
Service Oriented Architecture for Constrained Environments

Ph.D. Thesis submitted by

ROHIT VERMA
12110101

Discipline of Computer Science and Engineering

INDIAN INSTITUTE OF TECHNOLOGY INDORE

July 2018

Service Oriented Architecture for Constrained Environments

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

by

ROHIT VERMA
12110101

Discipline of Computer Science and Engineering
INDIAN INSTITUTE OF TECHNOLOGY INDORE

July 2018

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled “Service Oriented

Architecture for Constrained Environments" in the partial fulfillment of the requirements for the award

of the degree of DOCTOR OF PHILOSOPHY and submitted in the DISCIPLINE OF COMPUTER

SCIENCE AND ENGINEERING, Indian Institute of Technology Indore, is an authentic record of my own

work carried out during the time period from July 2012 to May 2018 under the supervision of Dr. Abhishek

Srivastava, Associate Professor, Indian Institute of Technology Indore, India.

The matter presented in this thesis has not been submitted by me for the award of any other degree

to this or any other institute.

Signature of the student with date

(Rohit Verma)

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Signature of Thesis Supervisor with date

(Dr. Abhishek Srivastava)

ROHIT VERMA has successfully given his Ph. D. Oral Examination held on

Signature of Chairperson (OEB) Signature of External Examiner Signature of Thesis Supervisor

Date: Date: Date:

Signature of PSPC Member#1 Signature of PSPC Member#2 Signature of Convener, DPGC

Date: Date: Date:

Signature of Head of Discipline

Date:

ACKNOWLEDGEMENTS

I am very grateful to my supervisor Dr. Abhishek Srivastava for his invaluable guidance, en-

couragement, and direction throughout this work. He gave me the freedom to work on the topic

of my choosing and was very supportive throughout the way. Working with him ultimately re-

sulted into a great deal of enjoyment in my dissertation research. His constant encouragement,

friendly interactions, and constructive support have enabled this work to achieve its present

form. The warm blessings, excellent comments, constructive suggestions, and thoughtful guid-

ance given by him time to time shall carry me a long way in the journey of life, on which I am

about to embark.

My PhD Student Progress Committee (PSPC) guided me through all these years. I would

like to express my heartfelt gratitude to Dr. Aruna Tiwari and Dr. Prabhat Upadhyay for their

valuable time, interesting discussions, and constructive suggestions.

I am thankful to IIT Indore for giving me an opportunity to carry out the research work

and providing all the facilities. Very special thanks to Prof. Pradeep Mathur, Director, IIT

Indore, for supporting and allowing this work to be represented at various national/international

platforms. Also, I express my gratitude to Dr. Kapil Ahuja and Dr. Surya Prakash for their

valuable time and support at the institute for the administrative purposes.

I want to thank everyone who have, in one way or another, helped me to conduct this

research. I express my appreciation and indebtedness to my friends Dheeraj Rane, Tanveer

Ahmed, Pramod Mane, Arpit Bhardwaj, Vipul Kumar, Gyan Praksh who helped me in many

ways during my thesis work.

I also take this opportunity to express my humble gratitude towards the members of IIT

Indore including the office staff, laboratory technicians, and library staff for their kind co-

operation and extended support offered to me by providing the required resources for my work.

I further extend my thanks to Mr. Jitendra Gupta, Shailendra Verma, Dheeraj Vijayvargiya, and

Lalit Jain.

i

ii

Lastly, but undoubtedly the most valued, gratitude is expressed for my mother, Mrs. Sunita

Verma and my father, Mr. Suresh Verma for their continuous support during the tough phases

of my Ph. D. Their suggestions and words motivated me to continue the hard work during the

course of this thesis. Special thanks to Dr. Shweta Verma and Dr. Pawan Patidar. I would

specially like to thank my wife Khushboo for her support and tolerance during my Ph.D.

Dedicated to my parents

iii

ABSTRACT

KEYWORDS: Service-oriented Architecture; Web Services; Mobile Computing;

Service Discovery; Service Description.

The work presented in this dissertation deals with implementing the concepts of Service-

Oriented Architecture over constrained environments taking into account the distinct and unique

requirements of the same. Over the last decade, Service-Oriented Architecture (SOA) has be-

come the preferred approach to building adaptive distributed information systems. This is

owing to the fact that such systems have distinct properties like loose coupling, platform inde-

pendence, seamless integration within and across organizational boundaries. Such properties

enable the system to adopt rapid changes by recombining and scaling existing services. There

has been a plethora of work reported on SOA in literature and practice. Most of this work,

however, does not consider constrained and mobile environments as distinct. The fact remains

that traditional approaches are definitely not directly applicable to mobile environments owing

to the latter’s dynamic and distinct nature.

This dissertation contributes with a set of approaches and methods to facilitate SOA in con-

strained environments. First, a service registry framework is proposed that manages dynamic,

light weight, and distributed service registries ‘solely’ over constrained and mobile devices.

Second, we propose a dynamic, lightweight, extensible, and detailed service description ap-

proach especially designed for constrained mobile environments. The novel approach takes

into account crucial description aspects such as isolated data sources, collaborating partners,

hardware along with the functional, non-functional, business, and contextual aspects. Third,

a model inspired from ‘Membrane Computing’, to describe and execute a mobile workflow

is proposed. The model orchestrates the mobile service workflow in a decentralized manner.

Finally, the novel approaches proposed are validated by engineering a mobile prototype in the

form of an android service and evaluating the same in an actual laboratory setting with the

intent of assessing the efficacy of the same.

iv

v

The research presented here has the potential to be applied by practitioners in scenarios

where there is little or no preexisting infrastructure. Examples of such scenarios include war-

front settings, disaster relief operations and so on. Further, the dissertation would provide

researchers with a foundation to work towards security issues, QoS improvement, and other

related issues in the field of mobile SOA.

LIST OF PUBLICATIONS

Journals:

J1. Rohit Verma, Abhishek Srivastava. A Dynamic Service Description for Mobile
Environments. Springer Computing, pp. 1–29, 2018. (DOI: 10.1007/s00607-018-
0611-z).

J2. Rohit Verma, Abhishek Srivastava. A Dynamic Web Service Registry Framework
for Mobile Environments. Peer-to-Peer Networking and Applications (PPNA) vol.
11, no. 3, pp. 409—430, 2018. (DOI:10.1007/s12083-016-0540-6).

J3. Rohit Verma, Abhishek Srivastava. Service Discovery in Mobile based Service-
Oriented Crowdsourcing. (Submitted to Journal of Internet Services and Applica-
tions).

Conferences:

C1. Rohit Verma, Abhishek Srivastava. Towards Service Description for Mobile Envi-
ronments. In Proceedings of the 12th IEEE International Conference on Services
Computing (SCC), New York, USA, 2015. (DOI: 10.1109/SCC.2015.28)

C2. Rohit Verma, Tanveer Ahmed, Abhishek Srivastava. Expressing Workflow and
Workflow Enactment using P Systems. In Proceedings of the 15th International
Conference on Membrane Computing (CMC), Prague, Czech Republic, 2014.

C3. Tanveer Ahmed, Rohit Verma, Miroojin Bakshi, Abhishek Srivastava. Membrane
Computing Inspired Approach for Executing Scientific Workflow in the Cloud.
In Proceedings of the 15th International Conference on Membrane Computing
(CMC), Prague, Czech Republic, 2014.(DOI: 10.1007/978-3-319-14370-5_4)

C4. Rohit Verma, Abhishek Srivastava. A Novel Web Service Directory Framework for
Mobile Environments. In Proceedings of the 21th IEEE International Conference
on Web Services (ICWS), Alaska, USA, 2014. (DOI: 10.1109/ICWS.2014.91)

C5. Rohit Verma, Sushmita Ruj. Security Services using crowdsourcing. In Proceed-
ings of International Conference on Ambient Systems, Networks and Technologies
(ANT), Hasselt, Belgium, 2014. (DOI: 10.1016/j.procs.2014.05.454)

vi

LIST OF PUBLICATIONS vii

C6. Rohit Verma, Sushmita Ruj, Abhishek Srivastava. Security Verification using Crowd
Sourcing. In Proceedings of the Security and Privacy Symposium (SPS), IIT Kan-
pur, Kanpur, India, 2013.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iv

LIST OF PUBLICATIONS vi

LIST OF TABLES xi

LIST OF FIGURES xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Research Context . 4

1.3 Contribution . 7

1.4 Organization of the Thesis . 8

2 Background 9

2.1 Mobile Web Services . 9

2.2 Service-oriented Architecture . 12

2.2.1 Find : UDDI . 13

2.2.2 Publish : WSDL . 14

2.2.3 Bind : SOAP and REST . 16

2.3 Crowd-sourcing based Service Architecture 18

2.4 Summary . 20

viii

TABLE OF CONTENTS ix

3 Dynamic Web Service Registry Framework 22

3.1 Background . 22

3.2 Motivation . 25

3.2.1 Motivating Scenario . 25

3.2.2 Need for a Novel Mobile Service Registry 27

3.2.3 Mobile Service Registry Requirements 29

3.3 Proposed Approach . 30

3.3.1 Registry Details . 30

3.3.2 Design Concept . 32

3.4 Mobile Registry Operations . 38

3.4.1 Basic Registry Operations 39

3.4.2 Mobile Specific Registry Operations 45

3.5 Implementation . 48

3.5.1 Evaluation . 53

3.6 Related Work . 63

3.6.1 Centralized Service Registry: 63

3.6.2 Centralized Mobile Service Registry: 65

3.6.3 Distributed Service Registry: 65

3.6.4 Distributed Mobile Service Registry: 67

3.7 Summary . 69

4 Dynamic Web Service Description 71

4.1 Background . 74

4.2 Problem Statement . 76

4.3 Proposed Approach . 78

4.3.1 Design Concept: . 78

4.3.2 Description Components: 82

4.4 Evaluation . 90

4.4.1 Feature Comparison . 90

4.4.2 Empirical Evaluation: Prototype 92

4.4.3 Conceptual Evaluation: Case Study 97

4.5 Related Work . 100

4.6 Summary . 103

5 Dynamic Web Service Workflow 104

5.1 Background . 104

5.2 Membrane Computing Paradigm . 108

5.3 Membrane Inspired Dynamic Workflow Description 112

5.3.1 Workflow Definition . 115

5.3.2 Workflow Pattern using Membrane Computing 120

5.4 Membrane Inspired Workflow Execution 124

5.5 Results . 130

5.5.1 Experimental Setup . 130

5.5.2 Execution Efficiency . 130

5.6 Related Work . 134

5.7 Summary . 136

6 Conclusion and Future Work 137

REFERENCES143

List of Tables

3.1 Summary of Operations Performed in Proposed Approach and UDDI. 44

3.2 Power Consumption by Various Registry Operations 55

3.3 Data Exchanged by Various Registry Operations 55

4.1 Comparison of Proposed Approach with Existing Approaches in Litera-

ture . 91

4.2 Salient Features of Existing Approaches in Literature 93

4.3 Proposed Features and its Prototype Realization 94

4.4 Mobile Services Case Study Details 98

4.5 Mobile Service Description Requirement Coverage for Case Studies . 99

xi

List of Figures

2.1 Service-oriented Architecture . 13

2.2 UDDI Registry Structure . 14

2.3 WSDL 2.0 Structure . 15

2.4 Crowdsourced SOA Environment 19

2.5 SOA and various technologies . 20

3.1 Mobile Registry Entries . 32

3.2 Mobile Service Registry Approach 33

3.3 Group and Service Registration . 40

3.4 Service Discovery . 41

3.5 Service Binding . 43

3.6 Architecture of Registry and Navigator Nodes 49

3.7 XML Streams Used in Proposed Approach 52

3.8 Experimental Setup . 54

3.9 Total time taken for new service registrations 56

3.10 Service Discovery Time for varied registered services 56

3.11 Registry size for varied registered services 57

xii

LIST OF FIGURES xiii

3.12 Response Time behavior without an active call 58

3.13 Response Time behavior during an active call 59

4.1 Role of Service Description . 74

4.2 Mobile Service Description . 78

4.3 Service Description Infoset for Mobile Services 81

4.4 Mobile Service Description Prototype 95

4.5 Prototype Battery Usage on the Android Device 96

4.6 Prototype CPU Usage on the Android Device 96

5.1 Membrane Structure . 110

5.2 A Simple Workflow and its Membrane Representation 119

5.3 Sequential Execution of Work-items 120

5.4 Parallel Split of Work-items . 121

5.5 Synchronization of Work-items . 121

5.6 Exclusive Choice from Work-items 122

5.7 One of the Workflows for Experimentation 129

5.8 Execution Time WF-I No Constraints 131

5.9 Execution Time WF-III No Constraints 132

5.10 Execution Time WF-I Limited Bandwidth 133

5.11 Network Performance Limited Bandwidth 133

5.12 Network Performance Limited Bandwidth 134

Chapter 1

Introduction

This dissertation presents our research for facilitating Service-Oriented Archi-

tecture in constrained environments, proposing lightweight and dynamic ap-

proaches that acknowledge the distinct requirements of these environments. In

this chapter, we present the motivation of our study in section 1.1, followed by

the research context in section 1.2. Section 1.3 presents the summary of contri-

butions. Finally, section 1.4 describes the organization of the thesis.

1.1 Motivation

Ubiquitous computing has as its goal the enhancing computer

use by making many computers available throughout the physical

environment, but making them effectively invisible to the user.

-Mark Weiser[1]

Mark Weiser coined the term ubiquitous computing with contemplation of

the role of computing devices in day-to-day activities of everyday life. His vi-

sion of ubiquitous computing further acknowledges the fact that invention and

adaption of modern computing devices in everyday life is just a beginning. The

real power of the concept would emerge with the seamless interaction of all the

computing devices. Over the last decade, there has been a tremendous growth

in constrained computing devices in the form of tablets, mobile phones, smart

1.1 Motivation 2

phones, PDAs, smart vehicle devices etc. The vision of ubiquitous comput-

ing could not be achieved without these constrained and mobile devices. This

growth makes the mobile environment a predominant candidate for realizing

the vision of ubiquitous computing. Further, to cater to the requirements of

ubiquitous computing, there has been a requirement of extensive distribution in

software systems. This distribution in software systems requires seamless inte-

gration and connection among heterogeneous applications and resources across

organizational boundaries. Service-oriented architecture (SOA) is a well proven

design paradigm that provides the required conceptual foundations for such in-

tegration. This is achieved by creating autonomous, platform-independent, and

loosely coupled software entities called services. Service-oriented architecture

promotes the idea of development of rapid, low-cost, inter-operable, evolvable,

and massively distributed applications [2].

Recent years have seen an emergence of service-oriented systems in mobile

environments, where the mobile devices are predominantly considered as ser-

vice consumers. Several companies like Google, Facebook, Twitter, Dropbox,

have (or are in the process of) modernized their existing infrastructure and are

repackaging existing applications and services for this new class of mobile con-

sumers. The primary focus of these companies is to consider the mobile device

users as consumers. However, the fact remains that the true potential of these

hand-held widgets would only be fully utilized when they are also promoted

as service providers. One of the many benefits of a mobile service provider

would be the ready availability of dispersed data and information via mobile

services that are otherwise expensive to collect by a single centralized entity.

There has been substantial work towards enabling mobile devices to host and

provision web services [3][4][5]. These mobile services are developed and pro-

visioned over a wide variety of platforms and technologies. Therefore, a flexible

architecture is required that provides a standardized way of interaction among

1.1 Motivation 3

such loosely coupled, autonomous, and platform independent mobile services.

Service-Oriented Architecture (SOA) is an architecture that could make mo-

bile services describable, publishable, and discoverable. Service-orientation is

not a new concept and is a well proven web technology in legacy wired environ-

ments. This dissertation addresses the challenges and shortcomings of existing

SOA technologies when applied in constrained and mobile environments and

presents novel solutions for SOA facilitation in the same. One of the motives

of the dissertation is to present a Service-Oriented Architecture that is ’solely’

driven by constrained devices. One such framework makes use of the computing

power dispersed in the crowds’ mobile devices and offers security services using

them. The security service is a specific example and the same could further be

extended to generically provide any service offering over mobile devices. Fol-

lowing is a motivating scenario and demonstrates a possible application domain

of our research:

Motivating Scenario

Alice is a high risk cardiovascular patient. Recently, she got an ECG sensor

implanted in her body [6] that monitors her cardiovascular health and provides

statistics and information as a mobile service via her mobile phone. This service

can be consumed by her cardiologist and she can be provided with proper pre-

scriptions as per her current health. One day she had a sudden cardiac arrest

on her way to another city. Alarming variations in her ECG signals were ob-

served by the service on her mobile device and the service discovered the near-

est ambulance through the latter’s exposed mobile service. Further, her mobile

service automatically provided access to her latest ECG signals to the ambu-

lance support medical staff and enabled them to prepare well in advance for

the patient. The ambulance was able to discover her current location through

1.2 Research Context 4

another service on her mobile device that provided GPS coordinates. Further,

when the ambulance was on its way, the ambulance’s mobile service provided

the doctors at the nearest hospital with the latest information on the situation.

Simultaneously, the hospital was able to make use of Alice’s ECG mobile service

to gather her ECG history and prior to her arrival the doctors at the hospital

had a chance to study her medical profile and case in detail. On its way to the

hospital, the ambulance was able to make use of the services exposed by other

travelers on their respective mobile devices to avoid the busy route and opt for

a path with less traffic. Meanwhile, the insurance company was contacted by

Alice’s mobile service and her hospital information was provided, so that the fi-

nancial aspect of the treatment could be taken care of before her arrival. Alice’s

cardiologist was also able to provide details of his/her prescriptions via his/her

mobile service to the doctors in the hospital so that the latter could learn about

her medications and allergies if any.

1.2 Research Context

With rapid advancements in computing technologies and mobile/wireless net-

working, mobile devices have become perhaps the most suitable and econom-

ical solutions for the provision of dynamic, transient, contextual, personalized

services. These mobile provisioned services can make service access handy and

convenient for service consumers. Further, the provisioning of mobile services

is an economical solution that requires little or no pre-existing infrastructure. In

the discussed scenario, Alice, her cardiologist, the ambulance, hospital staff can

make use of each other’s mobile services in critical situations and can provide

assistance to Alice. This explains the importance of mobile services. Subse-

quently, the scenario also raises a question, leading us to formulate the following

1.2 Research Context 5

thesis question:

"How are the mobile services described, published, discovered, and

utilized in an uncertain constrained environment?"

Analyzing the question in more detail, we discern a number of sub-problems

that need to be solved before the envisioned mobile SOA and the discussed mo-

tivating scenario becomes a reality. We identify three main research challenges

and consider certain sub-issues out of these challenges:

Mobile Service Registry. A major concern when realizing service-oriented

architecture over mobile environments is service discovery. This has received

considerable attention over the past [7][8][9], but work catering specifically to

mobile environments is still missing. Several challenges specific to hosting web

services over mobile devices need to be taken into account in such service dis-

covery mechanisms. These include, but are not limited to battery and network

constraints, limited computational power of mobile devices. Moreover, such

dynamic mobile services are prone to uncertainty (owing to network outage,

battery issues, physical damage) and frequent changes in functionality (primar-

ily owing to the change of context), and hence make frequent service updates a

necessity to effectively function as web-services.

The role of the service registry therefore, becomes one of prominence to

properly manage such dynamism. Traditional service registry solutions for web-

services such as UDDI [10], ebXML [11], can not be directly utilised in such

environments that require frequent updates. What contributes to this is the ex-

haustive data model of such registry offerings that is hard to analyze and parse

for mobile devices at run-time.

Mobile Service Description. A key challenge that is overlooked in mo-

bile environments is “service description”. Service description is crucial for

1.2 Research Context 6

the consumers of services to get a sense and better understanding of the of-

fered services and operations. This is of further importance in mobile environ-

ments, where the service invocation requires a great deal of service understand-

ing owing to the dynamic nature of transient services. Traditionally, WSDL

(Web-Service Description Language) [12] is used to describe and publish the

functional description of web-services. Well written WSDL documents pro-

vide binding implementation information, detailed description of input-output

messages, information on how messages are sent through the network, in addi-

tion to other information. WSDL documents, however, only provide the func-

tional information of a web-service. They do not provide information on the

non-functional aspects, contextual aspects, and the business aspects of a web-

service. This information is crucial and of utmost importance in selection and

proper usage of available services especially in the context of providing such

services over mobile devices.

