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ABSTRACT

Phasor Measurement Units (PMU) are microprocessor-based devices used for real time

monitoring of power system. PMU measures the voltage and current phasors of the buses

in the power system and transfers the data to the control centre. This data is later used for

various applications like stability assessment, adaptive relaying etc. However, due to the

high installation cost of PMU and its related equipment, it is not economically viable to

place the PMUs at every bus in the power system. Hence, this thesis aims to optimally place

the PMUs maintaining complete observability of the power system during normal operating

conditions and contingencies and develop algorithms using PMU data for identifying the

poorly damped modes, which affect the small signal stability of the system. This thesis

is divided into two sections. The first section deals with optimal placement of PMUs of

different channel capacity along with maximization of measurement redundancy using an

Integer programming technique. The effectiveness of the proposed model is tested on various

IEEE test systems and a practical Indian power system for normal operating conditions as

well as contingencies like single line outage and PMU outages.

The second part of the thesis is focussed on developing algorithms for analyzing the

poorly damped modes in power system low frequency oscillations utilizing synchrophasor

measurements. The low frequency oscillations occurring in power system can be broadly

classified into ambient and ringdown type oscillations. The ringdown oscillations occur when

the power systems are subjected to large-magnitude disturbances, whereas, ambient type os-

cillations occur due to random small changes in load or generation. The persistence of these

oscillations in power system will cause cascaded tripping leading to blackouts. Hence, to

prevent such unwanted occurrences, it is essential to identify these oscillations at the earliest.

As the characteristics of these oscillations are not similar, different algorithms are needed for

the proper analysis of these oscillating modes.

Algorithms based on Hankel’s Total Least Square (HTLS) and Estimation of Signal Pa-

rameters using Rotational Invariance Technique (ESPRIT) have been developed for analysing

ringdown oscillations. The model order which is a prerequisite for the proper implementation

of HTLS and ESPRIT algorithms, are obtained through an FFT based technique and EMO

algorithm respectively. A Stochastic Subspace Identification (SSI) based method is devel-

oped to analyse ambient type of oscillations. To improve the robustness of the proposed SSI

based method, a Stationary Wavelet Transform (SWT) based denoising method is used. Fur-



ther, the model order of the signal is estimated using EMO algorithm. Subsequently, in order

to avoid the computation of model order, an Empirical Wavelet Transform (EWT)- ESPRIT

algorithm has been developed for identifying the poorly damped modes in power system. In

this algorithm, the EWT is used for splitting the multi-component signal into mono com-

ponents and ESPRIT algorithm is used for estimating the modal parameters of these mono

components. This algorithm can analyse stationary as well as non stationary signals, which

occur during a transient condition.

The performance evaluation of these algorithms are conducted using synthetic signals

with known modal parameters and real-time signals obtained from the PMUs installed in a

practical system at different signal to noise ratios and PMU reporting rates. Results reveal

that these algorithms perform better than the similar algorithms in literature.
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Chapter 1

Introduction

1.1 Background

Low frequency oscillations occurring in power system is one of the major issues affecting its

stability. If these oscillations are not monitored, it may lead to cascaded outages causing the

blackout of entire power system. For instance, a serious power outage accident due to nega-

tively damped inter-area oscillation caused the collapse of the West system in the U.S.A. on

10 August 1998 [1]. In China, similar incident occurred in 2005, where three system-wide

low-frequency oscillation events occurred respectively in the South, Central and North China

grids [1]. To prevent such incidents and to gain more information about these disturbances,

it is necessary to monitor the power system at sufficiently many geographical locations using

measurement equipments with sufficient bandwidth. The data collected should be accurately

analyzed to avert incidents, which affect the security of the power system. This was conven-

tionally done using Supervisory Control and Data Acquisition (SCADA) based systems. The

schematic representation of a basic SCADA system for power system monitoring is shown

in fig. 1.1 [2].

In this system, Remote Terminal Units (RTUs), which are placed at substations, collect

the data and transmit it to the control centre through various communication links like fiber

optics, microwave etc. The major types of data collected by RTU include generator outputs,

bus voltages, line currents, loads and information on circuit beakers and transformer tap

positions. The data received at the control centre is processed to filter out the measurement

noise. The filtered data is then used for planning and analysis purposes. However, it is

observed that the data rate of SCADA systems is quite low and the measurements taken
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Figure 1.1: Block diagram of SCADA [2].

by the SCADA are not synchronized. Moreover, it cannot estimate the phase angle of bus

voltages and line currents. Due to these drawbacks, SCADA based systems are increasingly

replaced by PMU based monitoring systems in modern power networks [2].

1.2 Phasor Measurement Unit (PMU) and its Applications

PMU is a microprocessor based equipment, which estimates the voltage and current phasors

of the host bus at high sampling rates and send this time stamped data over communication

lines to Phasor Data Concentrator (PDC). The sampling rate of the PMU is between 30-120

samples per second. They are usually placed at substations and require three separate elec-

trical connections to measure the voltage or current of each phase. PMUs time stamp their

measured data using Global Positioning Satellite (GPS) clocks to synchronize the measure-

ments made at different locations in the power system. The occurrence of major blackouts in

many power systems around the world has accelerated the introduction of Wide-Area Mea-

surement Systems (WAMS) based on PMUs. Data obtained from these PMUs helps the

power system operators to accurately determine the exact sequence of events, which have

led to the blackouts. Analysis of this sequence of events will help in finding the exact cause,

which lead to catastrophic failure of the power system. The main advantage of the PMUs

over SCADA based monitoring system is that PMUs can measure both the magnitude and
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phase angle of a quantity, whereas, the SCADA based system can measure only the magni-

tude. Moreover, the PMUs can accurately monitor the transient phenomenon occurring in

the system as its data rate is high. Due to these reasons, PMUs are increasingly used for real

time monitoring and control, power state system estimation and protection applications.

Figure 1.2: Block diagram of PMU [3].

The block diagram of a basic PMU is shown in fig. 1.2 [3]. The major components of

the PMU are anti-aliasing filters, A/D converter, Phase locked oscillator, GPS receiver and

Phasor Microprocessor. The signal under consideration is fed into the anti-aliasing filter of

the PMU. Before this process, the signal is converted into its voltage equivalent (in range of

+10V) with the help of instrument transformers or shunts. The anti-aliasing filter removes

the frequency components other than the range of frequencies under consideration. The

filtered signal is then digitized using an analog to digital converter. The microprocessor block

calculates the phasors of this digitized signal through various signal processing techniques

like Discrete Fourier Transform. The phase locked oscillator provides the synchronizing

signal for time stamping the measured quantities with the help of the GPS clock [3]. The

time stamped measurements from different PMUs placed across the power system is sent to

Phasor Data Concentrator (PDC). A schematic representation of Wide Area Measurement

system consisting of PMUs and PDCs is shown in fig. 1.3 [3].

Phasor Data Concentrator (PDC) receives the phasor data from multiple PMUs and time

3
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Figure 1.3: Block diagram of Wide Area Monitoring System (WAMS) [3].

synchronizes it to produce a real-time, time-aligned output data stream. A PDC can ex-

change phasor data with PDCs at other locations. Through use of multiple PDCs, multiple

layers of concentrators can be implemented within an individual synchrophasor data system.

PDCs also help in checking the dataset for completeness and finding errenous data, if any.

They also make sure that the input and output data streams follow the IEEE C37.118 stream-

ing protocol. Moreover, they buffer input data streams to accommodate the differing times

of data delivery from individual PMUs. PDCs typically utilize threading and other parallel

computing techniques available within modern operating systems to manage multiple con-

nections at high speeds. A PDC based on its role or location can be classified as local PDC

and super-PDC. Local PDCs are located closer to the PMUs for easier data collections. The

data collected by local PDCs are sent to higher level concentrators or is stored locally for

substation usage. Super PDCs operate on a regional scale and handle time synchronized data

from multiple PDCs and several PMUs. It collects this data and makes them into a time

synchronized data set, which can be later used in energy management systems and wide area

monitoring using visualization softwares [3].

The major applications of PMU are

• State estimation
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• Adaptive Relaying

• Power system control

• Instability prediction

State estimation: The power system operators use state estimators to monitor the state of the

power system. The state of the power systems is calculated using voltage and current

measurements received from different locations of the power system using an iterative

nonlinear estimation technique. The state (vector) is a collection of all the positive

sequence voltage phasors of the network. In SCADA based systems, state estimators

available in present-day control centers are restricted to steady-state applications only

due to low reporting rates and the time skew in data acquisition. On the other hand,

the PMUs have high reporting rates and their measurements are synchronized due to

which a dynamic state vector, which can follow the power system dynamics, can be

constructed. This helps the operators to monitor the real-time power system dynamic

phenomena with high fidelity at the control center. Apart from this application, the

directly measured dynamic phenomena can be utilized for validating the power system

models used in transient stability studies [4].

Adaptive Relaying: In conventional systems, power swings are detected with the help of

the apparent impedance seen by the distance relays. The apparent impedance changes

when the power swing occurs. The outcome of the power swing is inferred based on

the variation of the impedance and the time taken to cause this variation. The settings

of these relays are usually based on several stability simulations for all reasonable

contingencies. However, if the characteristics of the power swing are entirely different

from the assumed contingencies, then it may cause instability in the system. On the

other hand, if synchrophasors are placed in the system it will help the power system

operators to predict the outcome of a power swing using the real time data provided by

them. This helps in countering the power swing in a better way [4].

Power system control: Power system control elements, such as generation excitation sys-

tems, HVDC terminals, variable series capacitors, SVCs, etc., use local feedback to

achieve the control objective. PMU data, which is synchronized at high reporting

rates, is an excellent choice as feedback to improve the control performance [4].
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Instability prediction: The operation of power system is directly or indirectly governed by

the possibility of the system going into unstable condition. Moreover, the system load-

ing limits, operating speeds of the primary and back-up protection systems and the

settings of out-of step relays also depend on this possibility. Hence, any improvement

made in quick determination of the instability has great benefits to modern power sys-

tems. The traditional method for power system stability analysis uses system dynamic

equations. However, for large power systems, it is computationally very intensive and

hence can be used for steady state stability analysis only. After the introduction of

synchrophasors, it is possible to track the dynamic changes happening in the power

system. With the help of this data, the outcome of a power swing for a future time in-

terval can be predicted with a fair degree of accuracy. This predicting capability helps

in making better protection and control decisions to counter the power swing occurring

in the system [4].

Since this thesis concentrates on small signal stability analysis of the power system

using the data from synchrophasors, a brief description about this is given in the next

section.

1.3 Stability Analysis of Power Systems
Power system stability is defined as the ability of the power system due to which it can re-

main in a state of operating equilibrium under normal operating conditions and to reclaim

this state after being subjected to a disturbance. Since the major part of the electrical power

generation is through synchronous machines, maintaining the synchronism of these machines

is of paramount importance for power system stability. This aspect of stability is influenced

by the dynamics of generator rotor angles and power-angle relationships. Hence, it is known

as rotor angle stability. Apart from rotor angle instability, voltage instability and frequency

instability are the other major stability issues affecting the power system. Voltage stability is

the ability of a power system to maintain steady acceptable voltages at all buses in the sys-

tem under normal operating conditions and after being subjected to a disturbance. Voltage

stability is further classified into large-disturbance and small-disturbance voltage stability.

Large-disturbance voltage stability is defined as the ability of the system to maintain steady

voltages following large disturbances like system faults, loss of generation, or circuit con-

tingencies. On the other hand, the ability of a system to maintain steady voltages when
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Figure 1.4: Classification of power system stability [5].

subjected to small perturbations such as incremental changes in system load is defined as

small-disturbance voltage stability. Frequency stability is the ability of a power system to

maintain steady frequency after a severe system upset resulting in a significant imbalance

between generation and load. A schematic diagram showing the different classifications of

power system stability is given in fig. 1.4 [5].

Small-signal stability is defined as the ability of the power system to maintain synchro-

nism when subjected to small disturbances such as small variations in loads and generation.

These disturbances are considered sufficiently small such that the system equations can be

linearized for purposes of analysis. Small signal stability issues occur mainly when there is a

steady increase in rotor angle due to lack of sufficient synchronizing torque or due to insuffi-

cient damping torque leading to rotor oscillations of increasing amplitude. In modern power

systems, insufficient damping of oscillations is the major reason for small-signal stability

issues. Large active power, large negative reactive power, long tie lines and large automatic

voltage regulator gain with low time constant are some of the major reasons for insufficient

damping in power systems. The major types of oscillations occurring in the power system

as a result of small signal issues are local mode, inter area mode, control mode and torsional

mode oscillations [6].

Intra plant mode oscillations ranges from 2−3 Hz and occurs when some generators os-

cillate against its neighbours in the same power station. Local plant mode oscillations occurs

when the units in a generating station oscillate against the rest of the power system. The

frequency of these oscillations is in the range of 1-2 Hz. Inter-area mode oscillations have
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a frequency of 0.1−1 Hz and are associated with two or more coherent generator groups

swinging against each other in a power system. Torsional oscillations are associated with

turbine generator shaft system and have their frequencies between 10− 45 Hz. These os-

cillations may cause reduction of shaft operative life or shaft failure. Control modes are

associated with generating units and control equipment. Poorly tuned exciters, governors,

high voltage DC converters and static VAR compensator controllers are the main reasons to

initiate control mode oscillations [6, 7].

The persistence of these oscillations in power system network can cause blackouts. Hence,

it should be detected at the earliest and suitable counter measures must be taken to damp out

these oscillations. Conventionally, these oscillations are detected through Eigenvalue analy-

sis. The state space equations of the power system linearized around an operating point are

used for this purpose. The state space equations of the power system are developed from indi-

vidual models of synchronous machines, transmission line, static and dynamic loads etc. The

dynamics of machine rotor circuits, excitation systems, prime mover and other devices are

represented by differential equations. The state space matrix of the power system generated

from these state space equations, gives an idea about the small signal oscillations occurring

in the power system. However, this method is not suitable for the analysis of large power sys-

tem as the number of state variables required for its proper modelling will be very high and

well outside the range of the conventional eigenvalue analysis methods. Hence, special tech-

niques like Analysis of Essentially Spontaneous Oscillations in Power System (AESPOS)

have therefore been developed to evaluate a selected subset of eigenvalues of such systems

[6].

AESOPS is used for eigenvalue analysis of the oscillations associated with synchronizing

power flow in large electric power systems. In this algorithm, eigenvalues associated only

with rotor angle modes, one complex conjugate pair of eigenvalues at a time, is calculated.

The AESOPS Program utilizes an overall system model formulated in terms of the incremen-

tal voltages at the terminal buses of synchronous machines and dc lines for this purpose. The

overall system model is obtained by combining these partial system models:

• the network and generator stator equations

• the generator rotor motion and rotor flux linkage equations

The main disadvantage of this method is that unless the general characteristics of the crit-
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ical modes are known beforehand, computational time required will be much higher. More-

over, there is no assurance that critical modes will be identified [6].

1.4 State of the art

After their invention in the mid-1980’s, PMUs are widely used for monitoring and control

of power system. The measurement data from the PMUs has a high data rate which makes

them an ideal device for observing the power system under dynamic conditions. However,

the installation cost of PMU and its associated equipment is very high. Hence, it cannot be

installed at every bus of the power system. Moreover, PMU placed at a bus observes itself

and all its interconnected buses provided it has sufficient channels. Therefore, the number of

PMUs required to make the power system observable is always less than the total number of

buses in that power system. Thus, identification of optimal locations for installation of PMU

is considered as one of the research problems in this thesis.

After the PMUs are optimally placed in the power system, they will send the synchro-

nized data to the phasor data concentrator as explained in the previous section. This data can

be used for various purposes like small signal stability analysis, voltage stability analysis etc.

This thesis focus mainly on techniques for online monitoring of small signal stability. The

poorly damped low-frequency oscillations occurring in the power system is one of the major

factors affecting its small signal stability. These oscillations have a range of 0.1−2 Hz and

occur mainly due to increased power demand, reduced generation reserve margins, physical

limitation of the power system and deregulation. Identification of these oscillations is the

other major research problem considered in this thesis. A literature survey of these issues

relevant to the research work, carried out in this thesis is presented in the following sections.

1.4.1 Optimal PMU Placement

The algorithms used for determining optimal PMU placement can be broadly classified into

Meta-heuristic and Deterministic algorithms. Metaheuristic algorithms use intelligent search

techniques like Simulated Annealing [8], Binary search [9], Binary Particle Swarm Opti-

mization (BPSO) [10], Genetic algorithm [11, 12] for finding the optimal PMU locations in

the power system. The advantage of meta-heuristic algorithms is that it does not need a set

of constraints to achieve a particular solution. In [8], optimal PMU problem was first solved

using a combination of the bisecting search algorithm and simulated annealing. In this tech-
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nique, the bisecting search algorithm was used to find the optimal number of PMUs needed

for complete system observability whereas the simulated annealing technique was used for

finding the optimal locations for placing the same. In [9], an exhaustive binary search based

algorithm is used to find the optimal locations of the power system. In this approach, the

solution with maximum measurement redundancy is selected in case of multiple solutions.

This method provides the global optimal solution in most cases which is one of its main ad-

vantages. Tabu search based methods for optimal PMU placement are proposed in [13, 14].

In [13], a novel topological method based augment incidence matrix and Tabu search is pro-

posed. This combination helps in obtaining the solution of the combinatorial OPP problem

with less computational complexity. Moreover, it improves the robustness of the method.

Optimal PMU placement using Recursive Tabu Search (RTS) method is introduced in [14].

In this method, the traditional Tabu search (TS) algorithm is executed multiple times and the

best solution from the previous run is used for initialization. Particle swarm optimization

based methods for optimal PMU placement are proposed in [10, 15–17]. In [15], a BPSO

based model for simultaneously minimizing the number of PMUs for complete observability

along with maximization of measurement redundancy is proposed. Optimal PMU placement

through a combination of graph theoretical procedure and BPSO is proposed in [10]. The

graph-theoretic procedure is used to provide the initial PMU placement which will improve

the computation time of the proposed algorithm. A graph-based method using the concept

of depth of unobservability is used in [18] for optimal PMU placement. Genetic Algorithm

based methods are proposed in [11, 12, 19, 20]. Optimal PMU placement using Immunity

Genetic Algorithm (IGA) was proposed in [19]. It incorporates the immune operator in the

traditional genetic algorithm thereby alleviating the degeneration phenomenon present in it.

This helps the IGA to obtain a convergence faster than the traditional GA algorithm. Non-

dominated Sorting Genetic Algorithm (NSGA) is used in [11] for simultaneously finding

the optimal PMU locations along with maximizing the measurement redundancy. Since,

both these objectives are conflicting in nature, the NSGA algorithm is programmed to find

the best trade off solution. The algorithm is combined with the graph-theoretical procedure

and a simple GA to reduce the initial number of the PMU’s candidate locations. A Non-

dominated Sorting Differential Evolution (NSDE) algorithm using a combination of Pareto

non-dominated sorting operation and differential evolution algorithm is utilized for obtain-

ing the optimal PMU placement set along with maximization of measurement redundancy in
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[21]. But the main disadvantage is that the computation time of these methods is quite high

for large practical systems. Moreover, it fails to provide the global optimal solution in many

cases.

Deterministic approaches use optimization algorithms like Integer Linear Programming

(ILP) and Integer Quadratic Programming (IQP) for optimal PMU placement. In [22], op-

timal PMU placement considering the critical contingencies occurring in the power system

is carried out using Integer Linear Programming (ILP). The critical contingencies are se-

lected based on a voltage stability based contingency screening method. Another ILP based

model for optimal PMU placement under different cases of redundant PMU placement, full

observability and incomplete observability is proposed in [23]. An ILP based approach for

multi-stage optimal PMU placement is proposed in [24]. In this approach, the placement of

PMU is carried out in phases. It also introduces two indices namely bus observability index

and system observability redundancy index for calculating the measurement redundancy of

the optimal PMU placement set. Optimal PMU placement with improved measurement re-

dundancy is proposed in [25]. In this method, the dual objectives of minimizing the number

of PMUs and improving redundancy are combined into a single objective function in these

models. An integer quadratic programming based approach for simultaneously minimiz-

ing the total number of PMUs required, for complete system observability and maximizing

measurement redundancy is proposed in [26, 27]. This algorithm can accommodate existing

conventional measurements in the proposed PMU placement method. Moreover, it ensures

complete observability of the system under normal operating conditions as well as under the

outage of a single transmission line or a single PMU. However, the computation time required

for IQP based methods is higher than that of ILP. A new optimal PMU placement problem

formulation taking into account the effect of DC lines on network observability is considered

in [28]. The effect of limited channel capacity is also discussed and an installation cost for-

mula based on the number and type of measurement channels is also proposed. In [29], an

integer programming model for optimal PMU placement considering the stochastic nature of

components and their outage probabilities is proposed. The PMU placement problem is con-

sidered as a multistage problem and the average probability of observability is maximized in

the initial planning stages in this model. Reference [30] proposes a model for improving the

network observability by considering random component outages. Conventional bus injec-

tion and line flow measurements and the effect of zero-injection buses are considered in this
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model. A model for optimal placement of PMUs depending on the cost and benefit facets is

presented in [31]. The benefits associated with the PMU based WAMS system is quantified

through probabilistic analysis. The effect of malfunctioning of the monitoring and control

infrastructures on power system reliability assessment is analyzed in [32].

In the aforementioned literature, it was assumed that a PMU placed on a bus can observe

all its interconnected buses. However, in reality, the channel capacity of PMU is limited.

Hence, some of the buses connected to the PMU placed bus may not be observable when

the number of interconnections is higher than the total channel capacity of the PMU. This

problem is taken into account in few works [33–40]. In [33], a Binary Integer Linear Pro-

gramming (BILP) approach for optimally placing the PMU is proposed. The effect of limited

channel capacity of PMU is incorporated into this model. Similar models using ILP was for-

mulated in [34, 35]. Reference [37] proposed an integer programming model for studying

the effect of limited channel capacity during normal operations and contingencies like single

line outage and PMU outages. Apart from ILP, metaheuristic algorithm like GA has also

been used to solve the limited channel capacity problem. In [38], a cellular genetic algorithm

based model is used for solving the optimal PMU placement problem with limited channel

capacity during normal operation and power system contingencies. The model in [39] uses

a combination of ILP and genetic algorithm to optimize the PMU placement considering

the number of analog channels. A four stepped algorithm based on GA for simultaneously

minimizing the number of PMUs along with the number of channels is proposed in [40].

Once the PMU are optimally placed in the power system through either meta-heuristic

or deterministic algorithms, it will transmit the measured data to the PDC. This data is used

for various applications like state estimation, stability analysis, adaptive relaying etc. In this

thesis, the author focusses on utilizing the PMU data for analysing the small signal stability

of the power system.

1.4.2 Identification of Electromechanical Modes using PMU Data

After the introduction of Phasor Measurement Unit (PMU) and Wide Area Measurement Sys-

tem (WAMS), measurement-based methods are increasingly used for estimating the poorly

damped modes in these low frequency oscillations. In this approach, the poorly damped

modes are estimated from the measured data using digital signal processing techniques.

The commonly used measured data are generator rotor angle velocity, transmission line
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power and interconnected bus voltages. Prony analysis [41–46] , ESPRIT[47–51], Stochas-

tic subspace identification (SSI) [52–54], Wavelet Transform (CWT) [7, 55–57], Hilbert-

Huang transform [58], ARMA [59], and Fast Fourier Transform (FFT) [60] are some of the

commonly sought out signal processing techniques used for identifying the poorly damped

modes. Among these techniques, Prony algorithm [41–46] is one of the oldest and widely

used measurement technique for identifying the modal parameters of power system oscilla-

tions. Prony algorithm is essentially a curve fitting technique and can accurately estimate the

frequency, damping factor, amplitude and phase angle of modes of power system oscillations

under normal operating conditions. However, when the measured data is highly noisy, the ac-

curacy of the Prony algorithm decreases substantially. Moreover, the estimated results of the

Prony algorithm will have real and fictitious modes. In such cases, separate techniques are

required for filtering the real modes in the estimated results from the fictitious modes. Ad-

vanced versions of Prony algorithm are proposed in [44, 45]. In [44], the proposed method

applies the Prony method to multiple windows generated from the same signal. The true

modes of the signal are estimated by comparing the estimated results of these windows and

selecting the common modes present in the estimated results of these windows. Prony algo-

rithm with a robust autocorrelation matrix is proposed in [45]. The robust covariance matrix

is generated using minimum covariance determinant technique to mitigate the effect of bad

data. It is observed that the noise resistance of the Prony algorithm is marginally improved

in these new models but the issue is not fully solved.

