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ABSTRACT

A dynamical system describes a relation between two or more measurable quanti-

ties by a set of differential equations. We focus on first-order non-parametric as well as

parametric dynamical systems with varying linearity (linear and bilinear). In general,

dynamical systems corresponding to real-world applications are extremely large in

size. Simulation and computation with such systems require a large amount of space

and time. By using Model Order Reduction (MOR) techniques, these large dynamical

systems are reduced into a smaller size, which makes the simulation and computation

easier. MOR can be done in many ways, i.e., by using balanced truncation, Hankel

approximations or Krylov projection. Projection methods obtain the reduced model

by projecting the original full model on a lower dimensional subspace and are quite

popular. Interpolation is usually used to obtain the subspaces involved in the pro-

jection. Thus, these methods are referred to as interpolatory projection based MOR

algorithms, which we specifically focus on.

In most of these MOR algorithms, people often use direct methods like LU-

factorization, etc., to solve the arising linear systems, which have a high time complex-

ity (cubic in terms of the system size). A common solution to this scaling problem is to

use iterative methods like Krylov subspace methods, etc., which have a reduced time

complexity (between linear and quadratic in terms of the system size), where nnz is

the number of nonzeros in the system matrix). Although iterative methods are cheap,

they are inexact too. Hence, studying the stability of the underlying MOR algorithms

with respect to such approximate (inexact) linear solves becomes important.

One of the first works that performed such a stability analysis focused on popular

MOR algorithms for first-order non-parametric linear dynamical systems. Here, the

authors briefly mention that their analysis would be easily carried from the first-order

to the second-order case. Some researchers expanded this stability analysis to reducing

second-order non-parametric linear dynamical systems. Apart from this, a different

kind of stability analysis for MOR of second-order non-parametric linear dynamical

systems has also been done in literature. In this, the authors first show that the SOAR



algorithm (second order Arnoldi) is unstable with respect to the machine precision

errors (and not inexact linear solves). Then, they propose a Two-level orthogonal

Arnoldi (TOAR) algorithm that cures this instability of SOAR.

Since our focus is on first-order systems, we extend the stability analysis done

for the reduction of non-parametric linear dynamical systems to the reduction of the

following classes of dynamical systems: non-parametric bilinear and parametric linear.

Our analyses can be easily extended to MOR of parametric bilinear dynamical systems,

leading to coverage of most of the existing MOR algorithms.

The innovative aspects of this work are as follows: capturing the behavior of bi-

linear terms in the stability conditions, providing two different sets of constraints for

achieving backward stable algorithms, and easily satisfying the extra-orthogonality

constraints imposed while achieving stability.
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CHAPTER 1

INTRODUCTION

A dynamical system describes a relation between two or more measurable quanti-

ties by a set of differential equations of many orders, however, we focus only on the

first-order. The system may be non-parametric/ parametric or linear/ nonlinear, and

can be described both in the time domain and in the frequency domain. In the time

domain, a v parameters Multiple Input Multiple Output (MIMO) bilinear dynamical

system with m inputs and q outputs is represented as follows [12, 20]:

ζppq :

$

’

’

&

’

’

%

Eppq 9xptq “ A ppqxptq `
m
ř

j“1

Nj ppqxptqujptq `B ppquptq,

yptq “ C ppqxptq,

(1.1)

where p “ rp1 . . . pvs
T
P Rv, Eppq, Appq P Rnˆn, Njppq P Rnˆn for j “ 1, . . . ,m,

Bppq P Rnˆm, and Cppq P Rqˆn. Also, uptq “ ru1ptq . . . umptqs
T : RÑ Rm, xptq: RÑ

Rn and yptq: R Ñ Rq represent the input, the state and the output of the dynamical

system, respectively. We make no assumption on the structure of the system matrices.

It is not possible to write the transfer function of a complete bilinear dynamical system,

therefore, in [41, 24, 26] the authors represent the bilinear dynamical system in the

frequency domain by a series of subsystem transfer functions, i.e.,

ζppq “ lim
kÑ8

ζkppq, (1.2)

1



where ζkppq “ tH1ps1; pq, H2ps1, s2; pq, . . . , Hk ps1, s2, . . . , sk; pqu;

s1, s2, . . . , sk are the frequencies and p is the set of parameters. Here,

Hk ps1, s2, . . . , sk; pq is the kth order transfer function of the parametric bi-

linear dynamical system and is defined as [24, 26]:

Hkps1, s2, . . . , sk; pq “ Cppq pskEppq ´ Appqq
´1 N̄ppq

¨
“

Im b psk´1Eppq ´ Appqq
´1
‰ `

Im b N̄ppq
˘

...

¨

»

–Im b . . .b Im
looooooomooooooon

k´2 times

bps2Eppq ´ Appqq
´1

fi

fl

¨

˝Im b . . .b Im
looooooomooooooon

k´2 times

b N̄ppq

˛

‚

¨

»

–Im b . . .b Im
looooooomooooooon

k´1 times

bps1Eppq ´ Appqq
´1

fi

fl

¨

˝Im b . . .b Im
looooooomooooooon

k´1 times

b Bppq

˛

‚,

(1.3)

where N̄ppq “ rN1ppq . . . Nmppqs, Im is the identity matrix of size m, and b denotes

Kronecker product (defined later).

If in (1.1), the matrix Nppq is a zero matrix, then the system is a parametric

linear dynamical system. That is, a v parameter MIMO linear dynamical system is

represented as

Eppq 9xptq “ Appqxptq `Bppquptq,

yptq “ Cppqxptq.
(1.4)

The transfer function of the linear dynamical system in the frequency domain is defined

as follows:

Hps; pq “ CppqpsEppq ´ Appqq´1Bppq. (1.5)

Also, if the system matrices above are independent of the parameter ppq, then this

refers to a non-parametric dynamical system (bilinear or linear as the case may be).

In general, dynamical systems corresponding to the real world applications are

extremely large in size. Simulation and computation with such systems requires large

amount of space and time. By using model order reduction (MOR) techniques [28, 47,

51, 5, 16, 45, 29, 17], these large dynamical systems are reduced into a smaller size,

which makes the simulation and computation easier. MOR can be done in many ways,

2



i.e., by using balanced truncation [47], Hankel approximations or Krylov projection

[28, 29, 17]. Projection methods obtain the reduced model by projecting the original

full model on a lower dimensional subspace, and are quite popular. In literature, there

are several techniques of projecting a dynamical system [28, 29, 17, 5, 8, 30, 12, 24,

26]. The Petrov-Galerkin projection is one such projection technique that gives nice

properties in the reduced model. Interpolation is usually used to obtain the subspaces

involved in the Petrov-Galerkin projection.

Based upon the theory of Petrov-Galerkin based interpolatory model reduction,

authors in [11, 30, 19] have proposed Iterative Rational Krylov Algorithm (IRKA)

for model reduction of non-parametric linear dynamical systems. IRKA provides

the reduced model that is optimal (the kind of optimality is discussed in the next

section). Similar to IRKA, authors in [12, 17] have proposed Bilinear Iterative Rational

Krylov Algorithm (BIRKA) for model reduction of non-parametric bilinear dynamical

systems.

BIRKA’s biggest drawback is that it does not scale well in time (with respect

to increase in the size of the input dynamical system). To overcome this drawback,

researchers have proposed other efficient algorithms for MOR of non-parametric bilin-

ear dynamical systems. This includes TBIRKA (Truncated Bilinear Iterative Ratio-

nal Krylov Algorithm) [24, 26], balanced truncation based [13], Gramian based [50],

moment-matching based [8], and implicit Volterra series based [1]. TBIRKA forms

the base of all these efficient algorithms, which is a cheaper variant of BIRKA.

Analogous to the non-parametric case of [30] (IRKA as above), MOR algorithms

for reducing parametric linear dynamical systems have also been proposed (also gener-

ically termed as Parametric Model Order Reduction algorithms or PMOR algorithms).

For e.g., interpolatory PMOR algorithm (IPMOR) [9], piecewise H2´optimal inter-

polatory PMOR [9], multi-parameter and multi-frequency moment-matching based

PMOR algorithm [36], PMOR using extended balanced truncation [44], PMOR with

H2´error using radial basis functions [14], etc. IPMOR’s theory feeds into the other

algorithms listed above.

Recently, parametric bilinear dynamical systems are also being studied extensively

3



[15]. For reducing such systems, in [20], authors have proposed an interpolatory

parametric bilinear MOR method.

The main computational bottleneck in reducing larger models (or dynamical sys-

tems) is solving large sparse linear systems of equations. The reason for this is that

typically, model reducers use direct solvers like LU-factorization, Gaussian elimina-

tion, etc., to solve such linear systems of equations, which have a high time complex-

ity (Opn3q, where n is the original system size) [43, 23]. A common solution to this

scaling problem is to use iterative methods like the Krylov subspace methods, etc.,

which have a reduced time complexity (i.e., Opnˆ nnzq, where nnz is the number of

nonzeros in the system matrix) [43, 23]. Although iterative methods are cheap, they

are inexact too, i.e., they solve linear systems of equations up to a certain stopping

tolerance. Hence, studying stability of the underlying MOR algorithms with respect to

such approximate (inexact) linear solves becomes important [23, 48]. In other words,

we need to check that small errors in linear solves does not substantially deteriorate

the quality of the reduced model.

One of the first works that performed such a stability analysis focused on popular

MOR algorithms for first-order non-parametric linear dynamical systems [10]. Here,

the authors briefly mention that their analysis would be easily carried from the first-

order to the second-order case. Some researchers expanded this stability analysis to

reducing second-order non-parametric linear dynamical systems [46]. Apart from this,

a different kind of stability analysis for MOR of second-order non-parametric linear

dynamical systems has also been done in literature [37]. In this, the authors first

show that the SOAR algorithm (second order Arnoldi) is unstable with respect to

the machine precision errors (and not inexact linear solves). Then, they propose a

Two-level orthogonal Arnoldi (TOAR) algorithm that cures this instability of SOAR.

Before performing the stability analysis of the above discussed algorithms, we

revisit the theory of the different model reduction algorithms in the next chapter

(Chapter 2). Recall, our focus is only on first-order systems. With focus on non-

parametric bilinear MOR, we first perform the stability analysis of BIRKA (in Chapter

3). We prove that under mild assumptions, BIRKA is backward stable. The most

4



novel contributions here are capturing the behavior of the bilinear terms pNjppqq for

j “ 1, . . . , m from (1.1) in the conditions for stability as well as analyzing the

invertibility of all involved matrices.

We also compute the expression for conditioning of the problem and perturbation

(introduced as part of stability analysis) to get the accuracy of the reduced system.

Finally, we support all our results by numerical experiments.

Next, we extend the earlier stability analysis of BIRKA to more efficient algo-

rithms for MOR of non-parametric bilinear dynamical system, specifically TBIRKA

(in Chapter 4). The approach here is slightly different, which forms our most novel

contribution.

In BIRKA stability analysis, a single expression for bilinear dynamical system

norm is used (involving a Volterra series). In TBIRKA stability analysis, a similar

single expression (involving truncated Volterra series) leads to one set of stability

conditions. Alternatively, because of truncation, the bilinear dynamical system here

can be represented by a finite set of functions (which was not possible in-case of BIRKA

because of the need of infinite such function there) leading to another set of stability

conditions. Depending upon the input dynamical system, one set of conditions may

be more easy to satisfy than the other.

We also compute the expression for conditioning of the problem as well as per-

turbation, both of which are different than their respective expressions in BIRKA,

leading to computation of accuracy of the reduced system. We support all our con-

jectures (including two ways of achieving a backward stable TBIRKA) by numerical

experiments.

Finally, with focus on MOR of parametric linear dynamical systems, we perform

stability analysis of the IPMOR algorithm (in Chapter 5). Besides deriving the con-

ditions for stability, expressions for accuracy of the reduced system, and numerical

experiments, our most novel contribution here is achieving a backward stable IPMOR.

To achieve this, we first categorize the involved orthogonality conditions into dif-

ferent classes. Second, we adapt the underlying iterative solves (here BiConjugate

Gradient or BiCG [43, 49]) to satisfy these orthogonalities. Finally, and third, we

5



derive a new variant of the Recycling BiCG [3, 4] so that these orthogonalities can

be achieved with no code changes to the iterative solver (for a end user or a model

reducer here) as well as cheaply (extra orthogonality cost offset by savings because of

recycling). We give our conclusions and discuss future work in Chapter 6. For the

rest of this dissertation we use the terms and notations as listed below.

a. The H2´norm is a functional norm defined as [5, 10, 24]

}Hk}
2
H2
“

ˆ

1

2π

˙k ż 8

´8

. . .

ż 8

´8

}Hk piω1, . . . , iωkq}
2
F dω1 . . . dωk, (1.6)

where i denotes
?
´1. Here, we assume that all H2´norms computed further

exist. In other words, the improper integrals defined by the H2´norm give finite

value. This is a reasonable assumption because this happens often in practice

(see [10], where stability analysis of IRKA is done).

b. The H8´norm is also a functional norm, defined as [5, 10, 24]

}Hk}H8 “ max
ω1, ..., ωkPR

}Hk piω1, . . . , iωkq}2 . (1.7)

c. The Kronecker product between two matrices P (of size mˆ n), and Q (of size

sˆ t) is defined as

P bQ “

»

—

—

—

–

p11Q ¨ ¨ ¨ p1nQ
...

. . .
...

pm1Q ¨ ¨ ¨ pmnQ

fi

ffi

ffi

ffi

fl

,

where pij is an element of matrix P and order of P bQ is msˆ nt.

d. In literature [51, 12], the H2´norm of a bilinear dynamical system is defined as

}ζ}2H2
“ vecpIpq

T
pC b Cq

˜

´Ab In ´ In b A´
m
ÿ

j“1

Nj bNj

¸´1

pB bBq vecpImq,

(1.8)

where Ip and Im are identity matrices of size p and m, respectively. Also, in

6



[24, 26], the H2´norm of a truncated bilinear dynamical system is defined as

›

›ζM
›

›

2

H2
“ vecpIpq

T
pC b Cq

M
ÿ

k“0

˜

p´Ab In ´ In b Aq
´1

m
ÿ

j“1

Nj bNj

¸k

p´Ab In ´ In b Aq
´1
pB bBq vecpImq,

(1.9)

where M is the truncation index. If the type of norm is not written, then in the

case of functional norm it is a H2´norm. In the case of matrices it is a 2-norm.

e. vec operator on a matrix P is defined as

vecpP q “ pp11, . . . , pm1, p12, . . . , pm2, . . . . . . , p1n, . . . , pmnq
T .

f. Also, R denotes the set of real numbers and F denotes the discrete subset of real

numbers.
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CHAPTER 2

BACKGROUND

A reduced dynamical system can be obtained by a projection-type framework. A

matrix P P Rnˆn is a projector (onto a subspace V Ă Rn) if RangepP q “ V and

P 2 “ P . If P “ P T , then P is an orthogonal projector (i.e., Galerkin projection),

otherwise an oblique projector (i.e., Petrov-Galerkin projection) [17].

According to the Petrov-Galerkin projection, the residual of a dynamical system

obtained after projecting on a lower dimensional subspace, is made orthogonal to some

other subspace defined by a test basis. Let ηi denote the residual of this dynamical

system, then according to the Petrov-Galerkin condition, ηi K L, where L denotes any

test subspace.

The subspace on which we project, and the orthogonal subspace are not known

to us. We can arbitrarily pick these subspaces, but then we cannot guarantee a good

input-output behavior from the reduced model. For the reduced model to provide a

high fidelity approximation to the input-output behavior of the original full model,

we use interpolation to obtain these subspaces. In [30], authors give an algorithm for

model reduction of non-parametric linear dynamical systems called IRKA (Iterative

Rational Krylov Algorithm). IRKA is a Petrov-Galerkin based interpolatory model re-

duction algorithm. Here authors have focused on Hermite interpolation of the transfer

function to obtain these subspaces. Hermite interpolation is a popular method from
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interpolatory theory, where a function and its derivative are interpolated. Here, the

transfer function of the original full model Hpsq (and its derivative) and reduced model

(and its derivative) are interpolated at a set of interpolation points. For a certain type

of linear dynamical systems, IRKA locally converges to a local minimum of the un-

derlying H2´optimization problem [25]. For H2´optimality discussion in this case we

refer the reader to [30] and [25].

Now, we discuss H2´optimality in the non-parametric bilinear case. Here also,

we apply Petrov-Galerkin based interpolatory MOR to a non-parametric bilinear dy-

namical system. This is a short summary of the original work in [12] and [24]. After

reduction, the non-parametric bilinear dynamical system (1.1)1 can be represented as

[12, 24]

ζr :

$

’

’

&

’

’

%

9xrptq “ Arxrptq `
m
ř

j“1

Njrxrptqujptq `Bruptq,

yrptq “ Crxrptq,

(2.1)

where Ar, Njr P Rrˆr, Br P Rrˆm and Cr P Rpˆr for j “ 1, . . . , m with r ! n.

Here, the input u ptq is the same (maps from R to Rm) while state xr ptq maps from

R to Rr (instead of Rn earlier). We want ζr to approximate ζ in an appropriate

norm, and hence, yrptq should be nearly equal to yptq for all admissible inputs. Let

the two r-dimensional subspaces, Vr and Wr be chosen in such a way that Vr “

RangepVrq and Wr “ RangepWrq, where Vr P Rnˆr and Wr P Rnˆr are matrices. We

project the original full model (1.1)1 to a lower dimensional subspace, i.e., x ptq «

Vrxrptq, and enforce the Petrov-Galerkin condition [12, 24]

W T
r

˜

Vr 9xrptq ´ AVrxrptq ´
m
ÿ

j“1

NjVrxrptqujptq ´Buptq

¸

“ 0,

yptq “ CVrxrptq.

1Here, we have taken a non-parametric system, and hence, the system matrices are independent

of the parameters ppq. As in the original non-parametric bilinear MOR papers [12] and [24], we take

E “ In.
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Comparing the above equations with (2.1), we get

Ar “
`

W T
r Vr

˘´1
W T
r AVr, Njr “

`

W T
r Vr

˘´1
W T
r NjVr,

Br “
`

W T
r Vr

˘´1
W T
r B, and Cr “ CVr,

where
`

W T
r Vr

˘

is assumed to be invertible. Obtaining such an invertible matrix is

not hard [12]. Different selection of the subspaces Vr and Wr give different reduced

models, but we choose the subspaces Vr and Wr by enforcing interpolation. There are

two different ways of doing interpolation, i.e., subsystem interpolation and Volterra

series interpolation [24, 26]. These are explained below.

A bilinear system can be represented by a series of subsystem transfer functions.

If we apply certain interpolation conditions on a finite number of subsystems, then it

is called subsystem interpolation [24]. In this approach we interpolate the each of the

subsystem transfer function expression (1.3), without the parameter p.

Another way is Volterra series interpolation. A non-parametric bilinear dynamical

system ζ can also be represented by following Volterra series, which non-linearly relates

all admissible inputs uptq to outputs yptq:

yptq “
8
ÿ

k“1

ż t1

0

ż t2

0

. . .

ż tk

0

hk pt1, t2, . . . , tkq

˜

u

˜

t´
k
ÿ

i“1

ti

¸

b ¨ ¨ ¨ b u pt´ tkq

¸

dtk ¨ ¨ ¨ dt1.

In this Volterra series representation, the term

hkpt1, t2, . . . , tkq “ CeAtkN̄
`

Im b e
Atk´1

˘ `

Im b N̄
˘

¨ ¨ ¨

¨

˝Im b ¨ ¨ ¨ b Im
looooooomooooooon

k´2 times

beAt2

˛

‚

¨

˝Im b ¨ ¨ ¨ b Im
looooooomooooooon

k´2 times

bN̄

˛

‚

¨

¨

˝Im b ¨ ¨ ¨ b Im
looooooomooooooon

k´1 times

beAt1

˛

‚

¨

˝Im b ¨ ¨ ¨ b Im
looooooomooooooon

k´1 times

bB

˛

‚,

is called the degree k Volterra kernel, where N̄ “ rN1, . . . , Nms. A degree k Volterra

kernel in frequency domain is equivalent to the kth order transfer function of the

bilinear dynamical system (see (1.3) without parameter p). Here, interpolation is
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done on a weighted sum of all Volterra kernel transfer functions given by (1.3). We

refer the reader to [24, 42] for a detailed discussion on the definition of the Volterra

series, the Volterra kernels, and the subsequent derivations.

As the subsystem interpolation approach is unable to satisfy any optimality con-

ditions [24] (error between the original full model and the reduced model is minimum

in some norm), we focus on the Volterra series interpolation. We need to know how to

build Vr and Wr such that the conditions of the Volterra series interpolation are sat-

isfied. We also need to decide where to interpolate so that we get an optimal reduced

model. Here, we focus on H2´optimality.

The following error system expression is differentiated for getting the

H2´optimality conditions [12, 24]:

}ζ ´ ζr}H2
“ vecpI2pq

T
´”

C ´
ˇ̌C
ı

b

”

C ´Č
ı¯

¨

˝´

»

–

A 0

0 Λ

fi

flb

»

–

In 0

0 Ir

fi

fl´

»

–

In 0

0 Ir

fi

flb

»

–

A 0

0 Ǎ

fi

fl´

m
ÿ

j“1

»

–

Nj 0

0 ˇ̌NT
j

fi

flb

»

–

Nj 0

0 Ňj

fi

fl

˛

‚

´1

¨

˝

»

–

B

ˇ̌BT

fi

flb

»

–

B

B̌

fi

fl

˛

‚vecpI2mq, (2.2)

where Ǎ, B̌, Č and Ňj are the initial guesses for the reduced system. Also, Ǎ “

RΛR´1, ˇ̌B “ B̌TR´T , ˇ̌C “ ČR and ˇ̌Nj “ RT ŇT
j R

´T . Performing interpolation on

the inverse images of the reduced system poles helps achieve H2´optimality. Theorem

1 below summarizes this, where the poles of the transfer function of every reduced

subsystem (say Hrk) are computed (say represented by λl1 , λl2 , . . . , λlk), inverted

(leading to ´λl1 , ´λl2 , . . . , ´λlk), and finally, interpolation is performed at these

points.

Theorem 1. [24, 26] Let ζ “ pA, Nj, B, Cq be a non-parametric bilinear system

of order n, where j “ 1, . . . , m. Let ζr “ pAr, Nrj , Br, Crq be an H2´optimal

approximation of order r. Then, ζr satisfies the following multi-point Volterra series
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interpolation conditions:

8
ÿ

k“1

r
ÿ

l1“1

. . .
r
ÿ

lk“1

φl1, l2, ..., lkHk p´λl1 , ´λl2 , . . . , ´λlkq “

8
ÿ

k“1

r
ÿ

l1“1

. . .
r
ÿ

lk“1

φl1, l2, ..., lkHrk p´λl1 , ´λl2 , . . . , ´λlkq , and

8
ÿ

k“1

r
ÿ

l1“1

. . .
r
ÿ

lk“1

φl1, l2, ..., lk

˜

k
ÿ

j“1

B

Bsj
Hk p´λl1 , ´λl2 , . . . , ´λlkq

¸

“

8
ÿ

k“1

r
ÿ

l1“1

. . .
r
ÿ

lk“1

φl1, l2, ..., lk

˜

k
ÿ

j“1

B

Bsj
Hrk p´λl1 , ´λl2 , . . . , ´λlkq

¸

,

where φl1, l2, ..., lk and λl1 , λl2 , . . . , λlk are residues and poles of the transfer function

Hrk associated with ζr, respectively.

Algorithm 2.1 BIRKA [12]

1: Given an input bilinear dynamical system A, N1, . . . , Nm, B, C.

2: Select an initial guess for the reduced system as Ǎ, Ň1, . . . , Ňm, B̌, Č. Also

select stopping tolerance btol.

3: while
`

relative change in eigenvalues of Ǎ ě btol
˘

a. RΛR´1 “ Ǎ, ˇ̌B “ B̌TR´T , ˇ̌C “ ČR, ˇ̌Nj “ RT ŇjR
´T for j “ 1, . . . , m.

b. vec pV q “

˜

´Λb In ´ Ir b A´
m
ř

j“1

ˇ̌NT
j bNj

¸´1
´

ˇ̌BT bB
¯

vecpImq.

c. vec pW q “

˜

´Λb In ´ Ir b A
T ´

m
ř

j“1

ˇ̌Nj bN
T
j

¸´1
´

ˇ̌CT b CT
¯

vecpIqq.

d. Vr “ orth pV q , Wr “ orth pW q.

e. Ǎ “ pW T
r Vrq

´1W T
r AVr, Ňj “

`

W T
r Vr

˘´1
W T
r NjVr,

B̌ “
`

W T
r Vr

˘´1
W T
r B, Č “ CVr.

4: Ar “ Ǎ, Njr “ Ňk, Br “ B̌, Cr “ Č.
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Obtaining the residues and the poles of the H2´optimal reduced model is not

possible since we do not have such a system. In [12] the authors propose Bilinear

Iterative Rational Krylov Algorithm (BIRKA), which at convergence, ensures that

the conditions of Theorem 1 are satisfied. BIRKA gives a locally H2´optimal reduced

model. Algorithm 2.1 lists BIRKA. Next, we study other efficient algorithms for

non-parametric bilinear MOR.

2.1 Other Efficient Bilinear MOR Algorithms

(Non-parametric)

As mentioned earlier, BIRKA is a computationally expensive algorithm. Hence,

next, we first look at its cheaper variant called TBIRKA (Truncated Bilinear Iterative

Rational Krylov Algorithm) [24, 26]. TBIRKA is similar to BIRKA in most of the

aspects, except that it performs a truncated Volterra series interpolation. Here, instead

of ζ in (1.1)-(1.2)1, authors work with ζM , where M is the truncation index (i.e.,

k “M in (1.2)1). Thus, a truncated non-parametric bilinear dynamical system ζM is

represented as

ζM “
 

H1 ps1q , H2 ps1, s2q , H3 ps1, s2, s3q , . . . HM ps1, . . . , sMq
(

, (2.3)

with Hk ps1, . . . , skq for k P t1, . . . , Mu is given by (1.3)1.

Similar to BIRKA, in TBIRKA also, we have to differentiate an error system

expression for getting the H2´optimality conditions [24, 26]:
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›

›ζM ´ ζMr
›

›

H2
“ vecpI2pq

T
´”

C ´
ˇ̌C
ı

b

”

C ´Č
ı¯

M
ÿ

k“0

»

—

—

–

¨

˝´

»

–

A 0

0 Λ

fi

flb

»

–

In 0

0 Ir

fi

fl´

»

–

In 0

0 Ir

fi

flb

»

–

A 0

0 Ǎ

fi

fl

˛

‚

´1

m
ÿ

j“1

»

–

Nj 0

0 ˇ̌NT
j

fi

flb

»

–

Nj 0

0 Ňj

fi

fl

fi

ffi

ffi

fl

k

¨

˝´

»

–

A 0

0 Λ

fi

flb

»

–

In 0

0 Ir

fi

fl´

»

–

In 0

0 Ir

fi

flb

»

–

A 0

0 Ǎ

fi

fl

˛

‚

´1

¨

˝

»

–

B

ˇ̌BT

fi

flb

»

–

B

B̌

fi

fl

˛

‚vecpI2mq,

(2.4)

where as earlier Ǎ, B̌, Č and Ňj are the initial guesses for the reduced system. Also,

Ǎ “ RΛR´1, ˇ̌B “ B̌TR´T , ˇ̌C “ ČR and ˇ̌Nj “ RT ŇT
j R

´T . Here, also, interpola-

tion is performed on the inverse images of the reduced system poles to achieve the

H2´optimality. The following Theorem 2 summarizes this, which is similar to The-

orem 1 of BIRKA case, except that the interpolation is performed on a truncated

Volterra series.

