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Synopsis

Introduction

Quest of humans to understand things around them is as old as the human itself. In

doing so, the human has tried to understand the complicated phenomena and things

in term of smaller and known subparts. The example, in various civilizations, it

can be found that five fundamental elements make all the things around us and that

we need divine force to join them in some combination to get everything. This five

fundamental theory concept has gone through many scrutinies, and modifications

and ultimately leading to the Mendeleev’s periodic table of elements and the force

needed to join them has become the electromagnetic force. Similarly, to understand

heavenly bodies, various models have been given from earth-centric to helio-centric,

and the present-day universe model does not provide any preference for any location

or direction in it and is homogeneous and isotropic, while the Gravitational force

holds them together.

Nevertheless, how gravitational, electromagnetic, strong, and weak forces to-

gether give rise to the world around us, is understood to a great length, that is,

standard model. However, there are many things still around us to be explored and

researched. Like, how the group of a single atom is still a matter of research, that

is, properties as a function of atom number in a group of atoms and are studied

separately in atomic physics, nano-particle physics, condensed matter physics. It is

clear here that the number of interacting partners changes can also change the over-

all output behavior of systems. It can be seen that such a long search has helped us

to live in the present age of science and technology.

There are many other systems, natural and human-made, which need a new

set of tools and studies. One such elusive system is a group of sentinel beings.

Stand for one day at any busy crossing, and you will find that some people are

walking, some use personal vehicles to commute, and some are using public or
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private transport for travel. In any human community, few people are known and

appreciated by many (or sometimes by nearly all), while a vast majority remains

to be identified and interact with a tiny group of people around them. Nowadays,

we can easily find this on facebook, twitter, that few celebrities have millions of

followers, and a majority have friends and followers in hundreds or thousands. Also,

synchronized on-off behavior of Firefly observed at night. North India blackouts on

30-31July, 2012 due to power-distribution failure to curb the excess rise in demand

for electricity caused by extreme heat and late monsoon in summer and how few

healthy people became cancer patients? All these examples have interacting units

but with a range of interacting partners and hence making the output behaviors not

so visible to predict.

Network science studies these diverse systems and to address these different

systems; network science maps these into networks. These networks have been

of extreme interest of study after the two landmark papers in 1998 by Watts and

Strogatz and 1999, Albert and Barabási, coupled with easy assess of high computa-

tional power and extensive data on complex systems, the internet, www, facebook,

and soon. Networks are graphs combined with the properties of the system they rep-

resent. The use of a graph to solve such a problem can be seen as early as the 1700s

when Euler used a graph to answer the famous question of the seven bridges of K

Königsberg; In the 1900s, Quantum Chemistry, communication engineering, math-

ematics, and social science used graphs. In this period, the graphs were expressed

as an adjacency matrix or list, and the use of eigenvalues was more profound in

Huckle’s theory for the calculation of energy levels. Later, the 1970s Laplacian

and other matrices were also used to express graphs. However, for networks, the

eigenvalues of the adjacency matrix were more focused on the largest eigenvalues,

Restrepo, et al., 2005, and spectral density distribution, Farkas, et al., 2001 [1]. The

use of random matrix theory (RMT) started in 2007, with the work of Jalan and

Bandyopadhyay [1].

In this thesis, we will focus on two questions on complex networks: what can

individually and collectively, eigenvalues of the adjacency matrix of a network tell
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about network structure? Moreover, can we use the adjacency matrix as representa-

tive of a network for the study of the network?

Objectives

The following three workable objectives made from the two questions mentioned in

the introduction :

1. How is the assortativity reflected in eigenvalues of the adjacency matrix of a

network?

2. What do the zero eigenvalues of the adjacency matrix of a network mean

regarding the structure of a network? Why there is degeneracy observed at

zero eigenvalues in spectra of real-world networks adjacency matrix?

3. Can the adjacency matrix be treated as the picture of a network on the matrix

plane?

Model

This thesis is an aggregation of three network studies based on an unweighted ad-

jacency matrix [2–4]. We have also validated our studies of model networks on

biological real-world protein-protein interaction (PPI) network of six model organ-

isms, namely C. elegans, D. melanogaster, H. pylori, H. sapiens, S. cerevisiae, and

E. coli. For abstractions of a complex system in the framework of networks, we

need to first precisely define the units of a network and pairwise interaction of these

units, i.e., nodes and edges of a network. In the case of real-world systems, we use

empirical data for network construction, with an ultimate aim towards mapping the

complexity in the underlying complex systems into a network with preserving most

of the information the system. However, In our case, we have restricted our model

by following conditions imposed that our network is connected. That is, the only

largest connected component of the finally generated network was taken. Also, our
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network is unweighted, our network is undirected, and there is not self- connection

in the systems, that is, a simple, undirected and unweighted graph. All the nodes

can reach each other without leaving the network itself, and all pairwise interactions

are of the same strength and nature. Iff ith-node is connected to jth-node, then it

also means that jth-node is also connected to ith-node and vice-versa.

For the construction of any model network, we need necessary information,

network size, N, and the average degree of a network,〈k〉. For model networks we

have used Erdös-Rényi (ER) random network and Barabási-Albert (BA) scale-free

random network. In the case of the ER random network, every pair of nodes is

connected with equal probability, p = 〈k〉
N

and 〈k〉 ≥ ln(N), for there always exists

a connected network with N nodes and average degree,〈k〉. Also, for BA scale-free

random network, start with m-seed nodes (they can be connected or not according

to the final network required and m = 〈k〉
2

) and at each time step a new node is

introduced with m new links to the network, and this new node connects with any

other existing nodes with probability, pj =
kj∑
i ki

and this process is repeated till all

the m new connections are completed. We keep introducing N −m new nodes, one

at a time. Note that the connection probability of the new node to the existing node

is proportional to the degree of the existing node. The tendency of new nodes to

have a high probability of attaching to a high degree node is termed as preferential

attachment, and leads to an outcome popularly known as rich get richer.

As already mentioned, the real-world model system for the validation of our

results was the PPI networks, where the nodes are the protein, and edges denote

interactions between proteins. A pairwise interaction between proteins is said to

be existing if there exists a direct relation (i.e., physical ), indirect relation (i.e.,

functional), or both the relation exist. We extracted the PPI information for the six

species from a highly curated publicly available data source, DIP (database of in-

teracting proteins). DIP (database of interacting proteins) integrates experimentally

determined, reviewed, and cited protein interactions information extracted from dif-

ferent sources to create a single set of protein-protein interactions. With the knowl-

edge of nodes and interactions, we construct a PPI network for each species
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A is the adjacency matrix with elements aij taking values 1 and 0 depending

upon whether or not there is a connection between nodes i and j. We consider

undirected networks which lead to the symmetric adjacency matrix, i.e., Aij = Aji.

We reprasent all such networks as an adjacency matrix, A with elements defines by,

Aij =

1 if i ∼ j

0 otherwise
. Adjacency matrix such constructed is composed of only

’0’ and ’1’ entries symmetrically distributed about the diagonal, which itself is com-

posed of only 0’s (because of no self-loop). Sum of row or column (because of the

undirected nature of network) of the adjacency matrix is equal to the degree of the

node corresponding to the index of row or column. The degree distribution,P (k) of

ER random network is Poisson distribution, P (k) = 〈k〉ke−〈k〉
k!

and of BA scale-free

random network is power-law distribution, P (k) ∼ k−γ . On the basis of Pear-

son degree-degree correlations (−1 ≤ r ≤ +1), networks are broadly divided in

three categories assortative (0 < r ≤ +1), neutral (r ' 0), and dis-assortative

(−1 ≤ r < 0) networks, where r =
[ 1
Nc

∑Nc
i=1 jiki]−[ 1

Nc

∑Nc
i=1{

1
2

(ji+ki)}]2

[ 1
Nc

∑Nc
i=1{

1
2

(j2i +k2i )}]−[ 1
Nc

∑Nc
i=1{

1
2

(ji+ki)}]2
. First

two of our studies were based on the eigenvalues of the network adjacency matrix.

This calculation of eigenvalues from the adjacency matrix was done numerically

through FORTRAN code using standard LAPACK subroutines (dsyev, ssyev,etc.)

for real symmetrical matrix in single and double precisions. It is known that for our

case the eigenvalues will show following relations, (i)
∑
λi = 0 , (ii) {λ1 > λ2 ≥

λ3... ≥ λi ≥ ... ≥ λN}, where N is the number of nodes, (iii) eigenvalues spectral

density distribution,
∑
P (λi) = 1.

We investigate various properties of the adjacency matrix and their eigenvalues

spectra under the network theory, spectral graph theory, and random matrix theory

(RMT), to identify and study the relation between network structure and network’s

adjacency matrix eigenvalues spectra. We discuss the results under the following

titles, 1) (Dis)assortative mixing investigated using the spectra of graphs, and 2)

Origin and implications of zero degeneracy in a network spectra. We also validated

these results on the model biological network of six species PPI networks.

In the third work, the adjacency matrix itself was treated as the picture of the
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network (figure-3). As the indexing of nodes in a given network is random, i.e.,

any node can freely have any index. Therefore, for a network of N nodes, there are

a large number (o(N2)), of the maximum possible number of indexing schemes,

i.e., the same network can have many adjacency matrix appearances. For our study

of the multi-fractal nature of the model and real-world networks, we found that

degree-based reshuffling keeps the multi-fractal nature of network intact. We ap-

plied the box-counting method on a large number of such degree-based reshuffling

realizations. The results of all three studies have been discussed below.

Summery of the work

(Dis)assortative mixing investigated using the spectra of graphs

We investigate the impact of degree-degree correlations on the spectra of networks

[2]. Even though density distributions exhibit drastic changes depending on the

(dis)assortative mixing and the network architecture, the short-range correlations

in eigenvalues exhibit universal RMT predictions. The long-range correlations turn

out to be a measure of randomness in (dis)assortative networks. The analysis further

provides insight into the origin of high degeneracy at the zero eigenvalues displayed

by a majority of the biological networks. In figure 1, it is shown how the eigenvalues

give information about assortativity in the network over the full range of possible

changes.

Origin and Implications of Zero Degeneracy in Networks Spectra

Spectra of real-world networks exhibit properties that are different from those of

the random networks. One such property is the existence of a very high degeneracy

at zero eigenvalues. In this work [3], we provide all the possible reasons behind the

occurrence of the zero degeneracy in the network spectra, namely the complete and

partial duplications, as well as their implications. The power-law degree sequence

and the preferential attachment are the properties which enhance the occurrence of
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Figure 1: (a)-(c) represent the NNSD, (d)-(f) present the statistic, and (g)-(i) depict
the spectral density distribution of the networks ER random networks. All graphs
are for the networks with size N = 2000, k =10, and for average, over twenty differ-
ent realizations of the network.

such duplications and hence leading to the zero degeneracy. The comparison of

zero degeneracy in protein-protein interaction networks of six different species and

their corresponding model networks indicates the importance of degree sequences

and the power-law exponent on the occurrence of zero degeneracy. Figure 2 is a

schematic diagram of how the two rank reduction reasons of the matrix are equiva-

lent to complete and partial duplications of nodes.

Unveiling the Multi-fractal Structure of Complex Networks

Traditional investigation of the fractal nature of graphs uses the network’s nodes as

the basic units. In this work [4], instead, we propose to concentrate on the graph’s

edges and introduce a practical and computationally not demanding method for re-

vealing changes in the fractal behavior of networks, and particularly for allowing

distinction between mono-fractal, quasi mono-fractal, and multi-fractal structures.

We show that degree homogeneity plays a crucial role in determining the fractal

nature of the underlying network, and report on six different protein-protein in-

teraction networks along with their corresponding random networks. Our analysis
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Figure 2: Schematic diagram representing (a) complete node duplication and (b)
partial node duplication in networks.

allows for identifying varying levels of complexity in the species. Figure 3 shows

the comparative adjacency matrix appearances for three model networks, namely

ER random network, BA scale-free random network, and 1d- regular network.

Conclusions and Discussions

In our first work for the thesis, we have found numerically using spectral graph

theory and random matrix theory (RMT), that eigenvalues as a whole also show

changes captured in three different segments of the assortativity coefficient, r. First

by network’s nearest neighbor spacing distribution (NNSD)(in terms of Broody pa-

rameter, β),then by ∆3-statistics(in terms of long-range correlations) and then fi-

nally by spectral density distribution, P (λi) (in terms of single bulk distribution

to double humped distribution of eigenvalues with a peck at zero.) This numeri-

cal study has provided with numerical observations in support of the spectral based

tool development for network studies for first hand and cross-verifications of re-

sults from structural properties measure tools. Our second work for the thesis has

used the matrix-rank relation to eigenvalues for understanding the structural root

of zero degeneracy in the adjacency matrix eigenvalues. We find that the complete

xvi
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Figure 3: The effect of random reshuffling and degree-based reshuffling on the
adjacency matrix. (Left) ER random networks, (middle) SF networks, and (right)
1-d lattices. In each panel, each dot is the position of an entry in the adjacency
matrix plane.

duplication and collective or partial duplication of the node are the reasons for this

occurrence. Also, we did numerical studies about how the two types of duplications

contribution to the zero eigenvalues changes with network size, N , and average de-

gree of network, 〈k〉. We also studied six models of biological species network and

their corresponding ER random, BA scale-free, and configuration networks eigen-

values spectra. We numerically found that biological networks have more contribu-

tion dominantly from complete duplication of nodes than from partial duplication.

This result for the model species network is in agreement with the evolutionary gene

duplication growth mechanism already established in the networks. This result also

allows us to pick into the growth processes of the network. As node duplications-

adaptation and preferential-attachment growth mechanism, As both give hetero-

geneous degree distribution with power-law, but show different dominant reasons

for zero degeneracy. For node duplications-adaptation, the dominant contribution

comes from complete node duplication, but for preferential-attachment, the domi-

nant contribution is from the partial node duplications. Our third work for the thesis

probes the possibility of treating the adjacency matrix itself as a system for study

rather than a representative of systems. We found numerically through multi-fractal

analysis that the adjacency matrix retains the multi-fractal properties information
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of the system it represents and has provided the same nature as already reposted

through traditional studies of the model networks.

This thesis shows that eigenvalues could be used for the study of the networks

and also provide the alternative for cross-checking the results found from non-

eigenvalue study tools. The adjacency matrix plane preserves the many properties

and patterns of the networks and can be a substitute for the qualitative study of the

networks.

Keywords : Complex Networks, Spectra, Random Matrix Theory (RMT), Multi-

fractal, Zero Degeneracy
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1

Introduction to Networks

Chapter 1

Introduction

1.1 Introduction with historical background

From the scientific point of view, the study of complex natural systems is done by

abandoning some of the details and focus on the significant features. When such

abstractions are reasonable enough, then the loss of the knowledge of the details is

abundantly compensated by the gain of a better insight into the systems. One of such

abstract procedure is graph or network. In a graph of a system, nodes or vertices

represent interacting units, and edges or links are pairwise relation or interaction be-

tween units. Few such complex systems are friendships in a group of people, neural

networks, and the internet. The use of graphs to solve the real-world problem can

be traced back to the 18th century when Leonhard Euler proposed his brilliant so-

lution to the Seven Bridges of Königsberg problem [5]. Also, Graph theory gained

popularity in the 19th and 20th centuries because of its power to describe complex

systems in many different fields such as communication infrastructure, path plan-

ning, coloring maps, and social structure, in terms of much smaller interacting unit

phenomena [6].
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CHAPTER 1. INTRODUCTION TO NETWORKS 1.1. INTRODUCTION WITH HISTORICAL BACKGROUND

The advent of the information age and increase in the computational power of

computers since the early 1990s has led to an increasing interest in the fundamen-

tal properties of real networks. A striking observation of these real networks is

that complex topologies and very different structures characterize them. Many of

them are scale-free, meaning that there are a much small number of nodes, usually

called hubs, that are much more connected than the average. Typical examples are

the internet, facebook, and protein-protein interaction network. Some of them are

small-world: a short chain of links separates most of the pairs nodes. This feature

has been well known in social science since the 1960s as six degrees of separation

[7, 8]. Another highlight for many real networks is that the entities tend to form

groups with dense internal connections, i.e., such a system shows a high clustering

coefficient.

Many models were proposed to capture these features in the model networks or

graphs. The simplest model was introduced by Pál Erdös and Albért Rényi, [9, 10]

and with the assumption that the connection probability of each pair of nodes in

a graph is equal and fixed. The resulting network shows small-world effects but

with a small clustering coefficient. In 1998, a new proposed model by Watts and

Strogatz was able to capture both the small-world effect and the high clustering co-

efficient [11]. This small-world network is observed at the small-world transition

region, which is achieved through a small number of random reconnections in a

regular network. In 1999, the famous preferential attachment model was proposed

by Barabasi and Albert [12], which is a growth model with features of a scale-free

connectivity distribution, high clustering, and small-world effects. Since these two

most influential papers on small-world networks and scale-free networks in the last

two decades, the network theory has been intensively used to investigate various

real-world and model systems. The network theory framework applies to any com-

plex system as long as it can be mapped into a suitable complex network structure

composed of nodes and connections. Therefore, any system which is composed of

interacting units can be studied by network theory framework.

While recently, the networks are the driving force behind the investigation of
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the graphs and their spectra. Mathematically, a network is a graph G(N,Nc), where

N is a set of nodes, and Nc is a set of pairs of nodes called edges. So, what’s the

difference between graphs and networks? A generally accepted, all-encompassing

definition of a network does not seem to be available. Instead, networks are un-

derstood by instantiation: The World Wide Web, The Internet, Citation networks.,

Language networks, Food webs., Economic networks., Metabolic and protein net-

works, Social networks, transportation (car, train, airplane) and infrastructural (elec-

tricity, gas, water, sewer) networks, the human brain network, software dependency

networks are examples of networks. Some of these networks are made by nature;

others are built by humans. So, while a graph is an abstract mathematical object,

a network is a real-world graph with specific structural properties based on a real-

world system. These properties have been exploited to investigate the origin and

evolution of networks and to study the processes taking place on them. The major-

ity of these networks exist for many years, some of them (biological networks) are

here for millions of years.

