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ABSTRACT

A dynamical system describes a relation between two or more measurable quanti-
ties by a set of differential equations. We focus on first-order non-parametric as well as
parametric dynamical systems with varying linearity (linear and bilinear). In general,
dynamical systems corresponding to real-world applications are extremely large in
size. Simulation and computation with such systems require a large amount of space
and time. By using Model Order Reduction (MOR) techniques, these large dynamical
systems are reduced into a smaller size, which makes the simulation and computation
easier. MOR can be done in many ways, i.e., by using balanced truncation, Hankel
approximations or Krylov projection. Projection methods obtain the reduced model
by projecting the original full model on a lower dimensional subspace and are quite
popular. Interpolation is usually used to obtain the subspaces involved in the pro-
jection. Thus, these methods are referred to as interpolatory projection based MOR

algorithms, which we specifically focus on.

In most of these MOR algorithms, people often use direct methods like LU-
factorization, etc., to solve the arising linear systems, which have a high time complex-
ity (cubic in terms of the system size). A common solution to this scaling problem is to
use iterative methods like Krylov subspace methods, etc., which have a reduced time
complexity (between linear and quadratic in terms of the system size), where nnz is
the number of nonzeros in the system matrix). Although iterative methods are cheap,
they are inexact too. Hence, studying the stability of the underlying MOR algorithms

with respect to such approximate (inexact) linear solves becomes important.

One of the first works that performed such a stability analysis focused on popular
MOR algorithms for first-order non-parametric linear dynamical systems. Here, the
authors briefly mention that their analysis would be easily carried from the first-order
to the second-order case. Some researchers expanded this stability analysis to reducing
second-order non-parametric linear dynamical systems. Apart from this, a different
kind of stability analysis for MOR of second-order non-parametric linear dynamical

systems has also been done in literature. In this, the authors first show that the SOAR



algorithm (second order Arnoldi) is unstable with respect to the machine precision
errors (and not inexact linear solves). Then, they propose a Two-level orthogonal
Arnoldi (TOAR) algorithm that cures this instability of SOAR.

Since our focus is on first-order systems, we extend the stability analysis done
for the reduction of non-parametric linear dynamical systems to the reduction of the
following classes of dynamical systems: non-parametric bilinear and parametric linear.
Our analyses can be easily extended to MOR of parametric bilinear dynamical systems,
leading to coverage of most of the existing MOR algorithms.

The innovative aspects of this work are as follows: capturing the behavior of bi-
linear terms in the stability conditions, providing two different sets of constraints for
achieving backward stable algorithms, and easily satisfying the extra-orthogonality

constraints imposed while achieving stability.
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CHAPTER 1

INTRODUCTION

A dynamical system describes a relation between two or more measurable quanti-
ties by a set of differential equations of many orders, however, we focus only on the
first-order. The system may be non-parametric/ parametric or linear/ nonlinear, and
can be described both in the time domain and in the frequency domain. In the time
domain, a v parameters Multiple Input Multiple Output (MIMO) bilinear dynamical

system with m inputs and g outputs is represented as follows [12} 20]:

m

E(p)z(t) = A(p)=(t) + X Nj(p) z(t)u;(t) + B (p) u(t),
((p) : i=1 (1.1)
y(t) = C(p)x(t),
where p = [p; ... pU]T e R, E(p), A(p) e R™", N;(p) e R™" for j =1, ...,m,

B(p) e R™™ and C(p) € R*™. Also, u(t) = [us(t) ... un(®)]":R - R™ 2(t): R —
R™ and y(t): R — RY represent the input, the state and the output of the dynamical
system, respectively. We make no assumption on the structure of the system matrices.
It is not possible to write the transfer function of a complete bilinear dynamical system,
therefore, in [41] 24, 26] the authors represent the bilinear dynamical system in the
frequency domain by a series of subsystem transfer functions, i.e.,

((p) = lim ¢*(p), (1.2)

k—o0



where  ¢*(p) = {Hi(s1; p), Ha(s1, 825 p), -, Hi(s1, 82, .oy sk D))
S1, S, ..., S are the frequencies and p is the set of parameters. Here,
Hy, (s1, 82, ..., sp; p) is the k'™ order transfer function of the parametric bi-

linear dynamical system and is defined as [24], 26]:

Hy(s1, s2, ., si5 p) = C(p) (sxE(p) — A(p))™ N(p)

NI ® (sk1E(p) — A(p)) '] (In ® N (p))

_ (1.3)
[,®.. 0L, Q(s2E(p)—Ap) ' | | In®...®L,® N(p)
— —

k—2 times k—2 times

[,®.. 0L, (s1E(p)—Ap) " | | . ®...® L, ® B(p) |,
—_ —_

k—1 times k—1 times

where N(p) = [N1(p) ... Nu(p)], L is the identity matrix of size m, and ® denotes
Kronecker product (defined later).

If in , the matrix N(p) is a zero matrix, then the system is a parametric
linear dynamical system. That is, a v parameter MIMO linear dynamical system is

represented as
(1.4)

The transfer function of the linear dynamical system in the frequency domain is defined
as follows:
H(s; p) = C(p)(sE(p) — A(p)) ' B(p)- (1.5)
Also, if the system matrices above are independent of the parameter (p), then this
refers to a non-parametric dynamical system (bilinear or linear as the case may be).
In general, dynamical systems corresponding to the real world applications are
extremely large in size. Simulation and computation with such systems requires large
amount of space and time. By using model order reduction (MOR) techniques [28] [47,
o1, (Bl [16) 45, 29] [17], these large dynamical systems are reduced into a smaller size,

which makes the simulation and computation easier. MOR can be done in many ways,
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i.e., by using balanced truncation [47], Hankel approximations or Krylov projection
[28, 29, [17]. Projection methods obtain the reduced model by projecting the original
full model on a lower dimensional subspace, and are quite popular. In literature, there
are several techniques of projecting a dynamical system [28], 29] 17, 5], 8] B0, 12] 24,
20]. The Petrov-Galerkin projection is one such projection technique that gives nice
properties in the reduced model. Interpolation is usually used to obtain the subspaces

involved in the Petrov-Galerkin projection.

Based upon the theory of Petrov-Galerkin based interpolatory model reduction,
authors in [11, [30, 19] have proposed Iterative Rational Krylov Algorithm (IRKA)
for model reduction of non-parametric linear dynamical systems. IRKA provides
the reduced model that is optimal (the kind of optimality is discussed in the next
section). Similar to IRKA, authors in [12],[17] have proposed Bilinear Iterative Rational
Krylov Algorithm (BIRKA) for model reduction of non-parametric bilinear dynamical

systems.

BIRKA'’s biggest drawback is that it does not scale well in time (with respect
to increase in the size of the input dynamical system). To overcome this drawback,
researchers have proposed other efficient algorithms for MOR of non-parametric bilin-
ear dynamical systems. This includes TBIRKA (Truncated Bilinear Iterative Ratio-
nal Krylov Algorithm) [24] 26], balanced truncation based [13], Gramian based [50],
moment-matching based [§], and implicit Volterra series based [I]. TBIRKA forms
the base of all these efficient algorithms, which is a cheaper variant of BIRKA.

Analogous to the non-parametric case of [30] (IRKA as above), MOR algorithms
for reducing parametric linear dynamical systems have also been proposed (also gener-
ically termed as Parametric Model Order Reduction algorithms or PMOR algorithms).
For e.g., interpolatory PMOR algorithm (IPMOR) [9], piecewise Hs—optimal inter-
polatory PMOR [9], multi-parameter and multi-frequency moment-matching based
PMOR algorithm [36], PMOR using extended balanced truncation [44], PMOR with
Ho—error using radial basis functions [14], etc. IPMOR’s theory feeds into the other

algorithms listed above.

Recently, parametric bilinear dynamical systems are also being studied extensively

3



[15]. For reducing such systems, in [20], authors have proposed an interpolatory

parametric bilinear MOR method.

The main computational bottleneck in reducing larger models (or dynamical sys-
tems) is solving large sparse linear systems of equations. The reason for this is that
typically, model reducers use direct solvers like LU-factorization, Gaussian elimina-
tion, etc., to solve such linear systems of equations, which have a high time complex-
ity (O(n?®), where n is the original system size) [43, 23]. A common solution to this
scaling problem is to use iterative methods like the Krylov subspace methods, etc.,
which have a reduced time complexity (i.e., O(n x nnz), where nnz is the number of
nonzeros in the system matrix) [43], 23]. Although iterative methods are cheap, they
are inexact too, i.e., they solve linear systems of equations up to a certain stopping
tolerance. Hence, studying stability of the underlying MOR algorithms with respect to
such approximate (inexact) linear solves becomes important [23] 48]. In other words,
we need to check that small errors in linear solves does not substantially deteriorate

the quality of the reduced model.

One of the first works that performed such a stability analysis focused on popular
MOR algorithms for first-order non-parametric linear dynamical systems [10]. Here,
the authors briefly mention that their analysis would be easily carried from the first-
order to the second-order case. Some researchers expanded this stability analysis to
reducing second-order non-parametric linear dynamical systems [46]. Apart from this,
a different kind of stability analysis for MOR of second-order non-parametric linear
dynamical systems has also been done in literature [37]. In this, the authors first
show that the SOAR algorithm (second order Arnoldi) is unstable with respect to
the machine precision errors (and not inexact linear solves). Then, they propose a

Two-level orthogonal Arnoldi (TOAR) algorithm that cures this instability of SOAR.

Before performing the stability analysis of the above discussed algorithms, we
revisit the theory of the different model reduction algorithms in the next chapter
(Chapter [2)). Recall, our focus is only on first-order systems. With focus on non-
parametric bilinear MOR, we first perform the stability analysis of BIRKA (in Chapter
3). We prove that under mild assumptions, BIRKA is backward stable. The most

4



novel contributions here are capturing the behavior of the bilinear terms (N;(p)) for
j =1 ..., m from in the conditions for stability as well as analyzing the
invertibility of all involved matrices.

We also compute the expression for conditioning of the problem and perturbation
(introduced as part of stability analysis) to get the accuracy of the reduced system.
Finally, we support all our results by numerical experiments.

Next, we extend the earlier stability analysis of BIRKA to more efficient algo-
rithms for MOR of non-parametric bilinear dynamical system, specifically TBIRKA
(in Chapter . The approach here is slightly different, which forms our most novel
contribution.

In BIRKA stability analysis, a single expression for bilinear dynamical system
norm is used (involving a Volterra series). In TBIRKA stability analysis, a similar
single expression (involving truncated Volterra series) leads to one set of stability
conditions. Alternatively, because of truncation, the bilinear dynamical system here
can be represented by a finite set of functions (which was not possible in-case of BIRKA
because of the need of infinite such function there) leading to another set of stability
conditions. Depending upon the input dynamical system, one set of conditions may
be more easy to satisfy than the other.

We also compute the expression for conditioning of the problem as well as per-
turbation, both of which are different than their respective expressions in BIRKA,
leading to computation of accuracy of the reduced system. We support all our con-
jectures (including two ways of achieving a backward stable TBIRKA) by numerical
experiments.

Finally, with focus on MOR of parametric linear dynamical systems, we perform
stability analysis of the IPMOR algorithm (in Chapter [f]). Besides deriving the con-
ditions for stability, expressions for accuracy of the reduced system, and numerical
experiments, our most novel contribution here is achieving a backward stable IPMOR.

To achieve this, we first categorize the involved orthogonality conditions into dif-
ferent classes. Second, we adapt the underlying iterative solves (here BiConjugate

Gradient or BiCG [43, 49]) to satisfy these orthogonalities. Finally, and third, we

5



derive a new variant of the Recycling BiCG [3, 4] so that these orthogonalities can
be achieved with no code changes to the iterative solver (for a end user or a model
reducer here) as well as cheaply (extra orthogonality cost offset by savings because of
recycling). We give our conclusions and discuss future work in Chapter @ For the

rest of this dissertation we use the terms and notations as listed below.

a. The Hy—norm is a functional norm defined as [5, 10} 24]

| He |y, = Py |Hp (iws, ..., dwg)|pdwr ... dwy, (1.6)
m —0 —00

where 7 denotes v/—1. Here, we assume that all Hy—norms computed further
exist. In other words, the improper integrals defined by the Hy—norm give finite
value. This is a reasonable assumption because this happens often in practice

(see [10], where stability analysis of IRKA is done).
b. The H,—norm is also a functional norm, defined as [5], 10, 24]

|Hily, = maz _|HyGen, . iwg)],. (1.7)

) ey

c. The Kronecker product between two matrices P (of size m x n), and @ (of size

s x t) is defined as

@ 0 p@

where p;; is an element of matrix P and order of P ® @ is ms x nt.

d. In literature [51], 12], the Hy—norm of a bilinear dynamical system is defined as

m -1
112, = vee(I,)" (C®C) (—A@fn ~L®A-YN, @M) s

(B® B)vec(I,),

where [, and I, are identity matrices of size p and m, respectively. Also, in

6



[24, 26], the Hy—norm of a truncated bilinear dynamical system is defined as

" k
M = vec(] C’ ) AR, —1,®A)"
<M1, @ Z( ® ® Z: ) (1.9)

(—AQ I, — I, A" (B® B)vec(l,y),

where M is the truncation index. If the type of norm is not written, then in the

case of functional norm it is a Ho—norm. In the case of matrices it is a 2-norm.

e. vec operator on a matrix P is defined as
T
vec(P) = (P11, -y Pmls P12, -« s Pm2y -«- «-- s Plny -+ Pmn) -

f. Also, R denotes the set of real numbers and F denotes the discrete subset of real

numbers.






CHAPTER 2

BACKGROUND

A reduced dynamical system can be obtained by a projection-type framework. A
matrix P € R™" is a projector (onto a subspace ¥V < R") if Range(P) = V and
P?2 = P. If P = PT, then P is an orthogonal projector (i.e., Galerkin projection),

otherwise an oblique projector (i.e., Petrov-Galerkin projection) [17].

According to the Petrov-Galerkin projection, the residual of a dynamical system
obtained after projecting on a lower dimensional subspace, is made orthogonal to some
other subspace defined by a test basis. Let 7; denote the residual of this dynamical
system, then according to the Petrov-Galerkin condition, ; | L, where L denotes any

test subspace.

The subspace on which we project, and the orthogonal subspace are not known
to us. We can arbitrarily pick these subspaces, but then we cannot guarantee a good
input-output behavior from the reduced model. For the reduced model to provide a
high fidelity approximation to the input-output behavior of the original full model,
we use interpolation to obtain these subspaces. In [30], authors give an algorithm for
model reduction of non-parametric linear dynamical systems called IRKA (Iterative
Rational Krylov Algorithm). IRKA is a Petrov-Galerkin based interpolatory model re-
duction algorithm. Here authors have focused on Hermite interpolation of the transfer

function to obtain these subspaces. Hermite interpolation is a popular method from

9



interpolatory theory, where a function and its derivative are interpolated. Here, the
transfer function of the original full model H(s) (and its derivative) and reduced model
(and its derivative) are interpolated at a set of interpolation points. For a certain type
of linear dynamical systems, IRKA locally converges to a local minimum of the un-
derlying Hs—optimization problem [25]. For Hy—optimality discussion in this case we
refer the reader to [30] and [25].

Now, we discuss Hy—optimality in the non-parametric bilinear case. Here also,
we apply Petrov-Galerkin based interpolatory MOR to a non-parametric bilinear dy-
namical system. This is a short summary of the original work in [12] and [24]. After

reduction, the non-parametric bilinear dynamical system 1) can be represented as

12, 24]
T, (t) = Az, (t) + X Njx.(t)u;(t) + Bru(t),
¢ j=1 (2.1)
yr(t) = Cra,(t),
where A,, N; € R™", B, e R™™ and C, € RP*" for j =1, ..., m with r <« n.

Here, the input u (t) is the same (maps from R to R™) while state z, (t) maps from
R to R" (instead of R™ earlier). We want (. to approximate ( in an appropriate
norm, and hence, y,(t) should be nearly equal to y(t) for all admissible inputs. Let
the two r-dimensional subspaces, V, and W, be chosen in such a way that V, =
Range(V,) and W, = Range(W,.), where V, € R"™*" and W, € R"*" are matrices. We
project the original full model III to a lower dimensional subspace, i.e., = (t) ~
V,.z,(t), and enforce the Petrov-Galerkin condition [12] [24]

w?(w@@yﬁmmxw—fpww%@mﬂo—Bmw>—Q

J=1

y(t) = CVia (1),

'Here, we have taken a non-parametric system, and hence, the system matrices are independent
of the parameters (p). As in the original non-parametric bilinear MOR papers [12] and [24], we take
E=1,.

10



Comparing the above equations with (2.1)), we get

(WIV,) " WAV, N, = (W) WINV,,

A,
B,

T

(WIV,) "' WTB, and C, = CV,,

where (WTT Vr) is assumed to be invertible. Obtaining such an invertible matrix is
not hard [I2]. Different selection of the subspaces V, and W, give different reduced
models, but we choose the subspaces V, and W, by enforcing interpolation. There are
two different ways of doing interpolation, i.e., subsystem interpolation and Volterra
series interpolation [24, 26]. These are explained below.

A bilinear system can be represented by a series of subsystem transfer functions.
If we apply certain interpolation conditions on a finite number of subsystems, then it
is called subsystem interpolation [24]. In this approach we interpolate the each of the
subsystem transfer function expression ((1.3)), without the parameter p.

Another way is Volterra series interpolation. A non-parametric bilinear dynamical
system ( can also be represented by following Volterra series, which non-linearly relates

all admissible inputs u(t) to outputs y(t):

y(t)zzfolfmkkhk(tl’ ta, .., tr)
(u (t—zk:ti)®--~®u(t—tk)> dty, - - - dt.

In this Volterra series representation, the term

hi(ty, ta, ..., ty) = Ce™™ N (I, ® 1) (I, @ N)

[n® @, || [,® - @1, N
|\ YV

k—2 times k—2 times

]m®...®]m®€At1 [n® - ®I,B |,
—_— —_—

k—1 times k—1 times

is called the degree k Volterra kernel, where N = [Ny, ..., N,]. A degree k Volterra
kernel in frequency domain is equivalent to the k' order transfer function of the

bilinear dynamical system (see ((1.3) without parameter p). Here, interpolation is

11



done on a weighted sum of all Volterra kernel transfer functions given by (1.3). We
refer the reader to [24], 42] for a detailed discussion on the definition of the Volterra

series, the Volterra kernels, and the subsequent derivations.

As the subsystem interpolation approach is unable to satisfy any optimality con-
ditions [24] (error between the original full model and the reduced model is minimum
in some norm), we focus on the Volterra series interpolation. We need to know how to
build V,. and W, such that the conditions of the Volterra series interpolation are sat-
isfied. We also need to decide where to interpolate so that we get an optimal reduced

model. Here, we focus on Hy—optimality.

The following error system expression is differentiated for getting the

Hy—optimality conditions [12] 24]:

1€ = Gl gy, = vee(lay)” ([C *Cx’] ® [C *CV’D

a —1
A 0 I, 0 I, O A0 “IN; 0 N; O
— ® - ® . _Z ’ M ® ’ ~
0 A 0 I, 0 I, 0 A| 3|0 N 0 N,
B B
M ® - UGC(IQm)a (22)
BT B

where A, B, C and Nj are the initial guesses for the reduced system. Also, A =
RAR™!, B = BTR_T,é’ = CR and ]ifj = RTNJTR_T. Performing interpolation on
the inverse images of the reduced system poles helps achieve Ho—optimality. Theorem

below summarizes this, where the poles of the transfer function of every reduced

subsystem (say H,,) are computed (say represented by A, Ay, ..., A ), inverted
(leading to —X;,, —A,, ..., —A;), and finally, interpolation is performed at these
points.

Theorem 1. [2], [26] Let ( = (A, N;, B, C) be a non-parametric bilinear system
of order n, where j = 1, ..., m. Let {, = (A, Ny, B, C;) be an Hy—optimal

approximation of order r. Then, (. satisfies the following multi-point Volterra series

12



interpolation conditions:

k=11;=1 j=1"J
o 7 T k
0
Z Z . Z ¢l1 lo I Z 034Hrk( )\lla >\l2a ) 7)\lk) )
k=10=1 lp=1 j=1 77
where ¢, 1y, 1, and Ny, N, ..., Ay, are residues and poles of the transfer function

H,, associated with C,, respectively.

Algorithm 2.1 BIRKA [12]
1: Given an input bilinear dynamical system A, Ny, ..., N,,, B, C.

2: Select an initial guess for the reduced system as A, Ny, ..., N,,, B, C. Also
select stopping tolerance btol.

3: while (relative change in eigenvalues of A > btol)

a. RAR'=A, B=BTRT, C=CR, N;=R'N;RTforj=1, ..., m.

-1
b. vec(V) = <—A®In —-L®A-; Jiij®Nj> (éT®B> vec(Ip,).
j=1

-1

c. vec(W) = (—A@In — I, ® AT —;Z:]l ]§7j®N]T> (é’T®CT> vec(1y,).

d. V., =orth(V), W, =orth(W).

e. A= (WIV,)"'WTAV,, N, = (WIV,) ' WIN,V,,
B=(WIV,)"'WrB, C=CV,.