Theorem 2. [24, 26] Let ζ “ pA,Nj, B, Cq be an order n bilinear system and ζM be

the polynomial system determined by ζ. Let ζr “ pAr, Njr , Br, Crq be a bilinear system

of order r, and define ζMr as the polynomial system determined by ζr. Suppose that

ζMr is an H2´optimal approximation to ζM . Then ζMr satisfies

M
ÿ

k“1

r
ÿ

l1“1

. . .
r
ÿ

lk“1

φl1, l2, ..., lkHk p´λl1 , ´λl2 , . . . , ´λlkq “

M
ÿ

k“1

r
ÿ

l1“1

. . .
r
ÿ

lk“1

φl1, l2, ..., lkHrk p´λl1 , ´λl2 , . . . , ´λlkq , and
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M
ÿ

k“1

r
ÿ

l1“1

. . .
r
ÿ

lk“1

φl1, l2, ..., lk

˜

k
ÿ

j“1

B

Bsj
Hk p´λl1 , ´λl2 , . . . , ´λlkq

¸

“

M
ÿ

k“1

r
ÿ

l1“1

. . .
r
ÿ

lk“1

φl1, l2, ..., lk

˜

k
ÿ

j“1

B

Bsj
Hrk p´λl1 , ´λl2 , . . . , ´λlkq

¸

,

where φl1, l2, ..., lk and λl1 , λl2 , . . . , λlk are residues and poles of the transfer function

Hrk associated with ζMr , respectively.

Algorithm 2.2 lists TBIRKA.

Both BIRKA and TBIRKA in turn require solving large sparse linear systems of

equations. If we compare Algorithm 2.1 and 2.2, we realize that the number of linear

solves at each step of the While loop in the former is 2 systems of size nr ˆ nr and

in the latter is 2M systems of size nr ˆ nr. This makes it seem that TBIRKA is

more expensive than BIRKA. However, TBIRKA is implemented in such a way that

the Kronecker products are avoided making it more efficient than BIRKA. For further

details on this see Chapter 4 in [24] and Section 5.3 in [26]. These implementation

details do not affect our analysis, and hence, we use Algorithm 2.2 in the current form

as our base.

Apart from TBIRKA, this class of efficient MOR algorithms also includes balanced

truncation based [13], Gramian based [50], moment-matching based [8], and implicit

Volterra series based [1] MOR algorithms. For generality, we explore the last two

further, i.e., moment-matching based and implicit Volterra series based. Both of these

algorithms are proposed for SISO systems2.

The moment-matching based projection method [8] is a single sided projection

method, i.e., V “ W 3, with

spantV u “ spant
r
ď

k“1

spantVkuu,

2A SISO non-parametric bilinear dynamical system is represented by (1.1), where system matrices

are free from parameters and B “ b P Rnˆ1, C “ c P R1ˆn, and j “ 1 (i.e., Nj “ N). As earlier, we

have E “ In.
3 Here, V and W actually mean Vr and Wr as discussed for BIRKA and TBIRKA, respectively.

This is because V and W with subscript r here signifies another set of intermeditory/ sub matrices.
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Algorithm 2.2 TBIRKA [24, 26]

1: Given an input bilinear dynamical system A, N1, . . . , Nm, B, C.

2: Select an initial guess for the reduced system as Ǎ, Ňj, . . . , Ňj, B̌, Č. Also

select the truncation index M and stopping tolerance tbtol.

3: While
`

relative change in eigenvalues of Ǎ ě tbtol
˘

a. RΛR´1 “ Ǎ, ˇ̌B “ B̌TR´T , ˇ̌C “ ČR, ˇ̌Nj “ RT ŇjR
´T for j “ 1, . . . , m.

b. Compute

vec pV1q “ p´Λb In ´ Ir b Aq
´1

´

ˇ̌BT
bB

¯

vecpImq,

vec pW1q “
`

´Λb In ´ Ir b A
T
˘´1

´

ˇ̌CT
b CT

¯

vecpIqq.

c. For k “ 2, . . . ,M , solve

vec pVkq “ p´Λb In ´ Ir b Aq
´1

m
ÿ

j“1

´

ˇ̌NT
j bNj

¯

vec pVk´1q ,

vec pWkq “
`

´Λb In ´ Ir b A
T
˘´1

m
ÿ

j“1

´

ˇ̌Nj bN
T
j

¯

vec pWk´1q .

d. V “
M
ř

k“1

Vk, W “
M
ř

k“1

Wk.

e. Vr “ orth pVq , Wr “ orth pWq.

f. Ǎ “ pWT
r Vrq

´1WT
r AVr, Ňj “

`

WT
r Vr

˘´1
WT

r NjVr,

B̌ “
`

WT
r Vr

˘´1
WT

r B, Č “ CVr.

4: Ar “ Ǎ, Njr “ Ňj, Br “ B̌, Cr “ Č.
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spantV1u “ Kq
`

A´1, A´1b
˘

, and

spantVku “ Kq
`

A´1, A´1NVk´1
˘

,

for k “ 2, . . . , M , where Kq denotes the standard Krylov subspace of qth order. As

evident above, for obtaining the subspace V , we have to solve a sequence of linear sys-

tems, whose structure is similar to those arising in TBIRKA algorithm (see Algorithm

2.2).

Implicit Volterra series based MOR algorithm [1] does a weighted interpolation for

reduction. Here, the projection matrices are defined as3

V “ rV1 . . . Vrs and W “ rW1 . . . Wrs

where,

Vk “
8
ÿ

i“1

r
ÿ

l1“1

. . .
r
ÿ

li´1“1

ηl1, ..., li´1,kpσkE ´ Aq
´1Npσli´1

E ´ Aq´1 . . . Npσl1E ´ Aq
´1b,

Wk “

8
ÿ

i“1

r
ÿ

l1“1

. . .
r
ÿ

li´1“1

ηl1, ..., li´1,kpσkE ´ Aq
´TNT

pσli´1
E ´ Aq´T . . . NT

pσl1E ´ Aq
´T cT ,

for k “ 1, . . . , r. Also, σl1 , . . . , σli are the set of interpolation points and ηl1, ..., li´1,k

are weights defined in terms of the elements of a r ˆ r matrix. These weights can be

calculated from Lemma 3.1 in [1]. Again, here also, linear systems of equations similar

to those arising in TBIRKA (Algorithm 2.2) are to be solved. Since TBIRKA forms

the basis of all algorithms in this class, we specifically focus on it for our stability

analysis. Next, we look at MOR of parametric linear dynamical systems.

2.2 Parametric Model Order Reduction

Until now, we have focused only on non-parametric dynamical systems (linear or

bilinear as the case). Parametric dynamical systems are more challenging and vibrant

area of study. As parametric dynamical systems are recent, their MOR algorithms

are also contemporary. In general, they are referred to as Parametric Model Order

Reduction (PMOR) algorithms.
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Here, we first look at parametric linear dynamical system as given by (1.4)-(1.5).

Often, the system matrices have parametric dependence as follows [9, 15]:

E ppq “ E0 ` e1 ppqE1 ` ¨ ¨ ¨ ` eM ppqEM ,

A ppq “ A0 ` f1 ppqA1 ` ¨ ¨ ¨ ` fM ppqAM ,

B ppq “ B0 ` g1 ppqB1 ` ¨ ¨ ¨ ` gM ppqBM ,

C ppq “ C0 ` h1 ppqC1 ` ¨ ¨ ¨ ` hM ppqCM ,

where ei, fi, gi and hi (for i “ 1, . . . , M) are parameter dependent functions and

M P R. However, for rest of this dissertation, we do not assume that our system

matrices have such a structure. Let the reduced parametric linear dynamical system

be represented as [9, 15]

Er ppq 9xr ptq “ Ar ppqxr ptq `Br ppqu ptq ,

yr ptq “ Cr ppqxr ptq ,
(2.5)

where Erppq, Arppq P Rrˆr, Brppq P Rrˆm and Crppq P Rqˆr for r ! n. Here, the input

u ptq is the same (maps from R to Rm) while state xr ptq maps from R to Rr (instead

of Rn earlier). We want Hr ps; pq to approximate H ps; pq in an appropriate norm, and

hence, yrptq should be nearly equal to yptq for all admissible inputs, where

Hrps; pq “ CrppqpsErppq ´ Arppqq
´1Brppq. (2.6)

Analogous to the non-parametric case of [30, 6], in [9], authors propose a set of

PMOR algorithms for reducing parametric linear dynamical systems. We focus on the

interpolatory projection based PMOR algorithm (Algorithm 4.1 in [9]), called Inter-

polatory PMOR (IPMOR) because it forms the foundation of all the other algorithms

of [9].

Let the two r-dimensional subspaces, Vr and Wr, be chosen in such a way that Vr “

RangepV q and Wr “ RangepW q3, where V P Rnˆr and W P Rnˆr are matrices. Again,

as earlier, we project the original full model (1.4) to a lower dimensional subspace,

i.e.,

W T pE ppqV 9xr ptq ´ A ppqV xr ptq ´B ppqu ptqq “ 0,

yr ptq “ C ppqV xr ptq.
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Comparing the above equations with (2.5), we get

Ar ppq “
`

W TV
˘´1

W TA ppqV, Er ppq “
`

W TV
˘´1

W TE ppqV,

Br ppq “
`

W TV
˘´1

W TB ppq , and Cr ppq “ C ppqV,

where p P tp1, . . . , pLu.

Similar to IRKA in IPMOR also, the subspaces Vr and Wr are computed by

performing interpolation. That is,

Vr “ span
i“1, ..., K
j“1, ..., L

!

`

σiE
`

pj
˘

´ A
`

pj
˘˘´1

B
`

pj
˘

rij

)

, and

Wr “ span
i“1, ..., K
j“1, ..., L

!

`

σiE
`

pj
˘

´ A
`

pj
˘˘´T

C
`

pj
˘T

lij

)

,
(2.7)

where σ1, . . . , σK P C are the points where interpolation is performed (also

referred as shifts or frequencies); p1, . . . , pL P Rv are parameter vectors;

r11, . . . , r1L, . . . . . . , rK1, . . . , rKL are right tangential direction vectors with

rij P Rmˆ1; and l11, . . . , l1L, . . . . . . , lK1, . . . , lKL are left tangential direction

vectors with lij P Rqˆ1. Here, the reduced system size is r, which is equals to K ˆ L.

Thus, the projection matrices are built as follows:

V “
”

V1 pp
1q ¨ ¨ ¨ VK pp

1q ¨ ¨ ¨ ¨ ¨ ¨ V1
`

pL
˘

¨ ¨ ¨ VK
`

pL
˘

ı

, and

W “

”

W1 pp
1q ¨ ¨ ¨ WK pp

1q ¨ ¨ ¨ ¨ ¨ ¨ W1

`

pL
˘

¨ ¨ ¨ WK

`

pL
˘

ı

,
(2.8)

where from (2.7),

Vi
`

pj
˘

“
`

σiE
`

pj
˘

´ A
`

pj
˘˘´1

B
`

pj
˘

rij and

Wi

`

pj
˘

“
`

σiE
`

pj
˘

´ A
`

pj
˘˘´T

C
`

pj
˘T

lij.
(2.9)

Algorithm 2.3 lists IPMOR algorithm. A total of 2KL linear systems have to be solved

in the IPMOR algorithm.

Apart from the IPMOR algorithm, this class of PMOR algorithms also includes

piecewise H2´optimal interpolatory PMOR [9], multi-parameter and multi-frequency

moment-matching based PMOR algorithm [36], PMOR using extended balanced trun-

cation [44], PMOR with H2´error using radial basis functions [14]. For generality,
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Algorithm 2.3 IPMOR Algorithm [9]

1: Given an input parametric linear dynamical system A ppq , E ppq , B ppq , C ppq.

2: Select an initial guess for interpolation points σ1, . . . , σK P C, parameter vectors

p1, . . . , pL P Rv, right tangent directions tr11, . . . , r1L, r21, . . . , rKLu Ă Cm,

and left tangent directions tl11, . . . , l1L, l21, . . . , lKLu Ă Cq. The order of the

reduced model will be r “ K ˆ L.

3: For j “ 1, . . . , L,

for i “ 1, . . . , K, compute

Vi
`

pj
˘

“
`

σiEpp
j
q ´ Appjq

˘´1
B
`

pj
˘

rij

Wi

`

pJ
˘

“
`

σiEpp
j
q ´ Appjq

˘´T
CT

`

pj
˘

lij.

4: Set

V “
”

V1 pp
1q ¨ ¨ ¨ VK pp

1q ¨ ¨ ¨ ¨ ¨ ¨ V1
`

pL
˘

¨ ¨ ¨ VK
`

pL
˘

ı

and

W “

”

W1 pp
1q ¨ ¨ ¨ WK pp

1q ¨ ¨ ¨ ¨ ¨ ¨ W1

`

pL
˘

¨ ¨ ¨ WK

`

pL
˘

ı

.

5: Ar ppq “ pW
TV q´1W TA ppqV , Er ppq “

`

W TV
˘´1

W TE ppqV ,

Br ppq “
`

W TV
˘´1

W TB ppq, Cr ppq “ C ppqV .

we explore the first two algorithms of the previous list in more detail, i.e., piecewise

H2´optimal interpolatory PMOR and multi-parameter and multi-frequency moment-

matching based PMOR algorithm.

In [9], authors extend the IPMOR algorithm to a piecewise H2´optimal interpo-

latory PMOR algorithm. Here, for each parameter vector, IRKA (Algorithm 4.1 in

[30]) is executed to get the subspaces, i.e., for parameter vector pj we obtain Vj and

Wj, where j “ 1, . . . , L. Finally, we concatenate all the piecewise subspaces to get

the final subspaces V and W 3, i.e.,

V “ rV1 . . . VLs and W “ rW1 . . . WLs

These subspaces V and W give the piecewise H2´optimal reduced system.
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Similar to IPMOR algorithm, in [36], multi-parameter and multi-frequency

moment-matching based PMOR algorithm is derived. Here, the projection matrices

V and W 3 are defined as

spantV u “ Kr
pM1,Fq and spantW u “ Kr

pM2,Lq ,

where

F “ rowspan
!

`

σiE
`

pj
˘

´ A
`

pj
˘˘´1

B
`

pj
˘

)K,L

i“1, j“1
,

L “ rowspan
!

`

σiE
`

pj
˘

´ A
`

pj
˘˘´T

CT
`

pj
˘

)K,L

i“1, j“1
,

M1 “ rowspan
!

`

σiE
`

pj
˘

´ A
`

pj
˘˘´1

E
`

pj
˘

)K,L

i“1, j“1
,

M2 “ rowspan
!

`

σiE
`

pj
˘

´ A
`

pj
˘˘´T

ET
`

pj
˘

)K,L

i“1, j“1
,

and as earlier, Kr denotes the standard Krylov subspace of rth order. Both the above

algorithms require solving sequences of linear system of equations as those arising in

IPMOR.

Since IPMOR forms the basis of algorithms in this class, we specifically focus on it

for our stability analysis. Next, we revisit the standard backward stability definitions

and also describe its meaning in our context.

2.3 Backward Stability Analysis

In general, numerical algorithms for a problem are continuous in nature but, a

digital computer solves them in a discrete manner. The reason is limitation on the

representation of real / complex numbers. Since complex numbers can be represented

by real numbers, we focus on latter only. Let fd : RÑ F be a function giving a finite

approximation to a real number. It provides rounded equivalent as [48]

fdpxq “ xp1` εmachineq for all x P R,

where εmachine is the machine precision. Also, for every operation between any two

finite numbers, the result is exact up to a relative error, i.e., for all x, y P F
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fdpx‘ yq “ px‘ yqp1` εmachineq,

where ‘ can be any of the following operation: `, ´, ˚, and {.

Consider a continuous mathematics algorithm f : X Ñ Y . Say executing this

algorithm on a digital computer (that uses finite precision arithmetic) is represented

as rf : X Ñ Y . To check how good the approximated algorithm rf is, one usually

computes the accuracy of rf . We say an algorithm rf is accurate if [48]

›

›

›
fpxq ´ rfpxq

›

›

›

}fpxq}
“ Opεmachineq,

where x P X. From the above equation, we find that computing accuracy is not

possible since we do not know fpxq. A more easier parameter to check the goodness

of rf is stability. According to [48], “A stable algorithm gives nearly the right answer

to nearly the right question”, which although is useful but does not provide a handle

on the accuracy. Backward stability is more useful notion in this context. To quote

[48], “A backward stable algorithm gives exactly the right answer to nearly the right

question”. Mathematically, an algorithm f is backward stable if [48]

rfpxq “ fprxq for some rx with

}x´ rx}

}x}
“ Opεmachineq.

This notion of backward stability is useful since one can easily compute accuracy of

the result/ output for a backward stable algorithm. The theorem below summarizes

this result.

Theorem 3. [48] If f : X Ñ Y is a backward stable algorithm, and kpxq is the

condition number of the problem, then the relative error
›

›

›
fpxq ´ rfpxq

›

›

›

}fpxq}
“ O pkpxq εmachineq ,

where εmachine is the machine precision (or perturbation in x).

All MOR algorithms discussed earlier, require solving sequences of linear system

of equations. For such systems, as mentioned earlier, iterative methods are preferred
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because of the reduced complexity. Iterative methods are inexact in nature, which

means they do not solve linear systems, say Ax = b, exactly. Instead Ax = b +

δ is solved, where δ is the final residual related to the stopping tolerance. Our aim

is to find that if one uses an iterative solver (also called inexact solver from now

on) in MOR algorithms, then are these algorithms stable with respect to the error

introduced by the inexact solves? As earlier, we check for backward stability. For

IRKA, the backward stability analysis has been done in [30].

Let in a MOR algorithm, Vr and Wr be calculated exactly, and g be the functional

representation of the interpolation process that uses Vr and Wr in this MOR algorithm

(i.e., the exact MOR algorithm). Similarly, let rVr and ĂWr be calculated inexactly (i.e.,

by an iterative solver), and rg be the functional representation of the interpolation

process that uses rVr and ĂWr in this MOR algorithm (i.e., the inexact MOR algorithm).

Then, from the backward stability definition, this MOR algorithm is backward stable

if

rgpΠq “ gprΠq for some rΠ with (2.10)

}Π´ rΠ}H2 or H8

}Π}H2 or H8

“ Op}F }q, (2.11)

where Π and rΠ denote the original full model and the perturbed full model, respec-

tively, corresponding to the error in the linear solves for rVr and ĂWr in the inexact

MOR algorithm. This perturbation is denoted by F .

In the subsequent chapters, we look at the above two conditions for stability in the

earlier discussed MOR algorithms for specific types of dynamical systems. As earlier,

in the non-parametric bilinear case original full model is represented by ζ (i.e., Π ” ζ)

and after Volterra series truncation, we represent the same original full model by ζM

(i.e., Π ” ζM), where M is the truncation index. Similarly, in the parametric linear

case, the original full model is represented by its transfer function (i.e., Π ” Hps; pq).
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CHAPTER 3

STABILITY ANALYSIS OF BIRKA

Let the original full order model be represented as ζ : A, N1, . . . , Nm, B, C.

Recall from Algorithm 2.1, the following:

vec pV q “

˜

´Λb In ´ Ir b A´
m
ÿ

j“1

ˇ̌NT
j bNj

¸´1
´

ˇ̌BT
bB

¯

vecpImq and

vec pW q “

˜

´Λb In ´ Ir b A
T
´

m
ÿ

j“1

ˇ̌Nj bN
T
j

¸´1
´

ˇ̌CT
b CT

¯

vecpIpq.

(3.1)

Also, let the residuals associated with iterative solves for computing vecprV q and

vecpĂW q be vecpRBq and vecpRCq, respectively. Then, the above equations lead to

˜

´Λb In ´ Ir b A´
m
ÿ

j“1

ˇ̌NT
j bNj

¸

vec
´

rV
¯

“

´

ˇ̌BT
bB

¯

vecpImq ` vec pRBq and

(3.2)
˜

´Λb In ´ Ir b A
T
´

m
ÿ

j“1

ˇ̌Nj bN
T
j

¸

vec
´

ĂW
¯

“

´

ˇ̌CT
b CT

¯

vecpIpq ` vec pRCq .

(3.3)

Let rVr “ orthprV q and ĂWr “ orthpĂW q. The Petrov-Galerkin projection connects

the reduced model matrices (obtained by inexact BIRKA) to the original full model
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matrices as

rAr “
´

ĂW T
r
rVr

¯´1
ĂW T
r A

rVr, rNjr “

´

ĂW T
r
rVr

¯´1
ĂW T
r Nj

rVr,

rBr “

´

ĂW T
r
rVr

¯´1
ĂW T
r B, and rCr “ C rVr,

(3.4)

where this reduced model is represented as rζr : rAr, rN1r , . . . , rNmr , rBr, rCr.

By the backward stability definition, next we find a perturbed full model whose

exact interpolation will give the reduced model as obtained by inexact interpola-

tion of the original full model. Let the perturbed full model be represented as

rζ : rA, rN1, . . . , rNm, rB, rC or rζ : A ` F, N1 ` E1, . . . , Nm ` Em, B ` G, C ` H,

where F, E1, . . . , Em, G, H are the constant perturbation matrices. Then, we have

˜

´Λb In ´ Ir b pA` F q ´
m
ÿ

j“1

ˇ̌NT
j b pNj ` Ejq

¸

vec
´

rV
¯

“

´

ˇ̌BT
b pB `Gq

¯

vecpImq and
˜

´Λb In ´ Ir b pA` F q
T
´

m
ÿ

j“1

ˇ̌Nj b pNj ` Ejq
T

¸

vec
´

ĂW
¯

“

´

ˇ̌CT
b pC `HqT

¯

vecpIpq,

(3.5)

or
˜

´Λb In ´ Ir b A´
m
ÿ

j“1

ˇ̌NT
j bNj

¸

vec
´

rV
¯

“

´

ˇ̌BT
bB

¯

vecpImq

`

´

ˇ̌BT
bG

¯

vecpImq

`

˜

Ir b F `
m
ÿ

j“1

ˇ̌NT
j b Ej

¸

vec
´

rV
¯

and

(3.6)

˜

´Λb In ´ Ir b A
T
´

m
ÿ

j“1

ˇ̌Nj bN
T
j

¸

vec
´

ĂW
¯

“

´

ˇ̌CT
b CT

¯

vecpIpq

`

´

ˇ̌CT
bHT

¯

vecpIpq

`

˜

Ir b F
T
`

m
ÿ

j“1

ˇ̌Nj b E
T
j

¸

vec
´

ĂW
¯

.

(3.7)

As earlier, rVr “ orthprV q and ĂWr “ orthpĂW q. Using the Petrov-Galerkin projection to

connect the reduced model matrices (obtained by exact BIRKA) with the perturbed
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full model matrices we get

pAr “
´

ĂW T
r
rVr

¯´1
ĂW T
r pA` F q

rVr, pNjr “

´

ĂW T
r
rVr

¯´1
ĂW T
r pNj ` Ejq rVr,

pBr “

´

ĂW T
r
rVr

¯´1
ĂW T
r pB `Gq , and pCr “ pC `Hq rVr,

(3.8)

where this reduced model is represented as pζr : pAr, pN1r , . . . , pNmr , pBr, pCr. To satisfy

the backward stability’s first condition (2.10), we equate the reduced models in (3.4)

and (3.8). That is,

pAr “
´

ĂW T
r
rVr

¯´1
ĂW T
r pA` F q

rVr “
´

ĂW T
r
rVr

¯´1
ĂW T
r A

rVr `
´

ĂW T
r
rVr

¯´1
ĂW T
r F

rVr

“ rAr `
´

ĂW T
r
rVr

¯´1
ĂW T
r F

rVr.

Similarly, pNjr “
rNjr `

´

ĂW T
r
rVr

¯´1
ĂW T
r Ej

rVr, pBr “ rBr `

´

ĂW T
r
rVr

¯´1
ĂW T
r G and pCr “

rCr `H rVr.

From the above, we note that if ĂW T
r F

rVr “ 0, then pAr “ rAr. Similarly, if ĂW T
r Ej

rVr “

0, then pNjr “
rNjr ; if ĂW T

r G “ 0, then pBr “ rBr; and if H rVr “ 0, then pCr “ rCr. Using

the Petrov-Galerkin framework for the inexact solves in (3.2) and (3.3), we can easily

achieve some of the above relations. We discuss this next.

The Petrov-Galerkin Framework for Inexact Solves

The Petrov-Galerkin framework by definition implies finding the solution of a linear

system of equation, such that its residual at every point is orthogonal to some other

suitable subspace [49]. In our context, we define the Petrov-Galerkin framework as

below.

Find rV P Pr such that RB K Qr and

find ĂW P Qr such that RC K Pr,
(3.9)

where Pr and Qr are any two r-dimensional subspaces of Cn; rV and RB satisfy (3.2);

and ĂW and RC satisfy (3.3).

27



Comparing (3.2) with (3.6) and (3.3) with (3.7), we get the following equations:

vec pRBq “

´

ˇ̌BT
bG

¯

vecpImq `

˜

Ir b F `
m
ÿ

j“1

ˇ̌NT
j b Ej

¸

vec
´

rV
¯

and

vec pRCq “

´

ˇ̌CT
bHT

¯

vecpIpq `

˜

Ir b F
T
`

m
ÿ

j“1

ˇ̌Nj b E
T
j

¸

vec
´

ĂW
¯

or

RB “ G ˇ̌B ` F rV `
m
ÿ

j“1

Ej rV
ˇ̌Nj and RC “ HT ˇ̌C ` F T

ĂW `

m
ÿ

j“1

ET
j
ĂW ˇ̌NT

j . (3.10)

Next, we consider perturbations in A, Nj, B and C individually, and use the

Petrov-Galerkin framework discussed above. First, if we take the perturbation F in

A only, then (3.10) is equivalent to

RB “ F rV and RT
C “

ĂW TF. (3.11)

In the above, if we multiply ĂW T from left in the first equation and rV from right in

the second equation, then we get

ĂW TRB “ ĂW TF rV and RT
C
rV “ ĂW TF rV .

From the Petrov-Galerkin framework (3.9), ĂW K RB and rV K RC , and hence,

ĂW TF rV “ 0.

We also have1

ĂW T
r F

rVr “ 0. (3.12)

Similarly, if we take the perturbation Ej in any one Nj matrix, then (3.10) is

equivalent to

RB “ Ej rV
ˇ̌Nj and RT

C “
ˇ̌Nj
ĂW TEj.

1Since rVr “ orthprV q and ĂWr “ orthpĂW q, we have rV “ rVr Z1 and ĂW “ ĂWr Z2, where Z1 and Z2

are lower triangular matrices. Here ĂWTF rV “ 0 implies ZT
2

´

ĂWT
r F rVr

¯

Z1 “ 0. If rV and ĂW are full

ranked then, Z1 and Z2 are invertible and we have ĂWT
r F rVr “ 0. This full rank assumption exists in

original BIRKA as well (see Lemma 5.2 in [12]).
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Again in the above, if we multiply ĂW T from left in the first equation and rV from right

in the second equation, then we get

ĂW TRB “ ĂW TEj rV
ˇ̌Nj and RT

C
rV “ ˇ̌Nj

ĂW TEj rV .

Using the Petrov-Galerkin framework (3.9) in above we get

ĂW TEj rV
ˇ̌Nj “ 0 and ˇ̌Nj

ĂW TEj rV “ 0.

To achieve the desired result, i.e., ĂW T
r Ej

rVr “ 0, we need ˇ̌Nj to be invertible. This

cannot always be guaranteed. Thus, we drop the perturbation analysis with Nj ma-

trices.

Finally, if we only take the perturbations G and H, in the matrices B and C,

respectively, then (3.10) is equivalent to

RB “ G ˇ̌B and RT
C “

ˇ̌CTH.