Estimation of modal parameters of low-frequency modes in the power system through

the ESPRIT method is proposed in [47–51, 61]. ESPRIT based algorithms provide accu-

rate estimates of signal parameters even under highly noisy conditions. However, they need

an accurate estimate of the model order or the number of frequency components present in

the signal for its smooth operation. In [48], a total least square ESPRIT method is used

for estimating the modal parameters of the power system oscillation. However, the model

order estimation algorithm used is not accurate especially when the signal is highly noisy

which may lead to non- identification of one or more modes in the signal. Identification of

poorly damped modes in the power system using a combination of Total Least Square (TLS)-

ESPRIT and fourth-order mixed mean cumulant is proposed in [61]. In this approach, the

fourth order mixed mean cumulant is used to suppress the effect of Gaussian coloured noise

and TLS-ESPRIT is used for identifying the poorly damped modes in power system oscil-
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lations. However, the usage of the former technique makes this algorithm computationally

intensive.

Stochastic subspace identification based methods for estimating the parameters of the

low-frequency oscillations are proposed in [52–54, 62]. These methods are a better option

for analyzing ambient oscillations as they can handle large amounts of data and system dy-

namic changes. Moreover, they accurately estimate the closely spaced modes occurring in

the power system. However, these methods have only limited noise resistance. The main

issue while using the SSI based methods is the estimation of model order, which is used for

separating the signal and noise subspace. Few works [52, 53] selected the model order based

on the dominant singular values. In [52], the model order is estimated based on the large

reduction in singular values of the weighted projection matrix. However, both these methods

may not work properly when the noise content of the signal is high. A method based on

the mean of singular values is proposed in [52] but it causes overestimation of model order

resulting in the presence of trivial modes. Estimation of the model order based on stabiliza-

tion diagram is proposed in [63] but the complexity of the algorithm limits its application. A

combination of model based analysis and Numerical Algorithms for Subspace State Space

System Identification (N4SID) is proposed in [62] for the identification of critical modes in

a power system.

Wavelet-based methods for estimating the poorly damped modes of power system low-

frequency oscillations is proposed in [7, 55–57]. They are based on multi-resolution analysis

where wavelets of variable sizes are used to extract the modal information present in the

signal. These methods are easy to implement and can extract modal information of non-

stationary signals effectively. A Continuous Wavelet Transform (CWT) based method which

uses a Morlet wavelet is proposed in [55]. It uses a linear regression based technique to esti-

mate the frequency and damping of the modes from wavelet coefficients. In [7], a CWTFT

(FFT based CWT approach) based method is used for the same purpose. However, it is no-

ticed that the accuracy of the estimated results changes depending upon the mother wavelet

chosen. The wavelet transform technique is also used for denoising the signal in [64] before

feeding it to the modal estimation algorithm. However, it increases the computation time of

these proposed techniques.

Identification of poorly damped modes in power system through Kalman filter and ex-

tended Kalman filter is proposed in [65–67]. In these works, the signal is used to generate
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the state space model whose states give an idea about the estimated parameters. After this

process, an Extended Kalman filter is designed using the state space model to estimate the

modal parameters of the signal. In [65], Hankel Singular value decomposition is integrated

into the Kalman filter to improve its initialization values. In [66], stability analysis of the

model is carried out after the modal parameter estimation to prove the convergence of the

parameters. The main disadvantage of Kalman filter based model is that its performance

degrades with increase in noise.

HHT, FFT and ARMA based algorithms for identifying the poorly damped modes in

the power system are proposed in [58–60]. HHT based methods [58] use a combination of

Empirical Mode Decomposition (EMD) and Hilbert’s transform for estimating the modes in

the low-frequency oscillations. However, this method is computationally intensive and the

estimated results suffer from mode mixing problem. Low-frequency oscillation monitoring

using FFT based algorithms are proposed in [60]. These algorithms are computationally less

complex and less sensitive to noise. However, their accuracy is limited due to spectral leak-

age with a finite length of the signal. ARMA methods are used in [59] for estimating the

modes of ambient data but these methods are very sensitive to noise. Signal decomposition

algorithms like Cosine modulated filter banks [68] and Zolotarev polynomial based filter [69]

are also used for identifying the low-frequency modes in the power system. These algorithms

decompose the multi-component signal into monocomponent and the modal parameters of

the monocomponent are estimated using parametric techniques like Eigen Realization algo-

rithm. These algorithms effectively deal with non-stationary signals but their computational

complexity limits its application. Moreover, the performance of these methods degrades

when the signal has closely spaced modes. Analysis of abnormal oscillations in the power

system using wide area measurement data is proposed in [70].

1.5 Motivation and objectives

Phasor Measurement Units are increasingly used in modern power systems for dynamic mon-

itoring and control purposes. However, the high cost of PMU and its related equipment limits

its installation at every bus in the system. Moreover, PMU placed at a bus observes itself and

all its interconnected buses, provided it has sufficient channels. Therefore, the number of

PMUs required to make the power system observable is always less than the total number of

buses in that power system. Hence, optimal placement of PMUs ensuring complete observ-
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ability is one of the major research problems in this area.

It is observed that a considerable amount of work is already done on this topic through

metaheuristic and deterministic approaches. Metaheuristic algorithms use intelligent search

techniques like Simulated Annealing, Binary Particle Swarm Optimization, Genetic Algo-

rithm for finding the optimal PMU locations of the power system, whereas, deterministic

approaches use optimization algorithms like Integer Linear Programming (ILP) and Integer

Quadratic Programming (IQP) for this purpose. It is also observed that along with optimal

PMU placement, other objectives like maximization of measurement redundancy is also in-

troduced in few of these models. However, in most of these works, it is assumed that the

PMU has enough channels to measure the voltage of the host bus and the current phasor of

the interconnected buses. But, in reality, the channel capacity of PMU is limited. There-

fore, PMU placed at a bus may not observe all its interconnected buses if the number of

interconnections is higher than the total channel capacity of the PMU. Optimal PMU place-

ment including this effect was proposed in few works but they used PMUs of fixed channel

capacity for this purpose. Further, other objectives like maximization of measurement re-

dundancy were also not included in the models which considered the optimal placement of

PMUs including the effect of channel limits. However, the usage of PMUs of different chan-

nel capacities helps in reducing the total installation costs and maximization of measurement

redundancy ensures that there are multiple measurements of the same quantity ensuring in-

creased reliability. Therefore, it is important to have an optimal placement model utilizing

PMUs of different channel capacity ensuring complete observability of the system along with

maximum measurement redundancy.

Small signal stability of power systems is one of the major concerns of power system

engineers as they are operated near their stability limit due to the increased load growth

and deregulation. Conventionally, the small signal stability assessment is conducted through

eigenvalue analysis and it involves the identification of poorly damped modes in the low

frequency oscillations occurring in the power system. The low frequency oscillation in the

power system can be broadly classified as ringdown and ambient oscillations. Ambient os-

cillations occur when there is a random small change in the load or generation, whereas,

ringdown oscillations occur when there is a large magnitude disturbance like line tripping or

generator tripping in the system. Conventionally, the poorly damped modes in these oscilla-

tions were identified through Eigenvalue analysis. The main disadvantage of this method is
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that its computational burden increases with an increase in the number of buses, hence this

method is mainly used for the analysis of smaller systems. Due to this reason, after the intro-

duction of PMU and WAMS, several signal processing based algorithms have been proposed

for identifying the poorly damped modes in these oscillations.

It is observed from past works that parametric methods like Estimation of Signal Param-

eters using Rotational Invariance Technique (ESPRIT), Hankel’s Total Least Square (HTLS)

are a better choice for the analysis of ringdown oscillations. However, these algorithms re-

quire an accurate estimate of model order for its proper implementation. Overestimation

of model order leads to the presence of fictitious modes, whereas, one or more true modes

present in the signal will not be identified in case of under estimation of model order. Hence,

it can be inferred that the ringdown oscillations can be better analysed if these parametric

techniques are coupled with a good model order estimation algorithm.

Similarly, Stochastic Subspace Identification (SSI) based methods are a good choice for

the analysis of ambient oscillations as it can handle a large amount of data with dynamic

changes in the system. However, the performance of the SSI based algorithms deteriorates

when the signal under consideration contain moderate to high noise content. Therefore, it is

necessary to denoise the signal before passing into the SSI algorithm. Moreover, SSI being

a parametric method requires an accurate model order estimate to prevent the occurrence of

fictitious modes in its estimated results. Hence, an accurate model order algorithm is essential

for avoiding the presence of fictitious modes in the estimated results of the SSI method.

It is noticed from the literature review on signal processing techniques used for small

signal stability analysis that parametric methods are better at identifying the poorly damped

modes in power system. However, these methods need an accurate estimate of model order

for its proper implementation, which increases the computational complexity. However, if the

mono components which are extracted from the signal is fed into the parametric techniques,

then the estimation of model order is not required. This is an alternate way for identifying

the poorly damped modes in the low frequency oscillations.

In view of the above findings, the major objectives of the thesis can thus be summarised

below

• To develop a methodology for optimally placing the PMUs of different channel capac-

ity in order to achieve complete observability along with maximization of measurement

redundancy.
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• To develop an efficient algorithm for analyzing the ringdown oscillations occurring in

the power system and find the poorly damped modes accurately using synchrophasor

measurements.

• To develop a method for accurate estimation of modal parameters of ambient oscilla-

tions using PMU data.

• To estimate poorly damped modes in low frequency oscillations using parametric meth-

ods without model order estimation.

1.6 Thesis organization
This thesis is organized into seven chapters. Chapter 1 discusses the SCADA based moni-

toring system, Phasor measurement unit and its applications. A detailed literature review on

optimal placement of PMUs and identification of electromechanical modes using PMU data

is also presented in this chapter along with the motivation behind this research work.

In chapter 2, a new redundant observability model for determining the optimal placement

of PMUs with varying channel capacity is presented. In this model, the channel capacity

of the PMU placed at a bus is determined by its interconnections. Thus, the placement of a

higher channel capacity PMU at a bus with fewer interconnections will be avoided thereby

reducing the number of channels required for complete system observability during normal

operations and contingencies like single line outage and PMU outages. Further, the objective

function is modified such that the measurement redundancy is maximized and the number

of PMUs is minimized even when PMUs with varying channel capacity is used. Moreover,

a new constraint is added to take care of the fact that a PMU placed at a bus measures the

voltage phasor of that bus irrespective of its channel limits. The proposed model is tested on

IEEE test systems and Northern Regional Power Grid (NRPG) 246 bus Indian system and the

results are compared with that of the cost minimization model in terms of Total Installation

Cost (TIC) and Channel Utilization Factor (CUF).

In chapter 3, a Hankel’s Total Least Square (HTLS) based algorithm for estimating the

low-frequency modes present in the power system oscillations is developed. This algorithm

is mainly used for identifying the modal parameters of the ringdown oscillations. In this

algorithm, the model order of the signal, which is a prerequisite for the proper implemen-

tation of the HTLS algorithm, is estimated through a Fast Fourier Transform (FFT) based
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technique. The fictitious modes present in the estimated results are filtered out by comparing

the amplitude of the estimated modes as the amplitude of the true modes will be much higher

than that of the fictitious modes. The HTLS based algorithm is compared with Fourier based

and Prony based algorithms at different levels of noise contamination and sampling frequen-

cies using synthetic signals and real-time signals from PMUs. The comparison reveals that

the HTLS based algorithm is accurate and robust than the other two methods.

In chapter 4, an ESPRIT based algorithm is proposed for the estimation of modal param-

eters of the low-frequency modes in the power system. ESPRIT, being a parametric method,

requires an accurate estimate of the model order for its successful implementation. This is

obtained through the Exact Model Order (EMO) algorithm, which estimates the model order

of even highly noisy signals accurately. The performance of the ESPRIT based algorithm is

compared with a Modified Prony, ARMA and TLS ESPRIT based algorithm in the literature

using real and synthetic signals.

In chapter 5, a Stochastic Subspace Identification (SSI) based algorithm for identifying

the poorly damped modes is presented. SSI is also a parametric method which is mainly used

for estimating the modal parameters of ambient oscillations. However, SSI based algorithms

perform poorly while analyzing signals with high noise content. Due to this reason, the sig-

nal under consideration is filtered using a Stationary Wavelet Transform (SWT) based filter

before passing it to the SSI algorithm. Moreover, EMO algorithm is used for the accurate

estimation of the model order in the proposed SSI method so that the presence of fictitious

modes in the estimated results is eliminated. The effectiveness of the proposed method is

proved by comparing it with similar methods in the literature.

In chapter 6, an Empirical Wavelet Transform (EWT)- ESPRIT method for identifying

the poorly damped modes of low frequency oscillations occurring in the power system is pro-

posed. In this method, the EWT act as a wavelet filter and decomposes the multi-component

signal into its mono component. The ESPRIT algorithm is then used to estimate the modal

parameters of these mono components. Model order estimation, which is a prerequisite for

the proper working of the ESPRIT algorithm, is not required for these mono-components as

they have only one frequency component present in them. This is one of the main advan-

tages of using the EWT algorithm along with ESPRIT. The proposed method is capable of

accurately extracting the modal parameters of even highly noisy non-stationary signals. This

is proven with the help of test signals and real-time signals obtained from an actual power

19



1.6. THESIS ORGANIZATION

system.

Finally, Chapter 7 concludes the main findings of the thesis and suggests few possible

areas of research.
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Chapter 2

Optimal placement of PMUs with

varying channel capacity

2.1 Introduction

Accurate monitoring of states of the power system is essential for maintaining its reliability

and security. Conventionally, monitoring is carried out using SCADA systems. However, the

measurements obtained using SCADA based systems are time skewed and has low reporting

rates. Therefore, the probability of error in bus voltage phasor estimates obtained from these

measurements is quite high. Moreover, the dynamic properties of the power system cannot

be accurately represented by SCADA based systems due to its low reporting rates. The in-

troduction of PMUs solved both these issues as they provide synchronous measurements of

voltage and current phasors across the power system at high reporting rates. However, the

high installation cost of PMU and its associated equipment makes it infeasible and uneco-

nomical to place it at every bus. Moreover, the PMU placed at a bus can observe all the

interconnected buses provided it has enough measurement channels. Therefore, obtaining a

PMU placement set such that the complete observability is attained with a minimum number

of PMUs is one of the main research problems in this area.

Literature review on optimal placement of PMU shows that many algorithms based on

meta-heuristic [8–12] and deterministic methods [24–27] have been proposed on this topic.

Meta-heuristic algorithms use artificial intelligence techniques like Binary Particle Swarm

Optimization (BPSO) [10], Genetic algorithm [11, 12] to find the optimal PMU locations

whereas deterministic algorithms use Integer Linear Programming (ILP) [24, 25] and In-
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teger Quadratic Programming (IQP) [26, 27] for the same purpose. Additional constraints

such as the effect of zero injection bus [24], improvement of measurement redundancy [25],

contingencies like PMU outage and line outages are also considered in many of the above

works.

In all the above works, it is assumed that the PMU placed at a bus can monitor all its

interconnected buses through its voltage and current channels irrespective of the number of

interconnections. However, in reality, the number of measurement channels of the PMU is

limited. Therefore, the incorporation of this constraint into the optimal placement problem

is essential for improving its chances of application in real scenarios. Few works [33–40]

have considered this effect on optimal placement. However, the usage of PMUs of different

channel capacity is not considered in any of these works. Moreover, other objectives like

maximization of measurement redundancy are not considered along with this constraint.

Keeping these facts in mind, a new redundant observability model for determining the

optimal placement of PMUs with varying channel capacity is presented in this chapter. In this

model, the channel capacity of the PMU placed at a bus is determined based on the number

of interconnections it has with neighbouring buses. If the number of interconnections is less,

a PMU with lesser channel capacity is installed there. On the other hand, a PMU with higher

channel capacity is installed at a bus with more interconnections. Thus, the placement of a

higher channel capacity PMU at a bus with fewer interconnections will be avoided thereby

reducing the number of channels required for complete system observability during normal

operations and contingencies like single line outage and PMU outages. Further, the objective

function is modified such that the measurement redundancy is maximized and the number

of PMUs is minimized even when PMUs with varying channel capacity is used. Moreover,

a new constraint is added to take care of the fact that a PMU placed at a bus measures the

voltage phasor of that bus irrespective of the channel limits. The proposed model is tested on

IEEE test systems and Northern Regional Power Grid (NRPG) 246 bus Indian system and

the results are compared using two parameters viz. Total Installation Cost (TIC) and Channel

Utilization Factor (CUF).

2.2 Basic PMU Placement Problem

The placement of PMUs across the power system will make the host buses and their intercon-

nections observable. If PMUs are placed at every bus in the power system, then the voltage
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phasors of every bus and the current phasors of every line in the power system can be easily

estimated. However, the high cost of PMU and its associated equipment makes it impos-

sible to place PMU at every bus in the power system. Therefore, PMU should be placed

at particular locations in the power system such that the overall cost of PMU installation is

minimized without affecting the complete observability of the power system. This can be

mathematically represented as

Min
N

∑
i=1

cixi (2.1)

here, xi is a binary variable for indicating the presence of a PMU at ith bus. If the value

of xi is one, then the PMU is placed at the ith bus, otherwise not [37]. ci denotes the cost of

PMU placed at the ith bus and N represents the number of buses present in the power system.

This objective function is optimized according to certain observability constraints. These

constraints are developed based on the observability rules mentioned below [24].

(1) PMU placed on a bus can measure the voltage phasor of that bus and the current

phasors emanating from it making the host bus directly observable and all the connected

buses observable using Kirchhoff’s voltage law.

(2) If voltage phasors of the two interconnected buses are known then current phasor of

the connected branch can be calculated through Ohm’s law.

Figure 2.1: 5-bus system with PMU.

These rules are better explained with the 5-bus system shown in fig. 2.1. In this figure,
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it is noticed that the 5-bus system is made observable through the PMU placed at bus 5. The

PMU through its voltage channel estimates the voltage phasor of the host bus i.e. bus 5. It

also measures the current phasors flowing through the lines connecting buses 1-5, 2-5,3-5 and

4-5 through its current channels. The voltage phasors of buses 1,2,3 and 4 are then estimated

from these current phasors using Kirchhoff’s law. Once the voltage phasors of all the buses

are calculated, the current flow in other lines is calculated through network equations [71].

For complete system observability, each bus should be observed at least once, which can

be expressed mathematically as

N

∑
j=1

ai jx j ≥ 1, ∀i ∈ I (2.2)

where, ai j is the binary connectivity parameter of buses i and j. It attains a value of one

when the buses i and j are connected. I denote the set of buses in the power system.

Figure 2.2: Zero injection effect - Rule 1.

There are some buses in the power system which are neither connected to any generators

nor loads. These buses are used only for transferring the power from one point to another

and are called zero injection buses. If zero injection buses are modelled in the observability

constraints, then the total number of PMUs required for complete power system observability

can be further decreased. They are modelled into the observability constraints subject to

certain rules given below [71].

(1)When the buses incident to an observable zero injection bus, are all observable except
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Figure 2.3: Zero injection effect - Rule 2.

one, then the unobservable bus is also identified as observable by applying KCL at the zero-

injection bus. This rule is better explained with the help of fig. 2.2. In this figure, the zero

injection bus (bus 2) is observed through the PMU placed on bus 1. All the buses connected

to this zero injection bus are observable except bus 3. In such cases, according to this rule,

bus 3 can be made observable by applying Kirchhoff’s current law at bus 2.

(2)When all the buses incident to an unobservable zero injection bus are observable, then

the zero-injection bus is also identified as observable by applying KCL at the incident node.

For instance, bus 2 in fig. 2.3 is an unobserved zero injection bus. All the buses connected

to bus 2 are observed through different PMUs placed in the system. Hence, according to

this rule, the voltage phasor of the zero injection bus can be calculated through network

equations.

These rules can be mathematically modelled as [71]

N

∑
j=1

ai jx j + ∑
j∈ZIB

ai jz jyi j ≥ 1, ∀i ∈ I (2.3)

N

∑
i=1

ai jyi j = z j, ∀ j ∈ ZIB (2.4)

where, z j and yi j are binary variables used to include the zero injection effect into the ob-

servability constraints. If z j is equal to one then the jth bus is a zero injection bus, otherwise

not. The value of yi j indicates whether ith bus is observed through the zero injection effect
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of bus j. If the value of yi j is one, then it can be inferred that ith bus is observed through the

zero injection effect of bus j. ZIB denotes the set of zero injection buses in the system.

2.3 Proposed Formulation

It is noticed that while placing the PMUs, there may be more than one PMU placement set

which gives complete observability of the power system using the same number of PMUs.

The best placement set will be the one which can provide maximum measurements or the

one with maximum measurement redundancy. For selecting the best placement set, a new

criterion of maximizing measurement redundancy is added to the cost minimization making

it a bi-objective optimization problem. Addition of this new objective will help in better

utilization of the available channels of PMU. The modified objective function after including

measurement redundancy is shown below.

N

∑
i=1

cixi +β

N

∑
i=1

(− fi) (2.5)

where,

fi =
N

∑
j=1

ai jx j, ∀i ∈ I (2.6)

where, fi is the observability constraint of the ith bus which is developed based on the

observability rules discussed in Section 2.2. The value of fi indicates the number of times the

bus is observed through different PMUs. Hence, the addition of fi to the objective function

will help in maximizing the number of times each bus in the power system is observed.

However, the objective function is a minimization function. Therefore a negative sign is

attached to fi to convert the whole function into a minimization function. The parameter

β is the normalization factor for the redundancy maximization function. If its value is low,

then the measurement redundancy will not be properly maximized. On the other hand, if its

value is high, then cost minimization part of the objective function will not work properly.

Therefore, the value of β should be selected such that the cost minimization function is not

affected. In [25], β is defined as the inverse of total times all the buses that can be ideally

observed in a power system. But, for large practical systems, calculation of β using this

equation will be tedious. Therefore, a new definition is proposed for β as shown in (2.7).

β =
1

N ∗C
(2.7)
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Here, C is the maximum number of connections of a bus in that system. Ideally, the value

of β is always less than unity. The value of β derived through equation (2.7) is lesser than

that of [25] which in turn helps in increasing the measurement redundancy of the system.

Phasor measurement units measure the voltage and current phasors using voltage and

current channels. Voltage channels measure the voltage phasor of the bus at which it is

placed whereas current channels measure line currents emanating from it [28]. In many of the

previous works, it is assumed that the PMU has adequate number of measurement (voltage

and current) channels. However, the number of channels of a PMU is limited and its number

varies depending on the manufacturer. For instance, SEL and ABB are two famous PMU

manufacturers. SEL 487E has 15 analog current channels for measuring five three-phase line

current phasors whereas ABB RES521 has only six analog channels for measuring two three-

phase line current phasors [34]. It is observed that, the maximum number of measurement

channels in the PMU is usually not more than eight due to technical limitations and cost

constraints [28].

Due to the limited number of channels, PMU placed at a bus cannot fully observe all the

interconnected buses if the number of interconnections is higher than the number of current

channels of the PMU. For instance, when a PMU having n current channels is placed on a

bus which is connected to m other buses such that m > n, then m−n buses will remain unob-

servable even though a PMU is placed at one of its interconnected buses. To overcome this

problem, the observability constraints need to be modified to include the effects of channel

limits. This is done by adding another binary variable to the observability constraint equation

in (2.6) as shown below [71].

gi =
N

∑
j=1

ai jwi jx j, ∀i ∈ I (2.8)

The parameter wi j denotes whether the bus i is observed using a PMU placed at bus j.

The value of wi j = 1 indicates that the PMU placed on jth bus measures the current phasor

between ith and jth buses using one of its current channels. The value of wii or w j j = 1

indicates that the PMU placed on ith bus measures the voltage phasors of the ith bus using its

voltage channel.

The modified objective function for improving the measurement redundancy along with

cost minimization taking into account the limited channel capacity of PMU is
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N

∑
i=1

cixi +β

N

∑
i=1

(−gi) (2.9)

The objective function mentioned above is optimized subject to the constraints formu-

lated based on the observability rules explained in Section 2.2. However, the effect of zero

injection bus is not modelled in these constraints. Since the effect of zero injection buses is

independent of channel capacity of PMUs, this effect can be added into the constraints as in

(2.3)-(2.4). The modified observability constraints can be written as

N

∑
j=1

ai jwi jx j + ∑
j∈ZIB

ai jz jyi j ≥ 1, ∀i ∈ I (2.10)

N

∑
i=1

ai jyi j = z j, ∀ j ∈ ZIB (2.11)

As explained earlier, the number of channels of the PMU is limited. Hence, the total num-

ber of measurements carried out by the PMU should be less than its total channel capacity.

This is realized through the following constraint.

N

∑
i=1

ai jwi j ≤ wmax
j , ∀ j ∈ I (2.12)

where, wmax
j is the channel capacity of the PMU placed at jth bus [71].