Jr :Nk7 Br :B7 CT.:C




Obtaining the residues and the poles of the Hy;—optimal reduced model is not
possible since we do not have such a system. In [12] the authors propose Bilinear
Iterative Rational Krylov Algorithm (BIRKA), which at convergence, ensures that
the conditions of Theorem [I] are satisfied. BIRKA gives a locally Hy—optimal reduced
model. Algorithm lists BIRKA. Next, we study other efficient algorithms for

non-parametric bilinear MOR.

2.1 Other Efficient Bilinear MOR Algorithms

(Non-parametric)

As mentioned earlier, BIRKA is a computationally expensive algorithm. Hence,
next, we first look at its cheaper variant called TBIRKA (Truncated Bilinear Iterative
Rational Krylov Algorithm) [24] 26]. TBIRKA is similar to BIRKA in most of the
aspects, except that it performs a truncated Volterra series interpolation. Here, instead
of ¢ in —m, authors work with (¥, where M is the truncation index (i.e.,
k=M in E])_ Thus, a truncated non-parametric bilinear dynamical system ¢ is

represented as

CM = {Hl (s1), Hy(s1, s2), Hs(s1, s2, 83), ... Hp (51, -, 5M)}7 (2.3)
with Hy (s1, ..., sg) for ke {1, ..., M} is given by (T3~

Similar to BIRKA, in TBIRKA also, we have to differentiate an error system

expression for getting the Hy—optimality conditions [24], 20]:
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M = ¢y, = veell)” (|0 ¢ |@|c —¢)
[ . -1
M A0 [In ol |5 ol [4 o
Y- ® - ® i
o 0 A 0 L| |0 1 0 A
] ~k
m N, 0 N, 0
DI N ) B (2.4
=L 0 N 0 N
- B 1
A 0 I, 0 I, 0 A0
- ® - ® )
0 A 0 I 0 I 0 A
B| [B
. | | vee(lan),
BT B

where as earlier A, B, C and Nj are the initial guesses for the reduced system. Also,
A = RAR™, B = BTR_T,é’ — CR and ]ifj = RTNTR™T. Here, also, interpola-
tion is performed on the inverse images of the reduced system poles to achieve the
Hy;—optimality. The following Theorem [2| summarizes this, which is similar to The-
orem (1] of BIRKA case, except that the interpolation is performed on a truncated

Volterra series.

Theorem 2. [2/, 120] Let ¢ = (A, N;, B,C) be an order n bilinear system and (M be
the polynomial system determined by C. Let (. = (A, N;,, B, C;) be a bilinear system
of order r, and define (M as the polynomial system determined by (.. Suppose that

M is an Hy—optimal approzimation to (M. Then (M satisfies

M r T
DD Bty He (<X =N o =N, =

k=1l1=1  lz=1

. Z ¢l1, la, ..., lkHrk (_>\l17 _)\127 ey _)‘lk)v and

k=1l1=1  Ix=1

15



M r o
Z Z DI (Za_ S VS VR —/\lk)> _
k=1Li=1 =1 =
M k
2 Z Z I, la, . (2 )\[1, )\12, RPN —)\lk)> ,

where ¢, 1, 1, and Ny, Ay, ..., Ay, are residues and poles of the transfer function

k k

H,, associated with (M, respectively.

Algorithm [2.2] lists TBIRKA.

Both BIRKA and TBIRKA in turn require solving large sparse linear systems of
equations. If we compare Algorithm and [2.2] we realize that the number of linear
solves at each step of the While loop in the former is 2 systems of size nr x nr and
in the latter is 2M systems of size nr x nr. This makes it seem that TBIRKA is
more expensive than BIRKA. However, TBIRKA is implemented in such a way that
the Kronecker products are avoided making it more efficient than BIRKA. For further
details on this see Chapter 4 in [24] and Section 5.3 in [26]. These implementation
details do not affect our analysis, and hence, we use Algorithm in the current form
as our base.

Apart from TBIRKA, this class of efficient MOR algorithms also includes balanced
truncation based [13], Gramian based [50], moment-matching based [§], and implicit
Volterra series based [I] MOR algorithms. For generality, we explore the last two
further, i.e., moment-matching based and implicit Volterra series based. Both of these
algorithms are proposed for SISO systemsﬂ.

The moment-matching based projection method [§] is a single sided projection

method, ie., V = WEL with

span{V} = Sptm{U span{Vi}},

2 A SISO non-parametric bilinear dynamical system is represented by (1.1]), where system matrices
are free from parameters and B = be R"*!, C = ce R*" and j = 1 (i.e,, N; = N). As earlier, we

have E = I,.
3 Here, V and W actually mean V, and W, as discussed for BIRKA and TBIRKA, respectively.

This is because V and W with subscript r here signifies another set of intermeditory/ sub matrices.
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Algorithm 2.2 TBIRKA [24] 26]
1: Given an input bilinear dynamical system A, Ny, ..., N,,, B, C.

2: Select an initial guess for the reduced system as A, ]Vj, cee Nj, B, C. Also
select the truncation index M and stopping tolerance tbtol.

3: While (relative change in eigenvalues of A > tbtol)
a. RAR"'= A, B=BTRT, C=CR N, =R'N;RTforj=1, ..., m.
b. Compute

vec (V) = (—A® L, -, ® A" (éT ® B) vece(Ip,),

vec(Wi) = (-A® 1, - I, ® AT)fl <é’T ® C’T> vec(l,).

c. For k=2,..., M, solve

vec (Vi) = (-AQ I, — I, ® A) " Z <]\:ij ® Nj) vec (Vi_1),

j=1

vee (Wy) = (-A® L = [,® AT) ' Y (N; @ N ) vee (Wi1).

=1

M M
d V=3V, W= YW,
k=1 k=1
e. V. =orth(V), W, =orth(W).
£ A=(WIV,)"'WIAV,, N, = (WIV,) ' WIN,V,,
B=(W'V,)'WIB, (=0CV,.

4 A, =A, N;, =N;, B.=B, C =C.
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span{Vi} = K7 (A™", A7'b), and
span{V;} = K1 (A_l, A_INVk_l) ,

for k =2, ..., M, where K? denotes the standard Krylov subspace of ¢'* order. As
evident above, for obtaining the subspace V', we have to solve a sequence of linear sys-
tems, whose structure is similar to those arising in TBIRKA algorithm (see Algorithm
73)

Implicit Volterra series based MOR algorithm [I] does a weighted interpolation for

reduction. Here, the projection matrices are defined as®

V=[Vi...V,] and W=[W; ... W]

Vk—ZZ Z My, oty k(0 E — A7 N(0y, \E—A)™' ... N(o, E — A)™',

i=1101=1 li—1=1

We=20 D) D) o taslonB — A) TN (o B AT N (o B - )T

i=1101=1 li—1=1

for k=1, ...,r. Also, 0y, ..., o0y, are the set of interpolation points and n;,, . 1, , &
are weights defined in terms of the elements of a r x r matrix. These weights can be
calculated from Lemma 3.1 in [I]. Again, here also, linear systems of equations similar
to those arising in TBIRKA (Algorithm are to be solved. Since TBIRKA forms
the basis of all algorithms in this class, we specifically focus on it for our stability

analysis. Next, we look at MOR of parametric linear dynamical systems.

2.2 Parametric Model Order Reduction

Until now, we have focused only on non-parametric dynamical systems (linear or
bilinear as the case). Parametric dynamical systems are more challenging and vibrant
area of study. As parametric dynamical systems are recent, their MOR algorithms
are also contemporary. In general, they are referred to as Parametric Model Order

Reduction (PMOR) algorithms.
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Here, we first look at parametric linear dynamical system as given by (|1.4)-(1.5).

Often, the system matrices have parametric dependence as follows [9, [15]:

E(p) = Eo+e1(p) By + -+ en (p) B,
A(p) = Ao+ fi(p) Av+ - + fu (p) Am,
B(p) = Bo+g1(p) Bi + -+ + gu (p) Bus,
C(p) = Co+ hi(p)Cr+ -+ + har (p) O,

where ¢;, fi, g; and h; (for i = 1, ..., M) are parameter dependent functions and
M € R. However, for rest of this dissertation, we do not assume that our system
matrices have such a structure. Let the reduced parametric linear dynamical system

be represented as [9] [15]
E, (p) iy (t) = Ay (p) 2, (1) + By (p) u (1),

yr () = Cr (p) 2 (1),
where E,.(p), A.(p) € R™", B.(p) € R™™ and C,(p) € R”" for r « n. Here, the input

(2.5)

w (t) is the same (maps from R to R™) while state z, (t) maps from R to R" (instead
of R" earlier). We want H, (s;p) to approximate H (s;p) in an appropriate norm, and

hence, y,(t) should be nearly equal to y(t) for all admissible inputs, where

H,(s; p) = Cr(p)(sE.(p) — A (p)) ' B,(p). (2.6)

Analogous to the non-parametric case of [30, [6], in [9], authors propose a set of
PMOR algorithms for reducing parametric linear dynamical systems. We focus on the
interpolatory projection based PMOR algorithm (Algorithm 4.1 in [9]), called Inter-
polatory PMOR (IPMOR) because it forms the foundation of all the other algorithms
of [9].

Let the two r-dimensional subspaces, V. and W,., be chosen in such a way that V, =
Range(V) and W, = Range(W B, where V € R™" and W € R™*" are matrices. Again,
as earlier, we project the original full model to a lower dimensional subspace,

ie.,

WT(E (p) Vi, (t) — A(p) Va, (t) — B(p)u(t)) =0,
yr (t) = C(p) Vi (2).
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Comparing the above equations with (2.5)), we get

-1

A (p) = WV WTAD)V, E.(p)= (WTV)"WTE (p)V,

B, (p) = (WTV) " WTB(p), and C,(p)=C(p)V,
where p € {p*, ..., pl}.

Similar to IRKA in IPMOR also, the subspaces V, and W, are computed by

performing interpolation. That is,

Vo= span {(0iB (#) — A(W)) " B(p)ry}, and

i=1, ..., K

=1, . L

! . . (2.7)

W= span { (0B (0) = A7) T O () 1

PEC
where o1, ..., oxg € C are the points where interpolation is performed (also
referred as shifts or frequencies); p', ..., p’ € RY are parameter vectors;
Ti1y «oey T1L, «onn.. , Tg1, ..., Tgyr are right tangential direction vectors with
ri; € R™Y and Ny, ..oy i, oo . g1, ..., Iy are left tangential direction

vectors with 1;; € R7*!. Here, the reduced system size is r, which is equals to K x L.

Thus, the projection matrices are built as follows:

V=[V1(p1) e Vi (ph) e Vl(pL) VK(pL)} and 28)
WZ[Wl(pl) e Wi (P e Wi (pt) - Wk (pL)]’
where from ([2.7)),
V() = (0.8 () ~ A ) B ()r, and -
W (v') = (0:B (W) = A(p) " C () 1y

Algorithm [2.3]lists IPMOR algorithm. A total of 2K L linear systems have to be solved
in the IPMOR algorithm.

Apart from the IPMOR algorithm, this class of PMOR algorithms also includes
piecewise Ho—optimal interpolatory PMOR [9], multi-parameter and multi-frequency
moment-matching based PMOR algorithm [36], PMOR using extended balanced trun-
cation [44], PMOR with Hs—error using radial basis functions [14]. For generality,
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Algorithm 2.3 IPMOR Algorithm [9]
1: Given an input parametric linear dynamical system A (p), E (p), B (p),C (p).

2: Select an initial guess for interpolation points o1, ..., og € C, parameter vectors
p', ..., pl € RY, right tangent directions {ryy, ..., rip, T91, ..., g} < C™,
and left tangent directions {ly1, ..., Ijz, Loy, ..., 1k} = C2 The order of the
reduced model will be r = K x L.

3 Foryg=1, ..., L,

fori=1, ..., K, compute

-1

Vi (") = (E(Y)) — AWp’)) B (p’) my

W; (07) = (GE@) — Ap)) " CT () L.

4: Set

5. A (p) = (WIV)T'WTA(p)V, B, (p) = (WTV) " WTE (p)V,
B, (p) = (WTV) ' WTB (p), C, (p) = C(p) V.

we explore the first two algorithms of the previous list in more detail, i.e., piecewise
‘Ho—optimal interpolatory PMOR and multi-parameter and multi-frequency moment-
matching based PMOR algorithm.

In [9], authors extend the IPMOR algorithm to a piecewise Hy—optimal interpo-
latory PMOR algorithm. Here, for each parameter vector, IRKA (Algorithm 4.1 in
[30]) is executed to get the subspaces, i.e., for parameter vector p’ we obtain V; and
W;, where j = 1, ..., L. Finally, we concatenate all the piecewise subspaces to get

the final subspaces V and W8 ie.
VZ[%VL] and WZ[Wle]

These subspaces V and W give the piecewise Hy—optimal reduced system.
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Similar to IPMOR algorithm, in [36], multi-parameter and multi-frequency
moment-matching based PMOR . algorithm is derived. Here, the projection matrices

V and W& are defined as

span{V} = K" (M;,F) and span{WW} = K" (M,,L),

where
F = rowspan { (nE () = A() "B ()],
L:mwspa”{(aiE (W) -A@)) " (pj>}ii j=1
= rowspon {8 () = A () )]
= rowspan ({05 (/) A ) 7 ()L

and as earlier, ™ denotes the standard Krylov subspace of " order. Both the above
algorithms require solving sequences of linear system of equations as those arising in
IPMOR.

Since IPMOR forms the basis of algorithms in this class, we specifically focus on it
for our stability analysis. Next, we revisit the standard backward stability definitions

and also describe its meaning in our context.

2.3 Backward Stability Analysis

In general, numerical algorithms for a problem are continuous in nature but, a
digital computer solves them in a discrete manner. The reason is limitation on the
representation of real / complex numbers. Since complex numbers can be represented
by real numbers, we focus on latter only. Let fd: R — [F be a function giving a finite

approximation to a real number. It provides rounded equivalent as [48]
fd(x) = x(1 + €nachine) for all z € R,

where €,,4chine 18 the machine precision. Also, for every operation between any two

finite numbers, the result is exact up to a relative error, i.e., for all x, y € F
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fd({E @ y) = (ZL‘ @ y)(l + emachine)u

where @ can be any of the following operation: 4+, —, * and /.

Consider a continuous mathematics algorithm f: X — Y. Say executing this
algorithm on a digital computer (that uses finite precision arithmetic) is represented
as 7 : X — Y. To check how good the approximated algorithm ]F is, one usually
computes the accuracy of f We say an algorithm ]? is accurate if [4§]

@ - 7w

W = O(Emachine)a
where © € X. From the above equation, we find that computing accuracy is not
possible since we do not know f(x). A more easier parameter to check the goodness
of ]? is stability. According to [48], “A stable algorithm gives nearly the right answer
to nearly the right question”, which although is useful but does not provide a handle
on the accuracy. Backward stability is more useful notion in this context. To quote
[48], “A backward stable algorithm gives exactly the right answer to nearly the right
question”. Mathematically, an algorithm f is backward stable if [48]

f(f) = f(Z) for some 7 with
= O(Emachine>‘

This notion of backward stability is useful since one can easily compute accuracy of
the result/ output for a backward stable algorithm. The theorem below summarizes

this result.

Theorem 3. [[§ If f : X — Y is a backward stable algorithm, and k(zx) is the

condition number of the problem, then the relative error

i) - 7]
7@l

where €machine 18 the machine precision (or perturbation in x).

- O (k(l’) 6machine) )

All MOR algorithms discussed earlier, require solving sequences of linear system

of equations. For such systems, as mentioned earlier, iterative methods are preferred
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because of the reduced complexity. Iterative methods are inexact in nature, which
means they do not solve linear systems, say Ax = b, exactly. Instead Ax = b +
0 is solved, where ¢ is the final residual related to the stopping tolerance. Our aim
is to find that if one uses an iterative solver (also called inexact solver from now
on) in MOR algorithms, then are these algorithms stable with respect to the error
introduced by the inexact solves? As earlier, we check for backward stability. For
IRKA, the backward stability analysis has been done in [30].

Let in a MOR algorithm, V,. and W, be calculated exactly, and g be the functional
representation of the interpolation process that uses V,. and W, in this MOR algorithm
(i.e., the exact MOR algorithm). Similarly, let V. and W, be calculated inexactly (i.e.,
by an iterative solver), and § be the functional representation of the interpolation
process that uses V, and W, in this MOR algorithm (i.e., the inexact MOR algorithm).
Then, from the backward stability definition, this MOR algorithm is backward stable
if

G(I) = g(1I) for some II with (2.10)

HH B HHHz or Hyp
”HHHz or Hy

— O(|F]). (2.11)

where IT and II denote the original full model and the perturbed full model, respec-
tively, corresponding to the error in the linear solves for V, and Wr in the inexact
MOR algorithm. This perturbation is denoted by F.

In the subsequent chapters, we look at the above two conditions for stability in the
earlier discussed MOR algorithms for specific types of dynamical systems. As earlier,
in the non-parametric bilinear case original full model is represented by ( (i.e., IT = ()
and after Volterra series truncation, we represent the same original full model by (y,
(i.e., IT = (5r), where M is the truncation index. Similarly, in the parametric linear

case, the original full model is represented by its transfer function (i.e., Il = H(s; p)).
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CHAPTER 3

STABILITY ANALYSIS OF BIRKA

Let the original full order model be represented as ¢ : A, Ny, ..., N,, B, C.
Recall from Algorithm [2.1] the following:

m

-1
vec (V) = <—A I, —I,®A— Z ]\:/]T ® Nj> <éT ® B) vec(I,) and

J=1

. (3.1)
m 1
vec (W) = <—A®In—IT®AT—ZNj®NjT> (OT®CT> vec(l,).

j=1

~

Also, let the residuals associated with iterative solves for computing vec(V) and

vec(W) be vec(Rp) and vec(R¢), respectively. Then, the above equations lead to

<—A I, —I,QA— i ]\:/]T ® Nj> vec (V) = (éT ® B) vec(I,,) + vec(Rp) and

7j=1

(3.2)

<—A ®I, - I, A" - i ]ifj ® NJT) vec (W) = (éT ® CT> vec(I,) + vec (Re) .

Jj=1

(3.3)

Let V, = orth(V) and W, = orth(W). The Petrov-Galerkin projection connects

the reduced model matrices (obtained by inexact BIRKA) to the original full model
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matrices as

~

~ o~ 0\ 1~ ~ ~ ~, ~\ 1 ~ ~
A, = (Wre,) Wrav, N, = (Wrv) Wiy,

D SO ST N N (3.4)
B, = (wa) WTB, and C, = OV,

where this reduced model is represented as ET : ﬁr, Nlr, cee wa ET, CN‘T.
By the backward stability definition, next we find a perturbed full model whose
exact interpolation will give the reduced model as obtained by inexact interpola-

tion of the original full model. Let the perturbed full model be represented as

EZ 117 Nl, ey Nm, E, 5'OI'E:A+F, N1+E1, ce Nm+Em, B+G, C+H,
where F, Ey, ..., E,,, G, H are the constant perturbation matrices. Then, we have
(—A@In XA+ F)— Zﬁf@ N~+Ej))vec<‘~/>
7=1
= (éT ® (B + G)) vec(I,,) and
. (3.5)
( A®L ~L®A+F)T Y N;® N-+Ej)T> vee (W)
7=1
= <é’T ® (C + H)T> vec(1,),
or
(—A ©L-LOA-Y N'® NJ) vec (f/) - (éT ® B) vee(In)
j=1
(BT®G> vec(I,) (3.6)
+ (Ir ®F + Z ]iij ®Ej> vec (\7> and
j=1
A TN A T o7\ _ (AT T
<— I, -1, A — ZNj@NJ >vec (W) = (C ®C > vec(I,)
j=1
+ (éT ® HT> vec(I,) (3.7)
+ (IT®FT+ Z]\Z@Ef) vec <W> .
j=1

As earlier, V, = orth(V) and W, = orth(W). Using the Petrov-Galerkin projection to
connect the reduced model matrices (obtained by exact BIRKA) with the perturbed

26



full model matrices we get

A = (W) WA+ PV, N = (WIV,) W (N, + Ey) T, .
R Y R N 3.8
BT=<WTT ) WI(B+@G), and C, = (C+H)V,

where this reduced model is represented as QA} : fAlr, Nlr, ey ]/\\fmr, ]/B\T, CA’T. To satisfy

the backward stability’s first condition (2.10]), we equate the reduced models in (3.4))
and (3.8). That is,

Similarly, X, = N, + (WI7,) WEV., B, = B+ (W/V,) WG and G, =
C,+ HV,.

From the above, we note that if W,TF‘Z = 0, then ﬁr = IZ{T. Similarly, if WTTEJ‘N/T =
0, then ]@-T = NjT; if WI'G = 0, then B, = B,; and if HV, = 0, then C, = C,. Using
the Petrov-Galerkin framework for the inexact solves in and (3.3]), we can easily

achieve some of the above relations. We discuss this next.
The Petrov-Galerkin Framework for Inexact Solves

The Petrov-Galerkin framework by definition implies finding the solution of a linear
system of equation, such that its residual at every point is orthogonal to some other
suitable subspace [49]. In our context, we define the Petrov-Galerkin framework as

below.