As in the last two paragraphs, multiplying by ĂW T from left in the first equation

above, multiplying by rV from right in the second equation above, and using the

Petrov-Galerkin framework (3.9) we get

ĂW TG ˇ̌B “ 0 and ˇ̌CTH rV “ 0.

As above, to achieve the desired result, i.e., ĂW T
r G “ 0 and H rVr “ 0, we need ˇ̌B and

ˇ̌C to be invertible. This cannot always be guaranteed because these are non-square

matrices. Thus, we drop the perturbation analysis with B and C matrices both.

Hence, (3.12) implies that if we consider the perturbation in A matrix only and

use a Petrov-Galerkin framework for the inexact linear solves, then

pAr “ rAr, pNjr “
ĄNjr , pBr “ rBr, and pCr “ rCr or

rgpζq “ gprζq.

The theorem below summarizes this.
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Theorem 4. If the inexact linear solves in BIRKA (line 3b. and 3c. of Algorithm

2.1) are solved using the Petrov-Galerkin framework (3.9), then BIRKA satisfies the

first condition of backward stability with respect to these solves, i.e., (2.10).

Next, we look at the second condition of stability in BIRKA.

3.1 Second Condition of Backward Stability

Next, we show that the second condition of backward stability, given in (2.11), is

also satisfied. According to (2.11), the difference between the original full model and

the perturbed full model should be order of the perturbation, i.e.,

}ζ ´ rζ}H2 or H8

}ζ}H2 or H8

“ Op}F }q,

where H2´norm is defined in (1.8). We satisfy the above condition in the absolute

sense, since ζ is independent of F . That is,

›

›

›
ζ ´ rζ

›

›

›

2

H2

“ O
´

}F }2

¯

.

Consider the error system ζerr “ ζ´rζ whose matrices are defined as follows [12, 24]:

Aerr “

»

–

A 0

0 A` F

fi

fl , N err
j “

»

–

Nj 0

0 Nj

fi

fl , Berr “

»

–

B

B

fi

fl , and Cerr “

”

C ´C
ı

.

The H2´norm of this error system is

}ζerr}2H2
“vecpI2pq

T
´”

C ´C
ı

b

”

C ´C
ı¯

ˆ

¨

˝´

»

–

A 0

0 A` F

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

A 0

0 A` F

fi

fl

´

m
ÿ

j“1

»

–

Nj 0

0 Nj

fi

flb

»

–

Nj 0

0 Nj

fi

fl

˛

‚

´1¨

˝

»

–

B

B

fi

flb

»

–

B

B

fi

fl

˛

‚vecpI2mq,

(3.13)
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“vecpI2pq
T
´”

C ´C
ı

b

”

C ´C
ı¯

ˆ

¨

˝´

»

–

A 0

0 A

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

A 0

0 A

fi

fl

´

m
ÿ

j“1

»

–

Nj 0

0 Nj

fi

flb

»

–

Nj 0

0 Nj

fi

fl´

»

–

0 0

0 F

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

0 0

0 F

fi

fl

˛

‚

´1

ˆ

¨

˝

»

–

B

B

fi

flb

»

–

B

B

fi

fl

˛

‚vecpI2mq.

Let

pC “
´”

C ´C
ı

b

”

C ´C
ı¯

,

pQ “

¨

˝´

»

–

A 0

0 A

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

A 0

0 A

fi

fl

´

m
ÿ

j“1

»

–

Nj 0

0 Nj

fi

flb

»

–

Nj 0

0 Nj

fi

fl

˛

‚,

(3.14)

pF “

»

–

0 0

0 F

fi

fl , (3.15)

p

pF “
´

I2n b pF ` pF b I2n

¯

, and (3.16)

pB “

¨

˝

»

–

B

B

fi

flb

»

–

B

B

fi

fl

˛

‚.

Then, the norm of this error system is

}ζerr}2H2
“ vecpI2pq

T
pC

ˆ

pQ´
p

pF

˙´1

pB vecpI2mq, (3.17)

“ vecpI2pq
T
pC pQ´1

ˆ

I4n2 ´
p

pF pQ´1
˙´1

pB vecpI2mq.
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If

›

›

›

›

p

pF pQ´1
›

›

›

›

2

ă 1, then by the Neumann series we get that

}ζerr}2H2
“ vecpI2pq

T
pC pQ´1

ˆ

I4n2 ´
p

pF pQ´1
˙´1

pB vecpI2mq,

“ vecpI2pq
T
pC pQ´1

˜

I4n2 `
p

pF pQ´1 `

ˆ

p

pF pQ´1
˙2

` . . .

¸

pB vecpI2mq,

“ vecpI2pq
T
pC pQ´1 pB vecpI2mq

` vecpI2pq
T
pC pQ´1

p

pF pQ´1

˜

I4n2 `
p

pF pQ´1 `

ˆ

p

pF pQ´1
˙2

` . . .

¸

pB vecpI2mq.

Since }ζ ´ ζ}2H2
“ vecpI2pq

T
pC pQ´1 pB vecpI2mq “ 0, the above equation simplifies to

}ζerr}2H2
“ vecpI2pq

T
pC pQ´1

p

pF pQ´1

˜

I4n2 `
p

pF pQ´1 `

ˆ

p

pF pQ´1
˙2

` . . .

¸

pB vecpI2mq.

(3.18)

Bounding the right hand side of the above equation we get the following:

ˇ

ˇ

ˇ

ˇ

ˇ

vecpI2pq
T
pC pQ´1

p

pF pQ´1
ˆ

I4n2 ´
p

pF pQ´1
˙´1

pB vecpI2mq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
›

›vecpI2pq
T
›

›

›

›

›

pC pQ´1
›

›

›

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

›

›

›

›

›

ˆ

I4n2 ´
p

pF pQ´1
˙´1

›

›

›

›

›

›

›

›

pB
›

›

›
}vecpI2mq} .

Using Lemma 2.3.3 from [27], we get that the right hand side above is bounded by

›

›vecpI2pq
T
›

›

›

›

›

pC pQ´1
›

›

›

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

¨

˚

˚

˝

1

1´

›

›

›

›

p

pF pQ´1
›

›

›

›

˛

‹

‹

‚

›

›

›

pB
›

›

›
}vecpI2mq} .

Substituting the above two results in (3.18) we get

}ζerr}2H2
ď
›

›vecpI2pq
T
›

›

›

›

›

pC pQ´1
›

›

›

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

¨

˚

˚

˝

1

1´

›

›

›

›

p

pF pQ´1
›

›

›

›

˛

‹

‹

‚

›

›

›

pB
›

›

›
}vecpI2mq} . (3.19)

Let
›

›

›

pQ´1
›

›

›
ă 1, which is defined by the original system (further analyzed in Section

3.2.1) and

›

›

›

›

p

pF

›

›

›

›

ă 1, which is related to the residuals of linear solves (further analyzed
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in Section 3.2.2). Then, using the matrix norm property we have the following:

›

›

›

›

p

pF pQ´1
›

›

›

›

ď

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›
or

1

1´

›

›

›

›

p

pF pQ´1
›

›

›

›

ď
1

1´

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

.

Substituting the above in (3.19) we get

}ζerr}2H2
ď
›

›vecpI2pq
T
›

›

›

›

›

pC pQ´1
›

›

›

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

¨

˚

˚

˝

1

1´

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

˛

‹

‹

‚

›

›

›

pB
›

›

›
}vecpI2mq} (3.20)

or

}ζerr}2H2
ď O

ˆ
›

›

›

›

p

pF

›

›

›

›

˙

. (3.21)

Next, we relate

›

›

›

›

p

pF

›

›

›

›

and }F }. From (3.16) we know

p

pF “
´

I2n b pF ` pF b I2n

¯

.

Taking norms on both the sides of the above equation, and applying the triangle

inequality property ( }X ` Y } ď }X} ` }Y }) we get

›

›

›

›

p

pF

›

›

›

›

“

›

›

›
I2n b pF ` pF b I2n

›

›

›
ď

›

›

›
I2n b pF

›

›

›
`

›

›

›

pF b I2n

›

›

›
.

Further, using the norm distribution property of Kronecker product ( }X b Y } “

}X} }Y }) [35, 34], we have the following:

›

›

›

›

p

pF

›

›

›

›

ď }I2n}
›

›

›

pF
›

›

›
`

›

›

›

pF
›

›

›
}I2n} ,

ď O
´›

›

›

pF
›

›

›

¯

.

From (3.15) we know pF “

»

–

0 0

0 F

fi

fl. Using the definitions of all the commonly used

matrix norms (Frobenius, 2, 1 and 8) [38] we get

O
´

}
p

pF }
¯

ď O
´

}F }
¯

. (3.22)
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Substituting the above in (3.21) we get

}ζerr}2H2
“

›

›

›
ζ ´ rζ

›

›

›

2

H2

ď O
´

}F }
¯

.

Thus, we have satisfied the second condition of backward stability. The theorem below

summarizes this.

Theorem 5. If pQ defined in (3.14) is invertible,
›

›

›

pQ´1
›

›

›
ă 1, and

›

›

›

›

p

pF

›

›

›

›

ă 1, where
p

pF

is defined in (3.16), then BIRKA satisfies the second condition of backward stability

with respect to the inexact linear solves, i.e., (2.11).

The hypotheses of this theorem are usually easy to satisfy, and are discussed in

the next section. The corollary below summarizes our stability result.

Corollary 1. Assuming the hypotheses of Theorem 4 and Theorem 5 are satisfied,

then BIRKA is backward stable with respect to the inexact linear solves.

In the next section, we analyze all the involved matrices and accuracy of the

reduced system.

3.2 Analysis

Next, we analyze our assumptions and results from the previous sections. First,

we revisit the assumed invertibility of all relevant matrices (in Section 3.2.1). Second,

we derive the expression for accuracy of the reduced system, in-terms of the residuals

of the linear solves as well as the conditioning of the bilinear system (in Section 3.2.2).

3.2.1 Invertibility of Involved Matrices

Until now, we have assumed invertibility of eight matrices. Most of these invert-

ibility assumptions directly come from the control system theory as well as the model

reduction theory of bilinear systems. We have also assumed invertibility of few newly

proposed matrices. In this subsection, we summarize/ analyze all these assumptions

in the order of appearance of the corresponding matrix in this chapter. We first

summarize the invertibility assumptions from literature.
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(a) We assume invertibility of pskIn ´ Aq and psIn ´ Aq in (1.3) and (1.5)1, respec-

tively. These come from the transfer function definitions. Please see Section 2

of [26] and Section 1 of [30], respectively.

(b) In the H2´norm definition of a bilinear dynamical system (1.8), we assume that
`

´ A b In ´ In b A ´
m
ř

j“1

Nj b Nj

˘

is invertible. This is a standard definition.

Please see Theorem 3.4 of [12].

(c) We assume invertibility of
´

ĂW T
r
rVr

¯

. As mentioned earlier, this is easy to enforce

and come from BIRKA. Please see Algorithm 2 of [12] or Algorithm 1 of [26].

(d) In (2.2), we assume the middle term, i.e.,

˜

´

»

–

A 0

0 Λ

fi

flb

»

–

In 0

0 Ir

fi

fl´

»

–

In 0

0 Ir

fi

flb

»

–

A 0

0 Ǎ

fi

fl

´
m
ř

j“1

»

–

Nj 0

0 ˇ̌NT
j

fi

flb

»

–

Nj 0

0 Ňj

fi

fl

¸

is invertible. This comes from the H2´norm of the error system (ζ ´ ζr). Please

see Corollary 4.1 of [12] or Theorem 4.5 of [24].

(e) We assume invertibility of
`

´Λb In ´ Ir bA´
m
ř

j“1

ˇ̌NT
j bNj

˘

in Algorithm 2.1.

This again comes from BIRKA. Please see Algorithm 2 of [12] or Algorithm 1

of [26].

During the backward stability analysis of BIRKA, we assume invertibility of some

newly proposed matrices. Next, we analyze these matrices. Note that below, we

discuss the matrix in (b) before the matrix in (c) although the latter appears first in

this chapter. This is done for ease of exposition.

(a) In IRKA [30], psI ´ Aq is inverted to form the projection subspace. Hence, in the

backward stability analysis of IRKA, invertibility of the corresponding perturbed

matrix psI ´ pA` F qq is assumed (see Theorem 4.1 of [10]). As discussed in (e)

above, in BIRKA,
`

´ Λ b In ´ Ir b A ´
m
ř

j“1

ˇ̌NT
j b Nj

˘

is inverted to form
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the projection subspace. Hence, we assume invertibility of the corresponding

perturbed matrix
`

´ Λb In ´ Ir b pA` F q ´
m
ř

j“1

ˇ̌NT
j b pNj ` Ejq

˘

in (3.5).

(b) We assume invertibility of pQ given in (3.14). Also listed below for easy access.

pQ “´

»

–

A 0

0 A

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

A 0

0 A

fi

fl

´

m
ÿ

j“1

»

–

Nj 0

0 Nj

fi

flb

»

–

Nj 0

0 Nj

fi

fl .

This is one of the most important assumption in obtaining a backward stable

BIRKA (see Corollary 1). Hence, here we relate this invertibility assumption

with the underlying bilinear dynamical system. If we define A2 “

»

–

A 0

0 A

fi

fl,

I2n “

»

–

In 0

0 In

fi

fl, N2j “

»

–

Nj 0

0 Nj

fi

fl and pQ “ Q1 b Q2, where Q1, Q2 P R2nˆ2n

are any two matrices, then pQ can be rewritten as

´A2 b I2n ´ I2n b A2 ´

m
ÿ

j“1

N2j bN2j “ Q1 bQ2 or

´pA2 b I2nq vecpI2nq ´ pI2n b A2q vecpI2nq´
m
ÿ

j“1

pN2j bN2jq vecpI2nq

“ pQ1 bQ2q vecpI2nq or

´AT2 ´ A2 ´

m
ÿ

j“1

N2jN
T
2j “ Q2Q

T
1 or

´

»

–

A 0

0 A

fi

fl

T

´

»

–

A 0

0 A

fi

fl´

m
ÿ

j“1

»

–

Nj 0

0 Nj

fi

fl

»

–

Nj 0

0 Nj

fi

fl

T

“ Q2Q
T
1 or

»

—

—

–

´AT ´ A´
m
ř

j“1

NjN
T
j 0

0 ´AT ´ A´
m
ř

j“1

NjN
T
j

fi

ffi

ffi

fl

“ Q2Q
T
1 .

If

˜

´AT ´ A´
m
ř

j“1

NjN
T
j

¸

is invertible, then Q1 and Q2 are invertible. This

implies that pQ “ pQ1 bQ2q is invertible. Consider the following generalized
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Lyapunov equation used in the derivation of BIRKA [12, 13]:

AP ` PAT `
m
ÿ

j“1

NjPN
T
j “ ´BB

T .

If the solution of this equation is the identity matrix (i.e., P “ In), then the left

hand side matrix in this Lyapunov equation is

˜

AT ` A`
m
ř

j“1

NjN
T
j

¸

, which

needs to be invertible for invertibility of pQ.

(c) In (3.13) and (3.17), we assume invertibility of

¨

˝´

»

–

A 0

0 A` F

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

A 0

0 A` F

fi

fl

´
m
ř

j“1

»

–

Nj 0

0 Nj

fi

flb

»

–

Nj 0

0 Nj

fi

fl

˛

‚

and

ˆ

pQ´
p

pF

˙

, respectively, both of which represent the same matrix (i.e., pQ

with perturbation). This matrix is invertible if
´

´ pA` F qT ´ pA` F q ´
m
ř

j“1

NjN
T
j

¯

is invertible.

3.2.2 Accuracy of the Reduced System

Assume that BIRKA satisfies the hypotheses of Corollary 1, i.e., it is backward

stable with respect to the inexact linear solves. Then, from Theorem 3 we get that

}g pζq ´ rg pζq}H2

}g pζq}H2

“ O pkpζq }F }q ,

where, as earlier (recall (2.10)-(2.11)), g denotes exact BIRKA, rg denotes inexact

BIRKA, ζ is the original full model, kpζq is the condition number of ζ (discussed

below), and F is the perturbation in ζ.

If we define, g pζq “ ζr, and rg pζq “ rζr, then the above equation can be rewritten

as
›

›

›
ζr ´ rζr

›

›

›

H2

}ζr}H2

“ O pkpζq }F }q .
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Here, we are looking at the reduced systems obtained at line 3e. of Algorithm 2.1, i.e.,

at the end of every iterative step of BIRKA. Thus, accuracy of the reduced system is

dependent on the conditioning of the problem as well as the perturbation. Next, we

look at both these quantities separately.

First, we want to compute conditioning of our bilinear system with respect to

performing the inexact linear solves on lines 3b. and 3c. of Algorithm 2.1. Since

for backward stability we equate the reduced model obtained by performing inexact

BIRKA on the original full model (ζ) and performing exact BIRKA on the perturbed

full model (rζ), these inexact linear solves are captured by rζ. Thus, the condition

number of our bilinear system with respect to computing the H2´norm of the error

system ζerr “ ζ ´ rζ will give us a good approximation to the condition number that

we want to compute (with respect to computing the H2´norm of rζr ´ ζ or rζr ´ ζr).

Similar behavior has been observed for linear dynamical systems (see Theorem 3.1

and 3.3 in [10]).

Recall, the condition number by definition means relative change in the output

(for us this is

›

›

›
ζ ´ rζ

›

›

›

H2

}ζ}H2

) with respect to the relative change in the input (for us this

is
}F }

}A}
since we are perturbing the A matrix). Hence, from (3.20) we have

›

›

›
ζ ´ rζ

›

›

›

H2

ď

›

›

›
vec pI2pq

T
›

›

›

›

›

›

pC pQ´1
›

›

›

›

›

›

pQ´1
›

›

›

›

›

›

pB
›

›

›
}vecpI2mq}

›

›

›

›

p

pF

›

›

›

›

1´

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

, (3.23)

where
›

›

›

pQ´1
›

›

›
ă 1 and

›

›

›

›

p

pF

›

›

›

›

ă 1. Since

›

›

›

›

p

pF

›

›

›

›

ă 1, then we also have

1

1´

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

ď
1

1´
›

›

›

pQ´1
›

›

›

.
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Using above, (3.23) can be rewritten as

›

›

›
ζ ´ rζ

›

›

›

H2

ď

›

›

›
vec pI2pq

T
›

›

›

›

›

›

pC pQ´1
›

›

›

›

›

›

pQ´1
›

›

›

›

›

›

pB
›

›

›
}vecpI2mq}

›

›

›

›

p

pF

›

›

›

›

1´
›

›

›

pQ´1
›

›

›

or

›

›

›
ζ ´ rζ

›

›

›

H2

}ζ}H2

ď

›

›

›
vec pI2pq

T
›

›

›

›

›

›

pC pQ´1
›

›

›

›

›

›

pQ´1
›

›

›

›

›

›

pB
›

›

›
}vecpI2mq} }A}

}ζ}H2

1

1´
›

›

›

pQ´1
›

›

›

›

›

›

›

p

pF

›

›

›

›

}A}
.

From (3.22), we know }
p

pF } ď }F }. Hence, the above inequality is equivalent to

›

›

›
ζ ´ rζ

›

›

›

H2

}ζ}H2

ď k pζq
}F }

}A}
,

where

k pζq “

›

›

›
vec pI2pq

T
›

›

›

›

›

›

pC pQ´1
›

›

›

›

›

›

pQ´1
›

›

›

›

›

›

pB
›

›

›
}vecpI2mq} }A}

}ζ}H2

1

1´
›

›

›

pQ´1
›

›

›

. (3.24)

In the numerical experiments section, for both our problems, we show that this condi-

tion number is fairly small2. In other words, both our problems are well-conditioned

with respect to computing the H2´norm of the error system ζerr. Note that
›

›

›

pQ´1
›

›

›
ă 1

and

›

›

›

›

p

pF

›

›

›

›

ă 1 as assumed here come from the assumptions for backward stability of

BIRKA (see Corollary 1), and hence, we do not need any extra assumptions.

Second, we relate the perturbation F with the residuals RB and RC given in (3.2)

and (3.3), respectively. Recall that we are considering the perturbation F in A matrix,

and hence, this F should satisfy both the equations in (3.11). That is,

RB “ F rV and RT
C “

ĂW TF. (3.25)

From the assumptions for backward stability of BIRKA (Corollary 1), we know that

we need to use a Petrov-Galerkin framework, i.e.,

ĂW K RB and rV K RC , (3.26)

2If the problem is ill-conditioned (i.e., the condition number is large), then we cannot get a good

handle on the accuracy of the reduced system.
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where rV and ĂW are again given in (3.2) and (3.3), respectively. Using (3.26), we get

that

F “ RB

´

ĂW T
rV
¯´1

ĂW T
` rV

´

ĂW T
rV
¯´1

RT
C , (3.27)

satisfies (3.25). This is assuming
´

ĂW T
rV
¯

is nonsingular, which has already been

discussed in the previous subsection. The theorem below gives a bound on this F .

This theorem is similar to Theorem 4.2 from [10] in the linear case.

Theorem 6. Let RB and rV be defined as in (3.2), RC and ĂW be defined as in (3.3),

and F be defined as in (3.27). Define RB “ rRB1 , RB2 , . . . , RBrs and RC “

rRC1 , RC2 , . . . , RCrs and assume ĂW T
rV is nonsingular. Then, the perturbation F

satisfies

}F }2 ď }F }F ď
?
r
!

max
i
}RBi

}

›

›

›
pĂW T

rV q´1ĂW T
›

›

›
`max

i
}RCi

}

›

›

›

rV pĂW T
rV q´1

›

›

›

)

.

Proof. Note that

F “ RB

´

ĂW T
rV
¯´1

ĂW T
` rV

´

ĂW T
rV
¯´1

RT
C .

}F }F “

›

›

›

›

RB

´

ĂW T
rV
¯´1

ĂW T
` rV

´

ĂW T
rV
¯´1

RT
C

›

›

›

›

F

}F }F ď

›

›

›

›

RB

´

ĂW T
rV
¯´1

ĂW T

›

›

›

›

F

`

›

›

›

›

rV
´

ĂW T
rV
¯´1

RT
C

›

›

›

›

F

.

Consider the first term from the above expression as
›

›

›

›

RB

´

ĂW T
rV
¯´1

ĂW T

›

›

›

›

F

ď
›

›RB

›

›

F

›

›

›

›

´

ĂW T
rV
¯´1

ĂW T

›

›

›

›

ď
?
r max

i

›

›RBi

›

›

›

›

›

›

´

ĂW T
rV
¯´1

ĂW T

›

›

›

›

.

Similarly, taking the second term as
›

›

›

›

rV
´

ĂW T
rV
¯´1

RT
C

›

›

›

›

F

ď

›

›

›

›

rV
´

ĂW T
rV
¯´1

›

›

›

›

›

›RC

›

›

F

ď
?
r max

i

›

›RCi

›

›

›

›

›

›

rV
´

ĂW T
rV
¯´1

›

›

›

›

.

Finally, we get

}F }2 ď }F }F ď
?
r
!

max
i
}RBi

}

›

›

›
pĂW T

rV q´1ĂW T
›

›

›
`max

i
}RCi

}

›

›

›

rV pĂW T
rV q´1

›

›

›

)

.
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In the expression of }F } above, we see that the norm of the perturbation is pro-

portional to the norm of the two residuals obtained while solving the two set of linear

systems (}RB} and }RC}) as well as the norm of two other quantities
´ ›

›

›
pĂW T

rV q´1ĂW T
›

›

›

and
›

›

›

rV pĂW T
rV q´1

›

›

›

¯

. These two quantities are very less dependent on accuracy of the

linear systems we solve. They are also not sensitive to different initializations of

BIRKA as well as different reduced system sizes. This behavior is similar to the

related quantities obtained in the stability analysis of IRKA [10]. We support this

argument with numerical experiments in Section 3.3.2.

To summarize,
›

›

›
ζr ´ rζr

›

›

›

H2

is proportional to k pζq and }F }. The problem is usually

well conditioned, and }F } is directly proportional to }RB} and }RC}. Thus, as we

iteratively solve the linear systems arising in BIRKA more accurately (i.e., reduce the

stopping tolerance of the linear solver), we get a more accurate reduced system. This

is very useful in deciding on when to stop the linear solver. If we need a very accurate

reduced system, then we need to iterate more in the linear solver, else we can stop

earlier. We support this with numerical experiments in the next section.

3.3 Numerical Experiments

We perform experiments to support the conjecture, as discussed above, on two

models. First, we use a flow model [18] in Section 3.3.1, and then we use a heat

transfer model [12, 13] in Section 3.3.2. These models give us both SISO as well as

MIMO bilinear dynamical systems of sizes varying from 100 to 40, 000.

The resulting linear systems to be solved vary from 600 ˆ 600 to 2, 00, 000 ˆ

2, 00, 000. For solving the linear systems while computing V and W by a direct

method (exact BIRKA), we use a backslash in Matlab. This uses Gaussian elimina-

tion as the underlying algorithm. The most popular iterative methods for solving the

sparse linear systems of equations are the Krylov subspace methods [43]. As discussed

in the start of this chapter, for a backward stable BIRKA with respect to the inexact

linear solves, we need to use a linear solver based upon the Petrov-Galerkin framework

(Theorem 4 and Corollary 1). Since the Biconjugate Gradient (BiCG) algorithm [4]
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is an iterative linear solver based upon this framework, we use it for solving the linear

systems while computing V and W by an iterative method (inexact BIRKA), i.e., rV

and ĂW .

We implement our codes in MATLAB (2015a), and test on a machine with the

following configuration: Intel Xeon(R) CPU E5-1620 V3 @ 3.50 GHz., frequency 1200

MHz., 8 CPU, 64 GB RAM.

3.3.1 A Flow Model

We first do experiments on a “flow model” [18], which consists of a one dimensional

viscid Burgers equation. That is,

Bw

Bt
` w

Bw

Bx
“
B

Bx

ˆ

v
Bw

Bx

˙

, for px, tq P p0, Lq ˆ p0, T q ,

w p0, tq “ u ptq , for t P p0, T q ,

where wpx, tq is the velocity at a particular point x and a time t; and vpx, tq is

the viscosity coefficient that we take as a constant pvq. We perform spatial semi-

discretization of the above equation with equidistant step size h “
L

N ` 1
, where

N is the number of interior points in the interval (0, L). Further, using Carleman

bilinearization [12, 18], we obtain a bilinear dynamical system of order N ˆ N2. We

briefly show these steps below.

d

dt

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

w1

w2

¨

¨

wi

¨

¨

wN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´w1w2

2h
`

v

h2
pw2 ´ 2w1q

´w2

2h
pw3 ´ w1q `

v

h2
pw3 ´ 2w2 ` w1q

¨

¨

´wi
2h
pwi`1 ´ wi´1q `

v

h2
pwi`1 ´ 2wi ` wi´1q

¨

¨

´wNwN´1
2h

`
v

h2
p´2wN ` wN´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

w1

2h
`

v

h2

0

¨

¨

0

¨

¨

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

u

or

dw

dt
“ fpwq ` gpwqu,
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where ω “
”

ω1, ω2, . . . , ωN

ıT

; and fpwq and gpwq can be written in Kronecker prod-

uct form as below.

fpwq “ A1w `
1

2
A2pw b wq,

gpwq “ B0 `B1w,

where B0 P RNˆ1; A1, B1 P RNˆN are the Jacobians of fpwq and gpwq, respectively;

and A2 P RNˆN2
is the second derivative of fpwq. Let

9x “
dx

dt
and 9ω “

dω

dt
.