The channel capacity of the PMU varies according to its manufacturer and cost. Gener-

ally, the higher the channel capacity of the PMU, the higher will be its total cost. Therefore,

placement of a higher channel capacity PMU at a bus with lesser interconnection is uneco-

nomical. However, usage of PMUs of different channel capacity is not considered in most of

the works. Keeping this fact in mind, PMUs having varying channel capacities are used in

this work. The channel capacity of the PMU at a particular bus is determined by the number

of connections of the bus. To accommodate this, a new variable u j, which represents the

maximum observability of that bus is defined. It is determined by summing the jth row of

the binary connectivity matrix.

u j =
N

∑
i=1

ai j (2.13)

The value of u j is compared with the channel capacities of the PMU available and the

most appropriate channel capacity is selected for that particular bus. Thus the constraint
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(2.12) is modified as given below.

N

∑
i=1

ai jwi j ≤


k1, i f u j ≤ k1

k2, i f k1 < u j ≤ k2

k3, k2 < u j

 , ∀ j ∈ I (2.14)

here, k1, k2 and k3 represents the channel capacities of PMU used in the system.

The buses connected to the PMU placed bus will be observed depending on the number

of interconnections of the host bus and the number of measurement channels of the PMU.

If the measurement channels of the PMU is higher than the interconnections, then all the

interconnected buses will be observed. Otherwise, only a few of the buses will be observed.

This is mathematically expressed in the following equation

wi j ≤ x j, f or i 6= j, ∀i, j ∈ I (2.15)

The PMU should measure the voltage phasor of the host bus using its voltage channel.

This is realized through the following constraint. It is observed that this constraint is not im-

plemented in [71]. The absence of this constraint causes the PMU placed bus to be observed

through the current channel of some other PMU in the system. In such cases, the voltage

channel of the host PMU is unutilized. The following constraint is formulated to prevent this

situation [72].

wi j = x j, f or i = j, ∀i, j ∈ I (2.16)

The objective function and the constraints used for optimal PMU placement with in-

creased measurement redundancy using PMUs of varying channel capacities are summarized

below.

Minimize
N

∑
i=1

cixi +β

N

∑
i=1

(−gi)

subject to
N

∑
j=1

ai jwi jx j +
N

∑
j=1

ai jz jyi j ≥ 1, ∀i ∈ I

N

∑
i=1

ai jyi j = z j, ∀ j ∈ ZIB

29



2.3. PROPOSED FORMULATION

N

∑
i=1

ai jwi j ≤


k1, i f u j ≤ k1

k2, i f k1 < u j ≤ k2

k3, k2 < u j

 , ∀ j ∈ I (2.17)

wi j ≤ x j, f or i 6= j, ∀i, j ∈ I

wi j = x j, f or i = j, ∀i, j ∈ I

Figure 2.4: 7 bus system [73].

A flowchart of the proposed formulation using PMUs of varying channel capacities is

shown in fig. 2.4. For better understanding, the proposed formulation is explained with the

help of an example. Let us consider a 7-bus system having two zero injection buses 3 and 5

as shown in fig. 2.5. The objective function can be written as follows

Z =
7

∑
i=1

Xi +β

7

∑
i=1

(−gi) (2.18)

gi =
7

∑
j=1

ai jwi jx j + ∑
j∈3,5

ai jz jyi j (2.19)

Here, gi is the observability constraint of the ith bus. The value of β is found to be 0.0357

using (2.7). The cost of the PMU is considered as 1 pu for simplicity. The observability

constraints of the 7-bus system are given below.
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Figure 2.5: Flowchart of the proposed formulation.

w11 ∗X1 +w12 ∗X2 ≥ 1;

w21 ∗X1 +w22 ∗X2 +w23 ∗X3 +w26 ∗X6 +w27 ∗X7 + y23 ≥ 1;

w33 ∗X3 +w32 ∗X2 +w34 ∗X4 +w36 ∗X6 + y33 ≥ 1;

w44 ∗X4 +w43 ∗X3 +w45 ∗X5 +w47 ∗X7 + y43 + y45 ≥ 1;

w55 ∗X5 +w54 ∗X4 + y55 ≥ 1;

w66 ∗X6 +w62 ∗X2 +w63 ∗X3 + y63 ≥ 1;

w77 ∗X7 +w74 ∗X4 +w72 ∗X2 ≥ 1;

y23 + y33 + y43 + y63 = 1;

y45 + y55 = 1;

(2.20)
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In (2.20), the first seven equations represent the observability constraint of the seven

buses in the system. The other two equations are used for representing the zero injection

bus effect. The channel capacity of PMU placed at a particular bus is determined by (2.13)

and (2.14). In this example, it is assumed that the channel capacities of PMU are 2 and 4

respectively. So k1 and k2 are set as 2 and 4 respectively. It is noticed from (2.20) that the

maximum observability of all the buses except buses 1 and 5 is greater than 2. So these buses

are suitable for the placement of PMU having k2 channels whereas PMU having k1 channels

can be placed at buses 1 and 5. This is represented mathematically in (2.21)

w11 +w21 ≤ 2;

w12 +w22 +w32 +w62 +w72 ≤ 4;

w33 +w23 +w43 +w63 ≤ 4;

w44 +w34 +w54 +w74 ≤ 4;

w55 +w45 ≤ 2;

w66 +w26 +w36 ≤ 4;

w77 +w47 +w27 ≤ 4;

(2.21)

In some cases, the PMU installed at a bus may not measure the voltage phasor of its own

although it observes the other interconnected buses. For instance at bus 2, there may be a

case when the value of w22 is 0 and all the other channels (w12,w32,w62,w72) are 1. This

means that the bus 2 is not self observed, which is contradictory to the principles of PMU

placement. Moreover, the voltage channel of the PMU is remaining idle. The following set

of equations are introduced to remove this limitation.

w11 = X1;w22 = X2;

w33 = X3;w44 = X4;

w55 = X5;w66 = X6;

w77 = X7;

(2.22)

The buses, which are connected to the PMU placed bus, will be observed depending on
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the channel capacity of the PMU. This is expressed in (2.23)

w21 ≤ X1;w12 ≤ X2;

w32 ≤ X2;w62 ≤ X2;w72 ≤ X2;

w23 ≤ X3;w43 ≤ X3;w63 ≤ X3;

w34 ≤ X4;w54 ≤ X4;w74 ≤ X4;

w45 ≤ X5;

w26 ≤ X6;w36 ≤ X6;

w47 ≤ X7;w27 ≤ X7;

(2.23)

The set of equations (2.18)-(2.23) are solved using LINDOGLOBAL solver in GAMS

software package. The optimal PMU locations of the considered 7- bus system is found to

be buses 2 and 3 when PMUs having channel capacities of 2 and 4 are used.

2.3.1 PMU Outage Scenario

The reliability of PMU and its associated equipment is quite high. However, in rare cases, it

becomes faulty making one or more buses in the power system unobservable. To prevent this

phenomenon, the observability of all the buses in the power system is increased from one to

two. The reformulated constraints are [71]

gi +
N

∑
j=1

ai jyi j ≥ 2, ∀i ∈ I (2.24)

where gi is the observability constraint of the ith bus and the value of ai jyi j denotes

whether the ith bus is observed through zero injection effect. If ∑
N
j=1 ai jyi j = 1 then the ith

bus is observed through one of the zero injection buses connected to it. If ith bus is not

connected to any zero injection bus then ∑
N
j=1 ai jyi j = 0.

2.3.2 Line Outage Scenario

Line outage in power system causes changes in the connectivity matrix. When a line con-

necting buses i and j is taken out, then the value of ai j and a ji in the connectivity matrix

becomes zero making one or more buses unobservable. For making the system observable

in this situation, new observability constraints which include the effect of line outage across

line i- j should be formulated. They are formulated based on the following equations [71]
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f k
i ≥ 1, ∀i ∈ I, ∀k ∈ K (2.25)

where

f k
i =

N

∑
j=1

ak
i jw

k
i jx j +

N

∑
j∈ZIB

ak
i jz jyk

i j, ∀i ∈ I, ∀k ∈ K (2.26)

N

∑
i=1

ak
i jy

k
i j = z j, ∀ j ∈ ZIB, ∀k ∈ K (2.27)

In the above equations, f k
i is the post-contingency observability constraint of the ith bus

and K denotes the set of lines in a power system. Parameters ak
i j and yk

i j are the post-

contingency values of ai j and yi j. If the line connecting buses i and j is taken out, then

the values of both ak
i j and yk

i j will be 0.

2.4 Simulation Results and Discussion

The effectiveness of the proposed method in finding the optimal PMU locations during nor-

mal operating conditions and contingencies like single line outage and PMU outage is tested

on different IEEE test systems viz. IEEE 14-bus, 30-bus, 57-bus, 118-bus systems and a

Northern Regional Power Grid (NRPG) 246-bus Indian system [22, 74]. The required details

about these test systems are given in Table 2.1. In these simulations, two different sets of

PMUs having varying channel capacities are used. The channel capacities of the PMUs used

in these sets are given below.

Set A - consists of PMUs with channel capacities of two, four and six.

Set B - consists of PMUs with channel capacities of three, five and seven.

Table 2.1: Test Systems

Test Zero injection buses Line outage
System considered
IEEE
14 bus 7 1-2
IEEE
30 bus 6,9,22,25,27,28 10-17
IEEE
57 bus 4,7,11,21,22,24,26,34,36,37,39,40,45,46,48 41-42
IEEE

118 bus 5,9,30,37,38,63,64,68,71,81 101-102
NRPG 54,56,59,61,62,63,69,70,71,72,73,74,75,80,81,86,102,103,104,107,122,126,129,
246 bus 131,147,154,155,167,175,179,180,183,209,210,211,212,213,214,215,216,217,

221,222, 226,229,230,231,232,233,234,236,237,238,239,240,241,243,244 49-50
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It is observed that the observability constraints of the PMU placement problem are non-

linear in nature. Hence, the proposed model is solved through Mixed Integer Quadratic

Constrained Programming (MIQCP) method in the GAMS software package as linear pro-

gramming methods cannot effectively handle the non-linearity of the constraints. Prior to

running the simulations, the relative stopping tolerance and absolute stopping tolerance of

the LINDOGLOBAL solver in the GAMS are set to zero for obtaining the global optimal

solution. The maximum iteration limit and tolerance for the gradient of non-linear functions

of the solver is set as 40000 and 1e−7 respectively. Moreover, the maximum simulation time

is set to 1000 seconds.

The advantages of using PMUs having varying channel capacities is proved by compar-

ing the results of the simulations with the results when PMUs of fixed channel capacity are

employed. In this comparison, the results obtained while using PMUs of set A are compared

with that of PMUs having channel capacity of six. Similarly, results of set B are compared

with that of PMUs having a channel capacity of seven. Two new parameters i.e. Channel

Utilization Factor (CUF) and Total Installation Cost (TIC) are introduced for a fair compari-

son process. CUF is the ratio of Total Direct Observations (TDO) made by the set of PMUs

to the Total number of PMU Channels (TPC) present in the system. As the value of TPC

decreases, the CUF increases, which indicates that fewer channels are remaining idle.

CUF =
T DO
T PC

(2.28)

Table 2.2: Fixed and variable charges of PMU [28]

Component Cost ($)
PMU (Fixed Cost) 20k

Voltage channel 3k
Current channel 3k

TIC is the sum of the installation cost of all the PMUs in the system. Installation Cost (IC)

of a PMU is broadly divided into fixed and variable costs. Fixed Costs (FC) includes the cost

of the PMU panel and other associated equipment, Global Positioning System (GPS) instal-

lation etc whereas Variable Costs (VC) includes the cost of voltage and current channels[28].

ICi = FCi +VCi (2.29)
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VCi = (n1 ∗CVi +n2 ∗CCi) (2.30)

T ICi = ∑
i∈PMUL

ICi (2.31)

Here, PMUL represents the set of PMU locations in the system. CV and CC denotes the

cost of voltage channels and current channels respectively. n1 and n2 gives the number of

voltage and current channels in the given PMU. The details about fixed cost, cost of voltage

and current channels of a PMU are obtained from [28] and is shown in Table 2.2.

Table 2.3: TIC and CUF of the proposed model with PMUs of fixed and varying channel
capacity during normal operation

Test No of PMUs for optimal placement No of channels TIC of PMUs CUF of PMUs
System with needed with ($) with

FC VC FC VC FC VC FC VC
Two Four Six Total

Set A
IEEE 3 0 1 2 3 18 16 114k 108k 0.833 0.9375
14 bus
IEEE 7 0 1 6 7 42 40 266k 260k 0.833 0.875
30 bus
IEEE 11 0 6 5 11 66 54 418k 382k 0.7121 0.8703
57 bus
IEEE 28 0 11 17 28 168 146 1064k 998k 0.8154 0 .9383

118 bus
NRPG 53 1 12 40 53 318 290 2014k 1930k 0.8551 0.9379
246 bus

Set B
Three Five Seven Total

IEEE 3 0 3 0 3 21 15 123k 105k 0.7142 1
14 bus
IEEE 7 1 4 2 7 49 37 287k 251k 0.7346 0.9729
30 bus
IEEE 11 4 5 2 11 77 51 451k 373k 0.6233 0.9411
57 bus
IEEE 28 6 10 12 28 196 152 1148k 1016k 0.7193 0.9276

118 bus
NRPG 53 6 22 25 53 371 303 2173k 1969k 0.7574 0.9339
246 bus

? FC: Fixed Channels
VC: Varying Channels

Table 2.3 compares the usage of PMUs of fixed and varying channel capacities for op-

timal placement during normal operation in terms of CUF and TIC. It is noticed that while
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using PMUs of varying channel capacity for optimal placement, the number of channels

required for complete system observability is comparatively lesser than that when PMU of

fixed channel capacity is used. For instance, 168 channels are required to fully observe the

IEEE 118 bus system when PMUs with fixed channel capacity of six are used. However,

the same system can be fully observed using just 146 channels when PMUs belonging to set

A is used. Hence, there is a reduction of 22 channels when the PMUs of varying channel

capacities are used for complete observability. This reduction in the number of channels

causes an improvement in the CUF and reduction of TIC. It is observed that usage of PMUs

of varying channel capacity for optimal placement in the IEEE 118 bus system reduces its

TIC and improves the CUF of the system by 6.20% and 12% respectively.

Table 2.4: TIC and CUF of the proposed model with PMUs of fixed and varying channel
capacity during single line outage

Test No of PMUs for optimal placement No of channels TIC of PMUs CUF of PMUs
System with needed with ($) with

FC VC FC VC FC VC FC VC
Two Four Six Total

Set A
IEEE 4 0 0 4 4 24 24 152k 152k .875 .875
14 bus
IEEE 8 0 2 6 8 48 44 304k 292k .79166 .8636
30 bus
IEEE 11 0 6 5 11 66 54 418k 382k .7121 .8703
57 bus
IEEE 29 0 8 21 29 174 158 1102k 1054k .8505 .9367

118 bus
NRPG 54 1 12 41 54 324 296 2052k 1968k .8611 .9425
246 bus

Set B
Three Five Seven Total

IEEE 4 0 3 1 4 28 22 164k 146k .75 .9545
14 bus
IEEE 8 2 4 2 8 56 40 328k 280k .6964 .975
30 bus
IEEE 11 4 5 2 11 77 51 451k 373k .6233 .9411
57 bus
IEEE 29 5 9 15 29 203 165 1189k 1075k .8177 .9454

118 bus
NRPG 54 4 23 27 54 378 316 2214k 2028k .7698 .9208
246 bus

Tables 2.4 and 2.5 compare the usage of PMUs of fixed and varying channel capacities

during single line outage and PMU outage respectively in terms of CUF and TIC. It is ob-
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Table 2.5: TIC and CUF of the proposed model with PMUs of fixed and varying channel
capacity during PMU outage

Test No of PMUs for optimal placement No of channels TIC of PMUs CUF of PMUs
System with needed with ($) with

FC VC FC VC FC VC FC VC
Two Four Six Total

Set A
IEEE 7 0 3 5 8 42 42 266k 286k .7857 .8809
14 bus
IEEE 15 1 11 4 16 90 70 570k 530k .622 .8571
30 bus
IEEE 26 1 18 8 27 156 122 988k 906k .666 .8606
57 bus
IEEE 63 4 29 31 64 378 310 2394k 2210k .7026 .896

118 bus
NRPG 125 20 49 57 126 750 578 4750k 4254k .732 .9117
246 bus

Set B
Three Five Seven Total

IEEE 7 1 6 1 8 49 40 287k 280k .6734 .9250
14 bus
IEEE 15 9 5 2 16 105 66 615k 518k .5428 .9242
30 bus
IEEE 26 13 11 3 27 162 115 1006k 885k .6481 .9217
57 bus
IEEE 63 24 21 19 64 441 310 2583k 2210k .6485 .9137

118 bus
NRPG 125 46 49 31 126 875 600 5125k 4320k .6171 .8983
246 bus

served that, during single line outages, the proposed method gave better CUF and lesser TIC

when PMUs of varying channel capacity were used for optimal placement irrespective of the

test system under consideration. It is also observed that during single line outages, the num-

ber of measurement channels required for complete system observability is usually higher

than that of normal operating conditions. This happens due to the usage of extra PMU for

complete system observability during single line outages. Hence, CUF of the proposed model

during single line outages is lesser than that of normal operating conditions irrespective of

the type of PMU (fixed channel capacity or varying channel capacity) used.

From Table 2.5, it can be observed that the proposed model with PMUs of varying chan-

nel capacities needs an extra PMU as compared to that with fixed channel capacities for

maintaining complete observability during PMU outages. However, extra channels are re-

quired if PMUs with fixed channel capacities are used. Therefore, both cases are compared
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using TIC. It is noticed that, except for the IEEE 14 bus system, the TIC of the proposed

model with PMUs of varying channel capacity is lesser than that with fixed channel capaci-

ties. The savings in the TIC increases with the system size. It is highest for NRPG 246 bus

system where the TIC with varying channel capacities is almost 10.4% less than that of with

fixed channels.

Table 2.6: Optimal PMU locations of the proposed model using PMUs belonging to set A
and B

System Optimal PMU locations common for set A and set B Set A Set B

Normal operation

IEEE 14 bus 2,6,9

IEEE 30 bus 2,4,10,12,15,27 20 19

IEEE 57 bus 1,4,13,20,25,29,32,38,51,54,56

IEEE 118 bus 3,8,11,12,17,21,27,31,32,34,37,40,45,49,52,56,62,72,75,77,80,85,86, 101 102

91,94,105,110

IEEE 246 bus 6,11,15,21,24,27,29,34,40,44,48,49,56,65,66,70,82,83,88,89,91,96,97,106,

109,117,121,125,129,132,134, 140,141,142,157,158,160,165,166, 168, 128 183

181,185,187,190,191,194,199,202,203,219,235,245

Line outage

IEEE 14 bus 4,5,6,9

IEEE 30 bus 2,4,10,12,15,17,20,27

IEEE 57 bus 1,4,13,20,25,29,32,38,51,54,56

IEEE 118 bus 3,8,11,12,17,21,27,31,32,34,37,40,45,49,52,56,62,72,75,77,80,85,86,89,

92,96,100,105,110

IEEE 246 bus 6,11,15,21,24,27,29,34,40,44,48,54,55,56,65,66,70,82,83,88,89,91,96,97,106,

109,117,121,125,128,129,132,134,140,141,142,157,158,160,165,166,168,181,

185,187,190,191,194,199,202,203,219,235,245

PMU outage

IEEE 14 bus 2,4,5,6,7,9,10,13

IEEE 30 bus 1,3,5,7,9,10,12,13,15,17,19,20,24,25,27,30

IEEE 57 bus 1,2,4,6,9,12,14,19,20,24,25,27,29,30,32,33,36,37,38,41,47,50,51,53,54,56 44 45

IEEE 118 bus 1,3,5,6,8,9,12,15,17,19,21,22,25,27,29,31,32,34,37,40,42,45,46,49,51,54,56, 11,35,43, 13,36,44,

57,59,61,62 ,66,68,70,71,72,75,77,79,80,83,85,86,87,89,91,92,94,96,100, 52,76 53,118

101,105,106,109,110,111,112,115,117

IEEE 246 bus 2,5,6,7,9,10,11,14,15,21,23,24,27,29,30,31,33,34,35,38,40,41,42,43,

44,47,48,50,54,55,56,57,61,62,63,64,65,66,70,74,75,77,80,82,83,

84,88,89,91,92,96, 97,100,101,105,106,109,111,113,118,119,121,

122,123,124,125,126,128,132,133,134,135,138,139,140,141,143, 103,108 68,85

145,147,149,152,156,157,158,159,160,163,165,166,168,169,172, 148,174 146,173

176,178,181,182,185,186,187,189,190,191,193,194,195,196,197,

199,201,202,203,205,207,208,216,219,223,224,234,235,243,245

Tables 2.6 shows the optimal PMU locations obtained with the proposed model using
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PMUs of set A and set B respectively. The second column shows the optimal PMU locations

common to set A and set B. The third and fourth columns show the optimal PMU locations

obtained only in set A and set B, respectively. Thus, the total PMU locations obtained in

set A is the locations given in second and third columns, while that in set B is the locations

given in second and fourth columns. It is observed that for a particular test system, most of

the optimal locations obtained are common to both the sets.

From Tables 2.3-2.5, it can be inferred that the proposed model can optimally place PMUs

of varying channel capacity across the power system to make it completely observable dur-

ing normal operation as well as contingencies like single line outage and PMU outages. The

comparison of the proposed model using PMUs of fixed and varying channels reveals that

usage of PMUs with varying channels improves the CUF and reduces the TIC. Apart from

the usage of PMUs with varying channels, the proposed formulation also ensures increased

measurement redundancy along with complete observability of the power system. The supe-

riority of this formulation is proved by comparing it with the cost minimization model under

similar operating conditions. The comparison is done in terms of System Observability Re-

dundancy Index (SORI). The SORI of the test system for a particular channel capacity is

the sum of the total number of direct and indirect observations made using the given set of

PMUs. The indirect observations are made through zero injection effect. PMUs belonging

to set A and B are only used in these models.

Table 2.7 shows the comparison of the number of PMUs for complete observability and

the SORIs obtained with the proposed model against the cost minimization model under

normal operating conditions as well as contingencies. It is noticed that irrespective of the

operating condition, both the cost minimization model and the proposed model attain com-

plete observability with the same number of PMUs. However, it is also noticed that the

measurement redundancy of the proposed model is higher than that of the cost minimization

model for all test systems. The difference in measurement redundancy of these two models

is negligible for smaller systems. However, there is a considerable difference in the SORI for

large practical systems. This is evident from the comparison of SORIs of NRPG system. It is

observed that the measurement redundancy of the proposed model is around 10.36% higher

than that of the cost minimization model while using PMUs of set A. It is also noted that the

proposed model gives better measurement redundancy with PMUs of set B than set A due to

the presence of additional channels in set B.
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Table 2.7: Comparison of SORI of the proposed model against the cost minimization model

Test Set A Set B
System Cost Minimization Proposed Model Cost Minimization Proposed Model

Model Model
No. of SORI No. of SORI No. of SORI No. of SORI
PMUs PMUs PMUs PMUs

Normal operation
IEEE 14 bus 3 16 3 16 3 16 3 16
IEEE 30 bus 7 35 7 41 7 37 7 42
IEEE 57 bus 11 61 11 62 11 63 11 63
IEEE 118 bus 28 137 28 147 28 143 28 151

NRPG 246 bus 53 299 53 330 53 311 53 341
Line outage

IEEE 14 bus 4 19 4 22 4 19 4 22
IEEE 30 bus 8 37 8 44 8 36 8 45
IEEE 57 bus 11 61 11 62 11 63 11 63
IEEE 118 bus 29 150 29 158 29 153 29 165

NRPG 246 bus 54 298 54 337 54 315 54 349
PMU outage

IEEE 14 bus 8 38 8 38 8 38 8 38
IEEE 30 bus 16 65 16 66 16 67 16 67
IEEE 57 bus 27 119 27 120 27 119 27 121
IEEE 118 bus 64 270 64 288 64 281 64 296

NRPG 246 bus 126 558 126 585 126 595 126 597

The effectiveness of the proposed model is further validated by comparing with existing

models in Table 2.8. The proposed model uses PMUs belonging to set A and B whereas

similar models in [33, 38, 71, 75, 76] uses PMUs having a fixed channel capacity of six

for this comparison. It is noticed that the above mentioned works [33, 38, 71, 75, 76] have

considered only cost minimization as their main objective function. Therefore, the objec-

tive function is modified such that the measurement redundancy maximization function is

removed from the proposed model and the performance comparison is done in terms of op-

timal PMUs required for complete observability and TIC. It is evident from Table 2.8 that

usage of PMUs with varying channels reduces the TIC of the proposed model in comparison

to the models in [33, 38, 71, 75, 76] even though all these models use the same number of

PMUs for obtaining complete observability. For instance, the TIC of the IEEE 57 bus system

using the proposed model is 8.6% lesser than that of the model in [38]. So it can be inferred

that the proposed model is more economical than the models in [33],[71],[38],[75] and [76].
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Table 2.8: Comparison of the proposed model with other existing models

Model IEEE 14 bus IEEE 30 bus IEEE 57 bus IEEE 118 bus
No. of TIC No. of TIC No. of TIC No. of TIC
PMUs ($) PMUs ($) PMU ($) PMUs ($)

Set A 3 108k 7 242k 11 382k 28 992k
PM

Set B 3 105k 7 239k 11 379k 28 1004k

Binary Integer 3 114k 7 266k 12 456k 28 1064k
Programming [33]

Integer Linear 3 114k 7 266k 11 418k 28 1064k
Programming [71]
Cellular Genetic 3 114k 7 266k 11 418k 29 1102k
Algorithm [38]
Binary Integer 3 114k 7 266k 12 456k 28 1064k

Programming [75]
Cellular Genetic 3 114k 7 266k 12 456k 28 1064k
Algorithm [76]

?
PM: Proposed Model

2.5 Conclusion
A redundant observability model for optimally placing the PMUs of varying channel capac-

ities is proposed in this chapter. In this model, the channel capacity of the PMU placed

at a bus is determined by its number of interconnections. The observability constraints of

this model are non-linear in nature. Hence, it is solved using Mixed Integer Quadratic Con-

strained Programming. The superiority of using PMUS of varying channel capacity is proved

by comparing its performance with that of PMU with fixed channel capacity under normal

operating conditions as well as contingencies like single line outage and PMU outages. The

redundant observability formulation of the proposed model is tested by comparing it with

cost minimization model using PMUs with varying channels. Results reveal that the pro-

posed model provides better measurement redundancy than the cost minimization model

using the same number of PMUs for complete system observability.
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Chapter 3

Hankel’s Total Least Square based

algorithm for analyzing ringdown

oscillations

3.1 Introduction

The identification of poorly damped oscillatory modes occurring in power system is critical

for maintaining its small signal stability. Depending on the range of frequencies, these modes

can be classified as inter-area (0.05 - 0.3 Hz), intra area (0.4 - 1.0 Hz), intra plant (1.5 - 3.0

Hz) and inter plant (1.0 - 2.0 Hz) respectively. If these poorly damped modes are not mon-

itored, it may cause cascaded tripping in the power system leading to blackouts. Therefore,

early identification of these modes is essential to prevent such unfortunate incidents [77].