Find Ve P, such that Ry 1 9, and (39)
3.9
find W e Q, suchthat Rg L P,

where P, and O, are any two r-dimensional subspaces of C"; V and Rp satisfy (3.2);
and W and Rc satisfy (13-3)-
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Comparing with and with , we get the following equations:
vec (Rp) = <l§T ® G) vec(I,) + ([r ® F + i ]if]T ® Ej> vec (‘N/> and
j=1
vec (Re) = (é’T ® HT> vec(l,) + (Ir ® FT + i ]\:fj ® EJT> vec (W) or
j=1
Ry =GB+ FV + i E;VN;, and Ro=H"C+ F'W + i ETWNT.  (3.10)
j=1 J=1

Next, we consider perturbations in A, N;, B and C individually, and use the

Petrov-Galerkin framework discussed above. First, if we take the perturbation F' in

A only, then (3.10) is equivalent to
Rp=FV and RL=WTF (3.11)

In the above, if we multiply WT from left in the first equation and V from right in

the second equation, then we get
f/IV/TRB — WTFV and Rg‘N/ -~ WTFV.

From the Petrov-Galerkin framework (3.9)), WL Rpand V L R¢, and hence,

WTFEV = 0.
We also havdl
WZIFV, = 0. (3.12)

Similarly, if we take the perturbation E; in any one N; matrix, then (3.10) is

equivalent to

Ry = E,VN;, and RL=NW'E,

1Since ‘N/r = orth(‘7) and WT = orth(W), we have V = ‘N/r Z1 and W= I/IN/} Zo, where Zy and Zs
are lower triangular matrices. Here WTFV =0 implies Z7 (W’fF‘Z) Zy = 0. If V and W are full
ranked then, Z; and Zy are invertible and we have f/IV/TT F ‘7; = 0. This full rank assumption exists in

original BIRKA as well (see Lemma 5.2 in [12]).
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Again in the above, if we multiply WT from left in the first equation and V from right

in the second equation, then we get
WTRy = W'E;VN; and  RLV = N;W'E,;V.
Using the Petrov-Galerkin framework in above we get
WTE,VN; =0 and  N;W'E;V = 0.

To achieve the desired result, i.e., WTT EﬂZ = 0, we need Nj to be invertible. This
cannot always be guaranteed. Thus, we drop the perturbation analysis with N; ma-
trices.

Finally, if we only take the perturbations G and H, in the matrices B and C,
respectively, then (3.10]) is equivalent to

Rp=GB and RL=CTH.

As in the last two paragraphs, multiplying by WT from left in the first equation
above, multiplying by V from right in the second equation above, and using the

Petrov-Galerkin framework (3.9)) we get
WTGB =0 and CTHV = 0.

As above, to achieve the desired result, i.e., WTT G=0and H ‘7; = 0, we need B and

C to be invertible. This cannot always be guaranteed because these are non-square

matrices. Thus, we drop the perturbation analysis with B and C' matrices both.
Hence, implies that if we consider the perturbation in A matrix only and

use a Petrov-Galerkin framework for the inexact linear solves, then

—~— A~

ﬁrzgr, ]Vj =N, T=£~3r, and CA'rzé'r or

Sy

The theorem below summarizes this.
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Theorem 4. If the inexact linear solves in BIRKA (line 3b. and 3c. of Algorithm
are solved using the Petrov-Galerkin framework (3.9), then BIRKA satisfies the
first condition of backward stability with respect to these solves, i.e., (2.10]).

Next, we look at the second condition of stability in BIRKA.

3.1 Second Condition of Backward Stability

Next, we show that the second condition of backward stability, given in (2.11)), is
also satisfied. According to (2.11]), the difference between the original full model and
the perturbed full model should be order of the perturbation, i.e.,

||€ - CHHQ or Hyp

HC”Hz or Hop

= O(|F]),

where Hy—norm is defined in ([1.8). We satisfy the above condition in the absolute

sense, since ( is independent of F. That is,

=o(IFL).

Consider the error system (" = ¢ —E whose matrices are defined as follows [12}, 24]:

-1

A0 N, 0
AGTT‘ — ) Ngrr —

J

B
. B — Cand Ce = [o _o].
0 A+ F 0 N, B

The Hs—norm of this error system is

A 0 I, O I, O A 0
O ® — &
0 + F 0 I, 0 I, 0 A+ F (3.13)
—1
noAN; 0 N; 0 B B
_ Z ® vec(lam),
=1 0 N; 0 N; B B



Let
R ( [A o} [In 0 [In o] {A o]
o- (- ® - ®
0 A 0 I, I 0 A
(3.14)

e [O O] | (3.15)
0 F

JQn) , and (3.16)

Then, the norm of this error system is

HC”’”HH = vec(Iyp) y'e (@ ( ) B vec (Iom), (3.17)
Q'

—1
= vec(lyy) TC <I4n2 - FQ ) B vec(Iom).
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~

If |[FO—1

< 1, then by the Neumann series we get that
2

~ -1
HC“"TH?{2 = vec(ly,)'CQ™! <I4n2 — FQ_l) B vec(1ay),
~ A 2 A 2~ \? ~
= vec(Iy,)'CQ™! (LW + FQ™ ' + (FQ—1> + .. ) B vec(Ia),
= vec(Igp)T@@’1§ vec(lopy)
~ ~ ~ 2
+vec(lyy)"CQFQ™ <I4n2 + FQ + (FQ—l) + .. ) B vec(Iyy).
Since ||¢ — CH?IQ = vec(lgp)TCA'@’lg vec(lsy,) = 0, the above equation simplifies to
A A A 2 A 2~ \? ~
[, = vee(Iny) ' CQFQ™ (LW + FQ™ + (FQ1> +.. ) B vec(Iym).

(3.18)

Bounding the right hand side of the above equation we get the following:

~ ~ -1
vec(Igp)TCAZ'@’IFQ’1 (I4n2 — FQ1> B vec(Iyy,)

~ —1
'(; . ﬁ@l) ‘

Using Lemma 2.3.3 from [27], we get that the right hand side above is bounded by

< Hvec(Igp)TH HCA’@’1H }%

@] ] ettt

|
—

FO—1

Joec()"| |67 F |B]vecttsn)]

Substituting the above two results in (3.18) we get

oo, < et €@ | B @] | — 2
1—

HEH lvec(lom)|.  (3.19)

-1

Let ‘@*1“ < 1, which is defined by the original system (further analyzed in Section

~
~

3.2.1) and | F'| < 1, which is related to the residuals of linear solves (further analyzed
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in Section [3.2.2). Then, using the matrix norm property we have the following:

_ﬁ@—l‘g Ao o
1 1
= < =

1-lﬁ@1 1-|F| o]

Substituting the above in (3.19) we get
an Al A 1 .
16 I < Joectton)™|CQ7 |F) |07 | —z——||B]Ivectzm)l  (3:20
-7 e

or

|Wﬂg<0(F

). (3.21)

A~

Next, we relate || and |F|. From (3.16) we know

A~
~

F:@%®ﬁ+ﬁ®go.

Taking norms on both the sides of the above equation, and applying the triangle
inequality property (|X + Y| < || X+ [|Y]]) we get

F

= H12n®ﬁ+ﬁ®]2n

< H12n®ﬁH + Hﬁ®12n .

Further, using the norm distribution property of Kronecker product ( [X ® Y| =
| X[ |Y]) [35, 134], we have the following:

~

P < [l | B] + | B] 1220
<o(|#])-
~ 0 : .
From (3.15)) we know F = . Using the definitions of all the commonly used
0 F

matrix norms (Frobenius, 2, 1 and ) [38] we get
o(IF]) < o(|F]). (3.22)
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Substituting the above in (3.21)) we get
err (|2 12
e, = e =3, < o(1#1).

Thus, we have satisfied the second condition of backward stability. The theorem below

summarizes this.

Theorem 5. [f@ defined in (3.14) is invertible, @_1H <1, and ']3 < 1, where F
is defined in (3.16), then BIRKA satisfies the second condition of backward stability
with respect to the inexact linear solves, i.e., (2.11]).

The hypotheses of this theorem are usually easy to satisfy, and are discussed in

the next section. The corollary below summarizes our stability result.

Corollary 1. Assuming the hypotheses of Theorem [J and Theorem [J are satisfied,

then BIRKA is backward stable with respect to the inexact linear solves.

In the next section, we analyze all the involved matrices and accuracy of the

reduced system.

3.2 Analysis

Next, we analyze our assumptions and results from the previous sections. First,
we revisit the assumed invertibility of all relevant matrices (in Section |3.2.1]). Second,
we derive the expression for accuracy of the reduced system, in-terms of the residuals

of the linear solves as well as the conditioning of the bilinear system (in Section [3.2.2)).

3.2.1 Invertibility of Involved Matrices

Until now, we have assumed invertibility of eight matrices. Most of these invert-
ibility assumptions directly come from the control system theory as well as the model
reduction theory of bilinear systems. We have also assumed invertibility of few newly
proposed matrices. In this subsection, we summarize/ analyze all these assumptions
in the order of appearance of the corresponding matrix in this chapter. We first

summarize the invertibility assumptions from literature.
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(a) We assume invertibility of (sil, — A) and (sI,, — A) in ) and (LT, respec-
tively. These come from the transfer function definitions. Please see Section 2

of [26] and Section 1 of [30], respectively.

(b) In the Hy—norm definition of a bilinear dynamical system ((1.8)), we assume that
( AR, —1,® A — Z N; ® N; ) is invertible. This is a standard definition.
Please see Theorem 3. 4 of [12].

(c) We assume invertibility of (WTT ‘7;) As mentioned earlier, this is easy to enforce

and come from BIRKA. Please see Algorithm 2 of [12] or Algorithm 1 of [26].

(d) In (2.2)), we assume the middle term, i.e.,

A 0 I, 0 I, O A 0
— ® - ® i
0 A 0 I, 0 I, 0 A

m Nj 0 Nj 0

_Z Y ® .

Jj=1 0 NJT O Nj

is invertible. This comes from the Hy—norm of the error system (¢ — (). Please

see Corollary 4.1 of [12] or Theorem 4.5 of [24].

(e) We assume invertibility of ( AR, —I,QA— '21 ]\zij R Nj) in Algorithm .
]:
This again comes from BIRKA. Please see Algorithm 2 of [12] or Algorithm 1
of [26].

During the backward stability analysis of BIRKA, we assume invertibility of some
newly proposed matrices. Next, we analyze these matrices. Note that below, we
discuss the matrix in (b) before the matrix in (c) although the latter appears first in

this chapter. This is done for ease of exposition.

(a) In IRKA [30], (sI — A) is inverted to form the projection subspace. Hence, in the
backward stability analysis of IRKA, invertibility of the corresponding perturbed
matrix (s/ — (A + F')) is assumed (see Theorem 4.1 of [10]). As discussed in (e)
above, in BIRKA, ( -A®I,—-I,®A— i ]\:TJT ® Nj) is inverted to form

J=1
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the projection subspace. Hence, we assume invertibility of the corresponding

perturbed matrix (= A® 1, — [, ® (A+ F) = 3 NT® (N; + E;)) in (335).
j=1

(b) We assume invertibility of @ given in 1) Also listed below for easy access.

~ A0 I, 0 I, 0 A0
Q=- ® - ®
0 A 0 I, 0 I, 0 A
i N; O
j=1 0 N;

This is one of the most important assumption in obtaining a backward stable

BIRKA (see Corollary . Hence, here we relate this invertibility assumption

A 0
with the underlying bilinear dynamical system. If we define Ay = ,
0 A
I, O N; 0 ~
I, = , Noj = and Q = Q1 ® @2, where Qq,Q, € R¥2"
0 I, 0 N;

are any two matrices, then () can be rewritten as

_A2®12n_[2n®A2_ZN2j®N2j:Q1®Q2 or

j=1

— (A2 ® IZn) ’UGC(IQH> (Ign ® A2 ’U€C Ign 2 NQJ ® NQJ UGC(IQn>
7j=1

= (Q1 ® Q2) vec(ly,) or

—Ay — Ay~ ZN2J 2= @Q7 o
7=1

T T
A0 - N; 0
- - Z ’ = Q7 or
0 A 0 i Ni||lo N
~AT — A~ 3 N;NT 0
=1 m = QQQ{
0 ~AT — A~ 3 N;NT
j=1

If (—AT —A-> NijT) is invertible, then (); and @)y are invertible. This

j=1
implies that @ = (@1 ®Qy) is invertible. Consider the following generalized
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Lyapunov equation used in the derivation of BIRKA [12], 13]:

AP+ PA" + Y N;PN] = -BB".

j=1
If the solution of this equation is the identity matrix (i.e., P = I,,), then the left

hand side matrix in this Lyapunov equation is | AT + A+ Y, N;N JT ), which
j=1

needs to be invertible for invertibility of @

(¢) In (3.13) and (3.17)), we assume invertibility of

A 0 I, O I, O A 0
— X — &
0 A+ F 0 I, 0 I, 0 A+ F
m Nj 0 Nj 0
_Z R
Jj=1 0 Nj 0 Nj

A~

and (@ - F ), respectively, both of which represent the same matrix (i.e., @
with perturbation). This matrix is invertible if ( —(A+F)" —(A+F) -

> N;NJ ) is invertible.
j=1

3.2.2 Accuracy of the Reduced System

Assume that BIRKA satisfies the hypotheses of Corollary [T} i.e., it is backward

stable with respect to the inexact linear solves. Then, from Theorem |3| we get that

lg () =g (Dl g,
lg (O,

where, as earlier (recall (2.10)-(2.11))), g denotes exact BIRKA, § denotes inexact
BIRKA, ( is the original full model, k(¢) is the condition number of ¢ (discussed

= O (k(Q) IF]),

below), and F' is the perturbation in (.
If we define, g (¢) = (., and § () = Er, then the above equation can be rewritten

as

Cr - a” i
——— =0 (k) |F]).
160,
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Here, we are looking at the reduced systems obtained at line 3e. of Algorithm [2.7] i.e.,
at the end of every iterative step of BIRKA. Thus, accuracy of the reduced system is
dependent on the conditioning of the problem as well as the perturbation. Next, we

look at both these quantities separately.

First, we want to compute conditioning of our bilinear system with respect to
performing the inexact linear solves on lines 3b. and 3c. of Algorithm [2.1 Since
for backward stability we equate the reduced model obtained by performing inexact
BIRKA on the original full model (¢) and performing exact BIRKA on the perturbed
full model (5), these inexact linear solves are captured by E . Thus, the condition
number of our bilinear system with respect to computing the Hy—norm of the error
system (o = ( — E will give us a good approximation to the condition number that
we want to compute (with respect to computing the Hy—norm of ET —( or E,, — ().
Similar behavior has been observed for linear dynamical systems (see Theorem 3.1

and 3.3 in [10]).

Recall, the condition number by definition means relative change in the output

=
(for us this is 2} with respect to the relative change in the input (for us this
1€0,
F
is |AT| since we are perturbing the A matrix). Hence, from (3.20)) we have
fo=2],, < |eecarlca| @] [Blwecttml—rp . 329)

Ale

~
~

F

A~
~

where H@”H < 1land |[F| < 1. Since < 1, then we also have

! < L .
[ffle] e
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Using above, (3.23)) can be rewritten as

6=, < pecamjeQ| @ Bl wecttnn Ty on A
[, _ et ][0 ][] ectrmmiar 4 |F
[P €T, 1—[o] 141

From (3.22), we know ||| < |F|. Hence, the above inequality is equivalent to

1]

kA,
h |AI°

977

where

oy et [CQ [0 [BlhweetmllIAl 4 -
= T Clep

In the numerical experiments section, for both our problems, we show that this condi-
tion number is fairly smal]ﬂ. In other words, both our problems are well-conditioned

with respect to computing the H,—norm of the error system (... Note that H@_l H <1

and

I% H < 1 as assumed here come from the assumptions for backward stability of
BIRKA (see Corollary , and hence, we do not need any extra assumptions.

Second, we relate the perturbation F' with the residuals Rg and R¢ given in
and , respectively. Recall that we are considering the perturbation F'in A matrix,
and hence, this F' should satisfy both the equations in (3.11f). That is,

Rp=FV and RL=W'F (3.25)

From the assumptions for backward stability of BIRKA (Corollary , we know that

we need to use a Petrov-Galerkin framework, i.e.,

W1lRg and V1 Re, (3.26)

2If the problem is ill-conditioned (i.e., the condition number is large), then we cannot get a good

handle on the accuracy of the reduced system.
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where V and W are again given in (3.2)) and (3.3), respectively. Using (3.26)), we get
that

F =Ry (WTV)_l W4+ 7 (MN/TV/>_1 RY, (3.27)

satisfies (3.25)). This is assuming (WTV> is nonsingular, which has already been
discussed in the previous subsection. The theorem below gives a bound on this F'.

This theorem is similar to Theorem 4.2 from [I0] in the linear case.

Theorem 6. Let Ry and V be defined as in (3.2), Rc and W be defined as in (3.3)),

and F be defined as in (3.27). Define Rg = [Rp,, Rp,, ..., Rp.] and R¢c =
[Rc,, Rey, --., Re.] and assume WTV is nonsingular. Then, the perturbation F
satisfies

1Fl, < |Fl < V7 {maz | Ro,| | (W0) W) + maz | Re,| |7 (779) 1}
Proof. Note that
~o~\ L~ N
F = Ry (WTV) W4V (WTV) RL.

|7, = HRB (WT\“/)_l WL <WTX7>_1 RY

F

~a~\ L~
IF), < HRB (W) W

n Hv (W7) " R

F F

Consider the first term from the above expression as

HRB (o) e () e

<|[Rs]y
F

<AT miaxHRBiH H (I/IN/T{~/> -1 wT

Similarly, taking the second term as

\v (Wr7) " B

< Hv (V"V’Tv)*H IR|,
F
< Vi maz| Ro,| HV (WTv)lu .
Finally, we get

1Fl, < |Fl < V7 {maz | Ro,| | (FT0) W) + maz | Re,| |7 (779) 1}
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In the expression of |F|| above, we see that the norm of the perturbation is pro-
portional to the norm of the two residuals obtained while solving the two set of linear
systems (| Rp| and | R¢|) as well as the norm of two other quantities ( H (WT‘N/)_IWTH
and HV(W“%*H ) These two quantities are very less dependent on accuracy of the
linear systems we solve. They are also not sensitive to different initializations of
BIRKA as well as different reduced system sizes. This behavior is similar to the
related quantities obtained in the stability analysis of IRKA [10]. We support this
argument with numerical experiments in Section [3.3.2]

G =G

well conditioned, and |F'| is directly proportional to ||Rp| and |Rc||. Thus, as we

To summarize,

is proportional to k () and | F'|. The problem is usually
Ho

iteratively solve the linear systems arising in BIRKA more accurately (i.e., reduce the
stopping tolerance of the linear solver), we get a more accurate reduced system. This
is very useful in deciding on when to stop the linear solver. If we need a very accurate
reduced system, then we need to iterate more in the linear solver, else we can stop

earlier. We support this with numerical experiments in the next section.

3.3 Numerical Experiments

We perform experiments to support the conjecture, as discussed above, on two
models. First, we use a flow model [18] in Section [3.3.1] and then we use a heat
transfer model [12, I3] in Section [3.3.2l These models give us both SISO as well as
MIMO bilinear dynamical systems of sizes varying from 100 to 40, 000.

The resulting linear systems to be solved vary from 600 x 600 to 2,00,000 x
2,00,000. For solving the linear systems while computing V' and W by a direct
method (exact BIRKA), we use a backslash in Matlab. This uses Gaussian elimina-
tion as the underlying algorithm. The most popular iterative methods for solving the
sparse linear systems of equations are the Krylov subspace methods [43]. As discussed
in the start of this chapter, for a backward stable BIRKA with respect to the inexact
linear solves, we need to use a linear solver based upon the Petrov-Galerkin framework

(Theorem [4] and Corollary [1)). Since the Biconjugate Gradient (BiCG) algorithm [4]
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is an iterative linear solver based upon this framework, we use it for solving the linear
systems while computing V' and W by an iterative method (inexact BIRKA), i.e., 1%
and WW.

We implement our codes in MATLAB (2015a), and test on a machine with the
following configuration: Intel Xeon(R) CPU E5-1620 V3 @ 3.50 GHz., frequency 1200
MHz., 8 CPU, 64 GB RAM.

3.3.1 A Flow Model

We first do experiments on a “flow model” [18], which consists of a one dimensional

viscid Burgers equation. That is,

du w0 (ou
ot w&x_ﬁx U&x

w (0, t) =u(t), for t € (0, T),

), for (z, t)e (0, L) x (0, T),

where w(z, t) is the velocity at a particular point z and a time ¢; and v(z, t) is
the viscosity coefficient that we take as a constant (v). We perform spatial semi-
discretization of the above equation with equidistant step size h = Nl where
N is the number of interior points in the interval (0, L). Further, using Carleman

bilinearization [12] 18], we obtain a bilinear dynamical system of order N x N?. We

briefly show these steps below.

- i —wywy v 1 1w v
wy 5, T e (wq — 2wy) 7t
— Wy v
W oh (ws —wy) + E(U)g — 2wy + wy) 0
d +
= — u
—W; v
dt | w, o (Wit1 — wi—1) + ﬁ(wiﬂ — 2w; + w;—1) 0
—WNWN_
| WN | i ];hN ! —I—ﬁ(—2wN+wN_1) | | 0 )
or
d
5 = fw) + g,



T
where w = [Wl, Wa, .. WN] ; and f(w) and g(w) can be written in Kronecker prod-

uct form as below.

flw) = Ajw + %Ag(w ®w),

g(w) = By + Byw,

where By € RV*1: A B; € RV*Y are the Jacobians of f(w) and g(w), respectively;

and Ay € RV*N is the second derivative of f(w). Let

dx ) dw

x:E and w:E'

Finally, we get the bilinear system of order N + N? as

: A 542 B, 0 By
T = T+ Tu + U,

0 AAQRI+I®A By®I+1®By 0 0

N times N2 times

:ill...l O vvnn- le
Yy N — — y

where
w ) w
wRw WRW+wRQw
We refer the reader to [18] for exact structure of Ay, Ay, By and Bj.