Finally, we get the bilinear system of order N `N2 as

9x “

»

–

A1
1
2
A2

0 A1 b I ` I b A1

fi

flx`

»

–

B1 0

B0 b I ` I bB0 0

fi

flxu`

»

–

B0

0

fi

flu,

y “
1

N

«

1 ¨ ¨ ¨ 1
loomoon

N times

0 ¨ ¨ ¨ ¨ ¨ ¨ 0
looomooon

N2 times

ff

x,

where

x “

»

–

w

w b w

fi

fl and 9x “

»

–

9w

9w b w ` w b 9w

fi

fl.

We refer the reader to [18] for exact structure of A1, A2, B0 and B1.

For our experiments, we take N = 10, L = 1 and v “ 0.1 that gives us a SISO

bilinear dynamical system of size 110. We initialize the input system in BIRKA by

random matrices based upon similar setup in [12] and [24]. The stopping tolerance for

BIRKA is taken as 10´6, and we reduce this model to size 6. Both of these are again

chosen based upon similar values in [12] and [24]. This leads to solving the linear

systems of size 660ˆ 660. While using BiCG we use two different stopping tolerances

(10´2 and 10´8). Ideally, we should obtain a more accurate reduced model when using

the smaller BiCG tolerance.

First, let us look at the remaining assumptions for backward stability of BIRKA

(see Theorem 5 and Corollary 1). pQ is invertible here. We also have
›

›

›

pQ´1
›

›

›
less than

one (i.e., 1.6051ˆ10´3). Finally,

›

›

›

›

p

pF

›

›

›

›

, at the end of the first BIRKA step, for the BiCG
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Figure 3.1: Accuracy of the reduced system plotted at each BIRKA iteration for the two

different stopping tolerances in BiCG; flow model of size 110. Here, the x-axis is in the linear

scale and the y-axis is in the log scale.

stopping tolerance of 10´2 and 10´8 is 3.0675ˆ 10´1 and 2.4596ˆ 10´4, respectively,

both of which are also less than one. These values are less than one at the end of all

the other BIRKA steps as well. The condition number for our problem, as defined in

(3.24), is 1.2125ˆ 10´2. This shows that the flow model is well-conditioned.

The accuracy results are given in Figure 3.1 and Table 3.1. In Figure 3.1, we have

accuracy of the reduced system

ˆ

›

›

›
ζr ´ rζr

›

›

›

H2

˙

on the y-axis in the log scale and the

BIRKA iterations on the x-axis in the linear scale. Table 3.1 gives the corresponding

data. From Figure 3.1, we do not observe any difference in the values of

ˆ

›

›

›
ζr ´ rζr

›

›

›

H2

˙

for the two BiCG tolerances at the starting BIRKA iterations. The dotted line, which

corresponds to the BiCG stopping tolerance 10´2 and the solid line, which corresponds

to the BiCG stopping tolerance 10´8 coincide.

BIRKA gets more consistent as it converges to the ideal interpolation points.

Hence, towards the end of the BIRKA iterations (iteration 14 to iteration 20), ac-

curacy of the reduced system for the BiCG stopping tolerance of 10´8 is substantially

better than accuracy of the reduced system for the BiCG stopping tolerance of 10´2.

That is, the solid line should be below the dotted line. This behavior is clearly reflected
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in Table 3.1 (see the second and the fourth columns).

BIRKA

Iteration

BiCG-Tol of 10´2 BiCG-Tol of 10´8

›

›

›
ζr ´ rζr

›

›

›

2

H2

BiCG

Iteration

Count

›

›

›
ζr ´ rζr

›

›

›

2

H2

BiCG

Iteration

Count

1 4.9214 91 4.8904 167

2 1.9671ˆ 10´2 35 1.9649ˆ 10´2 85

3 1.1745ˆ 10´2 40 1.1735ˆ 10´2 85

4 2.0764ˆ 10´4 41 2.0583ˆ 10´4 92

5 4.3239ˆ 10´5 42 4.2785ˆ 10´5 89

6 1.0181ˆ 10´5 39 9.8618ˆ 10´6 89

7 2.6412ˆ 10´6 39 2.5583ˆ 10´6 82

8 6.9999ˆ 10´7 44 6.5685ˆ 10´7 90

9 1.7325ˆ 10´7 44 1.7213ˆ 10´7 90

10 5.3043ˆ 10´8 44 4.4857ˆ 10´8 90

11 1.1675ˆ 10´8 44 1.1745ˆ 10´8 90

12 5.5945ˆ 10´9 44 3.0702ˆ 10´9 90

13 1.3127ˆ 10´9 44 8.0359ˆ 10´10 90

14 1.4474ˆ 10´9 44 2.1026ˆ 10´10 90

15 7.7234ˆ 10´10 44 5.5041ˆ 10´11 90

16 9.2674ˆ 10´10 44 1.4398ˆ 10´11 90

17 7.8030ˆ 10´10 44 3.7841ˆ 10´12 90

18 8.2925ˆ 10´10 44 9.8779ˆ 10´13 90

19 7.9294ˆ 10´10 44 2.5543ˆ 10´13 90

20 8.0646ˆ 10´10 44 6.6835ˆ 10´14 90

Table 3.1: Accuracy of the reduced system and BiCG iterations at each BIRKA step for the

two different stopping tolerances in BiCG; flow model of size 110.

In Table 3.1, we observe that BiCG takes exactly same number of iterative steps
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from the BIRKA iteration 8 until convergence. That is, for the BiCG stopping tol-

erance of 10´2 it stays at 44, and for the BiCG stopping tolerance of 10´8 it stays

at 90. The reason for this is that the linear systems change very little from the 8th

BIRKA step. This can be inferred by looking at the eigenvalue distribution of the

linear system matrices as well as their Frobenius norm.
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Figure 3.2: The six smallest eigenvalues of the linear systems at the different BIRKA itera-

tions.
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Figure 3.3: Enlarged Figure 3 for the smallest eigenvalue.

Figure 3.2 shows the distribution of the six smallest eigenvalues (in absolute sense)

of the linear system matrices corresponding to the BiCG stopping tolerance of 10´2
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at the BIRKA steps 8, 9 and 10. Each of these six eigenvalues do not seem to

change with respect to the change in the BIRKA steps. However, if we look at any

one eigenvalue, specifically, for example the smallest eigenvalue at the three different

BIRKA steps, then we observe that it does change, but only slightly (see Figure 3.3).

The Frobenius norm of the linear system matrices at the BIRKA steps 8, 9 and 10

are 1.7263ˆ 103, 1.7264ˆ 103 and 1.7266ˆ 103, respectively. Thus, this supports the

argument that matrices do not change much.

3.3.2 A Heat Transfer Model

The next set of experiments we do on a heat transfer model as given below [12, 13].

xt “ ∆x in r0, 1s ˆ r0, 1s ,

n.∇x “ u1 px´ 1q on Γ1 :“ t0u ˆ p0, 1q,

n.∇x “ u2 px´ 1q on Γ2 :“ p0, 1q ˆ t0u ,

x “ 0 on Γ3 :“ t1u ˆ r0, 1s and Γ4 :“ r0, 1s ˆ t1u ,

where xpl1, l2, tq is the temperature at a particular point in the space pl1, l2q and

at a time t; n is the unit outward normal to the domain; u1 and u2 are the input

variables; and Γ1, Γ2, Γ3, and Γ4 are the boundaries of the unit square. After spa-

tial discretization of the above equation using K2 grid points, we obtain a bilinear

dynamical system of order K2 ˆK2 with two inputs and one output as shown below.

9x “ Ax` u1N1x` u2N2x`Bu,

y “ Cx,

where, as earlier,

9x “
dx

dt
, u “

»

–

u1

u2

fi

fl ,

A “
1

h2
pIK b TK ` TK b IK ` E1 b IK ` IK b EKq ,

N1 “
1

h
pE1 b IKq , N2 “

1

h
pIK b EKq ,

B “

„

1

h
pe1 b eq

1

h
peb eKq



, and C “
1

K2
peb eqT
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with IK being the identity matrix of size K,

TK “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

´2 1

1 ´2 1

¨ ¨ ¨

¨ ¨ ¨

1 ´2 1

1 ´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P RKˆK ,

Ej “ eje
T
j , the grid size h “

1

K ` 1
, ej is the jth column of the identity matrix IK ,

and e “ r1, . . . , 1s P RK .

We perform experiments on the heat transfer model for three different sizes, i.e.,

n = 100, 10,000 and 40,000 corresponding to K = 10, 100 and 200, respectively. We

initialize the input system in BIRKA by random matrices based upon the similar

setup in [12] and [24]. The stopping tolerance for BIRKA is taken as 10´3. The size

to which we reduce is different for the different model sizes, and is discussed below.

Both these settings (the BIRKA stopping tolerance and the size of reduced system)

are chosen based upon similar values in [12, 24]. While using BiCG (unpreconditioned

for smaller size and preconditioned for larger sizes), we use two different stopping

tolerances (10´4 and 10´8). Ideally, as discussed earlier, we should obtain a more

accurate reduced model for the smaller stopping tolerance.

We reduce the model of the size 100 to the size 6 as above based upon similar values

in [12] and [24]. Hence, the linear systems that are required to be solved are of the size

600ˆ 600. As above, we use an unpreconditioned BiCG here. First, let us look at the

remaining assumptions for backward stability of BIRKA (see Theorem 5 and Corollary

1). pQ is invertible here. We also have
›

›

›

pQ´1
›

›

›
less than one (i.e., 5.2893ˆ10´4). Finally,

›

›

›

›

p

pF

›

›

›

›

, at the end of the first BIRKA step, for the BiCG stopping tolerance of 10´4 and

10´8 is 1.3370ˆ 10´1 and 3.4528ˆ 10´5, respectively, both of which are also less than

one. These values are less than one at the end of all the other BIRKA steps as well.

The condition number for our problem, as defined in (3.24), is 2.6653 ˆ 10´2. This

shows that the heat transfer model is well-conditioned.
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BIRKA

Iteration
}RB} }RC}

›

›

›

›

´

ĂW T
rV
¯´1

ĂW T

›

›

›

›

F

or
›

›

›

›

rV
´

ĂW T
rV
¯´1

›

›

›

›

F

}F }

1 0.0544 7.7746ˆ 10´8 2.4554 0.1337

2 0.0937 1.2331ˆ 10´7 2.4526 0.2299

3 0.1223 1.4124ˆ 10´7 2.4515 0.2997

4 0.0568 9.8639ˆ 10´8 2.4510 0.1392

5 0.0286 4.7669ˆ 10´8 2.4508 0.0702

6 0.0319 5.2856ˆ 10´8 2.4507 0.0781

7 0.0325 5.7300ˆ 10´8 2.4507 0.0797

8 0.0325 6.0807ˆ 10´8 2.4507 0.0796

9 0.0325 6.3895ˆ 10´8 2.4507 0.0797

10 0.0327 6.6521ˆ 10´8 2.4507 0.0801

11 0.0330 6.9071ˆ 10´8 2.4507 0.0808

Table 3.2: The perturbation expression quantities (as defined in Theorem 6) for the BiCG

stopping tolerance 10´4.

For this model size, we do not give results for supporting the main conjecture (as

discussed at the end of Section 3.2; the more accurately we solve the linear systems, the

more accurate reduced system we obtain). This is because for a small sized dynamical

system we have already reported the data in Section 3.3.1, and we get the similar

results here. Here, we do some other analyses corresponding to Theorem 6, i.e.,

relation between the perturbation and the stopping tolerances.

Table 3.2 lists the values of }RB} , }RC},

›

›

›

›

´

ĂW T
rV
¯´1

ĂW T

›

›

›

›

,

›

›

›

›

rV
´

ĂW T
rV
¯´1

›

›

›

›

and }F }

for the BiCG stopping tolerance 10´4, and Table 3.3 gives the same data for the BiCG

stopping tolerance 10´8. All these quantities are defined in Theorem 6. It is obvious

from these two tables that

›

›

›

›

´

ĂW T
rV
¯´1

ĂW T

›

›

›

›

and

›

›

›

›

rV
´

ĂW T
rV
¯´1

›

›

›

›

are very less sensitive

to the BiCG stopping tolerance, while }RB} and }RC} are directly proportional to it.

Thus, as conjectured at the end of Section 3.2, the norm of the perturbation
´

}F }
¯
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BIRKA

Iteration
}RB} }RC}

›

›

›

›

´

ĂW T
rV
¯´1

ĂW T

›

›

›

›

F

or
›

›

›

›

rV
´

ĂW T
rV
¯´1

›

›

›

›

F

}F }

1 1.4062ˆ 10´5 1.3372ˆ 10´11 2.4554 3.4528ˆ 10´5

2 6.4701ˆ 10´6 1.1488ˆ 10´11 2.4526 1.5868ˆ 10´5

3 7.3663ˆ 10´6 9.9444ˆ 10´12 2.4515 1.8058ˆ 10´5

4 1.1982ˆ 10´5 1.6620ˆ 10´11 2.4510 2.9369ˆ 10´5

5 9.0962ˆ 10´6 1.1775ˆ 10´11 2.4508 2.2293ˆ 10´5

6 4.1159ˆ 10´6 6.3212ˆ 10´12 2.4507 1.0087ˆ 10´5

7 5.2442ˆ 10´6 8.2256ˆ 10´12 2.4507 1.2852ˆ 10´5

8 1.2491ˆ 10´5 1.6984ˆ 10´11 2.4507 3.0612ˆ 10´5

9 1.4070ˆ 10´5 3.6218ˆ 10´11 2.4507 3.4481ˆ 10´5

10 1.1009ˆ 10´5 2.7919ˆ 10´11 2.4507 2.6981ˆ 10´5

11 9.4640ˆ 10´6 2.3366ˆ 10´11 2.4507 2.3193ˆ 10´5

Table 3.3: The perturbation expression quantities (as defined in Theorem 6) for the BiCG

stopping tolerance 10´8.

should reduce as we reduce the BiCG stopping tolerance. This is supported by the

data in the two tables as well (see columns for }F }). The values of }RB}, which is

the residual of the linear systems involving rV , for both the BiCG stopping tolerances

seem higher that their respective stopping tolerances. The reason for this apparent

anomaly is that we are reporting the absolute residuals here. The relative residuals

are still less than the respective stopping tolerances.

We also do the sensitivity analysis of
›

›

›
pĂW T

rV q´1ĂW T
›

›

›
and

›

›

›

rV pĂW T
rV q´1

›

›

›
with re-

spect to different random initializations of BIRKA as well as different reduced sys-

tem sizes. Table 3.4 gives this data at convergence of BIRKA corresponding to the

BiCG stopping tolerance of 10´4. As evident from this table,
›

›

›
pĂW T

rV q´1ĂW T
›

›

›
and

›

›

›

rV pĂW T
rV q´1

›

›

›
vary very less.

We reduce the model sizes 10, 000 and 40, 000 to the sizes 6 and 5, respectively, as
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Reduced

Model

Size

›

›

›

›

´

ĂW T
rV
¯´1

ĂW T

›

›

›

›

F

or
›

›

›

›

rV
´

ĂW T
rV
¯´1

›

›

›

›

F

Random

Initialization

1

Random

Initialization

2

Random

Initialization

3

Random

Initialization

4

Random

Initialization

5

4 2.0109 2.0045 2.0048 2.0100 2.0065

5 2.2427 2.2406 2.2413 2.2399 2.2392

6 2.4507 2.4531 2.4511 2.4557 2.4507

7 2.6467 2.6467 2.6468 2.6467 2.6467

8 2.8365 2.8360 2.8366 2.8371 2.8368

9 3.0248 3.0269 3.0193 3.0306 3.0722

10 3.1718 3.1759 3.1768 3.1711 3.2142

Table 3.4: The sensitivity analysis for the heat transfer model of size 100 with respect to

random initializations and reduced system sizes.

discussed earlier based upon similar values in [12] and [24]. Hence, the linear systems

of size 60, 000ˆ60, 000 and 2, 00, 000ˆ2, 00, 000 are required to be solved, respectively.

The linear systems arising in the model reduction process of both these size are ill-

conditioned. Hence, we use a preconditioned BiCG here. The preconditioner that we

use is incomplete LU [22]. The drop tolerance in the preconditioner is taken as 10´5

based upon the range given in [22]. The result for the model size 10, 000 is given in

Figure 3.4 and the result for the model size 40, 000 is given in Figure 3.5. From both

Figure 3.4 and 3.5, it is again evident that we get a more accurate reduced model as

we solve the linear systems more accurately (solid line is below the dotted one at all

the BIRKA steps).
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Figure 3.4: Accuracy of the reduced system plotted at each BIRKA iteration for the two

different stopping tolerances in BiCG; heat transfer model of size 10,000. Here, the x-axis

is in the linear scale and the y-axis is in the log scale.
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Figure 3.5: Accuracy of the reduced system plotted at each BIRKA iteration for the two

different stopping tolerances in BiCG; heat transfer model of size 40,000. Here, the x-axis

is in the linear scale and the y-axis is in the log scale.



CHAPTER 4

STABILITY ANALYSIS OF OTHER EFFICIENT

ALGORITHMS FOR BILINEAR MOR

As mentioned earlier, we focus on TBIRKA here. The first condition is satisfied

in a way similar to that of BIRKA except that some extra orthogonality conditions

are imposed on the linear solver (discussed below).

Theorem 7. Let the inexact linear solves in TBIRKA (lines 3b. and 3c. of Algorithm

2.2) are solved satisfying

»

—

—

—

—

—

—

–

V T
1

V T
2

...

V T
M

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

”

RC1 RC2 ¨ ¨ ¨ RCM

ı

“ 0 and

»

—

—

—

—

—

—

–

W T
1

W T
2

...

W T
M

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

”

RB1 RB2 ¨ ¨ ¨ RBM

ı

“ 0,

(4.1)

where V1 and Vk are given by the first equations of lines 3b. and 3c. of Algorithm 2.2,

respectively; RC1 and RCk
are the residuals in the second equations of lines 3b. and

3c. of Algorithm 2.2, respectively; W1 and Wk are given by the second equations of
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lines 3b. and 3c. of Algorithm 2.2, respectively; RB1 and RBk
are the residuals in the

first equations of lines 3b. and 3c. of Algorithm 2.2, respectively; and k “ 2, . . . , M .

Then, TBIRKA satisfies the first condition of backward stability with respect to these

solves.

Proof. Follows the same pattern as the proof for Theorem 3 in [21].

From the above theorem, we infer that the underlying iterative solver should firstly

be based upon a Petrov-Galerkin framework to achieve

V T
k RCk

“ 0 and W T
k RBk

“ 0, (4.2)

for k “ 1, . . . , M . Since BiConjugate Gradient (i.e., BiCG) is one such algorithm [43],

we propose its use in TBIRKA. This is exactly same as for BIRKA (Chapter 3 and

[21]). Secondly, this particular solver should also satisfy the remaining orthogonalities

of (4.1).

These orthogonalities have a form similar to the orthogonalities required while

reducing second order linear dynamical systems ((23) and (24) in [46]; AIRGA al-

gorithm), and can be easily satisfied by using a recycling variant of the underlying

iterative solver. In [46], the ideal iterative solver to be used is Conjugate Gradient (i.e.,

CG) [43] (due to the use of Galerkin projection). Hence, to satisfy the similar orthog-

onalities there, without any extra cost, the authors use Recycling Conjugate Gradient

(i.e., RCG) [39]. Since here BiCG is the ideal iterative solver (as discussed above),

we propose the use of Recycling BiConjugate Gradient (i.e., RBiCG) [4, 3], which

would ensure that the remaining orthogonalities of (4.1) (besides (4.2)) are satisfied

without any extra cost. Similar orthogonalities arise during reduction of parametric

dynamical systems (discussed in the next chapter). Hence, we expand upon satisfying

such orthogonalities in-detail in the following chapter.

To satisfy the second condition of backward stability of TBIRKA, we need to show

that

›

›

›
ζM ´ rζM

›

›

›

H2

“ O p}F }2q , (4.3)

54



where ζM is the original truncated bilinear dynamical system given by (2.3) or

ζM “
 

H1 ps1q , H2 ps1, s2q , H3 ps1, s2, s3q , . . . HM ps1, . . . , sMq
(

, (4.4)

with Hk ps1, . . . , skq for k P t1, . . . , Mu is the kth order transfer function of the

corresponding system (defined earlier in (1.3)), and rζM is the perturbed truncated

bilinear dynamical system given by

rζM “
 

rH1 ps1q , rH2 ps1, s2q , rH3 ps1, s2, s3q , . . . , rHM ps1, . . . , sMq
(

, (4.5)

with rHk ps1, . . . , skq of k P t1, . . . , Mu is the kth order transfer function of the

corresponding system (defined later in Section 4.2), and assuming perturbation F in

A matrix of the input dynamical system.

One way to satisfy (4.3) is to use the definition of the H2´norm of ζM ´ rζM , i.e.,

from Lemma 5.1 of [26] (also defined in Chapter 1)

›

›

›
ζM ´ rζM

›

›

›

2

H2

“

´”

C ´C
ı

b

”

C ´C
ı¯

M
ÿ

k“0

«

ˆ

´

»

–

A 0

0 A` F

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

A 0

0 A` F

fi

fl

˙´1 m
ÿ

j“1

»

–

Nj 0

0 Nj

fi

flb

»

–

Nj 0

0 Nj

fi

fl

ffk

ˆ

´

»

–

A 0

0 A` F

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

A 0

0 A` F

fi

fl

˙´1

¨

˝

»

–

B

B

fi

flb

»

–

B

B

fi

fl

˛

‚.

(4.6)

This approach is followed in satisfying the second condition of backward stability for

BIRKA, and is one of the ways for satisfying the second condition of stability in

TBIRKA as well (Complete system approach; discussed in Section 4.1).

From (4.4) and (4.5), we know that both ζM and rζM are represented by a finite

set of transfer functions, respectively. Hence, another way to satisfy (4.3) in-case of

TBIRKA, is to show that the norm of the difference between the respective order
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transfer functions of (4.4) and (4.5) is equal to the norm of the perturbation. That is,

instead of (4.3) we can show that

›

›

›
H1 ps1q ´ rH1 ps1q

›

›

›

H2

9 O p}F }2q ,
›

›

›
H2 ps1, s2q ´ rH2 ps1, s2q

›

›

›

H2

9 O p}F }2q ,

...
›

›

›
HM ps1, . . . , sMq ´ rHM ps1, . . . , sMq

›

›

›

H2

9 O p}F }2q .

(4.7)

This way was not possible in BIRKA because there M Ñ 8 (see (1.2)-(1.3)1). This

approach is refereed to as a Subsystem approach, and works only for the SISO systems.

We discuss this in Section 4.2.

Note, that in all our subsequent derivations, we assume that all inverses used exist.

This is an acceptable assumption because the inverse of matrices arising here are of

the form as in [10] and [21] (the papers that discuss stability of IRKA and BIRKA,

respectively).

4.1 Complete System Approach

Recall the H2´norm of the truncated bilinear dynamical system given in (1.9), as

›

›ζM
›

›

2

H2
“vecpIpq

T
pC b Cq

M
ÿ

k“0

˜

p´Ab In ´ In b Aq
´1

m
ÿ

j“1

Nj bNj

¸k

p´Ab In ´ In b Aq
´1
pB bBq vecpImq,

where M is the truncation index. Since, we are perturbing only A matrix, and hence,

we define the error system ζM
err
“ ζM ´ rζM matrices as follows:

Aerr “

»

–

A 0

0 A` F

fi

fl , N err
j “

»

–

Nj 0

0 Nj

fi

fl , Berr “

»

–

B

B

fi

fl , and Cerr “

”

C ´C
ı

.
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Using this notation, the H2´norm of the error system is given by

›

›ζM
err›
›

2

H2
“

›

›

›
ζM ´ rζM

›

›

›

2

H2

“ vecpI2pq
T
´”

C ´C
ı

b

”

C ´C
ı¯

M
ÿ

k“0

«

ˆ

´

»

–

A 0

0 A` F

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

A 0

0 A` F

fi

fl

˙´1 m
ÿ

j“1

»

–

Nj 0

0 Nj

fi

flb

»

–

Nj 0

0 Nj

fi

fl

ffk

ˆ

´

»

–

A 0

0 A` F

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

A 0

0 A` F

fi

fl

˙´1

¨

˝

»

–

B

B

fi

flb

»

–

B

B

fi

fl

˛

‚vecpI2mq.

“ vecpI2pq
T
´”

C ´C
ı

b

”

C ´C
ı¯

M
ÿ

k“0

«

ˆ

´

»

–

A 0

0 A

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

0 0

0 F

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

A 0

0 A

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

0 0

0 F

fi

fl

˙´1

m
ÿ

j“1

»

–

Nj 0

0 Nj

fi

flb

»

–

Nj 0

0 Nj

fi

fl

ffk
ˆ

´

»

–

A 0

0 A

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

0 0

0 F

fi

flb

»

–

In 0

0 In

fi

fl

´

»

–

In 0

0 In

fi

flb

»

–

A 0

0 A

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

0 0

0 F

fi

fl

˙´1

¨

˝

»

–

B

B

fi

flb

»

–

B

B

fi

fl

˛

‚vecpI2mq.

Let

pC “
´”

C ´C
ı

b

”

C ´C
ı¯

,

pQ “

¨

˝´

»

–

A 0

0 A

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

A 0

0 A

fi

fl

˛

‚, (4.8)

pF “

»

–

0 0

0 F

fi

fl ,
p

pF “
´

I2n b pF ` pF b I2n

¯

,

pN “

m
ÿ

j“1

¨

˝

»

–

Nj 0

0 Nj

fi

flb

»

–

Nj 0

0 Nj

fi

fl

˛

‚, and pB “

¨

˝

»

–

B

B

fi

flb

»

–

B

B

fi

fl

˛

‚.
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Then, the above equation leads to

›

›ζM
err›
›

2

H2
“ vecpI2pq

T
pC

M
ÿ

k“0

„ˆ

pQ´
p

pF

˙´1

pN

k ˆ

pQ´
p

pF

˙´1

pB vecpI2mq or

›

›ζM
err›
›

2

H2
“ vecpI2pq

T
pC

M
ÿ

k“0

„

pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pN

k

pQ´1

ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq.

(4.9)

For different values of k, we get different terms in the above equation (related to the

truncation of the Volterra series). In total, we get M ` 1 different terms as we vary

the value of k from 0 to M . For k “ 0, we get

J0 “ vecpI2pq
T
pC pQ´1

ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq. (4.10)

We know that if }A}2 ă 1, then the power series expansion of a matrix A using

Neumann series is given as

pI ´Aq´1 “ I `A`A2
`A3

` ¨ ¨ ¨8 “

8
ÿ

i“0

Ai.

Hence, in (4.10), if

›

›

›

›

p

pF pQ´1
›

›

›

›

ă 1, then by Neumann series we get

J0 “ vecpI2pq
T
pC pQ´1

ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq

“ vecpI2pq
T
pC pQ´1

˜

I2n `
p

pF pQ´1 `

ˆ

p

pF pQ´1
˙2

` ¨ ¨ ¨

¸

pB vecpI2mq

“ vecpI2pq
T
pC pQ´1 pB vecpI2mq

` vecpI2pq
T
pC pQ´1

p

pF pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq.

By the definition of the error system we know vecpI2pq
T
pC pQ´1 pB vecpI2mq “ 0. Hence,

the above equation can be re-written as

J0 “ vecpI2pq
T
pC pQ´1

p

pF pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq.