Poorly damped modes in power system oscillations are determined through eigenvalue

based and measurement based approaches. In the eigenvalue-based method, the power sys-

tem is linearized around its operating point to generate the state space equations. The eigen-

values of the power system are calculated from these equations. The modal parameters of

the oscillations are extracted from these eigenvalues. The main disadvantage of this method

is that its computational burden increases with an increase in the number of buses, hence

this method cannot be used for large practical power systems. Measurement-based methods

extract the modal parameters of the power system oscillations using digital signal processing

techniques. Power system signals like active power variation, frequency variation is used as

the input for these measurement based methods. With the advent of PMU and Wide Area
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Measurement System (WAMS), measurement-based methods utilizing Fast Fourier Trans-

form (FFT) [78], Wavelet transform [7, 55, 56], Prony algorithm [41–45, 79], Estimation of

Signal Parameters using Rotational Invariance Technique (ESPRIT) [48, 50], Matrix Pencil

method [80], Stochastic Subspace Identification (SSI) [52] are increasingly used for identi-

fying the poorly damped modes in power system oscillations.

Among these methods, FFT based methods are simple and easy to implement but they

cannot detect closely spaced modes, which is one of their main drawbacks. Moreover, the

damping coefficient of the modes cannot be estimated directly in this method. Wavelet trans-

form based methods are proposed in [7, 55, 56]. These methods can analyse non-stationary

signals efficiently compared to other methods. However, their accuracy is dependent on the

type of wavelet used for analysis. Prony algorithm [41–43, 79] based methods are one of the

oldest measurement techniques used for estimating the parameters of low-frequency oscilla-

tion. However, it performs poorly under high levels of noise. Improved versions of the Prony

algorithm are proposed in [44, 45] but the above limitations are not fully solved. Parametric

methods like ESPRIT [48, 50], Matrix Pencil [80], SSI [52, 53], Hankels Total Least Square

method (HTLS) [81] are also used to find the dominant modes present in the low frequency

oscillations. These methods normally provide better estimates of modal parameters than the

Prony algorithm and perform well even under high levels of noise contamination. However,

parametric methods need an accurate estimate of the model order or the number of modes

present in the signal for its successful performance. In [48], the ESPRIT based method uses a

technique based on the ratio of eigenvalues of the autocorrelation matrix developed from the

signal data to estimate the number of modes present in the signal. Although this method is

simple, the model order is either underestimated or overestimated in cases where the signal

has closely spaced modes. In [52], the initial model order is estimated using a technique

based on the average of singular values of the Hankel matrix developed from signal data and

subsequently, the SSI based method is used to compute the modes.

From the above literature, it can be concluded that a parametric method combined with an

efficient model order algorithm can accurately identify the poorly damped modes. However,

if the model order is not accurately estimated, it will lead to the presence of fictitious modes

or non-identification of real modes present in the signal. When the model order is overesti-

mated, it leads to the presence of fictitious modes in the estimated results whereas real modes

present in the signal are not identified in case of underestimation of model order. Therefore,
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Figure 3.1: Block diagram of the proposed method.

accurately estimating the model order of the signal is essential for identifying the real modes

present in the signal. Conventional model order algorithms like Akaike Information Criterion

(AIC) [82] can estimate the model order but the computational burden associated with them

is very high. However, a near accurate estimate of the model order of the same signal can be

obtained through simpler techniques like FFT.

Therefore, this chapter proposes an HTLS based algorithm for identifying the low-frequency

oscillation modes occurring in the power system in which an FFT based technique is used

for model order estimation. In this technique, the number of peaks in the FFT plot of the

signal represents a near accurate estimate of the model order. This estimate is slightly incre-

mented and is fed into the HTLS algorithm. The incrementing is done to make model order

estimate higher than its actual value so that all the modes present in the signal is identified.

The drawback of this incrementing operation is that fictitious modes will be present in the

estimated results. The true modes of the signal are separated from these fictitious modes by

comparing their amplitudes as the amplitude of the true modes will be much higher compared

to the fictitious modes. The proposed algorithm is compared with Fourier based and Prony

based algorithms at different levels of noise contamination and sampling frequencies using

synthetic signal and real-time signals from PMUs. Results reveal that the proposed method

provides accurate estimates of modal parameters of low-frequency oscillations even in the

presence of noise and low PMU reporting rates.

3.2 Proposed Methodology

The proposed method utilizes an HTLS based algorithm for finding the modal parameters of

low frequency oscillations. The block diagram of the proposed method is shown in fig. 3.1.

In this method, the signal is split into a sum of exponentially decaying sinusoids. It can be
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mathematically represented as

x(t) =
K

∑
i=1

Aie−σit cos(2π ∗ fit +φi)+ st (3.1)

Here, x(t) is the signal under consideration. It is split into K exponentially damped si-

nusoids having a frequency of fi and phase of φi. Ai is the amplitude of the mode i and σi

is its attenuation factor. st is the noise present in the signal. In case of power systems, x(t)

is obtained from the PMUs present in the power system. The HTLS algorithm being a para-

metric method requires an accurate estimate of the model order or the number of frequency

components present in the system for its proper implementation. The FFT based model order

algorithm used in the proposed method is explained in the next subsection.

3.2.1 Determination of Initial Model Order

Model order estimation is the process of accurately estimating the number of frequency com-

ponents or modes present in the signal. A Fourier based algorithm for estimating the model

order is used in the proposed method. This technique is easy to implement and the computa-

tional complexity associated with it is quite low unlike AIC. The main steps of this algorithm

are given below.

Step 1: Obtain the FFT of the signal and plot the same.

Step 2: Find the highest peak in the FFT plot.

Step 3: Calculate the number of peaks, which has at least 10% amplitude of the highest

peak. This value is set as the initial model order of the signal. The amplitude cutoff is used

to exclude the peaks corresponding to the noise present in the signal as their amplitudes will

be much lesser than that of the modes present in the signal.

This technique estimates the model order of the signal accurately in most cases. However,

precise estimation of the model order is practically not possible when the signal is highly

noisy or when the energy of one or more modes of the signal is very low. In such cases,

the model order is underestimated causing non identification of one or more modes in the

system. To prevent this phenomenon, the initial model order estimated is incremented by a

small number before sending it to the HTLS algorithm for separating the dominant singular

values. The increased model order will help in identifying all the modes present in the signal.

However, in some cases, the estimated model order is higher than the actual value after the

increment operation leading to fictitious modes in the estimated results. In such cases, the
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real modes present in the signal are identified from these fictitious modes by comparing

the amplitude of modes as the amplitude of these fictitious modes will be very low when

compared to the real modes.

3.2.2 HTLS Algorithm

The main steps for estimating the modal parameters of the low-frequency oscillation using

the HTLS algorithm are as follows [81, 83].

1. Generate the Hankel matrix H from the given signal data.

H =


x(0) x(1) x(2) .... x(M−1)

x(1) x(2) x(3) .... x(M)

.. .. x(3) ..

x(L−1) .. .. .. x(N−1)


Here, x(0), x(1) .... x(N−1) represent the signal data. x(0) and x(N−1) are the first and

last samples of the signal. N and M represent the length of the signal and the order of the

Hankel matrix respectively.

2. Calculate the Singular Value Decomposition (SVD) of H and obtain its singular values.

H = USVt (3.2)

Here, U and V are the left and right singular vectors. The singular values of the Hankel

matrix are present in S.

3. Arrange the singular values of the Hankel matrix in the descending order. Select the

first 2n singular values where n is the model order of the system. The reason for selecting

2n singular values is due to the fact that each mode is represented by two singular values.

These singular values correspond to the signal subspace and are known as dominant singular

values.

4. Separate the dominant singular values from S and its corresponding left singular vec-

tors as shown below.

H =
(

U1 U0

) S1 0

0 S0

 Vt
1

Vt
0

 (3.3)

Here, S1 is a submatrix of the dominant singular values and U1 is its corresponding left
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singular vectors. S0 is a submatrix of singular values corresponding to the noise subspace

and U0 and V0 represent its corresponding left and right singular vectors,

5. Obtain U+
1 and U−1 matrices from U1 by deleting the first and last rows of the U1

matrix.

U+
1 = U1(2 : end) (3.4)

U−1 = U1(1 : end−1) (3.5)

6. Compute Z such that U+
1 = U−1 ∗Z through total least square method.

7. The frequency ( fk), attenuation factor (AFk) and damping coefficient (ζk) of the modes

present in the low frequency oscillations are determined from the eigenvalues of Z using the

following equation.

fk = fs ∗
imag(log(λk))

2π
(3.6)

AFk = fs ∗ real(log(λk)) (3.7)

ζk =−
AFk√

(AFk)2 +(2π ∗ fk)2
(3.8)

8. The amplitude (AM) of the modes are obtained from the basis vectors using the fol-

lowing equations.

basis = e([t]
T∗([AFk]

T+j∗2π∗[fk]
T)) (3.9)

AM = (basis(1 : N), :)† ∗xT (3.10)

Here, t denotes the time interval for which signal is present in steps of sampling time and

(basis(1 : N), :) denotes the first N rows of basis matrix. † represent the pseudo inverse of a

matrix.

The proposed HTLS based algorithm is explained using the two mode signal x(t) given

below.
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Figure 3.2: FFT plot of x(t).

x(t) = cos(2π ∗0.31t +(1.5π))exp(−0.17t)

+(cos(2π ∗0.91t +(4.5π))exp(−0.03t))); (3.11)

x(t) is corrupted by adding white Gaussian noise such that the SNR value after the addition

is 40 dB. The FFT plot of the corrupted signal is given in fig. 3.2.

It is observed that the FFT plot in fig. 3.2 has two peaks corresponding to 0.31 Hz and

0.91 Hz modes. So, the initial model order is set as 2. This value is slightly incremented

by adding a small number and the incremented model order estimate is fed into the HTLS

algorithm, which estimates the modal parameters present in it. In this example, the model

order is incremented by 2. The estimated modal parameters and its amplitudes are listed in

Table 3.1.

Table 3.1: Modal parameters of x(t)

Frequency Damping Amplitude
0.9100 -0.03 1.0013
0.3096 -0.1709 1.0052
1.5760 0.0354 0.003
1.2713 0.0168 0.0078

It is observed that the proposed method estimated four modes of which two modes has
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an amplitude of 1 unit whereas the other two modes have an amplitude of less than 0.01 unit.

The modes with lesser amplitude (1.576 Hz mode and 1.2713 Hz mode) are the fictitious

modes while the other two modes (0.3096 Hz and 0.9100 Hz mode) are the true modes.

3.3 Simulation Results and Discussion

The applicability of the proposed method to accurately estimate the modal parameters of the

low-frequency oscillations occurring in the power system is demonstrated using synthetic

signals with known modal parameters and a real-time signal obtained from Western Electric-

ity Coordinating Council (WECC) system. The results obtained through the estimation of

these signals are compared with that of the Modified Prony based and Fourier based methods

proposed in [44] and [60] respectively at various SNRs and PMU reporting rates. Prior to

these simulations, the length of the window used and the distance between the successive

windows of the Fourier method is set as 500 and 50 respectively. Similarly, the value of M

which is used for generating the Hankel matrix in the proposed method is set as 200.

3.3.1 Synthetic Signals

In this subsection, three synthetic signals with known modal parameters are used to inspect

the accuracy of estimation of the proposed method by comparing it with the Modified Prony

[44] and Fourier [60] based methods in the literature. The synthetic signals used for this

analysis are

Signal 1 = (cos(2π ∗0.45t +(1.3π))exp(−0.07t))

+(cos(2π ∗0.85t +(4.5π))exp(−0.13t))); (3.12)

Signal 2 = (cos(2π ∗0.45t +(1.3π))exp(−0.06t))

+(cos(2π ∗0.79t +(0.6pi))exp(−0.09t))

+(cos(2π ∗0.85t +(4.5π))exp(−0.11t))); (3.13)
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Signal 3 = (cos(2π ∗0.32t +(1.5π))exp(−0.1t))

+(cos(2π ∗0.39t +(1.5pi))exp(−0.05t))

+(cos(2π ∗0.81t +(0.5π))exp(−0.03t))

+(cos(2π ∗0.91t +(0.5π))exp(−0.0702t))); (3.14)

White Gaussian noise is added to these signals such that their SNR is between 5 dB to 15

dB. These corrupted signals are analyzed using the proposed method, Fourier based method

[60] and Modified Prony based method at different signal to noise ratios and PMU reporting

rates. The results obtained are tabulated in Tables 3.2 and 3.3.

Figure 3.3: FFT plot of Signal 1 at 5 dB SNR.

Table 3.2 shows the estimated modal parameters of the three synthetic signals obtained

using the three modal estimation algorithms under consideration at SNRs of 5 dB, 10 dB

and 15 dB. The modal parameters listed in this table are obtained by taking an average of

50 independent simulations. As explained in Section 3.2.1, the modal order estimate of the

proposed method is obtained through an FFT based technique. Figs. 3.3, 3.4 and 3.5 show

the FFT plots of these three synthetic signals at SNR of 5 dB. It is observed from these plots

that the FFT based technique accurately estimates the number of frequency components in

both these signals even though closely spaced modes are present in them. This eventually

helps the HTLS algorithm to identify all the modes in the signal even when its SNR value

is 5 dB. On the other hand, it is noticed that the Modified Prony and Fourier models fail to
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Table 3.2: Modal parameters of the synthetic signal estimated using the proposed method,
Modified Prony method[44] and Fourier method [60]

Method SNR = 5 dB SNR = 10 dB SNR = 15 dB
Estimated Std (%) Estimated Std (%) Estimated Std (%)

Freq AF Freq AF Freq AF Freq AF Freq AF Freq AF
(Hz) (Hz) (Hz) (Hz) (Hz) (Hz)

Signal 1
True 0.4500 0.070 0.3200 0.070 0.3200 0.070
value 0.8500 0.130 0.8500 0.030 0.8500 0.030
HTLS 0.4501 0.0687 0.10 0.55 0.4500 0.0703 0.02 0.12 0.4501 0.0699 0.01 0.13

method 0.8494 0.1277 0.13 0.96 0.8502 0.1301 0.06 0.34 0.8498 0.0298 0.02 0.24
Fourier - - - - 0.4660 0.1766 < 10−5 0.54 0.4660 0.0670 < 10−5 0.24

- - - - 0.8348 0.1201 < 10−5 0.98 0.8335 0.1267 < 10−5 0.59
Prony 0.4468 0.0.0865 1.37 0.21 0.4502 0.728 0.24 0.08 0.4429 0.0710 0.24 3.69

0.8528 0.1579 2.38 0.31 0.8502 0.1371 0.48 0.16 0.8593 0.1337 0.49 3.33
Signal 2

True 0.4500 0.0600 0.4500 0.0600 0.4500 0.0600
value 0.790 0.090 0.790 0.090 0.790 0.090

0.850 0.11 0.850 0.11 0.850 0.11
HTLS 0.4502 0.0613 0.11 0.81 0.4500 0.0595 0.04 0.41 0.4501 0.0599 0.02 0.17

method 0.790 0.0864 0.23 0.95 0.7903 0.0880 0.39 0.83 0.790 0.0906 0.16 0.48
0.8496 0.1174 0.32 1.38 0.8493 0.1122 0.45 1.22 0.8505 0.1087 0.15 0.74

Modified - - - - 0.4503 0.0616 6.97 0.62 0.4493 0.0591 0.06 0.65
Prony - - - - 0.7899 0.1378 1.63 3.5 0.7895 0.1036 1.38 5.83

method - - - - 0.8586 0.1620 2.23 2.63 0.8502 0.1404 3.46 4.76
- - - - 0.4500 0.0600 < 10−5 0.48 0.4500 0.0600 < 10−5 0.15

Fourier - - - - 0.790 0.050 < 10−5 0.61 0.790 0.050 < 10−5 0.27
method - - - - 0.850 0.11 < 10−5 0.67 0.850 0.11 < 10−5 0.28

Signal 3
True 0.3200 0.100 0.3200 0.100 0.3200 0.100
value 0.390 0.050 0.390 0.050 0.390 0.050

0.810 0.03 0.810 0.03 0.810 0.03
0.910 0.0702 0.910 0.0702 0.910 0.0702

0.3248 0.0911 1.78 1.68 0.3248 0.0911 1.78 1.68 0.3248 0.0911 1.78 1.68
HTLS 0.3856 0.0558 1.78 1.38 0.3902 0501 0.08 0.55 0.3886 0.0512 0.98 0.69

0.8099 0.0280 0.06 0.39 0.8100 0.0297 0.04 0.27 0.8099 0.0299 0.02 0.14
0.9102 0.0716 0.17 0.79 0.9101 0.0704 0.07 0.43 0.9102 0.0701 0.04 0.27

Fourier - - - - 0.2842 0.0905 < 10−5 1.27 0.2996 0.1093 < 10−5 0.52
- - - - 0.3879 0.0535 < 10−5 1.72 0.3995 0.0458 < 10−5 0.12
- - - - 0.7989 0.0300 < 10−5 0.16 0.7989 0.0279 < 10−5 0.09
- - - - 0.8988 0.0642 < 10−5 0.35 0.8988 0.0612 < 10−5 0.14

Prony - - - - 0.3188 0.1222 0.17 1.48 0.3196 0.1061 0.09 0.082
- - - - 0.3914 0.0588 0.09 0.58 0.3903 0.0543 0.0525 0.2
- - - - 0.8098 0.0329 0.06 0.23 0.8100 0.0309 0.024 0.2
- - - - 0.9105 0.0712 0.11 0.39 0.9102 0.0720 0.05 0.2

∗Modified Prony and Fourier methods fails to estimate the modal parameters of the synthetic signal at 5 dB SNR. So the
columns are left blank.
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Figure 3.4: FFT plot of Signal 2 at 5 dB SNR.

Figure 3.5: FFT plot of Signal 3 at 5 dB SNR.

identify all the modes when the SNR value of the signal is 5 dB. However, at SNR values

of 10 dB and 15 dB, both these methods identify all the modes present in the signal but

their accuracy of estimation is quite poor when compared to that of the proposed method.

This is noticeable from three-dimensional bar graphs in figs. 3.6 and 3.7 where the error

in attenuation factor estimation of different modes in Signal 2 and Signal 3 are plotted at

different SNRs. From these graphs, it is evident that the attenuation factor estimation error

is highest for the Modified Prony method, followed by the Fourier method and is least for

the proposed method. Hence, it is inferred that the proposed method performs better than the

Fourier and Modified Prony based methods while estimating the modal parameters of noise

contaminated signals.

53



3.3. SIMULATION RESULTS AND DISCUSSION

Figure 3.6: Absolute error in the estimation of attenuation factor of the Signal 2.

Figure 3.7: Absolute error in the estimation of attenuation factor of the Signal 3.

The reporting rates of the PMU ranges from 10 Hz to 120 Hz. For a modal estimation

technique to be effective, it should provide satisfactory results irrespective of the PMU re-

porting rate. Hence, the modal parameters of the signal, sampled at different PMU reporting

rates are estimated using the proposed method and the results are tabulated in Table 3.3. It
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Table 3.3: Performance of the proposed method for synthetic signal with change in PMU
reporting rate

PMU reporting γ1 γ2 Estimated Standard deviation Absolute
rate percentage Error

Freq AF Freq AF Freq AF
(Hz) (Hz) (Hz)

10 50 0 0.3204 0.0992 0.0012 0.0065 0.125 0.8
0.3900 0.0499 0.0007 0.0133 0 0.2
0.8099 0.0301 0.0003 0.0116 0.0123 0.33
0.9101 0.0694 0.0005 - 0.0109 1.11

20 50 0 0.3199 0.0989 0.0013 0 .0062 0.03125 1.1
0.3899 0.0502 0.0004 0.0026 0.0256 0.4
0.8100 0.0301 0.0002 0.0013 0 0.33
0.9100 0.0701 0.0003 0.0024 0 0.142

30 50 0 3201 0.1002 0.00063 0.0043 0.03125 0.2
0.3900 0.0499 0.00031 0.0022 0 0.2
0.8100 0.0300 0.00013 0.0003 0 0
0.9100 0.0705 0.00027 0.0016 0 0.42

40 50 0 0.3200 0.0998 0.0006 0.0025 0 0.2
0.3900 0.0500 0.00029 0.0012 0 0
0.8100 0.0300 0.00012 0.0008 0 0
0.9100 0.0700 0.00022 0.0015 0 0.28

60 50 0 0.3200 0.0997 0.00046 0.0022 0 0.3
0.3900 0.0500 0.00019 0.0012 0 0
0.8100 0.0300 0.00011 0.0008 0 0
0.9100 0 .0700 0.00022 0.0012 0 0.28

120 50 0 0.3199 0.1002 0.00027 0.0016 0.03125 0.2
0.3900 0.0499 0.00015 0.0009 0 0.2
0.8100 0.0301 0.00006 0.0005 0 0.33
0.9100 0 .0701 0.00017 0.0009 0 0.14

is observed that the proposed method is highly accurate even at low PMU reporting rates as

evident from the percentage error in modal parameter estimation of the signal having a PMU

reporting rate of 10 Hz. The maximum absolute error in frequency and attenuation factor

estimation at this reporting rate is 0.125% and 1.11% respectively. It is also observed that

the standard deviation of the estimated modal parameters at this reporting rate is very low

proving that the estimated results are almost the same during successive simulations.
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Figure 3.8: Variation of power in WECC system on 14th September 2005 [84].

3.3.2 Real Time PMU Data

The effectiveness of the proposed method in accurately estimating the modal parameters of

real-time signals obtained from the PMUs installed across the power systems is tested in this

subsection. The signals are generated from the probe test data of the Western Electricity

Coordinating Council (WECC) system on 14th September 2005 [84, 85]. It represents the

variation in the active power flow of the MALN - Round Mountain 1 line of the WECC

system as shown in fig. 3.8. Three signals with window lengths of 8.6 sec as shown in

fig. 3.8 are extracted from the active power flow data for this purpose. Analysis window 1

(20:10:11.993 - 20:10:20.526 UTC) and 2 (20:15:13.324 - 20:15:21.857 UTC) corresponds

to data acquired after first and second sequential probing of ±125 MW respectively whereas

analysis window 3 (20:00:03.333 - 20:00:11.866 UTC) corresponds to ambient data [84, 85].

The modal parameters of these signals are estimated through the proposed method, Modified

Prony and Fourier methods and the results are tabulated in Table 3.4.