Mobile Service Workflow. One of the major concerns in realizing and mak-

ing the mobile SOA adaptable to the needs of the real world is effective work-

flow management. When adopting a mobile oriented architecture a decentral-

ized workflow is required. Fulfillment of this requirement is imperative because

in a mobile SOA environment each executing unit i.e. mobile provider is pre-

sented with only a partial view of the entire system and therefore a decentralized

workflow description is in order. In addition to this, decentralization benefits

through the context of Elastic Computing. Consider a compute intensive work-

item that is processing huge volumes of data. If a centralized orchestrator is

handling this task, then it is incumbent upon the orchestrator to gather resources,

provision them in the existing workflow, and perform migrations at remote lo-

cations etc. All this resulting in an incredible and unnecessary burden on the

orchestrator. In a decentralized scenario, each mobile node is made responsi-

ble for provisioning of extra processing capabilities on its own. This results

1.3 Contribution 7

in proper distribution of the burden across nodes. A scenario that bodes well

for constrained mobile environments. Furthermore, a centralized engine fosters

substantial infrastructure, development, maintenance and operational costs. For

most requirements, therefore, a decentralized architecture is an ideal candidate.

1.3 Contribution

The primary contribution of this dissertation is to devise novel ways and means

to facilitate SOA over mobile environments. This directly implies facilitating

SOA in a environment devoid of wired and/or high end systems. We further

acknowledge, however, that a novel system would have limited adaptability if it

were to focus on replacing all existing technologies with new ones. Therefore,

our presented contribution provides alternative for mobile environments in a

manner that it complements existing technologies. With regard to the same, the

contribution of this dissertation are summarized as:

• A novel approach to manage service registry systems is proposed ‘solely’
over mobile devices, and thus realizes a decentralized service registry sys-
tem for SOA without the need for high-end computing systems. The ap-
proach manages a dynamic service registry system in the form of light
weight and distributed registries.

• A dynamic, lightweight, extensible, and detailed service description espe-
cially designed for mobile environments is proposed that considers crucial
aspects such as isolated data source, collaborating partners, and hardware
aspects along with the functional, non-functional, business, and contex-
tual aspects. The description has been partitioned along these lines and
various parts of the description are distributed between service registries
and the mobile service providers. An up-to-date and light weight descrip-
tion has been achieved by this, without compromising on the overall con-
sistency of the description.

• A model inspired from ‘Membrane Computing’, to execute a mobile work-
flow in a decentralized manner. The benefits of this paradigm come from

1.4 Organization of the Thesis 8

the natural process of autonomy, where each cell provisions resources and
executes the workitems on its own. The approach is devised keeping in
mind the feasibility of deployment of mobile web services in a decentral-
ized and distributed manner.

These contributions result in an architecture with reduced Total Cost of

Ownership (TCO). Further, the architecture is driven by constrained devices that

provide services to other constrained devices. Such architecture helps in seam-

less service interactions in real world constrained environments such as smart

homes, smart health care domains, smart city environments. We would be using

the terms constrained environments and mobile environments interchangeably

in the text .

1.4 Organization of the Thesis

The organization of thesis follows:

• In Chapter 2, we provide a background for various SOA and web services
related technologies. We provide a brief introduction to services, web
services, mobile services, SOA, WSDL, UDDI, REST, and SOAP as these
are the basic technologies supporting the work presented in the thesis.

• In Chapter 3, we present in detail an effective means for providing a dy-
namic service registry for constrained environments. The chapter dis-
cusses the detailed architecture of the proposed dynamic service registry.

• In Chapter 4, a dynamic and rich service description approach is presented
for web services in constrained mobile environments.

• In Chapter 5, we present a decentralized workflow description and enact-
ment framework for mobile and constrained environments.

• Chapter 6 concludes our work and directions for future work are reported.

Chapter 2

Background

This chapter constitutes the technical foundation of this dissertation. Therefore,

a wide range of topics are presented that contribute to the overall motivation of

this work towards facilitation of mobile service-oriented architecture.

2.1 Mobile Web Services

Before discussing mobile web services, it is important to comprehend services

in general. A service as defined by Kotler et al.[13] "activities or benefits offered

for sale that are essentially intangible and do not result in the ownership of any-

thing". Another definition by Katzan [14] suggests service as "a provider/client

interaction that creates and captures value". We find the following definition by

Wirtz et al. [15] most suitable for our understanding.

Services are economic activities offered by one party to another.

Often, time-based performances are used to bring about desired re-

sults in recipients themselves or in objects or other assets for which

purchasers have responsibility. In exchange for their money, time

and effort, customers expect to obtain value from access to goods,

labor, professional skills, facilities, networks, and systems. How-

ever, they do not normally take ownership of any of the physical

elements involved.

2.1 Mobile Web Services 10

Now let us understand what is meant by web services. There are a variety

of definitions that can be found in literature. A generic definition is given by

Alonso [16] "Web services are applications accessible to other applications over

the web". W3C 1 defines a web service as:

A Web service is a software system designed to support interop-

erable machine-to-machine interaction over a network. It has an

interface described in a machine-processable format (specifically

WSDL). Other systems interact with the Web service in a manner

prescribed by its description using SOAP-messages, typically con-

veyed using HTTP with an XML serialization in conjunction with

other Web-related standards.

From the above definition, a web service may be described as machine-to-

machine interaction over HTTP. When such web services are implemented over

mobile devices these are called mobile web services or simply mobile services.

In this dissertation, we will use both the terms interchangeably.

We use the term mobile services to imply self-contained and reusable ser-

vices that are provided by mobile devices or sometimes by human users via mo-

bile devices. Such mobile services are application components that facilitate de-

vice to device communication over mobile environments. They provide a means

to communicate between various software applications hosted over mobile de-

vices. Such services may be utilized for commercial and/or non-commercial

purposes. A few prospective applications of mobile services are:

- Partial or total replacement of physical day-to-day items: Physical credit

cards, debit cards, identification cards, access keys can be provisioned as mobile

services hosted over mobile devices of users.
1https://www.w3.org/TR/ws-gloss/#webservice

2.1 Mobile Web Services 11

- Gateway to sensor provided information: Mobile devices can provision

services that offer information provided by general purpose sensors (e.g. Lo-

cation sensor) or special purpose sensors (e.g. Medical sensors (ECG sensors,

Body glucose level sensors)), Environmental sensors (Fire sensors, Barometer

sensor).

- Personal information provider: Services that offer information about a per-

son can act as a dynamic and digital visiting card. This can help him/her so-

cialize without the need of introducing himself/herself again and again. Further,

this can be used by applications that record attendees’ information in a particular

meeting.

- Service in Infrastructure-less environment: Mobile services are particu-

larly useful in scenarios where there is little or no preexisting infrastructure by

functioning through mobile ad-hoc networks. Examples of such scenarios are a

war-front, post-disaster relief operations.

Though such services are already provided over wired networks and are

widely used, the concept of services hosted and provided over mobile devices is

relatively new and is at an inception phase. Services offered over mobile devices

of users has the potential to substantially reduce the total cost of ownership for

hosting a service. Further, such mobile services are able to provide personalized

and contextual services/information in a more effective manner. One may also

suggest running a web service over a wired infrastructure and making a mobile

device a proxy for the same rather than actually hosting it over the mobile de-

vice. Though running mobile services as a proxy can work effectively in certain

situations, there are several applications and scenarios (as discussed above) that

require services to be present on the mobile device. Further, firewalls some-

times block access between mobile services and the proxy. Also, provisioning,

configuring, and maintaining a proxy is more tedious for a common user than

2.2 Service-oriented Architecture 12

maintaining a device itself. Hence, hosting web services over mobile devices is

a better approach in most scenarios. [17] provides an interesting discussion on

the same.

2.2 Service-oriented Architecture

The growing popularity of web services popularized the vision of Service-oriented

Architecture [18] (SOA). OASIS 2 defines service-oriented architecture as

A paradigm for organizing and utilizing distributed capabilities that

may be under the control of different ownership domains. It pro-

vides a uniform means to offer, discover, interact with and use ca-

pabilities to produce desired effects consistent with measurable pre-

conditions and expectations.

There are a few important principles [19] of service-oriented architecture

that include: loose coupling, abstraction, statelessness, re-usability, autonomy,

standardized service contracts, discoverability, composibility, interoperability

and service-orientation. SOA has three primary components that form the iconic

SOA triangle (shown in Figure 2.1): Service Requester, Service Registry, and

Service Provider. Services are offered by the provider and the service requester

is the client of the service. Communication between the provider and requester

are facilitate by the service registry. The offered services are described by

WSDL (Web Service Description Language). Further, with the standardiza-

tion of web services and the seamless use of the World Wide Web (WWW) as a

transport medium, HTTP and WWW have become integral components of SOA.

As we progress through this thesis we will understand that this enables dynamic
2https://www.oasis-open.org/

2.2 Service-oriented Architecture 13

Figure 2.1: Service-oriented Architecture

binding of reusable web services in a loosely coupled manner across enterprises.

We will now elucidate the idea of SOA on the basis of the ‘Find-Bind-Publish’

terminology.

2.2.1 Find : UDDI

In traditional SOA, the find operation is performed over the service registry.

Service registries are generally UDDI [10] based. UDDI stands for Universal

Description, Discovery and Integration. UDDI is the name used for the group

of web based service repositories that expose information about a business and

its technical interfaces commonly known as API’s or Application Programming

Interfaces. These UDDI based service registries are operated over multiple sites

and can be used by any service provider to register its business services and by

clients that want to search information about web services made available by or

on behalf of business entities. The information that a business entity can reg-

ister about its web service includes all information that would enable a service

requester to answer the questions: "who, what, how, and where" about a web

service. Figure 2.2 shows the information stored in a typical UDDI registry.

The information is provided by the web service provider to the UDDI registry

2.2 Service-oriented Architecture 14

Figure 2.2: UDDI Registry Structure

through publisher APIs (The information is transported as XML tags, we do not

show the XML for the UDDI structure here for simplicity and space constraints.

Interested readers may refer to: http://goo.gl/cn8VaP).

A UDDI registry comprises a set of three components: White Pages com-

prise the basic information about the web service provider (e.g. contact, name,

address), Yellow Pages comprise business category listing information about the

related service provider and follow a standard taxonomy. Green Pages provide

detailed technical information about the interface of a web service. Usually,

WSDL is a part of green pages. The primary purpose of these components is to

ease service discovery for the service requester.

2.2.2 Publish : WSDL

In traditional SOA, web services are published using WSDL [12]. WSDL stands

for Web Service Description Language. WSDL is an XML based language used

2.2 Service-oriented Architecture 15

Figure 2.3: WSDL 2.0 Structure

to describe a web service interface. It is the most commonly used technology

for web service description. A WSDL document describes through XML the

types of inputs and outputs of the service. WSDL is currently used in two dif-

ferent versions. The most recent version of WSDL is WSDL2.0. This supports

binding with all HTTP request methods and this facilitates improved support

for RESTful web services as well. We will be describing RESTful web services

subsequently in this chapter. Figure 2.3 shows the structure of a WSDL2.0 doc-

ument.

A WSDL document is a concrete description of a web service. It is usu-

ally retrieved via a URL in the SOA framework. The WSDL description of a

web service can be either statically generated in advance or may be generated

dynamically upon request.

There have been few of the other solutions to describe web services that

are well discussed and compared in chapter 4 of this dissertation, to name a

few WADL (Web Application Desscription Language), Hydra [20] (a linked

2.2 Service-oriented Architecture 16

data based semantic service description for RESTful services), SA-REST [21](a

mashup based semantic service description for RESTful services). Several other

service descriptions have been taken into account for comapritive analysis that

have been presented in tabular form and in related work section of chapter 4 4.

2.2.3 Bind : SOAP and REST

Binding means connecting a web service function to another application that

drives the execution of that function. In other words, binding is where a web

service is connected (its functionality) to an endpoint location (where it is exe-

cuted). In traditional SOA, web services are bound via SOAP binding 3. REST

is the other prominent alternative for web services that has become popular over

the years.

SOAP: Originally, SOAP stood for Simple Object Access Protocol but with

version 1.2 of SOAP this acronym was dropped. It is a lightweight, XML based

communication protocol for exchanging information between distributed appli-

cations. It specifies the format of messages and their processing rules. SOAP

relies on XML for representing messages and the format of messages is spec-

ified in term of encoding rules for application-defined data-types. Initially,

SOAP was designed to work over Hypertext Transfer Protocol (HTTP) only.

Subsequently, it was improved upon to be used over other transport protocols

as well. SOAP is stateless and supports fundamentally one-way transmissions

from senders to receivers. However, several SOAP based messages are com-

bined to implement various other message exchange patterns e.g. request/re-

sponse. A typical SOAP message consists of three parts: 1. SOAP envelop that

encloses the entire SOAP message and describes what is in the message and

3https://www.w3.org/TR/soap/

2.2 Service-oriented Architecture 17

how to process it. 2. SOAP Header that comprises information on security, ses-

sion and routing. 3. SOAP body is a mandatory element of a SOAP message

and contains the message itself. This includes information on the RPC (Remote

Procedure Call), information on which operation to invoke with the supplied pa-

rameters (SOAP requests), and also data that is returned during the RPC (SOAP

responses).

REST: REST stands for REpresentational State Transfer. The REST archi-

tectural style was introduced by Roy Fielding [22] as part of his doctoral thesis

in the year 2000. REST aims to realize the architectural aspects that make the

web, particularly HTTP, a scalable network based hypermedia system. REST-

ful web services, as the name suggests, are resources on the web that can be

used to get specific information. A client requests a resource from a server and

the server sends back the response (if there are no errors). The response is it-

self a representation of the resource that is present on the server. For example,

it could be a JSON, XML, PDF , DOC etc. This clarifies why the service is

representational. Another important aspect of REST is that it is stateless. This

means that all the information that the server requires to respond is supplied

with the request itself and each request is considered as new without having any

presumption whatsoever. Requests are usually made using an HTTP connec-

tion. Requests are generally in the form of URIs (Uniform Resource Identifier).

URIs are used to locate the path to a resource on the web server. REST defines

certain ’verbs’ in order to interact with the resources. A few of these are: GET:

to receive the resource representation, POST: to add some information to the

resource, PUT: modify the resources, DELETE: delete the resources.

2.3 Crowd-sourcing based Service Architecture 18

2.3 Crowd-sourcing based Service Architecture

Crowd-sourcing has emerged from being just a buzzword to an important paradigm

for solving a bunch of problems for mankind. The term was coined by Jeff

Howe and Mark Robinson [23] as a web-based business model that utilizes the

wisdom of the crowd. Crowd-sourcing represents the act of a company or in-

stitution taking out a task once performed by its employees and outsourcing it

to an undefined network of people in the form of an open call. The concept

of crowd-sourcing can refer to the aggregation or selection of information pro-

vided by the crowd connected to the Internet. There are several examples of suc-

cessful adoption of this idea, such as information sharing systems (wikipedia,

online question forums), voting/rating systems (survey websites, product/movie

review websites), creative systems using crowd intelligence (Threadless, Ama-

zon Mechanical Turk) and several others [24]. Although crowd-sourcing has

been used by a variety of industries for addressing various issues, adoption of

crowd-sourcing in the field of services is still in at an emerging phase [25]. In

service-oriented system, provision and hosting services could be crowd-sourced

as this would considerably reduce the total cost of ownership of resources in-

volved. Moreover, Service-Oriented Crowd-sourcing [26] is driven by people

and hence has the potential to provide a considerable range of services which

involve creativity, quality and innovation at incredibly reduced costs. In many

contexts the crowd proves to be an excellent provider of services rather than

just being consumers, these include creation of local street maps, rating quality

of products of local vendors, provision of information on the latest offerings in

local stores, real time traffic updates and so on. These and others are examples

where the quality of service provided by the crowd can far outperforms that

provided by a single industry.

One part of the work of this thesis proposes a Service-Oriented Architecture

2.3 Crowd-sourcing based Service Architecture 19

Figure 2.4: Crowdsourced SOA Environment

that effectively utilizes crowd-sourcing and concepts of volunteer computing.

An important motivating factor of this work is the increasing processing power

of general purpose computers and hand-held devices. With such devices in-

creasingly available with the common man, a group of people (crowd) is able to

perform computationally intensive tasks without the need for high end servers.

The pictorial representation of the same is presented in the figure 2.4. In the

figure, all the operations of SOA are realized by the unanimous crowd, where

service provider, service comsumer, and service registry are the crowd. The

issue though is that, in spite of such computation capability available with the

crowd, most of the devices remain idle for large periods of time. We propose

a unified, subscriber-centric, and subscriber-driven service model, where the

actual service computations are performed by a crowd of constrained devices

(called computational nodes). The service provider (one of the computational

nodes) performs ‘journaling’ of crowd-sourced computation, available crowd

resources, and scheduling decisions. This service provider acts as an interface

between the service subscriber and the computing nodes.

2.4 Summary 20

Figure 2.5: SOA and various technologies

Prior to realizing such an architecture, however, there are quite a few design

challenges that need to be addressed. These include and are not limited to:

• Computational Node Management: How to maintain a dynamic registry
of available computational nodes?

• Service Description Management: How to maintain a unified service de-
scription for subscribers?

• Decentralized Service Workflow: How to describe and execute the ser-
vice workflows involving such a large number of services and/or compu-
tational nodes?

In this thesis, we focus on addressing these challenges in the context of a

constrained environment.

2.4 Summary

In this dissertation, we present solutions and alternatives for various SOA tech-

nologies customized for constrained mobile environments. Traditional web ser-

2.4 Summary 21

vice service technologies uch as WSDL, UDDI, WS-*, REST, SOAP are avail-

able and have proven to be robust in conventional environments. These tech-

nologies are, however, not directly adaptable for mobile environments. Fig-

ure 2.5 present a quick snapshot of SOA and the various associated solution

technologies. We have primarily worked towards providing alternate solutions

to the top three layers that would work well in constrained mobile environments.

In subsequent chapters, we look at each of these layers in detail one at a time

and present alternatives for mobile environments.

Chapter 3

Dynamic Web Service Registry Framework

3.1 Background

Continued evolution in technology has made computing devices an integral part

of one’s life. The most common manifestation of this is the ‘Mobile Phone’.

Modern technology has transformed the mobile phone from a mere commu-

nication device to a versatile computing device. These hand-held devices have

enabled us not only to access information, but also to provide information to oth-

ers on the move. Modern mobile phones, equipped with powerful sensors, have

endowed capabilities to provide and create near real-time information. This real-

time information is useful for oneself and for others. An established approach

for sharing and provision of information and creating useful applications in a

distributed environment is Service Oriented Architecture (SOA) [18]. Realizing

SOA over mobile devices has the potential to convert mobile phones devices

by common people from mere information subscribers to information providers

and beyond.

The major advantage of this is that it can be used in scenarios where there

is little or no preexisting infrastructure. Examples of such scenarios include

War-front, Post-disaster relief management. In such scenarios, mobile based

SOA has the potential to enable ground teams to provide runtime information

to commanding units, help teams at disaster sites to exchange data, analyse

damage and examine various statistics using mobile devices. In such systems

of SOA over mobile devices all three elements of the SOA triangle: service

3.1 Background 23

providers, service consumers, and service registries are realised over mobile

devices. Moreover, service provisioning would be done in peer-to-peer manner

over the mobile devices.

Web services are the proven way towards implementation of a “Service Ori-

ented Architecture”. Advancement in mobile device technology has motivated

researchers to explore the possibilities of effectively hosting web services over

mobile devices, and thereby trying to realize service oriented systems in mo-

bile environments. There has been substantial work towards enabling mobile

devices to host web services [3][4][5]. An important aspect of service oriented

systems, “service discovery”, however, remains a challenge in mobile environ-

ments. There is literature available on service discovery for distributed envi-

ronments [7][8][9], but one catering specifically to mobile environments is

still lacking. Several challenges specific to hosting web services over mobile

devices need to be taken into account in such service discovery mechanisms.

These include, but are not limited to battery and network constraints, limited

computational power of mobile devices. Moreover, such dynamic mobile ser-

vices are prone to uncertainty (owing to network outage, battery issues, physical

damage) and frequent changes in functionality (primarily owing to the change

of context), and hence make frequent service updates a necessity to effectively

function as web-services. The role of the service registry therefore, becomes one

of prominence to properly manage such dynamism. Traditional service registry

solutions for web-services such as UDDI [10], ebXML [11], can not be directly

utilised in such environments that require frequent updates. What contributes to

this is the exhaustive data model of such registry offerings that is hard to ana-

lyze and parse for mobile devices at run-time. To the best of our knowledge, the

current work is the first attempt to comprehensively investigate these issues and

design a dynamic service registry that facilitates service discoveries in mobile

environments.

3.1 Background 24

As mentioned earlier, the ultimate aim is to realize a service oriented ar-

chitecture over mobile devices without involving high end servers. Hence, the

proposed architecture provides all registry related information and operations

using mobile devices itself, without requiring high-end computers or high man-

agement costs. Further, in order to support scalability, fault tolerance, and fault

localization, we propose a distributed and category based service registry.

To demonstrate the feasibility of the approach, we have engineered a pro-

totype deployment. This includes heterogeneous and loosely coupled mobile

devices deployed in a collaborative manner to manage the service registry along

with native hosted services. We also compare the proposed approach with the

traditional UDDI system for managing service registry from the perspective of

mobile devices. The evaluation shows propitious results in favour of our ap-

proach wherein the latter is shown to have acceptable battery requirements, low

data communication costs, promising scalability, and little or no hindrance to

the working of native applications of mobile devices.