Also, the use of eigenvalues or spectral graph theory for the study of physi-

cal systems can be traced back in the 1700s, and were for the study of the rigid

bodies, Leonhard Euler showed the importance of principal axes, and Joseph-Louis

Lagrange later found that angular momentum L = Iω = λω,

Where the (scalar) eigenvalue λ is called a principal moment of inertia corre-

sponding to these principal axes are the eigenvectors, ω of the inertia matrix, I . In

the 1800s, Augustin-Louis Cauchy extended the work of Euler and Lagrange and

further proves that real symmetric matrices have real eigenvalues. Cauchy also in-

troduced the term ”characteristic roots” for eigenvalues. In 1904, David Hilbert

used term eigenvalues driven from German word Eigen meaning characteristic. In

1929, Richard von Mises developed First numerical algorithms, i.e., a powerful

method for finding eigenvalues. In the 1950s and 1960s, spectral graph theory was

treated as a branch of algebraic graph theory, with mainly focused on the adja-

cency matrix of regular graphs. Also, about the same period, the research was

independently begun in quantum chemistry [13–17], as eigenvalues of a graphical

3



CHAPTER 1. INTRODUCTION TO NETWORKS 1.1. INTRODUCTION WITH HISTORICAL BACKGROUND

representation of atoms correspond to energy levels of electrons.

While the eigenvalues of matrices with entries following some pattern and or

based on some real system were a very successful tool of study, the collective and

statistical survey of eigenvalues is done in random matrix theory (RMT). The origi-

nal motivation for RMT research was to understand the statistics of the distribution

of spacings of energy levels of heavy nuclei, measured in nuclear reactions (Wigner,

1957), who was probably inspired by the compound nuclear model, proposed by N.

Bohr, in 1937. RMT was developed in the 1960s, notably by Wigner, Dyson, Mehta,

and Gaudin. RMT deals with the statistical properties of large matrices with ran-

domly distributed elements. In the case of RMT, The probability distribution of the

matrices are inputs, from which the correlation functions of eigenvalues and eigen-

vectors are outputs. From the correlation functions, one then computes the physical

properties of the system.

Later the same techniques were applied to describe the microwave absorption

by granular metals using the level statistics of small metal particles (Gor’kov and

Eliashberg, 1965). In recent years there has been a revival of interest in RMT,

mainly because of two developments. The first was the discovery that the Wigner-

Dyson ensemble applies generically to chaotic systems (Bohigas, Giannoni, and

Schmit, 1984; Berry, 1985). The second was the discovery of a relation between the

universal properties of large random matrices and global conductance fluctuations

in disordered conductors (Altshuler and Shklovskié, 1986; Imry, 1986a).

In network theory research the use of network eigenvalues or spectrum sparked

after the work of Farkas et al., in 2001, showed that how spectra of scale-free net-

work differ from random network’s semicircular law predictions and follow the

triangular shape. Restrepo et al., in 2005, where they found that synchronization

dynamics transition from incoherence to coherence in a vast network of coupled

phase oscillators is governed by the largest eigenvalue of the adjacency matrix of

the network. While in 2007, Sarika et al., showed that nearest-neighbor spacing

distribution of the eigenvalues of the adjacency matrices of various model networks

follow universal Gaussian orthogonal ensemble statistics of RMT, and an analogy
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Figure 1.1: Symetic diagram to depict how much information about the network
was used to calculate local properties.

between the onset of small-world behavior, quantified by the structural properties of

networks, and the transition from Poisson to Gaussian orthogonal ensemble statis-

tics, quantified by Brody parameter characterizing a spectral property.

In this thesis, we will focus on three questions on complex networks: 1. Do

eigenvalues collectively store information about network degree-degree correla-

tions? 2. What can degenerate eigenvalues at λ = 0 of the adjacency matrix of

a network tell about network structure? And finally, 3. Can the adjacency matrix of

a network be treated as 0,1-embedded images of the network in a matrix plane?

1.2 Network Reprasentation

The network is made of N nodes, and Nc connections. Therefore, (N,Nc) pair

is the most basic information needed for any network. Networks thus formed can

be directed or undirected, also weighted and unweighted. In work presented here,

we will only talk about undirected and unweighted networks, until unless stated

explicitly.

However, even with a given pair of (N,Nc), a large set of networks can be

formed, and this pair becomes a very loose characterization property for any sys-
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tems or model network. Therefore, we use the other one or more properties to

characterize the network further. This narrow down the previous (N,Nc) set or

networks to (N,Nc, α, β, ...), where α, β, .. are characterization properties for net-

works. Therefore, one of the best ways is to provide a connection list of a pair of

nodes in the network. From this list, we can reproduce the network structure.

There are three main ways to represent a network, namely (i)a pictorial repre-

sentation of a network, (ii) list representation of a network, and (iii) matrix repre-

sentation of a network.

1.2.1 Pictorial Representation of Network

Pictorial representation of a network offers an exact and visual way to study net-

works. Therefore, it has been a preferred and frequently used method to analyze

and represent networks by social scientists, management, and media people. How-

ever, as the size, N , of the networks grows, it becomes highly impossible to study

networks through pictorial representation, and hence, people switch to other meth-

ods for network study.

1.2.2 List Representation of Network

List representation of a network used to map network into a relation list. The most

frequently used relation is the connection between a pair of nodes, and this gives

us a connections list, also known as an adjacency list. In a network, such links can

be studied through many structural properties like degree, clustering coefficient,

betweenness centrality, duplication, and so forth.

1.2.3 Matrix Reprasentation of Network

Networks can also be represented as a matrix, example adjacency matrix, Laplacian

matrix, etc. The adjacency matrix of a network is defined by Eq. 1.1

aij =

1 if vi is connected to vj

0 otherwise
(1.1)

In undirected graphs, the relation aij = aij holds good, whereas same is not the case

for directed graphs. With this repseasentation spectral study of network is possible.
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In case of undirected adjacency matrix all eigenvalues are real. Several statistical

measures are proposed to understand specific features of the network [18, 19].

1.3 Basic definitions and tools of network theory

If we are interested in knowing the behavior of any node in a network, then local

properties tell us more about it than global properties. For example, knowing the

degree of the node is more useful or informative than the average degree of the

network. However, an average degree does tell us about the overall behavior of that

network, like is network sparsely connected or dense. Like if we randomly select a

node in a network than what could be the degree of this node. Example, in the given

network (shown in figure 1.1) average degree,< k > is approximately 2.4 (number

of connection, Nc = 13 and number of nodes in the network, N = 11) and 3 is

the degree of the blue node in the smallest white circle. As the fractional degree

is not possible for an unweighted network, the only way to say anything about the

network by < k > is that the majority of nodes in the network are connected with

a connection 2 or 1 with few nodes with a degree higher than 2. Out of 13 nodes in

the network, eight nodes have only a degree of 1 or 2 with five nodes with a degree

of 3 or 4. However, the degree of the blue node is not predictable by < k >. So,

global properties tell us about the overall behavior of the network, but local features

depict the local response. To calculate local features, it can be further divided on

the bases of the amount of information needed.

The first type, which needs the least information, explicitly how much a node

is connected, a blue node in the white circle in figure 1.1. This category has only

intrinsic properties, like nodes degree, frequency, etc.. The degree of a node does

not tell us to whom it is connected or how the other nodes degree are distributed on

the networks. Therefore, the degree of any node is the property that requires only

information about how many other node nodes it interact and nothing about the

other nodes. Like, on a social network, the unit is the people who are related by the

already sat conditions, will know with how much other people they are interacting

or connected.

7



CHAPTER 1. INTRODUCTION TO NETWORKS 1.4. LOCAL NETWORK PROPERTIES

The second type is the local properties, which require the information not only

about node but also about nodes with whom the node is interacting. So, the infor-

mation about the node which is required is more than enclosed in the white circle.

The information about the node and its neighbors is needed, i.e., in case of a blue

node, we n and is enclosed in the light yellow circle in figure 1.1. These properties

are like clustering coefficients, overlap, and so on. These properties usually man-

ifest how much a node knows about with whom it is connected. As the clustering

coefficient tells us about the average connectivity of the neighbors of a node, for

example, CCi = 0 means that none of the nodes connected to it are connected or

see each other. Similarly, CCi = 1 implies that all the nodes connected to it are

also connected or see everyone.

Finally, the Third type of local properties. These type of local properties are the

properties which require all the information about other nodes in the networks. So,

they need all the information in the ’C’ circle in figure 1.1. These properties are

scores that either how a node is participating in the network or how it is affected by

the network.

1.4 Local network properties

The properties of any node in the network are called local properties of the network.

For example, the number of connections a node has in a network is called the degree

of the node.

• Degree: In the undirected graphs, nodes have one type of degree. The degree

of any node is the number of connections node have in the network. It is

represented by di for ith node in the network. The sum of the degrees of all

nodes in the network gives us a number twice the number of connections in

the networks. ΣN
i=1di = 2Nc .

The spread in the degrees is characterized by a distribution function P (k),

which gives the probability that a randomly selected node has exactly k edges.

The average degree of a network is a measure of its sparseness (or denseness);

moreover, it is expected degrees of all the nodes in the graph.
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• Clustering coefficient: Clustering coefficient of a node i denoted asCi, is de-

fined as the ratio of the number of links existing between the neighbors of the

node to the possible number of links that could exist between the neighbors

of that node [19] and is given by (in terms of Adjacency matirx)

Ci =

∑ki
j2=1

∑ki
j1=1(Aij1Aj1j2Aj2i)

1
2
ki(ki − 1)

(1.2)

where i is the node of interest and j1 and j2 are any two neighbors of the node

i and ki is the degree of the node i.

(in terms of connections in neighbor nodes)

Ci =
∆i

1
2
di(di − 1)

(1.3)

where ∆i is the number of connections between the nodes connected with ith

node and 1
2
di(di−1) is the maximum possible connection between the neigh-

bour of ith node. So, the clustering coefficient is the relative connectedness

of the node’s neighbors.

1.5 Global Network Property

Average or global property of network is calculated or evaluated, taking the average

over one kind of information/ property on nodes in a network. This property tells us

by just one number what should we expect about a randomly selected node in the

network without actually studying it.

• Average Degree : In a network withN nodes andNc number of connections,

on average any node is expact to have 〈k〉 connection. Therefore, average

degree of network is given as 〈k〉 = 2Nc
N

=
ΣNi=1di
N

.

Note: for the Erdös-Rènyi random networks with connection probability, say

pc, the expected average degree of network is (= pcN). This statistically will

be the same as the average degree of generated random networks.

• Degree Sequence : Degree sequence of a network is a set of all degrees of

all the nodes in the networks. [d1, d2, d3, .....di, ......dN .] This tells us exactly

how many nodes have a given degree.
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• Degree distribution : Degree distribution, P (di) of degrees in networks are

used to classify the networks in general categories like Erdos-renyi random

network, scale-free network,etc. Two more commonly occurring class of de-

gree distributions are Possion degree distribution and Power-law degree dis-

tribution. These distributions tells us what is the probaility that a given degree

node will be found in a given network. Real-world networks ususally have

scale-free Power-law distribution of degree with power-law exponent, γ value

range between (2,3).

• Degree-degree correlation cofficient: We quantify the degree-degree cor-

relation of a network by considering the Pearson (degree-degree) correlation

coefficient, given as [64]

r =
[N−1

c

∑Nc
i=1 jiki]− [N−1

c

∑Nc
i=1

1
2
(ji + ki)]

2

[N−1
c

∑Nc
i=1

1
2
(j2
i + k2

i )]− [N−1
c

∑Nc
i=1

1
2
(ji + ki)]2

(1.4)

where Nc is number of connecttions in network, and ji, ki are degrees of

nodes on both ends of ith connection respectivily. The degree-degree corre-

lation coefficient, r, tells us that whether nodes at both ends of a connection

in a network have the same degree or different, statistically. Value of r range

from (−1, 1).

When the value of r is more than zero, then these types of networks are called

assortative or homophily networks, example k-regular network has r value 1.

When r is negative for a network, then the network is called a dis-assortative

network, for example, a star network has r equal to −1. While r = 0 for the

Erd’́os-Rényi random networks.

• Average Clustering Coefficient : The average clustering coefficient is de-

fined as the average clustering coefficients of all nodes in the networks.

〈C〉 =
1

N

N∑
i=1

Ci (1.5)

where, Ci is the clustering coefficient of ith-node.
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1.6 Network models

The study of networks started off by assuming that complex networks can be faith-

fully represented using random graph models, where every edge has an equal likeli-

hood of existence. Paul Erdős and Alfred Rényi pioneered the study of random

graph models [9, 10]. After decades, during which the Erdős-Rényi model re-

mained the preferred method for studying networks, Barabási and Albert observed

that many of the complex real-world networks follow a power-law degree distribu-

tion and consequently proposed the scale-free network model [12]. This came as a

revolutionizing change in the perspective of network analysis leading to extensive

investigations of various real-world systems. Some of the networks that were found

to follow the power-law degree distribution include the internet, the world-wide-

web, cellular networks, mobile communication networks, scientific collaboration

networks, to mention a few [18].

Meanwhile, another category of networks that gained prominence was small-

world networks, proposed by Watts and Strogatz [11], motivated from the analogy

of six degrees of separation [20]. These networks are highly clustered, like regular

lattices, yet have small characteristic path lengths, like random graphs. The neural

network of the worm Caenorhabditis elegans, the power grid of the western United

States, and the collaboration graph of film actors are shown to be small-world net-

works. In the following, we present an elaborate discussion on the three network

models.

1.6.1 Erdős-Rényi (ER) random networks

The algorithm for the random network was given by Hungarian mathematicians

Paul Erdős and Alfred Rényi.

Generation: Starting with N nodes, all the a pair of the nodes in the network is

connected with a probability p, keeping the number of nodes in the network fixed.

Following are few of the properties of ER random networks:

• The total number of connections in the network is approximately pN(N −

1)/2 and its expected average degree (〈k〉) is p(N − 1) [9, 10].

11
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• The degree distribution was derived by Bollobás [21] as a Binomial distribu-

tion and probability of a node having k degree is given by

ρ(k) =N−1 Ckp
k(1− p)N−k−1

For large values of N, degree distribution turns out to be Poisson distribution

and is given by

ρ(k) =
e−〈k〉〈k〉k

k!

• Diameter of ER random network is given by ln(N)
ln(pN)

. Random networks have

a small diameter, provided p is not very small.

• The clustering coefficient of ER random networks is given as 〈k〉
N

.

Most of the properties exhibited by ER random networks do not have a close re-

semblance with the networks generated from real-world data, for instance, metabolic

networks, protein-protein interaction networks, social networks, and so on. These

networks do not exhibit Poisson degree distribution. It is increasingly found that a

large number of systems exhibit behavior which is close to the power-law degree

distribution.

1.6.2 Barabási-Albert (BA) scale-free networks

The degree distribution of a random graph is a Poisson distribution with a peak

at P (〈k〉). However, in most large networks such as citation networks [22], the

mobile communication networks [23], the cellular networks [24], the Internet net-

works [25], and the worldwide web [26], the degree distribution significantly de-

viates from a Poisson distribution but has a power-law tail P (k) ∼ k−γ . It has

been sufficiently proven that the degree distribution of real-world networks is not

random, most of them having a long right tail corresponding to values that are far

above the mean [12]. In order to understand the evolution of the power-law degree

distribution in these networks, several models have been presented. Price presented

a model towards the explanation of the origin of the power-law degree distribution,

prevalent in real-world networks [27] by incorporating Simons’s ‘rich-get-richer’

phenomenon from Economics. Later A.-L. Barabási and Reka Albert proposed a

12
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model to explain efficiently the emergence of the power-law degree distributions in

networks, which is based on network evolution rather than the fixed size model of

ER random networks and is the most widely accepted model.

Generation: This model generated as per BA algorithm is based on two mech-

anisms, (i) growth and (ii) preferential attachment. Growth: Starting with a very

small number of nodes (say n0), in each time step a new node is added which has

(< n0) edges. Preferential attachment: The newly added node makes connections

with the already existing nodes with a probability πi, which depends on the degree

of the node i as:

πi =
ki
Nc

, (1.6)

where Nc is the total number of connections in the network at time t.

Following are few of the properties of scale-free networks:

• The probability of a node having a k degree is given by the power-law degree

distribution (P (k) ∼ k−λ) where λ is a constant and lies between 2 and 3 for

sufficiently large networks [18].

• Scale-free networks exhibit a lower value diameter of about ln(ln(N)) as

compared to random networks having similar connectivity and dimension

[63].

• Clustering coefficient of scale-free networks is proportional to N−0.75 [18].

The scale-free structure is known to provide robustness to the system against ran-

dom attacks while makes it fragile to the targeted attack. For example, virus spread-

ing in the Internet network becomes more harmful when the hub nodes get infected

[18].

1.7 Watts-Strogatz (WS) small-world networks

Many of the real-world systems possess diameter as small as that of the random

networks and clustering coefficient as large as that of the regular networks. The

social psychologist Stanley Milgram, through his experiment, demonstrated that

13
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most of the people in the United States of America have six degrees of separation

between them [20]. Taking this into consideration, Watts and Strogatz proposed a

model termed as the small-world network [11].

Generation: Begin with a ring lattice of N nodes in which each node is con-

nected to its k neighbors, having k/2 neighbors on either side. Each edge is ran-

domly rewired in the lattice with probability pr, such that there are no self-connections

and duplicate connections. The value of p being zero corresponds to a regular graph,

and p = 1 corresponds to the random graph.

Following are few of the properties of small-world networks:

• On increasing pr value on a logarithmic scale from zero, the clustering co-

efficient does not significantly decrease whereas the diameter drastically de-

creases.

• Further increase in pr leads to a decrease in the value of clustering coefficient

on a faster pace and at this value The diameter gets saturated. Networks at

this pr value are known as small-world networks and have both features of

high clustering and low value of the average shortest path.

1.7.1 Configuration model

The configuration model also of having the same size and number of connections

as of a given network, preserves the degree sequence of the given network, by gen-

erating a random network with a given degree sequence. We construct the config-

uration model network by taking the degree sequence d1, d2,
. . . , dN of various PPI

networks as input. Each node of the corresponding configuration model is allocated

stubs equal to their degree, and then these studs are paired with a uniform proba-

bility [19]. The network thus generated is a configuration model for a given degree

sequence.