For our experiments, we take N = 10, L = 1 and v = 0.1 that gives us a SISO
bilinear dynamical system of size 110. We initialize the input system in BIRKA by
random matrices based upon similar setup in [12] and [24]. The stopping tolerance for
BIRKA is taken as 107%, and we reduce this model to size 6. Both of these are again
chosen based upon similar values in [12] and [24]. This leads to solving the linear
systems of size 660 x 660. While using BiCG we use two different stopping tolerances
(1072 and 107%). Ideally, we should obtain a more accurate reduced model when using
the smaller BiCG tolerance.

First, let us look at the remaining assumptions for backward stability of BIRKA
(see Theorem [5| and Corollary . @ is invertible here. We also have H@*H less than

~
~

one (i.e., 1.6051 x 1073). Finally, | F|, at the end of the first BIRKA step, for the BICG
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BIRKA lterations

Figure 3.1: Accuracy of the reduced system plotted at each BIRKA iteration for the two
different stopping tolerances in BiCG; flow model of size 110. Here, the x-axis is in the linear

scale and the y-axis is in the log scale.

stopping tolerance of 1072 and 1078 is 3.0675 x 107! and 2.4596 x 10~*, respectively,
both of which are also less than one. These values are less than one at the end of all
the other BIRKA steps as well. The condition number for our problem, as defined in
, is 1.2125 x 1072. This shows that the flow model is well-conditioned.

The accuracy results are given in Figure [3.1 and Table [3.1] In Figure [3.1] we have

accuracy of the reduced system ( ¢ — ZT on the y-axis in the log scale and the
Hy
BIRKA iterations on the x-axis in the linear scale. Table [3.1] gives the corresponding

Cr - Er )
Ho
for the two BiCG tolerances at the starting BIRKA iterations. The dotted line, which

data. From Figure , we do not observe any difference in the values of

corresponds to the BiCG stopping tolerance 1072 and the solid line, which corresponds
to the BiCG stopping tolerance 10~ coincide.

BIRKA gets more consistent as it converges to the ideal interpolation points.
Hence, towards the end of the BIRKA iterations (iteration 14 to iteration 20), ac-
curacy of the reduced system for the BiCG stopping tolerance of 1078 is substantially
better than accuracy of the reduced system for the BiCG stopping tolerance of 1072,
That is, the solid line should be below the dotted line. This behavior is clearly reflected
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in Table (see the second and the fourth columns).

BIRKA BiCG-Tol of 1072 BiCG-Tol of 1078
Iteration BiCG BiCG
& -G ) ] Iteration ¢ =G ; Iteration
Count Count
1 4.9214 91 4.8904 167
2 1.9671 x 1072 35 1.9649 x 1072 85
3 1.1745 x 1072 40 1.1735 x 1072 85
4 2.0764 x 107 41 2.0583 x 107 92
) 4.3239 x 107 42 4.2785 x 107° 89
6 1.0181 x 1077 39 9.8618 x 1076 89
7 2.6412 x 1076 39 2.5583 x 107° 82
8 6.9999 x 10~7 44 6.5685 x 1077 90
9 1.7325 x 1077 44 1.7213 x 1077 90
10 5.3043 x 1078 44 4.4857 x 1078 90
11 1.1675 x 1078 44 1.1745 x 1078 90
12 5.5945 x 107? 44 3.0702 x 107 90
13 1.3127 x 107 44 8.0359 x 10710 90
14 1.4474 x 107 44 2.1026 x 10710 90
15 7.7234 x 10710 44 5.5041 x 10~ 90
16 9.2674 x 10710 44 1.4398 x 10~ 90
17 7.8030 x 10710 44 3.7841 x 1012 90
18 8.2925 x 10710 44 9.8779 x 10713 90
19 7.9294 x 10710 44 2.5543 x 10713 90

20 8.0646 x 10710 44 6.6835 x 10~ 90

Table 3.1: Accuracy of the reduced system and BiCG iterations at each BIRKA step for the

two different stopping tolerances in BiCG; flow model of size 110.

In Table 3.1, we observe that BiCG takes exactly same number of iterative steps
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from the BIRKA iteration 8 until convergence. That is, for the BiCG stopping tol-
erance of 1072 it stays at 44, and for the BiCG stopping tolerance of 10~% it stays
at 90. The reason for this is that the linear systems change very little from the 8
BIRKA step. This can be inferred by looking at the eigenvalue distribution of the

linear system matrices as well as their Frobenius norm.

sl + BIRKA-Iteration =8
BIRKA-Iteration = 9
0.6—
% BIRKA-Iteration = 10
) 04
=
< 02—
P
© o -® x ® x x %
=
% -02—
g -04—
-0.6—
-08—
1 | | | | | | |
15 2 25 3 ) 35 4 45 5
Real Axis

Figure 3.2: The six smallest eigenvalues of the linear systems at the different BIRKA itera-

tions.

x10°

15| + BIRKA-Iteration = 8
BIRKA-Iteration = 9
1 % BIRKA-Iteration = 10
L
53
< 05—
>
]
£ o + X
o
©
g -05—
Ak
-15 | | | | |
1.5759 1.5759 1..576 1.5761 15761
Real Axis

Figure 3.3: Enlarged Figure 3 for the smallest eigenvalue.

Figure 3.2 shows the distribution of the six smallest eigenvalues (in absolute sense)

of the linear system matrices corresponding to the BiCG stopping tolerance of 1072
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at the BIRKA steps 8, 9 and 10. Each of these six eigenvalues do not seem to
change with respect to the change in the BIRKA steps. However, if we look at any
one eigenvalue, specifically, for example the smallest eigenvalue at the three different
BIRKA steps, then we observe that it does change, but only slightly (see Figure .
The Frobenius norm of the linear system matrices at the BIRKA steps 8, 9 and 10
are 1.7263 x 103, 1.7264 x 10% and 1.7266 x 103, respectively. Thus, this supports the

argument that matrices do not change much.

3.3.2 A Heat Transfer Model

The next set of experiments we do on a heat transfer model as given below [12] [13].
r; = Az in [0,1] x [0,1],
n.Vr=u;(x—1) onl;:= {0} x(0,1),
n.Vr =uy(x—1) onTy:=(0,1) x {0},
r=0 onTy:={1} x[0,1] and T'y := [0, 1] x {1},

where z(ly, [, t) is the temperature at a particular point in the space (Iy, [) and
at a time ¢; n is the unit outward normal to the domain; u; and uy are the input
variables; and I'y, I'y, I's, and I'y are the boundaries of the unit square. After spa-

tial discretization of the above equation using K2 grid points, we obtain a bilinear

dynamical system of order K2 x K? with two inputs and one output as shown below.

T = Ar + u1 N1x + uaNox + Bu,

y = Cuz,
where, as earlier,
x—d—x u = “
dtv - u2 )
1
A:ﬁ([K®TK+TK®IK+E1®IK+IK®EK)7
1 1
NlZﬁ(E1®IK),N2=E(IK®EK),
B |r(@®e) 5 (e®ex)|, and C = — (@)
= |7 (@ ®e s (e®ex) |, an = 7z (e®e
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with Ix being the identity matrix of size K,

=
[

ERKXK,

E; = ejejT, the grid size h = Ki— 1€ is the j column of the identity matrix Iy,
and e =1, ..., 1] e RE.

We perform experiments on the heat transfer model for three different sizes, i.e.,
n = 100, 10,000 and 40,000 corresponding to K = 10, 100 and 200, respectively. We
initialize the input system in BIRKA by random matrices based upon the similar
setup in [12] and [24]. The stopping tolerance for BIRKA is taken as 1073. The size
to which we reduce is different for the different model sizes, and is discussed below.
Both these settings (the BIRKA stopping tolerance and the size of reduced system)
are chosen based upon similar values in [12),24]. While using BiCG (unpreconditioned
for smaller size and preconditioned for larger sizes), we use two different stopping
tolerances (107 and 107%). Ideally, as discussed earlier, we should obtain a more
accurate reduced model for the smaller stopping tolerance.

We reduce the model of the size 100 to the size 6 as above based upon similar values
in [I12] and [24]. Hence, the linear systems that are required to be solved are of the size
600 x 600. As above, we use an unpreconditioned BiCG here. First, let us look at the
remaining assumptions for backward stability of BIRKA (see Theorem [5|and Corollary

. @ is invertible here. We also have H@_IH less than one (i.e., 5.2893 x 10~*). Finally,

~
~

7
1078 is 1.3370 x 107! and 3.4528 x 1075, respectively, both of which are also less than

, at the end of the first BIRKA step, for the BiCG stopping tolerance of 10~* and

one. These values are less than one at the end of all the other BIRKA steps as well.
The condition number for our problem, as defined in ([3.24]), is 2.6653 x 1072. This

shows that the heat transfer model is well-conditioned.
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~ 1
' (WTV) W
BIRKA F
. |Rs| IR or IF|
Iteration N1
% (WTV)
F
1 0.0544 | 7.7746 x 10~% 9.4554 0.1337
2 0.0037 | 1.2331 x 107 9.4526 0.2299
3 0.1223 | 1.4124 x 10-7 9.4515 0.2997
4 0.0568 | 9.8639 x 10—% 9.4510 0.1392
5 0.0286 | 4.7669 x 10~% 2.4508 0.0702
6 0.0319 | 5.2856 x 10~% 2.4507 0.0781
7 0.0325 | 5.7300 x 10—% 2.4507 0.0797
8 0.0325 | 6.0807 x 10~% 2.4507 0.0796
9 0.0325 | 6.3895 x 10—% 2.4507 0.0797
10 |0.0327 | 6.6521 x 10-8 2.4507 0.0801
11 |0.0330 | 6.9071 x 10-8 2.4507 0.0808

Table 3.2: The perturbation expression quantities (as defined in Theorem @) for the BiCG

stopping tolerance 10~

For this model size, we do not give results for supporting the main conjecture (as
discussed at the end of Section [3.2} the more accurately we solve the linear systems, the
more accurate reduced system we obtain). This is because for a small sized dynamical
system we have already reported the data in Section [3.3.1] and we get the similar
results here. Here, we do some other analyses corresponding to Theorem [0] i.e.,
relation between the perturbation and the stopping tolerances.

Table|3.2|lists the values of |Rz|, |Rc|, (I/IN/T‘~/> - Wz, v (WTYN/> - and | F
for the BiCG stopping tolerance 10~*, and Table [3.3| gives the same data for the BiCG

stopping tolerance 10~8. All these quantities are defined in Theorem @ It is obvious
(7)) ana [7 (77)
to the BiCG stopping tolerance, while |Rg| and |R¢| are directly proportional to it.
Thus, as conjectured at the end of Section , the norm of the perturbation <HF H)

from these two tables that are very less sensitive
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~ 1
H (WTV) W
BIRKA
, |RB| |Rc| or (ral
Iteration N1
% (WTV)
1 1.4062 x 107° | 1.3372 x 101 2.4554 3.4528 x 1075
2 6.4701 x 1076 | 1.1488 x 101 2.4526 1.5868 x 10~
3 7.3663 x 1076 | 9.9444 x 102 2.4515 1.8058 x 10~
4 1.1982 x 107° | 1.6620 x 10~ 2.4510 2.9369 x 107°
5 9.0962 x 1076 | 1.1775 x 10~ 2.4508 2.2293 x 107°
6 4.1159 x 1079 | 6.3212 x 10712 2.4507 1.0087 x 107°
7 5.2442 x 1076 | 8.2256 x 1012 2.4507 1.2852 x 107°
8 1.2491 x 107° | 1.6984 x 10~ 2.4507 3.0612 x 1075
9 1.4070 x 107° | 3.6218 x 10~ 2.4507 3.4481 x 10~°
10 1.1009 x 107° | 2.7919 x 10~ 2.4507 2.6981 x 10~°
11 9.4640 x 1076 | 2.3366 x 10~ 2.4507 2.3193 x 107°

Table 3.3: The perturbation expression quantities (as defined in Theorem @) for the BiCG

stopping tolerance 107%.

should reduce as we reduce the BiCG stopping tolerance. This is supported by the
data in the two tables as well (see columns for |F'|). The values of |Rp|, which is
the residual of the linear systems involving \7, for both the BiCG stopping tolerances
seem higher that their respective stopping tolerances. The reason for this apparent
anomaly is that we are reporting the absolute residuals here. The relative residuals
are still less than the respective stopping tolerances.

We also do the sensitivity analysis of H(I’/\[//TV)AWTH and HYN/(WN/TIN/)*lu with re-
spect to different random initializations of BIRKA as well as different reduced sys-
tem sizes. Table gives this data at convergence of BIRKA corresponding to the
BiCG stopping tolerance of 10™*. As evident from this table, (WTXN/)_leH and
H‘N/(I/IN/TXN/)’lH vary very less.

We reduce the model sizes 10,000 and 40, 000 to the sizes 6 and 5, respectively, as
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() i

F
Reduced or
Model ' v (WD) B
Size Random Random Random T Random Random
Initialization | Initialization | Initialization | Initialization | Initialization
1 2 3 4 5
4 2.0109 2.0045 2.0048 2.0100 2.0065
5 2.2427 2.2406 2.2413 2.2399 2.2392
6 2.4507 2.4531 2.4511 2.4557 2.4507
7 2.6467 2.6467 2.6468 2.6467 2.6467
8 2.8365 2.8360 2.8366 2.8371 2.8368
9 3.0248 3.0269 3.0193 3.0306 3.0722
10 3.1718 3.1759 3.1768 3.1711 3.2142

Table 3.4: The sensitivity analysis for the heat transfer model of size 100 with respect to

random initializations and reduced system sizes.

discussed earlier based upon similar values in [I12] and [24]. Hence, the linear systems
of size 60,000 x 60, 000 and 2, 00, 000 x 2, 00, 000 are required to be solved, respectively.
The linear systems arising in the model reduction process of both these size are ill-
conditioned. Hence, we use a preconditioned BiCG here. The preconditioner that we
use is incomplete LU [22]. The drop tolerance in the preconditioner is taken as 107°
based upon the range given in [22]. The result for the model size 10,000 is given in
Figure and the result for the model size 40, 000 is given in Figure [3.5] From both
Figure [3.4) and 3.5] it is again evident that we get a more accurate reduced model as
we solve the linear systems more accurately (solid line is below the dotted one at all

the BIRKA steps).
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Figure 3.4: Accuracy of the reduced system plotted at each BIRKA iteration for the two
different stopping tolerances in BiCG; heat transfer model of size 10,000. Here, the x-axis

is in the linear scale and the y-axis is in the log scale.

0" * BiCG-Tol = 107
——BiCG-Tol = 1078
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Figure 3.5: Accuracy of the reduced system plotted at each BIRKA iteration for the two
different stopping tolerances in BiCG; heat transfer model of size 40,000. Here, the x-axis

is in the linear scale and the y-axis is in the log scale.



CHAPTER 4

STABILITY ANALYSIS OF OTHER EFFICIENT
ALGORITHMS FOR BILINEAR MOR

As mentioned earlier, we focus on TBIRKA here. The first condition is satisfied
in a way similar to that of BIRKA except that some extra orthogonality conditions

are imposed on the linear solver (discussed below).

Theorem 7. Let the inexact linear solves in TBIRKA (lines 3b. and 3c. of Algorithm
are solved satisfying

[Rcl Re, - RCM] 0  and

- (4.1)

where Vi and Vi, are given by the first equations of lines 3b. and 3c. of Algorithm
respectively; Re, and Re, are the residuals in the second equations of lines 3b. and

3c. of Algorithm respectively; Wy and Wy, are given by the second equations of
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lines 3b. and 3c. of Algorithm[2.3, respectively; Rp, and Rp, are the residuals in the
first equations of lines 3b. and 3c. of Algorithm (2.2, respectively; and k =2, ..., M.
Then, TBIRKA satisfies the first condition of backward stability with respect to these

solves.
Proof. Follows the same pattern as the proof for Theorem 3 in [21]. O

From the above theorem, we infer that the underlying iterative solver should firstly

be based upon a Petrov-Galerkin framework to achieve
VIRe, =0 and W/ Rp, =0, (4.2)

for k =1, ..., M. Since BiConjugate Gradient (i.e., BiCG) is one such algorithm [43],
we propose its use in TBIRKA. This is exactly same as for BIRKA (Chapter [3[ and
[21]). Secondly, this particular solver should also satisfy the remaining orthogonalities
of .

These orthogonalities have a form similar to the orthogonalities required while
reducing second order linear dynamical systems ((23) and (24) in [46]; AIRGA al-
gorithm), and can be easily satisfied by using a recycling variant of the underlying
iterative solver. In [46], the ideal iterative solver to be used is Conjugate Gradient (i.e.,
CG) [43] (due to the use of Galerkin projection). Hence, to satisfy the similar orthog-
onalities there, without any extra cost, the authors use Recycling Conjugate Gradient
(i.e., RCG) [39]. Since here BiCG is the ideal iterative solver (as discussed above),
we propose the use of Recycling BiConjugate Gradient (i.e., RBiCG) [4, 3], which
would ensure that the remaining orthogonalities of (besides ([4.2)) are satisfied
without any extra cost. Similar orthogonalities arise during reduction of parametric
dynamical systems (discussed in the next chapter). Hence, we expand upon satisfying
such orthogonalities in-detail in the following chapter.

To satisty the second condition of backward stability of TBIRKA, we need to show
that

[ =] = oaFLL), (43)
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where (M is the original truncated bilinear dynamical system given by (2.3)) or

CM = {Hl (Sl>7 HQ (81, 82), H3 (81, S9, 83), HM (81, P SM) }, (44)

with Hy (s1, ..., s,) for k € {1, ..., M} is the k' order transfer function of the
corresponding system (defined earlier in ([1.3))), and EM is the perturbed truncated

bilinear dynamical system given by

~ ~

ZM = {ﬁl (31)7 ﬁ? (SlaSZ)a H3 (Sla S92, 83)7"'7 HM (317 ey SM) }a (45)

with Hy (s1, ..., sp) of k € {1, ..., M} is the k™ order transfer function of the
corresponding system (defined later in Section , and assuming perturbation F' in
A matrix of the input dynamical system.

One way to satisfy is to use the definition of the Hy—norm of (M — (M ..,
from Lemma 5.1 of [26] (also defined in Chapter |1)

.~ (o —clele -]

HgM _ zM

r 0 A+ F 0 I, 0 I,
A 0 el N;, 0 N; 0
> ®
0 A+ F a0 N 0 N, (4.6)
A 0 I, 0 I, 0
- ® - ®
0 A+ F 0 I, 0 I,

A 0 (B B
&
0 A+ F B B
This approach is followed in satisfying the second condition of backward stability for
BIRKA, and is one of the ways for satisfying the second condition of stability in
TBIRKA as well (Complete system approach; discussed in Section .
From (4.4) and (4.5)), we know that both ¢ and EM are represented by a finite

set of transfer functions, respectively. Hence, another way to satisfy (4.3]) in-case of
TBIRKA, is to show that the norm of the difference between the respective order
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transfer functions of (4.4)) and (4.5)) is equal to the norm of the perturbation. That is,
instead of (4.3) we can show that

~

|1 (s0) = Fi (s)], = O(IF,),
Hy (s1, s2) —ﬁ2 (51, s2)| o€ O(HFH2>>
|
i (4.7)
Hy (s, -y sy) — Hy (s, .., sa)| e O(|F],).
| "

This way was not possible in BIRKA because there M — o0 (see (1.2))-(T.3)T). This
approach is refereed to as a Subsystem approach, and works only for the SISO systems.

We discuss this in Section [4.2]

Note, that in all our subsequent derivations, we assume that all inverses used exist.
This is an acceptable assumption because the inverse of matrices arising here are of
the form as in [10] and [2I] (the papers that discuss stability of IRKA and BIRKA,

respectively).

4.1 Complete System Approach

Recall the Hy—norm of the truncated bilinear dynamical system given in ((1.9)), as

k
[6¥]}, =veed,)" (C®C) Z( A®L - LeA) YN, ®N)

j=1

(—A®I,-I,® A)f (B® B)wvec(l,),

where M is the truncation index. Since, we are perturbing only A matrix, and hence,

M _ M

we define the error system (M = matrices as follows:

A0 N; 0 B
Aerr — , NjeTT = , BT = , and C" = [C —C] .
0 A+ F 0 N, B
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Using this notation, the Hy—norm of the error system is given by

o I, = e =2
-ty (e ~clefe -] 3 (- L AjF]® [fg f]
B e E E
S L R O L )
([i] ® [i ] ) vee(Ipm).