Table 3.4: Frequencies and damping ratios of WECC system probe data

Window Estimated value from [84] Proposed method Fourier Modified Prony
Frequency ζ Frequency ζ Frequency ζ Frequency ζ

(Hz) (%) (Hz) (%) (Hz) (%) (Hz) (%)
Window 1 0.318 8.3 0.3183 8.39 0.3497 7.7 0.3204 8.94

- - 0.6962 11.83 0.6993 3.86 0.7065 15.20
Window 2 - - 0.316 8.11 0.3512 8.05 0.3217 8.19

- - 0.6642 10.51 0.6993 4.03 0.7184 5.74

The FFT plots of the signal corresponding to these analysis windows are given in figs.

3.9 and 3.10. It is noticed that, while analysing the signal corresponding to analysis window

1, all the three methods identified both the modes present in it. The dominant among them
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Figure 3.9: FFT plot of signal corresponding to analysis window 1.

Figure 3.10: FFT plot of signal corresponding to analysis window 2.

Table 3.5: Frequencies and damping ratios of WECC system probe data under different noise
levels

Window SNR=5 dB SNR=10 dB SNR=15 dB SNR=20 dB
Frequency ζ Frequency ζ Frequency ζ Frequency ζ

(Hz) (%) (Hz) (%) (Hz) (%) (Hz) (%)
Window 1 0.3188 8.53 0.3183 8.39 0.3188 8.41 0.3188 8.35

0.6970 11.73 0.6969 11.75 0.6966 11.63 0.0.6972 11.68
Window 2 0.3161 8.17 0.3161 8.19 0.3143 8.22 0.3146 8.20

0.6648 10.54 0.6647 10.55 0.6641 10.51 0.664 10.52

is the 0.32 Hz mode. It is also noticed that the estimates of the proposed method were

closer to the actual value reported in the WECC probe report in [84]. On the other hand, the

Modified Prony method and the Fourier method gave less accurate estimates of the damping

coefficient although the frequency of the dominant mode is estimated accurately in all these

methods. Similarly, the estimated modal parameters of analysis window 2 are also closer

to the reported values in [48]. The modal parameters of the proposed method are almost
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constant even under varying levels of noise as evident from the estimated values tabulated in

Table 3.5. Hence, it can be inferred that, when compared to the Modified Prony and Fourier

methods, the proposed method is better suited for the analysis of real-time signals.

3.4 Conclusion
This work has proposed an HTLS based method for identifying poorly damped modes of

low-frequency oscillation in the power system. The model order of the signal, which is

a prerequisite for analysing through HTLS method, is obtained using an FFT based tech-

nique. The estimated model order is incremented to ensure the identification of all the modes

present in the signal before feeding it into the HTLS algorithm. The fictitious modes, if any,

present in the estimated results is filtered out by comparing the amplitudes of the modes as

the amplitude of the true modes will be much higher compared to the fictitious modes. The

effectiveness of the proposed method is proven by testing it using real and synthetic signals

and the results are compared with that of Modified Prony and Fourier based methods pro-

posed in the literature. Test results reveal that the proposed method outperforms the other

two methods irrespective of noise contamination and sampling rate of the signal.
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Chapter 4

EMO ESPRIT based algorithm for

analyzing ringdown oscillations

4.1 Introduction

The HTLS technique explained in Chapter 3 can accurately estimate the modal parameters

of the signal in most cases. However, when the signal has closely spaced modes or when

amplitude of the poorly damped modes is quite low, the FFT based model order algorithm

fails to accurately estimate the model order. In most cases, the model order is underestimated

as the FFT based method fails to distinguish closely spaced modes as separate modes. Due to

this underestimation, one or more modes present in the signal are not identified. To prevent

such phenomenon, an ESPRIT based modal parameter estimation method is explained in this

chapter.

ESPRIT [47, 48, 50, 51] is a measurement based method which can accurately identify

the modal parameters of low frequency oscillations, especially ring down oscillations. ES-

PRIT based methods have the ability to detect close modes and provide accurate estimates

during modal estimation. They use correlation matrix for generating the signal subspace.

Due to this reason, ESPRIT based methods have higher noise immunity although the usage

of correlation matrix makes it slightly more computationally intensive. However, they re-

quire precise information about model order or the number of modes present in the signal

for successful modal estimation, which is one of their drawbacks. In [48, 50], a Total Least

Square ESPRIT (TLS-ESPRIT) based method is used for estimating the modal parameters of

low frequency oscillations. It uses a method based on singular value of autocorrelation matrix
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Figure 4.1: Block diagram of the proposed method.

for estimating the model order. The main limitation of this model order estimation method is

that it provides inaccurate estimates of model order when the number of modes present in the

signal is less or modes are closely spaced. Due to this reason, the proposed ESPRIT based

model for modal parameter estimation of low frequency oscillations uses Exact Model Order

(EMO) algorithm [86] for accurately identifying its model order. The effectiveness of the

proposed EMO ESPRIT method is tested using synthetic test signals and the results are com-

pared with modified Prony method [44], ARMA based method [59] and TLS-ESPRIT [48]

method. Further, the proposed method is used to estimate the modes of a practical probing

test data of the WECC system.

4.2 Proposed Methodology
The proposed method uses an ESPRIT based algorithm for estimating the modal parameters

of the low frequency oscillations present in the power system. The schematic diagram of

this method is given in fig. 4.1. ESPRIT is a signal processing technique, which decom-

poses complex signals into sum of sinusoids using a subspace based approach. It can be

mathematically represented as

x(t) =
K

∑
i=1

Aie−σit cos(2π ∗ fit +φi)+ st (4.1)

Here, x(t) is the multimode signal to be decomposed. In this chapter, it is assumed that

x(t) is obtained from different PMUs placed in the power system. fi, σi and φi are the

frequency, attenuation factor and phase of the ith sinusoidal component decomposed from

x(t). st represents the white Gaussian noise present in the signal and K is the total number of

frequency components present in the signal. For the proper implementation of the ESPRIT

algorithm, prior knowledge of the number of frequency components present in the signal is
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necessary. This is obtained through the model order estimation algorithm explained below.

4.2.1 Model Order Estimation

Conventionally, the model order of a signal is estimated using the dominant singular values

of its autocorrelation matrix. A commonly used method for model order estimation was pro-

posed in [48]. In this algorithm, the singular values of the autocorrelation matrix generated

from the signal data are arranged in the descending order as shown below

D(i) = ρ1 > ρ2 > ρ3 > ...ρi > ... > ρl (4.2)

Here, ρi is the ith singular value of the auto correlation matrix and l is the total number of

singular values of the autocorrelation matrix. The D(i) index corresponding to these singular

values are calculated using the following equation

D(i) =
ρ2

1 +ρ2
2 +ρ2

3 + ...ρ2
i

ρ2
1 +ρ2

2 +ρ2
3 + ...ρ2

l
(4.3)

The value of i for which D(i) is closest to one is selected as the model order of the

system. Although this method works perfectly for most signals, it fails to accurately estimate

the model order when the number of modes present in the signal is less or modes are closely

spaced. This can be explained with the help of an example.

Let us consider a power system signal x1 as in the following equation.

x1 = ((1cos(2π ∗0.4t)exp(−0.0909t))

+(0.9cos(2π ∗0.5t)exp(−0.35t))

+(0.7cos(2π ∗0.6t +(π/6))exp(−0.2001t))

+(0.4cos(2π ∗1.1t +(π/4)).∗ exp(−0.666t))); (4.4)

This signal is sampled at 50 Hz and is corrupted by adding white Gaussian noise at 40 dB.

The autocorrelation matrix of x1 is created using the signal data and D(i) index corresponding

to the singular values of the autocorrelation matrix is also calculated. The D(i) vs i graph of

x1 is shown in fig. 4.2.

It is observed that the value of D(i) is closest to one at i = 6. So the model order is esti-
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Figure 4.2: D(i) vs i plot.

mated as 6. But this estimation is incorrect as x1 has only four frequency components. Also

the estimate further deviates if the signal is highly noise contaminated and contains close

frequency components. Therefore, this chapter employs the Exact Model Order algorithm

proposed in [86] for precise estimation of number of modes.

Exact Model Order (EMO) Algorithm

EMO algorithm estimates the model order based on the fact that there will be considerable

difference between the eigen values of the signal and noise subspace. This property is used

for effectively separating the autocorrelation matrix into signal and noise subspaces. This

algorithm can be summarized in the following steps.

1. Generate the autocorrelation matrix from the signal data and find its eigenvalues.

2. Arrange the eigenvalues (λi) in the ascending order.

3. Calculate the Relative Difference vector (RD) using the following equation

RD =
λi−λi−1

λi−1
f or i = 2,3,4...T (4.5)

Here, T is the total number of Eigenvalues of the autocorrelation matrix.

4. Plot the RD vs i (RD index or RDI) graph and select five of its highest peaks.

5.The largest value of RDI among the five peaks is selected as the preliminary estimate

of model order.

6. Check whether the eigenvalue corresponding to the selected RDI has more energy than
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the noise subspace. This is done using the following equation.

λ$ ≥ α ∗ λ$+1 +λ$+2 +λ$+3 + ...λT

T −$
(4.6)

Here $ represent the preliminary estimate of the model order. The value of α is between

two and five.

5. If the above equation is satisfied, then model order is estimated as RDI/2. Else, the

next lower value of RDI among the five peaks is selected as the next estimate. The process

continues till the above equation is satisfied.

Each frequency component present in the signal is represented by two dominant eigen-

values. Hence, the total number of dominant eigenvalues corresponding to the signal will be

twice its model order [87]. The eigenvalues other than the dominant ones are of very small

value and represent the noise subspace. It is observed that the value of RD(i) shoots up as the

value of i reaches twice the model order. The reason for this sudden increase in the value of

RD(i) is that, as the value of i reaches twice the model order, λi is a dominant eigenvalue and

belongs to the signal subspace whereas λi+1 is considerably lower as it belongs to the noise

subspace. This logic is utilized in the EMO algorithm for finding the exact model order. To

confirm whether the estimated model order is accurate, (4.6) is used. If the estimated model

order is accurate, then the average of successive eigenvalues after λi till λM is much lesser

than λi.

Figure 4.3: RD vs RDI plot.
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To prove the effectiveness of this method, the signal in (4.4) is chosen for testing this

method. The RD vs RDI graph of this signal is shown in fig. 4.3. It is observed that peaks

of RD occurs at RDI values of 2,4,6 and 8. Therefore, according to step 5, the RDI = 8 is

selected as the preliminary model order estimate and verified using (4.6). This value satisfies

(4.6) and thereby the obtained model order is RDI/2 = 4 which is the true value.

The reason for selecting five highest peaks in Step 4 of the EMO algorithm is explained

using x2 below.

Figure 4.4: RD vs RDI plot of x2.

x2 = ((100cos(2π ∗0.4t)exp(−0.0909t))

+(0.9cos(2π ∗0.5t)exp(−0.35t))

+(0.7cos(2π ∗0.6t +(π/6))exp(−0.2001t))

+(0.4cos(2π ∗1.1t +(π/4)).∗ exp(−0.666t))); (4.7)

While estimating the model order of a signal using the EMO method, it is noticed that the

highest peak of the RD vs RDI plot usually occurs at RDI value = 2∗model order. In such

cases, the model order can be accurately estimated by selecting the RDI value corresponding

to its highest peak. However, if one of the modes of the signal has very high amplitude

compared to others as in x2, the highest peak occurs at an RDI value < 2∗model order.
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For instance, 0.2 Hz mode of signal x2 has much higher energy than other modes owing

to its higher amplitude. The RD vs RDI plot of this signal in fig. 4.4 shows that the highest

peak of RD vs RDI plot occurs at RDI = 2 although the model order of the signal is 4. If only

one peak is selected, then it will lead to erroneous estimation of model order for such signals.

To prevent this scenario, five highest peaks are chosen in Step 4 of the EMO algorithm.

4.2.2 ESPRIT Algorithm

The main steps for estimation of frequency using ESPRIT algorithm is as follows [47, 86].

Step 1: Create an auto correlation matrix RRRx from the data points received from the PMU.

RRRx =
1

N−M
XXXH .XXX (4.8)

Here, XXX is the Hankel matrix of order M and N is the length of the PMU data under

consideration. It is constructed from the signal x(t) as shown below

XXX =


x(0) x(1) x(2) x(3) ..... x(M−1)

x(1) x(2) x(3) x(4) ..... x(M)

. . . . ..... .

x(N−M) x(N−M+1) x(N−M+2) x(N−M+3) ..... x(N−1)


Step 2: Apply Eigen Value Decomposition (EVD) on auto correlation matrix RRRx. The

eigenvalues obtained from the EVD are arranged in the decreasing order and the first 2n

eigenvalues are selected, where n is the model order of the signal obtained using EMO algo-

rithm.

Step 3: Form the signal subspace RRRxs using the eigenvectors corresponding to these eigen-

values.

Step 4: Construct two shifted submatrices RRR1 and RRR2 from the signal subspace RRRxs using

the following formula.

RRRi = SSSi ∗RRRxs, i = 1,2 (4.9)

Where SSS1 = [IIINs 0ds] and SSS2 = [0ds IIINs]. IIINs is an identity matrix of size Ns×Ns, where

Ns = M−ds. ds is the distance between two sub matrices which is usually kept as 1.
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Step 5: The shifted submatrices RRR1 and RRR2 can be related through a matrix ψ using shift

invariance property such that RRR2=RRR1.ψ . The matrix ψ is found out using the following least

square estimate.

ψ = (RRRH
1 RRR1)

−1RRRH
1 RRR2 (4.10)

Step 6: The frequency ( fk) and attenuation factor (AFk) of the components of the signal

is obtained from the eigen values of the matrix ψ .

fk = fs ∗
imag(log(λψk))

(2π)
∀k = 1,2,3...2n (4.11)

AFk = fs ∗ real(log(λψk)) ∀k = 1,2,3...2n (4.12)

Here, fs is the sampling frequency of the signal and λψk is the eigen value of the matrix

ψ . The damping coefficient (ζ ) of a frequency component is obtained from its frequency and

attenuation factor using the following equation [55].

ζk =−
AFk√

(AFk)2 +(ωk)2 (4.13)

4.3 Simulation Results and Discussion

To validate the performance of the proposed method, it is compared with an ARMA block

processing [59], TLS-ESPRIT [48] and modified Prony methods [44] using synthetic signals

with known modal parameters and real time signals obtained from PMUs placed in an actual

power system. The performance of the ARMA method [59] is poor under noisy conditions.

So, a low pass filter is used to separate the low frequency modes of the signal and to reduce

the effect of measurement noise. The specifications of this filter are (i) 2 Hz pass-band corner

frequency, (ii) 5 Hz stop-band corner frequency,(iii) 0.2 dB ripple in the pass-band, and (iv)

20 dB ripple in the stop-band.

4.3.1 Synthetic Signals

The synthetic signals used for the analysis are given below.
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Signal 1 = (2cos(2π ∗0.2t +1.5π))exp(−0.17t)

+2cos(2π ∗0.75t +(0.5π))exp(−0.13t) (4.14)

Signal 2 = 2cos(2π ∗0.2t +(1.5π))exp(−0.17t)

+2cos(2π ∗0.28t +(0.5π))exp(−0.05t)

+(2cos(2π ∗0.75t +(4.5π))exp(−0.13t))); (4.15)

Signal 3 = (2cos(2π ∗0.25t +(1.5π))exp(−0.17t))

+(2cos(2π ∗0.33t +(1.5pi))exp(−0.12t))

+(2cos(2π ∗0.78t +(0.5π))exp(−0.13t))

+(2cos(2π ∗0.87t +(0.5π))exp(−0.0702t))); (4.16)

These signals are simulated in MATLAB and white Gaussian noise is added to them.

The modal parameters of these corrupted signals are estimated using the proposed method,

ARMA, TLS-ESPRIT, and modified Prony methods. The results obtained are tabulated in

Tables 4.1, 4.2, 4.3 and 4.4.

Table 4.1 shows the estimated modal parameters of the synthetic signals using the pro-

posed method, ARMA [59] and modified Prony methods [44] at SNR ranging from 5 dB to

15 dB. In this table, freq and AF denotes the frequency and attenuation factor of the mode of

the test signal whereas Std refers to their standard deviation. The frequencies and attenuation

factors of a signal at a particular SNR is obtained by taking the mean of the estimated values

obtained from 50 independent simulations. It is noticed that, while analysing simple signals

like Signal 1 which do not have closely spaced modes, all the methods under consideration

gave accurate frequency estimates. However, when compared to Modified Prony and ARMA

methods, the proposed method gave the best estimates of attenuation factor of Signal 1. For

instance, while analysing the modal parameters of Signal 1 at 5 dB SNR using the proposed
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Table 4.1: Modal parameters of different signals estimated using the proposed method, mod-
ified Prony method[44] and ARMA method [59]

SNR = 5 dB SNR = 10 dB SNR = 15 dB
Method Estimated Std (%) Estimated Std (%) Estimated Std (%)

Freq AF Freq AF Freq AF Freq AF Freq AF Freq AF
(Hz) (Hz) (Hz) (Hz) (Hz) (Hz)

Signal 1
True 0.200 0.170 0.200 0.170 0.200 0.170
value 0.750 0.130 0.750 0.130 0.750 0.130
EMO 0.199 0.171 0.24 1.53 0.200 0.171 0.15 0.63 0.199 0.169 0.06 0.42

ESPRIT 0.750 0.129 0.16 0.79 0.750 0.130 0.08 0.62 0.750 0.131 0.06 0.29
Modified 0.201 0.178 0.36 2.73 0.201 0.176 0.18 1.25 0.199 0.172 0.11 0.58

Prony 0.751 0.142 0.45 1.24 0.751 0.133 0.13 0.80 0.749 0.132 0.08 0.38
ARMA 0.201 0.184 0.34 2.8 0.199 0.178 0.12 0.37 0.201 0.175 0.08 0.72

0.750 0.143 0.26 1.02 0.751 0.131 0.37 0.53 0.749 0.132 0.06 0.35
Signal 2

True 0.200 0.170 0.200 0.170 0.200 0.170
Value 0.280 0.050 0.280 0.050 0.280 0.050

0.750 0.130 0.750 0.130 0.750 0.130
EMO 0.200 0.174 0.90 2.57 0.200 0.172 0.37 1.63 0.199 0.171 0.17 0.92

ESPRIT 0.280 0.052 0.23 0.95 0.280 0.052 0.08 0.46 0.280 0.050 0.04 0.26
0.749 0.132 0.17 0.09 0.750 0.131 0.09 0.62 0.749 0.131 0.04 0.34
0.211 0.266 0.57 5.59 0.209 0.202 1.73 1.5 0.202 0.170 0.15 3.98

Prony 0.278 0.079 0.58 1.98 0.309 0.059 10.57 0.95 0.279 0.059 0.38 2.30
0.749 0.140 0.29 1.71 0.744 0.136 2.08 0.93 0.749 0.134 0.14 0.44

ARMA 0.216 0.202 0.86 3.66 0.214 0.206 1.8 2.51
0.284 0.053 0.22 0.69 0.297 0.058 5.69 0.46
0.749 0.135 0.11 1.29 0.749 0.135 0.10 0.61

Signal 3
True 0.250 0.170 0.250 0.170 0.250 0.170
value 0.330 0.120 0.330 0.120 0.330 0.120

0.780 0.130 0.780 0.130 0.780 0.130
0.870 0.070 0.870 0.070 0.870 0.070

EMO 0.249 0.175 0.76 3.24 0.250 0.169 0.37 1.77 0.250 0.169 0.19 0.82
ESPRIT 0.330 0.119 0.42 2.57 0.330 0.122 0.24 1.18 0.330 0.119 0.24 1.18

0.782 0.131 0.36 1.79 0.780 0.129 0.18 0.09 0.780 0.129 0.08 0.61
0.870 0.071 0.19 0.09 0.869 0.071 0.11 0.49 0.870 0.070 0.07 0.29

Modified 0.252 0.162 0.19 2.29 0.249 0.177 0.26 0.15 0.248 0.172 0.24 1.36
Prony 0.330 0.123 0.17 1.14 0.331 0.122 0.25 1.00 0.324 0.126 0.11 0.73

0.780 0.114 0.16 7.43 0.780 0.131 0.11 0.70 0.779 0.137 0.12 0.63
0.869 0.070 0.04 0.63 0.870 0.069 0.05 0.18 0.871 0.071 0.04 0.30

ARMA 0.223 0.150 1.50 4.41 0.235 0.186 1.48 2.56
0.341 0.152 0.85 3.77 0.337 0.122 0.66 2.51
0.785 0.102 0.69 4.07 0.780 0.118 0.38 2.19
0.868 0.081 0.32 2.27 0.870 0.078 0.13 0.86

ARMA method fails to estimate the modal parameters of Signals 2 and 3 with 5 dB SNR. So the columns
are left blank.
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Figure 4.5: Absolute error in the frequency estimation of modes of Signal 2 with different
methods at different SNR levels.

Figure 4.6: Absolute error in the attenuation factor estimation of modes of Signal 2 with
different methods at different SNR levels.

method, the attenuation factor estimation error of 0.75 Hz mode is 0.23% whereas that of the

ARMA and modified Prony methods, is approximately 9%.

It is also noted that, while analysing signals with closely spaced mode like Signal 2, the

performance of the proposed method is much better than that of the modified Prony and

ARMA methods. This is evident from figs. 4.5 and 4.6, which show the plots of absolute

error in frequency and attenuation factor estimation of Signal 2 at different SNRs obtained
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Figure 4.7: Absolute error in the attenuation factor estimation of modes of Signal 3 with
different methods at different SNR levels.

through ARMA, modified Prony and proposed methods. It is noticed that, the absolute er-

ror in frequency and attenuation factor estimation is comparatively lesser for the proposed

method when compared to that of other two methods. The maximum absolute error in the

frequency and attenuation factor estimation of Signal 2 with 5 dB SNR is 7.7% and 27.6% for

modified Prony method whereas that of the proposed model is only 0.2% and 3.8%. ARMA

method fails to detect all the modes present in Signal 2, therefore it is not considered in this

comparison. Moreover, the standard deviation of the proposed method is very small which

implies that almost all the estimations are similar. Similar inferences can be drawn from fig.

4.7, which shows the plot of absolute error in attenuation factor estimation of Signal 3 at dif-

ferent SNRs obtained through ARMA, modified Prony and proposed methods. Hence, it can

be inferred that, when compared to the modified Prony and ARMA methods, the proposed

method is better suited for estimating the signal parameters especially when the signal has

high noise contamination.

Table 4.2 shows the comparison of modes estimated by TLS ESPRIT and EMO ESPRIT

methods. The main difference between these methods is that the proposed method uses

EMO based algorithm for model order estimation whereas the TLS ESPRIT based method

uses a D(i) index based method for the same purpose. Both these model order algorithms are

explained earlier in Section 4.2.1. The main disadvantage of the D(i) index based method

in [48] is that optimum D(i) value used for selecting the model order varies depending upon
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the modes present in the signal. For signals having large number of modes, the optimum

D(i) value will be very close to one whereas for signals with less number of modes, it will

be further away. Hence, using a common D(i) value for analysing all the signals will result

in under estimation or over estimation of model order for most of the signals. This can be

explained clearly using the following examples. While analysing Signal 1 at 5 dB SNR, TLS

ESPRIT method identifies four modes of which two are fictitious (9.226 Hz and 17.847Hz) at

D(i) = 0.935. The results are worse in case of D(i) = 0.99 and D(i) = 0.995 as the number of

modes estimated are 46 and 90 respectively. The D(i) vs i plot for Signal 1 in fig. 4.8 reveals

that the optimum value of D(i) for accurately estimating its model order is around 0.75. As

the D(i) values used in this simulation are all higher than 0.75, it causes over estimation of

the model order leading to the presence of fictitious modes in estimated results.

Figure 4.8: D(i) vs i plot of Signal 1 at 5 dB SNR.