In the presented work, we provide a holistic service registry framework that

makes use of XMPP based service registry framework at the core. We defined

the roles for mobile devices involved in the service registry framework to pro-

vide a scalable mobile registry solution. We have further extended the service

registry operations to cater the specific needs of the mobile environment. We

further provide detailed descriptions of the various registry operations that fa-

cilitate the realisation of a dynamic mobile service registry. We further evaluated

the proposed approach by realizing it through a working prototype and deployed

it over mobile devices of volunteers. We further present a detailed literature sur-

vey that covers various categories of service registries.

3.2 Motivation 25

3.2 Motivation

Kotler et al. [13] suggested services as “activities or benefits offered for sale

that are essentially intangible and do not result in the ownership of anything”.

A mobile service defined in this work is a service that is offered from mobile

phones of providers; this may also include information provided by the mobile

sensors, third party software, or human users. This allows different machines

to exchange information with each other over a network, without necessarily

requiring a user interface. In general, the service may be a component or sub-

part of the web application that is usually used by human users. For example,

a chatting web application provides GUI to human users to communicate with

another human. While a presence service embedded in the web application

detects the presence of other machines, this presence service does not require

any human intervention.

3.2.1 Motivating Scenario

This motivating is similar to the one presented in the first chapter introducing

the thesis.

Alice is a high risk cardiovascular patient. Recently, she got an ECG sensor

implanted in her body [6] that monitors her cardiovascular health and provides

statistics and information as a mobile service via her mobile phone. This service

can be consumed by her cardiologist and she can be provided with proper pre-

scriptions as per her current health. One day she had a sudden cardiac arrest on

her way to another city. Alarming variations in her ECG signals were observed

by the service on her mobile device and the service discovered the nearest am-

bulance through the latter’s exposed mobile service. Further, her mobile service

3.2 Motivation 26

automatically provided access to her latest ECG signals to the ambulance sup-

port medical staff and enabled them to prepare well in advance for the patient.

The ambulance was able to discover her current location through another ser-

vice on her mobile device that provided GPS coordinates. Further, when the

ambulance was on its way, the ambulance’s mobile service provided the doctors

at the nearest hospital with the latest information on the situation. Simultane-

ously, the hospital was able to make use of Alice’s ECG mobile service to gather

her ECG history and prior to her arrival the doctors at the hospital had a chance

to study her medical profile and case in detail. On its way to the hospital, the

ambulance was able to make use of the services exposed by other travelers on

their respective mobile devices to avoid the busy route and opt for the path with

less traffic. Meanwhile, the insurance company was contacted by Alice’s mobile

service and her hospital information was provided, so that the financial aspect

could be taken care of even before her arrival. Alice’s cardiologist was also

able to provide details of his/her prescriptions via his/her mobile service to the

doctors in the hospital so that the latter could learn about her medications and

allergies if any.

With rapid advancements in mobile technologies and wireless networking,

mobile devices have become perhaps the most suitable and economical solutions

for the provision of dynamic, transient, contextual, personalized services. These

mobile provisioned services can make the service access handy and convenient

for service consumers. Further, the provisioning of mobile services is an eco-

nomical solution that requires little or no pre-existing infrastructure. In the dis-

cussed scenario, Alice, her cardiologist, the ambulance, hospital staff can make

use of each other’s mobile services in critical situations and can provide assis-

tance to Alice. This explains the importance of mobile services; subsequently,

however, the above scenario also raises a question: "How is the mobile service

consumer able to discover the appropriate service among such large number of

3.2 Motivation 27

services and that too in an uncertain environment as a mobile environment?".

3.2.2 Need for a Novel Mobile Service Registry

Web services hosted on mobile devices are mainly useful for sharing contex-

tual, personal, proximal information. Mobile devices in such environments are

mostly distributed arbitrarily and make service discovery and management of

service registry a cumbersome process. In this section, we discuss the need for

a novel service registry architecture for mobile environments.

In order to provide an effective service registry for mobile environments,

two approaches are possible. The first is a classical centralized service registry

approach where all information on the available mobile services is maintained

at one place and this is usually over a powerful computing device; The second

approach is a decentralized service registry approach. Here, the registries are

maintained by a system of distributed nodes in such a way that each node caters

to a fraction of the services and there is a large degree of redundancy. Between

these two approaches, the decentralised service registry approach appears to be

more appropriate for mobile environments. There are several reasons for this

such as the issue of a single-point-of-failure in the case of a centralised system,

the lack of a definite guarantee of continuous reliable connections between mo-

bile devices and the central server, the difficulties of rapid and regular updates

in large centralised registries thus giving rise to obsolete information and so

on. There are, of course, drawbacks in the decentralised system as well. It is

these drawbacks that we will discuss and attempt to overcome in the rest of this

chapter. Cloud offloading is another approach that is often used for facilitating

services over mobile devices. In cloud offloading, the service logic, usually,

resides on the cloud and the mobile devices may work as the proxy for these

3.2 Motivation 28

services. The associated concerns of cloud offloading [27] (significant network

delay and latency, rigid SLA requirements etc.) however do not make it a po-

tential candidate for dynamic mobile service registry. Sanaei et.al. [27] discuss

these challenges in detail.

A decentralised service registry may be realised using either traditional ser-

vice registry approaches that are commonly used in legacy wired systems (such

as UDDI [10], ebXML [11]) or a new approach especially catering to the va-

garies of mobile environments may be adopted.

Though possible, adopting traditional registry approaches such as UDDI [10]

from W3C is ill suited to dynamic mobile environments. The traditional reg-

istry architecture comprises UDDI data entities (businessEntity, businessSer-

vice, bindingTemplate, tModel, publish-erAssertion, subscription), various UDDI

services and API sets, UDDI Nodes for supporting node API set, UDDI Reg-

istries. Such a base architecture is quite ‘heavyweight’ and makes it difficult to

host UDDI over mobile and resource constrained devices. Further, services of-

fered over mobile devices tend to behave in an anarchic manner; as the changes

in the functional, non-functional, other aspect of the services may be quite fre-

quent owing to regular change in context and networking environment of the

device. This requires frequent updates to the service registry. UDDI, on the

other hand, is designed around concepts of SOAP/WSDL, heavyweight tech-

nologies that make frequent updates a cumbersome process.As a consequence,

the information on the UDDI registry quickly becomes obsolete. A new ap-

proach, therefore, is imperative for maintaining an effective registry system for

mobile environments.

3.2 Motivation 29

3.2.3 Mobile Service Registry Requirements

Before we get into detailed discussions on the proposed approach, here is a

quick point-wise summary of the requirements for effective service registries

for mobile environments. This is along the lines of Dustdar et al. [28] who

did something similar for articulating general requirements for web service reg-

istries.

R1: Management of transient web services: The very nature of mobile de-

vices makes hosted web services repeatedly and randomly enter and leave the

network. A service registry should be such that it supports such dynamic and

frequent arrival and departure of service providers.

R2: Lightweight: A service registry designed for mobile environments should

be lightweight. A lightweight service registry would complement the power

(i.e. battery) and computational constraints of mobile devices. Furthermore,

a lightweight service registry is agile and is easier to integrate with diversified

mobile environments.

R3: Minimum communication overhead: Given the battery and network

constraints in mobile devices, emphasis should be towards a registry system

with minimum communication overhead.

R4: Distributed service registry: As the number of mobile devices (and

therefore potential web services over these) are increasing exponentially, a cen-

tralized service registry system has limited utility and gets outdated very quickly.

Hence, a distributed service registry system is required to support scalability.

R5: Enabling run time search: An important enabler of mobile based service

oriented systems is support for run time search. This is necessary owing to

the frequent arrival of new and often more competent services and/or failure of

3.3 Proposed Approach 30

existing services.

Conforming to the above points could potentially ensure a service registry

suitable for mobile environments.

3.3 Proposed Approach

In mobile based SOA environments, each mobile device can perform the func-

tionalities of both a service provider and a service consumer. As a service con-

sumer, a mobile device discovers web-services and invokes them after negoti-

ating with the providers. As a service provider, a mobile device hosts services

and publishes hosted services with service registries. However, as stated ear-

lier, an effective mobile registry to publish and discover such mobile services in

dynamic environments is still lacking. The mobile services are provided by mo-

bile devices and may be consumed by another mobile device in a peer-to-peer

manner.

3.3.1 Registry Details

Our approach suggests a service registry system that comprises a light-weight

registry server at each participating mobile device. The registry at each mobile

device contains minimal information that is just sufficient to uniquely identify

the registered entity. A registry server (at each mobile device) manages either

of two types of registries:

1. Service Registry: Registered mobile services are managed in the service
registry. The service registry contains an entry for each service as: ser-
vice name, service access point, service ID, service description, service
groups, availability, service location, service provider, other service in-
formation.

3.3 Proposed Approach 31

2. Group Registry: Registered services are categorized into service groups.
These service groups are managed in a group registry. The group reg-
istry contains the following information for a service group: group name,
group domain, group description, registrant, groupid, group access point,
other group information.

The organization of registries, as proposed, is shown in Figure 3.1. The ser-

vice information that is just enough to identify a registered service and that is

less likely to change is kept in the registries and service information that is more

likely to change but does not affect the discovery process of the service is kept

in the vicinity of the provider. The service binding description, and contextual

descriptions are provider specific and are likely to change in the mobile envi-

ronment. Therefore, these descriptions of the service are kept in close vicinity

of the mobile service provider. Close vicinity here implies that the description

is hosted on the same mobile device as the service or a third party repository,

where these descriptions can be updated rapidly.

We define several registry related operations in Section 3.4 that are per-

formed using XML streams. These XML streams are inspired by XMPP [29]

(eXtensible Messaging and Presence Protocol), a well known and established

communication protocol. XMPP is already in wide use in mobile environments

in several instant messaging applications.

The proposed approach provides service registry operations that facilitate

effective discovery of a service. Details like the non-functional descriptions and

quality of service values of the services have deliberately been kept out of the

proposed system to make it as ’lightweight’ as possible and hence suitable for

mobile environments.

3.3 Proposed Approach 32

Figure 3.1: Mobile Registry Entries

3.3.2 Design Concept

There are four primitive steps in the proposed mobile service registry approach

that are presented in Figure 3.2:

1) Mobile service registry access point is retrieved: As shown in Figure 3.2.a,

a registry requester (represented by a mobile icon with M) accesses the public

registry to retrieve the access point details of mobile service registry. 2) Mobile

service registry is accessed via Navigator Nodes: As shown in Figure 3.2.b,

the navigator nodes (represented by mobile icons with N) are contacted for the

“Group Registry”. This Group Registry contains the list of service groups. Ser-

vice group of the required service provider is discovered in the group registry.

3) Service Group is contacted via Registry Nodes: As shown in Figure 3.2.c, the

registry nodes (represented by mobile icon with R) are accessed via groupid for

retrieving the service provider’s information. “Service Registry” is traversed for

the required service provider. 4) The service provider is contacted: As shown

3.3 Proposed Approach 33

in the Figure 2.d, finally, the required service provider is discovered and it is

contacted for service negotiation and service binding.

These steps are discussed in detail in the next subsection. We first start

with the roles performed by the mobile devices. A mobile device potentially

performs the following roles (as shown in Figure 3.2.a): Navigator Node and

Registry Node.

Figure 3.2: Mobile Service Registry Approach

Navigator Nodes

Navigator nodes are the entry points for the mobile registry architecture as

shown in Figure 3.2. These navigator nodes are accessible by service consumers

via public access points. We have devised the mobile registry architecture as a

service itself. The mobile registry and its public access points can be regis-

3.3 Proposed Approach 34

tered with any global public registries just to make them globally discoverable

(as shown in Figure 3.2.a). The motive to use global public registry is to pro-

vide the access point details of the mobile registry architecture; mobile devices

would need to use the global public registry just once to retrieve the access point

details of the architecture. (These global public registries could be any existing

service registries as discussed in section 4.5. These registries are assumed to be

well in place, hence is not discussed in detail. The global public registry is not

suitable for mobile services, the reasons are already discussed in section 3.2.2.)

There can be multiple navigator nodes connected to the public access points via

a common access channel, as shown in Figure 3.2.b. The common access chan-

nel can be viewed as a communication bus that enables various mobile devices to

communicate. The common access channel gives mobile devices the liberty to

join and leave the network at any time without disturbing other navigator nodes.

Whenever a new mobile device joins as a navigator node, the group registry is

updated/downloaded via the access channel and the shared domain ontology be-

comes accessible. The idea of a common access channel can be realized using

existing networking technologies as suggested in RFC1112 and RFC5771.

Navigator nodes are the mobile devices that manage the group registry (refer

Figure 3.1). As discussed in the earlier section, the group registry manages ser-

vice groups. These service groups are uniquely identified by group identifiers

or groupid. The group registry comprises the list of service groups present in

the network along with the respective group identifiers and other group details.

The navigator nodes are further responsible for categorizing the registered ser-

vices into the various service groups and to navigate the service providers to the

assigned service groups.

Navigator nodes rely on existing ontological approaches to categorize ser-

vices on the basis of their domains of offering (or offered service type). All

3.3 Proposed Approach 35

navigator nodes have access to the shared domain ontologies [30] for catego-

rization of the offered services. Whenever a service provider needs to register

its offered service, the group registry is referred first for matching the service

with its service group. In case the service offered by the provider does not be-

long to any of the existing service groups, a new service group is created by

referring the domain ontology and updating the group registry with a new group

entry.

We have used an existing classification method for classifying services into

groups [31]. The motivation behind adopting this method is that the method

does not require a training set for classification and dynamic changes to the clas-

sification parameters is possible without having to retrain the classifier. This is

of particular importance in mobile environments as it provides run time updates

to the domain ontology without disturbing the classifiers.

The service group classification method follows generic steps. First, the

mapping criteria are parsed from user supplied service description which is in

the textual format. Then, the domain ontology is mapped to the mapping cri-

teria. The process calculates a matching categorization score of the service de-

scription with the ontological context as defined by Allahyari et al. [31].

For example, the mobile service providers hosting services for: a.) Doc-

tor’s rating and b.) Hospital building floor map, share the same service group

Hospital, hence they are identified by the same groupid. However a new mo-

bile service provider offering contact information of pizza outlets would fall in

a separate service group. We do not dwell upon the classification approach in

this work. The interested reader is referred to [31] for more details on this.

3.3 Proposed Approach 36

Registry Nodes

Registry nodes are the mobile devices that manage the service registries (refer

Figure 3.1). As discussed in the previous section, a service registry manages

the registered services that are uniquely identified by service identifiers. This

enables a service provider to provide multiple services over a single mobile de-

vice. The service registry comprises the list of registered services in a service

group, their availability information along with the service details that are just

sufficient to manage and identify the registered services. Of these details, the

real time availability information of the registered services is what mainly con-

tributes to overcoming the uncertainty of mobile environments. This availabil-

ity information managed at the registry node gives the much needed reliability

to the services hosted on mobile devices. Registry nodes are responsible for

managing the up-to-date service registry, responding to service registry related

queries, and performing registry related operations.

The service group can be seen as an overlay group of registered mobile ser-

vice providers and registry nodes that are identified by the groupid. We have

devised this group identifier as a multi-cast address for the service group mem-

bers. The requests sent to the service group are received by all the member

mobile service providers, however, only the group member acting as the reg-

istry node responds to the requests (as shown in Figure 3.2.c).

To improve query response time, a replica of the service registry that is re-

trieved from the registry node is managed at all the mobile devices hosting ser-

vices in the service group. Selective updates are performed to keep the local

replica updated. During service discovery, the local replica is first referred to,

in case discovery fails at the local replica then the registry node is contacted.

Maintaining replicas of this kind do add a little overhead to the architecture but

3.3 Proposed Approach 37

in the larger context the local replicas reduce traffic meant for discovery over the

network substantially. Further, the local replicas ease the transition of service

providers into full fledged registry nodes in the eventuality of a registry node

failure (details on this in the subsequent subsection).

Failure Management:

Mobile devices acting as navigator nodes or registry nodes can also depict un-

certain behavior and are prone to failure. Hence, in the case of existing registry

node failure, a new registry node can be elected from the member mobile service

providers, without compromising on the consistency of other service groups or

navigators. (The same approach is also applied to navigator nodes.) Heartbeat

operations are used to detect registry node failure. Any mobile service provider

can become a registry node by participating in an election and declaring its can-

didature. Our method of registry node election is inspired by the leader election

problem of distributed computing. The algorithm is discussed in more detail in

Section 3.4.2.

Use-Case Scenario:

Potential service consumers use the proposed mobile registry architecture for

discovering their desired services. This service discovery is a three step pro-

cess. In the first step as shown in Figure 3.2.b, the service consumer sends the

discovery request to the mobile registry architecture via a well known access

point or URI (Uniform Resource Identifier) for the desired service. This request

for service discovery is first handled by the navigator node. The Navigator node

searches its group registry and provides the matching service group details along

with the groupid for the requested service. This groupid acts as a multi-casting

3.4 Mobile Registry Operations 38

address for all the service providers that belong to the group. In the second step

as shown in Figure 3.2.c, the service consumer contacts the service group us-

ing the groupid of the required service. The Registry node of the service group

responds with the available matching services and their corresponding service

details. In the third step as shown in Figure 3.2.d, service consumer contacts the

mobile service provider offering the required service to retrieve the technical

description and performs the service negotiation for service access.

Mobile service providers use the proposed mobile registry architecture for

registering their offered services. The service registration process primarily

comprises two steps. First, the mobile service provider sends a service reg-

istration request to the mobile registry architecture via the well known access

points. The Navigator nodes first handle the registration request and respond

with the matching service group along with the groupid and other group details

registered in the group registry. Second, the mobile service provider contacts

the service group and registers its service with the service registry of the reg-

istry node. Alternatively, if there is no matching service group in the group

registry, the navigator node creates a new service group. In this case, the reg-

istrant mobile service provider becomes the registry node of the newly formed

service group.

3.4 Mobile Registry Operations

In this section, we describe the operations and functionalities that provide reg-

istry operations such as registration, discovery, service updates, and service

binding in the proposed architecture. An inline comparison with UDDI is also

presented.

3.4 Mobile Registry Operations 39

3.4.1 Basic Registry Operations

Registration:

In the proposed approach, we have two types of registrations: 1) Group regis-

tration (at navigator node) 2) Service registration (at the registry node). These

registrations are shown in the Figure 3.3.

Group Registration : The service group is registered in the group registry at

the navigator node. A mobile service provider (registry client) contacts the mo-

bile registry framework via the navigator node to register the service. However,

if a matching service group is not yet registered in the group registry, a new ser-

vice group registration request is initiated. The mobile service provider sends a

group registration request to the navigator node along with the service details.

Hereafter, the navigator refers the domain ontology and based on the service de-

tails, a matching group is mapped. This matched service group is updated in the

group registry along with its groupid. The registry is then shared among all the

navigator nodes. Subsequent to the successful registration process, a “groupid”

is sent to the newly registered mobile device (in a ‘result’ type IQ stanza). At

this point the registrant is the registry node of the newly formed service group.

Figure 3.3 shows the group registration process.

Service Registration : Services are registered in the service registry at the

registry node. The mobile service provider fetches the matching service group

at the navigator node and contacts the registry node of the matching service

group via the groupid. Hereafter, the registry node receives service related in-

formation from the mobile service provider and generates a serviceid for the

new service. The registration process is completed when the information of the

new service is updated at the service registry of the registry node. This up-

dated registry is made available to the service providers in the service group for

3.4 Mobile Registry Operations 40

provider initiated updates (pull based updates). Upon successful registration a

“serviceid” is sent to the newly registered mobile service provider (in a ‘result’

type IQ stanza). Figure 3.3 shows the service registration process.

Figure 3.3: Group and Service Registration

Web Service Registration in UDDI:

Here we quickly discuss the registration process in the traditional UDDI

registry system so that one can appreciate the significance of the proposed ap-

proach. In UDDI, registration is done using the publisher APIs set exposed by

the UDDI, such as save_service, save_business, save_binding, save_t_model.

These APIs are used to save detailed information on the web service, which

may not be necessary in case of the mobile based web services. Moreover this

information would tend to become heavy for mobile devices to process or trans-

port.

A typical UDDI registry [16] primarily consists of the following informa-

3.4 Mobile Registry Operations 41

tion: businessEntity, businessService, bindingTemplate and tModels for a regis-

tered service. The information is passed on by the web-service provider to the

UDDI registry through publisher APIs (The information is transported as XML

tags, we are not showing the XML for the UDDI structure owing to space con-

straints here. For the benefit of interested readers, we have uploaded details on

this at: http://goo.gl/ cn8VaP). Deploying such a UDDI registry over a mobile

device would tend to become heavy owing to the limited computational power

and network constraints in mobile devices. The UDDI registry would also sig-

nificantly lag behind in managing the dynamic nature of mobile devices.

