirect server helps

to fork a connection request to different address.

The SIP messages that are exchanged between a caller (e.g. sip.caller@abc.com)

and a callee (sip.callee@abc.com) in a complete call are shown in Figure 6.2 and are

sip:callee@abc.comsip:caller@abc.com

Figure 6.2: Voice over IP Call Setup using Session Initiation Protocol

as follows:

1. An INVITE request message that is sent to a proxy server is responsible for

initiating a session.
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2. The proxy server immediately sends a 100 Trying message as a response to the

caller to stop the retransmissions of the INVITE request. Further, the proxy server

searches the address of callee in the location server. After getting the address, it for-

wards the INVITE request message to the callee.

3. Thereafter, 180 Ringing as a provisional response message is generated by callee

and is returned back to caller.

4. A 200 OK response message is sent immediately after callee picks up the phone

to answer the call.

5. Callee receives an ACK message from the caller once it gets 200 OK message.

6. After this, the media session gets established and data packets (actual conversa-

tions between caller and callee) are exchanged from both ends using media exchange

protocols such as Real-time Transport Protocol (RTP) and RTP Control Protocol

(RTCP).

7. After the conversation is complete, any participant (caller or callee) can send a

BYE request message to terminate the call.

8. Finally the participant which gets BYE message, sends a 200 OK response to

confirm the reception of BYE message and the call is terminated.

6.3 Proposed Work

To detect VoIP spam users, we propose a method called SpamDetector. In this

section, we first present the motivation behind the proposed method followed by its

working.

6.3.1 Motivation

There are several VoIP spam detection methods available in literature [106, 107].

These methods use calling behaviour patterns of VoIP users to identify spam users

in VoIP networks. These methods analyze the call parameters of VoIP users such as

their average call duration, average successful call rate, time of arrival of call per day,

etc. These methods detect spam users by finding those VoIP users whose average
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call duration, successful call rates are comparatively lower than normal VoIP users.

However, a determined spam user can evade these detection methods by generating

successful artificial calls to other spam users or bots with high call durations. In this

way, they can maintain their average call parameters similar to that of other normal

VoIP users. Thus, to detect such determined spam users, it is important to find the

value of different call parameters between each caller-callee pair. Drawing motivation

from this fact, we propose a graph based anomaly detection method SpamDetector

that analyzes calling behaviour of each caller-callee pair using a weighted directed

graph.

6.3.2 SpamDetector

Graph based anomaly detection methods identify nodes in the graph which look

different from other nodes. To identify such nodes, these methods use a particular

metric to find the similarity between the nodes [29]. Our proposed spam user de-

tection method SpamDetector also detects anomalies in a graph representing social

interaction of different VoIP users. SpamDetector has mainly three modules - 1) Call

Detail Record (CDR) generation, 2) A weighted directed graph known as Call Graph

generation and 3) Identification of anomalies in the Call Graph. Figure 6.3 shows

these three phases of SpamDetector along with the input and output of the system.

The CDR generation phase takes SIP packets as input and the anomaly detection

phase generates the list of spam users as output. The working of the three phases of

SpamDetector are described in next few subsections.

6.3.2.1 Call Detail Record Generator

Call Detail Record (CDR) generator processes the SIP packets collected from VoIP

Private Branch Exchange (PBX) server and generates a summary of call records. Each

entry in the CDR has details of call ID, name of caller, callee, status of call and call

duration. Few sample call records are shown in Table 6.13. Every VoIP call is uniquely

3We use the entries in this table as running example to elaborate the working of SpamDetector

later in this section.
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Detected Spam Users

SIP Packets

Spam Detection

CDR Generation

Call  Graph
Generation

Figure 6.3: Modules of SpamDetector

identified by alphanumeric call ID. Status of call is either complete or incomplete and

can be identified by whether the recipient answers the call or not. Whether the call is

answered or not answered is identified by packet exchanges in control plane operation.

For control plane operation, as discussed earlier in Section 6.1, mostly Session Initia-

tion Protocol (SIP) is used. The duration between an ACKNOWLEDGMENT and a

BYE message as shown in Figure 6.2 is the duration of call. If there is no ACKNOWL-

EDGMENT message in the conversation, the call is considered as incomplete.

6.3.2.2 Call Graph Generator

Call Graph Generator processes the CDR entries and generates a weighted graph

G = (VG, EG,WE : EG → R) where

• VG = {v1, v2, v3, ... vm} is a set of nodes such that each node denotes a VoIP

user among m VoIP users and m ∈ N.

• EG = {e12, e13..emk} is a set of edges such that edge epq denotes a directed edge

from node p to node q when a first call is attempted by a caller denoted by node

p to a callee denoted by node q such that p, q ∈ VG.
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Table 6.1: Sample Call Data Records (CDR)

Call-ID Caller Callee State of Call Call Duration (in seconds)

00026a3d7178b1569f34f6e081a92ea0 A B Complete 30

000e2f4873ccd9c20e1ea5f87acfb789 A C Complete 20

000ae6dc45f6af6d4f2e8da46521757a A D Complete 25

0021a02a64689959e8a6ce3ef5ecf0b0 A B Incomplete 00

005d927734961afe13538e05415972f4 A C Incomplete 00

00607bbc25274a5052a5ebf530c375fd A D Incomplete 00

00c306591b57578a3c5a87270639d07e B E Complete 60

0042914c5997f300143dbe076931181f C E Complete 55

00c7af8ab0e2c3d9c519b83f0c5dd0b4 D E Complete 50

00ecf3df08bf040c6e778fd839dfac84 E B Complete 55

011e1c62a0b56f5fd85859eaf7944385 E D Complete 60

016a42db37b16e0c2ee537294020dda2 D A Complete 40

01d023b327cc58e446e5a6c5784a2043 E D Incomplete 00

00e336791b57574a3c5a87570339c06f A C Incomplete 00

002d927734931ade12538e15412973a5 B C Complete 50

• WE = {w12, w13, · · ·wmk} is a set of weights such that wpq denotes the weight on

the edge epq.