1.8 Network spectra

The eigenvalues of the adjacency matrix of a network are related to many basic

topological invariants of networks, such as the diameter of a network [28]. In or-
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der to physically understand the concept of eigenvalues and eigenvectors, a set of

axes is chosen in the multidimensional space occupied by a network. The axes are

rotated so that the first axis points in the direction of the greatest variability in the

data and the second axis, orthogonal to the first, points in the direction of greatest

remaining variability, and so on. This set of axes is a coordinate system that can

be used to describe the relative positions of the set of points in the data. Most of

the variability in the locations of points will be accounted for by the first few di-

mensions of this coordinate system. The coordinates of the points along each axis

denote an eigenvector, and the length of the projection is termed as an eigenvalue

[29]. The set of all eigenvalues is the spectrum of the network. Spectra of networks

have been proposed to present a fingerprint of the networks, rendering the charac-

terization of networks easier [30–32]. The rich information about the topological

structure and diffusion processes can be extracted from the spectral analysis of the

networks [34]. Studies of spectral properties of the complex networks may also

have a general theoretical interest.

1.8.1 Spectral density

The distribution of the eigenvalues is entailed as the spectral density (ρ(λ)). The

spectral density of uncorrelated random graphs is known to follow a semicircular

distribution [30]. For scale-free networks, the spectral density exhibits a triangular

distribution with an exponential decay around the center, followed by power-law

long tails at both spectrum edges [32].

1.8.2 Degeneracies in a network spectra

Real-world networks exhibit properties that are very different from those of the

corresponding model graphs [35]. One of these properties is the occurrence of de-

generacy at 0, −1, and −2 eigenvalues [36]. Few papers have related 0 and -1

eigenvalues to stars and cliques respectively [31, 32, 37]. However, graphs in the

absence of stars and cliques can still show a degeneracy at 0 and -1 eigenvalues,

respectively. For instance, the 0 degeneracy has been shown to arise from the com-

plete and the partial duplications of nodes [? ]. Recently, it has been reported that a
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simple transformation of the network’s adjacency matrix provides an understanding

of the origins of the occurrence of high multiplicities in the network spectra. The

eigenvectors associated with the degenerate eigenvalues shed light on the structures

contributing to the degeneracy [38].

1.9 Random matrix theory and networks - What is
the connection?

Random matrix theory (RMT), proposed by Wigner to explain the statistical proper-

ties of nuclear spectra, has elucidated a remarkable success in understanding com-

plex systems, which includes disordered systems, quantum-chaotic systems, spec-

tra of large complex atoms, etc. [39]. The random matrix theory (RMT) approach

proposed by Wigner regarded the Hamiltonian of a heavy nucleus (which is very

complex due to the complexity of interactions between various nucleons) as behav-

ing like a random matrix chosen from Gaussian orthogonal ensemble (GOE) having

a probability density P . Energy levels were approximated by the eigenvalues of this

matrix, and their statistics were studied [40]. The functional form of P defines the

type of ensemble. Later this theory was successfully applied in the study of spec-

tra of different complex systems, including disordered systems, quantum-chaotic

systems, spectra of large complex atoms, etc. [41]. RMT is also shown to be of

great use while understanding the mathematical structure of the empirical cross-

correlation matrices appearing in the study of multivariate time series. The classical

complex systems where RMT has been successfully applied are stock market [42];

brain [43]; patterns of atmospheric variability [44], physiology and DNA-binding

proteins [45] etc. Previous studies elucidate that different model networks, namely

scale-free, small world, random networks, and modular networks, ensue universal

GOE statistics of RMT.

1.9.1 Tools of RMT used in networks’ investigations

The random matrix studies of eigenvalue spectra consider two properties: (1) global

properties such as the spectral distribution of eigenvalues ρ(λ), and (2) local prop-

erties such as eigenvalue fluctuations around ρ(λ). Eigenvalue fluctuations are the
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most popular technique in RMT and are generally obtained from the spacing distri-

bution of eigenvalues. We denote the eigenvalues of a network by λi, i = 1, . . . , N

and λ1 > λ2 > λ3 > . . . > λN . In order to get universal properties of the fluctua-

tions of eigenvalues, it is customary in RMT to unfold the eigenvalues by a transfor-

mation λ̄i = N̄(λi), where N̄ is average integrated eigenvalue density [40]. Since

we do not have any analytical form for N , we numerically unfold the spectrum

by polynomial curve fitting [40]. After unfolding, average spacings are unity, in-

dependent of the system. Using the unfolded spectra, spacings are calculated as

s(i) = λ̄i+1 − λ̄i.

1.9.1.1 Nearest neighbor spacing distribution

In the case of GOE statistics, the nearest neighbor spacing distribution (NNSD) is

denoted by

P (s1) =
π

2
s1 exp

(
−πs

2
1

4

)
. (1.7)

For intermediate cases, the spacing distribution is described by Brody parameter

[46].

Pβ(s1) = Asβ1 exp
(
−αsβ+1

1

)
(1.8a)

where A and α are determined by the parameter β as follows:

A = (1 + β)α, α =

[
Γ

(
β + 2

β + 1

)]β+1

(1.8b)

This is a semi-empirical formula characterized by parameter β. As β goes from 0

to 1, the Brody distribution smoothly changes from Poisson to GOE. We fit spacing

distributions of different networks by the Brody distribution Pβ(s). This fitting

gives an estimation of β and consequently identifies whether the spacing distribution

of a given network is Poisson, GOE, or the intermediate of these two [46]. As

connections are rewired randomly with a probability, say pr, thereby increasing the

randomness in the network, the β value increases. At rewiring probability p = 1,

the regular lattice becomes a random network, and the NNSD follows Gaussian

Orthogonal Ensemble (GOE) statistics with a value of β being one. The transition

from Poisson to the GOE statistics happens at a very small value of the rewiring

probability pr and precisely at the onset of the small-world transition β attains a
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value one, demonstrating that nearest neighbor eigenvalues are correlated [47].

1.9.1.2 next-Nearest neighbor spacing distribution

Apart from NNSD, the next nearest-neighbor spacing distribution (nNNSD) is also

used to characterize the statistics of eigenvalue fluctuations. We calculate this dis-

tribution P (s2) of next nearest-neighbor spacing,

s2(i) = (λi+2 − λi)/2 (1.9)

between the unfolded eigenvalues. Factor of two at the denominator is inserted to

make the average of next nearest-neighbor spacing s2(i) unity. According to Ref.

[40], the nNNSD of GOE matrices is identical to the NNSD of Gaussian symplectic

ensemble (GSE) matrices, i.e.,

P (s2) =
218

36π3
s4

2exp(−
64

9π
s2

2) (1.10)

The NNSD and nNNSD reflect only local correlations among the eigenvalues. The

spectral rigidity, measured by the ∆3-statistics of RMT, preserves information about

the long-range correlations among eigenvalues and is a more sensitive test for study-

ing RMT properties of the matrix under investigation. In the following, we describe

the procedure to calculate this quantity.

1.9.1.3 ∆3 statistics

The ∆3-statistics measures the least-square deviation of the spectral staircase func-

tion representing average integrated eigenvalue density N(λ) from the best fitted

straight line for a finite interval of length L of the spectrum given by

∆3(L;x) =
1

L
mina,b

∫ x+L

x

[N(λ)− aλ− b]2dλ (1.11)

where a and b are regression coefficients obtained after least square fit. Average

over several choices of x gives the spectral rigidity ∆3(L). For GOE case, ∆3(L)

depends logarithmically on L, i.e.

∆3(L) ∼ 1

π2
lnL. (1.12)
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1.9.2 Randomness: structural and spectral perspective

While studying the transition from a regular 1-d lattice to a random graph, starting

from a ring lattice with n vertices and k edges per vertex, each edge is rewired at

random with a certain probability, p. This construction allows to ‘tune’ the graph

between regularity (p = 0) and disorder (p = 1). This rewiring procedure generates

a network with some random connections, without altering the number of vertices or

edges. For p = 0, the structure of the regular lattice or k-nearest neighbor coupled

network remains the same; on the other hand, for p = 1, the regular lattice becomes

a random network. For intermediate values of p, the graph is a small-world net-

work. For the regular lattice (p = 0), NNSD follows Poisson statistics, while for

p = 1, it follows GOE statistics, and for (0 < p < 1)) it shows statistics inter-

mediate of Poisson and GOE. Based on the comparison between the diameter and

clustering coefficient of networks with the Brody parameter (β), a relation exists

between small-world transition and GOE transition (a figure explaining this behav-

ior is adopted from [47] with prior permission from the corresponding author). It

has been shown that the NNSD changes from Poisson to GOE with a tiny incre-

ment in p, and the transition to GOE takes place exactly at the onset of small-world

transition.

1.10 motivation behind this thesis

Despite a rapid advancement in the field of complex systems research in the past

decades, which have uplifted our understanding of underlying complexities of sys-

tems surrounding us [18, 48, 49], unraveling the complexity in brain [50], human

behavior [51], disease [52], socio-economic behavior [53], etc. still remains a chal-

lenge. All these studies were driven by the easy assess of high computing facilities,

availability of established techniques, and a large amount of data [54]; the past

decade has witnessed a tremendous amount of work on the real-world networks

[55]. As most of the works focus on analyzing various structural properties of

the networks, with very few investigations on spectral properties. Moreover, those

spectral studies focus on extremal eigenvalues [56] and eigenvectors [57]. In this
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thesis, we have demonstrated how the network λ = 0 eigenvalues capture impor-

tant properties of the underlying system individually and collectively. Further, the

0,1-embedded image of a network provided a new method to study networks that

are beyond the purview of previous studies.

Recently, complex networks have also been analyzed in the RMT framework

bringing them into the universality class of Gaussian orthogonal ensemble (GOE)

[47, 58–60]. The universality means that universal spectral behaviors, such as statis-

tics of nearest neighbor spacing distribution (NNSD), are not only confined to ran-

dom matrices but get extended to other systems. A wide variety of complex systems

fall under this class, i.e., their spectra follow GOE statistics ([41] and references

therein).

In this thesis, we have shown how systematic investigations performed on the

model and real-world networks establish a correlation between their structural prop-

erties and spectral properties, inspected by RMT.

1.11 Readers Guide to the thesis

We have divided our study of the network as 0,1-matrix systems or adjacency ma-

trix into three chapters. In the first chapter, we have studied with RMT, how the

networks degree-degree correlation information is stored in the spectrum of eigen-

values collectively. This information is revealed in three parts first in the short-range

correlation study by the neighbor spacing distribution of the eigenvalues of the ad-

jacency matrices in the form of Poisson to GOE distribution transition for very high

degree-degree correlation with a little decrement. Second, in the long-range study

by ∆3-statistics for rest positive correlation range. Where the correlation length

increases with the decrease in the degree-degree correlation in the network and

reaches a maximum value of correlation length in ∆3-statistics for r = 0. Finally,

for all negative correlation in degree connections are captured in spectral density

distribution plots. Here, we find that the typical density distribution plot gradually

changes its shape to double-humped shape with a peak of λ = 0.

In the second chapter, here we were fascinated by the fact that in the spectrum
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of real-world inspire networks, a large number of λ = 0 are observed, and we also

found that negative degree-degree correlation also induces the peak at λ = 0. So,

our study was here to look for more discreetly at the origins of the λ = 0 in the

model and real-world networks. As easily can be guessed with the concept of rank

in the linear algebra that the number of eigenvalues at λ = 0, say r, reduces the

rank of N × N matrix to N − r. As configuration model networks with same

degree-degree correlation do not have, and as high number of λ = 0 as a real-world

biological network. Therefore, we found that for a network with no isolated node, it

can shed light on the evolution and working of the networks, like gene duplication.

In the third chapter, we explored the adjacency matrix as the 0,1-embedded

image of the network and analyzed the multifractal properties of this matrix plane

image with multifractal tools. We found that our results were in agreement with all

the previous results. These results provided another possibility for network study

through 0,1-embedded images.

Finally, our studies have shown that the adjacency matrix provides a robust

structure for network study. This structure is yet to reach its peak as eigenvalues

apart from degenerate eigenvalues, and the largest eigenvalue is, however, to be ex-

plored individually and collectively. Further, the new possibility of (0, 1)-embedded

image structure to study of a network, where no study apart from multifractal nature

is done. The beauty of the 0,1-embedded image is that it transformed the basic unit

of structure to edges from nodes.
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2
Network Structure and Eigenval-
ues Spectra of Networks

Chapter 2

2.1 Introduction

Last two decades have witnessed a rapid advancement in the field of complex net-

works [18, 19, 24]. The prime idea governing this framework is to consider a sys-

tem made of interacting units. To categorize and understand real world systems

based on interacting units, many models have been proposed, among which Erdös-

Rényi (ER) random [9], scale-free (SF) [12] and small world [11] are the most

popular ones. Further, degree-degree correlations have also been used as one of

the key properties of networks characterization [19, 61–76]and is known to confer

robustness to biological networks [77]. The tendency of (un)like degree nodes to

stick together is termed as (dis)assortativity. Various social networks are known to

be assortative, while few of the biological and technological networks have been

reported to be disassortative [69–76]. Despite its importance for real networks,

(dis)assortativity does not appear in any of the model networks discussed above and

is driven by some other mechanism, for example, reshuffling algorithm [78, 79].

While spectral behavior of uncorrelated networks have been quite well-understood

[80], despite real-world systems being highly correlated [66], such understanding

for the correlated networks still needs to be developed.

23



CHAPTER 2. NETWORK STRUCTURE AND EIGENVALUES SPECTRA OF NETWORKS 2.2. METHODS AND TECHNIQUES

Spectral graph theory is an established branch of mathematics, and eigenvalues

of corresponding adjacency matrices are known as fingerprints of the underlying

graphs [28, 36, 81, 82]. With recent advancement in the network theory, the spec-

tral graph theory, traditionally used in investigations of random and regular graphs,

got extended to studies of graphs motivated by real-world systems. These spectral

studies, apart from presenting bounds for extremal eigenvalues, highlight their im-

portance by relating them with the various structural as well as dynamical properties

of the networks [83, 84]. The studies of networks further reveal a crucial impact of

assortativity on the extremal eigenvalues [85], which has been explored in the con-

text of disease spreading [86] and diffusion processes [87], thereby exhibiting the

importance of spectral studies of networks for a more comprehensive understand-

ing of complex systems. In this chapter, we present a systematic analysis of the

impact of degree-degree correlations on the spectral properties of various networks

under the random matrix theory (RMT) framework. Since its introduction in the

1960s, in the context of nuclear spectra, the theory has been successfully applied

to a wide range of complex systems ranging from the quantum chaos to galaxy

[39, 41]. Recently, with a spurt in the activities of a network framework, the RMT

got its extension in the analysis of spectral properties of various model networks

[58, 88] as well as those arising from real-world systems [89, 90].

2.2 Methods and Techniques

To quantify the degree-degree correlations of a network, we consider the Pearson

(degree-degree) correlation coefficient, given as [64, 66]

r =
[M−1

∑M
i=1 jiki]− [M−1

∑M
i=1

1
2
(ji + ki)]

2

[M−1
∑M

i=1
1
2
(j2
i + k2

i )]− [M−1
∑M

i=1
1
2
(ji + ki)]2

, (2.1)

where ji, ki are the degrees of nodes at both the ends of the ith connection and M

represents the total connections in the network.

The random network of size N and average degree 〈k〉 is constructed using the

ER model by connecting each pair of nodes with the probability p = 〈k〉/N [9].

These networks have an assortativity coefficient (r) being close to zero or exactly

zero. To generate the networks with various assortativity, we use the reshuffling
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algorithm [78, 79]. In this algorithm, after selecting two pairs of nodes randomly,

we sort them according to the degree. The highest degree node is then connected to

the second-highest degree node with the reshuffling probability pr, which governs

the (dis)assortative mixing, i.e., we reconnect a high degree node to a (low) high

degree one and low degree node to a (high) low degree one. With the probability of

1− pr, we rewire them randomly. If a new connection resulting from this rewiring

already exists, it is discarded, and the previous steps are performed. The process is

carried out until a constant value of r is attained. For assortative networks, the k

degree nodes to form a complete graph with the value of r being one, the network

should have at least (k + 1 + 2n) nodes, where n can be any integer starting from

0. As this condition is not satisfied for all the degrees present in the network, the

network takes a value lesser than one. Similarly, the disassortative network can have

a value of r more than −1.0.

We make a further note that at high assortativity values, all the similar degree

nodes being connected among themselves form groups [78, 79]. As we decrease the

assortativity, the connections within the groups of similar degree nodes decrease,

and the connections between different groups of identical degree nodes increase.

For disassortative networks, connections between different groups of similar degree

nodes exist, giving rise to a bipartite-like structure [78, 79].

As the reshuffling algorithm used for changing the degree-degree Pearson cor-

relation function for ER random network, only require to first select four unique

nodes with only two connections. This selection of four unique nodes is chosen

regardless of the degree distribution they are the part of, like poison, Power-law dis-

tributions. Therefore, this method applies to any network, regardless of the degree

distribution it follows. The SF networks of size N and average degree 〈k〉 are gen-

erated using the Barabási-Albert algorithm by starting with a completely connected

network seed and adding new nodes one by one which connects with existing nodes

using the preferential attachment method [18].

The networks are represented in the form of adjacency matrix by defining Aij =

1, if i, and j nodes are connected otherwise Aij = 0. For an undirected and un-
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weighted network with N nodes, the adjacency matrix is N ×N symmetric square

matrix entailing all real eigenvalues. We denote the eigenvalues as λi, i = 1, 2..N

and λi ≤ λi+1 and analyse them under the RMT framework. The random ma-

trix studies consider two properties of spectra: (1) global properties such as the

spectral distribution of the eigenvalues ρ(λ), and (2) local properties such as eigen-

value fluctuations around λ̄. In RMT, calculations of spectral fluctuations are done

using the unfolded eigenvalues λ̄i = N̄(λi), where N̄(λ) =
∫ λ
λmin

ρ(λ́) dλ́ is the

average integrated eigenvalue density [40]. By using these unfolded eigenvalues,

nearest neighbour spacings are calculated as si = λ̄i+1 − λ̄i. For symmetric ran-

dom matrices with the mean zero and the variance one, the nearest neighbor spacing

distribution (NNSD) follows GOE statistics given as:

P (s) =
π

2
s exp(−πs

2

4
), (2.2)

This shows a level repulsion at small spacing values with an exponential fall for

larger spacings indicating that nearest neighbor eigenvalues are correlated [40].