Bounding the right hand side of the above equation we get

|J0| ď
›

›vecpI2pq
T
›

›

›

›

›

pC
›

›

›

›

›

›

pQ´1
›

›

›

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

›

›

›

›

›

ˆ

I2n ´
p

pF pQ´1
˙´1

›

›

›

›

›

›

›

›

pB
›

›

›
}vecpI2mq} .
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Using Lemma 2.3.3 from [27] in the above bounding condition we get that since
›

›

›

›

p

pF pQ´1
›

›

›

›

ă 1 as assumed above, we have

|J0| ď
›

›vecpI2pq
T
›

›

›

›

›

pC
›

›

›

›

›

›

pQ´1
›

›

›

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

¨

˚

˚

˝

1

1´

›

›

›

›

p

pF pQ´1
›

›

›

›

˛

‹

‹

‚

›

›

›

pB
›

›

›
}vecpI2mq} . (4.11)

Let
›

›

›

pQ´1
›

›

›
ă 1 and

›

›

›

›

p

pF

›

›

›

›

ă 1 be defined by the original system and residuals of the

linear solves, respectively. Then, by using the matrix norm inequality property we get
›

›

›

›

p

pF pQ´1
›

›

›

›

ď

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›
or

1

1´

›

›

›

›

p

pF pQ´1
›

›

›

›

ď
1

1´

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

.

Using this inequality in (4.11) we get

|J0| ď
›

›vecpI2pq
T
›

›

›

›

›

pC
›

›

›

›

›

›

pQ´1
›

›

›

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

¨

˚

˚

˝

1

1´

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

˛

‹

‹

‚

›

›

›

pB
›

›

›
}vecpI2mq} , (4.12)

ď O
ˆ›

›

›

›

p

pF

›

›

›

›

˙

.

Similarly, if we take k “ 1 in (4.9) we have

J1 “ vecpI2pq
T
pC

„

pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pN



pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq (4.13)

“ vecpI2pq
T
pC pQ´1

˜

I2n `
p

pF pQ´1 `

ˆ

p

pF pQ´1
˙2

` ¨ ¨ ¨

¸

pN pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq

“ vecpI2pq
T
pC pQ´1 pN pQ´1

ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq

` vecpI2pq
T
pC pQ´1

p

pF pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pN pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq

“ vecpI2pq
T
pC pQ´1 pN pQ´1

p

pF pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq

` vecpI2pq
T
pC pQ´1

p

pF pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pN pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq.
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As earlier, while assigning that
›

›

›

pQ´1
›

›

›
ă 1 and

›

›

›

›

p

pF

›

›

›

›

ă 1, bounding the right hand side

of the above equation we get

ˇ

ˇ

ˇ
J1

ˇ

ˇ

ˇ
ď
›

›vecpI2pq
T
›

›

›

›

›

pC
›

›

›

›

›

›

pQ´1
›

›

›

›

›

›

pN
›

›

›

›

›

›

pQ´1
›

›

›

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

¨

˚

˚

˝

¨

˚

˚

˝

1

1´

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

˛

‹

‹

‚

`

¨

˚

˚

˝

1

1´

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

˛

‹

‹

‚

2˛

‹

‹

‚

›

›

›

pB
›

›

›
}vecpI2mq}

(4.14)

ď O
ˆ
›

›

›

›

p

pF

›

›

›

›

˙

.

Similarly, if we take k “ 2 in (4.9) we get

J2 “ vecpI2pq
T
pC

„

pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pN

2

pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pBvecpI2mq (4.15)

“ vecpI2pq
T
pC pQ´1

ˆ

I2n ´
p

pF pQ´1
˙´1

pN pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pN pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pBvecpI2mq

“ vecpI2pq
T
pC pQ´1

˜

I2n `
p

pF pQ´1 `

ˆ

p

pF pQ´1
˙2

` ¨ ¨ ¨

¸

pN pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pN pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pBvecpI2mq

“ vecpI2pq
T
pC pQ´1 pN pQ´1

ˆ

I2n ´
p

pF pQ´1
˙´1

pN pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pBvecpI2mq

` vecpI2pq
T
pC pQ´1

p

pF pQ´1

˜

ˆ

I2n ´
p

pF pQ´1
˙´1

pN pQ´1

¸2
ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq.

“ vecpI2pq
T
pC pQ´1 pN pQ´1

˜

I2n `
p

pF pQ´1 `

ˆ

p

pF pQ´1
˙2

` ¨ ¨ ¨

¸

pN pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pBvecpI2mq

` vecpI2pq
T
pC pQ´1

p

pF pQ´1

˜

ˆ

I2n ´
p

pF pQ´1
˙´1

pN pQ´1

¸2
ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq.

60



“ vecpI2pq
T
pC pQ´1

´

pN pQ´1
¯2

p

pF pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq

` vecpI2pq
T
pC pQ´1

´

pN pQ´1
¯

p

pF pQ´1

˜

ˆ

I2n ´
p

pF pQ´1
˙´1

pN pQ´1

¸

ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq

` vecpI2pq
T
pC pQ´1

p

pF pQ´1

˜

ˆ

I2n ´
p

pF pQ´1
˙´1

pN pQ´1

¸2
ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq.

As earlier, while assigning that
›

›

›

pQ´1
›

›

›
ă 1 and

›

›

›

›

p

pF

›

›

›

›

ă 1, bounding the right hand side

of the above equation we get
ˇ

ˇ

ˇ
J2

ˇ

ˇ

ˇ
ď
›

›vecpI2pq
T
›

›

›

›

›

pC
›

›

›

›

›

›

pQ´1
›

›

›

›

›

›

pN
›

›

›

2 ›
›

›

pQ´1
›

›

›

2
›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

¨

˚

˚

˝

¨

˚

˚

˝

1

1´

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

˛

‹

‹

‚

`

¨

˚

˚

˝

1

1´

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

˛

‹

‹

‚

2

`

¨

˚

˚

˝

1

1´

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

˛

‹

‹

‚

3˛

‹

‹

‚

›

›

›

pB
›

›

›
}vecpI2mq} ď O

ˆ›

›

›

›

p

pF

›

›

›

›

˙

.

(4.16)

Taking k “M in (4.9), we get

JM “ vecpI2pq
T
pC

„

pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pN

M

pQ´1

ˆ

I2n ´
p

pF pQ´1
˙´1

pBvecpI2mq

(4.17)

“ vecpI2pq
T
pC pQ´1

«

´

pN pQ´1
¯M

p

pF pQ´1

˜

ˆ

I2n ´
p

pF pQ´1
˙´1

pN pQ´1

¸0

`

´

pN pQ´1
¯M´1

p

pF pQ´1

˜

ˆ

I2n ´
p

pF pQ´1
˙´1

pN pQ´1

¸1

`

´

pN pQ´1
¯M´2

p

pF pQ´1

˜

ˆ

I2n ´
p

pF pQ´1
˙´1

pN pQ´1

¸2

` . . .

`

´

pN pQ´1
¯0

p

pF pQ´1

˜

ˆ

I2n ´
p

pF pQ´1
˙´1

pN pQ´1

¸M ff

ˆ

I2n ´
p

pF pQ´1
˙´1

pBvecpI2mq.
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As earlier, while assigning that
›

›

›

pQ´1
›

›

›
ă 1 and

›

›

›

›

p

pF

›

›

›

›

ă 1, bounding the right hand side

of the above equation we get

ˇ

ˇ

ˇ
JM

ˇ

ˇ

ˇ
ď
›

›vecpI2pq
T
›

›

›

›

›

pC
›

›

›

›

›

›

pQ´1
›

›

›

›

›

›

pN
›

›

›

M ›

›

›

pQ´1
›

›

›

M
›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

»

—

—

–

¨

˚

˚

˝

1

1´

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

˛

‹

‹

‚

` . . .`

¨

˚

˚

˝

1

1´

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

˛

‹

‹

‚

M`1fi

ffi

ffi

fl

›

›

›

pB
›

›

›
}vecpI2mq}

(4.18)

ď O
ˆ›

›

›

›

p

pF

›

›

›

›

˙

.

Substituting (4.12), (4.14), (4.16) and (4.18) in (4.9), we get

›

›ζM
err›
›

2

H2
“

›

›

›
ζM ´ rζM

›

›

›

2

H2

“ J0 ` J1 ` J2 ` . . .` JM

ď O
ˆ
›

›

›

›

p

pF

›

›

›

›

˙

. (4.19)

This result is independent of M , except that it should not be infinity. We know

p

pF “
´

I2n b pF ` pF b I2n

¯

or

›

›

›

›

p

pF

›

›

›

›

“

›

›

›

´

I2n b pF ` pF b I2n

¯
›

›

›
.

Now using the triangle inequality property (i.e., }X ` Y } ď }X} ` }Y }) we get
›

›

›

›

p

pF

›

›

›

›

ď

›

›

›

´

I2n b pF
¯
›

›

›
`

›

›

›

´

pF b I2n

¯
›

›

›
.

In the above, if we use the Kronecker product property (}X b Y } “ }X} }Y })[35, 34],

then
›

›

›

›

p

pF

›

›

›

›

ď }I2n}
›

›

›

pF
›

›

›
`

›

›

›

pF
›

›

›
}I2n}

ď O
´
›

›

›

pF
›

›

›

¯

.

We also know pF “

»

–

0 0

0 F

fi

fl. Thus, using the matrix norm property [38] in the above

we get

O
ˆ›

›

›

›

p

pF

›

›

›

›

˙

ď O p}F }q . (4.20)
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Substituting (4.20) in (4.19) we get

›

›ζM
err›
›

2

H2
“

›

›

›
ζM ´ rζM

›

›

›

2

H2

ď O p}F }q .

Following theorem summarizes this.

Theorem 8. Let F be the constant perturbation introduced in A, pF “

»

–

0 0

0 F

fi

fl,

p

pF “
´

I2n b pF ` pF b I2n

¯

, and pQ “

˜

´

»

–

A 0

0 A

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

A 0

0 A

fi

fl

¸

.

If

›

›

›

›

p

pF

›

›

›

›

ă 1, pQ is invertible and
›

›

›

pQ´1
›

›

›
ă 1, then TBIRKA satisfies the second condition

of backward stability with respect to the inexact linear solves, i.e., (2.11).

4.2 Subsystem Approach

Since, as mentioned earlier subsystem approach works only for the SISO systems.

Hence, in the following discussion in this section B “ b P Rnˆ1, C “ c P R1ˆn, and we

only have one bilinear matrix N P Rnˆn in (1.1), (1.2), and (1.3)1. Thus, in (4.4), for

the original truncated bilinear dynamical system ζM , the kth order transfer function,

Hk ps1, . . . , skq “ c pskI ´ Aq
´1N psk´1I ´ Aq

´1 . . . N ps1I ´ Aq
´1 b. (4.21)

Similarly, in (4.5), for the perturbed truncated bilinear dynamical system rζM , the kth

order transfer function,

rHk ps1, . . . , skq “ c pskI ´ pA` F qq
´1

N psk´1I ´ pA` F qq
´1 . . . N ps1I ´ pA` F qq

´1 b.
(4.22)

To prove the condition (4.7), we first abstract out the term containing the pertur-

bation F from the normed difference between the two corresponding transfer functions

(of the original system and the perturbed system) in Lemma 1. Next, in Lemma 2,

for k “ 2, we show that the norm of this term is order of the norm of F . Finally, we

generalize the result of Lemma 2 in Lemma 3 (from k “ 2 to any general k) by using

induction.
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Lemma 1. Let the original bilinear dynamical system be defined as in (4.4) and the

perturbed bilinear dynamical system be defined as in (4.5). Then,

›

›

›
Hk ps1, . . . , skq ´ rHk ps1, . . . , skq

›

›

›

2

H2

ď
›

›cK´1 pskq
›

›

2

H2

›

›K´1 psk´1q
›

›

2

H2
. . .

›

›K´1 ps1q
›

›

2

H2

}Ups1, . . . , skq}
2
H8

›

›K´1 ps1q b
›

›

2

H8
,

where K psiq “ psiIn ´ Aq for i “ 1, . . . , k, and

Ups1, . . . , skq “ K ps1q . . .K psk´1q

˜

NK´1 psk´1q . . . NK´1 ps2qN

´
`

In ´ FK´1 pskq
˘´1

NK´1 psk´1q
`

In ´ FK´1 psk´1q
˘´1

. . . NK´1 ps2q
`

In ´ FK´1 ps2q
˘´1

N
`

In ´K´1 ps1qF
˘´1

¸

.

(4.23)

Proof. Using the definition of H2´norm (1.6), we get

›

›

›
Hk ps1, . . . , skq ´ rHk ps1, . . . , skq

›

›

›

2

H2

“

ˆ

1

2π

˙k

Lim
mÑ8

ż m

´m

. . .

ż m

´m

›

›cK´1 piωkqNK´1 piωk´1q . . . NK´1 piω1q b

´ c pK piωkq ´ F q´1N pK piωk´1q ´ F q´1 . . . N pK piω2q ´ F q
´1

N pK piω1q ´ F q
´1 b

›

›

2

F
dω1 . . . dωk

“

ˆ

1

2π

˙k

Lim
mÑ8

ż m

´m

. . .

ż m

´m

›

›

›

›

›

cK´1 piωkq

˜

NK´1 piωk´1q . . . NK´1 piω2qN

´
`

In ´ FK´1 piωkq
˘´1

NK´1 piωk´1q
`

In ´ FK´1 piωk´1q
˘´1

. . .

NK´1 piω2q
`

In ´ FK´1 piω2q
˘´1

N
`

In ´K´1 piω1qF
˘´1

¸

K´1 piω1q b

›

›

›

›

›

2

F

dω1 . . . dωk
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“

ˆ

1

2π

˙k

Lim
mÑ8

ż m

´m

. . .

ż m

´m

›

›cK´1 piωkqK´1 piωk´1q . . .K´1 piω1q

K piω1q . . .K piωk´1q

˜

NK´1 piωk´1q . . . NK´1 piω2qN

´
`

In ´ FK´1 piωkq
˘´1

NK´1 piωk´1q
`

In ´ FK´1 piωk´1q
˘´1

. . .

NK´1 piω2q
`

In ´ FK´1 piω2q
˘´1

N
`

In ´K´1 piω1qF
˘´1

¸

K´1 piω1q b

›

›

›

›

›

2

F

dω1 . . . dωk.

Using U ps1, . . . , skq given by (4.23), }XY Z}F ď }X}F }Y Z}F , }Y Z}F ď }Y }F }Z}2,

and comparison integral inequality1 [33] for any matrices X, Y , and Z, in the above

equation, we have

›

›

›
Hk ps1, . . . , skq ´ rHk ps1, . . . , skq

›

›

›

2

H2

ď

ˆ

1

2π

˙k

Lim
mÑ8

ż m

´m

. . .

ż m

´m

›

›cK´1 piωkq
›

›

2

F

›

›K´1 piωk´1q
›

›

2

F
. . .

›

›K´1 piω1q
›

›

2

F
}U piω1, . . . , iωkq}

2
2

›

›K´1 piω1q b
›

›

2

2
dω1 . . . dωk.

(4.24)

From the mean value theorem of integration [33] we know

ż m

´m

ż m

´m

f piω2qg piω1, iω2qh piω1q dω1dω2

“

ż m

´m

f piω2q

ˆ
ż m

´m

g piω1, iω2qh piω1q dω1

˙

dω2

ď

ż m

´m

f piω2q

ˆ

max
cPR

pgpic, iω2qq

ż m

´m

h piω1q dω1

˙

dω2

ď max
c,dPR

pgpic, idqq

ż m

´m

f piω2q dω2

ż m

´m

h piω1q dω1.

1This inequality says if f pxq and g pxq are integrable over ra, bs and f pxq ď g pxq, then
şb

a
f pxq dx ď

şb

a
g pxq dx. Note that although we have improper integrals here, this inequality still

holds because of the earlier assumption that such integrals give a finite value.
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Using this property in (4.24) we get2

›

›

›
Hk ps1, . . . , skq ´ rHk ps1, . . . , skq

›

›

›

2

H2

ď

ˆ

1

2π

˙k

Lim
mÑ8

ż m

´m

. . .

ż m

´m

›

›cK´1 piωkq
›

›

2

F

›

›K´1 piωk´1q
›

›

2

F
. . .

›

›K´1 piω1q
›

›

2

F

dω1 . . . dωk max
ω1, ..., ωkPR

}U piω1, . . . , iωkq}
2
2 max

ω1PR

›

›K´1 piω1q b
›

›

2

2

ď
›

›cK´1 pskq
›

›

2

H2

›

›K´1 psk´1q
›

›

2

H2
. . .

›

›K´1 ps1q
›

›

2

H2

}U ps1, . . . , skq}
2
H8

›

›K´1 ps1q b
›

›

2

H8
.

Lemma 2. Let }F }2 ă 1, where F is the perturbation introduced in the A matrix

of the input dynamical system. Also, let }K´1 psiq}H8 ă 1 for i “ 1 and 2, where

K psiq “ psiIn ´ Aq with In being the identity matrix. Then,

}U2}H8 9O p}F }2q .

where U2 “ U ps1, s2q from (4.23).

Proof. Substituting k “ 2 in (4.23), we get

U2 “ K ps1q
´

N ´
`

In ´ FK´1 ps2q
˘´1

N
`

In ´K´1 ps1qF
˘´1

¯

.

If }FK´1 ps2q}H8 ă 1 and }K´1 ps1qF }H8 ă 1, then by the Neumann series, we get3

U2 “ K ps1q
ˆ

N ´
´

In ` FK´1 ps2q `
`

FK´1 ps2q
˘2
` ¨ ¨ ¨

¯

N

´

In `K´1 ps1qF `
`

K´1 ps1qF
˘2
` ¨ ¨ ¨

¯

˙

“ K ps1q
ˆ

N ´N ´NK´1 ps1qF
`

In `K´1 ps1qF ` ¨ ¨ ¨
˘

´ FK´1 ps2q
`

In ` FK´1 ps2q ` ¨ ¨ ¨
˘

N
´

In `K´1 ps1qF `
`

K´1 ps1qF
˘2
` ¨ ¨ ¨

¯

˙

2As mentioned in Footnote 1, the improper integrals here do not affect application of this mean

value theorem because all such integrals are assumed to give a finite value.

3From [38, page 527], we know pI ´Aq
´1
“

8
ř

k“0

Ak when }A} ă 1 for any matrix norm. Here, for

the first inequality we have
›

›FK´1 ps2q
›

›

H8
ă 1 or max

ω2PR

›

›FK´1 piω2q
›

›

2
ă 1, and hence, the applicable

matrix norm is 2´norm. Similarly for the second inequality.
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“ K ps1q
ˆ

´NK´1 ps1qF
`

In ´K´1 ps1qF
˘´1

´ FK´1 ps2q
`

In ´ FK´1 ps2q
˘´1

N
`

In ´K´1 ps1qF
˘´1

˙

“ K ps1q
´

´NK´1 ps1qF ´ FK´1 ps2q
`

In ´ FK´1 ps2q
˘´1

N
¯

`

In ´K´1 ps1qF
˘´1

.

Taking H8´norm on both sides, and using }XY }2 ď }X}2 }Y }2 and }X ` Y }2 ď

}X}2 ` }Y }2, for any two matrices X and Y , we get

}U2}H8 ď max
ω1,ω2PR

˜

}K piω1q}2

ˆ

}N}2
›

›K´1 piω1q
›

›

2
}F }2 ` }F }2

›

›K´1 piω2q
›

›

2

›

›

›

`

In ´ FK´1 piω2q
˘´1

›

›

›

2
}N}2

˙

›

›

›

`

In ´K´1 piω1qF
˘´1

›

›

›

2

¸

ď}K ps1q}H8 }N}2 }F }2

˜

›

›K´1 ps1q
›

›

H8
`
›

›K´1 ps2q
›

›

H8

max
ω2PR

›

›

›

`

In ´ FK´1 piω2q
˘´1

›

›

›

2

¸

max
ω1PR

›

›

›

`

In ´K´1 piω1qF
˘´1

›

›

›

2
.

(4.25)

Technically by definition of the H8´norm and how K psq is defined in our hypotheses,

}K ps1q}H8 “ }K ps2q}H8 “ }K psq}H8 , however, for sake of exposition, we keep them

separate. Similarly for the H8´norm of inverses of K ps1q and K ps2q.

To abstract }F }2 out from the above inequality, let us look at

max
ω2PR

›

›

›
pIn ´ FK´1 piω2qq

´1
›

›

›

2
separately. Recall, while applying Neumann series we

assumed that }FK´1 ps2q}H8 ă 1 or max
ω2PR

}FK´1 piω2q}2 ă 1. Since the maximum of

such a norm is less than one, we have for all ω2 P R, }FK´1 piω2q}2 ă 1. Using this

along with Lemma 2.3.3 from [27]4 in the above expression, we get

max
ω2PR

›

›

›

`

In ´ FK´1 piω2q
˘´1

›

›

›

2
ď max

ω2PR

1

1´ }FK´1 piω2q}2

ď
1

1´max
ω2PR

}FK´1 piω2q}2

ď
1

1´ }FK´1 ps2q}H8
. (4.26)

4If F P Rnˆn and }F }p ă 1, then I ´ F is nonsingular and pI ´ F q
´1

“
8
ř

k“0

F k with

›

›

›
pI ´ F q

´1
›

›

›

p
ď

1

1´ }F }p
.
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If we assume }F }2 ă 1 and }K´1 ps2q}H8 ă 1 (as in our hypotheses), then using earlier

used matrix norm properties, we get

›

›FK´1 ps2q
›

›

H8
“ max

ω2PR

›

›FK´1 piω2q
›

›

2
ď }F }2max

ω2PR

›

›K´1 piω2q
›

›

2

ď }F }2
›

›K´1 ps2q
›

›

H8

ď 1,

as assumed for applying Neumann series earlier as well as Lemma 2.3.3 from [27]

above. Thus, no extra assumptions beyond those in hypotheses are needed. Further,

we also get

1´ }F }2
›

›K´1 ps2q
›

›

H8
ď 1´

›

›FK´1 ps2q
›

›

H8
or (4.27)

1

1´ }FK´1 ps2q}H8
ď

1

1´ }F }2 }K´1 ps2q}H8
. (4.28)

Similarly, by assuming }F }2 ă 1 and }K´1 ps1q}H8 ă 1 (as in our hypotheses),

we can bound the last term of (4.25) as follows:

max
ω1PR

›

›

›

`

In ´K´1 piω1qF
˘´1

›

›

›

2
ď

1

1´ }K´1 ps1qF }H8
and (4.29)

1

1´ }K´1 ps1qF }H8
ď

1

1´ }K´1 ps1q}H8 }F }2
. (4.30)

Substituting (4.26)-(4.28) and (4.29)-(4.30) in (4.25), we get

}U2}H8 ď}K ps1q}H8 }N}2 }F }2

«

›

›K´1 ps1q
›

›

H8
`

}K´1 ps2q}H8
1´ }F }2 }K´1 ps2q}H8

ff

ˆ

1

1´ }K´1 ps1q}H8 }F }2

˙

.

From the above inequality it is clear that if }F }2 }K´1 ps2q}H8 ă 1 and

}K´1 ps1q}H8 }F }2 ă 1, which are true from our hypotheses, then

}U2}H8 “ O p}F }2q .
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Lemma 3. Let }F }2 ă 1, where F is the perturbation introduced in the A matrix of

the input dynamical system. Also, let }K´1 psiq}H8 ă 1 for i “ 1, 2, . . . , k, where

K psiq “ psiIn ´ Aq with In being the identity matrix. Then,

}Uk}H8 9O p}F }2q ,

where Uk “ Ups1, . . . , skq from (4.23).

Proof. We prove this by mathematical induction.

Base Case :

k “ 1 is the linear system case already proved in [10] (see below theorem).

Theorem 9. [10] Let F be the constant perturbation introduced in the A matrix of

the input dynamical system. If }K´1 psq}H8 ă 1 and }F }2 ă 1, then

›

›

›
H psq ´ rH psq

›

›

›

H2

ď
}cK´1 psq}H2

}K´1 psq b}H8
1´ }K´1 psq}H8 }F }2

}F }2 ,

where K psq “ psIn ´ Aq for s P ts1, . . . , sku.

k “ 2 has been proved above (Lemma 2).

Induction Hypothesis :

From (4.23), we know for k “ L

UL “ K ps1q . . .K psL´1q

˜

NK´1 psL´1q . . . NK´1 ps2qN ´
`

In ´ FK´1 psLq
˘´1

NK´1 psL´1q
`

In ´ FK´1 psL´1q
˘´1

. . . NK´1 ps2q
`

In ´ FK´1 ps2q
˘´1

N
`

In ´K´1 ps1qF
˘´1

¸

.

(4.31)

Let }UL}H8 “ O p}F }2q .

Induction Step :
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We show the above for k “ L` 1. Again, from (4.23), we know

UL`1 “ K ps1q . . .K psLq

˜

NK´1 psLq . . . NK´1 ps2qN ´
`

In ´ FK´1 psL`1q
˘´1

NK´1 psLq
`

In ´ FK´1 psLq
˘´1

. . . NK´1 ps2q
`

In ´ FK´1 ps2q
˘´1

N
`

In ´K´1 ps1qF
˘´1

¸

.

We first write UL`1 in terms of UL. Using our hypotheses, we have }FK´1 psL`1q}H8 ă

}F }2 }K´1 psL`1q}H8 ă 1, and hence, applying Neumann series above, we get

UL`1 “ K ps1q . . .K psLq

˜

NK´1 psLq . . . NK´1 ps2qN

´

´

In ` FK´1 psL`1q `
`

FK´1 psL`1q
˘2
` ¨ ¨ ¨

¯

NK´1 psLq
`

In ´ FK´1 psLq
˘´1

. . . NK´1 ps2q
`

In ´ FK´1 ps2q
˘´1

N
`

In ´K´1 ps1qF
˘´1

¸

“ K ps1q . . .K psLq

˜

NK´1 psLq . . . NK´1 ps2qN

´NK´1 psLq
`

In ´ FK´1 psLq
˘´1

. . . NK´1 ps2q
`

In ´ FK´1 ps2q
˘´1

N
`

In ´K´1 ps1qF
˘´1

´ FK´1 psL`1q
`

In ´ FK´1 psL`1q
˘´1

NK´1 psLq
`

In ´ FK´1 psLq
˘´1

. . .

NK´1 ps2q
`

In ´ FK´1 ps2q
˘´1

N
`

In ´K´1 ps1qF
˘´1

¸

.

In the above equation, taking NK´1 psLq common from the first two terms of the
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bigger bracket, we have

“ K ps1q . . .K psLq

˜

NK´1 psLq
ˆ

NK´1 psL´1q . . . NK´1 ps2qN

´
`

In ´ FK´1 psLq
˘´1

NK´1 psL´1q
`

In ´ FK´1 psL´1q
˘´1

. . . NK´1 ps2q
`

In ´ FK´1 ps2q
˘´1

N
`

In ´K´1 ps1qF
˘´1

˙

´ FK´1 psL`1q
`

In ´ FK´1 psL`1q
˘´1

NK´1 psLq
`

In ´ FK´1 psLq
˘´1

. . .

NK´1 ps2q
`

In ´ FK´1 ps2q
˘´1

N
`

In ´K´1 ps1qF
˘´1

¸

.

(4.32)

Now we look at expression of UL. Multiplying K´1 psL´1q . . .K´1 ps1q on both the sides

of (4.31) from left, we get

K´1 psL´1q . . .K´1 ps1qUL “

˜

NK´1 psL´1q . . . NK´1 ps2qN ´
`

In ´ FK´1 psLq
˘´1

NK´1 psL´1q
`

In ´ FK´1 psL´1q
˘´1

. . . NK´1 ps2q
`

In ´ FK´1 ps2q
˘´1

N
`

In ´K´1 ps1qF
˘´1

¸

.

(4.33)

Substituting (4.33) in (4.32), we get

UL`1 “ K ps1q . . .K psLq

˜

NK´1 psLq
ˆ

K´1 psL´1q . . .K´1 ps1qUL
˙

´ FK´1 psL`1q
`

In ´ FK´1 psL`1q
˘´1

NK´1 psLq
`

In ´ FK´1 psLq
˘´1

. . . NK´1 ps2q
`

In ´ FK´1 ps2q
˘´1

N
`

In ´K´1 ps1qF
˘´1

¸

.