Call Parameters: The weights on edges of Call Graph are assigned based on the

calling behaviour of VoIP users. There are many call parameters to detect behaviour

of a VoIP user however we consider three parameters - 1) Successful Call Rate, 2)

Average Talk-time Per Call and 3) User Role in the Call which can be leveraged to

calculate edge weights. These three parameters are described below:

1. Successful Call Rate: This is the ratio of successful calls by a caller i to the total

number of attempted calls by that caller to another user j. We denote successful call

rate by α and its value is calculated using Equation 6.1. In Equation 6.1, the value α

lies in the range of 0 to 1. If α is 0, it indicates that there are no successful calls by

the user and if it is 1, all calls by user i to user j are successful.

αij =
Successful Calls by User i to User j

Total Calls attempted by User i to User j
(6.1)

2. Average Talk-time Per Call: This parameter measures the average duration of

each call for a user i to user j. We use τ to denote average talk-time per call and its

value is calculated using Equation 6.2. The value of τ ≥ 0.

τij =
Total Talk-time of Calls from User i to User j

Total Successful Calls by User i to User j
(6.2)
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3. User Role in the Calls: This is the ratio of number of times the user u calls to

the number of times s/he receives the call. We denote this parameter by ρ and value

is calculated using Equation 6.3. If ρ is less than 1, user acts as callee most of the

time and if ρ is greater than 1, user acts as caller most of the time.

ρu =
Number of Times User u is a Caller

Number of Times User u is a Callee
(6.3)

The choice of above three parameters is motivated by the fact that VoIP spam

users make unwanted calls and often calls are generated from a recorded media

file (message) for marketing purpose or advertisement. Sometimes, for promotional

purposes of products, users in call centers also make such calls. Spam calls annoy

VoIP users (receivers) and are likely to be disconnected prematurely by the receiver.

Hence the average call duration of such callers is relatively small. Also spam users try

calling many users in short period of time hence they act as callers in all these calls.

Furthermore, many receivers notice the call ID used for such calls and are likely to

reject the calls coming from these IDs in future. This makes success rate of calls very

low. We consider these three observations about spam users [74] [109] [106] [78] and

deduce that spam users usually have small values of α and τ but large value of ρ.

Weight Assignment: The weights on edges of Call Graph are derived from

the three call parameters αij, τij and ρij. The weight wij on the directed edge eij

from node i to node j is calculated by taking the average of αij, τij and ρij for all

calls between these pair of nodes. Henceforth, in this chapter, αij, τij and ρij are

referred as the average of the respective values between a pair of nodes. It should

also be noted that ρ cannot be calculated for an edge as it is measured using both

received and attempted calls therefore we calculate this value for the node and assign

this value during weight calculation of the outgoing edge of that particular node. The

weight assignment for an edge eij is a function of call parameters. We notice that,

the weight wij is related to the three parameters as follows:

wij ∝
1

αij
where αij ∈ [0, 1] (6.4)

145



wij ∝
1

τij
where τij ∈ R (6.5)

wij ∝ ρi where ρ ∈ R (6.6)

We can notice that αij, τij and ρi have different range of values. In order to avoid

biasing in the assigned weight towards one of the parameters, we normalize each

parameter using Feature Scaling method of normalization [58] as shown in Equation

6.7.

x′ =
x−min(x)

max(x)−min(x)
(6.7)

During normalization, the zero values are replaced with the lowest nonzero value from

the processed CDR list. This is done to avoid the weight being converted to either 0

or ∞. We denote normalized values of αij, τij and ρi by α′ij, τ
′
ij and ρ′i. It is to be

noted that the proportionality of weight and call parameters do not change even after

normalization. After normalizing the values of call parameters in Equations 6.4, 6.5

and 6.6 and combining them, we obtain

wij ∝
ρi
′

α′ij × τ ′ij
(6.8)

or

wij = k × ρi
′

α′ij × τ ′ij
(6.9)

where k is a proportionality constant. If we set k=1 then

wij =
ρi
′

α′ij × τ ′ij
(6.10)

Example of Call Graph Generation and Weight Assignment: Consider

CDR shown in Table 6.1. The Call Graph generated from this CDR is shown in

Figure 6.4. The graph has 5 nodes denoting 5 users: A, B, C, D and E. A directed

edge is generated from one node to another whenever a user attempts first call to

another user (subsequent calls lead to change in weights as averages of parameters

change). Final weights are assigned after processing whole CDR. We can see from

the Table 6.1 that there are 15 calls out of which 10 are complete calls and 5 are
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Figure 6.4: Example Call Graph

incomplete calls. The calculated values of α, τ and ρ using the above equations

(normalized) and final weights on each edge are shown in Table 6.2. We can also see