Service Discovery:

Figure 3.4: Service Discovery

Two possible cases are included in the prototype: 1. Discovery initiated

by the registered service provider, 2. Discovery initiated by an external mobile

service consumer.

Discovery by registered service provider: The registered service provider

3.4 Mobile Registry Operations 42

first matches the service group of the required service with the local replica of

the service registry. If the group matches then it fetches the required service

locally. In case the service is found locally, a selective update is performed

from the registry node to obtain information on the latest availability status of

the service. In case the service is not found locally, the query is propagated to

the registry node and subsequently the local replica is updated with the latest

service registry status.

Discovery by external service consumer: The service consumer first con-

tacts the navigator node and retrieves the matching service group information.

Subsequent to this the service discovery is forwarded to the matching service

group. Afterwards, the registry node of the service group responds with the

matching service information. The registered service provider from the other

service group also follows this process. Figure 3.4 shows the service discovery

process.

Service Discovery in UDDI:

Web service discovery in a UDDI registry is done via public inquiry APIs of

the UDDI, such as find_service, find_binding, find_business, find_tModel. The

service discovery is performed centrally by the UDDI registry server, which

requires high computational capability. This is because the consumer requests

the UDDI registry server which in turn does the query search centrally and re-

sponds to the consumer with the results. The complexity and structured nature

of the UDDI data structure would makes searching tedious were it adopted in a

mobile environment. Though traditional UDDIs enable consumers to query the

registry and are effective in a centralized system, they are ill suited to the mobile

environments that are mostly distributed.

3.4 Mobile Registry Operations 43

Service Binding:

Figure 3.5: Service Binding

Web service binding information is necessary to call a particular web ser-

vice. It includes the technical information on a web service, such as the access

endpoint, required parameter values, return type etc. In the proposed architec-

ture, binding information is exchanged directly between the service consumer

and the service provider (as shown in the Figure 3.2.d). The service provider can

provide the WSDL/WADL document or it’s global URL in the binding informa-

tion as well. The functional description of the service is kept in the close vicinity

of the service provider. The reason being that the mobile services tend to change

frequently and this might result in a change in the technical description of the

same. Therefore, a proximal location of the functional description facilitates

mobile service providers to readily change the service operations dynamically

without violating the service registry information (Figure 3.5 shows the service

binding process). Furthermore, other types of descriptions viz. non-functional,

contextual, business descriptions are usually present on the same device as the

service provider to keep descriptions up-to-date without increasing traffic over

the mobile registry architecture.

Service Binding in UDDI :

Service consumers can retrieve the service binding information of the reg-

istered service providers from the UDDI registry using t_model and WSDL

3.4 Mobile Registry Operations 44

Table 3.1: Summary of Operations Performed in Proposed Approach and
UDDI.

Operations Our Approach UDDI
Service Registration IQ Stanza APIs: save_service, save_business,

save_binding, save_t_model
Service Discovery IQ Stanza APIs: find_service, find_binding,

find_business, find_tModel
Service Binding Message Stanza t_model and WSDL documents

documents. The t_model is an exhaustive technical description of the service

binding. However, due to its inherent complexity service providers often do

not update the binding information. In fact, some services do not even register

themselves owing to this complexity. This has ultimately translated to the un-

availability of a working and updated global UDDI based registry. Nowadays, as

a general practice service consumers use web search engines to fetch the bind-

ing information. This is done by querying search engines for filetype as wsdl

(for SOAP based web services) or wadl (for REST based web services). The

results of this searching mechanism leads to all sorts of bias arising out of the

indexing and page ranking algorithms of the web search engine. Furthermore,

the selection would require human intelligence and analysis.

Table 3.1 summarizes the discussed operations performed with the proposed

architecture and with UDDI. The operations discussed in the following sub-

section viz. presence notification, registry sharing, and registry update are spe-

cific to our approach and ones in which no equivalent UDDI operations exist.

3.4 Mobile Registry Operations 45

3.4.2 Mobile Specific Registry Operations

Presence Notification:

This is one of the novel features of the proposed architecture. The presence

information of a mobile service is of utmost importance for providing any sort of

certainty in the volatile mobile environment. The presence notification provides

the current availability information on the mobile service. This helps in avoiding

as much as possible the failed access of offline services. Here the terms presence

information and availability information are used interchangeably.

The service registry manages presence information for each service. This

helps to uniquely manage the presence information of multiple offered services

of a service provider. The presence information is dynamically updatable and

provides availability of a service at a particular instance of time. The presence

information is similar to the availability information in an instant messaging

application. We managed the presence information as ‘Available’ or ‘Unavail-

able’ for a service in the presence tag (please refer Figure 3.7). However, this

presence tag is a placeholder that can further be advanced to incorporate other

presence related information.

The proposed approach also incorporates event triggered presence notifi-

cation that is generated on the occurrences of events that cause the service to

become unavailable. For example low battery level, dropping network strength,

critical overload at provider. These events can be easily detected programmati-

cally using API’s exposed by modern operating systems of mobile devices.

Registry Sharing:

Registry sharing is required to :

3.4 Mobile Registry Operations 46

1. Manage the latest information about services in registries of various reg-
istry nodes.

2. Keep a local service registry replica at the service providers in service
group.

Registry sharing facilitates sharing the registry system over several nodes to

form a distributed service registry structure. Such a distributed registry system

becomes particularly useful when a new mobile service provider joins the ser-

vice group. Registry sharing enables the newly joined mobile service provider

to retrieve the registry from the group and manage a local replica. Further, the

joining of a new mobile service in the service group triggers an update in the

registry. That needs to be shared with the members of the group in a distributed

structure. This functionality is extensible and can be adopted for timely updates

or event driven updates to manage synchronization in the service registry of the

various registry node.

Registry Update:

As our approach is mobile service provider-centric and the mobile environment

is dynamic, hence a service provider tends to change its configuration on the

run. The registry is required to be updated whenever information on a service

gets changed, such as location, access point, service descriptions.

Unregister: Unregister is a registry update performed when a mobile service

provider discontinues its service offering. Whenever a service provider does not

want to provide a hosted service, it unregisters itself from the service registry

using the unregister action.

3.4 Mobile Registry Operations 47

Heartbeat Operation:

Heartbeats are used to probe various nodes in the proposed registry architecture

and to keep the service registry up-to-date. A registry node periodically probes

other service providers in the service group and retrieves their latest availability

information to keep the service registry up-to-date. Similarly, navigator nodes

probe the service group to know if the group is alive and accordingly update the

group registry. Further, heartbeat operations are used for registry node election.

New registry nodes can notify the service group members about their presence.

Dynamic Registry Node Election:

Dynamic registry node election is performed when a registered service provider

tries to get promoted to a registry node or when the registry node fails. A registry

node election is called, when periodic heartbeat signals are not received by the

registered providers of the service group.

The registry node election problem is analogous to the leader election prob-

lem of distributed computing. Several solutions have been proposed for leader

election in distributed computing. We have adopted an approach for the registry

node election that is inspired from Luby’s Algorithm [32]; a similar approach

is described in [33]. The election approach can be implemented in a distributed

manner without involving a central authority and produces less message traffic.

In the proposed framework, each service provider announces itself as a can-

didate for becoming a registry node by sending its device details that include

battery information, network details, device hardware details, uptime etc. to the

existing registry nodes. The service provider with the maximum capability in

terms of the mentioned paramenters is selected as the new registry nodes. This

new registry node sends a heartbeat signal to other registry nodes to make them

3.5 Implementation 48

aware about its new role.

3.5 Implementation

We developed a prototype web service implementation based on the proposed

approach for mobile devices, using android SDK (ADT 23.0.2) and Oracle Java

(version 1.7.0_72). The prototype was built to realize the architecture as pre-

sented in section 3.3. It is worthy to note that the deployment of the prototype

neither required any modification to the device nor did it require root permis-

sions to run. The prototype developed is independent of the native applications

of the mobile device and hosted the web services. Our approach is applicable to

all mobile operating systems, however we chose android for our prototype im-

plementation as it is open source and commands much wider community sup-

port.

Our experimental setup comprised seven mobile devices (including Sam-

sung Galaxy S Duos with Android 4.3, Sony Xperia M with Android 4.3, Google

Nexus 7 with Android 4.4, Motorola G2 with Android 5.0, three Asus Zenfone

5 with Android 4.4), one laptop (Intel i3 2.13 GHz with 3GB of RAM) and

a few running instances of the prototype running on virtual instances of An-

droid devices running on the laptop. These devices comprised the engineered

prototype. The setup also had multiple services and service groups. Two ex-

perimental wireless networks were setup for the validation. All our experiments

were carried for varied network sizes with multiple service providers joining

and leaving the network.

Prototye Design: The prototype performs all the roles as mentioned in the

Section 3.3 - Service Navigator Node, Service Registry Node, and service provider.

We have devised registry consumers external and also embedded them with ser-

3.5 Implementation 49

vice provider. We have designed a parser to parse and generate the XML streams

(Figure 3.7 presents the used XML infoset). Figure 3.6 presents the architecture

used for prototype.

Figure 3.6: Architecture of Registry and Navigator Nodes

The presented architecture is deployed on both the nodes: Service Navigator

Node, Service Registry Node. The various parts of this architecture are: 1.

Query Agent: This component accepts, generates, and processes the queries

from/for other mobile devices. This has external interfaces that can be contacted

by any other mobile device. It can be viewed as the XMPP parser for registry

management. 2. Registry Engine: All the mobile registry related operations as

explained in the Section 3.3 are handled by this component. 3. Matching Agent:

This component parses the result of the service query and evaluates them against

the required parameter. Further, it has access to the ontology for service group

formation. 4. Group/Service Registry: This is the local replica of the service

registry or group registry depending on the nature of the node (whether registry

node or navigator node). The presented approach works even in presence of the

hosted mobile web service.

Prototype Specification

This subsection presents identifier and communication related specifications of

the prototype for the architecture presented in Section 3.3.

3.5 Implementation 50

Identifiers:

Each hosted service over a mobile device was addressed by an identifier.

This enabled co-existence of multiple services over a single mobile service

provider. Further, this gave flexibility to the service providers to remove a ser-

vice without disturbing other services. We used two types of primitive identi-

fiers: group identifier and service identifier. An identifier, as discussed earlier,

is similar to an email address and is uniquely addressable. The structure of

identifier is inspired from XMPP. The format of an identifier is:

[GroupID]@[NetID]/[ServiceID]

NetID specifies the domain or network of a service registry, as there can be

multiple service registries that are collocated globally. For private registries,

local is used as the NetID. GroupID is the identifier of the service group.

ServiceID identifies the service offered by the mobile service provider. There-

fore, there could be multiple unique ServiceIDs for a mobile device offering

multiple unique services.

A service group could be “TrafficInfo" where the offered services are related

to traffic information. A service registry could be for the network: Acme City.

This depicts the service group identifier as:

trafficinfo@acmeCity. This service group is shared by all the service

providers of service group trafficinfo. A unique identifier for a mobile ser-

vice provider offering service related to the “Traffic Information of Main street"

could be trafficinfo@acmeCity/mainstreet.

The identifiers are managed distinctly in a domain by the registry engines

and query agents of the mobile devices. Further naming conflicts are resolved

by incorporating the service provider‘s participation. In the move to enable net-

3.5 Implementation 51

working and realize the proposed architecture over a real network, the identifiers

are mapped to the physical network using several well accepted networking con-

cepts and technologies. These technologies/concepts are available in ad-hoc net-

working technology, such as multi-cast domain name system suggested in RFC

6762, dynamic host auto configuration IP range suggested in RFC 5735 and

3927, multicast networking methods suggested in RFC 1112 and RFC 5771.

The libraries for this implementation are available for the Android OS.

Communication: In the move to provide interoperability over heterogeneous

mobile devices, we make use of XML streams for the service registry related

communications. The mobile devices communicate and send queries/informa-

tion in the form of XML stanzas. These XML stanzas are inspired by [29, 34].

An XML stanza is the basic unit of communication in XMPP. This discrete se-

mantic unit of structured information or XML stanza is sent from one mobile

device to another over an XML stream.

There are mainly three stanza types used in the architecture: <message

/>, <presence />, <iq />. A stanza is a first-level element (at depth=1 of

the stream) whose element name is “message”, “presence”, or “iq” The three

stanzas are briefly described below.

Message stanza is primarily used for storing, editing, and sharing service/-

group information at the service/group registry. The main purpose that this is

managing and updating the service/group registries. The Message stanza works

in two ways: “push” and “pull”. In push, the information exchange is initiated

by the sender e.g. sharing the registry at the registry node with the mobile ser-

vice providers. Whereas in pull, the receiver initiates the information exchange

e.g. selective update of the registry at the mobile service providers. Further, the

message stanza is primarily used for service binding operations, registry shar-

3.5 Implementation 52

Figure 3.7: XML Streams Used in Proposed Approach

ing, registry node elections.

Presence stanza is used to update the availability information of services

hosted on mobile devices. Each presence stanza includes a brief description and

service identifier of the hosted service, along with its availability information.

We use ‘available’ and ‘unavailable’ as the primitive presence types in the pro-

posed approach. The presence status of a web service hosted on a mobile device

is reflected on the service registry. Presence notification, heartbeat operations

are implemented using this stanza.

IQ stanza is short for Information/Query stanza. It is based on a request-

response mechanism and guarantees a response to a query. The nature of re-

quest in the IQ stanza is represented by type. Registry information request

is represented by get and it is similar to the HTTP GET method. Any com-

3.5 Implementation 53

munication involving queries from other mobile devices primarily makes use of

the IQ stanza. These play an important role in getting information from other

mobile devices that host the service registry i.e. registry nodes.

These stanzas are uniquely identified by the “id” element. The “type” el-

ement represent the type of registry operation that is performed by the mobile

devices. Whereas “to” element contains the access point of the recipient (in-

dividual mobile device or service group). Figure 3.7 shows the detailed XML

structure used in the architecture. Group and service registration operations, dis-

covery operations, registry update operations are implemented primarily using

IQ stanzas.

3.5.1 Evaluation

To evaluate our approach, we deployed the architecture (presented in Figure 3.6)

over real mobile devices. We solicited volunteer participation to host our pro-

totype over their personal mobile devices. This enabled us to analyze the feasi-

bility of our approach in a practical scenario. We established two experimental

wireless networks within our institute building to connect the volunteers’ mobile

devices, laptop, and virtual instances (refer Figure 3.8). During the experiment,

volunteers were doing their routine work and hence the mobility of the devices

followed random patterns. We repeated this experiment with varying numbers of

service providers, service registration requests, service discovery queries, with

the intent of emulating uncertain situations in practical scenarios. In this section,

we present the results of the experiment with the motive to show the feasibility

of the proposed approach.

The first experiment evaluated the effect that hosting a registry server had

on the battery of the mobile devices. We analyzed the effect of various registry

3.5 Implementation 54

Figure 3.8: Experimental Setup

operations on the battery. For this purpose, we made use of the power model and

solutions suggested by Zhang et al. [35]. This power model considers the power

consumption by a mobile application and also takes into account the applica-

tion’s effect on Wi-Fi, CPU, Cellular interface etc. Table 3.2 shows the initial

battery power consumption by the registry operations. We sent 50 requests of

service/group registration, service/group discovery each on the navigator node

and the registry node. We observed the power consumption at the navigator

nodes and registry nodes by these requests. The values presented in the table are

the average battery power consumption. For a quick reference, gmail android

app had 567mW, facebook android app had 1297.5 mW, GSM call had 511 mW,

and Airplane Mode had 6.4 mW power consumption (depends on build/model

of mobile phone). The idea of including these is to emphasize upon the point

that the implemention of the proposed mobile service registry solution seems to

have acceptable power consumption. (Interested readers are referred to [36] for

detailed analysis of power consumption in smartphone).

In our second experiment, we further observed the data bytes being ex-

changed during these requests. Table 3.3 shows the total number of bytes ex-

3.5 Implementation 55

Table 3.2: Power Consumption by Various Registry Operations

Registry Operation Power Consumption
Service Registration (For 50 requests) 44 mW
Service Discovery (For 50 requests) 63 mW
Group Registration (For 50 requests) 120 mW
Group Discovery (For 50 requests) 52 mW
Heartbeat 73 mW

changed for various registry operations. We concluded that less than a 1KB of

data is exchanged for service/group registration. For service/group discovery

the number of data bytes exchanged depends on the number of matching groups

or services. However, for the purpose of the experiment we had a single match-

ing group or service. That limited the data exchange for discovery requests to

under 1 KB for each matching service/group. (Size of an average compressed

image sent over a messaging app like WhatsApp is 20-25 KB, and 2.52 MB was

the background data usage for the Instagram app (with a few account following)

for a day. Therefore, the proposed approach has acceptable data exchange.)

Table 3.3: Data Exchanged by Various Registry Operations

Registry Operation Total Data (Received +
Transmitted)

Service Registration (For 50 requests) 48510 bytes
Service Discovery (For 50 requests) 41231 bytes
Group Registration (For 50 requests) 42161 bytes
Group Discovery (For 50 requests) 31487 bytes

In our third experiment, we sent (50*4=) 200 new service registration re-

quests from other mobile devices and virtual instances to the registry architec-

ture. Figure 3.9 depicts the total response time behavior for a service provider.

Also noteworthy here is the fact that the mobile devices were continuously mov-

ing with the volunteers, hence the devices were randomly joining and leaving

the network. Therefore, we observed a few outliers in the response time behav-

ior. We concluded that the average service registration time (including outliers)

3.5 Implementation 56

is near 5 seconds which seems acceptable for practical purposes.

Figure 3.9: Total time taken for new service registrations

The fourth experiment evaluated the effect of directory size on the discovery

time. We registered multiple services in a service group on the registry node.

In order to test the scalability of our prototype, we ran service discovery op-

erations for various directory sizes: 500, 1000, 5000, 10000, 50000, 100000.

We discovered that the discovery time increases as the size of the directory in-

creases. However, in spite of this even with 100000 registered services the query

response time was under 1 second which is acceptable for all practical purposes.

Figure 3.10: Service Discovery Time for varied registered services

We sent service discovery requests from four mobile devices and virtual

3.5 Implementation 57

instances to varied numbers of registered services and the response time was

calculated for these requests. Figure 3.10 shows the average response time for

these discovery requests for various registry sizes. Through the whole experi-

ment, the mobile device acting as the registry node was moving continuously

within the network. Further, the size of the registry increased linearly with the

increasing number of registered services. Even with thousands of services reg-

istered, the registry size was under 10 MB (shown in Figure 3.11). It should be

noted here that we made use of SQLite for implementing the service and group

registries over android mobile devices.

Figure 3.11: Registry size for varied registered services

Our fifth experiment aimed at evaluating the feasibility of the proposed ap-

proach when running simultaneously with other phone activities. In this exper-

iment, we conducted a comparative study on the difference in response time for

the service discovery requests a) when a volunteer was answering a phone call

and, b) when the device was idle. For this experiment, we sent 50 requests for

group discovery to the volunteer’s mobile device. First, we observed the re-

sponse behavior when the device was idle in the volunteer’s pocket. During this

phase the volunteer was randomly moving within the network. The response

time behavior during this period is shown in Figure 3.12. Next, we made a

3.5 Implementation 58

phone call on the volunteer’s mobile phone and observed the response time dur-

ing the call. The results demonstrate that there is a change in response time,

but this change is well within acceptable limits. Response time behavior during

the call is shown in Figure 3.13. There is an initial peak in the response time

when the call is made. From the initial results, we conclude that the mobile

device takes a little time to respond to the first discovery request. This is due

to the fact that some processing time is required to awaken the sleeping mobile

application. We feel, therefore, that piggybacking of incoming requests could

be a good approach to reduce the energy overhead.

Figure 3.12: Response Time behavior without an active call

The sixth experiment involved an evaluation of the reliability of the ap-

proach. We toggled the availability status of the service provider from avail-

able to unavailable and back to available with a time difference of 10 seconds.

These toggles were repeated 120 times at the registry node. During this time,

we continuously probed the registry node from the service consumers to get the

status of the service provider. The initial results shown by the experiment have

less than 1% false negative, where false negative implies - registry node returns

availability information as available when the service provider has updated it

to unavailable and vice versa.

3.5 Implementation 59

Figure 3.13: Response Time behavior during an active call

Although the scale of these experiments was limited, the results were promis-

ing. It will be interesting to explore the performance of this approach for a much

larger number of service providers, and registry clients and for much longer du-

rations (a few days). (Interested readers may refer to https://goo.gl/4VG895 for

further details about the architecture and experimental setup.)

Nonetheless, we present the speculated trend of our experiments with a large

number of devices:

1. Effects on battery: With increasing number of devices there would be
more numbers of registry requests and responses; hence more battery
power would be needed. However, in such scenarios the service groups
and navigator nodes would play a crucial role. More specialized service
groups would be formed as suggested in section 4.3.1, this would keep
the number of devices in a service group within limits in turn keeping the
battery usage in check (irrespective of any number of registered services).