Taking H8´norm on both sides, and as earlier, using the norm inequality properties
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in the above equation, we get

}UL`1}H8 ď max
ω1, ..., ωL`1PR

«

}K piω1q}2 . . . }K piωLq}2

ˆ

}N}2
›

›K´1 piωLq
›

›

2
. . .

›

›K´1 piω1q
›

›

2

}U piω1, . . . , iωLq}2 ` }F }2
›

›K´1 piωL`1q
›

›

2

›

›

›

`

In ´ FK´1 piωL`1q
˘´1

›

›

›

2

}N}2
›

›K´1 piωLq
›

›

2

›

›

›

`

In ´ FK´1 piωLq
˘´1

›

›

›

2
. . .

}N}2
›

›K´1 piω2q
›

›

2

›

›

›

`

In ´ FK´1 piω2q
˘´1

›

›

›

2

}N}2

›

›

›

`

In ´K´1 piω1qF
˘´1

›

›

›

2

˙

ff

.

Similar to (4.26) and (4.28), here also, using Lemma 2.3.3 from [27] we get

}UL`1}H8 ď}K ps1q}H8 . . . }K psLq}H8 }N}2
›

›K´1 psLq
›

›

H8
. . .

›

›K´1 ps2q
›

›

H8
«

›

›K´1 ps1q
›

›

H8
}UL}H8 `

}N}L´12 }K´1 psL`1q}H8
`

1´ }F }2 }K´1 psL`1q}H8
˘

. . .
`

1´ }F }2 }K´1 ps2q}H8
˘

¨
}F }2

1´ }K´1 ps1q}H8 }F }2

ff

.

From induction hypothesis we know }UL}H8 9O p}F }2q. Using this we get

}UL`1}H8 9O p}F }2q .

Theorem 10. If hypotheses of Lemmas 1 and 3 holds, then

›

›

›
Hk ps1, . . . , skq ´ rHk ps1, . . . , skq

›

›

›

2

H2

“ O
`

}F }22
˘

or

TBIRKA satisfies the second condition of backward stability with respect to inexact

linear solves.

Proof. Directly follows from combining the results of Lemmas 1 and 3.
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Corollary 2. Assuming the hypotheses of Theorem 7, and either of Theorem 8 or

Theorem 10 are satisfied, then TBIRKA is backward stable with respect to the inexact

linear solves.

In the next section, we analyze all the involved matrices.

4.3 Invertibility of Involved Matrices

Similar to previous chapter, here also we have assumed invertibility of seven ma-

trices. Most of these invertibility assumptions directly come from the control system

theory as well as the model reduction theory of bilinear systems. We have also as-

sumed invertibility of few newly proposed matrices. In this section, we summarize/

analyze all these assumptions in the order of appearance of the corresponding matrix

in this chapter. We first summarize the invertibility assumptions from literature.

(a) In the H2´norm definition of a truncated bilinear dynamical system (1.9), we

assume that p´Ab In ´ In b Aq is invertible. This is a standard definition.

Please see Lemma 5.1 of [26].

(b) Here again we assume invertibility of
´

ĂW T
r
rVr

¯

. Directly coming from literature.

This is easy to enforce and come from TBIRKA. Please see Algorithm 4.3 of [24]

or Algorithm 2 of [26] .

(c) In (2.4), we assume the middle term, i.e.,

˜

´

»

–

A 0

0 Λ

fi

flb

»

–

In 0

0 Ir

fi

fl´

»

–

In 0

0 Ir

fi

flb

»

–

A 0

0 Ǎ

fi

fl

¸

is invertible. This comes from the H2´norm of the error system (ζM ´ ζMr ).

Please see Theorem 5.1 of [26].

(d) We assume invertibility of p´Λb In ´ Ir b Aq in Algorithm 2.2. This again

comes from TBIRKA. Please see Algorithm 4.3 of [24] or Algorithm 2 of [26].
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(e) Again, as earlier, here also we assume invertibility of pskIn ´ Aq and

pskIn ´ pA` F qq in (4.21) and (4.22), respectively. These come from the trans-

fer function definitions. Please see Section 2 of [26] and Theorem 4.1 of [10],

respectively.

During the backward stability analysis of TBIRKA, we assume invertibility of some

newly proposed matrices. Next, we analyze these matrices. Note that below, we

discuss the matrix in (a) before the matrix in (b) although the latter appears first in

this chapter. This is done for ease of exposition.

(a) We assume invertibility of pQ given in (4.8). Also listed below for easy access.

pQ “´

»

–

A 0

0 A

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

A 0

0 A

fi

fl .

This is one of the most important assumption in obtaining a backward stable

TBIRKA (see Corollary 2). Hence, here we relate this invertibility assumption

with the underlying bilinear dynamical system. If we define A2 “

»

–

A 0

0 A

fi

fl,

I2n “

»

–

In 0

0 In

fi

fl, and pQ “ Q1bQ2, where Q1, Q2 P R2nˆ2n are any two matrices,

then pQ can be rewritten as

´A2 b I2n ´ I2n b A2 “ Q1 bQ2 or

´pA2 b I2nq vecpI2nq ´ pI2n b A2q vecpI2nq “ pQ1 bQ2q vecpI2nq or

´AT2 ´ A2 “ Q2Q
T
1 or

´

»

–

A 0

0 A

fi

fl

T

´

»

–

A 0

0 A

fi

fl “ Q2Q
T
1 or

»

–

´AT ´ A 0

0 ´AT ´ A

fi

fl “ Q2Q
T
1 .

If
`

´AT ´ A
˘

is invertible, then Q1 and Q2 are invertible. This implies that

pQ “ pQ1 bQ2q is invertible. As in the case of BIRKA stability (see (b) on page

36-37),
`

´AT ´ A
˘

is directly related to the underlying Lyapunov equation.
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(b) In (4.6) and (4.9), we assume invertibility of

¨

˝´

»

–

A 0

0 A` F

fi

flb

»

–

In 0

0 In

fi

fl´

»

–

In 0

0 In

fi

flb

»

–

A 0

0 A` F

fi

fl

˛

‚

and

ˆ

pQ´
p

pF

˙

, respectively, both of which represent the same matrix (i.e., pQ

with perturbation). This matrix is invertible if
´

´ pA` F qT ´ pA` F q
¯

is

invertible.

Next, we look at the conditioning of the problem and the perturbation expression,

leading to the accuracy of the reduced system.

4.4 Accuracy of the Reduced System

Next, as in the previous chapter, we compute the accuracy for the reduced system

obtained after using inexact TBIRKA. Assume that TBIRKA satisfies the hypotheses

of above Corollary 2, i.e., TBIRKA is backward stable with respect to the inexact

linear solves. Then, from Theorem 3 we get
›

›g
`

ζM
˘

´ rg
`

ζM
˘
›

›

H2

}g pζMq}H2

“ O
`

κpζMq }F }
˘

, or

›

›

›
ζMr ´ rζMr

›

›

›

H2

}ζMr }H2

“ O
`

κpζMq }F }
˘

, (4.34)

where, as earlier, g denotes exact TBIRKA, rg denotes inexact TBIRKA, ζM is the

original full model, κpζMq is the condition number of ζM (discussed below), and F is

the perturbation in ζM . Also, g
`

ζM
˘

“ ζMr , and rg
`

ζM
˘

“ rζMr .

Thus, the accuracy of the reduced system is dependent upon the condition number

of the problem and the perturbation. First, we compute the conditioning of the

original bilinear system with respect to computing the H2´norm of the error system

ζM
err
“ ζM ´ rζM . This is easy to compute and gives a good approximation to the

conditioning of the original bilinear system with respect to computing the H2´norm

of the error system ζMr ´ rζMr (as needed in (4.34)). Similar analysis has been done in

[21].
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Recall the error expression as defined in (4.9) or

›

›ζM
err›
›

2

H2
“

›

›

›
ζM ´ rζM

›

›

›

2

H2

“ vecpI2pq
T
pC

M
ÿ

k“0

„

pQ´1
ˆ

I2n ´
p

pF pQ´1
˙´1

pN

k

pQ´1

ˆ

I2n ´
p

pF pQ´1
˙´1

pB vecpI2mq,

“J0 ` J1 ` J2 ` . . .` JM ,

where J0, J1, J2, and JM are defined in (4.10), (4.13), (4.15), and (4.17), respectively.

Thus, the error expression above can be bounded as follow:

›

›

›
ζM ´ rζM

›

›

›

H2

ď |J0| ` |J1| ` |J2| ` . . .` |JM | . (4.35)

Recall that J0, J1, J2, and JM have already been bounded in (4.12), (4.14), (4.16),

and (4.18), respectively. For stability, in Corollary 2, we have assumed

›

›

›

›

p

pF

›

›

›

›

ă 1, which

gives

1

1´

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

ď
1

1´
›

›

›

pQ´1
›

›

›

.

Using this new bound in (4.12), (4.14), (4.16), and (4.18) we get

ˇ

ˇ

ˇ
Jk

ˇ

ˇ

ˇ
ď
›

›vecpI2pq
T
›

›

›

›

›

pC
›

›

›

›

›

›

pQ´1
›

›

›

›

›

›

pN
›

›

›

k ›
›

›

pQ´1
›

›

›

k
›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

»

—

–

¨

˝

1

1´
›

›

›

pQ´1
›

›

›

˛

‚` . . .`

¨

˝

1

1´
›

›

›

pQ´1
›

›

›

˛

‚

k`1
fi

ffi

fl

›

›

›

pB
›

›

›
}vecpI2mq} ,
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for k “ 0, . . . , M . Using the above in (4.35) we get

›

›

›
ζM ´ rζM

›

›

›

H2

ď
›

›vecpI2pq
T
›

›

›

›

›

pC
›

›

›

›

›

›

pQ´1
›

›

›

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

¨

˝

1

1´
›

›

›

pQ´1
›

›

›

˛

‚

«

1`
›

›

›

pN
›

›

›

›

›

›

pQ´1
›

›

›

¨

˝1`
1

1´
›

›

›

pQ´1
›

›

›

˛

‚

`

›

›

›

pN
›

›

›

2 ›
›

›

pQ´1
›

›

›

2

¨

˝1`
1

1´
›

›

›

pQ´1
›

›

›

`

¨

˝

1

1´
›

›

›

pQ´1
›

›

›

˛

‚

2˛

‚

` . . .

`

›

›

›

pN
›

›

›

M ›

›

›

pQ´1
›

›

›

M

¨

˝1`
1

1´
›

›

›

pQ´1
›

›

›

` . . .`

¨

˝

1

1´
›

›

›

pQ´1
›

›

›

˛

‚

M˛

‚

ff

›

›

›

pB
›

›

›
}vecpI2mq} .

We know that, if S is an arithmetic progression of the form 1 `

a p1` xq ` a2 p1` x` x2q ` . . . ` am p1` x` x2 ` . . .` xmq, then S “

1

1´ x

„

am`1 ´ 1

a´ 1
´
x ppaxqm`1 ´ 1q

ax´ 1



. Using this property in the above inequal-

ity, we get

›

›

›
ζM ´ rζM

›

›

›

H2

ď
›

›vecpI2pq
T
›

›

›

›

›

pC
›

›

›

›

›

›

pQ´1
›

›

›

›

›

›

›

p

pF

›

›

›

›

›

›

›

pQ´1
›

›

›

¨

˝

1

1´
›

›

›

pQ´1
›

›

›

˛

‚

¨

˚

˚

˚

˚

˝

1

1´
1

1´
›

›

›

pQ´1
›

›

›

˛

‹

‹

‹

‹

‚

«

›

›

›

pN
›

›

›

M`1 ›
›

›

pQ´1
›

›

›

M`1

´ 1
›

›

›

pN
›

›

›

›

›

›

pQ´1
›

›

›
´ 1

´

¨

˝

1

1´
›

›

›

pQ´1
›

›

›

˛

‚

›

›

›

pN
›

›

›

M`1 ›
›

›

pQ´1
›

›

›

M`1

´

1´
›

›

›

pQ´1
›

›

›

¯M`1
´ 1

›

›

›

pN
›

›

›

›

›

›

pQ´1
›

›

›

´

1´
›

›

›

pQ´1
›

›

›

¯ ´ 1

ff

›

›

›

pB
›

›

›
}vecpI2mq} or
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›

›

›
ζM ´ rζM

›

›

›

H2

}ζM}H2

ď
›

›vecpI2pq
T
›

›

›

›

›

pC
›

›

›

›

›

›

pQ´1
›

›

›

«

´

1´
›

›

›

pQ´1
›

›

›

¯M`1

´

›

›

›

pN
›

›

›

M`1 ›
›

›

pQ´1
›

›

›

M`1

´

1´
›

›

›

pQ´1
›

›

›

¯M`1 ´

1´
›

›

›

pQ´1
›

›

›
´

›

›

›

pN
›

›

›

›

›

›

pQ´1
›

›

›

¯

´

1´
›

›

›

pN
›

›

›

M`1 ›
›

›

pQ´1
›

›

›

M`1

1´
›

›

›

pN
›

›

›

›

›

›

pQ´1
›

›

›

ff

›

›

›

pB
›

›

›
}vecpI2mq}

}A}

}ζM}H2

›

›

›

›

p

pF

›

›

›

›

}A}
.

Since, the condition number kpζMq gives the relative change in the output (in our

case this is

›

›

›
ζM ´ rζM

›

›

›

H2

}ζM}H2

) with respect to relative change in the input (in our case

this is
}F }

}A}
because we are perturbing the matrix A only), using the above inequality

and the fact that O
ˆ›

›

›

›

p

pF

›

›

›

›

˙

ď O p}F }q (from proof of Theorem 8) we have

kpζMq “
›

›vecpI2pq
T
›

›

›

›

›

pC
›

›

›

›

›

›

pQ´1
›

›

›

«

´

1´
›

›

›

pQ´1
›

›

›

¯M`1

´

›

›

›

pN
›

›

›

M`1 ›
›

›

pQ´1
›

›

›

M`1

´

1´
›

›

›

pQ´1
›

›

›

¯M`1 ´

1´
›

›

›

pQ´1
›

›

›
´

›

›

›

pN
›

›

›

›

›

›

pQ´1
›

›

›

¯

´

1´
›

›

›

pN
›

›

›

M`1 ›
›

›

pQ´1
›

›

›

M`1

1´
›

›

›

pN
›

›

›

›

›

›

pQ´1
›

›

›

ff

›

›

›

pB
›

›

›
}vecpI2mq}

}A}

}ζM}H2

.

(4.36)

In the experimental results section, we show that condition numbers of the prob-

lems under consideration are fairly small2. This implies that our problems are well

conditioned with respect to computing the H2´norm of the error system ζM
err

.

Second, we determine the upper bound on the perturbation F with respect to the

residuals of inexact linear solves defined in Theorem 7, simultaneously. That is,

RBk
“ F rVk and RT

Ck
“ ĂW T

k F for k “ 1, . . . , M.

If we revisit the TBIRKA algorithm (Algorithm 2.2), we ideally want to perform

stability analysis at the end of line 3d. (where the intermediate projection matrices

are summed to obtain the reduced model). However, until now, we have performed
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stability analysis at the end of line 3b. and the end of the every step of the for loop

of line 3c. We have done this for two reasons. First, the two analysis are equivalent

mathematically, and second, the latter is more easy to implement than the former.

When we derive the expression for perturbation, the former analysis gives a single

expression for perturbation, which we need and is not possible in the latter case.

Hence, in the rest of this section, we refer to end of line 3d. for our analysis. That is,

RB “ F rV and RT
C “

ĂW TF (4.37)

where RB “
M
ř

k“1

RBk
, RC “

M
ř

k“1

RCk
, rV “

M
ř

k“1

Vk and ĂW “
M
ř

k“1

Wk.

From the assumption of Theorem 7, for satisfying the first condition of backward

stability in TBIRKA we need to use the iterative solver based upon the framework

given by (4.1), i.e.,

»

—

—

—

—

—

—

–

V T
1

V T
2

...

V T
M

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

”

RC1 RC2 ¨ ¨ ¨ RCM

ı

“ 0 and

»

—

—

—

—

—

—

–

W T
1

W T
2

...

W T
M

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

”

RB1 RB2 ¨ ¨ ¨ RBM

ı

“ 0.

This implies

ĂW K rRB1 , RB2 , . . . , RBM
s and rV K rRC1 , RC2 , . . . , RCM

s . (4.38)

If we define

F “ RB

´

ĂW T
rV
¯´1

ĂW T
` rV

´

ĂW T
rV
¯´1

RT
C , (4.39)

then using (4.38), (4.37) is satisfied. Also, as earlier discussed
´

ĂW T
rV
¯

is assumed

to be invertible. The following theorem gives a bound on this perturbation F . This

theorem is similar to Theorem 5 from [21].
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Theorem 11. Let RBk
, RCk

, ĂWk and rVk are defined in (4.1). F be defined as in

(4.39). Also, RB “
M
ř

k“1

RBk
, RC “

M
ř

k“1

RCk
, rV “

M
ř

k“1

Vk, ĂW “
M
ř

k“1

Wk and assume
´

ĂW T
rV
¯

is nonsingular. Then, the perturbation F satisfies.

}F }2 ď }F }F ď
?
r
!

max
i
}RBi

}

›

›

›
pĂW T

rV q´1ĂW T
›

›

›
`max

i
}RCi

}

›

›

›

rV pĂW T
rV q´1

›

›

›

)

.

Proof. Note that

F “ RB

´

ĂW T
rV
¯´1

ĂW T
` rV

´

ĂW T
rV
¯´1

RT
C .

}F }F “

›

›

›

›

RB

´

ĂW T
rV
¯´1

ĂW T
` rV

´

ĂW T
rV
¯´1

RT
C

›

›

›

›

F

}F }F ď

›

›

›

›

RB

´

ĂW T
rV
¯´1

ĂW T

›

›

›

›

F

`

›

›

›

›

rV
´

ĂW T
rV
¯´1

RT
C

›

›

›

›

F

.

Now taking the first term from above expression as

›

›

›

›

RB

´

ĂW T
rV
¯´1

ĂW T

›

›

›

›

F

ď
›

›RB

›

›

F

›

›

›

›

´

ĂW T
rV
¯´1

ĂW T

›

›

›

›

ď
?
r
´

max
i

›

›RBi

›

›

¯

›

›

›

›

´

ĂW T
rV
¯´1

ĂW T

›

›

›

›

.

Similarly taking the second term as

›

›

›

›

rV
´

ĂW T
rV
¯´1

RT
c

›

›

›

›

F

ď

›

›

›

›

rV
´

ĂW T
rV
¯´1

›

›

›

›

›

›Rc

›

›

F

ď
?
r
´

max
i

›

›RCi

›

›

¯

›

›

›

›

rV
´

ĂW T
rV
¯´1

›

›

›

›

.

So, finally the expression }F }F given as

}F }2 ď }F }F ď
?
r
!

max
i
}RBi

}

›

›

›
pĂW T

rV q´1ĂW T
›

›

›
`max

i
}RCi

}

›

›

›

rV pĂW T
rV q´1

›

›

›

)

.

From the above expression of }F }, we see that the norm of the perturbation is

proportional to the norm of the two residuals sum obtained while solving the linear

systems arises at step 3b. and 3c. in TBIRKA. The norm of perturbation is also

proportional to the norm of two other quantities
›

›

›
pĂW T

rV q´1ĂW T
›

›

›
and

›

›

›

rV pĂW T
rV q´1

›

›

›
.

These two quantities are very less dependent on accuracy of the linear systems we solve.
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Also, they are not sensitive to different initializations of TBIRKA as well as different

reduced system sizes. This behavior is similar to the related quantities obtained in

the stability analysis of BIRKA [21].

From (4.34),
›

›

›
ζMr ´ rζMr

›

›

›
is proportional to the conditioning of the problem

`

κpζMq
˘

and }F }. The problem is usually well conditioned. From Theorem 11, }F } is directly

proportional to }RB} and }RC}, where RB and RC are the sum of residuals in a

TBIRKA iteration. Thus, we get a more accurate reduced system as we iteratively

solve the linear systems more accurately arising in TBIRKA. This result is very use-

ful in deciding the stopping tolerance for the linear solves. We support this with

experimental results in the next section.

4.5 Numerical Experiments

Here, we first revisit the constraints imposed while satisfying the first and second

conditions of stability. Satisfying the first condition for a backward stable TBIRKA

requires using a Petrov-Galerkin based iterative solver and achieving some extra-

orthogonality conditions during the linear solves (see Corollary 2 or Theorem 7).

As mentioned earlier, we use BiCG as the underlying iterative solver because it

is based upon the Petrov-Galerkin framework, however, we do not attempt to satisfy

the extra-orthogonalities mentioned above for simplicity. We do this during PMOR

in the next chapter where the MOR algorithm is simpler than TBIRKA, and hence,

satisfying extra-orthogonalities is not hard.

Although these orthogonalities are not satisfied by TBIRKA, it turns to be back-

ward stable experimentally (we get a more accurate reduced model as we solve the

linear systems more accurately). This is because these are sufficiency conditions not

necessary.

We have seen two ways of satisfying the second condition of stability for TBIRKA

with respect to inexact linear solves. Now, we discuss how to practically use those

results. In the complete system approach, we have two constraints; } pQ} ă 1 and

}
p

pF } ă 1 (see Corollary 2 and Theorem 8). Here, pQ depends only upon the input
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dynamical system, and hence, is a rigid constraint.
p

pF depends on the subspaces rV and

ĂW and also on the residuals RB and RC . As in the case of BIRKA, here also,
p

pF is less

sensitive to rV and ĂW and more to the residuals of the linear system that we are solving.

Hence, if we need to check that for a given input model would we get a more accurate

reduced model by solving the linear systems to a much smaller stopping tolerance

(say machine precision), then we only check
p

pF ă 1 for a large stopping tolerance (say

10´2), which guarantees satisfying this constraint for the smaller stopping tolerance

(machine precision as above). This saves the effort in solving the linear systems to a

smaller stopping tolerance if TBIRKA is unstable for that particular input model and

that small stopping tolerance.

In the subsystem approach, the two constraints are }K´1psiq}H8 ă 1 and }F } ă 1

(see Corollary 2 and Theorem 10). For }K´1psiq}H8 ă 1 as well we check only for a

large stopping tolerance and this guarantees that this constraint holds for a smaller

stopping tolerance. This is true because by changing the stopping tolerance, the

interpolation points do not vary much. We demonstrate this experimentally in our

subsequent subsections. The constraint }F } ă 1 can be satisfied in the same way as

}
p

pF } ă 1 in the complete system approach.

We perform experiments to show three different cases for satisfying the second

condition of stability for TBIRKA. First, when the constraints of both the approaches

(i.e., complete system and subsystem) are satisfied. Second, when only the constraints

of the complete system approach are satisfied but not of the subsystem approach.

Finally, the third, when the constraints of the subsystem approach are satisfied but

not of the complete system approach. These experiments are performed on a flow

model [18]. This model gives us a SISO bilinear dynamical system, which has been

already defined in Section 3.3.1.

4.5.1 Constraints of Both Approaches Satisfied

Here, we take N = 10, L = 1 and v “ 0.1 that gives us a SISO bilinear dynamical

system of size 110 [12, 24]. We truncate the Volterra series up to 4 terms, i.e., M “ 4,
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based upon the values in [24] and [26]. We initialize the input reduced system in

TBIRKA by random matrices such that initially the first set of constraints of the

subsystem approach are satisfied (i.e., }K´1 psiq }H8 ă 1). The stopping tolerance for

TBIRKA is taken as 10´6, and we reduce this model to size 6. Both these values are

again chosen based upon the values in [12] and [24]. This leads to solving the linear

systems of size 110ˆ 110. While using BiCG, we use two different stopping tolerances

(10´6 and 10´10). Ideally, we should obtain a more accurate reduced model when

using the smaller BiCG tolerance.

TBIRKA

Iteration
}
p

pF } }F } }K´1 psiq}H8

1 8.8738ˆ 10´3 6.1926ˆ 10´3 5.56314ˆ 10´1

2 3.0384ˆ 10´2 2.1509ˆ 10´2 5.41302ˆ 10´1

3 2.5004ˆ 10´2 1.7639ˆ 10´2 5.41260ˆ 10´1

4 2.9488ˆ 10´2 2.0791ˆ 10´2 5.40870ˆ 10´1

5 2.8530ˆ 10´2 2.0134ˆ 10´2 5.40833ˆ 10´1

6 2.9275ˆ 10´2 2.0655ˆ 10´2 5.40793ˆ 10´1

7 2.9161ˆ 10´2 2.0575ˆ 10´2 5.40784ˆ 10´1

8 2.9293ˆ 10´2 2.0668ˆ 10´2 5.40778ˆ 10´1

9 2.9277ˆ 10´2 2.0656ˆ 10´2 5.40776ˆ 10´1

10 2.9302ˆ 10´2 2.0674ˆ 10´2 5.40774ˆ 10´1

11 2.9300ˆ 10´2 2.0672ˆ 10´2 5.40774ˆ 10´1

12 2.9305ˆ 10´2 2.0676ˆ 10´2 5.40773ˆ 10´1

13 2.9305ˆ 10´2 2.0676ˆ 10´2 5.40773ˆ 10´1

14 2.9306ˆ 10´2 2.0676ˆ 10´2 5.40773ˆ 10´1

Table 4.1: Second condition constraint values for the complete system and the sub-

system approaches when using BiCG stopping tolerance of 10´6.

First, we look at the constraints of the second condition of the complete system

approach (as discussed above). pQ is invertible here. We also have
›

›

›

pQ´1
›

›

›
less than one
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TBIRKA

Iteration
}
p

pF } }F } }K´1 psiq}H8

1 4.9676ˆ 10´8 3.5217ˆ 10´8 5.56314ˆ 10´1

2 1.1830ˆ 10´7 8.2901ˆ 10´8 5.41302ˆ 10´1

3 4.3547ˆ 10´7 2.7917ˆ 10´7 5.41260ˆ 10´1

4 1.9356ˆ 10´7 1.3649ˆ 10´7 5.40870ˆ 10´1

5 2.0118ˆ 10´7 1.4096ˆ 10´7 5.40833ˆ 10´1

6 2.0720ˆ 10´7 1.4472ˆ 10´7 5.40793ˆ 10´1

7 2.0654ˆ 10´7 1.4428ˆ 10´7 5.40785ˆ 10´1

8 2.0616ˆ 10´7 1.4400ˆ 10´7 5.40778ˆ 10´1

9 2.0601ˆ 10´7 1.4390ˆ 10´7 5.40776ˆ 10´1

10 2.0593ˆ 10´7 1.4384ˆ 10´7 5.40774ˆ 10´1

11 2.0590ˆ 10´7 1.4382ˆ 10´7 5.40774ˆ 10´1

12 2.0588ˆ 10´7 1.4381ˆ 10´7 5.40773ˆ 10´1

13 2.0587ˆ 10´7 1.4380ˆ 10´7 5.40773ˆ 10´1

14 2.0587ˆ 10´7 1.4380ˆ 10´7 5.40773ˆ 10´1

Table 4.2: Second condition constraint values for the complete system and the sub-

system approaches when using BiCG stopping tolerance of 10´10.

(i.e., 5.5716ˆ 10´1). Finally,

›

›

›

›

p

pF

›

›

›

›

, at the end of the first TBIRKA step, for the BiCG

stopping tolerances of 10´6 and 10´10 is 8.8738ˆ10´3 and 4.9676ˆ10´8, respectively,

both of which are also less than one. These values are less than one at the end of all

the other TBIRKA steps as well. This data is given in two tables (Table 4.1 and 4.2;

see the second columns there).