Whereas the spacing distribution of a matrix whose diagonal elements are Gaus-

sian distributed random numbers and rest of the elements are zero exhibit Poisson

statistics (P (s) = exp(−s)) indicating that eigenvalues are uncorrelated [40].

The intermediate of these two distributions can be characterized using the Brody

equation [46]:

Pβ(s) = Asβ exp
(
−αsβ+1

)
, (2.3)

where A and α are determined by the parameter β as A = (1 + β)α and α =[
Γ
(
β+2
β+1

)]β+1

. The value of Brody parameter lies in the range (0 ≤ β ≤ 1). The

value of β being 0, indicates the Poisson distribution, where as β = 1 corresponds

to the GOE distribution. Other values of β indicates that the distribution lies inter-

mediate to these two.

The NNSD provides a correlation measure of subsequent eigenvalues, whereas

the ∆3(L) statistic measures how the eigenvalues which are L distance apart are

correlated, and can be estimated using the least-square deviation of the spectral

staircase function representing average integrated eigenvalue density N̄(λ) from

the best fitted straight line for a finite interval of length L of the spectrum given by
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[39]:

∆3(L;x) =
1

L
min
a,b

∫ x+L

x

[N(λ̄)− aλ̄− b]2 dλ̄ (2.4)

where a and b are regression coefficients obtained after least square fit. Average over

several choices of x gives the spectral rigidity, the ∆3(L). For the GOE statistics,

the ∆3(L) depends on L in the following manner:

∆3(L) ∼ 1

π2
lnL (2.5)

For the network spectra considered in this chapter, there is no analytical form of N̄ ,

and we perform unfolding by numerical polynomial fitting using the smooth part of

the spectra by discarding eigenvalues towards both the ends as well as degenerate

eigenvalues, if any [39, 41]. This renders the dimension of the unfolded eigenvalues

less than the size of the network.

2.3 Results

The bulk part of the spectra of ER random networks with r value being close to

zero, follow the well known semi-circular law [30, 35] (Fig. 2.1(f)). The extremal

eigenvalues deviate from the random matrix predictions and indeed provide various

information about structural and dynamical properties of corresponding systems

[68, 83, 84, 86, 91–96]. In the following, we present results about the impact of as-

sortativity on the spectral properties of networks. It turns out that with an increase

in the assortativity, the semicircular distribution, as observed for the uncorrelated

ER random networks, remains unchanged (Fig. 2.1(a)-(e)). The largest eigenvalue

exhibits an increasing trend, as already discussed in [85, 86]. As the network is

rewired entailing disassortativity, spectral distribution (ρ(λ)) acquires a very differ-

ent structure than those of the assortative networks. The networks start exhibiting

a high degeneracy at zero, with overall spectra resembling a double-humped struc-

ture (Fig. 2.1(h)), which becomes more pronounced as the disassortativity becomes

higher or the value of r becomes more negative (Fig. 2.1(i)). This increase in disas-

sortativity is also accompanied by more number of degenerate eigenvalues at zero.

There could be various reasons for this high degeneracy; few of them, appropriate in

the present context, are: First, as discussed that disassortativity supports bipartite-
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Figure 2.1: Spectral density for Erdös-Rényi random networks with different val-
ues of assortativity coefficient r. All graphs are plotted for the networks with size
N = 1000 and connection probability p = 0.01, averaged over twenty different
realizations of the networks.

like structure [78, 79] and a complete bipartite network has all zero eigenvalues

except two. Hence bipartite-like behavior of the disassortative networks presents

one of the reasons for the occurrence of high degeneracy at zero. Second, the tree-

like structure has been demonstrated to yield degeneracy at zero eigenvalues [31],

and disassortativity encourages tree-like structure [78, 79], which in turn indicates

high degeneracy at zero.

We remark that for large N , the limiting shape of ρ(λ) is known for various

cases, which for sufficiently dense matrices, tend to follow the Wigner semicircular

law typical for the Gaussian matrix ensembles [30, 35]. In contrast, an ensemble

of sparse random matrices of finite size is known to yield states beyond the semi-

circular law in the tails of the distribution [97–99]. For sparse random graphs, i.e

matrices with 0 and 1 entries having smaller p values, while the density distribu-

tion ρ(λ) of an ensemble exhibit singularities, with the height of the peaks being

the corresponding multiplicities, the bulk is still shown to comply with random ma-

trix predictions of Wigner’s semicircular law [100, 101]. Moreover, investigations

of various model networks mimicking real-world properties have revealed that the

spectra of these networks exhibit degeneracy at zero [40], as observed for the sparse

random matrices. On that account, despite degeneracy at zero, the bulk of the as-
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Figure 2.2: The NNSD for Erdös-Rényi random networks with different values of
assortativity coefficient r. All graphs are plotted for the networks with size N =
1000 and connection probability p = 0.01. Histograms are from the data points,
and the solid line is for fitting with Brody distribution (Eq. 2.3).

sortative networks following the semicircular distribution is not surprising.

As the spectral density only provides a global behavior of eigenvalues, to get

insight into local fluctuations, we further analyze the short-range and long-range

correlations in eigenvalues. The NNSD follows GOE statistics of RMT (Eq. 2.2)

for all the values of r except for very high values corresponding to the highly assor-

tative networks (Fig. 2.2). What is interesting that the values of r for which ρ(λ)

exhibits very similar behavior, except for a change in the value of the largest eigen-

value, the NNSD captures crucial structural changes reflected through the value of

the Brody parameter. For the highest achievable amount of the assortativity coeffi-

cient for the particular network parameter for which results are presented, the value

of β comes out to be close to 0.3 (Fig. 2.2(a)), and as the assortativity decreases we

witness a smooth transition to the GOE statistics with value of the β turning one.

Depending upon the network size, average degree, and degree sequences, the high-

est possible value of r for that network may be different (as discussed in Section II),

which might lead to a different value of β. Fig. 2.2(a)-(d) depict that a tiny change

in the value of r is capable of entailing a profound change in the statistics, in-fact it

approaches from the Poisson to the GOE. Since microscopic randomness is known
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Figure 2.3: The ∆3(L) statistic for Erdös-Rényi random networks with different
values of assortativity coefficient r. All graphs are plotted for the networks with
size N = 1000 and connection probability p = 0.01. The solid line is the predic-
tion from GOE statistics (Eqs. 2.4 and 2.5) and open circle are calculated from the
network.

to be enough in introducing the short-range correlation in eigenvalues [47], for a

tiny deviation from the highest assortativity entails GOE statistics. Since the assor-

tativity in a network supports the groups having similar degree nodes and as soon

as assortativity, r, is decreased, these distinct groups of similar degree nodes for

very high values of r get destroyed, leading to a transition from the Poisson to the

GOE statistics. That is, as soon as the value of r is decreased, and sufficient random

connections among the groups of similar degree nodes are induced, the value of

Brody parameter β becomes one, and no further signature of structural changes on

the value of β is found with a further decrease in the assortativity.

For disassortative networks which are characterized with negative values of r,

what is remarkable is that despite these networks displaying distinguishable spectral

distributions than those of the assortative networks, the NNSD yields the value of

the Brody parameter (β = 1) bringing them into the universality class of GOE.

This is not surprising as NNSD is analyzed by taking the non-degenerate part of

the spectra, and high degeneracy at a particular value, for instance at zero, does not

account for any effect in the NNSD. As long as the underlying network has some

random connections, the NNSD displays the GOE statistics [47]. We remark that

all the networks considered here form a single connected cluster as for disconnected

networks, even though each sub-network follows GOE statistics, the spectra were
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Figure 2.4: (a)-(c) represent the NNSD, (d)-(f) present the ∆3(L) statistic and (g)-
(i) depict the spectral density distribution of the networks ER random networks. All
graphs are plotted for the networks with size N = 2000, 〈k〉=10 and for average
over twenty different realizations of the network.

taken together may lead to a different spacing statistics [88].

To get further insight into the structural changes arising due to the changes in r

values, we probe for the long-range correlations in eigenvalues for those sets which

yield the β value one. We find that for all these values of r, the long range cor-

relations, measured using the ∆3(L) statistic (Eq. 2.4) follow the universal GOE

statistics as given by Eq. 2.5 for a certain value of L (denoted as L0) and deviates

from this universality afterwards (Fig. 2.3).

Note that a regular network, for instance, 1-d lattice with a periodic bound-

ary condition, follows a Poisson distribution. As connections are rewired, thereby

increasing the randomness in the network. Therefore, the value of the Brody pa-

rameter rises with an increase in the rewiring probability. It becomes one at the

onset of the small-world transition, demonstrating that nearest neighbor eigenval-

ues are correlated [47]. For such a small change in the network structure, there is

no visible change in the density distribution, but the Brody distribution detects even

such a slight change in the number of random connections and hence has been pro-

posed to be used as a measure of randomness at a fine-scale [47]. After the Brody

parameter attains a value one, the ∆3(L) the statistic has been shown to measure
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the randomness (in terms of L0 in this chapter), in the underlying network [102].

As rewiring probability increases further, the value of L0 for which ∆3(L) statis-

tic follows RMT predictions increases, demonstrating that the eigenvalues are L0

distance apart are also correlated. Since L0 provides a measure of randomness in a

network [102], for the networks under investigation in the present work, it turns out

that the highest assortative network is least random, as the value of L0 is least for

that particular r value (Fig. 2.3(a)). As the assortativity of the network is decreased,

the randomness of the network increases, reflected in the higher value of L0. This

increase in the size of L0 continues up to r being zero, supporting the fact that the

network reaches to the maximum randomness. The value of L0 then remains steady

for a further decrease in the value of assortativity to the minimum possible value

of r, i.e., to the maximum disassortativity (Fig. 2.3(c)). As most of the real-world

networks have been reported to possess a certain level of disassortativity [66], based

on the ∆3(L) results, we can argue that real-world systems attempt to have more

randomness, thereby leading to being disassortative. What follows that as the value

of r decreases, by keeping network size and average degree the same, the value

of L0 for which ∆3(L) statistic follows RMT predictions increases, indicating an

increased amount of randomness in the underlying network. Fig. 2.4 demonstrates

that the behavior of various spectral properties remains unchanged as network size

increases. Figs. 2.4(a)-(c) indicate that the value of Brody parameter β becomes one

with a very small decrease in the value of r. With a further decrease in the value of

r, the value of L0 for which the ∆3(L) statistic follows GOE statistic increases, indi-

cating an increase in the randomness as discussed earlier. With a further decrease in

the value of r in the disassortativity regime, there occurs a peak at zero eigenvalues,

which becomes more pronounced as the network becomes more dissociative, which

is also accompanied by the deviation from the semicircular distribution at a meager

value of r.

Further, to demonstrate the robustness of the universal RMT predictions against

changes in the network architecture, we present results for the SF networks for var-

ious values of r. For r being close to zero, the density distribution of SF networks
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Figure 2.5: Spectral density for scale-free networks with different values of assor-
tativity coefficient r. All graphs are plotted for the networks with size N = 1000,
〈k〉=10, for twenty different realizations.

exhibits the triangular shape [35], which, with an increase in the assortativity, tends

to display flattening of the peak. The range of the distribution also shrinks as the

assortativity increases (Fig. 2.5(a)-(e)). On the other hand, as we decrease assor-

tativity, i.e., make the network more disassortative, the shape of density distribu-

tion starts changing from its signature triangular distribution, with the peak at zero

eigenvalues being more pronounced (Fig. 2.5(f)-(g)). As we further increase the

disassortativity, the eigenvalues distribute themselves symmetrically and adopt a

double-hump shape for highly disassortative networks, clearly visible in Fig. 2.5(i)

which is accompanied by a high peak at the zero eigenvalues similar to that of the

ER random networks. It is noteworthy that for highly disassortative networks, the

spectral density of ER and SF model networks behave similarly, deviating from

their respective signature distributions. Further, the β value exhibits a transition

from the Poisson to the GOE statistics with a decrease in the r value. Despite the

overall spectral density being different from that of the ER networks, the NNSD

and ∆3(L) statistic display similarity in behaviour, which is in line of the argument

that the eigenvalues fluctuations are calculated from the smooth, homogeneous part

of the spectra by not taking degeneracy into account, and density is not known to be

a real test of GOE statistics [103].

We would like to remark here on the impact and reliability of network size con-
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Table 2.1: Comparison of number of zero eigenvalues of PPI networks of different
species and their corresponding configuration models. r0 denotes the value of the
assortativity coefficient for the PPI networks. N0(PPI) denotes the number of zero
eigenvalues in the spectra of the PPI networks. N0(r = 0) stands for degeneracy at
zero for configuration model with r = 0, whereas N0(r = r0) denotes the same for
the configuration models taking r values equal to the corresponding PPI network.

PPI networks N r0 N0(PPI) N0(r = 0) N0(r = r0)
H.pylori 709 -0.243 317 115 152

C.elegans 2386 -0.183 1354 465 1124
S.cerevisiae 5019 -0.088 976 717 1149
H.sapiens 2138 -0.084 864 423 643

D.melanogaster 7321 -0.083 2311 1389 1975
E.coli 2209 -0.012 487 487 497

sidered in the present investigation. In RMT, different quantities are calculated by

averaging an ensemble of matrices. However, for real systems, calculations are

made as running averages over part of the whole spectrum. The random matrix

predictions can be applied to real-world systems if the above two are equivalent, a

property known as ergodicity. More explicitly, it means that all members of the en-

semble, except for a set of measure zero, satisfies the above equivalence [104, 105].

Due to the ergodicity, one can construct matrix ensembles in different ways: (a)

large dimensional random matrices with less number of realizations or (b) smaller

dimensional matrices with a large number of realizations. We consider an ensemble

of twenty network realizations with a large dimension, which is already shown to

be good enough to study various structural properties of networks, such as degree

distributions, clustering coefficients, etc. [11]. Moreover, individual entities of each

ensemble follow RMT predictions for NNSD with a reasonable accuracy, charac-

terized by χ2 values. As we increase the realizations, accuracy increases (Fig. 2.2

and Appendix). Consideration of an ensemble consisting of many more number

of network realizations would not lead to significant betterment or difference in the

following properties of the network spectra: (1) the Brody parameter smoothly turn-

ing one with a decrease in the value of r at a very fine scale; (2) a further reduction

in the amounts of r leading to an increase in the value of L for which spectra follow
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GOE statistics; and (3) increasing height of the peak at zero eigenvalues with an

increase in the disassortativity, owing to the bipartite-like structure of the network.

Next, to investigate if the degree-degree correlations in a real-world system

have different spectral behavior than those of the model networks discussed above,

we consider the protein-protein interaction (PPI) networks of six different species.

These networks have already been shown to follow universal RMT predictions of

GOE statistics [106]. We concentrate here on the occurrence of high degeneracy at

zero. The assortativity coefficient and fraction of degenerate eigenvalues are tab-

ulated in Table I. As all the PPI networks possess a negative value of r as well

as have a high degeneracy at zero, we expect disassortativity to be one of the fac-

tors governing the degeneracy in the real-world networks. To probe more into the

correlation between disassortativity and degeneracy at zero, we compare the corre-

sponding configuration model for all PPI networks presented above (Table I). It is

clearly indicated that as soon as the value of r takes a negative value (close to the

corresponding PPI network) while keeping all other parameters of the system the

same, there is an increase in the degeneracy at zero eigenvalues.

2.4 Discussion and Conclusions

The density distribution of the random networks for r value being zero follows the

Wigner semicircular distribution. Even with change in the assortativity (0 ≤ r < 1),

the bulk part of the spectra keeps displaying semi-circular distribution (Fig. 2.1(a)-

(f)), Whereas an increase in the disassortativity (−1 ≤ r < 0) leads to the dou-

ble hump, which is symmetrically distributed around a peak at zero eigenvalues

(Fig. 2.1(i)). The height of the peak increases with the increase in the disassortativ-

ity of the network.

The NNSD of the networks with the various (dis)assortativity values (1 < r <

−1), reveal that there is a smooth transition in the β-value around the very high as-

sortativity regime. For very high assortativity values, β values lie close to zero, and

as the network becomes less assortative β progresses to one. It might be due to the

reason that the networks with the highest assortativity have groups of similar degree
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nodes that get perturbed as r decreases by making random connections among these

different groups. For the rest of the assortativity values, the β remains fixed at 1,

which corresponds to the universal GOE distribution as r value goes to a negative

end.

Further, the property of the Brody parameter being able to detect changes in

network structure at a fine scale and the increase in L0 of ∆3(L) statistic after at-

tainment of β value one have several implications. One of them that concerns the

present work is that the value of β distinguishes two networks based on random

connections present, while the other is that more assortativity in the network cor-

responds to less randomness. Decreasing the assortativity leads to an increase in

randomness, which continues up to the value of r = 0, for which the network is

most random (L0 value being maximum). Then the value of L for which ∆3(L)

statistic follows GOE prediction starts decreasing and remains steady for a further

decrease in the amount of assortativity up to the minimum possible value of r (i.e.,

up to the maximum disassortativity case). The SF networks also exhibit the similar

statistics of eigenvalue fluctuations as for ER random networks, where density dis-

tribution for r = 0 and for lower |r| values show triangular distribution instead of

semicircular. Both the networks, however, exhibit high degeneracy at zero for the

disassortative networks. By considering different PPI networks, we further demon-

strate the role of disassortativity governing the appearance of degeneracy at zero

eigenvalues.

In spectral graph theory, most of the works concentrate on extremal eigenvalues

[36]. In contrast, the RMT research focuses on the distribution of various spectral

properties of random matrices with an extension to the random graphs, mainly ig-

noring many graphs properties existing in real-world systems. The analysis carried

here is a step towards bridging this gap by considering the two most popular tools

of random matrix theory, i.e., density and spacing distributions, to understand the

impact of one of the essential properties of graphs, i.e., assortativity. This property

has been increasingly realized as a characteristic of a system [107–109]. Our analy-

sis is another demonstration of the importance of spacing analysis in understanding
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impact of degree-degree correlation on the network detected through the spectra as

for very minute changes in r, there are no visible changes in the spectral density,

but this leads to a very drastic changes in the eigenvalues fluctuations demonstrating

the impact of r values on randomness in a network.