2. Effects on data exchange: With increasing number of devices there would
be more exchange of data. However, the split service groups would keep
a check on the data exchange. Further, keeping in view the current data
usage by modern smartphones, the data usage by large number of devices
should be in acceptable limits.

3. Effects on service registration time: We believe that with increasing num-
ber of devices and service registrations, the response time would increase

3.5 Implementation 60

but would be well within the accepted range. Also, this is a onetime pro-
cess for a service, it would be acceptable for all practical purposes.

4. Effects on service discovery time: Figure 3.10 shows the discovery time
for a large number of registered services varying from one thousand to a
few hundreds thousand. This is still within acceptable limits.

5. Effects on registry size: The registry size will increase linearly for in-
creasing number of register services. Trend is shown in the Figure 3.11.
While other experiments are dependent on the individual mobile device
without depending on the other device’s behavior. Further, the effects of
other contextual parameters on increasing number of devices (e.g. net-
work, ISP, terrain, carrier type etc.) would be interesting to look into but
unfortunately these are not within the scope of current focus.

Discussion

The proposed architecture caters to the issues of providing a dynamic service

registry in mobile environments. It manage to incorporate the requirements out-

lined in Section 3.2.3.

R1: Management of transient web services: The approach effectively man-

ages the availability information on each registered web service and is capable

of dynamically updating it. This helps in satisfying requirement R1 and keeping

the service registry up-to-date irrespective of random entry and exit of transient

web services.

R2: Lightweight: The architecture seeks information that is just enough to

uniquely identify and manage a web service from the registrant mobile device

for registry related operations. The registries manage information that is less

likely to change and whatever change does happen is updatable via a watchdog

process. This keeps the registry architecture as lightweight as possible and thus

satisfies requirement R2.

R3: Minimum communication overhead: We have made use of just three

3.5 Implementation 61

XML stanzas in order to minimize communication overhead, satisfying require-

ment R3. During our experiments, we observed the exchange of just a few kilo-

bytes of data for hundreds of request transfers. This small overhead also helped

us minimize battery utilization, as reflected in Table 3.2 and 3.3. Furthermore,

the approach uses just one stanza “IQ Stanza” for easier service registration and

de-registration.

R4: Distributed Service Registry: The proposed approach manages the ser-

vice registry over dispersed registry nodes and navigator nodes. Thus satisfying

requirement R4 and improving fault localization. These features, contribute to a

light weight and autonomous service registry effective for mobile environments.

R5: Run time search: The dynamic availability information, minimal data

transfer, and faster response time helped in performing effective run time searches

and in the process satisfied requirement R5.

Further, the proposed dynamic mobile service registry is compatible with

existing UDDI and other registries. The dynamic registry can register external

UDDI and other service registries as one of the registered services along with

their access points. Contrary the proposed registry can be registered with other

registries and UDDI as any of the registered service.

Assumptions and Limitations

There are certain important assumptions that have been made in the proposed

service registry framework. These are listed as follows: 1) The load balancing

of the incoming registry requests is assumed to be handled at the device level.

There could be a threshold capacity limit, at each device depending on its hard-

ware capacity. On exceeding this capacity limit, the incoming requests are not

entertained and these surplus requests are handled by other registry nodes that

3.5 Implementation 62

have access to the common access channel. 2) There is no reward system sug-

gested in the current state of the work. Hence, it is assumed that the mobile

device owners are self-motivated to provide their respective devices for serv-

ing as the registry. We may look into a system of rewards/incentive as part of

future work. 3) The updates are performed to keep the local registry replica up-

dated (at the navigator/registry nodes) in an automated manner without manual

intervention.

A few important limitations of the current work are listed as follows: a) The

current design of the framework does not deal with the privacy issues of the

mobile phone users associated with service registry and service provisioning. b)

The current design of the mobile registry does not handle the QoS (Quality of

Service) aspect of the mobile web service. The QoS may be handled by provid-

ing a link to the data server (external to the framework) that could have QoS and

other details on the service description. c) Though we have a system in place to

detect the unavailability of registry nodes through heartbeat signals, the behav-

ior of the mobile device owner, poor network connectivity, and physical damage

to the mobile device could result in the abrupt unavailability of the registry/nav-

igator node. These have not been dealt with in this work. d) Finally, the current

evaluation of the approach was conducted within a supervised lab environment.

The registry power and data requirements, service discovery performance, and

other results were therefore well within acceptable range. There could be slight

variations in these if the experiments were carried out at a much larger scale

including thousands of mobile devices.

3.6 Related Work 63

3.6 Related Work

Service discovery is an important aspect of service-oriented architecture. Two

types of approaches are primarily adopted for service discovery: Registry based

Approach and Registry-less Approach. The Registry-less approach usually makes

use of overlay networks, hash tables, and other broadcasting/multi-casting tech-

niques. One of our works, proposes a registry-less service discovery approach

for crowdsourced SOA environments. However, we believe that registry based

approaches are more aligned with the requirements of the constrained SOA en-

vironments and SOA principles. Therefore, in the proposed work, we perform

service discovery using the former i.e. "Registry based Approach".

We surveyed existing literature from the late 90’s. We classified the registry

based approach into two broad categories: the Centralized Registry Approach

and the Distributed Registry Approach. These two can further be classified

into those for mobile environments and those for non-mobile environment. Our

survey includes works from the areas of SOA, peer-to-peer networking, mobile

ad-hoc networking.

3.6.1 Centralized Service Registry:

The centralized service registry approach is used in several popular technolo-

gies: Service Location Protocols [37], Sun’s Jini architecture [38], Service Dis-

covery Services [39], Microsoft’s Universal Plug and Play (UPnP) [40]. These

service discovery infrastructures rely on a central registry for discovering ca-

pable services. The service information is stored at a centralized registry. All

registry related operations are performed by a single entity.

One well known example of centralized service registry architecture for

3.6 Related Work 64

web services is UDDI (Universal Description Discovery and Integration) [10].

UDDI is not the service registry itself. However, UDDI is the specification

of a framework for describing web-services, registering web-service, and dis-

covering web-service. Several data structures and APIs have been published

for describing, registering and querying web-services through the UDDI. The

ebXML (electronic business XML) [11] standard is another example of a cen-

tralized web service registry architecture. Hoschek [41] presented a grid based

hyper registry for web services in peer-to-peer networks. The registry is an

XQuery based centralized database that manages dynamic distributed contents.

Juric et al.[42] proposed an extension to the UDDI for incorporating ver-

sion support for services. They presented modifications to the category tag of

business service and tModel of the UDDI infoset with the intent to introduce

service interface versions in UDDI and WSDL. Bernstein and Vij [43] pro-

posed the use of XMPP for intercloud topology, security, authentication and

service invocations. In some ways this work is similar to ours. However, our

work focuses on registry management in mobile based service oriented archi-

tecture. We focus on managing the service registry in a distributed manner over

resource constrained mobile devices. Seto et al. [44] proposed a service reg-

istry for ubiquitous networks to dynamically discover service resources. Their

registry divides the service operation into the source, transformation, and sink,

specifies physical meta-data to manage devices, and associate a keyword with

it.

Feng et al. [45] proposed a registry framework to include interoperability

among various semantic web service models. For this, they made use of reg-

istry meta model for interoperability-7 and several mapping rules for handling

semantic mismatch between services. Feng et al. [46] proposed a service evo-

lution registry where providers can register their service evolution information

3.6 Related Work 65

and consumers can be sent an alert regarding the service evolution. Their work

manages service versions along with their dependencies and discrepancies.

More recently [47] presents the idea of using object relational databases in

the service registry. The registry extends the search to include search on the

basis of service commitments and service expectations.

3.6.2 Centralized Mobile Service Registry:

Some existing work [48][49] discusses the possibility of centralised service reg-

istries for mobile environments. Diehl et al. [48] talk about centralized service

registries that store the service domain, service types, location and access rights

to manage service mobility and adoption of services in wireless networks. Beck

et al. [49] propose an adaptable service framework for mobile devices that relies

on a central service registry for dynamic service registration and discovery.

Doulkeridis et al. [50] discuss the idea of managing contextual information

in service registries. The main focus of the work is to ease service discovery

in mobile environments by maintaining context aware service registries. Deepa

and Swamynathan [51] talk about a directory based architecture that make use

of two integrated architectures: backbone-based and cluster based. Their work

was intended to facilitate service discovery in mobile ad-hoc networks and to

achieve improved network traffic, response time, and hit ratio.

3.6.3 Distributed Service Registry:

Chen et al. [52] and Sivashanmugam et al.

[7] discuss a few initial approaches to maintain UDDI in a federated envi-

ronment. One approach [52] supports QoS based discovery from requesters

3.6 Related Work 66

and provides an aggregated result from the federated registries. The other ap-

proach [7] suggests the use of various metadata and ontologies to manage UDDI

in a federated environment. Verma et al.[8] propose METEOR-S WSDI, that

focusses on providing registries in distributed and federated environments. Ex-

tended Registries Ontology was used to provide access to these distributed reg-

istries and organizing them in domain based categorization.

The approach discussed in [53] presents a distributed service registry for grid

application. The approach utilises Xpath queries and ontological trees for do-

main based service discovery. Baresi and Miraz [54] talk about an approach to

enable heterogeneous federated registries to exchange service information. The

approach is based on the publish and subscribe model. Ad-UDDI [9] is a dis-

tributed registry architecture that adopts an active monitoring mechanism. The

approach extends UDDI to incorporate automated service updates in a federated

registry environment.

Treiber and Dustdar [55] propose an active web service registry that make

use of atom news formats. RSS software is used in the approach to form an ac-

tive distributed registry. Shah et al. [56] also propose an RSS-based distributed

service registry in the move to achieve global SOA. The proposed registry is

intended to provide dynamic discovery using RSS and tries to resolve synchro-

nization issues in RSS. Jaiswal et al. [57] introduce a decentralized registry us-

ing the Chord protocol for peer-to-peer environments. The registry comprises

distributed hash tables of web-service names and web-service IPs. Their method

claims to cater to demand driven web-service provisioning.

Another direction in distributed service registry systems is one meant for

cloud environments [58] and [59]. Lin et al. [58] present a hadoop-based service

registry for the cloud environment. The work proposes geographical knowledge

service registries that are designed to simplify service registration, improve dis-

3.6 Related Work 67

covery and other registry operations for cloud services. Elgazzar et al. [59]

propose to manage a local service registry at the provider’s site for the offered

services. This local service registry is managed in a distributed manner and has

two types of services: local and remote. The paper proposes Discovery-as-a-

Service in the cloud environment.

Das Gupta et al. [60] in a more recent paper, discuss about the possibility

of a federated registry system for P2P networks. The work makes use of multi-

agent based distributed service discovery for non-deterministic and dynamic en-

vironments. They propose that super peer nodes manage the distributed service

registry and other peers register their services with these registries. Zhang et

al. [61] discuss the integration of peer to peer technology with SOA. They talk

about self-organizing, semi-structured P2P frameworks for support and propose

to use a private service registry at each peer for discovering the manufacturing

services. The local private registry of the peer is traversed first to discover a

service.

3.6.4 Distributed Mobile Service Registry:

Handorean and Roman [62] propose probably the first work that discusses the

possibility of distributed service registries in mobile environments. In their ap-

proach, the availability of services is shown in the registry along with an atomic

update facility to maintain consistency. Konark [63] is a distributed XML based

registry that has a tree structure. A top-down approach is used for the tree, with

generic classification of services at the top and specific classification at the bot-

tom. Every node maintains a service registry, where it stores information about

its own services and also about services that other nodes provide. The approach

provides a semantic service registry and enables servers as well as clients to

3.6 Related Work 68

register and discover services in a distributed manner.

Schmidt and Parashar [64] present a distributed hash table based approach

for distributed registries in peer to peer networks. The approach supports ser-

vice discovery based on keywords, wild cards on an Internet scale. Indexing of

keywords associated with the web service description document is managed at

the peers. Tyan and Mahmoud [65] discuss an approach for service discovery

in mobile ad-hoc environments. The work considers a registry as a tree and

makes this registry available to every node in the network. The approach makes

use of a location aware routing protocol and divides the network into hexago-

nal grids with a gateway for each that have the service registry. Golzadeh and

Niamanesh [66] discuss an approach for a service registry system for mobile ad-

hoc networks. The approach divides the MANET into clusters with one head for

each cluster that acts as a directory for the cluster. The head node has two types

of registries: the service provider’s registry and the other head node registry.

A decentralized service registry for location based web services is discussed

in [67]. The approach is relied on cellular network system and base transceiver

station for retrieving the local registry address. These addresses are broadcasted

by base station and interested mobile devices download the registry address for

location based services. One of the latest works by Jo et al. [68] makes use of

bloom filter to manage distributed service registry for mobile IoT environments.

Proposed work uses hierarchical bloom filters for reducing message exchanges

among registries in move to find available services.

Although there is a good amount of work that has been done towards devel-

oping effective service registries, an architecture that enables mobile devices to

host mobile service registries and that takes the distinct features of mobile envi-

ronment into account such as intermittent connectivity, dynamic nature, frequent

service description changes is still lacking. Our work focuses on registry man-

3.7 Summary 69

agement in mobile based service oriented architecture. We focus on managing

the service registry in a distributed manner on resource constrained mobile de-

vices. This service registry contains minimal information about the registered

services in a manner that is just enough to uniquely discover the services.

3.7 Summary

In this chapter we looked into, perhaps, the most challenging aspect of imple-

menting an SOA in mobile environments: effective service registries. Our stud-

ies show that traditional approaches for implementing service registries (such as

UDDI) cannot be directly adopted in mobile environments, given the dynamic,

volatile and uncertain nature of such environments. A novel approach to man-

age service registries ‘solely’ over mobile devices was proposed that effectively

addressess issues specific to mobile environments and enables run time service

discoveries in peer-to-peer manner.

We evaluated the approach by developing a prototype and deploying it over

real mobile devices. To emulate real world usage as closely as possible we

requested volunteers to deploy our prototype on their personal mobile devices

and continue doing their routine tasks. The experimental results indicate that the

proposed solution is an effective enabler for SOA in mobile environments. We

performed several experiments to confirm the efficacy of the prototype across

several parameters such as: timely performance, battery consumption, effect of

the random/nomadic behaviour of people carrying mobile devices, conflict with

native mobile apps, reliability.

Future work in this direction would be towards mobile service registries that

focus on QoS factors unique to mobile environments. Future work will also

tackle security related issues, dynamic service group splitting in mobile service

3.7 Summary 70

registries. Further, the availability of the service registries will be a prime focus.

Chapter 4

Dynamic Web Service Description

Over the past two decades, mobile technology has gained widespread popular-

ity and has become a part of day-to-day life. In particular, smart phones and

mobile devices strongly impact the way human beings communicate and deal

with digital information. The modern era has witnessed rapid advancements in

the field of mobile technology and wireless networking. As a response to this

advancement and growth, a large number of services are emerging in the market

that can provide digital information over hand held mobile devices. With such

dramatic growth, smart phones and mobile devices have the potential to become

"service providers" from merely being "service consumers".

The materialization of the vision to host and provision web services in peer-

to-peer manner over mobile devices can bring a new level of usability to mobile

users. The mobile web services will allow the mobile user agent to directly

interact with other mobile user agents. This reduction of human intervention

in service provisioning will speed up service execution, limit the chances of

error, automate redundant tasks, and most importantly reduce the annoyance of

human users. A few prospective applications of mobile web services are: 1)

Credit cards, debit cards, visiting cards can be provided as web services from

mobile devices without the need of having the user search for them or even carry

them physically. 2) Localization of personal information can be done seamlessly

through services over mobile devices. 3) Modern mobile devices are equipped

with powerful sensors. Mobile devices laden with such sensors play the role

of a “gateway” facilitating proper access to the capabilities of the sensors. 4)

72

Mobile services are particularly useful in scenarios where there is little or no

preexisting infrastructure by functioning through ad-hoc networks. Examples

of these scenarios are war-front, post-disaster relief.

The realization of web services over mobile devices has gained attention in

the community. Several approaches have been proposed to provide web services

over modern mobile devices [69] [70] [17] [71] [72] [73]. However, a key chal-

lenge that is overlooked in mobile environment is “service description”. Service

description is crucial for the consumers of services to get a sense and better un-

derstanding of the offered services and operations. This is of further importance

in mobile environments, where the service invocation requires a great deal of

service understanding owing to the dynamic nature of transient services. Tra-

ditionally, WSDL (Web-Service Description Language) [12] is used to describe

and publish the functional description of web-services. Well written WSDL

documents provide binding implementation information, detailed description

of input-output messages, information on how messages are sent through the

network, amongst others. Further, WSDL documents facilitate discovery of the

intended web-services over standard service registries such as UDDI - Universal

Description Discovery and Integration [10]. On the flip side, however, WSDL

documents only provide the functional information of a web-service. They do

not provide information on the non-functional aspects, contextual aspects, and

the business aspects of a web-service. This information is crucial and of utmost

importance in selection and proper usage of available services especially in the

context of providing such services over mobile devices.

In this chapter, we present the work that incorporates functional, non-functional,

contextual, and business aspects of services along with service collaborators,

data source details, hardware aspects, and consumer base to service descrip-

tions for mobile devices. Mobile devices may sometimes act as the “gateway”

73

to information provided by data sources such as embedded sensors, third party

applications, or other mobile services. In such scenarios, the mobile service

provider and the data source can be viewed as two separate entities. Both the

entities are operated autonomously, with their own unique characteristics and

further both entities are prone to failure independently. In such scenarios, tra-

ditional service description solutions do not suffice as they consider data source

and service provider as indistinguishable entities. An important perspective cov-

ered by the proposed mobile service description is: “data source” and “mobile

service provider” are looked upon as two disjoint and independent entities. Fur-

ther, we acknowledge the fact that mobile web services are usually light weight

and provide limited functionality. Mobile services can be combined and aggre-

gated among themselves to build and compose more complex and useful ser-

vices. Hence, this collaboration can lead to provide services that can be readily

useful in a real world scenario. In the proposed approach, we further incorporate

details on the collaborative partners. The goal of this work is to provide vari-

ous service descriptions and information handy to the service consumer. Access

to such information along with functional descriptions at the time of service

discovery speeds up the service selection process considerably. Further, this

can facilitate the service consumers to shortlist and select the most suitable and

optimum service provider beforehand without the need to communicate with

individual service providers. The trade-off though in making such additional in-

formation available is that it proportionately increases the size of the description

document. The mobile service consumers need to perform heavier processing

to handle such lengthy descriptions. Furthermore, such description information

(which could include availability, location, response time, latency, price, ser-

vice scope) is subject to frequent changes owing to the very nature of mobile

environments. Management of such detailed service description documents at

the service registry therefore could easily suffer from consistency issues, lack of

4.1 Background 74

Figure 4.1: Role of Service Description

up-to-date information, and increased network traffic. We tackled these issues

and provide a feasible solution for mobile service descriptions.

The aim is to provide a lightweight solution that is dynamically update-able

and facilitates rich service descriptions in mobile environments. We emphasize,

however, that the proposed solution is not a replacement for existing technolo-

gies but one that complements it. It acknowledges the heterogeneity of the en-

vironment that supports a co-existence of wired, wireless, and mobile devices.

The idea is to extend the WSDL 2.0 [12], to incorporate non-functional, con-

textual, business, data source, collaborator information. The extension takes

into account the constraints and issues of mobile environments. To the best of

our knowledge, this is the first attempt at providing a lightweight yet exhaustive

service description solution that facilitates dynamic updates in mobile environ-

ments.

4.1 Background

An effective way to make the most of mobile services and easing service con-

sumers interaction with mobile services is a well defined “Service Description”.

4.1 Background 75

This enables service consumers to effectively discover and use the offered mo-

bile service in peer-to-peer mobile environment. Figure 4.1 depicts the role of

service description in service systems. In a service system, the usual stages are:

Service Publishing, Service Discovery, Service Selection, Service Binding, and

Service Invocation. Service description is an integral part in most of these stages

and therefore the role of service descriptions can not be underestimated. A ser-

vice description is a means to express the characteristics of the offered service

to prospective consumers. Well expressed descriptions are important for ser-

vice consumers to comprehend of the offered services and operations. Service

descriptions provide clear and structured instructions on how to invoke a ser-

vice which is particularly important to first time service consumers. Moreover,

an exhaustive service description eases device-to-device communication by au-

tomating various stages of service systems (as shown in Figure 4.1). Hence, the

our prime focus in this chapter is service description for mobile services.