Next, we look at the constraints of the second condition of the subsystem approach

(as discussed above). K psiq is invertible here. Also, as earlier, due to the particular

initialization of TBIRKA, }K´1 psiq }H8 , at the end of the first TBIRKA step, for

BiCG tolerances of 10´6 and 10´10 both is less than one (5.5631 ˆ 10´1). Finally,

}F }, at the end of the first TBIRKA step, for the BiCG stopping tolerance of 10´6

84



0 2 4 6 8 10 12 14

10
−15

10
−14

10
−13

10
−12

TBIRKA Iterations

∥ ∥ ∥
ζ
M r

−
ζ̃
M r

∥ ∥ ∥

2 H
2

 

 

BiCG−Tol = 10
−6

BiCG−Tol = 10
−10

Figure 4.1: Accuracy of the reduced system plotted at each TBIRKA iteration for the two

different stopping tolerances in BiCG; Flow model of size 110 (satisfying the constraints in

both the complete and the subsystem approach). Here, the x-axis is in the linear scale and

the y-axis is in the log scale.

and 10´10 is 6.1927ˆ 10´3 and 3.5218ˆ 10´8, respectively, both of which are also less

than one. These values are less than one at the end of all the other TBIRKA steps as

well (see the third and the fourth columns of Table 4.1 and Table 4.2). The condition

number for our input model, as defined in (4.36), is 2.4752 ˆ 10´2. This shows that

the flow model is well-conditioned.

The linear systems arising during the model reduction process are ill-conditioned.

Hence, we use a preconditioned BiCG here. The preconditioner that we use is incom-

plete LU [22]. The drop tolerance in the preconditioner is taken as 10´3 based upon

the range given in [22].

The accuracy result is given in Figure 4.1. Here, we have the accuracy of the

reduced system

ˆ

›

›

›
ζMr ´ rζMr

›

›

›

H2

˙

on the y-axis in log scale and the TBIRKA iterations

on the x-axis in linear scale. From Figure 4.1, it is again evident that we get a more

accurate reduced model as we solve the linear systems more accurately (solid line is

below the dotted one at all TBIRKA steps).
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4.5.2 Constraints of only the Complete System Approach

Satisfied

For this experiments, we take the original system same as in the previous subsec-

tion (Section 4.5.1) (i.e., N = 10, L = 1 and v “ 0.1). The only difference is the

initialization of the input reduced system. Here, we take the initial input random

matrices such that at the start the constraints of subsystem approach are not satisfied

(i.e., }K´1 psiq }H8 ě 1). This violation is carried forward in the next few TBIRKA

steps as well. Again, the stopping tolerance for TBIRKA is taken as 10´6, and we

reduce this model to size 6. Both these values are again chosen based upon the values

in [12] and [24]. Also, while using BiCG we use two different stopping tolerances (10´6

and 10´10).

Next, we look at the constraints of the second condition of the complete system

approach. As we know, the value of pQ depends only upon the input model, which

is the same as that of the previous subsection, thus pQ is invertible and less than

one. The value of

›

›

›

›

p

pF

›

›

›

›

, at the end of the first TBIRKA step, for the BiCG stopping

tolerances of 10´6 and 10´10 is 6.3434 ˆ 10´2 and 1.4573 ˆ 10´6, respectively, both

of which are also less than one. These values are less than one at the end of all the

other TBIRKA steps as well. Please look at Table 4.3. As earlier subsection, the flow

model is well-conditioned.

Here, although the subsystem approach constraints are violated and the complete

system approach constraints are satisfied, we still achieve a stable TBIRKA. This is

because, as earlier, both of these approaches provide sufficiency conditions for stability,

and only one needs to be satisfied. The accuracy result is given in Figure 4.2. Here, we

have accuracy of the reduced system

ˆ

›

›

›
ζMr ´ rζMr

›

›

›

H2

˙

on the y-axis in the log scale and

the TBIRKA iterations on the x-axis in the linear scale. From Figure 4.2, we do not

observe any significant difference in the values of

ˆ

›

›

›
ζMr ´ rζMr

›

›

›

H2

˙

for the two BiCG

tolerances at the starting TBIRKA iterations. The dotted line, which corresponds

to the BiCG stopping tolerance 10´6 and the solid line, which corresponds to the

BiCG stopping tolerance 10´10 almost coincide. TBIRKA gets more consistent as it
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converges to the ideal interpolation points. Hence, towards the end of the TBIRKA

iterations (iteration 14 to iteration 17), the solid line should be below the dotted line.

It is again evident that we get a more accurate reduced model as we solve the linear

systems more accurately (solid line is below the dotted one at all TBIRKA steps).

TBIRKA

Iteration

}
p

pF }

BiCG-Tol of 10´6 BiCG-Tol of 10´10

1 6.3434ˆ 10´2 1.4573ˆ 10´6

2 5.5772ˆ 10´2 1.7022ˆ 10´7

3 1.7442ˆ 10´2 2.2269ˆ 10´7

4 2.4148ˆ 10´2 1.8257ˆ 10´7

5 2.6761ˆ 10´2 1.8346ˆ 10´7

6 2.7373ˆ 10´2 3.5462ˆ 10´7

7 2.8725ˆ 10´2 1.9356ˆ 10´7

8 2.8844ˆ 10´2 2.0118ˆ 10´7

9 2.9122ˆ 10´2 2.0740ˆ 10´7

10 2.9209ˆ 10´2 2.0659ˆ 10´7

11 2.9264ˆ 10´2 2.0621ˆ 10´7

12 2.9285ˆ 10´2 2.0603ˆ 10´7

13 2.9297ˆ 10´2 2.0594ˆ 10´7

14 2.9301ˆ 10´2 2.0590ˆ 10´7

15 2.9304ˆ 10´2 2.0588ˆ 10´7

16 2.9305ˆ 10´2 2.0587ˆ 10´7

17 2.9306ˆ 10´2 2.0587ˆ 10´7

Table 4.3: Second condition constraint values for the complete system approach when

using BiCG stopping tolerances of 10´6 and 10´10.
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Figure 4.2: Accuracy of the reduced system plotted at each TBIRKA iteration for the two

different stopping tolerances in BiCG; Flow model of size 110 (satisfying the constraints of

the complete system approach but not of the subsystem approach). Here, the x-axis is in

the linear scale and the y-axis is in the log scale.

4.5.3 Constraints of only the Subsystem Approach Satisfied

For our last experiment, we take N = 10, L = 1 and v “ 0.065 that gives us a

SISO bilinear dynamical system of size 110. These parameters are deliberately chosen

different than the earlier two experiments because this leads to
›

›

›

pQ´1
›

›

›
being greater

than one (1.0221 ˆ 100). Thus, the first constraint of the complete system approach

is directly violated.

Again, we truncate the Volterra series up to 4 terms, i.e. M “ 4, as discussed

in Section 4.5.1, which has been taken from [24] and [26]. We initialize the input

reduced system in TBIRKA by random matrices such that initially, the first set of

constraints of the subsystem approach are satisfied (i.e., }K´1 psiq }H8 ă 1). The

stopping tolerance for TBIRKA is taken as 10´6, and we reduce this model to size

6, as earlier based upon the values in [12] and [24]. This leads to solving the linear

systems of size 110ˆ 110. While using BiCG, we use two different stopping tolerances

(10´4 and 10´8). This choice is slightly different than the earlier two experiments so

as to demonstrate our main conjecture (while satisfying the constraints imposed by
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TBIRKA

Iteration

BiCG-Tol of 10´4 BiCG-Tol of 10´8

}K´1 psiq}H8 }F } }K´1 psiq}H8 }F }

1 9.39899ˆ 10´1 1.4028ˆ 10´2 9.39899ˆ 10´1 2.0097ˆ 10´5

2 8.96287ˆ 10´1 1.4298ˆ 10´2 8.96279ˆ 10´1 1.3542ˆ 10´5

3 8.99243ˆ 10´1 2.0362ˆ 10´2 8.99242ˆ 10´1 1.6097ˆ 10´5

4 9.00299ˆ 10´1 2.0751ˆ 10´2 9.00313ˆ 10´1 1.5380ˆ 10´5

5 9.00012ˆ 10´1 2.1881ˆ 10´2 9.00012ˆ 10´1 1.5632ˆ 10´5

6 9.00205ˆ 10´1 2.1054ˆ 10´2 9.00220ˆ 10´1 1.5496ˆ 10´5

7 9.00128ˆ 10´1 2.1343ˆ 10´2 9.00130ˆ 10´1 1.5561ˆ 10´5

8 9.00161ˆ 10´1 2.1327ˆ 10´2 9.00169ˆ 10´1 1.5540ˆ 10´5

9 9.00139ˆ 10´1 2.1340ˆ 10´2 9.00147ˆ 10´1 1.5554ˆ 10´5

10 9.00147ˆ 10´1 2.1337ˆ 10´2 9.00155ˆ 10´1 1.5549ˆ 10´5

11 9.00142ˆ 10´1 2.1340ˆ 10´2 9.00150ˆ 10´1 1.5552ˆ 10´5

12 9.00144ˆ 10´1 2.1339ˆ 10´2 9.00151ˆ 10´1 1.5551ˆ 10´5

13 9.00142ˆ 10´1 2.1340ˆ 10´2 9.00150ˆ 10´1 1.5551ˆ 10´5

14 9.00143ˆ 10´1 2.1339ˆ 10´2 9.00151ˆ 10´1 1.5551ˆ 10´5

15 9.00143ˆ 10´1 2.1340ˆ 10´2 9.00150ˆ 10´1 1.5551ˆ 10´5

16 9.00143ˆ 10´1 2.1340ˆ 10´2 9.00150ˆ 10´1 1.5551ˆ 10´5

Table 4.4: Second condition constraint values for the subsystem approach when using

BiCG tolerances of 10´4 and 10´8.

the subsystem approach, as we solve the linear systems more accurately, we get a more

accurate reduced system).

Next, we look at the constraints of the second condition of the subsystem ap-

proach. K psiq is invertible here. Also, as earlier, due to the particular initialization of

TBIRKA, }K´1 psiq }H8 , at the end of the first TBIRKA step, for BiCG tolerances of

10´4 and 10´8 both is less than one (9.3989ˆ 10´1). Also, }F }, at the end of the first

TBIRKA step, for the BiCG stopping tolerances of 10´4 and 10´8 is 1.4028 ˆ 10´2

and 2.0098ˆ10´5, respectively, both of which are also less than one. These values are
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Figure 4.3: Accuracy of the reduced system plotted at each TBIRKA iteration for the two

different stopping tolerances in BiCG; Flow model of size 110 (satisfying the constraints in

the subsystem approach but not in the complete system approach). Here, the x-axis is in

the linear scale and the y-axis is in the log scale.

less than one at the end of all the other TBIRKA steps as well (see Table 4.4). The

condition number for our problem, as defined in (4.36), is 1.8275 ˆ 10´1. This shows

that the flow model is well-conditioned.

Here, although the constraints for the complete system approach are violated and

the constraints for the subsystem approach are satisfied, we still achieve a stable

TBIRKA. This because, as earlier, both of these approaches provide sufficiency con-

ditions for stability, and only one needs to be satisfied.

The accuracy result for this is given in Figure 4.3. Again, we have accuracy of

the reduced system

ˆ

›

›

›
ζMr ´ rζMr

›

›

›

H2

˙

on the y-axis in the log scale and the TBIRKA

iterations on the x-axis in the linear scale. From this figure, it is again evident that

we get a more accurate reduced model as we solve the linear systems more accurately

(solid line is below the dotted one at all the TBIRKA steps).
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CHAPTER 5

STABILITY ANALYSIS IN PMOR

While performing exact MOR of non-parametric linear dynamical systems, the

projection matrices at the one iterative step of the MOR algorithm (IRKA [30]) have

the form as follows:

V “
”

pσ1E ´ Aq
´1Br1, . . . , pσrE ´ Aq

´1Brr

ı

and

W “

”

pσ1E ´ Aq
´T CT

l1, . . . , pσrE ´ Aq
´T CT

lr

ı

,
(5.1)

where σi with i “ 1, . . . , r denote the shifts where interpolation is performed; r is the

size to which we want to reduce the input dynamical system; and li and ri are the left

and the right tangent directions, respectively, which are used during interpolation.

As mentioned earlier, we focus on IPMOR [9] for MOR of parametric linear dy-

namical systems. Using inexact linear solves in building the projection matrices in

IPMOR, we get1

rV “
”

rV1 pp
1q ¨ ¨ ¨ rVK pp

1q ¨ ¨ ¨ ¨ ¨ ¨ rV1
`

pL
˘

¨ ¨ ¨ rVK
`

pL
˘

ı

and

ĂW “

”

ĂW1 pp
1q ¨ ¨ ¨ ĂWK pp

1q ¨ ¨ ¨ ¨ ¨ ¨ ĂW1

`

pL
˘

¨ ¨ ¨ ĂWK

`

pL
˘

ı
(5.2)

1IPMOR is not an iterative algorithm. Hence, the reduced system is obtained in one step. This

is unlike all the earlier algorithms.
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with

`

σiE
`

pj
˘

´ A
`

pj
˘˘

rVi
`

pj
˘

“ B
`

pj
˘

rij `RBi

`

pj
˘

and (5.3)
`

σiE
`

pj
˘

´ A
`

pj
˘˘T

ĂWi

`

pj
˘

“ CT
`

pj
˘

lij `RCi

`

pj
˘

, (5.4)

where as earlier, σi with i “ 1, . . . , K denote the shifts; pj P Rv with j “ 1, . . . , L

denote the set of parameters; lij and rij denote the left and the right tangent directions,

respectively; and RBi
ppjq and RCi

ppjq denote the residuals. Thus, the reduced model

obtained by the the inexact IPMOR algorithm can be connected to the original full

model by using the Petrov-Galerkin projection as

rEr ppq “ ĂW TE ppq rV , rAr ppq “ ĂW TA ppq rV , rBr ppq “ ĂW TB ppq , and

rCr ppq “ C ppq rV ,
(5.5)

where p P tp1, . . . , pLu.

For backward stability, next we need to apply the exact IPMOR algorithm on a

perturbed full model. Let F be the perturbation in A ppq only2, i.e., the perturbed

system matrices be denoted as follows:

rE ppq “ E ppq , rA ppq “ A ppq ` F, rB ppq “ B ppq , rC ppq “ C ppq .

Here, applying exact IPMOR algorithm on this perturbed system leads to a system

of linear equations given by

`

σiE
`

pj
˘

´
`

A
`

pj
˘

` F
˘˘

rVi
`

pj
˘

“ B
`

pj
˘

rij, and (5.6)
`

σiE
`

pj
˘

´
`

A
`

pj
˘

` F
˘˘T

ĂWi

`

pj
˘

“ CT
`

pj
˘

lij. (5.7)

To be able to satisfy the first condition of stability (see (2.10)), where the inexact

IPMOR applied onto the original dynamical system is equal to the exact IPMOR

applied onto the perturbed dynamical system, we have to use the same rV and ĂW

here. Thus, the reduced model obtained by exact IPMOR algorithm can be connected

to the perturbed full model by using the Petrov-Galerkin projection as

pEr ppq “ rEr ppq , pAr ppq “ rAr ppq `ĂW TF rV , pBr ppq “ rBr ppq , pCr ppq “ rCr ppq ,

2The derivations that we do next, can be easily done if we consider perturbations in E ppq, B ppq,

and C ppq individually as well [10, 21].
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where rV and ĂW , as earlier, are given by (5.2); p P tp1, . . . , pLu; and rEr ppq, rAr ppq,

rBr ppq, and rCr ppq are given by (5.5). Thus, from the above equation, if ĂW TF rV “ 0,

then pAr ppq “ rAr ppq and we satisfy the first condition of stability.

From (5.3) – (5.6) and (5.4) – (5.7), we get

RBi

`

pj
˘

“ F rVi
`

pj
˘

and RCi

`

pj
˘T
“ ĂWi

`

pj
˘T
F @ j “ 1, . . . , L or

RB “ F rV and RT
C “

ĂW TF, (5.8)

where

RB “

”

RB1 pp
1q ¨ ¨ ¨ RBK

pp1q ¨ ¨ ¨ ¨ ¨ ¨ RB1

`

pL
˘

¨ ¨ ¨ RBK

`

pL
˘

ı

,

RC “

”

RC1 pp
1q ¨ ¨ ¨ RCK

pp1q ¨ ¨ ¨ ¨ ¨ ¨ RC1

`

pL
˘

¨ ¨ ¨ RCK

`

pL
˘

ı

.
(5.9)

In (5.8), if we multiply ĂW T from left in the first equation and rV from right in the

second equation, then we get

ĂW TRB “ ĂW TF rV and RT
C
rV “ ĂW TF rV . (5.10)

Similar to the non-parametric case, we need ĂW TF rV “ 0 for pAr ppq “ rAr ppq. This can

be achieved if

either ĂW TRB “ 0 or RT
C
rV “ 0. (5.11)

The first equation of (5.11) is satisfied if

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

ĂW1 pp
1q
T

...

ĂWK pp
1q
T

...

...

ĂW1

`

pL
˘T

...

ĂWK

`

pL
˘T

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

”

RB1 pp
1q ¨ ¨ ¨ RBK

pp1q ¨ ¨ ¨ ¨ ¨ ¨ RB1

`

pL
˘

¨ ¨ ¨ RBK

`

pL
˘

ı

“ 0.

(5.12)
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The second equation of (5.11) is satisfied if
»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

RC1 pp
1q
T

...

RCK
pp1q

T

...

...

RC1

`

pL
˘T

...

RCK

`

pL
˘T

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

”

rV1 pp
1q ¨ ¨ ¨ rVK pp

1q ¨ ¨ ¨ ¨ ¨ ¨ rV1
`

pL
˘

¨ ¨ ¨ rVK
`

pL
˘

ı

“ 0. (5.13)

Theorem 12. Let the inexact linear solves in IPMOR, that is (5.3) and (5.4), be

solved while satisfying (5.12) and (5.13). Then, IPMOR satisfies the first condition

of backward stability with respect to these inexact linear solves, i.e., (2.10).

Next, satisfying the second condition of stability in IPMOR (Theorem 13 below)

leads to constraints of the same form as that for IRKA (Theorem 4.3 from [10]) with

the difference that system matrices here are dependent on the parameters, which was

not the case earlier.

Theorem 13. Let F be the constant perturbation introduced in A ppq. If

}K´1 ps; pq}H8 ă 1 and }F } ă 1, then

›

›

›
H ps; pq ´ rH ps; pq

›

›

›

H2

ď
}C ppqK´1 ps; pq}H2

}K´1 ps; pqB ppq}H8
1´ }K´1 ps; pq}H8 }F }

}F } , (5.14)

where K ps; pq “ psIn ´ Appqq, s P ts1, . . . , sKu, and p P tp1, . . . , pLu. That is,

IPMOR satisfies the second condition of backward stability with respect to the inexact

linear solves (5.3) and (5.4), i.e., (2.11).

Proof. Similar to Theorem 4.3 in [10].

Corollary 3. Assuming the hypotheses of Theorem 12 and Theorem 13 are satisfied,

then IPMOR algorithm is backward stable with respect to the inexact linear solves.

Next, we discuss how the conditions for stability (given by Corollary 3 or Theorem

12-13) can be easily satisfied. Satisfying (5.14) is not hard and we support this in the

results section later.
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Satisfying (5.12) and (5.13) is similar to satisfying (4.1) in the previous chapter

(Stability of TBIRKA)3. As mentioned earlier, this requires more work than in IRKA

(reducing first-order non-parametric linear dynamical systems in [10]) as well as in

BIRKA (reducing first-order non-parametric bilinear dynamical systems in Chapter 3

and [21]).

Also, as discussed in the previous chapter, this can be easily achieved by using

the framework proposed while reducing second-order non-parametric linear dynam-

ical systems in [46] (AIRGA algorithm). Hence, in the next section (Section 5.1)

we propose this new framework and also highlight differences between ours and the

framework of [46].

5.1 Satisfying Extra-Orthogonality for Stability

We divide satisfying extra orthogonalities problem into three parts; diagonal matrix

part, upper triangular matrix part, and lower triangular matrix part. For making the

diagonal part zero of (5.12) and (5.13), we need

ĂWi

`

pj
˘

K RBi

`

pj
˘

for i “ 1, . . . , K and j “ 1, . . . , L; and

rVi
`

pj
˘

K RCi

`

pj
˘

for i “ 1, . . . , K and j “ 1, . . . , L,
(5.15)

Next, we look at the upper triangular and lower triangular parts of the matrices in

(5.12) and (5.13). Since, the arguments for (5.12) exactly carry to (5.13), we focus on

the former only to avoid repetition. We need the orthogonalities below for ensuring

that the upper and lower triangular part of the matrix is zero in (5.12) and (5.12),

respectively.

3Now onwards, we would only talk about (5.12) and (5.13) since all results easily carryover to

TBIRKA.

95



$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

„

ĂW1 pp
1q



K RB2 pp
1q

„

ĂW1 pp
1q ĂW2 pp

1q



K RB3 pp
1q

...
„

ĂW1 pp
1q ¨ ¨ ¨ ĂWK´1 pp

1q



K RBK
pp1q

...

...
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’
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’

’

’

’

’

’

%

„

ĂW1 pp
1q ¨ ¨ ¨ ĂWK pp

1q ¨ ¨ ¨ ¨ ¨ ¨ ĂW1

`

pL´1
˘

¨ ¨ ¨ ĂWK

`

pL´1
˘



K RB1

`

pL
˘

„

ĂW1 pp
1q ¨ ¨ ¨ ĂWK pp

1q ¨ ¨ ¨ ¨ ¨ ¨ ĂW1

`

pL´1
˘

¨ ¨ ¨ ĂWK

`

pL´1
˘

ĂW1

`

pL
˘



K RB2

`

pL
˘

...
„

ĂW1 pp
1q ¨ ¨ ¨ ĂWK pp

1q ¨ ¨ ¨ ¨ ¨ ¨ ĂW1

`

pL
˘

¨ ¨ ¨ ĂWK´1

`

pL
˘



K RBK

`

pL
˘

.

(5.16)
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„

RB1 pp
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

ĂW3 pp
1q K

„

RB1 pp
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
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ĂWK pp
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RB1 pp
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
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ĂW1

`

pL
˘

K

„

RB1 pp
1q ¨ ¨ ¨ RBK

pp1q ¨ ¨ ¨ ¨ ¨ ¨ RB1

`

pL´1
˘

¨ ¨ ¨ RBK

`

pL´1
˘



ĂW2

`

pL
˘

K

„

RB1 pp
1q ¨ ¨ ¨ RBK

pp1q ¨ ¨ ¨ ¨ ¨ ¨ RB1

`

pL´1
˘

¨ ¨ ¨ RBK

`

pL´1
˘

RB1

`

pL
˘



...

ĂWK

`

pL
˘

K

„

RB1 pp
1q ¨ ¨ ¨ RBK

pp1q ¨ ¨ ¨ ¨ ¨ ¨ RB1

`

pL
˘

¨ ¨ ¨ RBK´1

`

pL
˘



.

(5.17)
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Next, we describe the choice of the linear solver that would satisfy the above

three types of orthogonalities. First, (5.15) can be easily satisfied if we use a Petrov-

Galerkin based iterative solver (as earlier, BiCG). This is the same as done for IRKA

and BIRKA stability analyses (in [10] and Chapter 3 - [21], respectively). In AIRGA

stability analysis (in [46]), authors use a Ritz-Galerkin based iterative solver (CG).

Second, to satisfy 5.16 and 5.17, we adapt BiCG (discussed below), and to do this

with no code changes as well as cheaply, we propose a new variant of Recycling BiCG

[3, 4] (in the following subsection; Section 5.2). This was not needed for IRKA or

BIRKA stability analysis. However, AIRGA stability analysis required doing similar

derivations with two notable differences from the work here;

1. they proposed CG as the underlying iterative solver, and hence used off-the-shelf

Recycling CG [39], and

2. the number of orthogonalities to be satisfied there were much lesser (due to

absence of parameters) leading to ease in making the iterative solver converge

cheaply.

Next, we adapt the two components of the BiCG algorithm to satisfy the above

discussed orthogonalities.

5.1.1 Adapted Bi-Lanczos

Assume we are trying to solve the dual linear systems of the form

Ax “ b and ATy “ c, (5.18)

where A P Rnˆn and b, c P Rnˆ1. We refer Ax “ b as the primary system and

ATy “ c as the dual system. Let x0 be the initial solution vector with r0 “ b´Ax0

as the corresponding residual for the primary system, and y0 be the initial solution

vector with rr0 “ c´ATy0 as the corresponding residual for the dual system. The bi-

Lanczos algorithm computes good bases of the generated Krylov subspaces involving
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A and r0 for the primary system, and AT and rr0 for the dual system as follows:

vq`1 P Kq
pA, r0q “ spantr0, Ar0, . . . , Aqr0u s.t. vq`1 K rw1 . . . wqs and

wq`1 P Kq
`

AT , rr0
˘

“ spantrr0, AT
rr0, . . . , AT q

rr0u s.t. wq`1 K rv1 . . . vqs ,

(5.19)

where vq`1 and wq`1 are the Lanczos vectors of the respective systems, of (5.18), at

the pq ` 1qth iterative step. Also, v1 “
r0
}r0}

and w1 “
rr0
}rr0}

4.

Assuming, we are carrying some residual rr, which we need to make orthogonal

to the final solution of the primary system of (5.18), and similarly we are carrying

some residual r, which we need to make orthogonal to the final solution of the dual

system of (5.18). Then, the adapted bi-Lanczos algorithm above would consist of the

following steps:

vq`1 P Kq
pA, r0q s.t. vq`1 K rw1 . . . wq rrs and

wq`1 P Kq
`

AT , rr0
˘

s.t. wq`1 K rv1 . . . vq rs .
(5.20)

Next, we generalize the above adapted bi-Lanczos algorithm for a series of dual

linear systems

Aixi “ bi and AT
i yi “ ci, (5.21)

for i “ 1, . . . ,L. Note that we solve these linear systems inexactly and make the

solutions of one set of linear systems orthogonal to the residuals obtained from solving

all the previous sets of linear systems. This mimics the behavior of satisfying the

orthogonality conditions given by (5.17).

4Here, the first equation of (5.19) is implemented using

vq`1 “ Avq ´ c1v1 ´ c2v2 ´ . . .´ cq´1vq´1 ´ cqvq.

Finally, the orthogonality conditions of the first equation of (5.19) gives us c1, c2, . . . , cq. Similarly,

the second equation of (5.19) is implemented using

wq`1 “ ATwq ´ rc1w1 ´ rc2w2 ´ . . .´ rcq´1wq´1 ´ rcqwq.

Here, rc1, rc2, . . . , rcq are similarly obtained. For a complete derivation of this, please see [49].
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Using an iterative method to solve the first set of equations of (5.21), i.e., for i “ 1,

implies we eventually solve the following equations:

A1 9x1 “ b1 ` r1 and AT
1 9y1 “ c1 ` rr1, (5.22)

where 9x1 and 9y1 are the final solution vectors; and r1 and rr1 are the final residuals of

the primary and the dual systems, respectively.

Next, while solving the second set of equations of (5.21), i.e., for i “ 2,

A2x2 “ b2 and AT
2 y2 “ c2, (5.23)

we need a good basis of the two generated Krylov subspaces such that the solution of

the primary system of (5.23) is orthogonal to rr1, and the solution of the dual system

of (5.23) is orthogonal to r1. Hence, here, the adapted bi-Lanczos algorithm would

consist of the following procedure:

pv2qq`1 P K
q
pA2, pr2q0q s.t. pv2qq`1 K

”

pw2q1 . . . pw2qq rr1

ı

and

pw2qq`1 P K
q
`

AT
2 , prr2q0

˘

s.t. pw2qq`1 K

”

pv2q1 . . . pv2qq r1

ı

,
(5.24)

where pv2qq`1 and pw2qq`1 are the Lanczos vectors of the respective systems of (5.23)

at the pq ` 1qth iterative step such that pv2q1 “
pr2q0
} pr2q0 }

and pw2q1 “
prr2q0
} prr2q0 }

; and

pr2q0 and prr2q0 are the initial residuals of the respective systems of (5.23).