—vee(l,)" (| ~c]®|C —C:>§[(_ _ﬁ 0}

S

(N R LR (R
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Then, the above equation leads to
, M, N Tk AT
o vec(Iy,)"C Z l(Q - ) N] (Q — F) B vec(Iyy,) or

k=0

e

T

~ M 2~ N\ A1FA
22 = vec(l,)"C 2 [Q‘l (Ign — FQ_1> N] Q!
k=0 (4.9)

. -1
<[2n — ﬁQl) B vec(Iap).
For different values of k, we get different terms in the above equation (related to the

truncation of the Volterra series). In total, we get M + 1 different terms as we vary

the value of k from 0 to M. For k = 0, we get
~ -1
Jo = vec(Ip,)TCQ™! <12n - 13@1) B vec(Ioy,). (4.10)
We know that if |A[, < 1, then the power series expansion of a matrix A using

Neumann series is given as

T-A)" =T+ A+ L+ A+ 0= A"
i=0
F @_1 < 1, then by Neumann series we get

Hence, in (4.10)), if

~ -1
Jo = vec(Igp)T@@_l <]2n — fAWQ_l) B vec(Iy)

~ ~ 2
= vec([zp)TCA'@_l (Ign +FQ '+ (FQ_1> + - > B vec(Ia)
= vec(lgp)Té@_lé vec(Iyy)
~ ~ -1
+ vee(I,) " CQ ' FQ ! (Izn - FQ-l) B vec(Ism).

By the definition of the error system we know vec(Igp)TCA'@*1§ vec(lsy,) = 0. Hence,

the above equation can be re-written as
~ ~ -1
Jg = U@C(IQP)TCQ_lFQ_l (Ign — FQ_l) B UBC(IQm).
Bounding the right hand side of the above equation we get

~ —1
(1. 70) \

1] < Joectr O |71 |F

B loee(Lom)].

o1
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Using Lemma 2.3.3 from [27] in the above bounding condition we get that since

FQ7 ! < 1 as assumed above, we have

|Jo| < |vec(lo)” | HGH H@—1H P HEH lvec(Ion)|.  (4.11)

|

Ty | —

1—

Let H@*IH < 1and |F| < 1 be defined by the original system and residuals of the

linear solves, respectively. Then, by using the matrix norm inequality property we get

<ﬁ@—1‘< 7107 or
1 1
= < = .
1_(ﬁ@—1 - FH o]
Using this inequality in (4.11)) we get
71| Al 1A= | 2] 1| /-1 1 3,
o < Jeeett 1[0 |0 [ o ] | o |8 ecettint, 022
1= |Ajle-]

<O<ﬁ).

Similarly, if we take £ =1 in (4.9 we have

~

~ —1 ~ —1
Jy = vec([zp)Ta[Q ! (Ign - ﬁQ—l) N]Q‘l (12n - FQ-l) B vec(lyy,) (4.13)
~ 2 A 2~ \? A 20 N\t

= vec(ly,)'CQ™! (I% + FQ7 '+ (FQ—1> + .. ) NQ™* (IZn — FQ—l)

B vec(lopm)

~ —1
== vec(Igp)Ta@’IN@’l ([gn — ﬁQl) B vec(la,)
A 20 NP s 2~ \7t .
+ vec(lyy)"CQ T FQ™ (12n — FQ—1> NQ™! (1% — FQ—1> B vec(Iyy,)
~ ~ —1

:v%u%faélﬁélﬁgl(hn_pgl) B vec(Inn)

~ ~ —1 ~ -1
+ vee(L,) " CQFQ! (Ign - FQ‘1> NQ™ (Ign - FQ—1> B vec(Iom).
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As earlier, while assigning that HQ_IH < 1 and

F ‘ < 1, bounding the right hand side

of the above equation we get

7| < eI [E] [ ][] 0|

) ) (4.14)

~ +
SRV

B loec(Tam)]

F F

<O( )

Similarly, if we take £ = 2 in (4.9)) we get

1—

o1

A~
~

F

~

~ —1 2 ~ —1
Jy = vec(Igp)Té[Q ! (Izn - 13@‘1> N] Q1 (Izn — FQ—l) Bvec(Iyy,) (4.15)
1 R ~ -1
50 (1 - FQ)

~ 1
]V@_l <]2n - ﬁ’Q‘l) Buvec(Iyy,)

~ vee(y,)TEO (f% _ ﬁ@l)

~ ~ 2 ~ —1

= vec(I,,)TCQ™ (1% + PO + (FQ—l) i ) NO! (1% _ FQ—l)

o A0 N\t .

NQ™! <1'2n — FQl) Buec(1ay,)

U A n -1 N -1
= vec(ly,)"CQ'NQ™! (12n — FQ—1> NQ™! (12n — FQ—1> Bvec(Iyy,)
A N -1 2 N —1
+vec(lyy)TCQFQ™ ((Ign — FQ—l) NQ‘1> (IQn - FQ—l)

B vec(loy).

-1

~ ~ 2
= vec(lp,) " CQTINQ™! (Izn +FQ '+ <FQ—1) + - )
) f)’vec(]gm)

50 (1~ FQ”
~n R PO A 20 \ !
+ vec(lyy)"CQ T FQ™ ((bn — FQ—I) NQ—l) (LM — FQ—l)
B vec(lom).
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-1

— vee(,) 00 (801) 7 <12n - ﬁ@l) B vee(loy)
~ ~ —1
ety 100 (FG) FO- (<z ) ﬁ@—l)
~ —1
(Ign — ﬁ@_l) B vec(Ia)

R R 1 2 R —1
+vee(loy)TCQFQ ! <<12n — FQ1> NQ1> (12n — FQl)

B vec(Iop).

~
~

As earlier, while assigning that H@”H < 1 and || F|| < 1, bounding the right hand side

of the above equation we get

~

4] < Jeect o] [ |8 | | £} @
2 3
| + | + ! (4.16)
-frle-l) - jele]) \r-jrlen
)BH |lvec(lom)|| < O ( l?’ ) :
Taking k = M in , we get
Ty = Uechp)Talél (1% . E@l) B ﬁ]Mél
(4.17)

~ —1
(1% — FQ—l) Bvec(Iy,y,)
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A~

A~ A~

As earlier, while assigning that ‘Q_IH < 1 and || F'|| < 1, bounding the right hand side
of the above equation we get
R M~ M 2] A~
[ < etz T[] j | [ @] | 1@
M+1
1 1

= + .+ — (4.18)

1= o] Nl

B| lvec(tan)|

<O< )

Substituting (4.12)), (4.14)), (4.16)) and (4.18) in (4.9), we get

2
Hy

A~
A~

F

e

~ 2
HQM—CMHH =Jo+ i+ Jo+...+Jy
2

<o

This result is independent of M, except that it should not be infinity. We know

Now using the triangle inequality property (i.e., | X + Y| < | X]|| + |Y]) we get

k

In the above, if we use the Kronecker product property (| X ® Y| = || X |Y])[35} 34],

~
~

F

) . (4.19)

~
~

F= (12n®ﬁ+ﬁ®f2n) or HEH _ H(I%@ﬁ+ﬁ®12n)

F

<|(er)+|(Fer,)

then
F| < 18l |B] + | B| 120
<o(|F)-
A~ 0 0
We also know F' = . Thus, using the matrix norm property [38] in the above
0 F
we get
o < F ) <O(|F]). (4.20)
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Substituting (4.20) in (4.19) we get

e

= [er - <oar.

Following theorem summarizes this.

~ 0 0
Theorem 8. Let I’ be the constant perturbation introduced in A, F = ,
0 F

A . . Aol |1, o I, ol |4 o
F=<[2H®F+F®12n>,andQ= _ ® - ®
0 Al o 1, o ,| o 4

If| F

of backward stability with respect to the inexact linear solves, i.e., (2.11)).

<1, @ 18 1nvertible and H@_lw < 1, then TBIRKA satisfies the second condition

4.2 Subsystem Approach

Since, as mentioned earlier subsystem approach works only for the SISO systems.
Hence, in the following discussion in this section B = b e R™*!, C' = c € R, and we

only have one bilinear matrix N e R**™ in (L1, (T.2)), and (T.3)%. Thus, in (4.4), for

the original truncated bilinear dynamical system ¢, the k' order transfer function,
Hy(s1, ..., sp)=c(spl —A) "N (sp_i] — A" . N(syI —A)7'b. (421

Similarly, in (4.5)), for the perturbed truncated bilinear dynamical system Z M the kth

order transfer function,

~

Hy(s1, ..., sp)=c(spl —(A+ F))~! (422)
N(sptl — (A+ F) ™" . N(siT— (A+ F)) b, '

To prove the condition (4.7)), we first abstract out the term containing the pertur-
bation F' from the normed difference between the two corresponding transfer functions
(of the original system and the perturbed system) in Lemma [} Next, in Lemma [2]
for k = 2, we show that the norm of this term is order of the norm of F. Finally, we
generalize the result of Lemma |2/ in Lemma [3| (from k = 2 to any general k) by using

induction.
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Lemma 1. Let the original bilinear dynamical system be defined as in (4.4) and the
perturbed bilinear dynamical system be defined as in (4.5). Then,

~

2
HHk (51, ey Sk) — Hk (81, ey Sk)HHQ < HC’Cil 8k>HH2 HICil (Sk*I)HiIQ . HIC*1 81)”H2
[UGs1, - ), [ (s) b,
where KC (s;) = (sil, — A) fori=1, ..., k, and

U(sty...y Sk) =K (s1)...K(s5-1) (NIC1 (5p_1)...NK ' (so) N

— (I, — FK™" (s1)) "
NK ™ (s5-1) (In — FK™" (s%1))

-1

L NK (s5) (I — FK™ (52)) 7

N (I, - K™ (sl)F)1>.

(4.23)
Proof. Using the definition of H,—norm (L.6), we get
B (o1, s = Hilsn, oo ) 2
_ (%) Lim [ o[ el () NI ) NV (i)
— ¢ (K (iwg) — F) "N (K (iwp—1) — )" .. N (K (iwy) — F) ™!
N (K (iw) — F) ! bH;dwl . duwy,
< ) %LTO%J J (i) <NIC1 (i 1) ... NK" (i) N
— (L, — FK™" (iwy,)) ™ N (iwp1) (I — FK™ (iwg_q))
)
NK ™ (iwy) (I, — FK™* (iwy)) "' N (I, — K (ml)F)*)/c—l (iws) b
F

dwy ... dws
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( )T%iﬁ.”é f f JeC (ieon) Ko (i) - K71 (icwn)

K (iwy) ... K (iwg—1) <NIC_1 (iwp—1) ... NK* (iwg) N

— (I, — FK™" (iwy,)) ™ N (iwp1) (I — FK ™ (iwgr)) -

2

F

NK " (i) (I — FK ™ (iws)) ™ N (L, — K~ (iwy) F) ™' > K (iwr) b

dw1 R du)k.

Using U (s1, ..., si) given by (£23), | XY Z|p < | X[z Y Z]|p, Y Z]p < [Y]p 12,

and comparison integral mequahtyﬂ 33] for any matrices X, Y, and Z, in the above

equation, we have

~

HHk (81, ceey Sk)—Hk (81, ey Sk)'

2
( >,{ﬁgf f ek Gieor) [

1t (o) [ - | o) [ U (i, -, i) |3 [ K (icon) b5 deor - . . dooy.
(4.24)

From the mean value theorem of integration [33] we know

f_ﬁ; f:; f (iws) g (iwy, iws) h (iwy) dw;dws
:Jm f (iws) (J_n;g(iwl,iw) h(iwl)dwl) deos

J f (iws) (max( (zc,iwg))fjnh(iwl)dm) dwsy
< maglolic.id) | f(iwa)don | (iwn)dan,

IThis inequality says if f(z) and g(z) are integrable over [a,b] and f(x) < g(x), then
SZ f(x)dx < SZ g (x)dx. Note that although we have improper integrals here, this inequality still

holds because of the earlier assumption that such integrals give a finite value.

65



Using this property in - we geﬂ

2

HHk<817 sy Sk)_ﬁk(sla sy Sk))H
2
1
() [l Gl et e e
dwl...dwkwl maL o |U G, ..., dwe)3 mag k! (iwl)bH2
< ek G, 1K Gsien) i - I (),

U (51, o sl [ (s0) B, -
]

Lemma 2. Let |F|, < 1, where F is the perturbation introduced in the A matriz
of the input dynamical system. Also, let K=" (s;)],, < 1 fori = 1 and 2, where
K (s:) = (sil, — A) with I, being the identity matriz. Then,

1021, <O ([1F1],) -

where Uy = U (s1, sq2) from (4.23)).

Proof. Substituting k = 2 in (4.23]), we get
U = K (51) (N — (L= FK™ (s9)) "N (L, — K" (s1) F)‘1> .
If [FIC7! (s2)|y, < 1and [K~' (s1) F|l,, <1, then by the Neumann series, we getﬂ
Uy = K (51) (N - (In +FK™ (s2) + (FK Y (52))" + -+ ) N
(I + K7 s) F o (K7 (1) F) 4 - )>
=K (s1) (N—N—N/c1 (s)F (In+ K" (s1) F+-+)

— FK " (s2) (I + FK™' (s2) +++-) N (In+IC*1 (s1) F + (K" (s1) F)* +))

2As mentioned in Footnote [1} the improper integrals here do not affect application of this mean

value theorem because all such integrals are assumed to give a finite value.
0
3From [38, page 527], we know (I — A)"" = 3 AF when |A| < 1 for any matrix norm. Here, for
k=0

the first inequality we have HFIC_1 (82)HH <1 or_maﬂaé HFIC (fws H2 < 1, and hence, the applicable
@ w2 €

matrix norm is 2—norm. Similarly for the second inequality.
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=K (s1) ( — NK~ ' (s1) F (In — K" (s1) F)_1
— FK™" (s5) (I, — FK ™" (52)) " N (I, — K" (s1) F)_1>
— K (s1) ( — NK™(s1) F = FK ™" (s3) (I — FK ™" (s3))” N) (I, — K (1) F) "

Taking Hy—norm on both sides, and using | XY, < [ X[, Y], and |[X +Y, <

| Xl + [[Yly, for any two matrices X and Y, we get

Wil < maa <|’C(2wl)lz (11 )l 11, + 17, e G
|2~ Frc )™ N||2) |( - <M1>F>_1H2>

<K (s)lla, 1IN 1], (H’C_l (50)], + 1K (s2)]l 1,
(4.25)
max H (I, = FK™" (iw2)) H )maz H — K7t (iwy) F)71H2 :

w2 eR w1 eR

Technically by definition of the H,,—norm and how I (s) is defined in our hypotheses,
1K (s)llg, = 1K (s2)llg, = 1K (s)]p,, however, for sake of exposition, we keep them
separate. Similarly for the H,,—norm of inverses of K (s1) and IC (s2).

To abstract [|F|, out from the above inequality, let us look at
mazy H (I, — FK! (iws))~ 1H2 separately. Recall, while applying Neumann series we
a;sumed that |FI™" (s9)ll,, < 1or mag |IFK™! (iws)]l, < 1. Since the maximum of

such a norm is less than one, we have for all wy € R, [|[FK™! (iws)|, < 1. Using this

along with Lemma 2.3.3 from [27[7in the above expression, we get

1

max H (I, - FK™ (iwg))_lu < mazx

woeR 2 weR 1— |FK! (iws)|,
1
= T mar [P (iwo)]
ek 2)l2
< L (4.26)
L= [FR (s2)]y, '
if F e R™™ and |F], < 1, then I — F is nonsingular and (I-r" = OZO: F* with
k—

1

I-P" < .
H p o 1—|F|,
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If we assume |F|, < 1 and K" (s5)[;;, < 1 (as in our hypotheses), then using earlier

used matrix norm properties, we get

|FK! = maz |[FK™" (iws H2 \F||2max 1K™ (iws H2

|, = mag

<[Py K7

2)HHOO

<1

Y

as assumed for applying Neumann series earlier as well as Lemma 2.3.3 from [27]
above. Thus, no extra assumptions beyond those in hypotheses are needed. Further,

we also get

1—|F|, K" <1-|FK™! or (4.27)

2 HHOO 82)HHOO

1 1
< .
L= [FE ()l g, 1= 1Fl, 17 (s2)l

(4.28)

Similarly, by assuming |F[, < 1 and [K~" (s1)],, < 1 (as in our hypotheses),
we can bound the last term of (4.25) as follows:

1 1
mag H (I, = K7' (iwy) F) H2 ST KT (50) Fly, and (4.29)
L < L (4.30)
L= K (s1) Fllg, — 1=K (1), 177 '
Substituting (4.26))-(4.28]) and (4.29)-(4.30) in (4.25)), we get
1K™ (s2)]l

102z, <K ()], INTo [1F 1 | |

s +
D e, L—[F, 1K= (s2)] g,

<1 — [t (il)Hoo \FHQ) '

From the above inequality it is clear that if |F|,|K™"(s2)|,, < 1 and

1K= (51)]l g, | Fl, < 1, which are true from our hypotheses, then

102] g1, = O(IF],) -
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Lemma 3. Let |F|, < 1, where F is the perturbation introduced in the A matriz of
the input dynamical system. Also, let |K~* (si)llg, <1 fori=1,2, ..., k, where
K (s;) = (sil, — A) with I,, being the identity matriz. Then,

1Okl 1, <O (I1F]5)

where Uy = U(s1, ..., Sg) from (4.23)).

Proof. We prove this by mathematical induction.
Base Case :

k =1 is the linear system case already proved in [10] (see below theorem).

Theorem 9. [1(] Let F be the constant perturbation introduced in the A matriz of
the input dynamical system. If |[KK=' (s)| <1 and |F|, <1, then

~ [ ()] g, 17 (5) Bl
H(s)—H(s)| < 2 = P, |
[0~ F 6, < S, = 1
where IC (s) = (sI, — A) for se€ {s1, ..., Sk}

k = 2 has been proved above (Lemma [2]).

Induction Hypothesis :

From (4.23)), we know for k = L

-1

Up=K(s1)...K(sp-1) (NIC1 (sp-1)... NK™ ' (s2) N — (I, — FK™" (s1))

-1 -1

NK ™ (sp-1) (In = FK7' (sp21)) ... NK7' (s2) (In — FK ™" (s2))
N (L, — K (s)) F)™ )
(4.31)

Let U]y, = O ([F],)-

Induction Step :
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We show the above for k = L + 1. Again, from (4.23)), we know

U1 =K (s1)...K(s1) (]WC1 (sp)...NK ' (sy) N — (In —FK? (SL+1))_1

-1 -1

NK " (sp) (In— FK™' (s1)) ... NK " (s2) (I, = FK™' (s2))

N (I, —KY(s1)F)™ )

We first write Uz 41 in terms of Uy. Using our hypotheses, we have |FX™! (sz11) I, <

|Fly [ (s241)]l g, <1, and hence, applying Neumann series above, we get

U1 =K (s1)...K(s1) (NIC_1 (s)...NK '(sy) N

- (In + FK™ (sp1) + (FK (3L+1>>2 + - )

-1 -1

NK™(sp) (In— FK™' (s1)) ... NK " (s2) (I, = FK™' (s2))

N (I, - K (sl)F)_1>

= ’C(Sl) lC(SL) (NIC_I (SL) ...NIC_I (82)N

-1 -1

— NK™'(s) (In— FK™ " (s1)) ... NK ™" (s2) (In — FK ™" (s2))

-1

N (I, =K' (s1) F)

-1

— FK™ (spi1) (In — FK ™" (5041)) " NK Y (s) (I, — FK™" (s1))

NK ™ (s3) (In — FK™ (82)) " N (L, = K~ (1) F) ™' ) .

In the above equation, taking NK~!(s;) common from the first two terms of the
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bigger bracket, we have

=K (s1)...K(sp) (NlC1 (sr) (NIC1 (sp-1)...NK ' (so) N

-1

— ([n — Flcil (SL))

-1 -1

NK Y (sp1) (I — FK™" (sp 1))

N (L, - K (sl)F)l)

L NK ™ (s2) (In — FK ™! (s2))
(4.32)

—1

— FK ™ (s41) (Lo = FK™" (s241) " NK" (1) (I = FK ™" (s1))

NK Y (s3) (I, — FK™ (s5)) " N (L, = K~ (1) F) ™' ) .

Now we look at expression of Uz Multiplying K=! (s;_1) ... K~ (s1) on both the sides

of (4.31)) from left, we get

-1

IC_l (SL—l) e IC_l (81) UL = (NIC_l (SL—l) Ce NIC_l (82) N — (In - F’C_l (SL))

-1 -1

NK ™ (sp-1) (In— FK7' (sp21)) ... NK7' (s2) (I, — FK ™" (s0))

N (I, - K (sl)F)1>.

(4.33)

Substituting (4.33)) in (4.32)), we get

UL+1 = ’C (81) N IC (SL) (N’C_l (SL) <IC_1 (SL—I) N iC_l (81) UL>

-1

— FK™" (sp41) (In — FK™" (s141))

-1 -1

NK™(sp) (In— FK7 ' (s1)) ... NK ™ (s2) (I, — FK™' (s2))

N (I, - K (sl)F)_1>.

Taking H,—norm on both sides, and as earlier, using the norm inequality properties
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in the above equation, we get

<
HUL—HHHOO S mg{len{

1111

IIC(Z‘C<11)||2---||’C(iwL)|2(IJV|2H’C (iw)], - K (i)

U G, -y i)y + 1Py [ Gz | (£ = PR () ™|
Nl 1 o), | (T = PR Giewn)) 7

1 TP |
IV, [ (i) H(In—FIC (i) |
¥l — K ) 1), )]
Similar to (4.26]) and (4.28)), here also, using Lemma 2.3.3 from [27] we get

Uil <IK ()l - 1K (), INT [K7 (s2)] - [K7 (s2)]

[ (), 10, +

INIE I (sl
(U= I IK o)) - (= IF K (s2) )
| |71,
[ IK (0, 1T,

From induction hypothesis we know |Up|,_ocO (||F]|,). Using this we get

U411, O (1F]5) -

Theorem 10. If hypotheses of Lemmas[]] and[3 holds, then

~

HeGsi, ooy s = Bisn, s, =0 (1F1D)

or
TBIRKA satisfies the second condition of backward stability with respect to inexact

linear solves.