In the proposed work, we propose a solution to complement the existing

technology particularly WSDL (being one of the widely used languages for ser-

vice description). We work towards extending the features of the WSDL doc-

ument to accommodate the needs of the mobile environment. WSDL already

provides a concrete fundamental support to the web service technology that can

be adapted for mobile environments to describe and publish functional parts of

the mobile services. In the current context where wired legacy systems and

modern hand-held mobile devices coexist, a service description framework that

works well in the heterogeneous mixture of diverse technologies and provides a

platform for interoperability is required.

To the best of our knowledge WSDL 2.0 is best suited for such requirements.

WSDL 2.0 is capable of describing both the major web service technologies:

SOAP based and REST (Representational State Transfer) based; this is possi-

4.2 Problem Statement 76

ble as WSDL 2.0 has good support for describing HTTP bindings. WSDL 2.0

further provides a generic mechanism to define service operations using Mes-

sage Exchange Patterns (MEP) [12]. This feature encourages message-oriented

operations and supports arbitrary message exchanges that are pertinent for het-

erogeneous mobile environments. Although several other description languages

have been proposed since the inception of WS-* technology, most do not take

into account the distinct nature of mobile environments. This, along with the

wide acceptance of WSDL has made us rely on it for the functional descrip-

tion of services in mobile environments. Furthermore, continuing with WSDL

would require least tinkering with existing protocols and technologies.

Being XML based, WSDL 2.0 has very convenient in-built extension capa-

bilities that can sufficiently cater to our requirements. Our approach is to extend

WSDL 2.0 to accommodate various other description aspects in addition to the

functional description that it already takes care of. For this, we have utilized

the “import” statement of WSDL 2.0 for linking physically separate description

documents. These partitioned descriptions enable lightweight, dynamic, and

consistent management of the overall service description.

4.2 Problem Statement

Several heterogeneous mobile devices constitute the mobile environment. These

devices could be of varying processing capabilities, power requirements, mem-

ory, transmission protocols. Further, these devices are prone to uncertain be-

havior and dynamic changes as they usually are in continuous motion and they

can randomly join/leave the network. Therefore, a holistic service description

mechanism is required for services hosted by such mobile devices that compre-

hensively covers the various unique aspects of the mobile environment. Merely

4.2 Problem Statement 77

a functional service description does not provide enough information to the ser-

vice consumer for service selection in such environments. Service selection

made on the basis of only functional service description may lead to the invoca-

tion of an obsolete service or an off-line service provider.

A novel approach is required that takes into account the distinct nature of

mobile environments and that considers service aspects in addition to the func-

tional description, such as the non-functional, contextual, data source descrip-

tion, hardware, and business descriptions of a mobile service. In the current sce-

nario legacy wired systems and modern wireless mobile systems coexist. There-

fore, a completely novel architecture that intends to replace the existing solu-

tions is undesirable. A service description solution that complements the cur-

rent solutions and also has added features catering to mobile environments is the

need. As elaborated in the earlier sections, in mobile environments the service

descriptions require frequent updates owing to regular context changes, non-

functional and/or business related changes. Moreover, mobile environments are

prone to failures reasons being frequent network outages, battery limitations and

are usually constrained in terms of processing power. This leads to the added

requirement of a ‘lightweight approach’ for such service descriptions. Further,

keeping in mind the distinct nature of mobile environments, information about

the data source, collaborator, and hardware becomes an important parameter

during service selection. Hence, a service description approach that considers

the issues associated with mobile environments and at the same time blends with

the existing technological solutions is required.

We summarise the requirements of mobile service description as: detailed

(including non-functional, contextual, business, collaborator, data source, hard-

ware aspects in addition to functional); run-time update-able (i.e. dynamic); and

lightweight.

4.3 Proposed Approach 78

Figure 4.2: Mobile Service Description

4.3 Proposed Approach

As discussed, we intend to use and extend the existing technologies and tools

for service description in mobile environments. The mobile services are pro-

vided by mobile devices and may be consumed by another mobile device in

peer-to-peer mobile environment. Therefore, we propose to extend WSDL for

service description to accommodate the distinguished requirements and features

of services in mobile environments. In the subsequent subsections, we provide

details about the proposed approach:

4.3.1 Design Concept:

We propose to use the following service description documents for mobile ser-

vices:

1. Functional Description Document.

4.3 Proposed Approach 79

2. Non-functional Description Document.

3. Contextual Description Document.

4. Business Description Document.

5. Data Source Description Document.

6. Collaborator Description Document.

7. Hardware Description Document.

WSDL documents are widely used for service descriptions. These docu-

ments provide detailed functional description of services. Hence, we rely on

WSDL documents for functional description of the services provided over mo-

bile devices. In this work, we propose to link the WSDL document with other

description documents mentioned above using the “import” statement defined

in WSDL. The “import” mechanism allows referral to other WSDL documents

defined elsewhere. We use this to connect descriptions that are split across mul-

tiple documents for the mobile service.

Figure 4.2 shows an abstract view of the proposed approach. There are three

primitive entities: Service Provider (mobile device hosting a service), Service

Consumer (mobile or non-mobile device), and Service Registry (mobile registry

or traditional non-mobile registry). These entities have the Publish /Find /Bind

relationship between them as shown in Figure 4.2. The service descriptions are

split into multiple documents and placed at the Service Registry and the Service

Provider (i.e. the mobile device in this case). The motive behind this splitting

and placing of multiple parts of the description at different locations is:

• to facilitate faster, independent, and dynamic updates related to service
provider in the descriptions and keeping the description up-to-date.

• to maintain the overall consistency of the description in case of simulta-
neous updates.

4.3 Proposed Approach 80

• to provide a lightweight and detailed service description.

The descriptions of a mobile service may be dynamic and subject to updates

regularly. This includes descriptions related to the current network (Wi-Fi or

GSM), location, current availability status of the mobile service provider host-

ing the service. These updates are managed by various independent entities or

authors and, therefore, the mutual independence of separate description docu-

ments saves the hassle of inconsistent updates. For instance, the non-functional

description of a mobile service can be managed and updated by a third party

auditor or a broker, whereas the contextual description can be managed by a

simple mobile application residing on the same device. This demonstrates the

efficacy of splitting and delocalising service description documents in the mo-

bile environment.

Registration of services hosted over mobile devices with a service registry

is assumed to follow the same process as in traditional systems. In case of

UDDI, the service registration involves the bindingTemplate, businessEntity,

businessService, publisherAssertion, tModels [16]. Our approach extends and

makes use of WSDL that primarily affects the tModels. We are not proposing

any change to the fundamental structure of the WSDL. Hence, the existing pro-

cess for service registration and publishing is adapted. The proposed approach,

therefore, blends well with wired systems and existing SOA standards. The

main differences, however, lie in the service description retrieval process. Fol-

lowing are the steps used in description retrieval in the proposed approach (as

shown in the Figure 4.2):

1. Search a service at the service registry.

2. Retrieve the functional service description from the service registry.

3. Retrieve the rest of the service descriptions from the mobile service provider.

4.3 Proposed Approach 81

Figure 4.3: Service Description Infoset for Mobile Services

4.3 Proposed Approach 82

4.3.2 Description Components:

As discussed in Subsection 4.3.1, we propose to use various service description

documents that provide a holistic understanding of a mobile service and that

describe the mobile provisioned services in a distributed manner. As shown in

Figure 4.3, seven service descriptions are interlinked by the import statement

and an information base about the service consumers. Each element of the de-

scriptions has an attribute “isDynamic”, that indicates whether the element is

dynamic or not i.e. if the element requires regular updates. This particularly

helps in cases where a third party broker or application is responsible for up-

dating the description. We included several description metamodels for mobile

services, however, defining all the elements associated with each description

metamodel is out of the scope of our work.

A brief overview of each service description is as follows:

Functional Description

As discussed in the earlier subsection, we rely on WSDL 2.0 for a detailed func-

tional description of the service (refer to Figure 4.3). A functional description

should describe “What”, “How”, and “Where” of a service:

• What - The function of a service or the operations that a service provides
is described by the functional description of a service. The interface com-
ponent of the functional description (refer to Figure 4.3) helps to achieve
this.

• How - The mode of invoking the service, the message formats, and trans-
mission protocols used by the service constitute an important part of the
function description. The binding component of the functional descrip-
tion (refer to Figure 4.3) helps to achieve this.

• Where - The location of a service or the URI of the service endpoint con-
veys to the service consumer the address of the service. The service com-

4.3 Proposed Approach 83

ponent of the functional description (refer to Figure 4.3) and the endpoint
element in it defines the URI of a service deployment.

This description is usually the first criterion during the service selection

process. First of all, the services are shortlisted on the basis of the function-

ality they provide, subsequent filtering of the services is done through further

criteria. In the proposed approach, therefore, we link the remaining descrip-

tions of the service with the functional description using the “import” state-

ment. A typical import statement comprises a namespace and the location

of the importing description document: <import namespace="anyURI"

location="anyURI"><documentation/></import>

Non-Functional Description

The non-functional properties or the quality of service implies the overall per-

formance of the service experienced by the service consumers. We propose to

associate a “timeStamp” attribute with the non-functional description document

that indicates the time-stamp of the last update. In the uncertain mobile environ-

ment, the non-functional properties change with a change of context of service

(e.g. location, network, battery etc.). Hence, the time-stamp brings in a degree

of certainty to the non-functional description. This helps in better management

of dynamically varying description elements. We propose to use the “timeS-

tamp” attribute with the business and contextual descriptions as well.

We propose four ‘Quality of Service’ (QoS) groups in mobile environments:

1. serviceQoS: Service QoS are the quality attributes of a service as expe-
rienced by service consumers. A few important QoS attributes include:
Availability, Capacity, Latency, Throughput, Performance, Reliability.

2. networkQoS: Network QoS include the quality attributes associated with
the underlying network used by the service. This network varies from

4.3 Proposed Approach 84

Wireless LAN, GSM, WiMAX. A few attributes of this group are: Packet
Loss, Network Delay, Delay Variation, Bandwidth Capability.

3. systemQoS: System QoS are the quality attributes that characterize the
whole system instead of just the service or network or third party applica-
tion. A few attributes in this category are: Accessibility, Security, Usabil-
ity, Scalability, Interoperability, Robustness (Failure-Management), Ex-
tensibility.

4. otherQoS: This group or placeholder is proposed to categorize the quality
attributes that do not fall in any of the groups mentioned above. This
group is extensible and can further categorize service attributes. A few
examples of this group are: Testability, Modifiability, audit-ability.

This description is not only limited to these four types and can be extended

to include other QoS attribute categories as well. A few pointers to work on non-

functional properties of services are [74][75][76][77]. We consider the QoS as

the totality of the features and characteristics of the service that are based on

its ability to satisfy the implied needs (as per ISO 9000). We only focus on the

description of the claimed or known QoS values of the offered services. Deter-

mination/Estimation of the varying QoS attribute values is beyond the scope of

this work.

Business Description

The business related information of a service is expressed in the business de-

scription document. This description mainly comprises:

• Legality: The legal obligations or conditions associated with the service
are represented by this placeholder. For instance, a service is not avail-
able in a specific country, the service is making use of proprietary appli-
cations, disclaimer notifications. The legality description is particularly
important in case of mobile services as they can easily migrate from one
legal boundary to another.

4.3 Proposed Approach 85

• Certification: The certification placeholder specifies the business related
certifications or licenses associated with the service. For example ISO
certification, SSL security certificates.

• Usage Requirement: The preconditions for service usage (if any) and
other service usage requirements are described by the usage requirement
placeholder. This may include the minimum version of software agents
or device capabilities.

• Cost: The Cost or pricing placeholder specifies the price for use of the ser-
vice. The cost placeholder could further be extended to cover discounts,
special offers, group pricing for a set of services.

Apart from this, the business description document could include informa-

tion related to referred service choreography, service offering background (e.g.

in-house development, third party applications), service version[78], service

scope (what a service covers and what it does not), service type (human pro-

vided or manual, automated, semi-automated). The business description infor-

mation is necessary in mobile environments as it provides greater exposure to

the business related offerings of mobile services.

Contextual Description

The often varying context of mobile devices makes the contextual information

of utmost importance for services provisioned over mobile devices. A good

definition of the term context is given by Bazire and Brézillon [79]: “Context is

any information that can be used to characterize the situation of an entity, where

the entity is a person, place, or object that is considered relevant to the interac-

tion between a user and its application, including the user and the application

themselves”.

The context information includes constraints, nature, and attributes that in-

fluence the behavior of the service. The description chiefly has placeholders or

category for the following elements:

4.3 Proposed Approach 86

1. deviceContext: This represents the context of the mobile device that hosts
and provisions the service. This includes device related information, its
operating conditions.

2. userContext: This placeholder depicts the user (mobile device owner or
human service provider) related information. User context is worth con-
sidering in mobile environments as the mobile device user’s (or human
service provider’s) activities, behavior can directly influence the service
experienced by the service consumers. This may include the user’s rou-
tine, availability of the service, the user’s background (e.g. profession),
user’s situation (walking, running, driving), location (address, GPS coor-
dinates, time zone).

3. serviceContext: Service related contextual information is depicted by this
placeholder. A few examples of service context are service domain, ser-
vice connection preference, service specialisations.

4. businessContext: Business contextual information includes information
such as preferred business scenario (e.g. combination of user’s and de-
vice’s context), preferred service partners, compositions.

Service and Documentation are common attributes in all descriptions. Ser-

vice specifies the associated service name and its URI for which the description

has been provided, while documentation specifies the human readable descrip-

tions of the attributes and service description. These two attributes are borrowed

from WSDL 2.0.

Data Source Description

In mobile services, mobile service providers (or mobile devices) often serve

as the “gateway” to information provided by the data source which is itself an

independent entity. The data source can be anything that provides the mobile

service with data. The data source and mobile service provider can be viewed

as two independent entities that have independent failures, context, capacity.

Examples of such data sources are internal sensors that are physically located

4.3 Proposed Approach 87

within mobile devices (GPS sensor, digital compass, barometer, pedometer) or

external sensors (smart home sensors, body area network sensors etc.) or third

party mobile software applications.

As technology progresses towards the Internet of Things (IoT), there is ex-

pected to be rapid increase in the number of such data sources. The mobile

service provider will then more commonly provide an abstraction for data ob-

tained from such ‘things’. The abstraction would be such that the data is made

available in formats that are standard and facilitates seamless usage. While for

the service consumers, the description of these data sources would provide a bet-

ter understanding and a holistic view of the service. That, consequently, might

become an important service selection criteria. The data source description pri-

marily contains placeholder for the following elements:

1. LocationDetail: This comprises the location details of the data source.
This includes the GPS coordinates and other the location information.

2. CapacityDetail: This comprises the technical details on the data source.
This mainly includes the operating capacity of the data source. In certain
scenarios, this may include battery information and computation capacity
as well.

3. QoSDetail: This provides non-functional information on the data source.
This may include availability, throughput, reliability, network delay, se-
curity information.

4. ContextualDetail: Contextual information (as discussed in the earlier point)
provides information about the constraints, nature, and structure of the
factors that influence the behavior of the data source.

The data source descriptions are provided and managed by the mobile ser-

vice provider. This document could further be viewed as: Dynamic Part (These

are the pointers to the inforamtion located at data source and are likely to change)

and Static Part (This information is placed at the service provider e.g. Capacity-

4.3 Proposed Approach 88

Detail, QoSDetail). This description is necessary as it provides greater exposure

to the important constituents of the mobile service.

Collaborator Description

Mobile devices are powerful enough to provide services on their own, yet their

capabilities can be improved manifold through mobile service collaboration.

Description and information on collaborators helps prospective service con-

sumer to take a decision on a service provider.

Collaborator description provides information and conformity to the service

consumer about the service being offered. We provide the following placehold-

ers for collaborator description:

1. FunctionalDetail: This placeholder is proposed to provide information on
what, how, and where of the service collaborator. The functional descrip-
tion of the collaborator (as discussed in section 4.3.2) may be reused.

2. BusinessDetail: This placeholder is proposed to provide business related
information on the collaborator. This includes legality, usage require-
ments, and other related aspects.

3. WorkflowDetail: This placeholder provides information on the particiap-
ating workflows of a collaborator. This is mainly to provide the informa-
tion about the collaborator’s work assessment.

4. UpdateFrequency: This placeholder specifically works towards preven-
tion of out dated information in a large workflow. This enables the service
consumer to have an updated service all the time.

The collaborators description could already present as the mobile service

description. Therefore, instead of managing all the information at the service

provider, it manages a short summary of the functionality offered by the collab-

orator and provides the pointer to the functional description of the collaborator.

WorkflowDetail provides active workflows with a collaborator as few of the

workflow may become outdated due to collaborator’s service update.

4.3 Proposed Approach 89

Hardware Description

Hardware details of the service provider are provided in this placeholder. This

description is introduced to minimize the need of service negotiation from non-

potential providers. Service consumers can assess the service claim and the

hardware that is used to provide the service before actually using the service.

The following placeholders are introduced for a detailed hardware description:

1. SensorLists: Modern mobile devices are equipped with several modern
sensors. This placeholder provides a detailed list of the equipped sensors
and their functionality.

2. MemoryDetail: This briefs the service consumer about the memory de-
tails of the mobile device providing the service. Memory details include
information on the primary memory and secondary memory of the mobile
device. In certain scenarios, this placeholder also includes details about
external memory locations (in case cloud storage is used).

3. PowerDetail: Power or battery plays an important role in the selection
of mobile services. This placeholder provides the runtime power profile
(device battery over a specific time period) of the mobile device.

4. ManufacturerDetail: This placeholder provides information on the manu-
facturer, kernel versions, and other device related information. This could
further provide information on the manufacturer of the mobile processor,
WiFi and bluetooth adapters.

Mobile service provider may fetch the hardware related details at runtime

using APIs exposed by the modern mobile operating systems. For example

android provides detailed and sophisticated libraries that access the hardware

information efficiently. This description document could viewed as two parts:

Static Part (comprises the unchanging elements - SensorList, ManufacturerDe-

tail and is placed at the service registry) and Dynamic Part (comprises the chang-

ing elements - MemoryDetails, PowerDetail and is placed in the vicinity of the

service provider).

4.4 Evaluation 90

Consumer Base Details

The consumer base provides details about the earlier consumers of the service

such as number of consumer accessed, location partitioning of consumers. This

helps prospective service consumers better assess a service provider. We can fur-

ther extend this placeholder to include feedback and rank the service providers.

These can be used to propose a recommendation system for mobile services.

Detailed discussion on such recommendation systems is beyond the scope of

our study.

4.4 Evaluation

We have evaluated the proposed approach with the rationale of demonstrating

its usability, feasibility in practical scenarios, and efficacy for mobile service

description. We have used the following evaluation techniques (as discussed

in [80]): 1) Feature Comparison, 2) Empirical Evaluation, and 3) Conceptual

Evaluation. Section 4.4.1 provides a detailed feature comparison, Section 4.4.2

discusses the empirical evaluation, Section 4.4.3 makes use of case studies for

theoretical evaluation.

4.4.1 Feature Comparison

In this section, we provide a thorough comparison of the proposed approach

with existing service description methods available in literature. For this com-

parison, we have examined 22 related approaches and compared the proposed

approach on the following criteria: applicable domain, ability to dynamically

update the description, representation style, aspect of description covered, tech-

4.4 Evaluation 91

niques used for description, validation approach for the method, and other salient

features. Table 4.1 and Table 4.2 present a detailed comparison of the proposed

approach and existing works chronologically in literature .