We repeat this procedures for i “ 3, . . . , L in (5.21). To summarize, while solving

the last set of equations of (5.21), i.e., for i “ L

ALxL “ bL and AT
LyL “ cL, (5.25)

we need a good basis of the two generated Krylov subspaces such that the solution of

the primary system of (5.25) is orthogonal to the residuals rr1, rr2, . . ., and rrL´1 coming

from the previously solved dual linear systems; and the solution of the dual system of

(5.25) is orthogonal to the residuals r1, r2, . . ., and rL´1 coming from the previously

solved primary systems. Hence, here, the adapted bi-Lanczos algorithm would consist

of the following procedure:

pvLqq`1 P K
q
pAL, prLq0q s.t. pvLqq`1 K

”

pwLq1 . . . pwLqq rr1 rr2 . . . rrL´1

ı

and

pwLqq`1 P K
q
`

AT
L, prrLq0

˘

s.t. pwLqq`1 K
”

pvLq1 . . . pvLqq r1 r2 . . . rL´1

ı

,

(5.26)
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where pvLqq`1 and pwLqq`1 are the Lanczos vectors of the respective systems of (5.25)

at the pq ` 1qth iterative step such that pvLq1 “
prLq0
} prLq0 }

and pwLq1 “
prrLq0
} prrLq0 }

; and

prLq0 and prrLq0 are the initial residuals of the respective systems of (5.25).

5.1.2 Adapted Petrov-Galerkin

If we are trying to solve the linear systems given in (5.18) by the BiCG method,

then (5.19) gives good bases of the two generated Krylov subspaces. The solution

updates here are given as

xq “ x0 ` Vqzq and yq “ y0 `Wqrzq, (5.27)

where Vq “ rv1 . . .vqs and Wq “ rw1 . . . wqs are the basis defined by the bi-Lanczos

process in (5.19). In BiCG, these zq and rzq are defined by a Petrov-Galerkin projection

rq KWq and rrq K Vq,

where rq “ r0 ´AVqzq and rrq “ rr0 ´ATWqrzq.

Assume we are carrying some solution vector py, which we need to make orthogonal

to the final residual of the primary linear system in (5.18). In the similar manner,

assume we are also carrying some solution vector px, which we need to make orthogonal

to the final residual of the dual linear system in (5.18). Then, the adapted Petrov-

Galerkin process would consist of the following procedure:

rq K rWq pys and rrq K rVq pxs . (5.28)

Again, we generalize the above Petrov-Galerkin process for a series of dual linear

systems, defined in (5.21). As earlier, we solve these linear systems inexactly and

make the residuals of the one set of linear systems orthogonal to the solution vector

obtained from solving all the previous sets of linear systems. This mimics the behavior

of satisfying the orthogonality condition given by (5.16).

Assume that after solving the first set of equations of (5.21), i.e., for i “ 1 (5.22),

we obtain 9x1 and 9y1 as the final solution vectors of the two respective systems.
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Next, for i “ 2 in (5.21), lets look at the second set of linear systems defined

by (5.23). Here, we need to make the final residual of the primary system (i.e., r2)

orthogonal to y1 and the final residual of the dual system (i.e., rr2) orthogonal to x1.

Hence, here, the adapted Petrov-Galerkin process is defined as

pr2qq K
”

pw2q1 . . . pw2qq 9y1

ı

and prr2qq K
”

pv2q1 . . . pw2qq 9x1

ı

, (5.29)

where pr2qq and prr2qq are the residuals of the respective systems of (5.23) at the qth

iterative step. Note that r2 and rr2 are the final residuals of the respective systems of

(5.23), respectively (at convergence of BiCG).

Similarly, we repeat this process for i “ 3, . . . , L in (5.21). Thus, for i “ L, lets

look at the last set of linear systems defined by (5.25). Here, we need to make the

final residual of the primary system (i.e., rL) orthogonal to the solutions 9y1, 9y2, . . .,

and 9yL´1 coming from the previously solved dual systems; and the final residual of the

dual system (i.e., rrL) orthogonal to the solutions 9x1, 9x2, . . ., and 9xL´1 coming from the

previously solved primary systems. Hence, here, the adapted Petrov-Galerkin process

is as

prLqq K
”

pwLq1 . . . pwLqq 9y1 9y2 . . . 9yL´1

ı

and

prrLqq K
”

pvLq1 . . . pvLqq 9x1 9x2 . . . 9xL´1

ı

,
(5.30)

where prLqq and prrLqq are the residuals of the respective systems of (5.25) at the qth

iterative step. Note that rL and rrL are the final residuals of the respective systems in

(5.25) (at convergence of BiCG). Next, we look at changes to RBiCG.

5.2 Changes to RBiCG and Building Recycle

Spaces

Developing the BiCG algorithm that is based upon the adapted bi-Lanczos process

and the adapted Petrov-Galerkin projection, discussed in the previous section, is fea-

sible, however, this requires too many code change with the additional drawback that

new BiCG’s efficient version may not exist. Also, as the number of linear systems to
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be solved increases, the number of orthogonalization to be done also increase linearly.

As discussed earlier, using Recycling BiCG (RBiCG) [3, 4] helps alleviate both these

problems. Hence, in the following subsections, we describe the changes to be done

with RBiCG code and also show how the choice of the recycle space helps in easily as

well as efficiently achieving the desired orthogonalities.

5.2.1 Changes for implementing the Adapted Bi-Lanczos

Process

For solving the linear systems in (5.18) using the BiCG method, we need good

bases of the generated Krylov subspaces. These bases are computed by the bi-Lanczos

algorithm as given by the relation in (5.19). One can also write these bi-Lanczos

relations as a pair of 3-term recurrences in the matrix form as [43]

AVq “ Vq`1Tq and ATWq “Wq`1
rTq,

such that Vq Kb Wq,

where Tq and rTq are tridiagonal matrices of size pq ` 1q ˆ q. Also, Vq “ rv1 . . . vqs,

Wq “ rw1 . . . wqs, and Kb denotes the bi-orthogonality.

In [2], authors have proposed a recycling variant of BiCG, called Recycling BiCG

(RBiCG), where the solutions for the two systems of (5.18) are searched in augmented

Krylov subspaces rVq U s and
”

Wq
rU
ı

, respectively, with U “ ru1, . . . , uτ s and rU “

rru1, . . . , ruτ s being two input recycle spaces such that following bi-orthogonality is

achieved:

rVq Cs Kb
”

Wq
rC
ı

, (5.31)

where C “ AU and rC “ AT rU .

For us, we still need to search in the augmented Krylov subspaces rVq U s and
”

Wq
rU
ı

, however, we need to implement the following bi-orthogonality here

rVq U s Kb
”

Wq
rU
ı

. (5.32)
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This leads to new augmented bi-Lanczos relations given by
´

I ´ U pUT
¯

AVq “ Vq`1Tq and
´

I ´ rU qUT
¯

ATWq “Wq`1
rTq,

(5.33)

where pU “

„

ru1
uT1 ru1

, . . . ,
ruτ
uTτ ruτ



and qU “

„

u1
ruT1 u1

, . . . ,
uτ
ruTτ uτ



. If D “ rUTU or D “

»

—

—

—

–

ruT1 u1 0 0

0
. . . 0

0 0 ruTτ uτ

fi

ffi

ffi

ffi

fl

, which is usually enforced from the input U and rU (see [2]), then

pU “ rUD´T and qU “ UD´1.

5.2.2 Changes for implementing the Adapted Petrov-

Galerkin Process

In the standard BiCG algorithm, for solving the linear systems in (5.18), if Vq
and Wq define the good basis of the respective columns of Krylov subspaces, then the

solution at qth iteration of BiCG is given by (5.27), i.e.,

xq “ x0 ` Vqzq and yq “ y0 `Wqrzq,

where, as earlier, x0 and y0, are the initial guess for the respective linear systems of

(5.18).

In the standard RBiCG [2], as discussed above, the solution iterates have the form

xq “ x0 ` Vqzq ` Upzq and yq “ y0 `Wqrzq ` rUqzq, (5.34)

where zq, pzq, rzq, and qzq are determined by a Petrov-Galerkin projection. This is same

for us. If at the qth iterative step, rq and rrq are the residuals of the primary and dual

systems, respectively, then the chosen Petrov-Galerkin projection give

rq “ r0 ´AVqzq ´AUpzq K
”

Wq
rC
ı

and

rrq “ rr0 ´ATWqrzq ´AT
rUqzq K rVq Cs ,

where, as earlier, r0 and rr0 are the initial residuals of the respective linear systems of

(5.18).
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For us, these projections do not suffice (because we need to eliminate use of C and

rC, completely). Hence, we use the Petrov-Galerkin projection as follows:

rq “ r0 ´AVqzq ´AUpzq K
”

Wq
rU
ı

and (5.35)

rrq “ rr0 ´ATWqrzq ´AT
rUqzq K rVq U s . (5.36)

Using (5.35) for the primary system analysis, we get
»

–

WT
q

rUT

fi

fl

”

r0 ´AVqzq ´AUpzq
ı

“ 0. (5.37)

Let ξ “
›

›

›

´

I ´ U pUT
¯

r0

›

›

›

2
and v1 “

pI´U pUT qr0
ξ

, where v1 is the first Lanczos vector

with respect to primary system. Then, r0 can be re-written as

r0 “ U pUT r0 ` r0 ´ U pUT r0

r0 “ U pUT r0 ` ξv1

r0 “ U pUT r0 ` ξVq`1e1,

where e1 is the first column of the identity matrix. The above equation can be written

in the matrix form as

r0 “
”

U Vq`1
ı

»

–

pUT r0

ξe1

fi

fl . (5.38)

Let AU “ UM, where M is the unknown matrix, then

rUTAU “ rUTUM or

M “

´

rUTU
¯´1

rUTAU “ D´1 rUTAU.

with D defined in the previous section.

Now, let us look at the term

AVqzq `AUpzq “
”

U pUTAVq ` Vq`1Tq AU
ı

»

–

zq

pzq

fi

fl ¨ ¨ ¨ pUsing (5.33)q

“

”

U pUTAVq ` Vq`1Tq UM
ı

»

–

zq

pzq

fi

fl ¨ ¨ ¨ pUsing the assumption AU “ UMq

“

”

U Vq`1
ı

»

–

pUTAVq M

Tq 0

fi

fl

»

–

zq

pzq

fi

fl . (5.39)
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Putting the values from (5.38) and (5.39) to (5.37), we get

»

–

WT
q

rUT

fi

fl

»

–

”

U Vq`1
ı

»

–

pUT r0

ξe1

fi

fl´

”

U Vq`1
ı

»

–

pUTAVq M

Tq 0

fi

fl

»

–

zq

pzq

fi

fl

fi

fl “ 0 or

»

–

WT
q

rUT

fi

fl

”

U Vq`1
ı

»

–

»

–

pUT r0

ξe1

fi

fl´

»

–

pUTAVq M

Tq 0

fi

fl

»

–

zq

pzq

fi

fl

fi

fl “ 0. (5.40)

Using the bi-orthogonality condition (5.32) in the above expression, we get5

»

–

pUT r0

ξe1

fi

fl´

»

–

pUTAVq M

Tq 0

fi

fl

»

–

zq

pzq

fi

fl “ 0. (5.41)

Thus, we can find the values of zq and pzq from the above expression as

zq “ ξT´1q e1,

pzq “M´1
´

pUT r0 ´ pUTAVqzq
¯

.

Substituting the value of zq and pzq in the first equation of (5.34), we get the updated

solution of the primary system as

xq “ x0 ` UM´1
pUT r0 `

´

I ´ UM´1
pUTA

¯

VqξT´1q e1. (5.42)

Similarly, using (5.36) for the dual system analysis, let rξ “
›

›

›

´

I ´ rU qUT
¯

rr0

›

›

›

2
and

w1 “
pI´rU qUT qrr0

rξ
, where w1 is the first Lanczos vector with respect to the dual system.

Also, let AT
rU “ rU ĂM, where ĂM “ D´TUTAT

rU , then we get the updated solution of

the dual system as

yq “ y0 ` rU ĂM´1
qUT

rr0 `
´

I ´ rU ĂM´1
qUTAT

¯

Wq
rξ rT´1q e1. (5.43)

Note that the solution updates of this new RBiCG (5.42)-(5.43) require that M

and ĂM be invertible. This is usually not a problem as seen by numerical experiments.

5Note that the dimension of e1 in (5.41) is one less than that of e1 in (5.40), although both denote

the first canonical vector.
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5.2.3 Building Recycle Subspaces

Assume that we want to solve the linear systems in (5.3) and (5.4). Also, assume

that the recycle spaces are of the form of spantUiju and spantrUiju for the primary

and dual systems, respectively, where columns of Uij, rUij P Rnˆp2ˆpi´1qˆjq are linearly

independent. In our case, the recycle spaces are defined as below.

˚ For the first linear system (recall (5.3) and (5.4), where i “ 1 and j “ 1):

U11 “ r s and rU11 “ r s.

˚ For the second linear system (recall (5.3) and (5.4), where i “ 2 and j “ 1):

U21 “ rRC1 pp
1q ĂW1 pp

1qs and rU21 “ rRB1 pp
1q rV1 pp

1qs.

˚ Similarly, for the last linear system (recall (5.3) and (5.4), where i “ K and j “ L):

UKL “rRC1

`

p1
˘

. . . RCK

`

p1
˘

. . . RC1

`

pL
˘

. . . RCK´1

`

pL
˘

ĂW1

`

p1
˘

. . . ĂWK

`

p1
˘

. . . ĂW1

`

pL
˘

. . . ĂWK´1

`

pL
˘

s and

rUKL “rRB1

`

p1
˘

. . . RBK

`

p1
˘

. . . RB1

`

pL
˘

. . . RBK´1

`

pL
˘

rV1
`

p1
˘

. . . rVK
`

p1
˘

. . . rV1
`

pL
˘

. . . rVK´1
`

pL
˘

s.

As mentioned earlier, in some cases, this choice of the recycle spaces can actually

accelerate the convergence of the linear system under consideration. In cases, when

these recycle spaces deteriorate the convergence, this behavior can be bounded.

As done for the previous two chapters, before discussing results, we first compute

the expression for accuracy of the reduced system in the next section (Section 5.3.)

5.3 Computing Accuracy

From Theorem 3, we know that if IPMOR is backward stable, then the accuracy

of the reduced system is
›

›

›
Hr ps; pq ´ rHr ps; pq

›

›

›

H2

}Hr ps; pq}H2

“ O pK pH ps; pqq ¨ }F }q , (5.44)

where, as earlier, Hps; pq “ CppqpsEppq ´ Appqq´1Bppq, rHps; pq “ CppqpsEppq ´

pAppq ` F qq´1Bppq, K pH ps; pqq is the condition number of H ps; pq, and F is the
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perturbation in the input dynamical system. Thus, the accuracy of the reduced system

is dependent on the condition number of the problem and the perturbation in the

system.

As discussed in the earlier two chapters, the condition number of the input dynam-

ical system with respect to computing
›

›

›
Hr ps; pq ´ rHr ps; pq

›

›

›

H2

, can be approximated

well by the condition number of the input dynamical system with respect to computing
›

›

›
H ps; pq ´ rH ps; pq

›

›

›

H2

. Thus, from Theorem 13, we have

›

›

›
H ps; pq ´ rH ps; pq

›

›

›

H2

ď
}C ppqK´1 ps; pq}H2

}K´1 ps; pqB ppq}H8
1´ }K´1 ps; pq}H8 }F }

}F } . (5.45)

Let }K´1 ps; pq}H8 ă 1 and }F } ă 1 (already assume in Corollary 3 and Theorem

13), then we have }K´1 ps; pq}H8 }F } ă 1, and hence,

1

1´ }K´1 ps; pq}H8 }F }
ă

1

1´ }K´1 ps; pq}H8
.

Substituting the above in (5.45) we get

›

›

›
H ps; pq ´ rH ps; pq

›

›

›

H2

ď
}C ppqK´1 ps; pq}H2

}K´1 ps; pqB ppq}H8
1´ }K´1 ps; pq}H8

}F } or

›

›

›
H ps; pq ´ rH ps; pq

›

›

›

H2

}H ps; pq}H2

ď
}C ppqK´1 ps; pq}H2

}K´1 ps; pqB ppq}H8
}C ppqK´1 ps; pqB ppq}H2

¨
1

1´ }K´1 ps; pq}H8
¨ }F } or

›

›

›
H ps; pq ´ rH ps; pq

›

›

›

H2

}H ps; pq}H2

ď
}C ppqK´1 ps; pq}H2

}K´1 ps; pqB ppq}H8
}C ppqK´1 ps; pqB ppq}H2

¨
}A ps; pq}

1´ }K´1 ps; pq}H8
¨

}F }

}A ps; pq}
.

Thus, from the above inequality we get that the condition number of the input dy-

namical system is

K pH ps; pqq “
}C ppqK´1 ps; pq}H2

}K´1 ps; pqB ppq}H8
}C ppqK´1 ps; pqB ppq}H2

¨
}A ps; pq}

1´ }K´1 ps; pq}H8
.

(5.46)
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Usually, the condition numbers of the problems under consideration are fairly small2.

Also, we assume invertibility of K ps; pq or psIn ´ A ppqq in our analysis. This comes

from the transfer function definitions [9].

Hence, next, we relate perturbation F with the residual RB and RC defined in

(5.9). Rewriting (5.8), we have

RB “ F rV and RT
C “

ĂW TF.

From the backward stability assumption given in Theorem 12, collectively we can

write the above equations as

F “RB

´

ĂW T
rV
¯´1

ĂW T
` rV

´

ĂW T
rV
¯´1

RT
C , (5.47)

assuming ĂW T
rV is invertible6. The following theorem gives a upper bound on pertur-

bation F .

Theorem 14. Let for L different parameters and K different shifts; rV and ĂW , be

given by (5.2); RB and RC be given as in (5.9); and F be given as in (5.47). Assume,
´

ĂW T
rV
¯

is invertible. Then, the perturbation F satisfies

}F } ď
?
K ˆ L

#

max
i
}RB p:, iq}

›

›

›

›

´

ĂW T
rV
¯´1

ĂW T

›

›

›

›

`max
i
}RC p:, iq}

›

›

›

›

rV
´

ĂW T
rV
¯´1

›

›

›

›

+

.

Proof. Similar to Theorem 6 in Chapter 3 or Theorem 5 in [21].

Thus, by using condition number expression from (5.46) and perturbation up-

per bound from Theorem 14 into accuracy expression (5.44), we get that for a well-

conditioned input dynamical system, as we solve the linear systems more accurately

in the backward stable IPMOR, we get a more accurate reduced system. We support

this with experiments as well in the next section (Section 5.4).

Thus, as in the previous two chapters, this is the main outcome of using a backward

stable model reduction algorithm, which gives the end user flexibility in deciding how

accurately to solve the linear systems to get a sufficiently accurate reduced system.

6This is usually easily achieved as has been shown for non-parametric linear case [10, Section 4.1]

and non-parametric bilinear case [21, Section 4.1 and Chapter 3, Section 3.2.1 ].
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5.4 Numerical Experiments

We perform preliminary experiment on the FOM model [32, 16, 40]. This model

consists of a parametric linear dynamical system of size n “ 1006, as

E 9x ptq “ A ppqx ptq `Bu ptq ,

y ptq “ Cx ptq ,

where E “ Inˆn, A ppq “ diagpA1 ppq , A2, A3, A4q, and

BT “ C “

„

10 . . . 10
loooomoooon

6

1 . . . 1
loomoon

1000



with

A1 ppq “

»

–

´1 p

´p 1

fi

fl , A2 “

»

–

´1 200

´200 1

fi

fl , A3 “

»

–

´1 400

´400 1

fi

fl , and

A4 “ ´diag p1, . . . , 1000q .

For our experiments, we take two interpolation points, i.e., K “ 2, such that

σi P r0.99, 1s and two parameters, i.e., L “ 2, such that pj P r99.99, 100s. All these

values are chosen based upon similar values in [16]. Thus, the size of the reduced

system obtained is 4.

This leads to solving linear systems of size 1006 ˆ 1006. As earlier, here also,

for solving the linear systems while computing V and W by a direct method (exact

IPMOR), we use a backslash in Matlab. As discussed earlier, we use the RBiCG

variant along with the recycle spaces as proposed in the previous section. While using

RBiCG, we use two different stopping tolerances (10´2 and 10´3). These choice of

stopping tolerances ensures that RBiCG takes same number of steps for convergence

so that we can compare the two cases. Ideally, we should obtain a more accurate

reduced model when using the smaller RBiCG tolerance.

We implement our codes in MATLAB (2015a), and test on a machine with the

following configuration: Intel Xeon(R) CPU E5-1620 V3 @ 3.50 GHz., frequency 1200

MHz., 8 CPU, 64 GB RAM.

First, let us look at the assumptions for backward stability of IPMOR (see Corol-

lary 3 and Theorem 13). K ps, pq is invertible here. We also have }K´1 ps, pq}H8 less
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Figure 5.1: Accuracy of the reduced system plotted with respect to interpolation points and

parameters for the two different stopping tolerances in RBiCG; FOM model of size 1006.

than one (i.e., 5.0251ˆ10´1). Finally, }F }, for the RBiCG stopping tolerances of 10´2

and 10´3 is 7.0474ˆ 10´1 and 1.9037ˆ 10´1, respectively, both of which are also less

than one. Note that this is a single step algorithm so we do not iterate. The condition

number for our problem, as defined in (5.46), is 2.5024 ˆ 10´1. This shows that the

FOM model is well-conditioned.

The accuracy result for this is given in Figure 5.1. Here, we have accuracy of the

reduced system

ˆ

›

›

›
Hr ps, pq ´ rHr ps, pq

›

›

›

H2

˙

on the z-axis, interpolation points (i.e.,

σi) on x-axis, and parameters (i.e., pj) on the y-axis. From Figure 5.1, it is again

evident that we get a more accurate reduced model as we solve the linear systems

more accurately (blue surface is below to the red surface).

Finally, we support our final claim that the way required orthogonalities are

achieved (see Section 5.2.3), it often does not deteriorate the convergence of our linear

solves. Thus, we solve all linear systems arising in the IPMOR algorithm with BiCG

as well RBiCG. Table 5.1 gives the iteration count of the two solvers. It is evident that

using the recycle spaces as formulated in Section 5.2.3, accelerates the convergence of

the solver (savings of about 70% to 73%).

It is important to note that by using a recycle space we are doing extra work in

terms of more number of inner products. Hence, the savings in time would be less
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Linear

System in

IPMOR

Stopping tolerance 10´2 Stopping tolerance 10´3

BiCG

Iteration Count

RBiCG

Iteration Count

BiCG

Iteration Count

RBiCG

Iteration Count

1 62 62 94 94

2 62 1 94 8

3 62 1 94 1

4 62 3 94 8

Total 248 67 376 111

Table 5.1: Convergence analysis of BiCG and RBiCG at two different stopping toler-

ances; FOM Model.

than the savings in iteration count.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we perform stability analysis of MOR algorithms for reducing

first order non-parametric/ parametric and linear/ bilinear dynamical systems with

respect to inexact linear solves. Since MOR algorithms for reducing non-parametric

linear dynamical systems have been studied earlier, we focus on MOR algorithms

for reducing non-parametric bilinear (summarized in the following two headings) and

parametric linear (summarized in the last heading) dynamical system. Study of MOR

algorithms for reducing parametric bilinear dynamical systems forms part of our future

work.

Stability Analysis of BIRKA

BIRKA [12], (which is a standard algorithm for reducing non-parametric bilinear

dynamical systems), provides a locally H2´optimal reduced model. The most expen-

sive part of BIRKA is finding solutions of large linear systems of equations. Iterative

algorithms are a method of choice for such systems but they find solutions only up

to a certain tolerance. Hence, we show that BIRKA is backward stable with respect

to these inexact linear solves under some mild assumptions. We also analyze the ac-

curacy of the inexact reduced system obtained from a backward stable BIRKA. We

support all our results with numerical experiments.

The first assumption is that pQ in (3.14) is invertible. In Section 3.2.1, we have given
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a better characterization of this invertibility assumption (in terms of the underlying

Lyapunov equation). However, this requires further analysis and forms ours first future

work.

The second and the third assumptions involve bounding
›

›

›

pQ´1
›

›

›
and

›

›

›

›

p

pF

›

›

›

›

(given

after (3.19)) by one. Although for both our experimental models we have shown that

these assumptions are easily satisfied, they may not always hold. pQ is dependent

on the input dynamical system and
p

pF on the stopping tolerance of our underlying

linear solver. Hence, the second future work here involves identifying the categories

of bilinear dynamical systems and the range of linear solver stopping tolerances when

these would be true.

While computing the accuracy, we have given an expression for the condition num-

ber of the bilinear system with respect to computing the H2´norm of the error between

the perturbed model and the original model. This condition number is an approxi-

mation to the condition we want to compute. That is, the condition number of the

bilinear system with respect to computing the H2´norm of the error between the in-

exact reduced model and the original model. This forms our third future work.

Stability Analysis of Other Efficient Algorithms for Bilinear MOR

Here, we extend the stability analysis done for BIRKA in the previous chapter

to other cheaper and efficient algorithms for bilinear MOR. This includes TBIRKA

[24, 26], balanced truncation based [13], Gramian based [50], moment-matching based

[8], and implicit Volterra series based [1]. Specifically we work with TBIRKA, as

it forms the base of all such efficient algorithms. In TBIRKA, fulfilling the first

condition for stability leads to constraints on the iterative linear solver, which are

similar to those obtained during BIRKA’s stability analysis. The second condition

for TBIRKA can be satisfied by two different approaches, complete system approach

and subsystem approach. The complete system approach works for both SISO and

MIMO cases, but the subsystem approach works only for SISO case. However, both

have an advantage because they are sufficiency conditions and depending upon the

input dynamical system, one may be more easier to satisfy then other one.

The stability analysis as done for BIRKA and TBIRKA here, all give us sufficiency
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conditions for a stable underlying MOR algorithm. Hence, the first future work here

is to derive the necessary conditions for the same. In recent years, there have been

a lot of efforts in performing data-driven MOR algorithm (specially using Loewner

framework [7]). The second future work here is to apply this stability analysis to such

classes of algorithms as well. Finally, the third future work is to extend this stability

analysis to the cases when instead of a dynamical system, the underlying differential

equation is studied [31].

Stability Analysis in PMOR

We study stability of a interpolatory MOR algorithm for parametric linear dynam-

ical systems with respect to inexact linear solves, that is, the IPMOR algorithm [9].

This analysis is easily extendible to other MOR algorithms for such systems. Besides

deriving the two conditions for stability, accuracy expression, and subsequent exper-

imentation, our novel contribution here has been achieving extra-orthogonalities for

stability without any code changes to the underlying iterative solver as well as doing

all this cheaply. As a outcome of this research, we also develop a new variant of the

Recycling BiCG algorithm [3, 4].

Here, the first future work involves more rigorous experimentation with a larger

problem. Also, since IPMOR is a single iteration algorithm, it would be good to

extend this stability analysis to other more optimal PMOR algorithms, e.g., piecewise

H2´optimal PMOR algorithm [9] that iterate to the ideal interpolation points. This

forms the second future work. Finally, as a third future work, we also plan to generalize

this theory to other MOR algorithms for parametric dynamical systems (second/ third-

orders and bilinear/ nonlinear terms).
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