Proof. Directly follows from combining the results of Lemmas [I] and [3 ]
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Corollary 2. Assuming the hypotheses of Theorem [7, and either of Theorem [§ or
Theorem 10} are satisfied, then TBIRKA is backward stable with respect to the inexact

linear solves.

In the next section, we analyze all the involved matrices.

4.3 Invertibility of Involved Matrices

Similar to previous chapter, here also we have assumed invertibility of seven ma-
trices. Most of these invertibility assumptions directly come from the control system
theory as well as the model reduction theory of bilinear systems. We have also as-
sumed invertibility of few newly proposed matrices. In this section, we summarize/
analyze all these assumptions in the order of appearance of the corresponding matrix

in this chapter. We first summarize the invertibility assumptions from literature.

(a) In the Hy—norm definition of a truncated bilinear dynamical system (1.9)), we
assume that (—A® [, — I, ® A) is invertible. This is a standard definition.

Please see Lemma 5.1 of [26].

(b) Here again we assume invertibility of (Wf ‘Z) Directly coming from literature.
This is easy to enforce and come from TBIRKA. Please see Algorithm 4.3 of [24]
or Algorithm 2 of [26] .

(¢) In (2.4), we assume the middle term, i.e.,

A0 I, 0 I, 0O A0
- ® - ® y
0 A 0 I 0 I 0 A
is invertible. This comes from the Hy—norm of the error system (¢ — ¢M).

Please see Theorem 5.1 of [26].

(d) We assume invertibility of (—A® I, — I, ® A) in Algorithm This again
comes from TBIRKA. Please see Algorithm 4.3 of [24] or Algorithm 2 of [26].
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(e) Again, as earlier, here also we assume invertibility of (sxl, —A) and
(sl — (A+ F)) in (4.21) and (4.22)), respectively. These come from the trans-
fer function definitions. Please see Section 2 of [26] and Theorem 4.1 of [10],

respectively.

During the backward stability analysis of TBIRKA, we assume invertibility of some
newly proposed matrices. Next, we analyze these matrices. Note that below, we
discuss the matrix in (a) before the matrix in (b) although the latter appears first in

this chapter. This is done for ease of exposition.

(a) We assume invertibility of Q given in 1) Also listed below for easy access.

~ A0 I, 0 I, 0 A0
Q=- ® - ®
0 A 0 I, 0 I 0 A

This is one of the most important assumption in obtaining a backward stable

TBIRKA (see Corollary . Hence, here we relate this invertibility assumption
A0

with the underlying bilinear dynamical system. If we define Ay = ,
0 A

-[ O ~
=" ;and Q = Q1 ®Qs, where Q1, Qs € R**27 gre any two matrices,

IZn -
0o I,
then @ can be rewritten as
—A® Iy, — 15, ® Az = Q1 ® Qo or
— (Ay ® Inp) vee(Iay) — (Lo ® Ag) vec(lay,) = (Q1 ® Q2) vec(ls,) or
—Ag — AQ = QQQ,{ or

T —
A0 A0 .
- - = QQQl or
0 A 0 A
—AT—A 0 ,
= Q2Q1-
0 —AT — A

If (—AT — A) is invertible, then (); and @) are invertible. This implies that

Q = (Q1 ® Q) is invertible. As in the case of BIRKA stability (see (b) on page
36-37), (—AT — A) is directly related to the underlying Lyapunov equation.
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(b) In (4.6) and (4.9)), we assume invertibility of

A 0 I, 0 I, 0 A 0
— ® — ®
0 A+ F 0 I, 0 I, 0 A+ F

and (@ —F ), respectively, both of which represent the same matrix (i.e., @

with perturbation). This matrix is invertible if ( —(A+F)" —(4+ F)) is

invertible.

Next, we look at the conditioning of the problem and the perturbation expression,

leading to the accuracy of the reduced system.

4.4 Accuracy of the Reduced System

Next, as in the previous chapter, we compute the accuracy for the reduced system
obtained after using inexact TBIRKA. Assume that TBIRKA satisfies the hypotheses
of above Corollary [2] i.e., TBIRKA is backward stable with respect to the inexact

linear solves. Then, from Theorem [3] we get

g () =3 ("),
lg (€],

G =G
16

where, as earlier, g denotes exact TBIRKA, § denotes inexact TBIRKA, (M is the

= O (s(¢") [F]), o

2 — O (k(¢) |F]), (4.34)

original full model, x(¢*) is the condition number of ¢ (discussed below), and F is
the perturbation in (M. Also, g (¢M) = ¢, and § (¢M) = M

Thus, the accuracy of the reduced system is dependent upon the condition number
of the problem and the perturbation. First, we compute the conditioning of the
original bilinear system with respect to computing the Hy—norm of the error system
M = (M _ EM . This is easy to compute and gives a good approximation to the
conditioning of the original bilinear system with respect to computing the Hy—norm

of the error system (M — (M (as needed in ([£.34))). Similar analysis has been done in

21].
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Recall the error expression as defined in (4.9)) or

M=

HCMW = vec(lgp)T@

~ -1 k
0 (r-FG) |0
-1

(Ign — }?’@_1 B vec(lom),

w = o=,
HZ_C C Hy

k

Il
o

=Jo+ I+ Jo4 ...+ I

where Jy, Ji, Jo, and Jy, are defined in (4.10)), (4.13)), (4.15]), and (4.17)), respectively.

Thus, the error expression above can be bounded as follow:

M =M < 1ol + Ll + ]+ ] (4.35)
2

Recall that Jy, Ji, Jo, and Jy have already been bounded in (4.12), (4.14), (4.16)),
and (4.18]), respectively. For stability, in Corollary we have assumed | F

F|| < 1, which

gives

! < L .
SR

Using this new bound in (4.12)), (4.14)), (4.16), and (4.18) we get

4] < oectr1 [ J- |31 J-1 2]
k+1
;Al + ...+ ;Al HEH HUGC(]QW)” s
1|~ t-fer]
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for k=0, ..., M. Using the above in (4.35)) we get

e, < eyl 0 o { ey
el (1 g
2
Wl (v o (e
+ ...
~IM A M 1 1 N
W1l (v g (e ]

|B| Jvec( L)

We know that, if S 1is an arithmetic progression of the form 1 +

a(l+z) + a*(Q+z+2*) + ... + a"(l+z+2°+...+2™), then S =
1 m+1 __ 1 m+1 __ 1
a4 — z ((az) ) . Using this property in the above inequal-
11—z a—1 ar —1
ity, we get
~ INTRIEN KU A 1
o =¢],,, < e[ |0 P | T
¢ 1]
~IM+1 | A M+1
! 1 B
- — | [ e -
1-[&-]
¥ Je ™
~ M+1 -1
AN Gl U )
e VA L (OB
-1

(=[e))

HEH lvec(Iam)|  or

7



o ¢

1M

Hy < |lvec(I)" | HéH HQ_IH

| (-fa )™ - 5™ fo
(=fe))™ (r=le]=5le])

M+1 H@1HM+1

Bl et

~

1|9

[l

la1 |7
Gl 141

Since, the condition number k(¢M) gives the relative change in the output (in our

case this is with respect to relative change in the input (in our case
this i e 2 ) with t to relative change in the input (i
H>
F
this is H because we are perturbing the matrix A only), using the above inequality

~

and the fact that O ( F

> < O(|F|) (from proof of Theorem we have

e = i1 2
o) e
O N

M+1 H@1HM+1

1|9

t=|¥]le-]

] |8 oeettan)l 157

[Carl i,

In the experimental results section, we show that condition numbers of the prob-
lems under consideration are fairly smal2. This implies that our problems are well
conditioned with respect to computing the Hy—norm of the error system (M.
Second, we determine the upper bound on the perturbation F' with respect to the

residuals of inexact linear solves defined in Theorem [7] simultaneously. That is,
Rp, = FV, and RL =WIF fork=1,.., M.

If we revisit the TBIRKA algorithm (Algorithm [2.2), we ideally want to perform
stability analysis at the end of line 3d. (where the intermediate projection matrices

are summed to obtain the reduced model). However, until now, we have performed
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stability analysis at the end of line 3b. and the end of the every step of the for loop
of line 3c. We have done this for two reasons. First, the two analysis are equivalent
mathematically, and second, the latter is more easy to implement than the former.
When we derive the expression for perturbation, the former analysis gives a single
expression for perturbation, which we need and is not possible in the latter case.

Hence, in the rest of this section, we refer to end of line 3d. for our analysis. That is,
Rp=FV and RL=W'F (4.37)

M M ~ M ~ M
where RBI ZRBk7RC: ZRCk,VZ ka and W = ZWk
k=1 k=1 k=1 k=1
From the assumption of Theorem [7], for satisfying the first condition of backward

stability in TBIRKA we need to use the iterative solver based upon the framework

given by (4.1)), i.e.,

‘/IT
‘/2T
. [Rcl RC2 R0M] =0 and
Vi
wi
Wy
. [RBI RBQ RBIVI] =0.
Wi
This implies
W 1 [RBU RBQ, e RBM] and ‘7 1 [Rcl, RCQ, cey RCM] . (438)
If we define
U ~ S —1
F =Ry (WTV) W4V (WTV> RL, (4.39)

then using (4.38)), (4.37) is satisfied. Also, as earlier discussed (WT‘N/) is assumed
to be invertible. The following theorem gives a bound on this perturbation F'. This

theorem is similar to Theorem 5 from [21].
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Theorem 11. Let RBk, Re, , Wk and Vk are deﬁned mn 1' F be defined as in
M
- Also, Rg = Z Rg,, Rc = Z Rok, Z Vk, = > Wi and assume

k=1
(WTV> is nonsingular. Then, the perturbation F' satisfies.

IFl, < |Flp < vi{maa | Ry |(F70) W + maz | Re | |7 O7T7) 2 L.
Proof. Note that
~~\ L~ ~ [~ Tl
F =Ry (WTV) W4+ 7 (WTV> RL.

N G R i

F

~ap~\ T~
IF|, < HRB (W) W

n Hv (79) " B

F

F

Now taking the first term from above expression as

(W) W

< vr (mas| R H (i) .

‘RB (Wﬁ”f) W <R,
F

Similarly taking the second term as

v () -
F

% (WTV)”H IR,

7 (WT\N/)_IH |

< vr (mas|Re,)

So, finally the expression |F|| given as
IFl, < |Fllp < vi{maa | Ry, |(W70) W] + maz | Re | [V V7)) ).

O

From the above expression of |F|, we see that the norm of the perturbation is
proportional to the norm of the two residuals sum obtained while solving the linear
systems arises at step 3b. and 3c. in TBIRKA. The norm of perturbation is also
proportional to the norm of two other quantities H(WTXN/)_leH and H‘N/(WTXN/)_lH

These two quantities are very less dependent on accuracy of the linear systems we solve.
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Also, they are not sensitive to different initializations of TBIRKA as well as different
reduced system sizes. This behavior is similar to the related quantities obtained in
the stability analysis of BIRKA [21].

From (L34), |¢M — ¢M
and ||F'|. The problem is usually well conditioned. From Theorem [11], |F| is directly

’ is proportional to the conditioning of the problem (/{(C M ))

proportional to |Rp| and |Rc|, where Rp and Re are the sum of residuals in a
TBIRKA iteration. Thus, we get a more accurate reduced system as we iteratively
solve the linear systems more accurately arising in TBIRKA. This result is very use-
ful in deciding the stopping tolerance for the linear solves. We support this with

experimental results in the next section.

4.5 Numerical Experiments

Here, we first revisit the constraints imposed while satisfying the first and second
conditions of stability. Satisfying the first condition for a backward stable TBIRKA
requires using a Petrov-Galerkin based iterative solver and achieving some extra-
orthogonality conditions during the linear solves (see Corollary [2{ or Theorem .

As mentioned earlier, we use BiCG as the underlying iterative solver because it
is based upon the Petrov-Galerkin framework, however, we do not attempt to satisfy
the extra-orthogonalities mentioned above for simplicity. We do this during PMOR
in the next chapter where the MOR algorithm is simpler than TBIRKA, and hence,
satisfying extra-orthogonalities is not hard.

Although these orthogonalities are not satisfied by TBIRKA, it turns to be back-
ward stable experimentally (we get a more accurate reduced model as we solve the
linear systems more accurately). This is because these are sufficiency conditions not
necessary.

We have seen two ways of satisfying the second condition of stability for TBIRKA
with respect to inexact linear solves. Now, we discuss how to practically use those
results. In the complete system approach, we have two constraints; H@H < 1 and

Hﬁ | < 1 (see Corollary [2[ and Theorem . Here, @ depends only upon the input
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dynamical system, and hence, is a rigid constraint. ]§ depends on the subspaces V and
W and also on the residuals Rp and Rc. Asin the case of BIRKA, here also, }%’ is less
sensitive to V and W and more to the residuals of the linear system that we are solving.
Hence, if we need to check that for a given input model would we get a more accurate
reduced model by solving the linear systems to a much smaller stopping tolerance
(say machine precision), then we only check ]*a < 1 for a large stopping tolerance (say
1072), which guarantees satisfying this constraint for the smaller stopping tolerance
(machine precision as above). This saves the effort in solving the linear systems to a
smaller stopping tolerance if TBIRKA is unstable for that particular input model and
that small stopping tolerance.

In the subsystem approach, the two constraints are |[K71(s;)||z, <1 and |F| < 1
(see Corollary [2] and Theorem [10). For [K~!(s;)[a, < 1 as well we check only for a
large stopping tolerance and this guarantees that this constraint holds for a smaller
stopping tolerance. This is true because by changing the stopping tolerance, the
interpolation points do not vary much. We demonstrate this experimentally in our
subsequent subsections. The constraint |F| < 1 can be satisfied in the same way as
H; | <1 in the complete system approach.

We perform experiments to show three different cases for satisfying the second
condition of stability for TBIRKA. First, when the constraints of both the approaches
(i.e., complete system and subsystem) are satisfied. Second, when only the constraints
of the complete system approach are satisfied but not of the subsystem approach.
Finally, the third, when the constraints of the subsystem approach are satisfied but
not of the complete system approach. These experiments are performed on a flow
model [I8]. This model gives us a SISO bilinear dynamical system, which has been

already defined in Section

4.5.1 Constraints of Both Approaches Satisfied

Here, we take N = 10, L = 1 and v = 0.1 that gives us a SISO bilinear dynamical
system of size 110 [12 24]. We truncate the Volterra series up to 4 terms, i.e., M = 4,
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based upon the values in [24] and [26]. We initialize the input reduced system in

TBIRKA by random matrices such that initially the first set of constraints of the

subsystem approach are satisfied (i.e., [ (s;) |z, < 1). The stopping tolerance for

TBIRKA is taken as 1075, and we reduce this model to size 6. Both these values are

again chosen based upon the values in [12] and [24]. This leads to solving the linear

systems of size 110 x 110. While using BiCG, we use two different stopping tolerances

(10-6 and 1071).

using the smaller BiCG tolerance.

TBIRKA 2

Heration |7 3 K~ (5)
1 8.8738 x 1073 | 6.1926 x 1073 | 5.56314 x 10!
2 3.0384 x 1072 | 2.1509 x 1072 | 5.41302 x 10~!
3 2.5004 x 1072 | 1.7639 x 1072 | 5.41260 x 10~!
4 2.9488 x 1072 | 2.0791 x 1072 | 5.40870 x 107!
5 2.8530 x 1072 | 2.0134 x 1072 | 5.40833 x 107!
6 2.9275 x 1072 | 2.0655 x 1072 | 5.40793 x 10~*
7 2.9161 x 1072 | 2.0575 x 1072 | 5.40784 x 101
8 2.9293 x 1072 | 2.0668 x 1072 | 5.40778 x 107!
9 2.9277 x 1072 | 2.0656 x 10~2 | 5.40776 x 10~!
10 2.9302 x 1072 | 2.0674 x 1072 | 5.40774 x 10~!
11 2.9300 x 1072 | 2.0672 x 1072 | 5.40774 x 10~!
12 2.9305 x 1072 | 2.0676 x 1072 | 5.40773 x 10~!
13 2.9305 x 1072 | 2.0676 x 10~2 | 5.40773 x 10~!
14 2.9306 x 1072 | 2.0676 x 1072 | 5.40773 x 10~!

Ideally, we should obtain a more accurate reduced model when

Table 4.1: Second condition constraint values for the complete system and the sub-

system approaches when using BiCG stopping tolerance of 107°.

First, we look at the constraints of the second condition of the complete system

approach (as discussed above). @ is invertible here. We also have H@_l
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TBIRKA 2 B

Heration |£] | £ 1K= (si)l 1,
1 4.9676 x 1078 | 3.5217 x 107® | 5.56314 x 107!
2 1.1830 x 1077 | 8.2901 x 1078 | 5.41302 x 10"
3 4.3547 x 1077 | 2.7917 x 1077 | 5.41260 x 107!
4 1.9356 x 1077 | 1.3649 x 10~7 | 5.40870 x 10~
5 2.0118 x 1077 | 1.4096 x 107 | 5.40833 x 10!
6 2.0720 x 1077 | 1.4472 x 1077 | 5.40793 x 107!
7 2.0654 x 1077 | 1.4428 x 1077 | 5.40785 x 107"
8 2.0616 x 1077 | 1.4400 x 1077 | 5.40778 x 10~*
9 2.0601 x 1077 | 1.4390 x 1077 | 5.40776 x 10~*
10 2.0593 x 1077 | 1.4384 x 10™7 | 5.40774 x 107!
11 2.0590 x 1077 | 1.4382 x 10~7 | 5.40774 x 107!
12 2.0588 x 1077 | 1.4381 x 10~7 | 5.40773 x 107!
13 2.0587 x 1077 | 1.4380 x 107 | 5.40773 x 107!
14 2.0587 x 1077 | 1.4380 x 107 | 5.40773 x 10~!

Table 4.2: Second condition constraint values for the complete system and the sub-

system approaches when using BiCG stopping tolerance of 10710,

A~
~

(i.e., 5.5716 x 1071). Finally, ‘F' , at the end of the first TBIRKA step, for the BiCG

stopping tolerances of 107% and 1071 is 8.8738 x 1073 and 4.9676 x 1078, respectively,

both of which are also less than one. These values are less than one at the end of all
the other TBIRKA steps as well. This data is given in two tables (Table and ;

see the second columns there).

Next, we look at the constraints of the second condition of the subsystem approach
(as discussed above). K (s;) is invertible here. Also, as earlier, due to the particular
initialization of TBIRKA, |K~!(s;) |, at the end of the first TBIRKA step, for
BiCG tolerances of 107% and 107'° both is less than one (5.5631 x 1071).
|F|, at the end of the first TBIRKA step, for the BiCG stopping tolerance of 107°

Finally,
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Figure 4.1: Accuracy of the reduced system plotted at each TBIRKA iteration for the two
different stopping tolerances in BiCG; Flow model of size 110 (satisfying the constraints in
both the complete and the subsystem approach). Here, the x-axis is in the linear scale and

the y-axis is in the log scale.

and 10719 is 6.1927 x 1073 and 3.5218 x 1078, respectively, both of which are also less
than one. These values are less than one at the end of all the other TBIRKA steps as
well (see the third and the fourth columns of Table and Table . The condition
number for our input model, as defined in (4.36)), is 2.4752 x 10~2. This shows that

the flow model is well-conditioned.

The linear systems arising during the model reduction process are ill-conditioned.
Hence, we use a preconditioned BiCG here. The preconditioner that we use is incom-
plete LU [22]. The drop tolerance in the preconditioner is taken as 10~ based upon

the range given in [22].

The accuracy result is given in Figure [{.1] Here, we have the accuracy of the
=t

on the x-axis in linear scale. From Figure |4.1} it is again evident that we get a more

reduced system < ) on the y-axis in log scale and the TBIRKA iterations
Hy

accurate reduced model as we solve the linear systems more accurately (solid line is

below the dotted one at all TBIRKA steps).
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4.5.2 Constraints of only the Complete System Approach
Satisfied

For this experiments, we take the original system same as in the previous subsec-
tion (Section (i,e., N =10, L = 1 and v = 0.1). The only difference is the
initialization of the input reduced system. Here, we take the initial input random
matrices such that at the start the constraints of subsystem approach are not satisfied
(ie., [K71(s;) @, = 1). This violation is carried forward in the next few TBIRKA
steps as well. Again, the stopping tolerance for TBIRKA is taken as 107%, and we
reduce this model to size 6. Both these values are again chosen based upon the values
in [12] and [24]. Also, while using BiCG we use two different stopping tolerances (10~°
and 10719).

Next, we look at the constraints of the second condition of the complete system
approach. As we know, the value of @ depends only upon the input model, which
is the same as that of the previous subsection, thus @ is invertible and less than
one. The value of }27 , at the end of the first TBIRKA step, for the BiCG stopping
tolerances of 107% and 10710 is 6.3434 x 102 and 1.4573 x 1079, respectively, both

of which are also less than one. These values are less than one at the end of all the
other TBIRKA steps as well. Please look at Table As earlier subsection, the flow

model is well-conditioned.