Table 4.1: Comparison of Proposed Approach with Existing Approaches in Lit-
erature

Work Domain Dynamic

Update

Representation Technique Used Validation

Approach

Description Aspect

Web Service Descrip-

tion Language [81]

Wired No Syntactic XML W3C Specifica-

tion

Functional

DAML-S [82] Wired No Semantic Darpa Agent

Markup Lan-

guage(DAML+

OIL) ontology

Example Functional

WSDL extension for

Security description of

Web services [83]

Wired No Syntactic XML Not Mentioned Functional

Security Description

Framework [84]

Wired, Wire-

less

Yes Syntactic XML Example Functional and Security

Description

OWL-based frame-

work of the Semantic

Web [85]

Wired No Semantic RDF W3C Specifica-

tion

Functional

Formal Service

Description Lan-

guage [86]

Wired No Syntactic and Se-

mantic

ForSeL Calculus Case Study Functional

Situation Aware

Service based Sys-

tems [87]

Wired No Syntactic and Se-

mantic

Extention of OWL-

S with situation on-

tology (SAW-OWL-

S)

Example Functional and Contex-

tual

Model driven WSDL

extension [76]

Wired No Syntactic XML Example Functional and Non-

Functional

Semantics for service

description [88]

Wired No Semantic Distributed Seman-

tic Tree (DST)

Not Mentioned Functional

WSDL-Lite [89] Wired No Syntactic and Se-

mantic

RDF Schema Example Functional, Non-Function

and Behavioral

SOAP Service De-

scription Language

(SSDL) [90]

Wired No Semantic XML Not Mentioned Functional

WSMO-Lite [91] Wired No Semantic SAWSDL annota-

tions

Not Mentioned Functional

Web Application

Description Lan-

guage [92]

Wired, Wire-

less

No Syntactic XML W3C Specifica-

tion

Functional

WSDL extension for

version support [42]

Wired No Syntactic XML Prototype Functional

Unified Service

Description Lan-

guage [93]

Wired No Syntactic MOF-based meta-

model

W3C Specifica-

tion

Functional

WSDL extension

for non-functional

attributes [94]

Wired No Syntactic XML Case Study Functional and Non-

Functional

4.4 Evaluation 92

Intentional approach to

service description [95]

Wired No Intentional (From

business Perspec-

tive)

Intentional Service

Modeling for Ser-

vice Description

Example Functional

WSDL extension for

criteria support [96]

Wired No Syntactic XML Case Study Functional

WSDL-temporal [78] Wired No Syntactic XML Case Study Functional

Service description

with extended seman-

tic and commercial

attributes [97]

Wired No Semantic XML Prototype Functional and Business

Context Aware Mobile

Cloud Services [98]

Wired, Wire-

less

No Syntactic JSON and HTTP Prototype Functional

WSDL extension

for mobile environ-

ment [99]

Wired, Wire-

less

Yes Syntactic XML Prototype Functional, Business,

Non-Functional, Contex-

tual

WSDL extension for

holistic mobile service

description (Presented

Approach)

Wired, Wire-

less

Yes Syntactic XML Prototype, Case

Study

Functional, Business,

Non-Functional, Con-

textual, Data Source,

Collaborator, Hardware

4.4.2 Empirical Evaluation: Prototype

We put together a working prototype for assessing the feasibility of the pro-

posed approach. Actual mobile devices were used to deploy the prototype. The

prototype is capable of managing dynamic service descriptions in a mobile en-

vironment. For this, an android application was developed that is capable of

communicating with service registries, retrieving the description documents, ex-

tracting relevant information from these descriptions, and updating the descrip-

tions dynamically. The Android operating system was chosen to implement the

prototype because it is open source, has wide market share and availability. The

proposed approach is generic and can be extended for use on any mobile plat-

form. Our experimental setup comprised four mobile devices (including two

Samsung Galaxy S Duos with Android 4.0, Google Nexus 7 with android 5.0,

and Asus Zenfone 5 with Android 4.4), one laptop (Intel i3 2.13 GHz with 3GB

of RAM) and a few instances of the prototype running on virtual instances of

android devices on the laptop.

4.4 Evaluation 93

Table 4.2: Salient Features of Existing Approaches in Literature

Work Salient Features
Web Service Description
Language [81]

Web Service Description Language is a W3C recommended XML based interface definition language.
WSDL provides machine readable description of the functionality that are offered by a web service.
The current version is WSDL 2.0.

DAML-S [82] This work provides semantics to the web service by the use of DAML+OIL ontology. The objective
being making web services computer interpret-able and enabling service discovery, invocation, inter-
operation, composition, verification, and other operations semantically enriched.

WSDL extension for Se-
curity description of Web
services [83]

This work extends WSDL and UDDI to incorporate security features. The extension facilitate both
public-key and trust policy. The description supports publication of various security parameters such
as provider encryption, public key signatures, access control policies, and data usage policy.

Security Description
Framework [84]

The paper presents a scalable security description framework for mobile web services. WSDL is
extended such that change in the service context changes the channel security level and AAA service
flow.

OWL-based framework of
the Semantic Web [85]

OWL-S provides semantic web description for web services and enables semantic based automated
service discovery, invocation, and composition. OWL-S was formerly known as DAML-S.

Formal Service Descrip-
tion Language [86]

The work presents a formal service description to represent functional aspects of a service. The
services are considered to be “re”-action system that is activated when input is triggered and some
precondition holds.

Situation Aware Service
based Systems [87]

This work presents a situation based service aware system. An extension to OWL-S has been pre-
sented for situation ontology that is incorporated in service specification.

Model driven WSDL ex-
tension [76]

The WSDL extension is proposed to incorporate QoS characteristics of a web service in the descrip-
tion. Model driven architecture recommendations were used to carry out meta-model transformation.

Semantics for service de-
scription [88]

This work presents semantic service description. A light-weight semantic service description is pro-
posed using distributed semantics trees. These trees are hierarchical representation for service effect
descriptions.

WSDL-Lite [89] The work presents an extended web service description stack that adds a semantic layer to the service
description. Web service modeling language is used to express the service description semantics.

SOAP Service Description
Language (SSDL) [90]

The work presents an alternative web service description language SSDL. SSDL provides a
lightweight solution for SOAP based web services, it is a message-centric approach that fits with
SOA systems.

WSMO-Lite [91] A minimal lightweight ontology for semantic web services is presented. SAWSDL was used to define
WSMO-lite for arbitrary semantic description.

Web Application Descrip-
tion Language [92]

Web Application Description Language is designed to provide machine readable, XML based de-
scriptions to the HTTP based web applications and RESTful services.

WSDL extension for ver-
sion support [42]

This work presents extension of WSDL to support versioning of web service. Service-level and
operation-level versioning is handled in the proposed work.

Unified Service Descrip-
tion Language [93]

Universal Service Description Language is a proposed for describing business, operational, and tech-
nical aspects of the universal services. It is a general purpose, domain independent language for
Internet of Services.

WSDL extension for non-
functional attributes [94]

A flexible extension of WSDL is proposed to incorporate non-functional attributes of a web service.
Model driven architecture is used to extend the WSDL meta-model. Further few of the requirements
of IOT have also been addressed.

Intentional approach to
service description [95]

The work presents intentional level service description. Intentional service model is presented to
describe the intentional services and register them with the service registry.

WSDL extension for crite-
ria support [96]

WSDL is extended to X-WSDL that included ‘criteria’ as the non functional property of a web service.
‘criteriadefinition’ and ‘criteriaservice’ keyword has been included in the extended WSDL.

WSDL-temporal [78] WSDL-temporal is proposed as an extension of WSDL to manage the issues related to the change
management in the web services. The proposed method allows to multiple version of the interfaces
within a single web service.

Service description with
extended semantic and
commercial attributes [97]

A model to include multiple attributes for semantic and commercial information in service description
is proposed. A holistic XML-based description language along with primitive prototype is discussed.

Context Aware Mobile
Cloud Services [98]

A user oriented service description is proposed to allow simple user interaction without any technical
details. Provision for both REST and SOAP is discussed. The primary focus of the work is to use
cloud services from mobile phones using a in-build cloud assistant.

WSDL extension for mo-
bile environment [99]

This work proposes a light weight and extensible approach for service description, that is designed for
mobile environments. Dynamic update to the service description is proposed to keep the description
up-to-date.

Presented Approach WSDL 2.0 is extended to provide description for mobile hosted services. Further, descriptions are
distributed to the service registry and service providers on the basis of their update frequency. Func-
tional, Business, Non Functional, Contextual, Data Source, Collaborator, Hardware descriptions are
proposed to provide a holistic description for mobile services

4.4 Evaluation 94

Table 4.3: Proposed Features and its Prototype Realization

Proposed Fea-
tures

Realization in Prototype

Lightweight Service descriptions are pulled from the service
registry and the service providers on require-
ment. XML parsing is done by the android
toolkit’s in-built DOM parser. Used android
“service”1 majorly for development.

Runtime Update Several Android API’s2 are available to get the
battery, network, location, sensor details. A
watchdog process is created to update the de-
scription with the latest information.

Detailed Descrip-
tion

Managed various descriptions on various doc-
uments located at the service provider. De-
scriptions placed at the service provider pro-
vide detailed updated business, contextual,
and claimed non-functional information (Fig-
ure 4.3).

Extensible Considered description meta-models/infoset in
the description documents, with an option to in-
troduce new parameters in these meta-models
based on service description requirements.

1http://developer.android.com/guide/components/services.html
2http://developer.android.com/reference/android/package-summary.html

The proposed framework was evaluated in a practical setting. We requested

four volunteers to deploy the prototype over mobile devices and roam around

within the institute campus. We established an experimental wireless network

within the institute’s building to connect the volunteers’ mobile devices, lap-

top, and its running virtual instances. This is shown in Figure 4.4. During the

experiment, the mobile devices followed a random pattern of mobility as the

volunteers did not follow any predefined roaming pattern. The battery usage by

the prototype on one of the android devices is shown Figure 4.5. This shows

minimal battery usage and our prototype also had a small memory footprint of

1.14MB. This clearly indicates the feasibility of the prototype for use in the real

world. A brief overview of how the various features of the proposed approach

were realized in our prototype implementation is given in Table 4.3.

Two mobile devices and a virtual android instance played the part of the

service provider and hosted services along with the description documents as

4.4 Evaluation 95

Figure 4.4: Mobile Service Description Prototype

discussed earlier. Further, we engineered a ‘watchdog’ application to sense the

changes in the service provider’s contextual, business, and non-functional infor-

mation and accordingly kept the description documents updated. We made use

of a mobile based service registry [100] and hosted the functional description

documents over it. The mobile devices acting as service consumers retrieved

the functional description document (i.e. WSDL document) from the service

registry. Subsequently, the consumers extracted the location information on the

other description documents (viz. business, contextual, non-function) from the

same WSDL and these were retrieved. (We have conducted the experiment in

supervised lab environment and over the real mobile devices, hence the result-

s/values of experiments are likely to change in unsupervised real life scenario

depending on the make/model of mobile device, usage habits of mobile owner,

movement of mobile owner, network connections, existing apps on the mobile

device. Therefore, instead of providing a long list of experimental results (that

are bound to change), we provide a detailed feature comparison and case study

for the validation purpose.)

We also analysed the UDDI registry to identify if any tweaking was required

to accommodate the requirements of the proposed approach. For this, we de-

4.4 Evaluation 96

Figure 4.5: Prototype Battery Usage on the Android Device

Figure 4.6: Prototype CPU Usage on the Android Device

ployed Apache jUDDI version 3.1.5 on CentOS Linux server 6.2 and SoapUI

version 4.6.3 on a Windows 7 machine. One of the concerns was related to the

fact that we were using WSDL 2.0 and some of the existing UDDI registries are

meant for WSDL 1.1. However, this turned out to be a non-issue as most WSDL

2.0 documents can be mapped to WSDL 1.1 documents. We conclude that given

the fact that we made use of WSDL as the base description and that UDDI al-

ready maps the WSDL through tModel (as discussed in Subsection 4.3.1), there

is no requirement for major change to the UDDI registry in the move to accom-

modate the proposed framework.

4.4 Evaluation 97

4.4.3 Conceptual Evaluation: Case Study

In Section 4.4.2, we described a real world deployment of the proposed ap-

proach by developing a working prototype and deploying it over real mobile

devices. In order to further validate the proposed service description, we apply

the proposed approach on the case studies and analyse the same in this section.

We acknowledge that the conventional wisdom about case study research has

several prejudices. These prejudices have been discussed in detail in an interest-

ing article "Five Misunderstandings About Case-Study Research" by Bent Fly-

vbjerg [101]. Going along the points mentioned in this article, we present three

different service case studies that may exist in the service ecosystem. First, we

discuss the case of a shopping mall where the services provide information on

the latest offerings: MallLatestOffer. Second, we discuss the case of a Sales-

manTracking mobile service. And third, we take the example of a CarPool-

ingMate service. Table 4.4 discusses these cases briefly. The motive behind

discussing these three examples is to assess our description approach for three

types of primitive mobile services: 1) Automated Mobile Services: Services

that are offered by mobile device itself and do not involve the human. Example-

Mobile services that offer sensor provided information, Mobile services that of-

fer personal information viz digital visiting card. 2) Semi-Automated Mobile

Services: Services that are provisioned over mobile devices that sometimes re-

quires human intervention. Example- Mobile service that offers meeting avail-

ability for a person along with its GPS location. 3) Manual Mobile Services:

Services that are offered by human and mobile devices act as a gateway or inter-

face for their services. Example- Mobile service interface for human provided

services [102].

We perform requirement coverage analysis of the proposed description ap-

4.4 Evaluation 98

Table 4.4: Mobile Services Case Study Details

Service Name Service Details
MallLatestOffer Type: Semi-Automated Mobile Service

Dependencies: Other services from Mall
Functions: Provides latest offers from various brands of the
Mall. Make use of existing services of brands that provides
offer details and provides the offer information manually if
offer service is not available.

SalesmanTracking Type: Automated Mobile Service
Dependencies: GPS sensor, Mapping Service
Functions: Provides location information of the salesman
that helps the manager to track the salesman’s location and
plan their next visit. This make use of mobile phone’s GPS
sensor and mapping service.

CarPoolingMate Type: Manual Mobile Service
Dependencies: None
Functions: Provides the carpooling information. This helps
the traveler to fetch the car pooling mate may be in a meet-
ing or a remote public function. This requires to provide the
information manually at the provider’s end.

proach for these case studies in Table 4.5. This coverage analysis helps us as-

sess whether the proposed mobile description is required for various types of

mobile services and whether the proposed description meets the unique descrip-

tion requirements of various classes of mobile services i.e. Automated mobile

services that make use of the device’s sensor or other services, semi-automated

services that may use other services and sensors and also make use of manual

information/data supply, and manual services that requires manual supply of

information/data (human-automation continuum).

Based on our analysis with these case studies, all services definitely require

a functional description. Most other descriptions discussed in the approach are

usually also required by most services. The exceptions to this are description

about data-source and the collaborator which are not necessary for manual mo-

bile services as there is no other collaborator involved.

4.4 Evaluation 99

Table 4.5: Mobile Service Description Requirement Coverage for Case Studies

Case Study
Service Description MLO1 ST2 CPM3

Functional Description Include
Types
Interface
Binding
Service

Non-functional Description ServiceQoS
NetworkQoS
SystemQoS
OtherQoS x

Business Description Legality x
Certification x
UsageRequirement
Cost/Price

Contextual Description DeviceContext
UserContext
ServiceContext
BusinessContext

Data Source Description LocationDetail x
CapacityDetail x
QoSDetail x
ContextualDetail x

Collaborator Description FunctionalDetail x
BusinessDetail x
ReputationDetail x
UpdateFrequency x

Hardware Description SensorList x x
MemoryDetail
PowerDetail
ManufacturerDetail

1MLO - MallLatestOffer 2ST - SalesmanTracking 3CPL - CarPoolingMate

4.5 Related Work 100

4.5 Related Work

Service description is an important mean that provides service specification to

the prospective service consumers. Although literature emphasize the necessity

of service descriptions for mobile web services, the unique service description

requirements for mobile services is often overlooked. Existing literature rely on

the traditional approaches of service description for mobile services, however,

these approaches fall short to cater the specific needs of the mobile environment.

One of the most prominent and widely used description language is WSDL [81].

It has been used traditionally to describe wired web services. WSDL describes

various functional perspective of web services including service, interface, op-

erations, endpoint, binding, and type definition. Despite the fact WSDL being

effective and popular, it does not cover various other aspects of the service spec-

ifications (non-functional, contextual, business, data-source) that are pertinent

to the mobile environments.

As WSDL is capable of providing functional information, some of the works

focused on extending WSDL to incorporate unavailable properties while relying

on WSDL to describe functional aspect. One of the earlier work from Adams

and Boeyen[83] extended WSDL that introduced security of web services in the

description itself. They added optional security parameters to the WSDL and

UDDI in order to provide a secure web service transaction. D’Ambrogio [76] in-

troduced QoS characteristics of web-services in description by proposing lightweight

extension of WSDL. In this inspirational work, author made use of metamodel

transformation and model driven architecture (MDA). Versioning of web service

interfaces was introduced in description by Juric et al.[42], WSDL extension

was proposed to support versioning of service interfaces at development-time

and run-time. Agarwal and Jalote [103] proposed extensions to WSDL and

4.5 Related Work 101

suggested end-to-end support for non-functional properties description, mea-

surement, and update. Parimala and Saini[96] proposed an extended WSDL

and specified the criteria as non-functional properties of web-services. Change

management was focused in the work of Banati et al.[78]. WSDL extension

(WSDL-Temporal) was proposed to handle issues related to change manage-

ment. Their approach suggested management of multiple accessible versions of

a web-service. Some other work [94, 96] also suggests incorporation of non-

functional attributes to the WSDL as well. Amongst recent work [104] extend

WSDL for describing complex geodata in GIS services.

O’Sullivan [75] presents a domain independent taxonomy for conventional

services and web services, that is capable of describing non-functional proper-

ties. There work provides the ability to communicate non-functional proper-

ties along with the service descriptions. Scheithauer et al.[105] presents vari-

ous perspectives and service properties to specify service description. Zachman

framework [106] was used for specifying service properties and their relation-

ship from a service provider’s viewpoint for service descriptions depending on

the relative perspective. Kritikos et al. [107] presents an extensible ontological

specification OWL-Q that provides semantic QoS based web service descrip-

tion. Cardoso et al.[108] and Charfi et al.[93] proposed a new service descrip-

tion language named Unified Service Description Language (USDL). USDL

supports human and IT supported services and provides a domain independent

description. However, we feel that an entirely new technology is constrained

owing to lack of support for legacy systems.

Recently there has been several approaches proposed for cloud services.

Galán et al.[109] proposed a service specification language based on OVF (Open

Virtualization Format) standard for cloud computing platforms. Sun et al.[110]

presents a description for cloud resources of cloud service provider, thus en-

4.5 Related Work 102

abling the cross-cloud implementations. Liu and Zic [111] proposed cloud# to

provide the service delivery transparency and enhance the trust of cloud service

users. This cloud service specification focused on describing how services are

delivered inside a cloud. Sun et al.[112] presents an interesting survey of service

description languages from the point of view of cloud computing.

A few other related endeavours include: an ontology related to the con-

text explained in [113], Dustdar’s survey on context aware web-service sys-

tems [114], [115] context ontology for mobile environments. [116] is an in-

spiring work by Dorn and Dustdar that suggests three types of context for mo-

bile web-services: User-related Context, Service-related Context, Task-related

Context. [117] is a patent that makes use of WSDL and proposes multi-parted

description. Although it only describes functional description in multiple doc-

uments. A recent work [118] presents linked USDL that aims to provide auto-

mated service trading over the web and provides a vocabulary based on linked

data for this purpose. The work [119] takes linked USDL to the next level and

adds semantic model with the intent to provide shared service level agreement

over the web in automated manner. However, none of these works deal with the

description of mobile hosted services specifically.

As stated earlier, a detailed discussion and comparison of the proposed ap-

proach and existing methods is already presented in Table 4.1 and Table 4.2.

We have studied the existing approaches for service description from the point

of view of mobile devices.

Though most of these works do not provide generic specification to fit func-

tional, non-functional, contextual and business aspects of services. Moreover,

these works do not cover tackle the specific requirements of dynamic update,

separate specifications for data sources, and collaborators. To the best of our

knowledge, no existing work is especially dedicated to incorporate the intri-

4.6 Summary 103

cacies of the mobile environment. Our work is the first attempt to propose a

service description mechanism for such environments.

4.6 Summary

In this chapter, we present a novel, lightweight, dynamic, and extensible mecha-

nism for service description especially designed for services hosted over mobile

devices. The proposed service description facilitates automated service discov-

ery, selection, and composition. The approach is designed around WSDL 2.0

with the intent of making it useful across both wired and wireless environments.

The mobile environment is very dynamic and it is normal for service de-

scription attributes to change frequently over time. We proposed the partition-

ing of the mobile service description into multiple parts: Functional Description,

Non-functional Description, Business Description, and Contextual Description.

Further, we added descriptions to facilitate better assessment of mobile services

by service consumers such as data source information, collaborator description,

hardware details. The parts of the description that tend to change regularly are

made local to the mobile device hosting the service. The motive is to enable

seamless dynamic updates in service descriptions without compromising on the

overall consistency of the description. The proposed solution has the potential

to further ease the service selection for prospective service consumers in peer-

to-peer manner. Further, the solution has the potential to help consumers confine

service shortlisting and would avoid the obsolete and irrelevant services.

Chapter 5

Dynamic Web Service Workflow

Workflow is an abstract term used to describe the tasks or steps required to be

executed with an intent to achieve a common goal. In an SOA environment,

a workflow involves the execution of tasks or steps (commonly called work-

items) that are distributed and/or decentralized in nature.The workflow therefore

mainly involves the flow of information between various executable units i.e.

services offered by organizations or people. During execution, the computing

requirement by the workflow may change owing to unanticipated requests, user

interventions, change in execution environments. To cater to such a dynamic

environment, a flexible and elastic resource provisioning mechanism is in order.

In this chapter,therefore, we present a dynamic service workflow description

and execution mechanism for constrained environments.