Table 6.2: Values of α, τ and ρ for Example Call Detail Records

Edge (i→j) αij τij ρij Norm(αij) Norm(τij) Norm(ρij) wij

A→B 0.50 30 7.00 0.2424 0.250 1.0000 16.5000

A→C 0.34 20 7.00 0.2424 0.125 1.0000 33.0000

A→D 0.50 25 7.00 0.2424 0.125 1.0000 33.0000

B→C 1.00 50 0.67 1.0000 0.750 0.0622 00.0829

B→E 1.00 60 0.67 1.0000 1.000 0.0622 00.0622

C→E 1.00 55 0.25 1.0000 0.875 0.0370 00.0423

D→A 1.00 40 0.50 1.0000 0.500 0.0370 00.0740

D→E 1.00 50 0.50 1.0000 0.750 0.0370 00.0493

E→B 1.00 55 1.00 0.2424 0.875 0.1111 00.1296

E→D 0.50 60 1.00 0.2424 1.000 0.1111 00.4583

that there are 10 entries in this table representing 10 unique caller-callee pair.

6.3.2.3 Spam Detection using SpamDetector

Spam detection module detects spam users by identifying anomalies in graph.

In our case, the Call Graph generated in the previous phase is the input given to

this phase. Anomalies in the graph are identified by considering the local (1-hop)

neighbourhood of a node. A node which is apparently different from its neighbourhood

is considered as anomaly. In order to estimate the similarity of node vi with respect

to a neighbour vj, we define a parameter Spam Outlier Factor (SOF ). This SOF is

subsequently used to identify anomalies in the graph. SOF of a node vi with respect
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to an incident edge eij (hence with respect to an adjacent node vj) is the ratio of

weight (wij) to the average of weights of incident edges on node vj (other than weight

wji) as shown in Equation 6.11.

SOF (vi(eij)) =
wij

(
∑m
k=1 wjk)−wji
m−1

(6.11)

This calculated SOF is compared with the average SOF of node vj for deciding

whether the node vi is different with respect to edge eij. Average SOF of node vj is

calculated using Equation 6.12

SOFav(vj) =
(
∑m

k=1 SOF (ejk))− SOF (eji)

m− 1
(6.12)

where m is the out-degree of vj. If the ratio of SOF of node vi with respect to edge eij

is greater than N times the standard deviation of average SOF of node vj, the node is

considered as anomaly with respect to edge eij. Finally a node vi is declared as outlier

or anomaly if it is declared as anomaly with respect to majority of its neighbours.

Standard deviation and the thresholds used for declaring node vi as anomaly with

respect to edge eij are shown in Equation 6.13 and Equation 6.14 respectively

SOFstd−dev(vj) =

√∑m−1
k=1 (SOFav(vj)− SOF (ejk))

m− 1
(6.13)

SOFth(vi(eij)) = SOFav(vj) +N × SOFstd−dev(vj) (6.14)

where N is a natural number

Detecting Anomalies in Example Graph: Let us consider the example

Call Graph shown in Figure 6.4. It has 5 nodes and 10 directed edges with each edge

having a weight assigned to it. The weight on each edge is shown in Table 6.2. In

this graph, let us consider that the node A is to be decided whether it is anomaly or

normal node. As described earlier in this section, this is decided by majority voting

of its neighbours using their respective SOF scores. Node A has B, C and D as

its neighbours by virtue of edges eAB, eAC and eAD having weights 16.5, 33 and 33

respectively. SOF (A(eAB)) is calculated as the ratio of wAB to the average of wBC
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and wBE which results into 227.743 (=16.5/(0.0829+0.0622)/2)). SOFth(A(eAB)) is

the sum of the average SOFavg(B) and SOFstd−dev(B). SOFavg(B) is the average of

SOF (B(eBC) and SOF (B(eBE) which have the values of 1.96 and 0.13 respectively.

The average SOFavg(B) in this case is 1.045. Similarly the standard deviation value

of SOFstd−dev(B) using Equation 6.13 is 0.912. Considering N=1 in Equation 6.14

the threshold value on the SOFth(A(eAB)) is 1.96. As the SOF (A(eAB)) value is

227.743 which is greater than this threshold value of 1.96 of SOFth(A(eAB)), it is

interpreted that the behaviour of node A is not similar to that of B and hence with

respect to B, node A is considered as an anomaly. Similar calculations on other two

edges eAC and eAD also result into declaring the node A as anomaly. Hence through

majority voting, node A is finally declared as anomaly. Similar calculations on other

nodes and edges result into declaring all the remaining nodes other than A as normal.

These results are summarized in Figure 6.5 where the anomalous node A is shown in

red colour and all normal nodes are shown in green colour.
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Figure 6.5: Identifying Anomaly in Example Call Graph

6.4 Experimental Evaluation

To evaluate the detection performance of proposed method SpamDetector, we con-

ducted two experiments. In the first experiment, we created 1,000 simulated users in

our testbed setup as discussed in next subsection. In the second experiment, we used
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a modified version of a CDR generator script [25] to generate CDRs of 10,000 users.

The reason for conducting the second experiment with such a large user base was to

test the scalability of our proposed method. In this section, we describe the testbed

setup for generating VoIP call dataset for first experiment, datasets used, obtained

values of different call parameters and SpamDetector evaluation results obtained in

both the experiments.