Here, although the subsystem approach constraints are violated and the complete
system approach constraints are satisfied, we still achieve a stable TBIRKA. This is
because, as earlier, both of these approaches provide sufficiency conditions for stability,
and only one needs to be satisfied. The accuracy result is given in Figure[4.2] Here, we
-,
the TBIRKA iterations on the x-axis in the linear scale. From Figure we do not
(M _ M . ) for the two BiCG
tolerances at the starting TBIRKA iterations. The dotted liné, which corresponds

> on the y-axis in the log scale and

have accuracy of the reduced system (

observe any significant difference in the values of (

to the BiCG stopping tolerance 107% and the solid line, which corresponds to the
BiCG stopping tolerance 1071° almost coincide. TBIRKA gets more consistent as it
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converges to the ideal interpolation points. Hence, towards the end of the TBIRKA
iterations (iteration 14 to iteration 17), the solid line should be below the dotted line.
It is again evident that we get a more accurate reduced model as we solve the linear

systems more accurately (solid line is below the dotted one at all TBIRKA steps).

TBIRKA |7

Iteration | BiCG-Tol of 1076 | BiCG-Tol of 10710
1 6.3434 x 102 1.4573 x 1076
2 5.5772 x 1072 1.7022 x 1077
3 1.7442 x 1072 2.2269 x 1077
4 2.4148 x 102 1.8257 x 1077
5 2.6761 x 1072 1.8346 x 1077
6 2.7373 x 1072 3.5462 x 1077
7 2.8725 x 1072 1.9356 x 1077
8 2.8844 x 102 2.0118 x 1077
9 2.9122 x 102 2.0740 x 1077
10 2.9209 x 102 2.0659 x 1077
11 2.9264 x 1072 2.0621 x 1077
12 2.9285 x 1072 2.0603 x 1077
13 2.9297 x 1072 2.0594 x 1077
14 2.9301 x 1072 2.0590 x 1077
15 2.9304 x 1072 2.0588 x 1077
16 2.9305 x 1072 2.0587 x 1077
17 2.9306 x 1072 2.0587 x 1077

Table 4.3: Second condition constraint values for the complete system approach when

using BiCG stopping tolerances of 107% and 10710,
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Figure 4.2: Accuracy of the reduced system plotted at each TBIRKA iteration for the two
different stopping tolerances in BiCG; Flow model of size 110 (satisfying the constraints of
the complete system approach but not of the subsystem approach). Here, the x-axis is in

the linear scale and the y-axis is in the log scale.

4.5.3 Constraints of only the Subsystem Approach Satisfied

For our last experiment, we take N = 10, L = 1 and v = 0.065 that gives us a
SISO bilinear dynamical system of size 110. These parameters are deliberately chosen
different than the earlier two experiments because this leads to H@_IH being greater
than one (1.0221 x 10°). Thus, the first constraint of the complete system approach

is directly violated.

Again, we truncate the Volterra series up to 4 terms, i.e. M = 4, as discussed
in Section which has been taken from [24] and [26]. We initialize the input
reduced system in TBIRKA by random matrices such that initially, the first set of
constraints of the subsystem approach are satisfied (i.e., |[K7'(s;) |z, < 1). The
stopping tolerance for TBIRKA is taken as 107, and we reduce this model to size
6, as earlier based upon the values in [12] and [24]. This leads to solving the linear
systems of size 110 x 110. While using BiCG, we use two different stopping tolerances
(107* and 1078). This choice is slightly different than the earlier two experiments so

as to demonstrate our main conjecture (while satisfying the constraints imposed by
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TBIRKA BiCG-Tol of 1074 BiCG-Tol of 1078

Iteration | (I (s9)],, £ I~ (s) ., 3l
1 9.39899 x 107" | 1.4028 x 1072 | 9.39899 x 10~ | 2.0097 x 10>
2 8.96287 x 107" | 1.4298 x 1072 | 8.96279 x 10" | 1.3542 x 10~
3 8.99243 x 1071 | 2.0362 x 1072 | 8.99242 x 10~ | 1.6097 x 10>
4 9.00299 x 107" | 2.0751 x 1072 | 9.00313 x 10" | 1.5380 x 10~
5 9.00012 x 107" | 2.1881 x 1072 | 9.00012 x 10~ | 1.5632 x 10>
6 9.00205 x 107" | 2.1054 x 1072 | 9.00220 x 10~ | 1.5496 x 10~°
7 9.00128 x 107" | 2.1343 x 1072 | 9.00130 x 10~ | 1.5561 x 10~
8 9.00161 x 107* | 2.1327 x 1072 | 9.00169 x 10~ | 1.5540 x 10>
9 9.00139 x 107" | 2.1340 x 1072 | 9.00147 x 10~ | 1.5554 x 10~
10 9.00147 x 107* | 2.1337 x 1072 | 9.00155 x 10~ | 1.5549 x 10~
11 9.00142 x 107* | 2.1340 x 1072 | 9.00150 x 10~ | 1.5552 x 10~
12 9.00144 x 107* | 2.1339 x 1072 | 9.00151 x 10~ | 1.5551 x 10~
13 9.00142 x 107% | 2.1340 x 1072 | 9.00150 x 107! | 1.5551 x 1075
14 9.00143 x 107" | 2.1339 x 102 | 9.00151 x 10" | 1.5551 x 10>
15 9.00143 x 107" | 2.1340 x 1072 | 9.00150 x 10" | 1.5551 x 10>
16 9.00143 x 107" | 2.1340 x 1072 | 9.00150 x 10" | 1.5551 x 10>

Table 4.4: Second condition constraint values for the subsystem approach when using

BiCG tolerances of 10~* and 1078.

the subsystem approach, as we solve the linear systems more accurately, we get a more

accurate reduced system).

Next, we look at the constraints of the second condition of the subsystem ap-
proach. K (s;) is invertible here. Also, as earlier, due to the particular initialization of
TBIRKA, |K~! (s;) |z, at the end of the first TBIRKA step, for BiCG tolerances of
10~* and 107® both is less than one (9.3989 x 107!). Also, |F||, at the end of the first
TBIRKA step, for the BiCG stopping tolerances of 10~* and 1078 is 1.4028 x 1072

and 2.0098 x 1077, respectively, both of which are also less than one. These values are

89




* BiCG-Tol = 107
——BiCG-Tol = 1078

=)
T

N EM
,
T

CM
T

1 1 1 1 1 1 1 1 1
10 12 14 16

TBIRKA lterations

Figure 4.3: Accuracy of the reduced system plotted at each TBIRKA iteration for the two
different stopping tolerances in BiCG; Flow model of size 110 (satisfying the constraints in
the subsystem approach but not in the complete system approach). Here, the x-axis is in

the linear scale and the y-axis is in the log scale.

less than one at the end of all the other TBIRKA steps as well (see Table [1.4). The
condition number for our problem, as defined in (4.36)), is 1.8275 x 107!, This shows
that the flow model is well-conditioned.

Here, although the constraints for the complete system approach are violated and
the constraints for the subsystem approach are satisfied, we still achieve a stable
TBIRKA. This because, as earlier, both of these approaches provide sufficiency con-
ditions for stability, and only one needs to be satisfied.

The accuracy result for this is given in Figure Again, we have accuracy of
M — Eﬁw Y ) on the y-axis in the log scale and the TBIRKA

2

iterations on the x-axis in the linear scale. From this figure, it is again evident that

the reduced system (

we get a more accurate reduced model as we solve the linear systems more accurately

(solid line is below the dotted one at all the TBIRKA steps).
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CHAPTER b

STABILITY ANALYSIS IN PMOR

While performing exact MOR, of non-parametric linear dynamical systems, the
projection matrices at the one iterative step of the MOR algorithm (IRKA [30]) have

the form as follows:

V= [(alE —~ A 'Bry, ..., (6,E— A" BII‘,«] and 51)
5.1
W=|(@E-A"cm, .., (0,E- A" 0],
where o; with ¢ = 1, ..., r denote the shifts where interpolation is performed; r is the

size to which we want to reduce the input dynamical system; and I; and r; are the left

and the right tangent directions, respectively, which are used during interpolation.

As mentioned earlier, we focus on IPMOR [9] for MOR of parametric linear dy-

namical systems. Using inexact linear solves in building the projection matrices in

IPMOR, we getl[]

'TPMOR is not an iterative algorithm. Hence, the reduced system is obtained in one step. This

is unlike all the earlier algorithms.
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with

~

(iE () —A())Vi(') = B(')rij + Rp, (¢p’) and (5.3)
(0.8 (¢) = A(Y)) Wi (¢) = C" (¢) L + Re, (¥). (5-4)
where as earlier, o; with ¢ = 1, ..., K denote the shifts; p e R with j =1, ..., L

denote the set of parameters; I;; and r;; denote the left and the right tangent directions,
respectively; and Rp, (p’) and R, (p’) denote the residuals. Thus, the reduced model
obtained by the the inexact IPMOR algorithm can be connected to the original full

model by using the Petrov-Galerkin projection as
E.(p)=WTE@V, A (p)=WTA@p)V, B, (p)=WTB(p), and 55)
C.p)=C(nV,
where p e {p!, ..., p}.
For backward stability, next we need to apply the exact IPMOR algorithm on a
perturbed full model. Let F' be the perturbation in A (p) onlyEL i.e., the perturbed

system matrices be denoted as follows:

E(p)=E@p), Ap)=Ap@) +F, B =B@p), Chp=Clh).

Here, applying exact IPMOR algorithm on this perturbed system leads to a system

of linear equations given by

(0:E () — (A(p) + F)) V(o) = B () z;y, and (5.6)
(B () — (A () + F)) T () = 7 ()1 5.7)

To be able to satisfy the first condition of stability (see (2.10))), where the inexact
IPMOR applied onto the original dynamical system is equal to the exact IPMOR
applied onto the perturbed dynamical system, we have to use the same V and W
here. Thus, the reduced model obtained by exact IPMOR algorithm can be connected
to the perturbed full model by using the Petrov-Galerkin projection as

Er (p) = Er (p) ’ AT‘ (p) = "ZT (p) + WTF"?; ér (p> = ér (p) ) ér (p) = 5? (p) s

2The derivations that we do next, can be easily done if we consider perturbations in E (p), B (p),

and C (p) individually as well [10] 21].
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where V and W, as earlier, are given by (5.2); p € {p', ..., p’}; and E, (p), A (p),
B, (p), and C., (p) are given by (5.5). Thus, from the above equation, if WTFV = 0,
then A, (p) = A, (p) and we satisfy the first condition of stability.

From f and f,we get

Rg, (P) = FV; (/) and R, (p) =W, (W) ' F vViji=1,..., L or
Rp=FV and RL=W'F, (5.8)
where
Rp = [R31 (pl) -+ Rp, (pl) ...... Rp, (pL) -+ Rp, (pL)] , (5 9)
Re = [Rq (p') -+ Rey (p) oo Re, (p") -+ Rey (pL)] .

In (5.8)), if we multiply WT from left in the first equation and V from right in the

second equation, then we get
WTRz = WTFV and RLV = WTFV. (5.10)

Similar to the non-parametric case, we need W7 FV = 0 for A, (p) = A, (p). This can

be achieved if
cither W'Rp=0 or RLV =0. (5.11)

The first equation of ((5.11]) is satisfied if

Wy ("

WN/K (pl)T

(5.12)
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The second equation of ([5.11]) is satisfied if

| Re, ()"
Re, (01)"
) o V) V) o Ve (b)) =0 (13)
Re, (pL)T
| Roy (pL)T_

Theorem 12. Let the inezact linear solves in IPMOR, that is (5.3) and (5.4), be
solved while satisfying (5.12) and (5.13). Then, IPMOR satisfies the first condition

of backward stability with respect to these inexact linear solves, i.e., (2.10)).

Next, satisfying the second condition of stability in IPMOR, (Theorem [13| below)
leads to constraints of the same form as that for IRKA (Theorem 4.3 from [10]) with
the difference that system matrices here are dependent on the parameters, which was

not the case earlier.

Theorem 13. Let F be the constant perturbation introduced in A(p).  If
[K= (s p)lg, <1 and [F| <1, then

_NC WK™ (5 ), [K™" (s 2) B@)l
i, 1= K= (s p)la, 1]

where K (s; p) = (s, — A(p)), s € {s1, ..., Sk}, and p € {p1, ..., pr}. That is,

HH (s; p) — H (s p)‘

£, (5.14)

IPMOR satisfies the second condition of backward stability with respect to the inexact
linear solves (5.3)) and (5.4)), i.e., (2.11]).

Proof. Similar to Theorem 4.3 in [10]. O

Corollary 3. Assuming the hypotheses of Theorem[19 and Theorem 15 are satisfied,

then IPMOR algorithm is backward stable with respect to the inexact linear solves.

Next, we discuss how the conditions for stability (given by Corollary [3|or Theorem
13]) can be easily satisfied. Satisfying ([5.14]) is not hard and we support this in the

results section later.
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Satisfying (5.12)) and ([5.13)) is similar to satisfying (4.1) in the previous chapter

(Stability of TBIRKA)E|. As mentioned earlier, this requires more work than in IRKA
(reducing first-order non-parametric linear dynamical systems in [I0]) as well as in
BIRKA (reducing first-order non-parametric bilinear dynamical systems in Chapter
and [21]).

Also, as discussed in the previous chapter, this can be easily achieved by using
the framework proposed while reducing second-order non-parametric linear dynam-
ical systems in [46] (AIRGA algorithm). Hence, in the next section (Section
we propose this new framework and also highlight differences between ours and the

framework of [40].

5.1 Satisfying Extra-Orthogonality for Stability

We divide satisfying extra orthogonalities problem into three parts; diagonal matrix

part, upper triangular matrix part, and lower triangular matrix part. For making the

diagonal part zero of (5.12)) and (5.13)), we need

Wi(pj)J_RBi(pi) fori=1, ..., Kand j=1, ...,L; and ( )
5.15
XZ(p])J_RCZ(p]) fort=1, ..., Kand j =1, ..., L,

Next, we look at the upper triangular and lower triangular parts of the matrices in

(5.12)) and (5.13]). Since, the arguments for ([5.12)) exactly carry to ([5.13]), we focus on

the former only to avoid repetition. We need the orthogonalities below for ensuring
that the upper and lower triangular part of the matrix is zero in (5.12)) and (5.12)),

respectively.

3Now onwards, we would only talk about (5.12) and (5.13)) since all results easily carryover to
TBIRKA.
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Next, we describe the choice of the linear solver that would satisfy the above
three types of orthogonalities. First, can be easily satisfied if we use a Petrov-
Galerkin based iterative solver (as earlier, BICG). This is the same as done for IRKA
and BIRKA stability analyses (in [I0] and Chapter [3|- [21], respectively). In AIRGA
stability analysis (in [46]), authors use a Ritz-Galerkin based iterative solver (CG).

Second, to satisfy and , we adapt BiCG (discussed below), and to do this
with no code changes as well as cheaply, we propose a new variant of Recycling BiCG
13, 4] (in the following subsection; Section [5.2). This was not needed for IRKA or
BIRKA stability analysis. However, AIRGA stability analysis required doing similar

derivations with two notable differences from the work here;

1. they proposed CG as the underlying iterative solver, and hence used off-the-shelf
Recycling CG [39], and

2. the number of orthogonalities to be satisfied there were much lesser (due to
absence of parameters) leading to ease in making the iterative solver converge

cheaply.

Next, we adapt the two components of the BiCG algorithm to satisfy the above

discussed orthogonalities.

5.1.1 Adapted Bi-Lanczos

Assume we are trying to solve the dual linear systems of the form
Ax=Db and Aly = c, (5.18)

where A € R™"™ and b, ¢ € R"™!. We refer Ax = b as the primary system and
ATy = c as the dual system. Let xg be the initial solution vector with ry = b — Ax,
as the corresponding residual for the primary system, and y, be the initial solution
vector with Ty = ¢ — ATy, as the corresponding residual for the dual system. The bi-

Lanczos algorithm computes good bases of the generated Krylov subspaces involving

97



A and r( for the primary system, and A” and T, for the dual system as follows:

Vg1 € K1 (A, rg) = span{rg, Arg, ..., A'rg} st. ver L[wy ... w,] and
W1 € K (.AT, FO) = span{Ty, A'%o, ..., AT} st. we L[vi ... v,],

(5.19)

where v,y and w,y, are the Lanczos vectors of the resgective systems, of , at
the (¢ + 1)“‘ iterative step. Also, vi = ”11:—0| and wy = ”;—0”.
Assuming, we are carrying some resigual T, which vx(f)e need to make orthogonal
to the final solution of the primary system of , and similarly we are carrying
some residual r, which we need to make orthogonal to the final solution of the dual
system of . Then, the adapted bi-Lanczos algorithm above would consist of the
following steps:
Ver1 € KY(A, rg) st Ve L[wy ... w,T|] and
(5.20)
W, € K1 (.AT, FO) st. Wgpr L [vi ..o vy r].
Next, we generalize the above adapted bi-Lanczos algorithm for a series of dual

linear systems
AiXi = bz and AZTyi = C;, (521)

for i = 1, ..., L. Note that we solve these linear systems inexactly and make the
solutions of one set of linear systems orthogonal to the residuals obtained from solving

all the previous sets of linear systems. This mimics the behavior of satisfying the

orthogonality conditions given by (5.17)).

4Here, the first equation of (5.19)) is implemented using

Vg+1 = Avg —c1Vi — CaVa — ... — Cq—1Vg—1 — CqVq.
Finally, the orthogonality conditions of the first equation of (5.19) gives us c1, ca, ..., ¢q. Similarly,

the second equation of ([5.19)) is implemented using
W1 = ATWq — Elwl — 52W2 i Eq_lwq_l — Equ.
Here, ¢1, Ca, ..., Cq are similarly obtained. For a complete derivation of this, please see [49).
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Using an iterative method to solve the first set of equations of ((5.21), i.e., for i = 1,

implies we eventually solve the following equations:
Aixy =by +1 and Ay, = ¢ + T4, (5.22)

where x; and y; are the final solution vectors; and r; and T are the final residuals of
the primary and the dual systems, respectively.

Next, while solving the second set of equations of (5.21)), i.e., for i = 2,
Asxy = by and Alyy = ¢, (5.23)

we need a good basis of the two generated Krylov subspaces such that the solution of
the primary system of (5.23)) is orthogonal to Ty, and the solution of the dual system
of (5.23)) is orthogonal to ri. Hence, here, the adapted bi-Lanczos algorithm would

consist of the following procedure:

(Va)yor € KU (As, (12),) st (va),y L [(wz)1 o (wa), ?1] and

(Wa)yor €K7 (AT, (F2)g) st (Wa)ypy L[ (va)y o (v2), ma,
where (v2) ., and (w3) ., are the Lanczos vectors of the respective systems of ({5.23)

(5.24)

at the (¢ + 1) iterative step such that (vy), = ” Er2§0 ” and (wy), = ] E?;O H, and
Io 0 Iy 0
(r2), and (T2), are the initial residuals of the respective systems of ([5.23)).
We repeat this procedures for i = 3, ..., Lin (5.21]). To summarize, while solving
the last set of equations of (5.21)), i.e., for i = L
Arxr =bp and Aly: =cg, (5.25)

we need a good basis of the two generated Krylov subspaces such that the solution of
the primary system of is orthogonal to the residuals Ty, Ts, ..., and ¥,_; coming
from the previously solved dual linear systems; and the solution of the dual system of
(5.25) is orthogonal to the residuals ry, ry, ..., and rz_; coming from the previously
solved primary systems. Hence, here, the adapted bi-Lanczos algorithm would consist

of the following procedure:

(Ve)yor € KU (Ac, (0)g) s (Vo) L [(We)y oo (we), i Fa o Fooa| and

(We)yor € KO (AL, (Fe)y) st (we),,y L [(vc)1 o (ve), TiTs rc_l],

(5.26)
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where (Vﬁ) 41 and (Wﬁ) 41 are the Lanczos vectors of the respective systems of (6-25)
(re)o (Fe)o
and (wg), = ; and
[e)o f I ®E)l

(rz), and (F), are the initial residuals of the respective systems of (5.25)).

at the (¢ + 1)™ iterative step such that (v.), =

5.1.2 Adapted Petrov-Galerkin

If we are trying to solve the linear systems given in (5.18) by the BiCG method,
then (5.19) gives good bases of the two generated Krylov subspaces. The solution

updates here are given as
Xy =Xo+ Vyzg and  y, =yo+ W,Z,, (5.27)

where V, = [v1 ...v,] and W, = [w; ... w,] are the basis defined by the bi-Lanczos

process in ((5.19). In BiCG, these z, and Z, are defined by a Petrov-Galerkin projection

r, LW, and 1,1V,

. ~ o~ T ~
where r, =r)— AV,2, and T, =) — A" W,Z,.

Assume we are carrying some solution vector ¥, which we need to make orthogonal
to the final residual of the primary linear system in . In the similar manner,
assume we are also carrying some solution vector X, which we need to make orthogonal
to the final residual of the dual linear system in ([5.18)). Then, the adapted Petrov-

Galerkin process would consist of the following procedure:
r, L[W,y] and T,1[V,X]. (5.28)

Again, we generalize the above Petrov-Galerkin process for a series of dual linear
systems, defined in . As earlier, we solve these linear systems inexactly and
make the residuals of the one set of linear systems orthogonal to the solution vector
obtained from solving all the previous sets of linear systems. This mimics the behavior
of satisfying the orthogonality condition given by .