Similarly, while analysing signals with higher number of frequency components, like

Signal 3, using the TLS ESPRIT method, there are chances of under estimation of model

order for the chosen value of D(i). Fig. 4.9 shows the D(i) vs i plots of Signal 3 with 15

dB SNR. From the graph, it can be concluded that the optimum value of D(i) for accurate

estimation of the model order of this signal is around 0.99. If the value of D(i) used in the

TLS ESPRIT method is less than this optimum value, then one or more modes present in the

signal are not estimated. Moreover, the estimated modes are inaccurate with a high degree

of error. This is evident from the estimated results of Signal 3 using TLS ESPRIT method
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Table 4.2: Estimated model order and modal parameters of the proposed method and TLS-
ESPRIT method for different signals [48]

SNR TLS-ESPRIT EMO ESPRIT
(dB) D(i) = 0.935 D(i) = 0.99 D(i) = 0.995

MO Freq AF MO Freq AF MO Freq AF MO Freq AF
Signal 1

4 0.1999 0.1683 0.1992 0.1763 90 0.1981 AF 2 0.1990 0.1743
5 0.7500 0.1304 46 0.7475 0.1279 0.7525 AF 0.7490 0.1281

9.226 0.0122 + 44 other + 88 other
17.847 0.0733 components components

4 0.2004 0.1712 4 0.1999 0.1716 4 0.2000 0.1717 2 0.2001 0.1708
10 0.7419 0.1193 0.7462 0.1272 0.7500 0.1299 0.7500 0.1301

14.6867 -.0002 10.312 0.0076 7.6169 0.0242
18.799 -.0321 16.9532 0.0499

3 0.1999 0.1701 4 0.2000 0.1693 4 0.2000 0.1689 2 0.1998 0.1698
15 0.7500 0.1301 0.7500 0.1301 0.7499 0.1301 0.7500 0.1311

14.224 0.0063 10.7566 -0.0011 10.6568 0.0074
8.5599 0.0003 19.2177 -.0107

Signal 2
2 0.2613 0.0177 4 0.2007 0.1717 4 0.2015 0.1732 3 0.2004 0.1744

5 0.7374 0.0855 0.2805 0.0522 0.2804 0.0512 0.2803 0.0509
0.7500 0.1313 0.7503 0.1324 0.7497 0.1322

12.6422 0.0014 13.573 0.0014
2 0.2612 0.0177 4 0.2014 0.1687 4 0.2005 0.1697 3 0.2002 0.1721

10 0.7371 0.0830 0.2802 0.0512 0.2802 0.0504 0.2800 0.0509
0.7499 0.1296 0.7501 0.1308 0.7500 0.1311
14.217 0.0071 14.487 0.0182

2 0.2611 0.0177 4 0.2002 0.1726 4 0.2003 0.1694 3 0.1999 0.1706
15 0.7375 0.0834 0.2800 0.0508 0.2801 0.0500 0.2800 0.0500

0.7500 0.1302 0.7500 0.1308 0.7499 0.1310
13.886 -0.0006 15.103 -0.6663

Signal 3
3 0.3025 0.2699 4 0.2478 0.1714 6 0.2490 0.1771 4 0.2492 0.1745

5 .7224 0.0697 0.3314 0.1235 0.3311 0.1139 0.3300 0.1189
.8641 0.1127 0.7810 0.1295 0.7803 0.1346 0.7817 0.1305

0.8697 0.0714 0.8698 0.0701 0.8703 0.0706
8.2821 0.0067
16.469 -0.0015

3 0.3025 0.2731 4 0.2504 0.1724 5 0.2496 0.1695 4 0.2503 .1694
10 0.7217 0.0696 0.3302 0.1174 0.3296 0.1234 0.3301 0.1216

0.8643 0.1130 0.7799 0.1296 0.7802 0.1281 0.7801 0.1291
0.8702 0.0710 0.8702 0.0707 0.8699 0.0707

15.826 0.0071
15 3 0.3027 0.2729 4 0.2497 0.1714 5 0.2503 0.1705 4 0.2501 0.1699

0.7228 0.0680 0.3301 0.1201 0.3299 0.1191 0.3301 0.1193
0.8642 0.1130 0.7800 0.1300 0.7798 0.1303 0.7801 0.1291

0.8700 0.0705 0.8701 0.0700 0.8699 0.0703
10.944 -0.002

when D(i) is set as 0.935. In this case, only three modes out of four of Signal 3 are identified

and the error in the frequency and damping estimation of these modes are quite high.
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Figure 4.9: D(i) vs i plot of Signal 3 at 15 dB SNR.

Hence, it can be inferred that the model order estimation algorithm in [48] is not accurate

and its results depend upon the D(i) value chosen. On the other hand, the proposed method

uses EMO algorithm for estimating the model order. In this algorithm, the model order is

estimated based on the Relative Difference (RD) vector generated from the eigenvalues of

the autocorrelation matrix. It is observed that irrespective of the noise contamination of

the signal, EMO algorithm estimates the model order accurately making it best suited for

analysing low frequency oscillations than TLS ESPRIT method.

Table 4.3: Comparison of the true mode extraction capability of the proposed method with
ARMA [59], Modified Prony [44] and TLS ESPRIT [48] methods

SNR Signal 2 Signal 3
(dB) TLS EMO TLS EMO

ESPRIT ESPRIT PRONY ARMA ESPRIT ESPRIT PRONY ARMA
γ1 γ2 γ1 γ2 γ1 γ2 γ1 γ2 γ1 γ2 γ1 γ2 γ1 γ2 γ1 γ2

5 49 1 49 1 17 33 8 42 42 8 44 6 17 33 - -
10 50 0 50 0 18 32 11 39 47 3 49 1 19 31 10 40
15 50 0 50 0 20 30 12 38 50 0 50 0 22 28 11 39
20 50 0 50 0 25 25 14 36 50 0 50 0 24 26 13 37

γ1 Number of times all the modes in the signal are estimated.
γ2 Number of times only some modes in the signal are estimated.

Table 4.3 compares the true mode extraction capability of the proposed method with that

of the TLS-ESPRIT method [48], modified Prony method [44] and ARMA method [59].

Fifty independent simulations of Signal 2 and Signal 3 are carried out at SNRs of 5 dB, 10
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dB, 15 dB and 20 dB for this purpose. For effective comparison of these methods, two new

terms, γ1 and γ2 are introduced. γ1 of a particular method refers to the number of times, out of

fifty simulations, all the modes present in the signal are identified by that method whereas γ2

refers to the number of times, only some modes are identified. It is noticed that irrespective

of the noise content present in the signal, the proposed EMO ESPRIT based method and

TLS ESPRIT based method in [48] identifies all the modes present in the signal consistently

during successive simulations whereas the performance of the ARMA and Modified Prony

based methods is quite poor. For instance, while estimating the modal parameters of the

Signal 3 with 5 dB SNR, the percentage of successful estimation of all modes in the signal

is 88% for the proposed method while that of the modified Prony method is only 34%. The

ARMA method is not able to detect all the modes in this case. It is also noticed that the

estimated results of the ARMA, Modified Prony and TLS ESPRIT methods contain fictitious

modes whereas that of the proposed method contains true modes only. If prior information

is not available about the modes of the signal being estimated, then accurate estimation of

these modes may not be possible. So it can be inferred that the proposed model has better

true mode extraction capability than the models in [44], [48] and [59].

In practical scenario, the PMU reporting rate vary from 10 Hz to 120 Hz. Therefore, sim-

ulations have been carried out to verify the performance of the proposed method with change

in PMU reporting rate and the results obtained are listed in Table 4.4. Fifty independent

simulation of signal 3 at each reporting rate is performed for this purpose and the frequency

and damping is estimated by taking the means of these 50 simulations. It is observed that

irrespective of the reporting rates of the PMU, all the modes were accurately estimated even

though the signal has close modes. It is also noted that the error in the frequency estima-

tion is negligible even at low reporting rates. For instance, when the PMU reporting rate is

10 Hz, the absolute error in the frequency and damping estimation is only 0.28% and 2%

respectively. It is also observed that, at higher reporting rates, the results of the estimation

are better than that of low rates. The standard deviation of the measurements of the modal

parameters is also quite small as expected. Therefore, it can be concluded that the proposed

method is quite robust even under low reporting rate conditions and high noise levels.
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Table 4.4: Performance of the proposed method for Signal 3 with change in PMU reporting
rate

PMU reporting γ1 γ2 Estimated Standard deviation Absolute
rate percentage Error
(Hz) Freq AF Freq AF Freq AF

(Hz) (Hz) (Hz)
10 50 0 0.2507 0.1729 0.0054 0.0207 0.2800 1.712

0.3300 0.1187 0.0027 0.0133 0 1.086
0.7798 0.1303 0.0024 0.0116 0.0256 0.238
0.8700 0.0699 0.0012 0.0057 0 0.7112

20 50 0 0.2496 0.1708 0.0032 0 .0157 0.0112 0.47
0.3308 0.1193 0.0021 0.0112 0.2446 0.58
0.7800 0.1294 0.0016 0.0071 0 0.46
0.8700 0.0707 0.00068 0.0043 0 0.426

30 50 0 0.2508 .1725 0 .0027 0.0117 0.32 1.47
0.3298 0.1182 0.0018 0.00085 0.0606 1.5
0.7797 0.1293 0.0014 0.0073 0.0384 0.53
0.8701 0.0708 0.00061 0.0040 0.011 .56

60 50 0 0.2499 0.1703 0.0017 0.0080 0.04 0.1764
0.3302 0.1197 0.0011 0.0060 0.0606 0.2546
0.7801 0.1300 0.00071 0.0049 0.0128 0
0.8700 0.0708 0.00046 0.0022 0 0.5612

100 50 0 0.2500 0.1703 0.0014 0.0065 0 0.171
0.3300 0.1210 0.00086 0.0046 0 0.833
0.7801 0.1296 0 .00065 0.0038 0.0128 0.3243
0.8700 0 .0703 0.00038 0.0016 0 0.1412

120 50 0 0.2500 0.1699 0.0009 0.0047 0 0.058
0.3300 0.1200 0.0006 0.0028 0 0
0.7800 0.1299 0 .0005 0.0008 0 0.081
0.8700 0.0703 0.0002 0.0009 0 0.1412

4.3.2 Real time PMU data

To further validate the ability of the proposed method to estimate the modal parameters of real

time signals, it is tested using the PMU data from WECC system obtained on 14th Septem-

ber 2005. The details about the WECC system and the analysis windows used are explained

in Section 3.3.2. The modal estimation of the signals corresponding to these analysis win-

dows are carried out using the proposed method, TLS-ESPRIT method [48], modified Prony

method [44] and ARMA method [59] at different SNRs and the estimated results are tabu-

lated in Tables 4.5 and 4.6.
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Figure 4.10: Probing data corresponding to flow of real power MALN-Round Mountain 1
line of the WECC system [85]

Table 4.5: Frequencies and damping ratios of WECC system probe data

Window Estimated value from [84] TLS-ESPRIT EMO ESPRIT Modified Prony ARMA
Frequency ζ Frequency ζ Frequency ζ Frequency ζ Frequency ζ

(Hz) (Hz) (Hz) (Hz) (Hz)
Window 1 0.318 8.30 0.3259 6.86 0.3207 8.30 0.3167 8.87 0.3626 12.54
Window 2 - - 0.3151 7.78 .3149 7.88 0.3143 8.25 0.4010 6.78
Window 3 - - 0.2991 2.43 0.2720 2.81 0.2635 2.74 .02826 3.49

Table 4.6: Frequencies and damping ratios of WECC system probe data under different noise
levels

Window SNR=5 dB SNR=10 dB SNR=15 dB SNR=20 dB
Frequency ζ Frequency ζ Frequency ζ Frequency ζ

(Hz) (Hz) (Hz) (Hz)
Window 1 0.3207 8.28 0.3208 8.32 0.3207 8.30 0.3207 8.29
Window 2 0.3157 7.95 0.3149 7.97 0.3143 8.00 0.3146 8.00
Window 3 0.2747 2.78 0.2799 2.83 0.2722 3.07 0.2719 2.84

It is noticed from Table 4.5 that the modal parameter estimates of the signal correspond-

ing to analysis window 1 obtained through the proposed method (0.3207 Hz mode with 8.3%

damping) are closest to the reported values in [84] whereas ARMA, the modified Prony and

the TLS-ESPRIT methods gave less accurate estimation of this mode. Similar observation

are made for analysis window 2 and 3 where the proposed method gave a good estimate of

the frequency and damping of the modes present in these windows.

Table 4.6 shows that the proposed method can accurately estimate the modal parameters

76



CHAPTER 4. EMO ESPRIT BASED ALGORITHM FOR ANALYZING
RINGDOWN OSCILLATIONS

accurately irrespective of the noise content present in the signal under consideration. Thus,

it can be inferred that, the proposed method is better suited for the estimation of real time

signals. However, this algorithm is slightly more computationally intensive than similar

methods and hence, its implementation requires a powerful processor.

4.4 Conclusion
An ESPRIT based technique for estimating the poorly damped modes in the ringdown oscil-

lations occurring in the power system is proposed in this chapter. ESPRIT being a parametric

method requires accurate estimate of the model order for its proper implementation, which

is provided through Exact Model Order algorithm. It is observed that the proposed method

estimates the modal parameters of the signals accurately even under high levels of noise and

low PMU reporting rates. The effectiveness of the proposed method is compared with an

ARMA, the TLS-ESPRIT and the modified Prony based methods in the literature using syn-

thetic signals as well as test probe data from WECC system. Simulation results prove that

the proposed method consistently provides accurate estimation of modal parameters of the

signal under consideration without the presence of fictitious modes irrespective of the noise

contamination, presence of close modes in the signal and low PMU reporting rates.
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Chapter 5

An improved Stochastic Subspace

Identification based algorithm for

analyzing ambient oscillations

5.1 Introduction

The modal estimation algorithms for ringdown type oscillations is already proposed in Chap-

ters 3 and 4. However, it is observed that these methods are not a suitable choice for the

analysis of ambient type of oscillations. Ambient type oscillations occur due to small level

disturbances in the power system and they exist for a longer period than ringdown oscilla-

tions. Therefore, the data associated with ambient oscillations is considerably larger than

ringdown oscillations. SSI is a parametric technique which can handle large amounts of data

and dynamic changes in the system. This makes SSI one of the best choices for analyzing

the ambient oscillations.

Few SSI based works [88, 89] selected the model order based on the dominant singular

values. In [54], the model order is estimated based on the large reduction in singular values

of the weighted projection matrix. However, when the signal under consideration is highly

noisy, the accuracy of model order estimate of these methods is quite poor. A method based

on the mean of singular values is proposed in [52] but it causes overestimation of model order

resulting in the presence of trivial modes. Estimation of the model order based on stabiliza-

tion diagram is proposed in [63] but the complexity of the algorithm limits its application.

Hence, it can be inferred that the model order algorithms in [52, 63, 88, 89] may not give the
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accurate results. If the model order is not accurately estimated, it will cause trivial modes

in the estimated results. Separate clustering and refinement algorithms will be required to

remove these trivial modes from the true modes of the signal. However, if the model order is

accurately estimated, the true modes of the signal can be identified directly without the use

of separate refinement algorithms.

Therefore, this work proposes an SSI based method for power system modal identifica-

tion where the model order of the signal is accurately estimated using Exact Model Order

(EMO) algorithm [86] explained in Section 4.2.1. Further, Stationary Wavelet Transform

(SWT) based denoising technique is included in the proposed SSI based method to improve

its noise resistance. The robustness of the proposed method is verified by comparing it with

an SSI based method [52], Teager Kaiser based method [68] and a Fourier based method

[60] using synthetic signals. Finally, the proposed method is used to estimate the domi-

nant modes of real time PMU data obtained from Western Electricity Coordinating Council

(WECC) system.

5.2 Proposed Methodology

Figure 5.1: Block diagram of the proposed method.

The schematic representation of the proposed SSI based method for estimating the modal

parameter estimates of low frequency electromechanical oscillations is shown in fig. 5.1.

In this method, the data obtained from PMUs placed across the power system is filtered us-

ing an SWT based filter for removing the noise contamination before passing it into the SSI

based algorithm. The modal parameters of this filtered data is then identified using the SSI

algorithm and the results are passed to the control centre for further action. SSI being a para-
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metric method requires an initial estimate of model order for its successful implementation.

However, similar SSI based algorithms [52, 53] proposed recently, overestimated the model

order leading to the presence of fictitious modes in their estimated results. Separate filtering

algorithms are required for identifying the true modes from these fictitious modes. However,

these filtering algorithms increases the computational complexity of the whole method and

makes its real time implementation difficult. A detailed explanation of this problem is given

in subsection 5.2.2. Hence, to prevent the above issues, the model order estimation of the

proposed method is carried out using Exact Model Order (EMO) algorithm. EMO algorithm

estimates the model order of the signal accurately irrespective of its noise contamination.

Hence the limitations in [52, 53] are not present in the proposed method. A detailed expla-

nation of all the components of the proposed method is given in the following subsections.

5.2.1 Stationary Wavelet Transform (SWT) Based Denoising

Figure 5.2: Original and denoised signal using SWT algorithm.

The data from the PMU will have noise present in it. The accuracy of modal parameter

estimates of the proposed method can be improved if the noise contamination present in the

PMU data is removed. Therefore, an SWT based denoising technique is employed in the

proposed method for this purpose. SWT is a wavelet transform algorithm, which is similar

to Discrete Wavelet Transform (DWT). However, the lack of translation invariance, which

is one of the main drawbacks of DWT, is not present in SWT. The SWT based denoising

provides enhanced signal to noise ratio and less mean and peak errors compared to other

denoising methods [90, 91]. In the proposed method, the SWT based denoising algorithm

uses symlet wavelet with three decomposition levels for denoising the PMU data. The ability
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of the SWT based technique to effectively denoise the noisy signal is shown in fig. 5.2 using

a two mode signal having an SNR of 15 dB. From the figure, it is evident that the distortions

present in the original signal are not present in its denoised version. Hence, it can be inferred

that the noise content in the signal is substantially reduced in the denoised version.

5.2.2 Model Order Estimation

SSI being a parametric method requires an accurate estimate of the model order or number

of frequency components present in the signal for its proper implementation. In most of the

SSI based methods, the model order is estimated based on the dominant singular values of

the weighted projection matrix. The recently published SSI based methods use an algorithm

based on the average of singular values. If β1,β2, ...βk are the singular values obtained by the

Singular Value Decomposition of the weighted projection matrix, then their βavg is calculated

as

βavg =
1
k

k

∑
i=1

βi (5.1)

The model order r is estimated as

r =

 a, βa+1 ≤ βavg ≤ βa, int(a/2) = a/2

a+1, βa+1 ≤ βavg ≤ βa, int(a/2)< a/2

 (5.2)

This technique accurately estimates the model order of signals with less noise content.

However, when the signal is highly noisy, the model order of the signal is grossly overes-

timated. The main reason for this overestimation is that when the signal is highly noisy,

there is little difference between the singular values of the signal and noise subspace. This is

proved with the help of an example.

Let x1 be a power system signal with four frequency components as shown below [92].

x1 = ((1cos(2π ∗0.4t)exp(−0.0909t))

+(0.9cos(2π ∗0.5t)exp(−0.35t))

+(0.7cos(2π ∗0.6t +(π/6))exp(−0.2001t))

+(0.4cos(2π ∗1.1t +(π/4)).∗ exp(−0.666t))); (5.3)
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x1 has a length of 30 seconds and it is sampled at 50 Hz. It is contaminated by adding

white Gaussian noise at 50 dB SNR. The value of i and j which are used for generating the

Hankel matrices Yf and Yp of the SSI method are set as 200 and 1000 respectively.

The block Hankel matrix of x1 is obtained from the signal data which is used to generate

the weighted projection matrix. The following S matrix is obtained from the SVD of this

weighted projection. The singular values of the S matrix and its row location are given in

Table 5.1.

Table 5.1: Singular values of x1

Row no. 1 2 .. 7 8 9 10 11 12 .. 35 .. 70 .. 200
without noise

Singular 2.36 2.36 .. 2.35 2.32 8.5e−7 2.0e−7 1.7e−7 .. .. 8.3e−7 .. 76.9e−8 .. 7.1e−9

value
with 50 dB noise

Singular 2.23 2.23 .. 2.02 1.92 1.72 1.72 1.67 .. .. 1.36 .. 1.08 .. 0.002
value

It is noticed from Table 5.1 that, when the noise content is not present in the signal, the

first eight singular values of the weighted projection are high and rest of the singular values

are very low. These eight singular values represent the four dominant modes present in x1

as each mode is represented by two singular values. Rest of the singular values represent

the trivial modes. However, when the signal is highly noisy, the dominant modes cannot be

distinguished easily as the difference between consecutive singular values is less.

The mean of the singular values of the corrupted signal is found to be 0.8720 and the

model order of the signal having only four frequency components is estimated as 98 using

(5.2). The true modes present in the signal are identified from the 94 other fictitious modes

using separate filtering algorithms. In this algorithm, the model order is varied from an initial

value to a higher value and separate discrete system state matrices are calculated correspond-

ing to each model order. The eigenvalues which are present in all these discrete system state

matrices represent the dominant modes of the signal. After running this algorithm, the four

dominant modes of the x1 are identified . However, the construction of numerous discrete

system state matrices and its eigen decomposition (for finding the eigenvalues) increases

the computational complexity of this method limiting its real time implementation. Hence,

EMO algorithm is used in the proposed method for estimating the model order accurately.

The details about the EMO algorithm is given in Section 4.2.1.

To prove the effectiveness of the EMO algorithm, it is used to estimate the model order
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Figure 5.3: RD vs RDI plot of signal x1.

of the signal in (5.3). The autocorrelation matrix is created using the signal data and vector

RD obtained from its eigenvalues is calculated for this purpose. Fig. 5.3 shows the RD vs

RDI plot of this signal corresponding to the first 20 eigenvalues. It is observed that RD has

peaks at RDI values of 2,4,6,7 and 8. The preliminary model order estimate is 8 as it is the

highest RDI value. The eigenvalue corresponding to this model order estimate satisfies (4.6).

So, the estimated value of the model order is RDI/2 = 4, which is the correct value.

5.2.3 Stochastic Subspace Identification [53, 54]

The power system data obtained from the PMUs is discrete in nature. It can be represented

as

x((k+1)T) = Ax(kT)+w(kT) (5.4)

y(kT) = Cx(kT)+v(kT) (5.5)

where, T is the sampling time, k is the sampling number, xεRn is the discrete time state

vector, yεRl is the output vector and AεRn×n is the discrete system state matrix. wεRn

and vεRl represent process disturbance and measurement noise respectively. The dominant

modes of the power system are estimated from the eigenvalues of discrete system state ma-

trix. In this method, the discrete system state matrix A is generated from the PMU data using

Canonical Variate Algorithm (CVA).

The key steps of CVA are given below.
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Step 1: Create a block Hankel matrix Y0|2i−1 from the PMU data.

Y0|2i−1 =



y0 y1 .. y j−1

y1 y2 .. y j

.. .. .. ..

yi−1 yi .. yi+ j−2

.. .. .. ..

y2i−1 y2i .. y2i+ j−2


(5.6)

Here, the subscript 0|2i− 1 represents the first and last element of the first column of

block Hankel matrix Y0|2i−1. The value of i is set as 2Q/l, where, Q and l denotes the

expected maximum order of the system and the number of its output channels respectively.

The value of Q is selected such that it is higher than the actual model order of the system.

Step 2: Form past matrices Yp,Y+
p , and the future matrices Y f and Y−f from Y0|2i−1.

Yp =


y0 y1 .. y j−1

y1 y2 .. y j

.. .. .. ..

yi−1 yi .. yi+ j−2

= Y0|i−1 (5.7)

Yf =


yi yi+1 .. yi+ j−1

yi+1 yi+2 .. yi+ j

.. .. .. ..

y2i−1 y2i .. y2i+ j−2

= Yi|2i−1 (5.8)

Y−f = Yi+1|2i−1 and Y+
p = Y0|i

Here Y−f is generated from Yf by deleting its first row whereas Y+
p is obtained from Yp

by adding one more row to its end.

Step 3: Obtain the projection matrices Oi and Oi−1 from Yf, Y−f , Yp and Y+
p .

Oi = Yf/Yp (5.9)

Oi−1 = Y−f /Y+
p (5.10)

Here, Yf/Yp = YfYt
p(YpYt

p)
†Yp. † denotes pseudo inverse of the matrix.
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Step 4: Compute the weighting matrices W1 and W2 using the following equation

W1 = ((1/ j)YfYt
f)
(−1/2) (5.11)

W2 = Ij (5.12)

here, Ij represent an identity matrix of size j× j.

Step 5: Perform Singular Value Decomposition of the weighted projection W1OiW2

W1OiW2 = USVt =
(

U1 U2

) S1 0

0 0

 Vt
1

Vt
2

 (5.13)

here, U and V are the matrices containing the left and right singular vectors of the

weighted projection W1OiW2 obtained through the Singular Value Decomposition whereas

the matrix S contains its singular values. S1 is a q×q submatrix of S, which contains all the

singular values corresponding the signal subspace, where q is twice the actual model order

of the system.

Step 6: Obtain the extended observability matrices Ti and Ti−1 using the following equa-

tion.

Ti = W−1
1 U1S1/2

1 (5.14)

Ti−1 is obtained from Ti by removing its last l rows.

Step 7: Calculate the Kalman filter state sequences Xi and Xi+1.

Xi = T†
i Oi (5.15)

Xi+1 = T†
i−1Oi−1 (5.16)

Step 8: State space matrix A is determined as

 A

C

=

 Xi+1

Yi|i

X†
i (5.17)

Step 9: The frequency ( fk) and attenuation factor (AFk) of the modes present in the signal
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is obtained from eigenvalues (λk) of A.

fk = fs ∗
imag(log(λk))

2π
(5.18)

AFk = fs ∗ real(log(λk)) (5.19)

Here, fs is the sampling frequency of the signal. The damping coefficient (ζk) of the

mode is obtained using the following equation [55].