6.4.1 Testbed Setup

To generate the dataset for our first experiment, we created a setup similar to the

one shown in Figure 6.6. Using this setup, we simulated two enterprise networks with

PC-1 PC-2

Asterisk Server

Figure 6.6: Testbed Setup used to Generate VoIP Calls

a set of users in each network. All the three machines in the setup had Intel Core

i5-4590 processor with the clock rate of 3.30 GHz, 16 GB of RAM and were using

Ubuntu 18.04 LTS. In one of the machines, we installed Asterisk Server 11.18.0 [2]

which acted as VoIP PBX [27]. On other two machines, we installed VoIP clients

which generated and received VoIP calls. These two client machines generated several

VoIP calls using a modified version of VoIP bot program [81]. Client machines ran

multiple instances of bot program and randomly generated one or more number of

calls at a time. Each bot program mimicked a user and ran as an independent process

on a different UDP port. This bot program used Jain SIP API [8] to handle the SIP

signaling and Java Media Framework (JMF) [9] to generate RTP flow using recorded
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audio files of varying duration. We first created 1000 users by registering them on the

server. We named these users as bot1, bot2, bot3 and so on upto bot1000. We then

simulated these VoIP users in both the machines and generated calls among them.

6.4.2 Dataset Generation using 1000 users

As discussed earlier in this section, we created 1000 simulated users (bot1-bot1000)

in our first experiment. Out of these 1000 users, we configured 2% of the users to mimic

the behaviour of spam users (bot981-bot1000) and remaining as normal users (bot1-

bot980). The simulation of calling behaviour of these normal and spam users is done

as follows:

1. We configured the normal users to generate non-frequent calls in such a way that

each normal user calls other normal users with a random call duration of 1 minute to

5 minutes. We also configured the normal users to make few calls to spam users.

2. We configured the spam users to generate two types of calls. First, they called nor-

mal users frequently with a random call duration of 5 seconds to 30 seconds. For spam

users, we also generated large number of unsuccessful calls by sending only INVITE

packets. Second type of calls were artificial calls made by spam users within the group.

As discussed in Section 1, spam users may attempt to maintain the three parameters

(used to derive weight) close to that of normal users by generating some artificial calls

among themselves. To simulate this behaviour, we scheduled calls between spam users

themselves. Using these calls, spam users maintained - 1) the average talk-time by

calling to each other for longer call duration, 2) the high successful call rate with other

spam users and 3) the user role in call by receiving calls from other spam users in a

coordinated manner. This behaviour of VoIP spams is also described in [38].

We collected the network traffic generated through this VoIP communication in

the Asterisk server machine using tcpdump software [24]. With appropriate filters in

tcpdump, we collected only SIP traffic. Processing only SIP traffic is sufficient for

generating CDRs and it also does not compromise users’ privacy to some extent4.

4RTP contains real conversation data.
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Using this setup, we generated VoIP calls between all the 1000 users. This simulation

continued for 3 days resulting into a filtered SIP dataset of 5.339 GB. We created

CDRs from this dataset and found a total of 147507 calls. Out of these, 97037 were

attended calls whereas 50470 were dropped calls. A summary of call statistics and

collected dataset is shown in Table 6.3. Total number of calls between different user

groups are shown in Table 6.4.

Table 6.3: Dataset Generated using 1000 VoIP Users

Parameter Value

Total size of dataset (in GB) 005.3390

Number of packets (only SIP) 3453257

Number of complete calls 0097037

Number of incomplete calls 0050470

Total number of VoIP users 0001000

Table 6.4: Calls Between Different User Groups in First Experiment

Calls Number of calls

Normal to Normal 49573

Spam to Normal 50000

Spam to Spam 47507

Normal to Spam 00427

6.4.3 Dataset Generation for 10000 users

As discussed earlier in this section, in our second experiment, we generated CDRs

of 10,000 VoIP users by modifying a CDR-generator script [25] to test the scalability of

our proposed method SpamDetector. Instead of simulating 10,000 users, we generated

the CDRs using this script because it is difficult to simulate such a large number of

users on a machine5. This CDR-generator script can be configured by varying different

parameters such as the number of calls to be generated, call duration, call drop rate,

etc. We configured the script such that it generated CDRs similar to one we obtained

for 1000 users in our previous experiment. Also, we configured the script to designate

2% users as spam users (bot9801 to bot10000) and remaining as normal users (bot1

to bot9800). The generated CDRs showed that the call duration and call drop rate

5Each simulated user is executed as a process on a machine.
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between normal users was between 1 minute to 5 minutes and less than or equal to

0.3 respectively. Moreover, call duration and call drop rate between spam to normal

users was less than or equal to 0.5 minutes and more than 0.7 respectively whereas call

duration and call drop rate between spam to spam users was between 3 to 6 minutes

and less than 0.2 respectively. A summary of call statistics and dataset collected is

shown in Table 6.5. Total number of calls between different user groups are shown in

Table 6.6.

Table 6.5: Dataset Generated using 10000 VoIP Users

Parameter Value

Number of complete calls 198868

Number of incomplete calls 100609

Total number of VoIP users 010000

Table 6.6: Calls Between Different User Groups in Second Experiment

Calls Number of calls

Normal to Normal 099317

Spam to Normal 100000

Spam to Spam 099477

Normal to Spam 000683

6.4.4 Obtained Calling Parameters

As discussed earlier in Section 6.3.2.2, we consider three parameters to calculate

edge weights in the generated Call Graph. In this subsection, we present the values

of these calling parameters obtained in our experiments.