Assume that after solving the first set of equations of , ie,fori=1 ,

we obtain x; and y; as the final solution vectors of the two respective systems.

100



Next, for i = 2 in (5.21)), lets look at the second set of linear systems defined
by (5.23). Here, we need to make the final residual of the primary system (i.e., ry)
orthogonal to y; and the final residual of the dual system (i.e., T5) orthogonal to x;.

Hence, here, the adapted Petrov-Galerkin process is defined as

(r2), L [(w2)1 e (wa), yl] and (%), L [(VQ)1 (W), xl], (5.29)

where (rz), and (T2), are the residuals of the respective systems of at the ¢'"
iterative step. Note that ro and Ty are the final residuals of the respective systems of
(5-23), respectively (at convergence of BiCG).

Similarly, we repeat this process for : =3, ..., £ in . Thus, for ¢ = L, lets
look at the last set of linear systems defined by . Here, we need to make the
final residual of the primary system (i.e., rz) orthogonal to the solutions yi, yo, ...,
and y,_; coming from the previously solved dual systems; and the final residual of the
dual system (i.e., ¥) orthogonal to the solutions X1, X, .. ., and X,_; coming from the
previously solved primary systems. Hence, here, the adapted Petrov-Galerkin process
is as

(re), L [(wﬁ)1 e (We), V1Y e yﬁ_l] and
(5.30)

(Fe), L | (Vo) - (ve), %% o Ko,

where (r), and (¥z), are the residuals of the respective systems of (5.25) at the ¢
iterative step. Note that r, and T, are the final residuals of the respective systems in

(5.25) (at convergence of BiCG). Next, we look at changes to RBiCG.

5.2 Changes to RBiCG and Building Recycle
Spaces

Developing the BiCG algorithm that is based upon the adapted bi-Lanczos process
and the adapted Petrov-Galerkin projection, discussed in the previous section, is fea-
sible, however, this requires too many code change with the additional drawback that

new BiCG’s efficient version may not exist. Also, as the number of linear systems to
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be solved increases, the number of orthogonalization to be done also increase linearly.
As discussed earlier, using Recycling BiCG (RBiCG) [3] 4] helps alleviate both these
problems. Hence, in the following subsections, we describe the changes to be done
with RBiCG code and also show how the choice of the recycle space helps in easily as

well as efficiently achieving the desired orthogonalities.

5.2.1 Changes for implementing the Adapted Bi-Lanczos

Process

For solving the linear systems in ([5.18) using the BiCG method, we need good
bases of the generated Krylov subspaces. These bases are computed by the bi-Lanczos
algorithm as given by the relation in (5.19). One can also write these bi-Lanczos

relations as a pair of 3-term recurrences in the matrix form as [43]

AVq = Vq+1Iq and ATWq = Wq+1iq7
such that Vo Ly Wy,

where T, and iq are tridiagonal matrices of size (¢ + 1) x q. Also, V, = [v1 ... V],
W, = [w1 ... w,], and L, denotes the bi-orthogonality.

In [2], authors have proposed a recycling variant of BiCG, called Recycling BiCG
(RBiCG), where the solutions for the two systems of are searched in augmented

Krylov subspaces [V, U] and [Wq U ], respectively, with U = [uq, ..., u,] and U =
[U1, ..., @] being two input recycle spaces such that following bi-orthogonality is
achieved:

v, C] Ly [Wq (7] , (5.31)

where C' = AU and C' = ATU.
For us, we still need to search in the augmented Krylov subspaces [V, U] and

[Wq U } however, we need to implement the following bi-orthogonality here
[V, U] L | W, O] (5.32)
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This leads to new augmented bi-Lanczos relations given by

(1-00") AV, = VT, and

N N (5.33)
(1 _ UUT> ATW, = W, T,
~ Uy U, ~ | wm Ur T _
WhereU—{m,..., uZQjT] andU—[ﬂ{UI, ceey m] IfD—U UorD =
ﬂlTul 0 0

0 0 |, which is usually enforced from the input U and U (see [2]), then
0 0 @lu,

U=UDTandU =UD.

5.2.2 Changes for implementing the Adapted Petrov-

Galerkin Process

In the standard BiCG algorithm, for solving the linear systems in (5.18)), if V,
and W, define the good basis of the respective columns of Krylov subspaces, then the

solution at ¢ iteration of BiCG is given by (5.27), i.e.,
X, = Xo + V424 and Yo = Yo+ W,Z,,

where, as earlier, xy and yg, are the initial guess for the respective linear systems of
(15.18]).

In the standard RBiCG [2], as discussed above, the solution iterates have the form
X, = X0 + Vozq + UZ, and  y, =yo+ W2, +U%, (5.34)

where z,, z,, Z;, and Z, are determined by a Petrov-Galerkin projection. This is same
for us. If at the ¢ iterative step, r, and T, are the residuals of the primary and dual

systems, respectively, then the chosen Petrov-Galerkin projection give
r,=r9— AV,z, — AUZ, L [Wq CN'] and
¥, =F— AWz, - ATUZ, L[V, C],

where, as earlier, rq and T are the initial residuals of the respective linear systems of

(.139).
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For us, these projections do not suffice (because we need to eliminate use of C' and

C , completely). Hence, we use the Petrov-Galerkin projection as follows:
vy = 10— AVyz, — AUZ, LW, U] and (5.35)
¥, =T — ATW,3, — ATU%, L[V, U]. (5.36)

Using ((5.35)) for the primary system analysis, we get

WT
q ~
T [ro — AV, 2, — AUzq] = 0. (5.37)
~ —UUT)r
Let ¢ = H <[ — UUT> rOH and v; = <IU§—U>O, where vy is the first Lanczos vector
2

with respect to primary system. Then, ry can be re-written as
Iy = U(?Tro + 1o — U(A]Tro
ro = UUTry + &v,
rg = UﬁTro + &V,

where e; is the first column of the identity matrix. The above equation can be written

in the matrix form as

] [/jTI'O

ro — [U Yy (5.38)

€1

Let AU = UM, where M is the unknown matrix, then
UTAU = UTUM or
M= (070) UTAU = DA
with D defined in the previous section.

Now, let us look at the term

_— ; .
AVy2g + AUZ, = |U0T AV, +Vyn X, AU| | ] -+ (Using (33))
i 2,
[ A Z
= |UUTAVY, + Vo, UM] Aq -+ (Using the assumption AU = UM)
L 2,
r UTAY, M| |z
- U V] ' ! (5.39)
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Putting the values from (5.38)) and (5.39) to (5.37)), we get

wt UTr, _ﬁTAV M_ _z 1]

) e v [70] o vl [T ][9] o

U 561 Iq 0_ _Zq__
WT 0Tr | [07Av, M| |2 ] ]
U v "l - ’ “I'l=0. (5.0
UT 561 Iq 0 ,/Z\q

Using the bi-orthogonality condition ([5.32)) in the above expression, we gelﬂ

UTr UTAV, M| |z
“l - ‘ 1 =o. (5.41)
561 Tq 0 /Z\q

Thus, we can find the values of z, and Zz, from the above expression as

-1
zq = &1 e,

2, =M <ﬁTr0 - ﬁTAquq> )

Substituting the value of z, and 2, in the first equation of (5.34)), we get the updated

solution of the primary system as
X, = Xo + UM 07xg + (1= UM TTA) VieT, en. (5.42)

Similarly, using ([5.36)) for the dual system analysis, let 5 = H (] —UU T) FOH and
2

(Iff/UT )FO

W = , where wy is the first Lanczos vector with respect to the dual system.

Also, let ATU = (7/\7, where M = D*TUTAT[I then we get the updated solution of

the dual system as
Yo = Yo+ UM U"F) + (I - (7/\7*1(7TAT> WeET, ey (5.43)

Note that the solution updates of this new RBiCG (j5.42))-(5.43)) require that M

and M be invertible. This is usually not a problem as seen by numerical experiments.

®Note that the dimension of e; in (5.41)) is one less than that of e; in ([5.40]), although both denote

the first canonical vector.
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5.2.3 Building Recycle Subspaces

Assume that we want to solve the linear systems in and . Also, assume
that the recycle spaces are of the form of span{U;;} and span{ﬁij} for the primary
and dual systems, respectively, where columns of U;;, (715 e R™*(2x(=1xJ) are linearly
independent. In our case, the recycle spaces are defined as below.

+ For the first linear system (recall and (5.4)), where i = 1 and j = 1):
U =[] and Uy =[]
+ For the second linear system (recall and (5.4)), where i = 2 and j = 1):
Uz = [Re, (p") Wi(pM)] and Ua = [Rp, (') Vi ()],
« Similarly, for the last linear system (recall and (5.4)), where i = K and j = L):

Ukt =[Rc, (p') ... Rey (P') - Rey (P") ... Rowey (%)
W (') .o Wi (0) - W (7). Wit (2]

Ukt =[Rp, (p') ... R, (p') ... Ry, (0*) ... Rpe_, (0")
Vi) o Vi (0Y) o Vi (0F) . Ve (9]

As mentioned earlier, in some cases, this choice of the recycle spaces can actually
accelerate the convergence of the linear system under consideration. In cases, when
these recycle spaces deteriorate the convergence, this behavior can be bounded.

As done for the previous two chapters, before discussing results, we first compute

the expression for accuracy of the reduced system in the next section (Section )

5.3 Computing Accuracy

From Theorem [3, we know that if IPMOR is backward stable, then the accuracy

of the reduced system is
HHT (s; p) = Hy (s; p)‘
”Hr (37 p)HHg

where, as earlier, H(s; p) = C(p)(sE(p) — A(p))~'B(p), H(s; p) = C(p)(sE(p) —
(A(p) + F))"'B(p), K (H (s; p)) is the condition number of H (s; p), and F is the

== O(K(H (s; p) - |F])., (5.44)
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perturbation in the input dynamical system. Thus, the accuracy of the reduced system
is dependent on the condition number of the problem and the perturbation in the
system.

As discussed in the earlier two chapters, the condition number of the input dynam-
ical system with respect to computing HHT (s; p) — H, (s; p)HHz, can be approximated
well by the condition number of the input dynamical system with respect to computing

HH (s; p) — H (s; p)HH . Thus, from Theorem , we have
2

- IC (p) K= (55 )|, K™ (55 p) B (p)

I
! = ||, (5.45)
H, 1= K= (s ), IF]

HH(S; p)— H (s: p)‘

Let [K™' (s; p)|y, < 1 and |F| < 1 (already assume in Corollary 3] and Theorem
, then we have [K™" (s; p)|_|F| <1, and hence,

1 1
< .
1=K (s5 p)g, IF] 1=K (s5 p)|g,

Substituting the above in (5.45)) we get

- IC (p) K= (55 )|, K™ (55 p) B (p)

I
“ | F or
i T K (55 )y, I

HH (s; p) — H (s; p)|

HH(S; p)— H (s; p)‘
| H (s; )|,

Hy _ IC (p) K™ (55 2)| g, K™ (55 ) B ()|,
h IC ()K= (s; p) B(p)ly,

1
' - [l or
1= K= (55 p)lg,

HH(S; p)— H (s p)‘
| H (55 )|,

Hy _ IC (p) K=Y (55 p)| g, 1K™ (55 p) B (D),
b IC(p) K1 (s; p) B (p)| g,
. IA (s; p)l |F]
L= K= (s; p)l, |A(s o)

Thus, from the above inequality we get that the condition number of the input dy-

namical system is

L ICWE (5 ) K (5 ) B0, JA(s: p)]

K H (s p) = COX (5 DBy, T K (5 )l
(5.46)
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Usually, the condition numbers of the problems under consideration are fairly smalfZ.
Also, we assume invertibility of K (s; p) or (sf, — A (p)) in our analysis. This comes
from the transfer function definitions [9].

Hence, next, we relate perturbation F with the residual Rg and R defined in

(5.9). Rewriting (|5.8)), we have
Rp=FV  and RL=WTF.

From the backward stability assumption given in Theorem [I2] collectively we can

write the above equations as
~m\ —1 o~ e —1
F =Rp (WTV) WT v (WTV) R, (5.47)

assuming WTV is invertibleﬁ. The following theorem gives a upper bound on pertur-

bation F'.

Theorem 14. Let for L different parameters and K different shifts; V and W, be

given by (5.2); Rp and R be given as in (5.9); and F be given as in (5.47). Assume,
(V[N/TYN/> is invertible. Then, the perturbation F satisfies

~a~\ Tl ~
|F|| < VK x L{mzam IRg (:,1)] H (WTV) wT

o~ fmor —1
+ mazx |Re (2, 1) HV <WTV> H }
Proof. Similar to Theorem [6] in Chapter [3 or Theorem 5 in [21]. O

Thus, by using condition number expression from and perturbation up-
per bound from Theorem |14] into accuracy expression ([5.44]), we get that for a well-
conditioned input dynamical system, as we solve the linear systems more accurately
in the backward stable IPMOR, we get a more accurate reduced system. We support
this with experiments as well in the next section (Section [5.4)).

Thus, as in the previous two chapters, this is the main outcome of using a backward
stable model reduction algorithm, which gives the end user flexibility in deciding how

accurately to solve the linear systems to get a sufficiently accurate reduced system.

6This is usually easily achieved as has been shown for non-parametric linear case [10, Section 4.1]

and non-parametric bilinear case [21] Section 4.1 and Chapter [3] Section ].
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5.4 Numerical Experiments

We perform preliminary experiment on the FOM model [32, [16], [40]. This model

consists of a parametric linear dynamical system of size n = 1006, as

Ei(t) = A(p)x (1) + Bu(t),

y(t) =Cx(t),
where E = I,,xp, A(p) = diag(A; (p), As, Az, Ay), and
BT — = [10 10 11 wien
6 1000
1 1 200 1 400
A1 (p) = s AQ = s A3 = y and
p 1 200 1 400 1

Ay = —diag (1, ...,1000).

For our experiments, we take two interpolation points, i.e., K = 2, such that
o; € [0.99, 1] and two parameters, i.e., L = 2, such that p’ € [99.99, 100]. All these
values are chosen based upon similar values in [16]. Thus, the size of the reduced
system obtained is 4.

This leads to solving linear systems of size 1006 x 1006. As earlier, here also,
for solving the linear systems while computing V' and W by a direct method (exact
IPMOR), we use a backslash in Matlab. As discussed earlier, we use the RBiCG
variant along with the recycle spaces as proposed in the previous section. While using
RBiCG, we use two different stopping tolerances (1072 and 107®). These choice of
stopping tolerances ensures that RBiCG takes same number of steps for convergence
so that we can compare the two cases. Ideally, we should obtain a more accurate
reduced model when using the smaller RBiCG tolerance.

We implement our codes in MATLAB (2015a), and test on a machine with the
following configuration: Intel Xeon(R) CPU E5-1620 V3 @ 3.50 GHz., frequency 1200
MHz., 8 CPU, 64 GB RAM.

First, let us look at the assumptions for backward stability of IPMOR (see Corol-
lary |3| and Theorem . K (s, p) is invertible here. We also have |[K™" (s, p)|,, less
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Interpolation Points (ci)

Figure 5.1: Accuracy of the reduced system plotted with respect to interpolation points and

parameters for the two different stopping tolerances in RBiCG; FOM model of size 1006.

than one (i.e., 5.0251 x 107!). Finally, | F||, for the RBiCG stopping tolerances of 1072
and 1073 is 7.0474 x 107! and 1.9037 x 107}, respectively, both of which are also less
than one. Note that this is a single step algorithm so we do not iterate. The condition
number for our problem, as defined in , is 2.5024 x 10~'. This shows that the
FOM model is well-conditioned.

The accuracy result for this is given in Figure [5.1] Here, we have accuracy of the
reduced system (HHT (s, p) — H, (s, p)HH) on the z-axis, interpolation points (i.e.,
0;) on x-axis, and parameters (i.e., p’) on the y-axis. From Figure , it is again
evident that we get a more accurate reduced model as we solve the linear systems
more accurately (blue surface is below to the red surface).

Finally, we support our final claim that the way required orthogonalities are
achieved (see Section [5.2.3), it often does not deteriorate the convergence of our linear
solves. Thus, we solve all linear systems arising in the IPMOR algorithm with BiCG
as well RBiCG. Table |5.1| gives the iteration count of the two solvers. It is evident that
using the recycle spaces as formulated in Section [5.2.3] accelerates the convergence of
the solver (savings of about 70% to 73%).

It is important to note that by using a recycle space we are doing extra work in

terms of more number of inner products. Hence, the savings in time would be less
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Linear Stopping tolerance 1072 Stopping tolerance 1073
System in BiCG RBiCG BiCG RBiCG
IPMOR | Iteration Count | Iteration Count | Iteration Count | Iteration Count
1 62 62 94 94
2 62 1 94 8
3 62 1 94 1
4 62 3 94 8
Total 248 67 376 111

Table 5.1: Convergence analysis of BiCG and RBiCG at two different stopping toler-
ances; FOM Model.

than the savings in iteration count.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we perform stability analysis of MOR algorithms for reducing
first order non-parametric/ parametric and linear/ bilinear dynamical systems with
respect to inexact linear solves. Since MOR algorithms for reducing non-parametric
linear dynamical systems have been studied earlier, we focus on MOR algorithms
for reducing non-parametric bilinear (summarized in the following two headings) and
parametric linear (summarized in the last heading) dynamical system. Study of MOR
algorithms for reducing parametric bilinear dynamical systems forms part of our future

work.

Stability Analysis of BIRKA

BIRKA [12], (which is a standard algorithm for reducing non-parametric bilinear
dynamical systems), provides a locally Hy—optimal reduced model. The most expen-
sive part of BIRKA is finding solutions of large linear systems of equations. Iterative
algorithms are a method of choice for such systems but they find solutions only up
to a certain tolerance. Hence, we show that BIRKA is backward stable with respect
to these inexact linear solves under some mild assumptions. We also analyze the ac-
curacy of the inexact reduced system obtained from a backward stable BIRKA. We

support all our results with numerical experiments.

The first assumption is that Q in (3.14) is invertible. In Section , we have given
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a better characterization of this invertibility assumption (in terms of the underlying
Lyapunov equation). However, this requires further analysis and forms ours first future

work.

The second and the third assumptions involve bounding HCAQAH and EH (given
after (3.19)) by one. Although for both our experimental models we have shown that
these assumptions are easily satisfied, they may not always hold. @ is dependent
on the input dynamical system and }%’ on the stopping tolerance of our underlying
linear solver. Hence, the second future work here involves identifying the categories
of bilinear dynamical systems and the range of linear solver stopping tolerances when
these would be true.

While computing the accuracy, we have given an expression for the condition num-
ber of the bilinear system with respect to computing the H—norm of the error between
the perturbed model and the original model. This condition number is an approxi-
mation to the condition we want to compute. That is, the condition number of the
bilinear system with respect to computing the Ho—norm of the error between the in-

exact reduced model and the original model. This forms our third future work.

Stability Analysis of Other Efficient Algorithms for Bilinear MOR

Here, we extend the stability analysis done for BIRKA in the previous chapter
to other cheaper and efficient algorithms for bilinear MOR. This includes TBIRKA
[24], 26], balanced truncation based [13], Gramian based [50], moment-matching based
[8], and implicit Volterra series based [I]. Specifically we work with TBIRKA, as
it forms the base of all such efficient algorithms. In TBIRKA, fulfilling the first
condition for stability leads to constraints on the iterative linear solver, which are
similar to those obtained during BIRKA’s stability analysis. The second condition
for TBIRKA can be satisfied by two different approaches, complete system approach
and subsystem approach. The complete system approach works for both SISO and
MIMO cases, but the subsystem approach works only for SISO case. However, both
have an advantage because they are sufficiency conditions and depending upon the
input dynamical system, one may be more easier to satisfy then other one.

The stability analysis as done for BIRKA and TBIRKA here, all give us sufficiency
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conditions for a stable underlying MOR algorithm. Hence, the first future work here
is to derive the necessary conditions for the same. In recent years, there have been
a lot of efforts in performing data-driven MOR algorithm (specially using Loewner
framework [7]). The second future work here is to apply this stability analysis to such
classes of algorithms as well. Finally, the third future work is to extend this stability
analysis to the cases when instead of a dynamical system, the underlying differential

equation is studied [31].

Stability Analysis in PMOR

We study stability of a interpolatory MOR algorithm for parametric linear dynam-
ical systems with respect to inexact linear solves, that is, the IPMOR algorithm [9].
This analysis is easily extendible to other MOR algorithms for such systems. Besides
deriving the two conditions for stability, accuracy expression, and subsequent exper-
imentation, our novel contribution here has been achieving extra-orthogonalities for
stability without any code changes to the underlying iterative solver as well as doing
all this cheaply. As a outcome of this research, we also develop a new variant of the
Recycling BiCG algorithm [3, [4].

Here, the first future work involves more rigorous experimentation with a larger
problem. Also, since IPMOR is a single iteration algorithm, it would be good to
extend this stability analysis to other more optimal PMOR  algorithms, e.g., piecewise
Hy—optimal PMOR algorithm [9] that iterate to the ideal interpolation points. This
forms the second future work. Finally, as a third future work, we also plan to generalize
this theory to other MOR algorithms for parametric dynamical systems (second/ third-

orders and bilinear/ nonlinear terms).
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