Furthermore, ∆3(L) statistic provides an insight into the reason why social net-

works tend to be assortative, while biological and technological networks tend to

be disassortative. As randomness, measured in terms of L0 for which the ∆3(L)-

statistic follows RMT prediction, increases with a decrease in r. A direct impli-

cation of this result can be witnessed in case of social networks where entities are

known to be associated in an ordered fashion (people with similar age or educa-

tional profile are often more connected) [110], thus providing a probable reason as

to why social networks tend to assume an assortative topology. On the other hand,

it has been reported that most of the biological and technological networks possess

a certain level of disassortativity [64, 66, 76]. Also, the biological networks, for

instance, the PPI networks, exhibit varying amounts of randomness in their under-

lying networks detected through different values of L0 for which the ∆3(L) statistic

follows GOE statistics [106]. This randomness has been attributed to mutations oc-

curring in the course of evolution [111]. Relating the disassortative nature of the

PPI networks and the randomness they possess, with the results obtained from our

analysis of the model networks, suggests that biological networks tend to become

more disassortative to comply with their underlying randomness.

To conclude, we present a systematic analysis of the spectral properties of the

networks with varying (dis)assortativity. We find that assortativity has a profound

impact on the spectral properties of the underlying networks. At a very high assor-

tativity regime, even with a slight decrease in the value of r, the Brody parameter

smoothly turns one. A further decrease in the values of r leads to an increase in

the value of L0 of ∆3(L)-statistic for which the spectra follows GOE statistics. As

Brody parameter β captures the changes in assortativity coefficient at a fine-scale

[47] and L0 at large scale [102], which further suggest that when r decreases, ran-

domness increases. With a further decrease in r, at around r = 0, the density
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distribution starts exhibiting a peak at zero eigenvalues, which becomes more pro-

nounced as r decreases further. Interestingly, most of the studies on network spectra

report that the bulk part of the spectra of the networks having Gaussian and scale-

free degree distribution follows semicircular and triangular distributions [30, 35]

respectively. Still, for highly disassortative networks, the spectral density of both

the degree distributions can have entirely different behavior.

Recently, the realm of assortativity has been realized in understanding adaptive

synchronization [108], which, combined with our results of the varying amount of

randomness for various values of r can be explored further to understand dynamical

processes on networks. Further, Table I indicates that disassortativity is one of the

factors contributing to degeneracy at zero. The prevalence of zero degeneracy has

been implicated in terms of gene duplication [112]. This, along with the impact

of change in the topology of a network, brought upon by assortativity, leading to a

profound shift in the spectral density, provides a direction to explore the evolution-

ary origin of real-world systems [113, 114]. Lastly, since randomness or random

connections in a network have already been emphasized for the proper function-

ing of corresponding systems [115], the profound role of assortativity, parameter

revealed through the sophisticated random matrix the technique is not only crucial

for network community attempting to model complex systems but is interesting for

random matrix communities at the fundamental level as well.

2.5 Appendix

Numerical calculations about assortative mixing, eigenvalues calculations, and ∆3(L)

statistic are done using FORTRAN code written by the Authors. The eigenvalues

are calculated by calling LAPACK (Linear Algebra PACKage) subroutines into the

FORTRAN code. The calculation of spacings and polynomial fittings are done us-

ing MATLAB.

We present the χ2 values as a measure of goodness of fit of the model to data,

a lower of χ2 indicating a better fitting. As depicted from Fig. 2.6, the χ2 values

consistently decrease with an increase in the number of network realizations in the
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Figure 2.6: (a), (b) and (c) plot average NNSD for an ensemble of twenty realiza-
tions for different values of r, whereas (á), (b́) and (ć) plot the ensemble having
different number of the network realizations. The histogram is drawn using the data
fro the networks, and the solid line is the fitted Brody distribution. For all the graphs
N = 1000 and 〈k〉 = 10.

ensemble, implicating an increase in the accuracy reaching to the amount of χ2

being less than one lying in the acceptable range [116]. For assortative networks,

as less as three realizations in the individual ensemble are good enough to bring χ2

within the acceptable range, whereas for r taking negative values, the number of

realizations in the ensemble increases little bit more (five as depicted in Fig. 2.6(ć))

in order to bring χ2 within the acceptable range. This happens as for disassortative

networks, there is high degeneracy at zero eigenvalues leading to the less effective

dimension of the unfolded spectra (refer discussions in the Methods and Techniques

section), and hence several realizations of the networks are required.
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3
Network Structure and Zero-
Eigenvalue of Networks

Chapter 3

quotation Network theory provides a framework to understand the dynamical

behavior and evolution of complex systems. Particularly, spectral graph theory has

been very successful in predicting the synchronization and diffusion properties of

dynamical units in underlying networks. Hence, a considerable amount of work is

done in recent years on the spectra of the model and real-world networks. These

analyses have indicated that while the bulk of the spectra match closely to that of the

corresponding random network models, few spectral properties differ considerably.

In this work, we explore the origin and implications of one such property, which is

degeneracy at zero eigenvalues in the spectra. quotation

3.1 Introduction

The last two decades have witnessed tremendous growth in the studies of com-

plex systems under the graph theory framework [117]. This framework describing

a complex system in terms of its interacting units has not only enabled us to un-

derstand the properties of large complex systems but has also shed light on the

dynamics of evolution of these structural properties [18, 19, 68, 118]. Though spec-

tral graph theory is a well-established domain [28, 36, 82], most of the studies in

complex systems research pertain to understanding the properties and behavior of
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a system by analysis of various structural measures. In contrast, studies on spec-

tral analyses of graphs generated for real-world systems are comparatively limited

[30, 90, 106, 119]. The spectral investigations indicate that the patterns of den-

sity distributions are distinguishing features of different classes of model networks

[32]. Further, extremal eigenvalues have been shown to contain useful information

about the structure of the graphs [68]. Although the bulk of real-world networks

bear reasonable similarities with the model networks [28], some properties differ

significantly. One such property is the degeneracy at zero eigenvalues. Almost all

biological and technological networks exhibit high degeneracy at the zero eigenval-

ues [31, 35, 106], gene duplication is one of the suggested reasons behind the oc-

currence of high degeneracy at zero eigenvalues in biological systems [37]. Many

biological systems are known to follow gene duplication as the primary mechanism

behind their growth [112]. From a straightforward matrix algebra calculation, we

know that node duplication leads to a lowering of the rank of the corresponding

matrix, hence contributing one additional zero eigenvalues in the spectra. Although

node duplication provides a clue to the origin of zero degeneracy [120], it fails

to provide a quantitative measure of actual degeneracy observed in real-world net-

works [31], indicating the contribution from other factors. Scale-free behavior or

sparseness of real-world networks have been argued out to be other reasons respon-

sible for degeneracy at the zero eigenvalues [31, 35, 106]. In this work, we explore

the origin of zero eigenvalues in various model networks. We substantiate the re-

sults by considering various real-world networks.

3.2 Methods and Techniques

A network can be represented in terms of adjacency matrix which is defined as,

Aij =

1 if i ∼ j

0 otherwise
.

The eigenvalues of the adjacency matrix are denoted by λi, i = 1, 2, . . . , N

such that λ1 < λ2 < λ3 < . . . < λN . A theorem [121] relating the degeneracy at

zero eigenvalues with the properties of the matrix states that for an adjacency matrix
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Table 3.1: In order to demonstrate one to one relation between number of dupli-
cates and zero eigenvalues, each time one new add is added in a network of size N
in such a manner it satisfies either complete duplication criteria (ii) or the partial
duplication criteria (iii). Dc represents number of complete duplicate node groups,
Dp represents number of partial duplicate node groups and λ0 indicates number of
zero eigenvalues. Seed network of size N = 100 and average degree 〈k〉 = 10.

N 100 101 102 102 103 104 104 105 106 106 107 108 108 109 110 110
Dc 0 1 2 0 3 4 0 5 6 0 7 8 0 9 10 0
Dp 0 0 0 1 0 0 2 0 0 3 0 0 4 0 0 5
λ0 0 1 2 1 3 4 2 5 6 3 7 8 4 9 10 5

Condition - a a b a a b a a b a a b a a b

of size N and rank r, there will be exactly N − r zero eigenvalues. Therefore, if

we know the rank of an adjacency matrix, we can find out the degenerate zero

eigenvalues. Factors responsible for lowering of the rank of an adjacency matrix

are enlisted in the following:

(a) When two rows (columns) have the same entries, it is termed as complete

row (column) duplication:

R1 = R2 (3.1)

Subtracting one such row from the other yields one of the rows to attain all zero

values, thus reducing the rank of the matrix by one.

(b) When two or more rows (columns) added together have exactly same entries

as some other row or column, we call it partial row (column) duplication. For

example;

R1 = R2 +R3, orR1 +R2 = R3 +R4 +R5 (3.2)

(c)An isolated node in the network leads to all zero entries in the corresponding

row and column, thus lowering the rank of the matrix by one.

Conditions (a) and (b) lead to the linear dependence of row (column), reducing

the rank of the matrix. Note that we consider a connected network in order to rule

out the trivial possibility (c) of occurrence of zero eigenvalues. Further there are

N(N − 1)/2 possible ways in which condition (a) of complete duplication can be

realized, while for the partial duplication (b) among ‘x’ number of nodes with ‘y’

number of nodes, there can be 1
2

N !
(N−x−y)!x!y!

possibilities. Hence, for a given net-
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work, checking the existence of condition (b) becomes computationally exhaustive

as with increase in network size the number of possibilities becomes very large.

• The possible number of ways in which duplication can happen. We look

for the duplication of x nodes by y nodes in an adjacency matrix of network

of N nodes. Here, we have to look for all the possibilities of corresponding

to x and y. where 1 < x, y < (N − 1).

Now, we can choose x nodes out of N nodes in
(
N
x

)
number of ways.

Similarly, we can choose y nodes out of these (N−x) nodes in
(
N−x
y

)
number

of ways. Therefore, total number of ways in which we can select these (x, y)

pair is

(
N
x

) (
N−x
x

)
= N !

(N−x−y)!x!y!

As the number of nodes involved are very few, we can neglect x! and y! being

order of ∼ 1 and, Since all these selections are symmetric i.e. AB = BA,

therefore in total

N−1∑
x,y=1

1
2

N !
(N−x−y)!

2 ≤ (x+ y) ≤ N

Since N is very large (∼ 103) quantity, finding partial duplicate nodes is

computationally exhaustive process.

• The probability of two nodes of k degree being duplicated nodes. To ex-

plain this, we consider number of ways in which two k-degree nodes can se-

lect their neighbours excluding themselves is [(N−2)(N−3)....(N−3−k)]
k!

2
=
(
N−2
k

)2

and number of ways in which these two k-degree nodes select same neigh-

bours

(
N−2
k

)(
k
k

)
= [(N−2)(N−3)...(N−3−k)]

k!
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Figure 3.1: Schematic diagram representing (a) complete node duplication (Eq. 3.1)
and (b) partial node duplication (Eq. 3.2) in networks.

Therefore, for two nodes of k-degree to be duplicated is given by

(N−2
k )(kk)

(N−2
k )(N−2

k )
= k!

(N−2)(N−3)...(N−3−k)

If k� N, then (N − 2) ≈ N ; (N − 3) ≈ N ; . . .; (N − 3− k) ≈ N

(N−2
k )(kk)

(N−2
k )(N−2

k )
= k!
Nk

Hence, the probability of two nodes of k degree being duplicated nodes is k!
Nk .

3.3 Results

In order to demonstrate the effect of duplication on zero degeneracy, we construct

an Erdös-Renýi (ER) random network for size N and connection probability p us-

ing ER model [18], such that it has no duplicates and no zero eigenvalues (row 1

of Table 3.1). Next, we add a node to the existing network in a way that satisfies

the complete node duplication criteria, i.e., condition (a). This leads to precisely

one zero eigenvalue corresponding to one duplicate node. The addition of one more

node mimicking the previous node leads to two zero eigenvalues (row 2 and 3 of

Table 3.1). This demonstrates how complete node duplication leads to zero eigen-
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values (Fig. 3.1 (a)). Further, we consider another situation where we devise our

algorithm such that two new nodes are added to the existing random network in a

way that in coalition they mimic the neighbors of an existing node (condition (b)),

i.e., they duplicate an existing node (row 4 of Table 3.1) as demonstrated in Fig. 3.1

(b). The impact of duplications (by both conditions (a) and (b)) on the zero eigen-

values are presented in the subsequent rows of Table 3.1. Thus, we observe that

with the entry of every new node in a network, satisfying condition (a) or (b) of

complete or partial duplication, there is an addition of exactly one zero eigenvalues

in the spectra. The number of duplicates (complete or partial) equals the number

of zero eigenvalues. The density distribution at a low average degree yields a peak

at zero eigenvalues. With an increase in 〈k〉, the peak of the density distribution

flattens (Fig. 3.2 (a)).

To study the impact of network architecture on the duplication phenomenon, we

present results for an ensemble average of the scale-free (SF) networks as they are

known to have high degeneracy at zero eigenvalues. We generate the SF network us-

ing the preferential attachment mechanism [12], where each new node gets attached

to the existing nodes with the probability proportional to their respective degrees.

This phenomenon gives rise to a power-law degree distribution. Here at each time

step, a new node enters, which is most likely to connect with the highest degree

nodes owing to the preferential attachment algorithm. The next entry also tends to

attach with the highest degree nodes. From the power-law degree distribution of SF

networks, it is evident that there are very few high degree nodes, which are known

as the hubs of the network and a large number of low degree nodes. At low values of

〈k〉, there is a high degeneracy at zero eigenvalues indicating high duplication. This

is because, at a low average degree, most of the low degree nodes attain very few

connections. Under preferential attachment property, these low degree nodes have

the highest probability to connect with the hubs of the network, which increases

the likelihood of any two nodes to have the same neighbors, leading to a pair of

duplicate nodes. Although even with an increase in average degree, the density dis-

tribution remains triangular, there is flattening of the peak (Fig. 3.2 (b)). This might
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Figure 3.2: The density distribution of Erdös-Renýi (ER) random networks and
scale-free (SF) networks for different average degrees and N = 1000. M, �, ◦ and
∗ represent the data points of density distribution for 〈k〉=2, 4, 6 and 8, respectively.
All values are averaged over ten realizations of the networks.

be because the low degree nodes also tend to acquire connections with nodes other

than the hubs. All these findings indicate that a low average degree favors duplica-

tion. The explanation behind this can be given in terms of the possible number of

ways of duplication, which is the ratio of the possible number of combinations of

duplication possessed by two k-degree nodes to the possible number of combina-

tions of random connections of those nodes. This is given as k !
Nk , Where N is the

total number of nodes. As k increases, the possible number of ways of duplication

drastically decreases, thus explaining why low degree supports duplication.

Since networks with power-law degree distribution, i.e., SF networks, lead to

high degeneracy in the spectra, we further explore other model networks with power-

law degree sequence. We construct the configuration model network by taking the

degree sequence of the connected SF network as input. Each node of the corre-

sponding configuration model is allotted stubs equal to their degree; then, these

stubs are paired with uniform probability [122–124]. This generates a configu-

ration model for a given degree sequence. Only connected networks are carried-

further, rest all are discarded. In spite of having randomly assigned connections,

they display a much higher zero degeneracy as compared to the ER random net-

works (Fig. 3.3 (a)). The configuration model networks are not generated using the

preferential attachment property as of the SF networks. So this possibility is ruled

out as a reason behind the higher degeneracy of configuration model networks as
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compared to ER random networks. The particular (the power-law) degree sequence

emerges as a probable reason behind high degeneracy at zero eigenvalues in the

configuration model. Due to the power-law behavior, there exists a large proportion

of nodes with a low degree, which for 〈k〉=2 are peripheral nodes. Only a few nodes

had high degree act as the hubs. A large number of low degree nodes get randomly

attached to high degree nodes, i.e., the peripheral nodes attach with the hubs only,

leading to the complete duplication of these nodes. While in the case of ER net-

works, duplication is less likely as all the nodes have their degrees are fluctuating

around the average degree. The configuration model networks exhibit a lower peak

at zero eigenvalues as compared to SF networks (Fig. 3.3) as it is a randomized ver-

sion of the SF network. This indicates that apart from the preferential attachment

phenomenon, the particular degree sequence is also responsible for high degeneracy

at zero eigenvalues.

Table 3.2: Properties of the six PPI networks and their comparison with ER random
networks, SF networks generated using BA algorithm and corresponding configu-
ration model networks (of the same degree sequence as of the PPI networks). Dc,
DER
c , DBA

c , and Dconf
c denote the number of complete duplicates in the PPI net-

works, ER random networks, SF networks and configuration model networks, re-
spectively. λ0, λER0 , λBA0 and λconf0 represent the number of degenerate zero eigen-
values in the PPI networks, ER random networks, SF networks and configuration
model networks, respectively. γ denotes the values of the exponent of the degree
distribution of the PPI networks. The γ values of the SF networks turn out to be
∼3. The ER and SF networks are generated for an average of over ten different
realizations of the networks by keeping N and average degree same.

Species N 〈k〉 λ0 Dc γ λER0 DER
c λBA0 DBA

c λconf0 Dconf
c

H. pylori 709 3.935 317 146 1.94 0 0 155 17 163 79
H. sapiens 2138 2.872 976 662 3.03 0 0 469 33 512 309

E. coli 2209 9.895 487 323 1.7 0 0 0 0 569 200
C. elegans 2386 3.206 1354 940 2.08 0 0 528 29 818 569

S. cerevisiae 5019 8.803 864 491 2.00 0 0 0 0 950 314
D. melanogaster 7321 6.159 2311 1046 2.26 0 0 110 0 1621 687

So far, we have discussed the impact of network architecture on the duplication

and the zero degeneracy. In the following, we evaluate the impact of average degree

and size on the same. For a fixed network size, when the average degree of the
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Figure 3.3: (Effect of the change in the network parameters, namely, size (N )and
the average degree (〈k〉) on the number of the duplicates and zero eigenvalues in
different model networks. All values are averaged over 10 random realizations of
the networks. Note that for ER random networks, connected component could not
be obtained at 〈k〉=4 for N above 1000. Here the M, ◦ and � represent the Dc of
the ER, SF and configuration model networks, respectively. The solid M, ◦ and �
represent the λ0 of the ER, SF and configuration model networks, respectively.