First Experiment: We can notice from Table 6.4 that the number of calls

between normal users to normal users were 49573, normal users to spam users were

427 and spam users to normal users were 50000. Also, 47507 calls were between

spam users to spam users to maintain their calling parameters similar to that of

normal users. To understand the calling behaviour of normal users and spam users,

we calculated the average values of α, τ and ρ for each user which are shown in

Figures 6.7, 6.8 and 6.9 respectively. We can notice from Figure 6.7 that the average
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Figure 6.7: Average Successful Call Rate (α) for 1,000 Users
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Figure 6.8: Average Talk-time (τ) for 1,000 Users

successful call rate of spam users (bot981 to bot1000) is same as that of normal users.

The same is true for the other two parameters except the third parameter of few spam

users (showing deviation in Figure 6.9). From these figures, we can clearly notice that

spam users were trying to mimic as normal user by maintaining the averages of all the

monitored parameters thus posing a challenge in detecting them by simply noticing

the call parameters and their average values. However, the calling behaviour of spam

users can be analyzed by comparing these parameter values between the spam users

group and normal users group. Figures 6.10, 6.11 and 6.12 show these parameter

values (for 20 spam users numbered from bot981 to bot1000) between spam to spam

users and spam to normal users. We can notice that spam users have large successful
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Figure 6.9: User Role In Call (ρ) for 1,000 Users
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Figure 6.10: Average Successful Call Rate (α) for 20 Spam Users among 1,000 Users

call rate and average talk time among the spam users group that bring the average

close to that of normal users. The same is also true for the third parameter as well.

Thus any detection method based solely on these parameters can not differentiate a

spam user from a normal user. However, since SpamDetector uses the social interac-

tion among users and also the neighbourhood similarity, it can identify the spam users.

Second Experiment: We can notice from Table 6.6 that the number of calls

between normal users to normal users were 99317, normal users to spam users were

683 and spam users to normal users were 100000. Also, 99477 calls were between

spam users to maintain their call parameters similar to that of normal users. The
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Figure 6.11: Average Talk-time (τ) for 20 Spam Users among 1,000 Users

0 

10 

20 

30 

40 

50 

60 

b
o

t9
8

1
 

b
o

t9
8

2
 

b
o

t9
8

3
 

b
o

t9
8

4
 

b
o

t9
8

5
 

b
o

t9
8

6
 

b
o

t9
8

7
 

b
o

t9
8

8
 

b
o

t9
8

9
 

b
o

t9
9

0
 

b
o

t9
9

1
 

b
o

t9
9

2
 

b
o

t9
9

3
 

b
o

t9
9

4
 

b
o

t9
9

5
 

b
o

t9
9

6
 

b
o

t9
9

7
 

b
o

t9
9

8
 

b
o

t9
9

9
 

b
o

t1
0

0
0

 

V
al

u
e

 o
f 
ρ

 

User name 

Spam to Spam 

Spam to Normal 

Figure 6.12: Average User Role In Call (ρ) for 20 Spam Users among 1,000 Users
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calculated average values of α, τ and ρ for each user considering all their adjacent

nodes are shown in Figures 6.13, 6.14 and 6.15 respectively.
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Figure 6.13: Average Successful Call Rate (α) for 10,000 Users
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Figure 6.14: Average Talk-time (τ) for 10,000 Users

Similar to the first experiment, we can notice from Figures 6.13, 6.14 and 6.15

that the spam users were trying to mimic the behaviour of normal users in second

experiment also. However, the calling behaviour of spam users can be differentiated

from the behaviour of normal users by comparing these parameter values between

the spam users group and normal users group. Figures 6.16, 6.17 and 6.18 show the

average values of α, τ and ρ respectively for 200 spam users (bot9801 to bot10000) in

two scenarios- 1) when spam users call spam users and 2) when spam users call normal
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Figure 6.15: User Role In Call (ρ) for 10,000 Users

users. We can notice that in second experiment also, for spam users, the selected
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Figure 6.16: Average Successful Call Rate (α) for 200 Spam Users among 10,000 Users

parameters average values are closer to the normal users.

6.4.5 SpamDetector Performance

We evaluated the detection performance of SpamDetector using the datasets

generated from the setup described in the previous subsection. In this subsection, we

present the detection results obtained while testing SpamDetector on these datasets.

First Experiment: Using the dataset generated from the testbed setup in
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Figure 6.17: Average Talk-time (τ) for 200 Spam Users among 10,000 Users
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Figure 6.18: Average User Role In Call (ρ) for 200 Spam Users among 10,000 Users
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our first experiment, we evaluated the performance of SpamDetector to identify

spam users (nodes) in the graph. As a first step, the SIP packets were processed

to generate CDRs. For processing SIP packets and generating the CDR file of

VoIP calls, we wrote a Java program using jNetPcap [10] library which generated

a list of 147507 entries. Subsequently, the CDR data was converted into weighted

Call Graph (represented as adjacency matrix) using another Java program. This

program also calculated the αij, τij and ρij (ρi is used for ρij) values for each pair

of nodes, normalized the values using Feature Scaling [52] and assigned the weights

for each directed edge eij. As there were 1000 VoIP users in our setup, the generated

graph had 1000 nodes and the total number of edges in the graph were 67190. We

also implemented SpamDetector module in Java which calculated SOF values for

each node and with voting, identified the spam users in the graph using the value of

N=1 (i.e. standard deviation) in Equation 6.14. We evaluated the performance of

our method on the basis of two parameters: Recall and False Positive Rate (FPR).