ζk =−
AFk√

(AFk)2 +(2π ∗ fk)2 (5.20)

5.3 Simulation Results and Discussion

The implementation of the proposed SSI based model depends on its ability to extract the

modal information of different signals irrespective of its signal to noise ratio. Hence, the

proposed SSI based model is tested on simulated signals with known modal parameters at

different SNRs and real time signals obtained from PMUs installed on different power sys-

tems. The results obtained are compared with that of similar models in the literature.

5.3.1 Synthetic Signals

The simulated signals used for this comparison are given below.

Signal 1 = (2cos(2π ∗0.2t +1.5π))exp(−0.17t)

+2cos(2π ∗0.75t +(0.5π))exp(−0.13t) (5.21)

Signal 2 = 2cos(2π ∗0.2t +(1.5π))exp(−0.17t)

+2cos(2π ∗0.28t +(0.5π))exp(−0.05t)

+(2cos(2π ∗0.75t +(4.5π))exp(−0.13t))); (5.22)

86



CHAPTER 5. AN IMPROVED STOCHASTIC SUBSPACE
IDENTIFICATION BASED ALGORITHM FOR ANALYZING AMBIENT
OSCILLATIONS

Signal 3 = (2cos(2π ∗0.25t +(1.5π))exp(−0.17t))

+(2cos(2π ∗0.33t +(1.5π))exp(−0.12t))

+(2cos(2π ∗0.78t +(0.5π))exp(−0.13t))

+(2cos(2π ∗0.87t +(0.5π))exp(−0.0702t))); (5.23)

All these signals have a frequency between 0.2 Hz to 0.9 Hz. Signal 1 has a pair of

closely spaced modes whereas Signal 2 has two pairs of closely spaced modes. The modal

information present in these signals are extracted through the proposed method, Matrix Pen-

cil [93], Eigen Realization Algorithm (ERA) [93], SSI [52], Teager Kaiser [68] and Fourier

[60] based methods. As explained in the previous section, the proposed method requires

accurate model order estimates for extracting the modal information of the signal precisely.

The proposed method uses Exact Model Order algorithm for this purpose. The superiority

of this algorithm is proved by comparing it with model order estimation algorithms of ERA

and Matrix Pencil based methods in [93] at different SNRs. The results obtained from this

comparison is tabulated in Table 5.2.

It is observed from Table 5.2 that accuracy of the modal information extracted through the

proposed method, ERA and Matrix Pencil based methods [93] is comparable. However, it is

noticed that estimated results in ERA and Matrix Pencil based methods has fictitious modes

along with the true modes especially at low SNRs. This occurs due to the poor accuracy

of its model order estimation algorithms. These algorithms work based on the ”largest drop

method” in which the ratio of singular values of Hankel matrix is compared. However, at

low SNRs, there is not much difference between the singular values of the signal and noise

subspace. Due to this reason, the largest drop method fails to estimate the accurate model

order estimate. If these algorithms are used, separate filtering algorithms will be required for

identifying the true modes from the fictitious modes. On the other hand, the eigenvalues of

the EMO algorithm is generated from the autocorrelation matrix generated from the signal

which is more robust than the similar algorithms in [93]. For instance, the proposed method

accurately estimates the model order of the Signal 3 at 15 dB SNR as 4 whereas the model

order estimation of the Matrix Pencil and ERA methods are 237 and 292 respectively. Hence,

it can be inferred that the EMO algorithm used in the proposed model is better suited for

model order estimation than similar algorithms of ERA and Matrix Pencil based methods in

[93].
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Table 5.2: Comparison of model order and estimated modal parameters of the proposed
method with Matrix Pencil [93] and ERA [93] based methods

SNR = 15 dB SNR = 20 dB SNR = 25 dB
Method MO Estimated MO Estimated MO Estimated

Freq AF Freq AF Freq AF
(Hz) (Hz) (Hz)

Signal 1
True 0.200 0.170 0.200 0.170 0.200 0.170
value 0.750 0.130 0.750 0.130 0.750 0.130

Proposed 2 0.2000 0.1665 2 0.2000 0.1710 2 0.2001 0.1703
method 0.7499 0.1292 0.7500 0.1306 0.7500 0.1299

280 0.2010 0.1719 214 0.2001 0.1694 68 0.2000 0.1692
ERA 0.7498 0.1250 0.7502 0.1296 0.7504 0.1300

+ 278 modes + 212 modes + 66 modes
295 0.2001 0.1695 213 0.2002 0.1708 80 0.2000 0.1701

Matrix Pencil 0.7501 0.1292 0.7500 0.1306 0.7500 0.1295
+ 291 modes + 209 modes + 76 modes

Signal 3
True 0.250 0.170 0.250 0.170 0.250 0.170
value 0.330 0.120 0.330 0.120 0.330 0.120

0.780 0.130 0.780 0.130 0.780 0.130
0.870 0.070 0.870 0.070 0.870 0.070
0.2503 0.1669 0.2507 0.1701 0.2501 0.1697

Proposed 0.3302 0.1189 0.3300 0.1224 0.3300 0.1197
method 4 0.7803 0.1308 4 0.7802 0.1310 4 0.7799 0.1294

0.8700 0.0695 0.8700 0.0706 0.8700 0.0698
0.2504 0.1670 0.2498 0.1682 0.2497 0.1697
0.3303 0.1199 0.3299 0.1222 0.3304 0.1216

ERA 292 0.7799 0.1241 214 0.7794 0.1302 94 0.7802 0.1280
0.8703 0.0702 0.8697 0.0698 0.8699 0.0718

+ 288 modes + 210 modes + 90 modes
0.2500 0.1702 0.2500 0.1700 0.2499 0.1703

Matrix 0.3301 0.1187 0.3301 0.1206 0.3300 0.1197
Pencil 237 0.7802 0.1303 109 0.7800 0.1297 8 0.7800 0.1300

0.8699 0.0699 0.8701 0.0707 0.8700 0.0701
+ 233 modes + 105 modes + 4 modes

Table 5.3 compares the frequency and attenuation factor estimates of different synthetic

signals obtained through proposed method, Teager Kaiser based method [68], SSI method

[52] and Fourier method [60]. The frequency and attenuation factor of a signal is estimated
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Table 5.3: Modal parameters of different signals estimated using the proposed method, SSI
method [52], Teager Kaiser method [68] and Fourier method [60]

SNR = 15 dB SNR = 20 dB SNR = 25 dB
Method Estimated Std (%) Estimated Std (%) Estimated Std (%)

Freq AF Freq AF Freq AF Freq AF Freq AF Freq AF
(Hz) (Hz) (Hz) (Hz) (Hz) (Hz)

Signal 1
True 0.200 0.170 0.200 0.170 0.200 0.170
value 0.750 0.130 0.750 0.130 0.750 0.130

Proposed 0.2000 0.1665 0.12 1.00 0.2000 0.1710 0.07 0.44 0.2001 0.1703 0.04 0.28
method 0.7499 0.1292 0.08 0.63 0.7500 0.1306 0.05 0.24 0.7500 0.1299 0.02 0.16

SSI 0.1995 0.1681 0.17 0.86 0.2002 0.1700 0.06 0.52 0.2001 0.1697 0.04 0.25
method 0.7499 0.1300 0.07 0.44 0.7501 0.1302 0.04 0.23 0.7500 0.1301 0.02 0.15
Fourier 0.1997 0.1695 0.01 1.53 0.1997 0.1659 0.01 0.87 0.1997 0.1666 0.05 0.53
method 0.7490 0.1220 1.92 1.14 0.7324 0.1270 0.01 0.57 0.7324 0.1265 0.02 0.23
Teager 0.2008 0.1750 0.06 0.49 0.2009 0.1719 0.03 0.27 0.1996 0.1722 0.02 0.14
Kaiser 0.7505 0.1287 0.04 0.28 0.7501 0.1290 0.02 0.18 0.7500 0.1299 0.01 0.12

Signal 2
True 0.200 0.170 0.200 0.170 0.200 0.170
Value 0.280 0.050 0.280 0.050 0.280 0.050

0.750 0.130 0.750 0.130 0.750 0.130
Proposed 0.2008 0.1730 0.32 1.85 0.1999 0.1703 0.11 1.04 0.200 0.1700 0.09 0.53
method 0.280 0.0488 0.05 0.4 0.2799 0.0504 0.04 0.25 0.280 0.0501 0.16

0.750 0.1299 0.09 0.47 0.750 0.1302 0.05 0.37 0.750 0.1295 0.02 0.16
SSI 0.2148 0.1477 3.37 5.76 0.2119 0.1535 2.94 4.51 0.2078 0.1575 2.47 3.70

method 0.2641 0.0779 3.33 5.28 0.2681 0.0671 2.92 4.09 0.2720 0.0624 2.49 3.68
0.7501 0.1315 0.07 0.39 0.7499 0.1286 0.05 0.29 0.7499 0.1302 0.02 0.15

Fourier 0.26630 0.0524 0.01 0.1 0.2663 0.0525 0.01 0.06 0.2663 0.0524 0.01 0.04
method 0.7590 0.1350 1.37 1.08 0.7640 0.1369 0.75 0.63 0.7656 0.1384 0.01 0.02
Teager 0.1997 0.1854 0.32 1.85 0.2011 0.0.1673 0.11 1.04 0.2013 0.1684 0.09 0.53
Kaiser 0.2801 0.0497 0.04 0.02 0.2799 0.0492 0.06 0.09 0.2800 0.0494 0.07 0.02
method 0.7502 0.1241 1.37 1.08 0.7500 0.1330 0.081 0.05 0.7498 0.1335 0.02 0.09

Signal 3
True 0.250 0.170 0.250 0.170 0.250 0.170
value 0.330 0.120 0.330 0.120 0.330 0.120

0.780 0.130 0.780 0.130 0.780 0.130
0.870 0.070 0.870 0.070 0.870 0.070

0.2503 0.1669 0.34 1.27 0.2507 0.1701 0.19 0.80 0.2501 0.1697 0.11 0.47
Proposed 0.3302 0.1189 0.17 1.08 0.3300 0.1224 0.08 0.67 0.3300 0.1197 0.05 0.37
method 0.7803 0.1308 0.13 1.22 0.7802 0.1310 0.10 0.58 0.7799 0.1294 0.05 0.32

0.8700 0.0695 0.07 0.42 0.8700 0.0706 0.04 0.28 0.8700 0.0698 0.02 0.13
0.2638 0.1625 3.12 2.47 0.2657 0.1590 3.27 2.14 0.2657 0.1599 3.30 1.94

SSI 0.3151 0.1290 3.15 2.03 0.3136 0.1286 3.37 2.04 0.3138 0.1313 3.29 2.30
method 0.7803 0.1302 0.11 0.87 0.7800 0.1291 0.09 0.40 0.7800 0.1310 0.04 0.28

0.8700 0.0701 0.04 0.29 0.8700 0.0704 0.03 0.22 0.8702 0.0700 0.01 0.10
0.2330 0.1640 < 10−7 0.0113 0.2330 0.1635 < 10−7 0.0043 0.2330 0.1656 < 10−7 0.0021

Fourier 0.3329 0.1073 < 10−7 0.0038 0.3329 0.1078 < 10−7 0.0017 0.3329 0.1075 < 10−7 0.0021
method 0.7656 0.0864 < 10−7 0.0020 0.7656 0.0872 < 10−7 0.0013 0.7656 0.0871 < 10−7 0.0021

0.8655 0.0719 < 10−7 0.0012 0.8655 0.0717 < 10−7 0.0007 0.8655 0.0717 < 10−7 0.0021
0.2519 0.1599 0.08 0.48 0.2518 0.1601 0.06 0.30 0.2516 0.1597 0.02 0.13

Teager 0.3305 0.1275 0.05 0.35 0.3305 0.1279 0.02 0.2 0.3305 0.1195 0.01 0.13
Kaiser 0.7797 0.1354 0.07 0.32 0.7794 0.1361 0.03 0.19 0.7796 0.1287 0.02 0.19

0.8698 0.0705 0.03 0.17 0.8694 0.0706 0.02 0.11 0.8700 0.0703 0.01 0.06

by taking the average of the estimated values of 50 independent simulations. Before the

estimation process, the length and distance between the windows in the Fourier method are

set as 500 and 50 samples, respectively. The value of i and j in the SSI based method is set
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Figure 5.4: Absolute percentage error in frequency estimation of Signal 2 using the proposed
method, Teager Kaiser method and SSI method.

Figure 5.5: Absolute percentage error in attenuation factor estimation of Signal 2 using the
proposed method, Teager Kaiser method and SSI method.

as 200 and 1000 respectively. From the tabulated data, it is clear that the Fourier method [60]

fails to identify all the modes present in the signal when it has closely spaced modes. This is

evident from the estimated values of Signal 2 where the Fourier method estimated the 0.2 Hz

and 0.28 Hz modes as one mode. Hence, it can be inferred that this algorithm is not suited for

estimating signals with closely spaced modes. The variation of absolute percentage error in

the frequency and attenuation factor estimation of Signal 2 at different SNRs obtained using

the proposed method, Teager Kaiser method and the SSI based method is plotted in figs. 5.4

and 5.5. It is observed that the frequency estimation error of all the three methods are very

small. Hence, it can be concluded that all the methods estimate the frequency of the different

modes in the signal accurately. However, it is also observed from fig. 5.5 that the attenuation
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Figure 5.6: Absolute percentage error in attenuation factor estimation of Signal 3 using the
proposed method, Teager Kaiser method and SSI method.

Figure 5.7: Absolute percentage error in attenuation factor estimation of Signal 3 using the
proposed method, Teager Kaiser method and SSI method.

factor estimates of the proposed method are more accurate than that of the SSI and Teager

Kaiser methods. The maximum attenuation factor estimation error of the SSI based method

and Teager Kaiser method are 50% and 7.6% whereas that of the proposed method is less

than 2%. Similar observations can be made from figs. 5.6 and 5.7 where variation of absolute

percentage error in the frequency and attenuation factor estimation of Signal 3 at different

SNRs is plotted. This proves that the proposed method provides more accurate attenuation

factor estimates of noise contaminated signals with closely spaced modes as compared to

SSI, Teager Kaiser and Fourier methods.

Table 5.4 compares the estimated model order and computation time of different synthetic

signals obtained using the proposed method and SSI based method [52] at different SNRs.
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Table 5.4: Comparison of model order and computation time for the proposed method with
SSI based method

Signal SNR SSI Method in [52] Proposed Method
Model order Computation EMO Computation

method in [52] Time (s) method Time (s)
Signal 1 15 100 3.29 3 1.96

20 102 3.32 3 1.96
25 92 3.09 3 1.80

Signal 2 15 96 3.11 4 1.8
20 96 3.08 4 1.83
25 96 3.34 4 1.87

It is noticed that, the model order algorithm in the SSI method overestimates the model

order whereas the EMO algorithm estimates the same accurately. For instance, the estimated

model order of Signal 1 at 20 dB SNR is obtained as 3 using the proposed method while that

of the SSI based method is 102. This overestimation of the model order in the SSI method

leads to the presence of fictitious modes in its estimated results. Separate filtering algorithms

are used in [52] to identify the true modes of the signal from these fictitious modes. The

main disadvantage of this SSI based method is that the computational burden of the whole

method increases due to the usage of these filtering algorithms which eventually makes the

whole method slow compared to similar algorithms. On the other hand, the proposed method

uses EMO algorithm which estimates the model order accurately irrespective of the noise

content of the signal. Hence, trivial modes are not present in its estimated results. Therefore,

computational time of the proposed method is lesser than the SSI based method in [52]. It

is observed that the computational time of the proposed method is less than two seconds for

all the signals whereas that of the SSI based method is above three seconds. Thus, it can be

concluded that the proposed method is faster than the SSI based method in [52].

5.3.2 Real time PMU data

In this section, real time PMU data corresponding to the probe test data obtained from the

WECC system on 14th September 2005 is used for testing the proposed method. The details

about the WECC system and the analysis windows used are given in Section 3.3.2. The signal

generated from these analysis windows are analyzed using the proposed method, SSI method

[52], Teager kaiser [68] method and the Fourier method [60] and the results are tabulated in

Table 5.5. Matrix Pencil and ERA methods are not used in this comparison as they have
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Figure 5.8: Probing data of WECC system [84].

Table 5.5: Estimated modal parameters of WECC system using the proposed method, Teager
Kaiser method, SSI method and Fourier method

Window Estimated Proposed SSI Fourier Teager
value from [84] method method method Kaiser
Freq ζ Freq ζ Freq ζ Freq ζ Freq ζ

Window 1 0.318 8.30 0.3208 8.1 0.3266 07.77 0.3497 7.73 0.3201 7.91
0.6723 12.91 0.6723 012.72 0.6993 3.86 0.5996 21.07

Window 2 - - 0.3189 8.08 0.3181 7.96 0.3497 8.10 0.3196 8.15
- - 0.67693 12.9 0.6993 4.03 0.6702 12.7 0.2121 12.23

Table 5.6: Frequencies and damping ratios of WECC system probe data under different noise
levels

Window SNR=15 dB SNR=20 dB SNR=25 dB SNR=30 dB
Frequency ζ Frequency ζ Frequency ζ Frequency ζ

(Hz) (Hz) (Hz) (Hz)
Window 1 0.3192 8.1 0.3184 8.07 0.3185 8.13 0.3188 8.12

0.6723 12.97 0.6723 12.93 0.6723 12.87 0.6723 12.91

Window 2 0.3204 8.03 0.3211 7.95 0.3196 8.08 0.3189 8.08
0.67693 12.85 0.67693 12.91 0.67693 12.87 0.67693 12.82

fictitious modes in their estimated results.

It is observed from Table 5.5 that while analyzing the real time signal corresponding to

analysis window 1, all the methods under consideration estimated the two modes present in

the signal. The dominant mode among them is the 0.318 Hz mode which has a damping

factor of 8.3%. It is observed that the proposed method gave near accurate frequency and

damping factor estimates of this mode which were closest to the reported values in [84]. The
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SSI and Teager Kaiser method provided accurate estimates of the frequency of the signal

but damping factor estimates are inaccurate in comparison to the proposed method. The esti-

mated results of the proposed method are almost the same even under highly noisy conditions

as evident from Table 5.6. Hence, it can be concluded that the proposed method is best suited

for estimation of real time signals as compared to SSI and Fourier methods.

To further prove the superiority of the proposed method over the SSI method in dealing

with real time signals of ambient nature, both the methods are compared in terms of com-

putation time. Two analysis windows having lengths of 100 seconds and 600 seconds are

used for this purpose. Window 3 is from 1500 seconds to 1600 seconds whereas Window 4

is from 1500 seconds to 2100 seconds. The signals corresponding to these windows are an-

alyzed using the proposed and SSI methods and the results are tabulated in Table 5.7. These

simulations was carried out on a computer having Intel Core i5-2400 processor with 4 GB of

RAM.

Table 5.7: Simulation time of the proposed method and SSI method

Window Length Simulation time (in seconds)
Proposed SSI
method method

Window 3 100 seconds 2.8 13.47
Window 4 600 seconds 12.87 59.48

It is observed from Table 5.7 that the computational time of the proposed method is much

lesser than that of the SSI method. For instance, the proposed method estimates the modal

parameters of the Window 4 in 12.87 seconds while the SSI method takes 59.48 seconds for

estimation. The main reason for the increase in the computation time of the SSI method is the

overestimation of the model order by its model order algorithm. This results in the presence

of fictitious modes in the estimated results, which is removed using a filtering algorithm.

This leads to an increase in the computation time of the SSI method. However, the proposed

method uses EMO algorithm which estimates the model order accurately. Hence, the filtering

algorithm used in the SSI method is not required for the proposed method making it faster

than the SSI method.
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5.4 Conclusion
An SSI based modal parameter estimation method for identifying the poorly damped modes

of low frequency electromechanical oscillations is proposed in this chapter. The proposed

method uses an SWT based algorithm for denoising the signal. Further, the model order of

the signal, which is a prerequisite for the proper implementation of the SSI method is esti-

mated through EMO algorithm thereby reducing its computational complexity. The ability

of the EMO algorithm to estimate the model order accurately is verified by comparing it

with the model order algorithms of Matrix Pencil and ERA methods. The robustness of the

proposed method is compared with a Fourier based, Teager Kaiser based and another SSI

based methods in the literature using synthetic signals and actual PMU data obtained from

WECC system. Results confirm that the proposed method estimates all the modes present in

the signal with a high degree of accuracy even under high levels of noise.
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Chapter 6

An Empirical Wavelet

Transform-ESPRIT method for

analyzing low frequency oscillations

6.1 Introduction

Accurate knowledge of the low-frequency electromechanical modes in power system gives

vital information about the operating characteristics of a power system. The HTLS, ES-

PRIT and SSI based algorithms proposed in Chapters 3, 4 and 5 help to effectively analyse

the poorly damped modes in ringdown and ambient oscillations. However, all these are

parametric methods and they require an accurate estimate of the model order for their suc-

cessful implementation. If the model order is underestimated, one or more modes present

in the signal are not identified, whereas overestimation of model order leads to the pres-

ence of fictitious modes in the estimated results. However, if the multi-component signal

is decomposed into mono-components, then the estimation of model order is not required

as the mono components have only one frequency component in them. Thus, the twin is-

sues of estimating the modal parameters of the signal accurately and removal of artificial

modes in the estimated results get solved automatically if the signal is decomposed into its

mono-components. The decomposition of the signal can be achieved using many techniques

like Variational Mode Decomposition (VMD) [94], Empirical Mode Decomposition (EMD)

[93] and Wavelet transform. Among these techniques, Wavelet transforms based techniques

are one of the easiest and efficient ways for decomposing a multi-component signal into its
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mono-components by creating a bank of wavelet filters. The Empirical Wavelet Transform

(EWT) [95] is a wavelet based method which can efficiently decompose the signal into its

mono-components. The main advantage of EWT is that it uses adaptive wavelets i.e. the

wavelets used for decomposition are generated based on the information contained in the

signal. Due to this property, the EWT can extract different modes of the signal efficiently in

comparison to other wavelet based methods, which use a fixed basis for the decomposition

process. EWT can decompose stationary as well as non-stationary signals, hence it is one of

the perfect choices for analyzing the power system oscillations.

This chapter proposes an Empirical Wavelet Transform-ESPRIT based method for identi-

fication of poorly damped modes in power system low frequency oscillations. In this method,

EWT is used to decompose the multi-mode signal into its mono-components and the modal

parameters of these mono components are calculated using the ESPRIT based technique.

The superiority of the proposed method is tested by comparing its performance with that of

a VMD-Teager Kaiser based method [94], a Hilbert Huang Transform (HHT) based method

[93] and a Continuous Wavelet Transform (CWT) based method [55] in the literature. Test

results prove the superiority of the proposed method in identifying the poorly damped low

frequency modes present in the power system oscillations.

6.2 Proposed Methodology

Figure 6.1: Block diagram of the proposed method.

The schematic representation of the proposed method is shown in fig. 6.1. It utilizes a

combination of Empirical Wavelet Transform (EWT) and ESPRIT for identifying the poorly

damped electromechanical modes present in the power system oscillations. The multi-mode

signal under consideration is decomposed using EWT and the modal parameters of these

mono components are estimated using ESPRIT. EWT is selected because it uses adaptive

wavelets for decomposition process due to which it can efficiently split the multi-mode sig-
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nal into its mono components whereas ESPRIT method is used because of its capability to

provide good accuracy and robustness against noise. A detailed explanation of EWT algo-

rithm is given in the following subsection.

6.2.1 Empirical Wavelet Transform

The Empirical Wavelet Transform (EWT) was proposed by Jerome Gilles in 2013. It can

effectively separate the different modes present in the signal using adaptive wavelets. There-

fore, this technique is used in the proposed method to separate the multi-component signal

into mono-components. A detailed explanation of this method is given in [95, 96]. The main

steps of the Empirical wavelet transform are as follows.

Step 1: Obtain the Fast Fourier Transform (FFT) of the signal x(t) under consideration.

Step 2: Plot X(w) and find its highest peak. X(w) is the Fourier transform of x(t).

Step 3: Find out the peaks of X(w) having an amplitude of at least 15% of its highest

peak. These peaks represent the dominant modes of the signal. Obtain the frequencies

corresponding to these dominant modes.

Step 4: Segment the Fourier spectrum and obtain the boundaries. If ω1,ω2, ...ωM are

the peaks of the Fourier spectrum, the corresponding boundaries (σi) are obtained using the

following equation

σi =
ωi +ωi+1

2
i = 1,2,3, ...M−1 (6.1)

Step 5: Construct filter banks corresponding to these boundaries. The filter bank consists

of one low pass filter and M-1 bandpass filters. The filters are developed using the wavelet

scaling function (φ1) and the wavelet filter function(ψi).