ER random network increases, there is an increase in the number of connections.

The probability that any node has the same set of neighbors as any other node is

given by 〈k〉2k
e2〈k〉k !Nk . With an increase in 〈k〉, this probability diminishes exponen-

tially. This implicates a reduction in node’s duplication. Fig. 3.3 (a) exhibits that at

a low average degree, the number of complete duplicates is much less as compared

to the number of zero eigenvalues, indicating that the contribution to the occurrence

of the zero eigenvalues comes mainly from the partial duplicates. With an increase

in the average degree, the number of duplicate nodes, as well as the number of zero

eigenvalues, decreases. In order to further explore the impact of duplicates on zero

degeneracy, we consider model networks other than the ER random networks gen-

erated using different algorithms, some of which might support node duplication.

In case of an SF network of the same size and the average degree, a much higher

number of duplicates and zero eigenvalues are exhibited as compared to the ER

random network (Fig. 3.3 (a)), but both the counts decrease with an increase in the

average degree. The configuration model networks display less complete duplicates

and zero eigenvalues than those of the SF networks, as apart from the degree se-

quence, there does not exist any other preference for the association of nodes. With

an increase in the average degree, the number of complete duplicates and the zero

eigenvalues decrease. On a further increase in the average degree, the number of
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complete duplicates and zero eigenvalues coincide with negligible values for all the

three networks. At a fixed average degree, with an increase in the size of the net-

works, both numbers of complete duplicates and zero eigenvalues increase in the

case of SF and configuration model networks, with zero degeneracy being higher

as compared to complete duplication. The number of duplicates and zero eigenval-

ues, however, remain negligible in the case of ER random networks even with an

increase in size (Fig. 3.3 (b)).

3.4 Discussion and Conclusions

Keeping in view the high zero degeneracy prevalent in real-world systems [125],

in the following, we attempt to analyze how our investigation on model networks

sheds light on the reasons behind high degeneracy at zero in real-world systems.

We analyze the protein-protein interaction (PPI) networks of six different species,

namely H. Pylori, H. sapiens, D. melanogaster, S. cerevisiae, C. elegans and E.

coli. As depicted in Table 3.2, the number of zero eigenvalues are more than the

number of complete duplicates indicating the existence of partial duplicates in the

underlying networks. We generate ER random networks of the same size and av-

erage degree as of the six PPI networks. Table 3.2 reveals that the generated ER

random networks have no degeneracy at zero eigenvalues and no duplicates. As

the PPI networks are SF in nature [106], we generate SF networks of the same size

and average degree as of the PPI networks using the BA algorithm. We find that

though corresponding SF networks lead to a high degeneracy at zero, as expected,

the number of zero eigenvalues and complete duplicates are much less than those of

the corresponding PPI networks. It may be because the SF networks so generated

display power-law behavior but need not have the same degree sequence as of the

PPI networks. We further construct corresponding randomized models of the real

systems, i.e., configuration models having the same degree sequence as of the six

PPI networks. We observe that the configuration model networks have much higher

zero degeneracy and complete duplication as compared to the SF networks gener-

ated using the BA algorithm. This observation is quite intriguing as it has been
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demonstrated that the SF networks generated using the BA algorithm have higher

duplication and degeneracy as compared to their corresponding configuration mod-

els (Fig. 3.2 and 3.3). But it would be noteworthy to mention that the configuration

models generated in the case of model networks were the ones having the same

degree sequence as of the BA-algorithm generated SF networks. While in the case

of the PPI networks, the configuration models preserve the degree sequence of the

PPI networks. This indicates that not only the power-law behavior of the networks

accounts for duplication but the very nature by which the real world PPI networks

have evolved and acquired a degree sequence that favors duplication and leads to

degeneracy at zero also contributes to it.

Further, the results presented for the configuration model in Table 3.2 uses the

same degree sequence as of the real PPI networks of the various species and conse-

quently has the same power-law exponent values as of the latter. It may be possible

that the BA algorithm leads to a different exponent for the same values of N and 〈k〉

taken from the PPI networks. As evident from columns 6 and 11 of Table 3.2, the

BA networks for H. sapiens have the closest values of zero degeneracy, and com-

plete duplicate nodes as of the PPI networks, which might be occurring as both the

networks have the power-law exponents being almost equal. The values of expo-

nent deviating more from those of the real PPI networks lead to more deviation of

the values of zero degeneracy and complete duplication (Table 3.2) indicating that

the exponent, as well as particular degree sequence collectively, contribute to the

occurrence of the zero degeneracy.

To conclude, all the real-world networks show more zero degeneracy as com-

pared to the corresponding random models, indicating that the equivalent number of

nodes are completely duplicated (condition (a)) or have partial duplications (con-

dition (b)), as depicted by Table 3.2. Gene duplication mechanism has been em-

phasized in evolutionary biology to be a driving force for creating new genes in

a genome [112, 126–129]. As duplicated genes are known to acquire mutations

faster than other genes resulting in divergence of functions [130], understanding the

PPI networks exhibiting the prevalence of duplicates is quite interesting as well as
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intriguing.

Most of the real-world networks are scale-free, which renders few nodes con-

nected with almost all other nodes in the network, leaving a lot of nodes having as

less as one connection with the hub only. This naturally leads to a lot of complete

duplicate nodes (condition (a)), which in turn leads to a high degeneracy at zero.

Scale-free networks generated through preferential attachment algorithm yield a

good number of duplicated nodes, owing to the very nature of the algorithm, in

turn leading to equivalent degeneracy at the zero eigenvalues. In the preferential

attachment, a new entry in the network has more probability of connecting with the

existing hubs, making it more probable that it connects with the same set of nodes

which gained connections with the previous entry. Since such kind of bias does not

exist in the configuration model, as expected, it exhibits fewer duplicates and hence

less degeneracy at zero. With an increase in the average degree, it becomes difficult

for pair(s) of nodes to satisfy condition (a) or (b), as more connections will lead

to more probability of destroying duplication, leading to a constant decrease in the

zero eigenvalues.

We explore the origin of zero degeneracy in the network spectra. Our analysis

sheds light on the mechanisms which collectively lead to zero degeneracy in the

real networks. Further, we correlate the occurrence of zero degeneracy with the

evolutionary origin of a network. Comparison of the number of duplicates and zero

degeneracy in the PPI networks of six different species with their corresponding

configuration models reveals that in addition to the power-law behavior of the real

networks, other factors also contribute to node duplication leading to comparatively

high zero degeneracy. Duplicated gene pairs have been emphasized to confer evo-

lutionary stability to many biological systems [131, 132]. The analysis carried out

in this work combined with the occurrence of an exceptionally high peak at zero

degeneracy in real-world networks can be extended to understand other complex

systems as well as to build up robust technological networks.
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Network Structure and (0,1)-
Embedded Matrix Image of Net-
works

Chapter 4

4.1 Introduction

The fractal geometry of nature was first described by Mandelbrot already in 1967

[133], and the approach has been extensively used, since then, to gain insights into

the underlying scaling of a variety of visually complex structures, like fracture sur-

faces of metals [134], strange attractors [135, 136], diffusion [137] and medical

imaging [138] patterns, galaxies [139], and atomic spectra [140], just to quote a

few examples. In complex networks, so far, the focus has been investigating self-

similarity [141, 142] and fractal structure of skeleton [143], as well as growth mod-

els which capture the observed fractal behavior[48, 144].

A fundamental issue is identifying whether a system is a mono- or a multi-

fractal, i.e., whether or not a unique fractal scaling spans all the different system’s

parts, regions, or components. Multi-fractal analysis requires considering a physical

measure: the number of nodes within a box of size, say l, has been used so far to

analyze how the distribution of the such number of nodes scales in a network, as

the box size increases [143]. In this Letter, instead, we quarter the focus on the

scaling of the number of edges in a partition-box of the network’s adjacency matrix

A. Precisely, we consider a spatial distribution of the network’s edges (instead of
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Figure 4.1: (Color Online). Schematic representation of the used box counting
method. Left: original network. Right: partition of the adjacency matrix A.

the network’s nodes), this way making edges (the entries of the A’s plane) as the

basic units for the evaluation of fractal dimensions.

The aim is to introduce a practical and computationally non-demanding proce-

dure, able to distinguish mono- from multi-fractal characters in complex networks.

To do so, the distribution of 1’s in square boxes of length ε in A is analyzed by

the use of the box-counting method (BCM) [145–147], which considers only non

overlapping boxes, thus preventing specific parts of the matrix from getting over-

weighted due to systematic over-counting. Furthermore, the robustness of the re-

sults is pledged by reshuffling the nodes, i.e., by avoiding any form of biasness gen-

erated by a specific node indexing. Precisely, the supplementary material contains

evidence that each shuffling step provides a new ensemble of adjacency matrices

[148].

4.2 Methods and Techniques

A schematic representation of the procedure is sketched in Fig. 4.1. We start with

partitioning the adjacency matrix into ε-size boxes, and counting the number of

boxes n(ε) with at least one non-zero entry (edge), with ε varying from 2 to N/2.

n(ε) exhibits typically the scaling n(ε) ∼ εD0 , with D0 giving the dimension of

the network. If D0 is a non-integer number, the network is said to be fractal. D0,

however, gives no information whatsoever on the system’s multi-fractality, which

should be accounted for, instead, by a multi-fractal approach [145]. Let therefore

digitalize A into ε-size boxes, and let ni(ε) be now the number of ‘1’ entries in
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Figure 4.2: (Color Online). P q
ε vs. ε in a double logarithmic scale with q ∈

(−10, 10) for (a) ER and (b) SF networks. N = 1, 000 and 〈k〉 = 20.

the ith element of the partition. The occurrence probability of 1’s in the ith box of

size ε, denoted by pi(ε), ranges therefore between 1/2Nc and ε2/2Nc, where Nc is

total number of connection in network. At each ε value, the qth moment (for all

−∞ < q < +∞ real numbers) of this probability is given by

P q
ε =

n(ε)∑
i=1

[pi(ε)]
q. (4.1)

The scaling exponent τ(q) is given by

τ(q) = lim
ε→0

lnP q
ε

lnε
, (4.2)

and is obtained from the slope of lnP q
ε vs. lnε at all q-value. Notice that τ(q) is here

calculated always as ensemble average over the P q
ε values obtained by shuffling the

node indices. The qth-moment dimension Dq is then given by

Dq =
τ(q)

q − 1
. (4.3)

For each box of size ε and occupation probability pi(ε), the singularity strength

αi is given by pi(ε) = εαi , and at every q, α is evaluated as 1/n(ε)
∑n(ε)

i=1 αi. The

singularity spectrum, f(α), is related with τ(q) by means of the Legendre transform

f(α) = qα− τ(q), (4.4)

with α = dτ(q)/dq being the Hölder exponent, and f(α) indicating the dimension

of the subset scaling with α.

A multi-fractal structure is indicated by the following marks [145]: i) multiple

slopes of τ(q) vs. q; ii) a non constant value ofDq vs. q, and iii) f(α) vs. α covering
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Figure 4.3: (τ(q) (a) andDq (b) vs. q. (c) f(α) vs. α. In all plots results are reported
for 1-d lattices, ER and SF networks with N = 1, 000 and 〈k〉 = 10. All quantities
are calculated for 50 random realizations of the networks generated by reshuffling
indices 100,000 times for each realization. The left and right region slopes of τ(q)
for the 1-d lattices, ER and SF networks are, respectively, 2.1 and 1.9; 2.4 and 1.9;
2.3 and 1.2.

a broad range instead of being accumulated at nearby non-integer values of α.

We start by briefly discussing the effect of different reshuffling of the nodes’ la-

beling, in particular (i) random reshuffling, and (ii) degree-based reshuffling. For an

ε-size box (located at the (i, j) coordinate in the adjacency matrix plane and denoted

as bij) the probability of occurrence of 1’s is pbijε ∝ 〈k〉 in case i) (detailed deriva-

tions are provided in Supplementary Material), and is therefore independent of the

network architecture. Case ii) leads instead to interesting behavior, as the probabil-

ity of occurrence of 1’s depends on the heterogeneity present in the networks. For

1-d lattices, where no degree heterogeneity is present, random and degree-based

reshuffling provides the same results [148]. At variance, Erdös-Rényi (ER) and

scale-free (SF) networks, which display varying levels of degree heterogeneity, ex-

hibit different behaviors for the two cases. For the degree-based reshuffling one

has pbijε ∝ ε2

N4
k2

ρ(k)2
, where k is the degree of a node inside the box bij and ρ(k)

is the probability of occurrence of k-degree nodes in the network. Note that pbijε

depends upon the degree as well as the probability density of the degree of all the

nodes inside the box [148]. In the following, we first sort the nodes of a network in

decreasing order of their degrees and assign their indices. As the usual case is that

many nodes have the same degree, in order to avoid the possibility of the preference

being conferred on a particular node in a set of the same degree nodes, we carry
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out several realizations of the shuffling of indices among the nodes with the same

degree.

4.3 Results

We now present the results for 1-d lattices, ER and SF networks, and real-world

protein-protein interaction (PPI) networks of six different species. With a range of

ε values spanning from 2 to N/2, P q
ε is evaluated for q values ranging between−10

to +10. The slope of P q
ε (calculated using Eq. 4.1) versus ε (on a double logarithmic

scale) provides the estimation of the value of the scaling exponent at each q, denoted

as τ(q) (Eq. 4.2). For all networks, the value of the scaling exponent is zero at q = 1

and non-zero at other q values (see Fig. 4.2). The q range can be divided, then into

the left (q ≤ 0) and the right (q > 1) region. We do not consider q = 1, as this is the

fractal dimension of the system. The same value of the slope of τ(q) in both regions

indicates a mono-fractal nature of the network, while different values are a signature

of a multi-fractal structure. For a regular lattice, all nodes have the same degree.

This kind of uniformity results in a single value of the scaling exponent on both left

and right regions (see Fig. 4.3(a)). While the slopes of τ(q) are indicative measures

of the multi-, mono- or non-fractality of the system, the range ofDq values gives the

dimension(s) of the corresponding networks. For 1-d lattices, the Dq values shrink

to a very narrow range about 2, confirming again the mono-fractal character of the

graph, while the singularity spectrum, fα (calculated using Eq. 4.4) shows that, for

a specific range of α, most of the fα values are accumulated in a nearby non-integer

region, with only a few points deviating from this behavior.

The case of ER networks is far different. There, by construction, a new edge

does not have a preference to connect with specific nodes [27], leading to approx-

imately similar degrees of all the nodes, and to an adjacency matrix where the 1

entries are dispersed in the entire plane, without clusters or patterns. The associ-

ated homogeneity gives nearly close values of scaling exponents on the left and

right regions on performing multi-fractal analysis (see Fig. 4.3(a) and consult the

Supplementary Material for the analysis of the impact of degree homogeneity on
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multi-fractal dimensions). Further, on plotting Dq vs. q, one finds find that the right

region exhibits the same behavior as that of the 1-d lattice, whereas the left region

deviates significantly from a mono-fractal pattern (see Fig. 4.3(b)). The conclusion

is that ER networks can be said to exhibit a multi-fractal nature in the left region of

the spectrum, and a quasi-mono-fractal character for q > 1. When SF networks are

taken into consideration, the growth mechanism producing them has a bias towards

high degree nodes getting more and more edges (as preferential attachment induces

new nodes to get linked to existing high degree nodes [27]), and gives a large spread

in the degrees of the network’s units. In the adjacency matrix, this is reflected by a

few rows and columns (corresponding to high degree nodes) with a vast number of

entries, with the majority of rows and columns having only very few 1’s. Two large

structures in the adjacency matrix then arise: one is a strip structure with a dense

accumulation of 1’s, and another is the sparse dispersion of entries in the rest of the

space. The mixing of these two patterns yields different scaling exponents, and is

indicative of a multi-fractal behavior (see Fig. 4.3(a)).

The probability of occurrence of 1’s in the ith box of size ε, pi(ε), ranges be-

tween pmin(ε) = 1/2Nc and pmax(ε) = ε2/2Nc. On considering the qth moments

of these probabilities (Eq. 4.1), one finds that in the positive q region the pqmax(ε)

values dominate over the pqmin(ε), while in the negative q region the pqmin(ε) val-

ues exhibit dominance over pqmax(ε) values with increasing magnitude of q. This

means that the behavior of the densely packed boxes of entries in the adjacency

matrix plane is reflected in the right q region, while the sparsely packed boxes are

determining the behavior of the left q region. The conclusion is that the relevant

characteristics of the system (in terms of the high density of edges) are described

by the right region, while generally small fluctuations in the system’s fractal prop-

erties are accounted for the left region (as tiny changes in the qth moments of the

probabilities get magnified in the negative q region).

In 1-d lattices, all nodes have the same degree, thus rendering uniform the distri-

bution of 1’s across the adjacency matrix planes. As a consequence, there are only

two probabilities of occurrence of 1’s: for all the boxes in the off-diagonal region,

58



CHAPTER 4. NETWORK STRUCTURE AND (0,1)-EMBEDDED MATRIX IMAGE OF NETWORKS 4.3. RESULTS

-10 0 10

2

3

D
(
q
)

-10 0 10

2

3

-10 0 10
1

2

3

-10 0 10

q

2

3

D
(
q
)

-10 0 10

q

2

3

-10 0 10

q

2

C. elegans D. melanogaster E. coli

H. pylori H. sapiens S. cerevisiae

(a)

(d)

(b) (c)

(e) (f)

Figure 4.4: Dq vs. q for PPI networks (open circles) of six species, along with
their corresponding ER random networks (closed circles) having the same size and
average degree. The results for each of the corresponding ER random networks are
presented for 100,000 node reshufflings, and for 50 realizations.

the probability is 2Ncε2

(N2−N)
, while for all the boxes lying in the diagonal region, the

probability is 2Nc(ε2−ε)
(N2−N)

. The slight kink in the Dq values in the left region can be

therefore attributed to the probabilities corresponding to the diagonal regions.

The degree distribution of an ER random network follows Poisson statistics.