Since SpamDetector could correctly detect all spam users and no normal users were

classified as spam user, the obtained Recall and FPR of SpamDetector were 100%

and 0% respectively.

Second Experiment: We used a CDR generation script [25] to generate CDR of

10000 users. We first provided the list of users as input to this script and set flags for

normal and spam users as 0 and 1 respectively. We also set a minimum and maximum

value of successful call rate for normal users and spam users. The CDR generator

script generated successful calls as per this range for different users. Similarly, we set

a minimum and maximum value of every call duration for normal users and spam

users. We modified the CDR generator script in such a way that when spam user

calls to spam user then s/he uses high call duration range whereas when s/he calls

to normal user, s/he uses low call duration range. The CDR generated in this case

is having same fields as the CDR generated in the first experiment. From CDR,

we obtained the Call Graph with 10000 nodes and 135698 edges connecting the

nodes. Similar to the first experiment, in this case also, SpamDetector could correctly
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detect all spam users without any false positives and so the obtained Recall and

FPR of SpamDetector was 100% and 0% respectively. Thus, our proposed method

SpamDetector is scalable and can be implemented to identify spam users even if the

VoIP network contains a large number of users.

6.4.6 Sensitivity Analysis

SpamDetector uses a threshold on the ratio of edge weight under consideration

and average SOF of peer node to vote the node as anomaly or normal. Thus, this

threshold value governs the detection performance of SpamDetector. To understand

the impact of varying this threshold value on Recall and FPR, we varied the threshold

value by setting different values of N in Equation 6.14 between -20 to 20 and obtained

the detection results. Figure 6.19 shows the effect of varying N on Recall and FPR

of SpamDetector. We can notice that as the threshold increases, Recall decreases and
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Figure 6.19: Effect of Varying N on Detection Performance

at the same time FPR also decreases. Thus an appropriate threshold value should be

set balancing these two.

6.4.7 Performance Comparison and Discussion

We compared the performance of SpamDetector with a recent work described by

Toyoda et al. [106] by testing their method on our dataset. Their method detects

spam users by clustering VoIP users on the basis of their call behaviour. The call
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behaviour of each VoIP user is described using 5 call parameters as described below:

1. Average Call Duration (ACD): ACD of a user u is the average talk

time per call of the user. ACD of a spam user is small as s/he has low talk-time per

call.

2. Call Frequency Per Day (CPD): CPD of a user u is the average number of

calls by the user per day. CPD of a spam user is high as s/he makes large number of

calls per day6.

3. Strong Ties (ST ): ST of a user u corresponds to the ratio of total call duration

of the top 5 callees (based on the call duration) to the total call duration of the user.

ST of a spam user is high as s/he has small total call duration.

4. Weak Ties (WT ): WT of a user u is the fraction of number of callees that talk

for more than 60 seconds to the user. WT of a spam user is small as there are less

number of users who talk to a spam user for more than 60 seconds.

5. Incoming to outgoing Ratio (IOR): IOR of a user u is the ratio of number

of calls received by the user to the number of times the user called. IOR of a spam

user is small as s/he mostly behaves as a caller.

Example: Consider a VoIP network having five users as u1, u2, u3, u4 and

u5. The CDR generated from the social interaction among these users in a day is

shown in Table 6.7. From this table, we can notice that each user calls two times in

a day. From the given CDR, ACD of u1, u2, u3, u4 and u5 is calculated as 35, 60, 5,

100 and 15 seconds respectively. Moreover, CFD of all these users is 2 as all of them

call two times in a day. In the given example, total call duration of all the (top) 5

callees is 430 seconds. Thus, ST for users is calculated as 6.14, 3.58, 43, 2.15 and

14.33. The user u1 called u4 and talked for 70 seconds whereas u1 could not establish

a call with u2. Thus, WT for u1 is calculated as 0.5. Similarly, for other four users,

WT is calculated as 1, 0, 1 and 0.5. The last parameter IOR for users u1, u2, u3, u4

6For our experiments, we considered the total number of calls attempted by a user during the

simulation period as the CPD of that user.
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Table 6.7: Example Call Detail Records

Caller Callee Talk-time (in seconds)

u1 u4 070

u1 u2 000

u2 u3 040

u2 u1 080

u3 u5 000

u3 u1 010

u4 u1 120

u4 u2 080

u5 u2 030

u5 u2 000

and u5 is calculated as 1.5, 2.0, 0.5, 0.5 and 0.5 respectively.

The values of these 5 parameters are passed to two clustering algorithms namely K-

means clustering and combination of Random Forest (RF) with Partitioning Around

Medoids (PAM). These clustering algorithms form two clusters on the basis of these

call parameters. One cluster is of normal users and other cluster is of spam users such

that values of all the 5 parameters for spam users is lower than that of normal users.

We calculated all these parameters over our dataset and used both the clustering algo-

rithms available in a machine learning tool Knime [11]. The performance comparison

of both the methods, SpamDetector and that of Toyoda et al., is shown in the Table

6.8. We can notice that there is a significant drop in the detection performance of

method proposed in [106]. This lower detection rate and higher false alarm rate is

justified by the fact that they use the raw values of average call duration, success

rate, etc. irrespective of which interactions among the users contribute to these val-

ues. However, SpamDetector uses the neighbourhood relationship and can precisely

differentiate to which peers a node is behaving differently and hence can identify the

spam users although the averages look similar.