φ1(ω) =


1, i f |ω| ≤ (1− γ)σ1

cos(π

2 β (γ,σ1)), i f (1− γ)σ1 ≤ |ω| ≤ (1+ γ)σ1

0, otherwise

 , (6.2)
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ψi(ω) =



1, i f (1+ γ)σi ≤ |ω| ≤ (1− γ)σi+1

cos(π

2 β (γ,σi+1)), i f (1− γ)σi+1 ≤ |ω| ≤ (1+ γ)σi+1

sin(π

2 β (γ,σi)), i f (1− γ)σi ≤ |ω| ≤ (1+ γ)σi

0, otherwise


, (6.3)

Here, γ is a parameter whose value is between 0 and 1. It is used to ensure that two consec-

utive transition areas are not overlapping. β (γ,σi) = β ( 1
2γσi

(|ω|− (1− γ)σi) is an arbitrary

function which exhibits the following properties.

β (γ,σ) =


0, i f (γ,σ)≤ 0

1, i f (γ,σ)≥ 0

β (γ,σ)+β (1− (γ,σ)) = 1, i f (γ,σ) ε [0,1]

 , (6.4)

Step 6: Generate the approximation (Wx(1, t)) and detail (Wx(n, t)) coefficients of the

signal under consideration using φ1(ω) and ψi(ω).

Wx(1, t) = < x,φ1 > = IFFT (X(ω)×φ1(ω)) (6.5)

Wx(i, t) = < x,ψi > = IFFT (X(ω)×ψ1(ω)) (6.6)

Here, X(ω) is the FFT of signal x(t). Each row of approximation (Wx(1, t)) and detail

(Wx(n, t)) coefficients represent a separate mode present in the signal x(t).

After the signal is split into its mono components, it is passed to the ESPRIT algorithm

for estimating the modal parameters of its mono components. The detailed explanation of

the ESPRIT algorithm is given in Section 4.2.2.

6.3 Simulation Results and Discussion

The efficacy of the proposed method in estimating poorly damped modes in power system

low frequency oscillations is tested through two case studies. The first case study uses three

synthetic signals with known modal parameters whereas the second case study uses real time

PMU data from WECC system. The estimated results obtained from these case studies are

compared with that of a VMD-Teager Kaiser [94] based method, a Hilbert Huang Transform
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(HHT) based method [93] and a Continuous Wavelet Transform (CWT) based method [55]

in the literature. The CWT based method uses Morlet wavelet as the mother wavelet for the

analysis of real and synthetic signals in these case studies.

6.3.1 Synthetic Signals

Three synthetic signals Signal 1, Signal 2 and Signal 3 are used in this section.

Signal 1 = (2cos(2π ∗0.35t +1.5π))exp(−0.079t)

+2cos(2π ∗0.87t +(0.5π))exp(−0.039t) (6.7)

Signal 2 = (2cos(2π ∗0.71t +1.5π))exp(−0.04t)

+2cos(2π ∗1.23t +(0.5π))exp(−0.06t)

+2cos(2π ∗1.41t +(0.5π))exp(−0.03t) (6.8)

Signal 3 = (2cos(2π ∗0.34t)exp(−0.021t)

+2cos(2π ∗0.54t)exp(−0.031t)

+2cos(2π ∗0.91t)exp(−0.041t)

+2cos(2π ∗1.22t)exp(−0.051t) (6.9)

Signal 1, Signal 2 and Signal 3 has two, three and four modes having frequencies between

0.35 Hz and 1.41 Hz. These signals are corrupted by adding white Gaussian noise and the

modal parameters of these corrupted signals are estimated using the proposed method, VMD-

Teager Kaiser based method [94], HHT based method [93] and CWT based method [55]. The

estimated results are tabulated in Table 6.1.

It is observed from Table 6.1 that, while analysing Signal 1 whose modes are far apart, all

the methods identifies both the modes in the signal irrespective of its SNR value. They pro-

vided accurate estimates of the frequencies of both the modes present in Signal 1. However,
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Table 6.1: Estimated modal parameters of the three signals at different SNRs

SNR = 15 dB SNR = 20 dB SNR = 25 dB
Method Estimated Estimated Estimated

Frequency Attenuation Frequency Attenuation Frequency Attenuation
(Hz) factor (Hz) factor (Hz) factor

Signal 1
True 0.35 0.078 0.35 0.078 0.35 0.078
value 0.87 0.039 0.87 0.039 0.87 0.039

Proposed 0.3506 0.0724 0.3505 0.0755 0.3505 0.0757
method 0.8697 0.0378 0.8699 0.0378 0.8699 0.0382
CWT 0.3472 0.0714 0.3472 0.0735 0.3472 0.0736

method 0.8792 0.0403 0.8791 0.0399 0.8792 0.0398
VMD - Teager 0.3622 0.0839 0.3649 0.0709 0.3682 0.0718
kaiser method 0.8792 0.0402 0.8791 0.0455 0.8792 0.0413

HHT 0.3468 0.0599 0.3494 0.0748 0.3504 0.0753
method 0.8041 0.0306 0.8701 0.0359 0.8697 0.0368

Signal 2
True 0.71 0.04 0.71 0.04 0.71 0.04
value 1.230 0.06 1.230 0.06 1.230 0.06

01.41 0.030 01.41 0.030 01.41 0.030
Proposed 0.7101 0.0392 0.7102 0.0391 0.7101 0.0393
method 1.228 0.0593 1.2281 0.0609 1.2284 0.0604

1.4103 0.0276 1.4104 0.0283 1.4104 0.0287
CWT 0.7143 0.0371 0.7143 0.0370 0.7143 0.0374

method 1.200 0.0571 1.200 0.0575 1.200 0.0578
1.4286 0.0272 1.4286 0.0276 1.4286 0.0278

VMD - Teager 0.716 0.0390 0.7167 0.0388 0.7168 0.0384
kaiser method 1.2173 0.0674 1.2176 0.0690 1.2176 0.0681

1.4153 0.0402 1.4153 0.0392 1.4153 0.0396
HHT 0.7772 0.0634 0.6505 0.0624 0.71090 0.0435

method 1.3542 0.0144 1.3436 0.0222 1.3510 0.0122
Signal 3

0.34 0.021 0.34 0.021 0.34 0.021
True 0.54 0.031 0.54 0.031 0.54 0.031

method 0.91 0.041 0.91 0.041 0.91 0.041
1.22 0.051 1.22 0.051 1.22 0.051

Proposed 0.3418 0.0224 0.3408 0.0221 0.3401 0.0218
method 0.5401 0.0325 0.5401 0.0324 0.5401 0.0321

0.9103 0.0417 0.9096 0.0419 0.9096 0.0413
1.2202 0.0496 1.2201 0.0501 1.2199 0.0501

CWT 0.3538 0.0179 0.3539 0.0184 0.3539 0.0185
method 0.5682 0.0278 0.5659 0.0279 0.5659 0.0280

0.9868 0.0374 0.9868 0.0372 0.9868 0.0374
1.3093 0.0497 1.3092 0.0498 1.3093 0.0499

VMD 0.3336 0.0235 0.3336 0.0251 0.3336 0.0208
method 0.5412 0.0280 0.5412 0.0287 0.5412 0.0300

0.9167 0.0407 0.9173 0.0406 0.9165 0.0407
1.2167 0.0504 1.2178 0.0506 1.2169 0.0507

HHT 0.4734 0.027 0.4432 0.0211 0.4400 0.0347
method 1.0286 0.0107 1.0975 0.0103 1.0307 0.0121
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Figure 6.2: Attenuation factor estimation error of 0.34 Hz mode present in Signal 1.

Figure 6.3: Attenuation factor estimation error of 0.85 Hz mode present in Signal 1.

Figure 6.4: Attenuation factor estimation error of 0.71 Hz mode present in Signal 2.

while analysing the attenuation factor estimates of the modes of Signal 1, it is observed that

the proposed method gave the most accurate estimates in comparison to that of VMD- Teager
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Figure 6.5: Attenuation factor estimation error of 1.23 Hz mode present in Signal 2.

Figure 6.6: Attenuation factor estimation error of 1.41 Hz mode present in Signal 2.

Kaiser method, CWT based method and HHT method. This is clearly evident from figs. 6.2

and 6.3, which show the plot of percentage error in attenuation factor estimation of different

methods when the SNR value of the signal is varied from 15 dB to 25 dB. In these figures,

PM, HHT, VMD and CWT denote the proposed method, HHT based method, VMD-Teager

Kaiser method and CWT based method, respectively. The maximum attenuation factor es-

timation error of the VMD- Teager Kaiser method, CWT method and the HHT method is

found to be 23.2%, 9.6% and 16.66%, respectively, whereas that of the proposed method

is only 3.07%. It is observed that while analyzing signals with closely spaced modes, like

Signal 2 and Signal 3, the estimates of the HHT method are highly inaccurate. This is due

to the usage of Empirical Mode Decomposition (EMD) in HHT method. HHT uses EMD

for extracting different modes present in the signal. However, when the signal has closely

spaced modes, EMD fails to decompose the signals with closely spaced modes effectively
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resulting in mode mixing. This phenomenon leads to failure in the identification of one or

more modes present in the signal. Hence, it can be inferred that the HHT method is not

suitable for estimating signals with closely spaced modes. The other three methods used for

modal parameter estimation of Signal 2 and Signal 3 i.e. VMD-Teager Kaiser, CWT and the

proposed methods are compared in terms of attenuation factor estimation error. The attenu-

ation factor estimation error of Signal 2 obtained through these three methods are shown in

figs. 6.4, 6.5 and 6.6. It is noticed that, among the four methods under consideration, the pro-

posed method has the least attenuation factor estimation error proving that it can accurately

estimate the modal parameters of noise contaminated signals with closely spaced modes.

Table 6.2: Modal parameters of Signal 2 estimated at different sampling rates

Sampling(Hz) Frequency ATF Estimation error Estimation error
rate(Hz) (Hz) in frequency (%) in ATF (%)

0.7122 0.0404 0.309 1.00
10 1.2223 0.0597 -0.626 -0.50

1.4106 0.0288 0.042 -4.00
0.7122 0.0404 0.309 1.00

20 1.2280 0.0609 -0.162 1.50
1.4106 0.0288 0.042 -4.00
0.7102 0.0388 0.028 -3.00

30 1.2288 0.0597 -0.097 -0.50
1.4103 0.0289 0.021 -3.66
0.7102 0.0391 0.028 -2.25

40 1.2286 0.0596 -0.110 -0.66
1.4105 0.0290 0.035 -3.33

The data obtained from the PMU will be sampled at frequencies between 10 Hz and 120

Hz [97]. For a parameter estimation algorithm to be implementable, it should estimate the

parameters accurately irrespective of the sampling rate of the PMU. The ability of the pro-

posed method to estimate the modal parameters accurately is investigated using Signal 2 at

15 dB SNR and the results obtained are tabulated in Table 6.2. It is seen that irrespective

of the sampling rate of the signal, the estimates of the proposed method is much closer to

the true modal parameter values. For instance, while estimating the modal parameters of

Signal 2 sampled at 10 Hz, the maximum frequency and attenuation factor error of the pro-

posed method is only 0.626% and 4.0%, respectively. It is also observed that the estimation

error of both methods decreases with the increase in sampling rate. This proves that the pro-

posed method can accurately estimate the modal parameters of the signal irrespective of its

sampling rates.
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6.3.2 Real time PMU data

In this section, the proposed method is applied to a real time power system data for the iden-

tification of poorly damped modes. The system under consideration is the WECC system.

The details about this system is provided in Section 3.3.2. Two signals with the length of

8.6 seconds, as shown in fig. 6.7, generated from this data, is used to compare the proposed

method with the VMD-Teager Kaiser based method [94], a HHT based method [93] and

CWT based method [55].

Figure 6.7: Variation of power in Round mountain 1 line of WECC system on 14th September
2005.

Figure 6.8: FFT plot of signal corresponding to analysis window 1.

Table 6.3 shows the estimated modal parameters of the signals corresponding to analysis

windows 1 and 2 obtained through the proposed method, VMD- Teager Kaiser method [94],
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Figure 6.9: FFT plot of signal corresponding to analysis window 2.

Table 6.3: Dominant modes and its parameters of WECC system probe data

Estimated value Proposed HHT VMD CWT
from [98] method method method method

Signal Frequency ς Frequency ς Frequency ς Frequency ς Frequency ς

(Hz) (%) (Hz) (%) (Hz) (%) (Hz) (%) (Hz) (%)

Analysis 0.32 8.3 0.3201 8.04 0.3543 6.82 0.3029 7.3 0.3205 6.09
window 1 0.6920 12.80 - - - - 0.7891 2.99
Analysis 0.31940 7.73 0.3221 10.86 0.2902 6.99 0.3157 5.36
window 2 0.6892 12.33 - - - 0.7576 2.24

Table 6.4: Dominant modes and its parameters of WECC system probe data at different
SNRs

SNR = 15 dB SNR = 20 dB SNR = 25 dB SNR = 30 dB

Signal Frequency ς Frequency ς Frequency ς Frequency ς

(Hz) (%) (Hz) (%) (Hz) (%) (Hz) (%)

Analysis 0.3224 7.98 0.3211 8.01 0.3201 8.04 0.3201 8.04

window 1 0.6920 12.81 0.6918 12.82 0.6919 12.80 0.6919 12.80

Analysis 0.3197 7.67 0.3191 7.71 0.3194 7.73 0.3194 7.73

window 2 0.6892 12.33 0.6892 12.33 0.6892 12.33 0.6892 12.33

HHT method [93] and CWT method [55], respectively. The FFT of these signals are plotted

in figs. 6.8 and 6.9. It is noticed from these figures that both the signals have two peaks

corresponding to two dominant modes present in them. The frequencies of these modes were

found to be around 0.32 Hz and 0.70 Hz respectively. It is also noticed that, among the

four methods under consideration, only the proposed method and the CWT based method

identifies both these modes whereas HHT and VMD- Teager Kaiser based methods identifies
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only the 0.32 Hz mode. However, the CWT based method estimated the frequency of the

0.70 Hz mode with considerable error. It is also observed that in comparison to the other

three methods, the modal parameter estimates of the proposed method for the 0.32 Hz mode

are closest to the reported values in [84]. Therefore, it can be inferred that, while analysing

real time signals, the proposed method provides more accurate estimates of modal parameters

than the VMD- Teager Kaiser [94], HHT [93] and CWT [55] based methods. The estimated

results of Table 6.4 indicate that the modal parameter estimates of the proposed method is

almost constant even at high levels of noise proving its robustness. Hence, it is proved from

Tables 6.3 and 6.4 that in comparison to the other three methods, the proposed method is a

better choice for identification of poorly damped modes present in real time signals.

Table 6.5: Dominant modes and its parameters of WECC system probe data obtained through
HTLS, EMO ESPRIT, Improved SSI and EWT-ESPRIT methods

HTLS EMO ESPRIT Improved SSI EWT-ESPRIT
method method method method

Signal Frequency ς Frequency ς Frequency ς Frequency ς

(Hz) (%) (Hz) (%) (Hz) (%) (Hz) (%)

Analysis 0.3183 8.39 0.3207 8.30 0.3208 8.1 0.3201 8.04

window 1 0.6962 11.83 - - 0.6723 12.91 0.6920 12.80

Analysis 0.316 8.11 0.3149 7.88 0.3189 8.08 0.3194 7.73

window 2 0.6642 10.51 - - 0.6769 12.91 0.6892 12.33

To further prove the effectiveness of the proposed EWT-ESPRIT method, it is compared

with the HTLS, EMO ESPRIT and SSI based methods proposed in Chapters 3,4 and 5 of

this thesis. The real time PMU signals from the WECC system is used for this purpose.

It is observed from Table 6.5 that the estimates of the proposed EWT-ESPRIT method are

almost similar to the other methods proposed in this thesis. This proves that the proposed

EWT-ESPRIT method is accurate like the other methods proposed in this thesis.

6.4 Conclusion
This chapter proposed a EWT-ESPRIT based approach for identifying the poorly damped

electromechanical modes in the power system. In this approach, EWT is used to split the

signal into monocomponents and the modal parameters of these monocomponents are esti-

mated through ESPRIT algorithm. The performance evaluation of the proposed approach is

carried out using synthetic signals with known modal parameters and real-time PMU data
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from actual power system at different levels of noise. The estimated results of these signals

are compared with that of a VMD- Teager based method, a CWT based method and an HHT

based method in the literature. Results reveal the superiority of the proposed method over

the other three methods. The proposed approach is designed based on the analysis of data

received from one PMU in the power system. However, it can be easily extended to anal-

yse data from multiple PMUs with the help of a powerful processor with parallel computing

facility at the control centre.
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Chapter 7

Conclusions and Future work

This thesis aims to optimally place the PMUs maintaining complete observability of the

power system during normal operating conditions and contingencies and develop algorithms

for identifying the poorly damped modes in low frequency oscillations utilizing synchropha-

sor measurements. These low frequency oscillations can be broadly classified into ambient

and ringdown type oscillations. The characteristics of the ringdown and ambient oscillations

are entirely different. Therefore, separate algorithms are required for the analysis of these

oscillations. Hence, four different algorithms using parametric methods are developed for

this purpose.

Chapter 1 discusses the basics of Phasor Measurement Units and their applications. A

brief explanation of power system stability and small signal stability in particular and the

conventional methods for its estimation are also added in this section. It is followed by a

detailed literature review on optimal PMU placement and synchronized measurements based

estimation of poorly damped modes in power system. The motivation behind selecting this

research topic is detailed at the end of this chapter.

In Chapter 2, an optimal placement algorithm using PMUs of varying channel capacity

is proposed. The proposed algorithm provides the complete observability of the system un-

der normal operating conditions as well as contingencies like single line outage and PMU

outages. Further, it ensures the maximization of measurement redundancy also, which is at-

tainable with the optimal PMU set. In this algorithm, the channel capacity of the PMU placed

at a particular bus is determined by the number of interconnections of that bus. Addition of

this constraint prevents the placement of a PMU with higher channel capacity at a bus with

less number of interconnections. This eventually results in a reduction in the number of PMU
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channels used for complete observability leading to a reduction in the installation cost. As

the observability constraints of this model are non-linear in nature, it is solved using Mixed

Integer Quadratic Constrained Programming. The algorithm has been validated on various

IEEE test systems and a NRPG -246 bus Indian system. The superiority of using PMUs of

varying channel capacity is proved by comparing its performance with that of PMU having

fixed channel capacity under normal operating conditions as well as contingencies like sin-

gle line outage and PMU outages. Similarly, the redundant observability formulation of the

proposed model is tested by comparing it with cost minimization model using PMUs with

varying channels.

In Chapter 3, a HTLS algorithm for analysing the low frequency modes in ringdown

oscillations was proposed. HTLS, being a parametric method, requires an accurate estimate

of the model order for its proper implementation. This is obtained based on the number of

peaks in the FFT plot of the signal. The fictitious modes, if any, present in the estimated

results of the HTLS algorithm are removed by comparing the amplitude of the estimated

modes as the amplitude of the true modes are much higher than that of the fictitious modes.

The superiority of the proposed method was proven by comparing it with a Fourier based and

Prony based models in the literature. Three synthetic signals having known modal parameters

and real time signals obtained from PMUs placed in an actual power system is used for this

purpose. Results reveal that it performs better than the other two methods irrespective of the

reporting rate of the signal and the extent of noise contamination.

An ESPRIT based method for identifying the poorly damped modes in ringdown oscil-

lations occurring in the power system is proposed in Chapter 4. The model order estimates

for the ESPRIT method is obtained through EMO algorithm. The effectiveness of the EMO

algorithm is tested by comparing it with a similar model order algorithm in the literature.

Comparison reveal that the EMO algorithm can effectively estimate the model order of the

highly noisy signals also. Further, the effectiveness of the EMO ESPRIT method is verified

by comparing it with a ARMA based and Modified Prony based methods in literature. Sim-

ulation results show that the proposed method provides an accurate estimate of the modal

parameters of the ringdown signals without the presence of fictitious modes irrespective of

the noise contamination, presence of close modes in the signal and low PMU reporting rates.

An improved SSI based algorithm for estimating the modal parameters of ambient os-

cillations occurring in the power system is proposed in Chapter 5. The proposed SSI based
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method uses a Stationary Wavelet Transform based denoising method for reducing the noise

content present in the signal. It also uses EMO algorithm for accurate model order estimation

to prevent the occurrence of fictitious modes in the estimated results. The ability of the EMO

algorithm to estimate the model order accurately is proved by comparing it with the model

order estimation algorithm of a Matrix Pencil and Eigen Realization Algorithm based meth-

ods in the literature. Further, the effectiveness of the proposed SSI based method is proved

by comparing its performance with a Teager Kaiser based, Fourier based and another SSI

based methods in the literature using synthetic and real time signals. The results reveal that

the proposed SSI based method estimates all the modes present in ambient type oscillations

with a high degree of accuracy even under high noise contamination.

Chapter 6 proposed a method based on a combination of ESPRIT and Empirical Wavelet

Transform (EWT) for analysing low frequency oscillations in the power system. In this

method, EWT decomposes the signal into its mono-components and ESPRIT algorithm es-

timates the modal parameters of these mono-components. The EWT can extract different

modes of the signal efficiently in comparison to other wavelet methods as it use adaptive

wavelets for the decomposition whereas other wavelet methods use fixed basis for the same.

Since the signal is decomposed into mono components, model order estimation, which is es-

sential for the modal parameter estimation through ESPRIT technique, is not required. The

effectiveness of the proposed method is proven by comparing it with Variational Mode De-

composition (VMD)- Teager Kaiser based method, a CWT based method and an HHT based

method in the literature using synthetic and real time signals.

7.1 Major contributions of the thesis
The major contributions of this thesis are summarized as follows:

1. An improved optimal placement algorithm utilizing PMUs of different channel capac-

ity for complete observability along with maximization of measurement redundancy

during normal operating condition and contingencies is proposed. Simulation results

prove that usage of PMUs with varying channel capacities reduces the total installation

cost and improves the utilization of the PMU channels.

2. Two algorithms based on HTLS and ESPRIT were proposed for identifying the poorly

damped modes in ringdown oscillations. The model order, which is a prerequisite for

these algorithms, is estimated through an FFT based algorithm and EMO algorithm,

respectively. Simulation results prove that the proposed methods accurately estimated
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the modal parameters of ringdown oscillations irrespective of its noise contamination

and PMU reporting rates.

3. A SSI based algorithm for analyzing the modal parameters of ambient oscillations

is developed. The noise resistance of the proposed SSI based method is improved

with the help of a SWT based denoising algorithm. It also uses EMO algorithm for

accurately estimating the model order of the signal so that fictitious modes are not

estimated along with the true modes of the signal. Simulation results indicate that the

proposed SSI based method effectively identifies the poorly damped modes of ambient

oscillation even under high levels of noise and low PMU reporting rates.

4. An EWT- ESPRIT based algorithm for analysing the low frequency oscillations in the

power system is proposed. The novelty of this algorithm is that model order estimation

which is a prerequisite for the ESPRIT method, is not required for this model. This

is due to the usage of EWT, which decomposes the signal into its mono components.

Simulation results prove that the proposed EWT ESPRIT method accurately identi-

fies the poorly damped modes in low frequency oscillations irrespective of its noise

contamination.

7.2 Future work

As a consequence of the research carried out in this thesis, the following aspects are identified

for future research in this area.

1. In Chapters 3-5, different algorithms are proposed for estimating the modal parameters

of ambient and ringdown oscillations. In order to identify the type of oscillations so

that an appropriate algorithm can be applied, a classifier can be developed to distin-

guish the signal under consideration as either ringdown or ambient.

2. In Chapter 6, an EWT - ESPRIT method is proposed for analyzing the low frequency

oscillations without using model order estimate. The EWT algorithm needs to be fine

tuned to accurately estimate the modal parameters of non stationary oscillations occur-

ring in power system.

3. In this thesis, different algorithms are proposed for identifying the poorly damped

modes of ambient and ringdown oscillations. However, the possibility of designing

a single algorithm, preferably using Wavelet transform based techniques for analyzing

the poorly damped modes of both types of oscillations can be investigated.
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4. The parametric methods used for the modal parameter estimation in this thesis are com-

putationally intensive due to the usage of Singular Value Decomposition and inverse

operations. Hence, further work can be done to reduce the computational complexity

of these algorithms.

5. The data used for analysing the low frequency oscillations are obtained from PMUs.

However, the measurements obtained from PMUs are prone to different types of errors,

which are caused by limited measurement precision, telecommunication equipment,

noise, interference from devices, cyber attacks etc. This introduces bad data into the

PMU measurements. Hence, an algorithm for detecting the bad data and removing

them before passing it to the modal parameter estimation algorithms is essential.
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