Though most of the nodes have a degree close to 〈k〉, nodes have higher and lower

degrees as well. The probability of having 1s in a box depends on its degree dis-

tribution and deviates from that of a 1-d lattice. The deviation δ in the homogene-

ity of node degrees is reflected in the lower and upper bounds for the probability

of occurrence of 1’s: for all the boxes in the off-diagonal region, the probabil-

ity is ( 2Nc
(N2−N)

± δ)ε2, whereas for those in the diagonal region, the probability is

( 2Nc
(N2−N)

± δ)(ε2 − ε). Though the distribution of 1’s in the adjacency matrix plane

of the ER random networks appears very similar to that of a 1-d lattice (see Sup-

plementary Material), the deviation in the homogeneity of node degrees results in

significant deviations within the left region of Dq, as small changes are actually

magnified in this region.

For SF networks, two types of dominant structures (patterns) exist in the ad-

jacency matrix plane. The first structure is made up of densely packed rows and

columns of 1’s, while the sparse population of 1’s forms the second structure. The

59



CHAPTER 4. NETWORK STRUCTURE AND (0,1)-EMBEDDED MATRIX IMAGE OF NETWORKS 4.3. RESULTS

mixing of these two structures gives rise to a wide variety of probabilities pi(ε)’s.

For positive (negative) q values, the principal contribution to the multi-fractal na-

ture of the graph comes from the first (the second) structure. Thus, for negative q

values, SF networks exhibit the same behavior as ER random networks, while their

behavior sharply differs from that of ER graphs for positive q values.

Finally, we apply our measure for shedding light on the structure and nature of

associations in real-world protein-protein interaction (PPI) networks. Namely, we

consider the PPI networks of six different species: the C. elegans, the D. melanogaster,

the E. coli, the H. pylori, the H. sapiens and the S. cerevisiae. In order to draw a

fair comparison among the different PPI networks, we construct corresponding ER

random networks having the same size and average degree as the real networks, and

perform comparative multi-fractal analysis for 100,000 rounds of node reshufflings,

and 50 realizations. On plotting Dq vs. q for the PPI networks and their correspond-

ing random controls, one finds that for E. coli and S. cerevisiae both left and right

regions deviate significantly from their random counterparts (see Fig. 4.4(c) and

(f)), indicating a genuine multi-fractal behavior of the underlying networks, which

is quite expected as all these species are known to display scale-free properties in the

degree distribution [106]. In the cases of D. melanogaster and H. pylori, the extent

of deviation of the PPI networks from their corresponding ER graphs is less evident

(see Fig. 4.4(b) and (d)). Interestingly, for C. elegans, the PPI network very closely

resembles the behavior of its corresponding random network (see Fig. 4.4(a)).

In the case of H. sapiens, the behavior is very different as compared to all other

PPI networks. Indeed, in contrast to the other five graphs, the H. sapiens PPI net-

work exhibits a fractal behavior intermediate between ER random networks and

1-d lattices in the left region (see Fig. 4.4(e) and 4.3(b)), indicating some kind of

structural homogeneity in the underlying system, as also revealed recently through

an analysis based on random matrix theory [106]. The multi-fractal analysis sup-

ports and corroborates the hypotheses that real-world biological systems are formed

based on different designing principles, which are then reflected in the difference in

their dimensionality.
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4.4 Discussion and Conclusions

In conclusion, this study provides a practical and computationally not demanding

method for inspecting the complexity of real-world systems by analyzing the scal-

ing behavior of edges in the underlying networks. Our study reveals that networks

of the same size and average degree can have a completely different fractal charac-

ter and nature, depending upon how edges are distributed in the networks. Further,

we demonstrated how homogeneity in node degrees influences the scaling behavior

of the underlying networks, and a deviation from degree homogeneity leads to sig-

nificant changes in the graph’s dimensionality. Our results point out the importance

of edge distribution in determining the behavior of the system and have diverse

applications. For instance, different biological networks such as protein-protein

interaction networks, metabolic networks, transcription regulatory networks, neu-

ral networks (which are based on different basic design and functional principles)

may display similar fractal behavior depending upon similarity in their edge dis-

tributions. It is indeed vital to remark that the underlying biological systems have

evolved and survived over a long period without any significant changes in their

properties [149]. Additional examples demonstrating the importance of edge dis-

tribution are the edge-server network, which facilitates the search on the internet

by Google [150, 151], and the identification of influential nodes in social networks

which take into account the arrangement of the edges in the graph [152]. Therefore

the secure method for the multi-fractal analysis presented here can be of interest

and use for a better understanding and description of complexity in these systems.

It could be furthermore interesting to investigate multifractality in networks con-

structed based on a given ordering of nodes, which would result in an adjacency

matrix with a more pronounced block structure (specifically more dense diagonal

blocks). Looking at the differences between a random permutation of the nodes and

the ordering of the nodes that give the best community structure can be one of the

dimensions of future investigation.
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Chapter 5

Conclusions and Scope for Future Work

5.1 Conclusions and Discussions

In network science, we study any complex system by mapping it in the node-edge

form, and this information can be represented by pictorially, list, or as a matrix.

Here, the matrix representation is a potent tool because the matrix itself works as a

picture of the network in the 2D-matrix plane with orientation being all the number

of ways can be indexed usually in the order of (N !). Simultaneously, information

stored in the matrix also can be used to study the structural properties of networks

as a list do. However, the matrix provides another extra set of information, namely

eigenspectrum.

Any N-nodes network can completely describe by (N2 +N )-set of variables, N

for indexing of N -nodes, and N2 for their pair-wise interaction, including the self-

loops. Similarly, eigenspectrum consists ofN -eigenvalues, and for each eigenvalue,

we get the corresponding eigenvector with N -entries, i.e., in total N2-eigenvectors

entries.

Surprisingly, These new (N + N2)-variable set gives us some information not
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easily accessible from N for indexing of N -nodes and N2for their pair-wise inter-

action. Like, which network will synchronize first in two or more given networks.

Similar to the degree distribution, spectral density distribution has unique in-

formation on degree distribution. Also, as our results demonstrated, eigenvalues

collectively store degree-degree correlation data of network stored. Further, zero-

eigenvalues degeneracy has structural as well as evolution information of networks.

Further, with the help of zero eigenvalue degeneracy, other eigenvalue degen-

eracies were explained and also gave rise to many new structural constitutional in-

formation about the network.

All these studies have shown that network representation as a matrix is advanta-

geous and provides three authoritative paths to study networks of which structural

study is well established while the spectral study is produced by many for new in-

sight in networks. However, the third, matrix image approach was pursued by us

and is new. These results provide a new scope to explore network studies.

In this thesis, we covered three significant results for the adjacency matrix of

an independent or single-layer network. First, with RMT in chapter 2, how the

networks degree-degree correlation information revel from the spectrum of eigen-

values. This information has three parts early in the short-range correlation study

by the neighbor spacing distribution of the eigenvalues of the adjacency matrices

in the form of Poisson to GOE distribution transition for very high degree-degree

correlation with a little decrement. Second, in the long-range study by ∆3-statistics

for rest positive correlation range. Where the correlation length increases with the

decrease in the degree-degree correlation in the network and reaches a maximum

value of correlation length in ∆3-statistics for r = 0. Finally, for all negative cor-

relation in degree connections are captured in spectral density distribution plots.

Here, we find that the typical density distribution plot gradually changes its shape

to double-humped shape with a peak of λ = 0[2].

For the second result in chapter 3, we explored why in the spectrum of real-

world inspire networks, a large number of λ = 0 are observed and also with the

previous finding that negative degree-degree correlation also induces the peak at
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λ = 0. We look for discreetly at the origins of the λ = 0 in the model and real-

world networks. Also, it found that the standard model networks do not have a

large amount of λ = 0 as real-world networks. Further, even the configuration

models based on the same degree-sequences of real-world networks failed to mimic

this observation. This inability of the configuration model to have nearly the same

zero-degeneracy points to the fact that the system evolves very differently than the

configuration model where a pair of nodes are connected randomly. Also, mathe-

matically, the concept of rank in the linear algebra that the number of eigenvalues at

λ = 0, say r, reduces the rank of N ×N matrix to N − r. As configuration model

networks with same degree-degree correlation do not have, and as high number of

λ = 0 as a real-world network. Therefore, we found that for a network with no

isolated node, it can shed light on the evolution and working of the networks, like

gene duplication [3].

Furthermore, for the final result in chapter 4, we explored that adjacency matrix

as the (0, 1)-embedded image of the network and analyzed the multifractal proper-

ties of this matrix plane image with multifractal tools. We found that our results

were in agreement with all the previous results. These results provided another

possibility for network study through (0, 1)-embedded images [4].

All these three results have shown that the adjacency matrix provides a robust

structure for network study. The adjacency matrix approach is with vast possibili-

ties. Much of the information about eigenvalues apart from the degenerate eigen-

values and the largest eigenvalue is not clear individually and collectively. The new

possibility of (0, 1)-embedded image structure for the study of a network has lots

of potentials, as no study apart from multifractal nature is done. The beauty of the

(0, 1)-embedded image is that it transformed the basic unit of structure to edges

from nodes.

All these results presented here are for the adjacency matrix of single-layer net-

works and needs for research multilayer networks case. Recently, network scientists

have realized that multilayer is a more realistic abstraction of complex real-world

systems. With the addition of intralayer connection information in the adjacency
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matrix, we expect to predict behavior about complex systems more accurately. Also,

what information is there in the eigenvalues and eigenvector spectra of networks?.

For example, the impact of specific structures or properties in the network on eigen-

system of the adjacency matrix.
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Appendix

A.1 Random reshuffling and degree-based reshuffling
of the nodes

In our work, two different methods of reshuffling the nodes have been considered.

1. The labeling of the nodes is reshuffled randomly. Usually saturation of mea-

surements occurs for a number of reshuffling being 10 times larger with re-

spect to the number of connections.

2. A degree based reshuffling, where nodes are first sequenced based on their

degree, and reshuffling operations are made only among those nodes which

have the same degree. For this case, the saturation of measurements is reached

much earlier.

A.1.1 Random reshuffling

For random reshuffling, the probability of occurrence of 1’s in boxes of the adja-

cency matrix plane is proportional to 〈k〉. In the following, we analytically derive

the differences.

For a network of size N , upon shuffling randomly the nodes’ indices, a node

of degree di (say) can have an index j (say) without any relation between i and

j. Therefore, the probability for any node (say ui) to have index j is given by

p(ui)(j) = 1/N . Let us now represent each box by its position in the adjacency
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Figure A.1: The effect of random reshuffling and degree-based reshuffling on the
adjacency matrix. (Left) ER random networks, (middle) SF networks and (right) 1-
d lattices. In each panel, each dot is the position of an entry in the adjacency matrix
plane.

matrix plane. bij represents a box which starts from (i, j) in the adjacency matrix

plane. The number of 1’s in a box bij is given as

xij =
i+ε∑

l1=i+1

j+ε∑
l2=j+1

al1l2 , (A.1)

where l1 and l2 are the adjacency matrix coordinates inside a box.

al1l2=1, if l1 is connected to l2 and 0 otherwise, meaning that the contribution

of l1 row to xij is proportional to the degree of l1-index node, as the l2-column is

randomly allotted for a fixed l1. This condition is arising due to the fact that for a

fixed l1, the probability that l2 is connected to l1 node is proportional to the degree

of l1 node.

Therefore,the probability of any al1,i 6= 0 ∀ i is given as

pal1,i =
1

N
dl1 , (A.2)

and the probability of any al1,i 6= 0 ∀ i in a box is

pbijal1,i
=

1

N
dl1ε. (A.3)

xij is given by

xij =
i+ε∑

l1=i+1

j+ε∑
l2=j+1

aij 6= 0

Let pbijε be the probability that a given box bij of size ε has at least one entry 1.

Then one has pbijε =
∑

l1
p
bij
al1,i

x Probability of dl1-degree node in the box of size ε.
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One then has

pbijε =
ε

N

∑
l1

dl1
ε

N
=

ε2

N2

∑
l1

dl1

dl1 =
N∑
j=1

Pl1(dj).dj

where Pl1(dj) is the probability of dj node being allotted l1 index.

In random reshuffling method, all the nodes in a network have equal probability

of occurring at a particular index. Hence, Pl1(dj) = 1
N

. Therefore,

dl1 =
1

N

N∑
j=1

dj =
〈k〉N
N

= 〈k〉

Since l1 index runs within a box having size ε, hence∑
l1

dl1 = ε〈k〉 (A.4)

Therefore,

pbijε =
ε3〈k〉
N2

(A.5)

This indicates that on considering random reshuffling of the nodes, the probability

of occurrence of 1’s in a box of size ε is directly proportional to the average degree

of the underlying network. Further, to capture minor changes in this probability,

with respect to various degree distributions, we consider 1-d, ER and SF networks.

In the 1-d lattices with circular boundary condition, all the nodes have exactly

the same degree which is equal to the average degree of the network. Thus each
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box exhibits exactly the same behaviour. For the ER random networks, the degree

of nodes are closely distributed about the average degree of the underlying network.

Therefore, probability of occurrence of 1’s in each box has small deviations from the

average behaviour. In the case of SF networks, a very high degree heterogeneity is

present in the networks, which leads to significant local deviations from the average

behaviour, depending on the type of the node (high degree node or low degree node)

occupying the boxes (see Fig. S1 and S2).

To further assess the importance of the reshuffling method on the probability of

occurrence of 1’s in a box, in the following we adopt a different method of reshuf-

fling considering degree homogeneity.

A.1.2 Degree-based reshuffling

In the degree-based reshuffling method, we arrange the nodes in a decreasing order

of their degrees and assign them indices. To avoid any preferential allocation of

indices between the same degree nodes, we reshuffle the indices between the same

degree nodes. For a network of size N ,
∑
ρ(k) = 1 and

∑
Nρ(k) = N , where

ρ(k) is the probability of occurrence of k-degree node and Nρ(k) is number of

nodes with degree k. Given that 0 6 Nρ(k) 6 N ,

• IfNρ(k) = 1, any k-degree node having index i is given as i =
∑k

k=kmax
Nρ(k).

• If Nρ(k) > 1, any k-degree node having index i is given as

i ∈
k+1∑

k=kmax

Nρ(k) + 1,
k∑

k=kmax

Nρ(k) (A.6)

For instance, let us consider a degree sequence viz. [200, 136, 80, 60, 60, 60, 30,

30, 22, 22, 22, 19 ......]. We want to find the range of indices which can have a

node with degree 60. From Eq. A.6, the upper and lower bound of indices that

can have a node with degree 60 is given as (
∑80

k=200Nρ(k) + 1,
∑60

k=200Nρ(k)) =

((1 + 1 + 1) + 1, (1 + 1 + 1 + 3)) = (4, 6).
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a t

1

H (t)
a

Heaviside step function

H (t)=0 if t<a

       =1 otherwise
a

Figure A.3: Graph representation of Heaviside step function used in Eq. A.7.

Since in the degree-based reshuffling, the nodes having similar degrees get

reshuffled, the indices accessible to a particular degree (say kx) are given by the

probability

pkxi =
H[

∑kx+1
k=kmax

Nρ(k)](i)−H[
∑kx
k=kmax

Nρ(k)](i)

Nρ(kx)
, (A.7)

where Ha(i) is the Heaviside step function (Fig. S3).

Assuming there is no preference of the nodes being connected based on their

degrees, we say that probability that any given k-degree node to be connected to

any other node is equal to k
N

.

Therefore, a box of ε size (bij) starting from a point in the adjacency matrix

plane (i, j) will have xij number of 1’s, given as;

xij =

i+ε,j+ε∑
l1,l2=i+1,j+1

al1l2 , (A.8)

where al1l2 = 1, if l1 and l2 are connected and 0, otherwise.

The probability of any ith node being connected to the jth node is given by
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p(al1l2=1) =
∑
k1k2

pk1l1 p
k2
l2

k1

N

k2

N

=
∑
k1k2

k1k2

N2

H
[
∑k1+1
k=kmax

Nρ(k)]
(l1)−H

[
∑k1
k=kmax

Nρ(k)]
(l1)

Nρ(k1)

H
[
∑k2+1
k=kmax

Nρ(k)]
(l2)−H

[
∑k2
k=kmax

Nρ(k)]
(l2)

Nρ(k2)

=
∑
k1k2

k1k2

N4ρ(k1)ρ(k2)
(H

[
∑k1+1
k=kmax

Nρ(k)]
(l1)−H

[
∑k1
k=kmax

Nρ(k)]
(l1))(H

[
∑k2+1
k=kmax

Nρ(k)]
(l2)

−H
[
∑k2
k=kmax

Nρ(k)]
(l2)).

(A.9)
The probability of getting 1’s in bij box of ε-size is given by

pε(bij) =
i+ε∑

l1=i+1

j+ε∑
l2=j+1

p(al1l2=1) (A.10)

Now, according to the degree sequence of the network and the position (i, j),

pε(bij) can assume various values which are discussed in the following subsections.

A.1.2.1 Case 1: The nodes have only one type of degree (say k) in the box bij .

The indices of ε-size box, i.e. (i + 1 to i + ε, j + 1 to j + ε), which lies within the

range given by Eq. A.6 can have only k-degree nodes. Therefore, the probability

of occurrence of k-degree node within the box is 1
Nρ(k)

, while the probability of

occurrence of other degree node is zero. The probability of having 1’s at (l1, l2)

position within the given box is drawn from Eq. A.9 as

p(al1l2=1) =
k2

N4(ρ(k))2
(A.11)

Since p(al1l2=1) is the same for all al1l2 within the box, the consequence is that

pεbij = ε2p(al1l2=1) =
k2ε2

N4ρ(k)2
(A.12)

A.1.2.2 Case 2: The nodes have two types of degrees (say k and k + 1) in the bij
box.