Table 6.8: SpamDetector Performance Comparison with Toyoda et. al [106] Method

Parameter SpamDetector (for 1000 Users) Toyoda et al. [106]

Recall (in %) 100.00 061.23

FPR (in %) 000.00 022.71
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6.4.8 Limitations

Although our proposed method SpamDetector performs well even if a spam user

maintains the averages of parameters used for differentiating a spam user from a

normal user, it also has few limitations as follows:

• As SpamDetector relies on the majority voting for declaring a node as spam

in the graph, a tie in voting needs to be resolved. This can be done by either

considering the node receiving equal votes as normal or anomaly.

• Since SpamDetector calculates the SOF values of all the neighbouring nodes of a

node under consideration, this is computationally expensive and time consuming

to perform, particularly, if the graph is dense (nearly complete graph).

• We tested the detection performance of SpamDetector on the datasets generated

by mimicking behaviour of real VoIP users in a simulated environment only.

6.5 Conclusion

VoIP involves transmitting voice and multimedia content between users over IP

networks. Most VoIP systems use Session Initiation Protocol (SIP) for control plane

operation. However, VoIP’s low cost communication makes it a popular target for

spam users. In this chapter, we described SpamDetector, a method for VoIP spam

user detection based on the VoIP user’s calling behaviour. SpamDetector first gen-

erates a call graph using call detail records of VoIP users. Subsequently, it uses the

calling behaviour between the users through a set of chosen parameters and identifies

anomalies in the generated call graph. Anomalies are identified by considering the

local neighbourhood of a node and deriving Spam Outlier Factor with each of its

neighbours. A node is declared as anomaly if it is different with respect to majority

of its neighbours. We evaluated the performance of SpamDetector to identify spam

users on two simulated datasets and reported that it can detect spam users with very

high accuracy. We also compared SpamDetector with a recent work and showed that

SpamDetector achieves better Recall without any false positives.
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Chapter 7

Conclusion

In this chapter, we summarize the DPI based methods presented in the thesis to

monitor network traffic for three different purposes - 1) Traffic classification, 2) Zero

day attack detection in web traffic and 3) Spam user(s) detection in VoIP networks.

The goal of our work was to propose such methods which can monitor the network

traffic for these purposes and give accurate classification/detection results.

We first motivated our thesis by stating that monitoring network traffic is essen-

tial for various purposes as it gives an in-depth insight of what type of data is flowing

through a network. We presented some recent trends which report that the number

of Internet users and hence the services offered through Internet are on a rapid rise

that results into generation of voluminous and heterogeneous traffic. This makes the

network monitoring a challenging task. We also pointed out that DPI based methods

are more accurate than statistical methods, however, DPI based methods also suffer

from problems such as high computational complexity and compromise user’s privacy.

Therefore, the goal of the research presented in this thesis was to provide novel so-

lutions for network traffic classification, zero day attack detection and VoIP spam

detection which are accurate and at the same time, computationally less expensive as

well. In this direction, we first proposed a traffic classification method RDClass which

analyzes payload at byte level and can accurately classify the application protocols in

the network traffic. However, RDClass works only for text based protocols. In order

to handle binary protocols, we proposed another traffic classification method BitCod-
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ing and BitProb which analyze payload at bit level and can accurately classify text,

binary and proprietary protocols in the network traffic. We subsequently proposed two

methods - Rangegram and OCPAD to detect zero day attacks in web traffic. First

method Rangegram extracts n-grams with their occurrence frequency from the pay-

load of each HTTP packet and use it to detect zero day attacks. Our second anomaly

detection method OCPAD detects anomalies in web traffic by checking the occurrence

probability of n-grams of the payload of HTTP packets. As our last contribution, we

proposed SpamDetector which can detect spam users in a VoIP network by analyzing

their calling behaviour using a call-graph.

7.1 Thesis Contributions

We recap the thesis contributions in this section.

7.1.1 RDClass - A Byte Level Payload Analysis Method for

Network Traffic Classification

We proposed RDClass which is an unsupervised payload based traffic classification

method for classifying network flows. RDClass uses a set of keywords extracted from

flow payload and uses the relative distance between the pair of consecutive keywords

to identify application protocol. We represented the set of keywords and their relative

distances in the form of a state transition machine called Relative Distance Constrained

Counting Automata (RDCCA). We evaluated the performance of RDClass on three

different public and private datasets and compared with a recent and closely related

work and showed that RDClass gives better classification accuracy. We also discussed

the limitation of RDClass as it can classify only text based protocols and fails to

detect binary and/or proprietary protocols.