The indices of a ε-size box, i.e. (i + 1 to i + ε, j + 1 to j + ε) lies within the range

given by Eq. A.6 for k and k + 1 degree nodes. Therefore, the probability of any

k-degree node allotted within the box is pki =
H

[
∑k+1
k=kmax

Nρ(k)]
(i)−H

[
∑k
k=kmax

Nρ(k)]
(i)

Nρ(k)

and the probability of any k + 1-degree node allotted within the box is pk+1
i =

H
[
∑k+1+1
k=kmax

Nρ(k)]
(i)−H

[
∑k+1
k=kmax

Nρ(k)]
(i)

Nρ(k+1)
. The probability of occurrence of any other de-
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gree nodes is zero. Therefore, the probability of any al1l2 being ‘1′ within the box

bij is given by

p(al1l2=1) =
(k + 1)2

N4ρ(k + 1)2
(H

[
∑(k+1)+1
k=kmax

Nρ(k)]
(l1)−H

[
∑(k+1)
k=kmax

Nρ(k)]
(l1))

× (H
[
∑(k+1)+1
k=kmax

Nρ(k)]
(l2)−H

[
∑(k+1)
k=kmax

Nρ(k)]
(l2))

+
k2

N4ρ(k)2
(H

[
∑(k)+1
k=kmax

Nρ(k)]
(l1)−H

[
∑(k)
k=kmax

Nρ(k)]
(l1))

× (H
[
∑(k)+1
k=kmax

Nρ(k)]
(l2)−H

[
∑(k)
k=kmax

Nρ(k)]
(l2))

+
k(k + 1)

N4ρ(k)ρ(k + 1)
[(H

[
∑(k)+1
k=kmax

Nρ(k)]
(l1)−H

[
∑(k)
k=kmax

Nρ(k)]
(l1))

× (H
[
∑(k+1)+1
k=kmax

Nρ(k)]
(l2)−H

[
∑(k+1)
k=kmax

Nρ(k)]
(l2))

+ (H
[
∑(k+1)+1
k=kmax

Nρ(k)]
(l1)−H

[
∑(k+1)
k=kmax

Nρ(k)]
(l1))

× (H
[
∑(k)+1
k=kmax

Nρ(k)]
(l2)−H

[
∑(k)
k=kmax

Nρ(k)]
(l2))].

Therefore, the probability of having 1’s inside the box is

pbijε =
i+ε∑

l1=i+1

j+ε∑
l2=j+1

p(al1l2=1)

=

i+ε1∑
l1=i+1

j+ε2∑
l2=j+1

p
(k+1)2

(al1l2=1) +

i+ε1∑
l1=i+1

j+ε∑
l2=j+ε2+1

p
k(k+1)
(al1l2=1)

+
i+ε∑

l1=i+ε1+1

j+ε2∑
l2=j+1

p
k(k+1)
(al1l2=1) +

i+ε∑
l1=i+ε1+1

j+ε∑
l2=j+ε2+1

pk
2

(al1l2=1).

(A.13)

On substituting Eq. A.1.2.2 into Eq. A.13, one has

pbijε =
1

N4
[ε1ε2(

k + 1

ρ(k + 1)
− k

ρ(k)
)2 +

ε2k2

ρ(k)2
+
ε(ε1 + ε2)k

ρ(k)
(

(k + 1)

ρ(k + 1)
− k

ρ(k)
)].

(A.14)

In comparison to the random reshuffling, the degree-based reshuffling highlights

following differences for both the case. For the case of degree-based reshuffling, the

probability of occurrence of 1’s within a box depends on the position of the box as

well as the coordinates within the box (for instance, (l1,l2) ∈ (i+ 1,j+ 1) ........ (i+

ε,j+ ε)). More importantly, the probability of occurrence of 1’s in the degree-based

reshuffling method depends on k
ρ(k)

, i.e., network’s degree distribution. Whereas,

in the case of random reshuffling, the probability of occurrence of 1’s within a

73



APPENDIX A. APPENDIX A.2. EDGE DISTRIBUTION OF DIFFERENT NETWORKS ON ADJACENCY MATRIX PLANE

box depends only on the average degree of the underlying network. Therefore, the

degree-based reshuffling leads to different behaviours for 1-d lattices, ER random

networks and SF networks of the same average degree and size (see Fig. S1).

After discussing impact of reshuffling on the probability of occurrence of 1′s in

a particular box, in the following we derive expressions for probability distribution

as well as qth moment of fractal dimension for various different types of the edge

distributions.

A.2 Edge distribution of different networks on adja-
cency matrix plane

For the edge distribution of random networks and 1-d lattices, we present three

simplified cases: (a) a strictly homogeneous distribution, (b) an approximately ho-

mogeneous distribution and (c) a strictly linear distribution.

A.2.1 Case A: Strictly Homogeneous distribution

Any ε-size box in the adjacency matrix plane will have 〈k〉ε
2

N
number of 1’s. Here,

we consider large size network to avoid any boundary effect while assigning the

boxes. Therefore, the probability of occurrence of 1’s in a ith box of size ε is given

as

pi(ε) = ε2

N2 .

Summing up these probabilities gives

Pε =
∑i=N2

ε2

i=1 pi(ε) =
∑i=N2

ε2

i=1
ε2

N2 = 1.

The qth-moment of the probability of occurrence of 1’s for a ε size box is given

as

P q
ε =

∑i=N2

ε2

i=1 [pi(ε)]
q =

∑i=N2

ε2

i=1 ( ε2

N2 )q = ε2(q−1)

N2(q−1) .
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Figure A.4: (Color Online) Comparison between, respectively, ln(P q
i (ε)) vs ln(ε)

plot, τ(q) vs q plot, D(q) vs q plot and f(α) vs α plots for strictly (top panel) and
approximately (bottom panel) homogeneous distribution of edges.

By taking log of both the sides, one has

ln(P q
ε ) = 2(q − 1)ln(ε)− 2(q − 1)ln(N)

This is an equation for a straight line with a slope 2(q − 1), which we define as

the scaling exponent τ(q).

The qth-moment dimension of the system D(q) defined as τ(q)
q−1

gives a single

dimension i.e. 2.

The singularity spectrum, f(α) is related with τ(q) by means of Legendre tran-

form

f(α) = qα− τ(q).

where α = dτ(q)
dq

.

Substituting the value of τ(q), α = 2 and f(α) = 2q − 2(q − 1) = 2.

This indicates that a homogeneous distribution over a large system (where bound-

ary effect can be neglected) leads to a non-fractal structure with dimension 2.
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A.2.2 Case B : Approximately Homogeneous distribution

In this case, we assume that the number of 1’s in the ith box deviates from the ho-

mogeneous distribution of 1’s by a small amount ri generated randomly for each

box with alternately changing sign in such a way that sum over all the multi-fractal

measures is normalized. This gives the following expression for the multi-fractal

measure,

Pi(ε) =
∑N2

ε2

i=1( ε2

N2 (1 + (−1)i+1ri)) = 1,

which further gives us the following restriction on the random numbers (ri) to

be generated,

∑N2

ε2

i=1( ε2

N2 (−1)i+1ri) = 0

Now, qth moment of Pi(ε) can be written as,

P q
i (ε) =

∑N2

ε2

i=1( ε2

N2 (1 + (−1)i+1ri))
q

For small ri values, the q-th moment can be approximated to,

P q
i (ε) =

∑N2

ε2

i=1( ε
N

)2q(1 + (−1)i+1qri)

P q
i (ε) = ( ε

N
)2(q−1) +

∑N2

ε2

i=1( ε
N

)2q(−1)i+1qri)

P q
i (ε) = ( ε

N
)2(q−1)(1 + ( qε

2

N2 )
∑N2

ε2

i=1(−1)i+1ri)

Taking log on both the side, we get,

ln(P q
i (ε)) = 2(q − 1)ln(ε)− 2(q − 1)ln(N) + ln(1 + ( qε

2

N2 )
∑N2

ε2

i=1(−1)i+1ri)
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By using ln(1 + x) approximation for small x, we get,

ln(P q
i (ε)) = 2(q−1)ln(ε)−2(q−1)ln(N)+( qε

2

N2 )
∑N2

ε2

i=1(−1)i+1ri−1
2
(( qε

2

N2 )
∑N2

ε2

i=1(−1)i+1ri)
2+

1
3
(( qε

2

N2 )
∑N2

ε2

i=1(−1)i+1ri)
3 − ...

Also, τ(q) = limε→0
ln(P qi (ε)

ln(ε)
gives

τ(q) = 2(q − 1)

D(q) = 2

One can see that theoretically this approximation does not affect values of τ(q)

and D(q) from those of case A. However, numerical evaluation shows significant

deviations of these values from those of the case A. For these two cases of strictly

homogeneous and approximately homogeneous distribution, on plotting ln(P q
i (ε))

vs ln(ε) we find that the strictly homogeneous case has a straight line behaviour

with existence of various slopes indicating non-fractal structure with dimension

2. Whereas the approximately homogeneous case manifests a deviation leading

to non-fractal dimensions distributed very closely about 2 which is in fact a multi-

fractal structure (see Fig. S4). This indicates that one of the reasons behind ln(P q
i (ε))

vs ln(ε) plot deviating from the linear behaviour can be attributed to the non-

homogeneity in the degree distribution.

A.3 τq versus q for PPI Networks

On plotting τ(q) versus q for the PPI networks and their corresponding random

controls, for E. coli and S. cerevisiae, we find a significant deviation exhibited by

the PPI networks from their corresponding random controls (see Fig. S5(c) and

(f)), indicating multi-fractal behaviour of the underlying networks. This is quite

expected owing to their scale-free nature of degree distribution [18]. The extent of

deviation between the PPI networks of D.melanogaster and H.pylori and their

corresponding ER random networks diminishes (Fig. S5(b) and (d)), while notice-
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ably for C.elegans the PPI network very closely resembles the behaviour of its

corresponding random network (Fig. S4(a)). Interestingly, H.sapiens exhibits a

completely different behaviour from rest of the model organisms. The left region of

H.sapiens PPI network exhibits a slope which is lower than that of its correspond-

ing ER random network (see Fig. S5(e)), thus indicating that though the underlying

system maintains an universality in large scale properties with the other PPI net-

works, minor fluctuations in fractal behaviour captured by the left region indicates

a homogeneity in the underlying structure. These features of the PPI networks are

magnified and better understood through the behaviour of Dq versus q, discussed in

length in the chapter 4.
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Figure A.5: (Color Online) Plots of τq as a function of q for PPI networks (cir-
cles) of six species along with their corresponding ER random networks (triangles)
having the same size and average degree. The results for each of the correspond-
ing ER random networks are presented for 100,000 node reshuffling done for 50
realizations.
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[30] Farkas, I. J., Derényi, I., Barabási, A. L., et al.(2001). Spectra of “real-world”
graphs: Beyond the semicircle law. Physical Review E, 64(2), 026704.
(DOI: 10.1103/PhysRevE.64.026704).

81



BIBLIOGRAPHY BIBLIOGRAPHY

[31] Dorogovtsev, S. N., Goltsev, A. V., Mendes, J. F., et al.(2003). Spectra of
complex networks. Physical Review E, 68(4), 046109.
(DOI: 10.1103/PhysRevE.68.046109).

[32] Goh, K. I., Kahng, B., Kim, D. (2001). Spectra and eigenvectors of scale-free
networks. Physical Review E, 64(5), 051903.
(DOI: 10.1103/PhysRevE.64.051903).

[33] Chauhan, S., Girvan, M., Ott, E. (2009). Spectral properties of networks with
community structure. Physical Review E, 80(5), 056114.
(DOI:https://doi.org/10.1103/PhysRevE.80.056114).

[34] Eriksen, K. A., Simonsen, I., Maslov, S., et al.(2003). Modularity and extreme
edges of the Internet. Physical review letters, 90(14), 148701.
(DOI: 10.1103/PhysRevLett.90.148701).

[35] de Aguiar, M. A. M., Bar-Yam, Y. (2005). Spectral analysis and the dynamic
response of complex networks. Physical Review E, 71(1), 016106.
(DOI: 10.1103/PhysRevE.71.016106).

[36] Mieghem, P.Van., (2011) Graph spectra for complex networks, first ed. Cam-
bridge University Press, New York, pp. 113-145 (ISBN: 052119458X).

[37] Kamp, C., Christensen, K. (2005). Spectral analysis of protein-protein inter-
actions in Drosophila melanogaster. Physical Review E, 71(4), 041911.
(DOI: 10.1103/PhysRevE.71.041911).

[38] Marrec, L., Jalan, S. (2017). Analysing degeneracies in networks spectra. EPL
(Europhysics Letters), 117(4), 48001.
(DOI: 10.1209/0295-5075/117/48001).

[39] Papenbrock, T., Weidenmüller, H. A. (2007). Colloquium: Random matrices
and chaos in nuclear spectra. Reviews of Modern Physics, 79(3), 997.
(DOI: 10.1103/RevModPhys.79.997).

[40] Mehta, M.L., (1991) Random Matrices, second ed. Academic Press, New York
(ISBN: 047177796X).

[41] Guhr, T., Müller–Groeling, A., Weidenmüller, H. A. (1998). Random-matrix
theories in quantum physics: common concepts. Physics Reports, 299(4-6),
189-425.
(DOI: 10.1016/S0370-1573(97)00088-4).

82



BIBLIOGRAPHY BIBLIOGRAPHY

[42] Plerou, V., Gopikrishnan, P., Rosenow, B., et al.(1999). Universal and nonuni-
versal properties of cross correlations in financial time series. Physical review
letters, 83(7), 1471.
(DOI: 10.1103/PhysRevLett.83.1471).

[43] S̆eba P. (2003), Random matrix analysis of human EEG data. Physical review
letters, 91(19), 198104.
(DOI: 10.1103/PhysRevLett.91.198104).

[44] Santhanam, M. S., Patra, P. K. (2001). Statistics of atmospheric correlations.
Physical Review E, 64(1), 016102.
(DOI: 10.1103/PhysRevE.64.016102).

[45] Podobnik, B., Wang, D., Horvatic, D., et al.(2010). Time-lag cross-
correlations in collective phenomena. EPL (Europhysics Letters), 90(6),
68001.
(DOI: 10.1209/0295-5075/90/68001).

[46] Brody, T. A. (1973). A statistical measure for the repulsion of energy levels.
Lettere al Nuovo Cimento (1971-1985), 7(12), 482-484.
(DOI: 10.1007/BF02727859).

[47] Bandyopadhyay, J. N., Jalan, S. (2007). Universality in complex networks:
Random matrix analysis. Physical Review E, 76(2), 026109.
(DOI: 10.1103/PhysRevE.76.026109).

[48] Palla, G., Lovász, L., Vicsek, T. (2010). Multifractal network generator. Pro-
ceedings of the National Academy of Sciences of the United States of Amer-
ica, 107(17), 7640-7645.
(DOI: 10.1073/pnas.0912983107).

[49] Milo, R., Itzkovitz, S., Kashtan, N., et al.(2004). Superfamilies of evolved and
designed networks. Science, 303(5663), 1538-1542.
(DOI: 10.1126/science.1089167).

[50] Yeo, G. S., Heisler, L. K. (2012). Unraveling the brain regulation of appetite:
lessons from genetics. Nature neuroscience, 15(10), 1343.
(DOI: 10.1038/nn.3211).

[51] Gracia-Lázaro, C., Cuesta, J. A., Sánchez, A.,et al.(2012). Human behavior
in Prisoner’s Dilemma experiments suppresses network reciprocity. Scientific

83



BIBLIOGRAPHY BIBLIOGRAPHY

reports, 2, 325.
(DOI: 10.1038/srep00325).

[52] Sethi, N., Kang, Y. (2011). Unravelling the complexity of metasta-
sis—molecular understanding and targeted therapies. Nature Reviews Cancer,
11(10), 735.
(DOI: 10.1038/nrc3125).

[53] Cao, H., Li, Y. (2014). Unraveling chaotic attractors by complex networks
and measurements of stock market complexity. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 24(1), 013134.
(DOI: 10.1063/1.4868258).

[54] Manovich, L. (2011). Trending: The promises and the challenges of big social
data. Debates in the digital humanities, 2, 460-475.
(DOI: 10.5749/minnesota/9780816677948.003.0047).

[55] Borgatti, S. P., Mehra, A., Brass, D. J., et al.(2009). Network analysis in the
social sciences. science, 323(5916), 892-895.
(DOI: 10.1126/science.1165821).

[56] Newman, M. E. (2006). Modularity and community structure in networks.
Proceedings of the national academy of sciences, 103(23), 8577-8582.
(DOI: 10.1073/pnas.0601602103).

[57] Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social
networks, 29(4), 555-564.
(DOI: 10.1016/j.socnet.2007.04.002).

[58] Jalan, S., Bandyopadhyay, J. N. (2007). Random matrix analysis of complex
networks. Physical Review E, 76(4), 046107.
(DOI: 10.1103/PhysRevE.76.046107).

[59] Jalan, S., Bandyopadhyay, J. N. (2008). Random matrix analysis of network
Laplacians. Physica A: Statistical Mechanics and its Applications, 387(2-3),
667-674.
(DOI: 10.1016/j.physa.2007.09.026).

[60] Jalan, S., Solymosi, N., Vattay, G., et al.(2010). Random matrix analysis of lo-
calization properties of gene coexpression network. Physical Review E, 81(4),
046118.
(DOI: 10.1103/PhysRevE.81.046118).

84



BIBLIOGRAPHY BIBLIOGRAPHY

[61] Colizza, V., Flammini, A., Serrano, M. A., et al.(2006). Detecting rich-club
ordering in complex networks. Nature physics, 2(2), 110.
(DOI: https://doi.org/10.1038/nphys209).

[62] Soffer, S. N., Vazquez, A. (2005). Network clustering coefficient without
degree-correlation biases. Physical Review E, 71(5), 057101.
(DOI:https://doi.org/10.1103/PhysRevE.71.057101).

[63] Cohen, R., Havlin, S. (2003). Scale-free networks are ultrasmall. Physical re-
view letters, 90(5), 058701.
(DOI:https://doi.org/10.1103/PhysRevLett.90.058701).

[64] Newman, M. E. (2002). Assortative mixing in networks. Physical review let-
ters, 89(20), 208701.
(DOI:https://doi.org/10.1103/PhysRevLett.89.208701)

[65] Rivera, M. T., Soderstrom, S. B., Uzzi, B. (2010). Dynamics of dyads in social
networks: Assortative, relational, and proximity mechanisms. annual Review
of Sociology, 36, 91-115
.(DOI:https://doi.org/10.1146/annurev.soc.34.040507.134743)

[66] Newman, M. E. (2003). Mixing patterns in networks. Physical Review E,
67(2), 026126.
(DOI:https://doi.org/10.1103/PhysRevE.67.026126).
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