166



7.1.2 BitCoding and BitProb - Bit Level Payload Analysis

Methods for Network Traffic Classification

To handle both text-based and binary protocol, we proposed two supervised traf-

fic classification methods BitCoding and BitProb which generate application specific

signatures using only a small number of initial bits extracted from a flow. BitCoding

encodes generated signatures of each application in order to compress them and then

transforms the compressed signatures into a state transition machine called Transi-

tion Constrained Counting Automata (TCCA). This TCCA is subsequently used for

classification purpose. Since BitCoding considers only invariant bits while match-

ing application signatures, this increases the chances of signature overlap which may

lead to misclassifications. However, our second method BitProb considers the occur-

rence probability of bit values at each position without omitting any bit value during

signature match due to which it can identify applications more accurately. Similar

to BitCoding, BitProb also transforms the generated signatures into a state transi-

tion machine called Probabilistic Counting Deterministic Automata (PCDA). Our

proposed methods generate short application specific signatures and thus, are compu-

tationally less expensive. We evaluated the classification performances of BitCoding

and BitProb on two public and one private datasets and showed that they can classify

different text, binary and proprietary protocols with very high accuracy which makes

them protocol agnostic. We performed cross site experiments and showed that the

generated signatures are robust. We also compared the classification performance of

BitCoding and BitProb with a recent and closely related work and showed that our

methods outperform BitFlow.

7.1.3 Rangegram and OCPAD - Zero Day Attack Detection

in Web Traffic

We proposed two methods Rangegram and OCPAD to detect zero day attacks

in the web traffic. These methods use DPI for extracting n-grams from packet pay-

loads. The first method Rangegram uses occurrence frequencies of n-grams to detect
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anomalous packet payloads. Rangegram creates a normal HTTP profile by extracting

n-grams (short sequences of length n from a string) from HTTP payload and stor-

ing the minimum and maximum occurrence frequency of each n-gram along with the

n-gram in a data structure called Min-Max-Tree. Subsequently, Rangegram uses a

rating function to find those HTTP packets for which the generated n-grams deviate

from the normal HTTP profile. If the observed deviation is greater than a predefined

threshold, the HTTP packet under consideration is declared as anomalous. Our sec-

ond anomaly detection method OCPAD uses a version of Multinomial Bayesian one

class classification technique for accurately detecting anomalous payloads. In particu-

lar, OCPAD uses likelihood of n-gram occurrence in a payload of known non-malicious

HTTP packets as a measure to derive the degree of maliciousness of a packet. OCPAD

first calculates the likelihood range of each n-gram occurrence from every packet and

stores it along with the n-gram in a proposed efficient data structure called Probability-

Tree. Subsequently, if the n-grams generated from the payload of HTTP packet under

consideration is not found in the database or its occurrence probability in a packet

is not in the range stored in the Probability-Tree, OCPAD considers the packet as

anomalous. We evaluated both of our proposed methods on a common dataset and

compared their detection performance. We also compared Rangegram and OCPAD

with a closely related work and showed that both of our methods outperform the

previously known method in terms of detection accuracy.

7.1.4 SpamDetector - Detecting Spam Users in VoIP Net-

works

As our last contribution, we proposed SpamDetector, a graph based method to

detect VoIP spam users in a network. SpamDetector examines SIP packets in network

traffic and creates a directed and weighted call graph using Call Detail Records (CDR)

of users where a set of differentiating call parameters are used to derive weights on the

edges. Subsequently, SpamDetector analyzes the call graph for spam user detection.

SpamDetector identifies anomalies in the graph by considering the local neighbourhood
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of a node and assigning a label based on how similar the node is in comparison to

its neighbours. To find how similar a node is with its neighbours, we defined a new

parameter called Spam Outlier Factor (SOF). If the calculated SOF of the node under

consideration is greater than the threshold SOF of a neighbouring node, it votes the

node under consideration as spam. In a similar way, other neighbouring nodes also

votes the considered node as normal or spam depending on their threshold SOF. If

the spamming votes are found in majority, SpamDetector eventually declares the node

as spam. We evaluated the detection performance of SpamDetector on two different

datasets and showed that SpamDetector could correctly detect all spam nodes. Using

our datasets, we also compared the detection performance of SpamDetector with one

of the closely related work and showed that SpamDetector outperforms the previously

known method in terms of both Recall and FPR.

7.2 Future Work

Our work on traffic classification and detecting zero day attacks can be extended

in several ways. Some of the future directions are discussed in next few subsections.

7.2.1 Classification of Mobile Applications in Network Traffic

There are approximately six million mobile applications available in the wild.

These applications generate voluminous and heterogeneous network traffic and ma-

jority of them use HTTP for the purpose of communication and data transfer. As

a result, misleading classifications are evident which make classifying mobile applica-

tion traffic a very challenging task. For network traffic classification, we made three

contributions in this thesis - RDClass, BitCoding and BitProb. We showed that these

methods could accurately classify application layer protocols. However, these meth-

ods cannot detect those applications which are using these application layer protocols

for the purpose of communication and data transfer. Thus, extending our classifica-

tion methods to generate unsupervised bit level signatures for mobile applications is

a useful extension so that they can detect mobile applications also.
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7.2.2 Detection of Zero Day Attacks in Binary Protocols

We proposed two methods, Rangegram and OCPAD, to detect zero day attacks

particularly in web traffic. These methods involve extraction of n-grams from the pay-

load of HTTP packets to generate normal profile and subsequently use the generated

profile to detect anomalous packets. Since HTTP is a text protocol, it is easy to gen-

erate n-grams and compare them from the normal profile. However, as we discussed

in Chapter 4, several popular application layer protocols such as NTP or DNS are

encoded at the bit level. As a result, several previously known methods (including our

proposed methods Rangegram and OCPAD) which use n-grams as features to analyze

payload may not work effectively [59]. Therefore, it is an interesting future research

problem how the proposed methods can be modified so that they can detect zero day

attacks in binary protocols also.
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