5.1 Background

It is common today for business entities and communities to design products and

services that can (or are meant to) be used together in collaboration to achieve a

larger common goal. Workflow technologies enable collaboration between such

distributed services in a flexible and efficient manner [120]. Service-Oriented

Architecture (SOA), as discussed earlier, is a multipurpose paradigm execut-

ing business processes and offering services for various day-to-day applications

[121].SOA paradigms have made it possible for loosely coupled, distributed,

5.1 Background 105

and decentralized services to work in parallel and provider simultaneous offer-

ings catering to the same functionality. The availability of a multitude of such

service offerings by business and scientific entities has led to the new concept of

Elastic Computing in services and workflow execution. Recent advancements in

technology [122, 123] have enabled such elastic resource provisioning in work-

flows (the resources imply other web services available in constrained environ-

ments). In addition to this, the autonomy of the available services have made it

possible to realize workflows involving such elastic resources in a decentralized

manner. Conventionally workflow execution largely relies on a central entity

to orchestrate a business process or data intensive applications (such as scien-

tific applications). The orchestrator, owing to its inherent centralized nature is a

possible single point of failure and suffers from issues of scalability, reliability,

fault tolerance, security, privacy [124].

It is widely acknowledged by the research community that the Internet to-

day is evolving towards what is colloquially termed the ‘Future Internet’. The

Future Internet is a broad term comprising endeavours towards making the In-

ternet faster and reducing traffic congestion through various means. In con-

formance with this, adopting a decentralized architecture achieves a cutback

in traffic, congestion, and network load (e.g. RedShift). Considering scalabil-

ity issues of scientific applications and the Future Internet, “centralized servers

make less sense when dealing with data centric workflows (GBs/TBs)" [125].

Furthermore, we believe that by specifying a decentralized execution method-

ology, each ‘workitem’ is presented with only a partial view, thereby achieving

an increased level of privacy.

The benefits of decentralization are further manifested through the phe-

nomenon of Elastic Computing. This attains further significance in constrained

environment, where a large number of temporal services exist. Consider a work-

5.1 Background 106

flow in a constrained environment that involves several mobile services. If a cen-

tralized orchestrator is handling this workflow execution, it is incumbent upon

the orchestrator to provision services/resources to the work-item, enable passage

of data to various executing entities etc. thus resulting in unnecessary burden

on the controlling authority. In a decentralized scenario, on the other hand, each

node is responsible for provisioning extra processing capabilities on its own.

Hence, there is very effective distribution of work among all involved entities.

Moreover, a centralized engine fosters substantial infrastructure, development,

maintenance, and operational costs. For a constrained environment limited by

resource and budget constraints, therefore, a decentralized architecture that also

acknowledges the dynamic nature of the environment is ideal.

Bell et. al [126] states that “the rapidity with which any given discipline

advances is likely to depend on how well the community acquires the neces-

sary expertise in database, ‘workflow management’, visualization, and cloud

computing technologies". Taking this line of reasoning as a benchmark for the

proposed work, we propose a decentralized solution to execute a workflow in

constrained environments using a novel membrane computing approach. We

take inspiration from biology to design a workflow management model that

executes services, realizing the process-steps or workitems in a decentralized

manner. We use the elementary principles of membrane computing to model

the execution of a workflow. We consider each membrane as a service capable

of executing a scientific workitem. The services are self capable of discovering

other resources (or services) on their own. Each service is provided with evo-

lutionary rules (Membrane terminology) [127] [128]), it is through these rules

that the services evolve and execute their respective tasks.

Membrane computing paradigm is widely appreciated and accepted in the

computer science community as an alternative to solve NP-Hard problems. How-

5.1 Background 107

ever, in this work we focus to use membrane systems for elastic and decen-

tralized workflow description and execution in constrained environments. The

benefit of membrane computing comes with a fact that it provides a natural

method to model workflows, pass parameters, and elastically increase or de-

crease resources at runtime. Membrane computing is a branch of computing

that takes inspiration from the functioning of living cells. The architecture is

called P-Systems. Membrane computing is a branch of computer science which

has started to receive much attention in the research community due to its inher-

ent parallel, autonomous, and decentralized nature.

A lot of work in literature, for example [121], [125], [129], [130], [131] etc.,

focus on achieving scientific workflow execution in the cloud. However, to the

best of our knowledge most of them rely on a central orchestrator to elastically

increase or decrease resources at runtime, or don’t focus on elasticity at all in the

constrained environments. Therefore, our objective is to introduce ‘autonomy’

in resource provisioning by the workitems themselves.

In this work, we explore the possibility of describing and executing a work-

flow via Membrane Computing. To demonstrate the viability in actual deploy-

ment, we have developed a prototype with real services. We execute real sci-

entific workflows collected from myexperiment1, and deploy the prototype on

a virtualizated platform to test the validity of the proposed work. Moreover,

the same workflows are executed within the Institue’s Intranet on decentralized

nodes. During validation the services exchange data and parameters via a decen-

tralized stable storage space. The stable storage itself was offered as a service,

thereby affirming to the standards of the service oriented architecture. More-

over, using virtualized networking, we study the effects of constrained band-

width capabilities during execution.

1http://myexperiment.org

5.2 Membrane Computing Paradigm 108

The contribution of this work is two-fold:

1) A novel decentralized and distributed workflow description, with au-

tonomous and elastic provisioning of computing resources.

2) A novel membrane inspired approach for decentralizing workflow execu-

tion, with autonomous provisioning of computing resources

For the purpose of clarification, a service based workflow is called a work-

flow throughout this chapter. A resource is analogous to a service instantiated

on a constrained device.

5.2 Membrane Computing Paradigm

Before beginning the discussion of Membrane Inspired workflow management,

we present a ‘small’ discussion on the Membrane Computing paradigm. It

should be pointed out here that the discussion is brief, to the point, and limited

to the functionality used in the model. For a detailed description and under-

standing, we refer the interested reader to [132].

Membrane computing takes its inspiration from a living cell. A living cell is

encapsulated by a membrane that separate its internals from the external envi-

ronment. The cell encloses multiple natural artifacts, e.g. nucleus, golgi appara-

tus, molecules, vesicles etc. The cytoplasm hold charged ions, whose movement

(either inwards or outwards) is controlled by the presence of certain type of pro-

teins. Using chemical receptors, the membrane allows a selective passage of

molecules and achieves cell-to-cell signaling.

The pioneering work in the area of membrane computing was proposed in

[132]. The author proposed, the basic structure of a membrane consists of sev-

5.2 Membrane Computing Paradigm 109

eral separate sub-membranes. The membranes consist of the delimiting region,

called multiset, where several different objects are placed. The evolution, ma-

nipulation, and transformation of objects is accomplished via evolutionary rules.

The objects are transferred from one membrane to another membrane, causing

transitions and carrying out the intended tasks. The execution rules are chosen

in a non-deterministic manner, thereby presenting an illusion of having infinite

parallel computing capability. The application of these rules is conditional i.e.

a rule is invoked if certain reaction conditions are applicable. The rules as ex-

plained in [132] are of the form a −→ b, where a and b represents multisets

of objects. Since, the data and objects are transferred from one membrane to

another, the author proposed the notion of ‘target indications’. Using target in-

dications, the objects are retained, transferred and consumed. It can be deduced

that using these rules the multiset can be written very easily. An example of a

rule applied towards object evolution is demonstrated below.

Consider a rule of the form (ij)−→ (i,here) (i,out) (j,in) (j,out). In this exam-

ple, a copy of i and j is consumed and two copies of i and j are produced. One

copy of i is retained within the same membrane (the ‘here’ indicator), while the

other one moves out to the surrounding environment (the ‘out’ indicator). Out

of the two copies of j produced, one goes to the surrounding environment and

the other moves inwards toward the inner membrane(s). There exists catalytic

rules demonstrating the applicability only in the presence of a certain type of an

object, e.g. cb −→ cv, where c is the catalyst. Also, there are non co-operating

rules, e.g. a −→ b, membrane dissolving rules, e.g. j −→ oδ, where δ denotes

the membrane dissolving action. It should noted here, the author [132] deliber-

ately points out that the membrane dissolving rule cannot be applied to the skin

membrane (for obvious reasons). Further, there are communication rules, sym-

port and antiport, demonstrating how membranes communicate. As outlined

earlier, in the real world the membranes communicate via protein channels.

5.2 Membrane Computing Paradigm 110

Figure 5.1: Membrane Structure

Therefore, the protein channel and the molecules are the agents of communi-

cation in membrane computing. The ‘symport rules’ allows for the passage of

molecules in one way. On the other hand, the ‘antiport rules’ allow for a two

way communication via molecules.

There also exists membrane division and merging rules. A membrane di-

vision rule is of the form [1a]1−→[2b]2[3c]3 (a membrane is denoted as ‘[]’,

[132]), while a membrane merging rule is of the form [2e]2[3f]3−→[1d]1. Fur-

ther, there exists endocytosis rules, exocytosis rules, gemmation rules etc. The

rules are applied locally in each membrane in a non-determinstic, maximally

parallel manner, thereby causing transitions in the system.

A membrane structure is graphically represented by a Venn diagram as shown

in Figure 5.1 [128], where a membrane may contain other membranes. The

membrane structure is a hierarchical arrangement of membranes that are em-

bedded in the skin membrane separating the inner membranes from external

environment. Elementary Membranes are the membranes that do not have any

other membrane inside. The membranes and the regions delimited by them are

labeled with positive integers to address them distinctly. Furthermore, each re-

gion contains a multi-set of objects and a set of evolution rules.

5.2 Membrane Computing Paradigm 111

At this point, it is worth describing the formal basic (there are multiple def-

initions) definition of Membrane Computing. A membrane structure (as shown

in Figure 5.1) can be represented by a string of matching parenthesis as in:

[1[2]2[3]3[4[5]5[6]6]4]1

Definition 1: The basic (there are multiple definitions) definition of Membrane

system (Π) according to Gheorghe Păun [127], is as follows:

Π = (O, T, C, µ, w1, w2....wm, R1, R2....Rm, i0)

where:

i) O is the set of all objects.

ii) T is the output alphabet and T ⊆ O.

iii) C is set of catalysts and C ∩ T = ∅.

iv) µ is the membrane structure consisting of m membranes.

v) w1, w2....wm are the multisets of objects over O with the regions 1,2,....m
of µ.

vi) R1, R2....Rm are the evolutionary rules over O for each of the m mem-
branes.

vii) i0, m ∈ i0 represent the label of the output region.

In this work, we try to use these elementary concepts to achieve a decen-

tralized workflow execution. Based on the discussion so far, it is understood

that this paradigm has a natural orientation, and can execute with any type of

computation problem (e.g. SAT [133], TSP [134] etc). It is due to this feature

that it has received substantial attention in literature from the time of its incep-

tion. It can be deduced that the membrane computing paradigm allows a natural

5.3 Membrane Inspired Dynamic Workflow Description 112

metaphor and an intuitive mechanism to model the complex behavior of work-

flows. As discussed earlier the paradigm allows communication rules (symport

and antiport), membrane dissolving rules, membrane division and merging rules

etc. Using these rules, workflow constructs and functionality can be very eas-

ily managed. Further, applying the evolutionary rules, a workflow itself can be

modified dynamically (via endocytosis, exocytosis, gemmation etc.).

5.3 Membrane Inspired Dynamic Workflow Descrip-

tion

Workflow can be defined as the computerised facilitation or automation of a

business process, in whole or part [135]. Workflow is often associated with

the business processes of an organization. However, workflow is also useful in

areas such as personal computing, scientific computations, where various com-

putational tasks are processed in a specifed order to achieve a goal. To proceed

with workflow execution, there are several constructs available in literature. In

a broad sense, workflow specifications may have varied perspectives [136]:

• Control flow perspective describes the flow of execution order among dif-
ferent tasks and work-items of a workflow. The control flow can be spec-
ified following certain basic patterns, such as: Sequence, Parallel Split,
Synchronization (AND-join), Exclusive Choice (Decision), Merge.

• Data flow perspective deals with the flow of processing data needed to
execute a workflow. This may include a business document or an object
supplied to the workflow, local variables generated at the time of execu-
tion of individual work-items.

• Resource flow perspective provides the necessary infrastructure require-
ments needed for an efficient workflow execution. The requirement may
range from human provided services to machine based physical resources.

5.3 Membrane Inspired Dynamic Workflow Description 113

Furthermore these workflow specifications can be sub-categorized into: Ab-

stract Workflow and Concrete Workflow [137]. An abstract workflow specifies

the solution of the problem along with the input data, but without containing

any means for actual execution. In contrast, a concrete workflow specifies the

mapping between physical resources responsible for executing (such as services

provided by machines or human) the abstract work-items.

Definition 2: A workflow can be specified as:

W = (F,D, T,R)

where:

i) F is the set of functions or work-items in the workflow.

ii) D is the working dataset, where data di,j is intermediate input for fj pro-
duced by fi, where di,j ∈ D and fi, fj ∈ F .

iii) T is the set of transformation rules depicting data and control flow depen-
dencies.

iv) R is the set of physical resources required to realize work-items F .

A workflow W is represented as the set of work-items f1, f2, f3, ...fk ∈ F

having working dataset di,j where i, j ≤ k. When fi does not have a prede-

cessor, it is called as the initiating work-item finit and when fi does not have

any successor, it is called a terminating work-item fterm. dinit,i is initial data set

given as input for starting the workflow and dj,term is the output produced as the

result of the workflow enactment. d(1,2,3,...k−1),k shows merging of various data

input at fk. In a special case, di,j | j = 0, intermediate result is not consumed by

any other work-item f ∈ F . ti,j ∈ T is the transformation rule applied in order

to progress the execution from fi to fj . r(l,m,n) ∈ R is the resource executing fl

work-item with n instances of the resource with id m.

5.3 Membrane Inspired Dynamic Workflow Description 114

Advancements in the field of distributed computing (such as cloud com-

puting, peer-to-peer computing, mobile computing etc.) have enabled several

providers to offer services for the realization of workflow in distributed, decen-

tralized and automated manner. These providers are also equipped with tech-

nologies to provide the services elastically. The term “elastic” here stands for

the dynamic provisioning of resources. Our first aim is to propose a generic

framework for dynamic workflow description, using P-systems for depicting

the decentralized, autonomous, and elastic enactment of the workflows. We fo-

cus on defining and executing the workflows using P systems. Our definition

and execution relies on the membrane vision of every “work-item” or “process

step” involved in a workflow. In our approach, the membrane represents the

service executing a work-item along with the data they process and possess,

control-flow information, resource allotment information in the form of evolu-

tion rules of membranes. In this work, the following types of evolution rules are

considered:

i) Data-flow rules: Rules describing the flow of data for executing the work-
flow.

ii) Control-flow rules: Rules describing the flow of execution control for coor-
dination among the various services executing the work-items of the work-
flow.

iii) Resource-provision rules: Rules describing the computing resource allot-
ment during the execution of a workflow.

The proposed P system is able to depict the “elasticity”, “parallelism”, and

“decentralization” in the workflow enactment :

• “Elasticity” of the computing resources is achieved using evolution rules
membrane division and membrane merging. The new membrane ‘forked’
due to membrane division will inherit the dataset and evolution rules of its
parent. While the membrane merging will take place only for the mem-
branes depicting the same behavior in terms of dataset and evolution rules.

5.3 Membrane Inspired Dynamic Workflow Description 115

• “Parallelism” of various work-items can be easily depicted by any of the
P systems. As membranes in the P system are autonomous and execute
in parallel. Hence, P systems are most suitable for describing workflows
and their execution.

• “Decentralization” in the workflow enactment is achieved by using an ob-
ject. We use objects in the proposed P system for communication. These
communication exercises carry intermediate data and global data needed
for executing a work-item. We assume that there are multiple copies of
objects available at the membranes.

5.3.1 Workflow Definition

From the membrane computing perspective, we propose a novel and generic

definition for a workflow:

Definition 3: A workflow with n work-items is a construct Π:

Π = (V,C, µ, (w1, R1, R
′
1, t1)...(wi, Ri, R

′
i, ti), i0)

where:

- V is a multiset of all objects.

- C is the set of catalyst and catalyst do not occur in ti.

- µ is the membrane structure consisting of i membranes: [n[n−1...]n−1]n.

- wi ∈ V is the multiset of initial contents of region i of µ.

- Ri is the set of data-flow rules.

- R′i is the set of resources provisioned and and control-flow.

- ti is the multiset of final contents of region i of µ.

- i0 is the label of regions.

5.3 Membrane Inspired Dynamic Workflow Description 116

In the above definition, we have introduced the notation of a specialized

operator, the dependency operator, denoted as
(Details)−−−−−−−→

Dependency
. This operator gives a

sense of determinism in the P system. It is utilized while provisioning resources

or resolving control dependencies.

With regard to control flow, the operator specifies the dependency among

membranes. This control dependency is shown as <MembraneList>−−−−−−−−−−→
Control

, where <

MembraneList > are the list of membranes that must be executed (or dis-

solved) first for the execution of the present evolution rule. The proposed de-

pendency operator separates the control rules from the rest of the evolution rules

and provides synchronization in workflow execution. For example:

[1[S1a]S1 [S2b]S2 [S3c]S3]1
S2,S3−−−−→

Control
[1[S1a]S1 e f]1δ (5.1)

The above rule states that S2, S3 should be executed prior to the S1, though

all the three membranes S1, S2, S3 are at the same level. It is a known fact

that all the membranes at the same level (part of the same parent membrane

1) get executed in parallel and in a non-deterministic manner. However, while

accomplishing a workflow few membranes are required to be restricted from

execution (in case of synchronization). In such scenarios, the proposed symbol

gives a certain level of determinism and restricts a few of the membranes from

execution.

In case of resource provision rules, the dependency operator states the de-

pendency of resources for enacting a work-item. Resource dependency is of the

form
<Dependencyparameter>−−−−−−−−−−−−−−−→

Resource
. The proposed operator enables the specification of

the resource requirements for a work-item, along with the workflow definition.

The dependency operator enables the elastic workflow execution under prede-

fined resource requirements (as in the case of most of the modern pay-as-you-go

5.3 Membrane Inspired Dynamic Workflow Description 117

technologies e.g. cloud computing)

The present technology enables a client to specify the process steps as well

as resource dependencies at the same time. As pay-as-you-go models, such as

cloud computing, are becoming more popular, the constrained client has the

ability to borrow the resources from outside. The type of resources, the exact

specifications, the requirement can be specified that are needed to successfully

execute a workflow. These resource requirements are depicted by resource pro-

vision rules Ri, (as shown in the definition 3). We propose to use the symbol
(S,r,o)−−−−−→

Resource
for specifying the need of the requester:

Resource Dependency (S): Any work-item requires a physical resource such

as service, physical devices etc. for execution. In our case, a membrane may

depend on other membranes for the execution. For example, requester might

need to execute the work-item on a specific membrane/resource. The symbol S

shows the dependency on S for executing an evolution rule.

Resources Requirement (r): The symbol r states two types of requirements:

Qualitative and Quantitative. Qualitative requirements are the non-functional

requirements for the resource S, such as reliability requirement and other QoS

(Quality of Service) parameters. While the quantitative requirements are the

functional requirements (r) such as memory requirements, processor require-

ment, number of parallel threads of execution.

Resource Ownership (o): The symbol o shows the ownership requirement of

the resource. In case of shared resources, the requirement depicts the dedicated

need for a resource. This specifies the requirement for the ownership change of

5.3 Membrane Inspired Dynamic Workflow Description 118

the shared resource.

Suppose a sequential workflow comprises of three work-items S1, S2, S3.

Workflow will only be realized when the second work-item S2 satisfy additional

qualitative requirements (x1, x2, x3) (e.g. x1 = OS: Linux, x2 = RAM: 2GB, x3

= MEM: 50GB). Moreover, for the execution purpose ownership of the resource

should be given to first work-item S1. This can be shown in rule (5.2):

[1[S3 [S2 [S1a]S1]S2]S3]1
(S,r,o)−−−−−→

Resource
[1[S3 [S2 b]S2]S3]1δ∣∣∣∣ S ∈ {S2}, r ∈ {x1, x2, x3}, o ∈ {S1}

(5.2)

Few of the features (of the proposed formal notation) apart from the dis-

cussed elasticity, parallelism, and decentralization are:

• Reliable Data Exchange: This is usually achieved by stable communica-
tion. In proposed definition, this stable communication and data exchange
is shown by inter-membrane communication via object passing.

• Heterogeneous Environment: Our approach of workflow states the work-
flow definition and workflow enactment at the abstract layer. The execu-
tion level details for the enactment, such as executing resources are open
ended. These execution resources could be web services, computing de-
vices, mobile devices, any constrained device or even human.

• Fault Tolerance: Our approach is fault tolerant for workflow enactment.
A failed membrane may produce erroneous result that could be rejected
by the next membrane in workflow. Hence, resulting in the redundant
execution of the membrane. However, a more sophisticated function can
be introduced Rollback(Π,Cv). Rollback function is able to trace back to
last valid configuration Cv of the P system Π.

Before proceeding any further, first we must justify the proposed definition

for a workflow. In proposed definition, V is the multiset of all the objects in-

cluding initial input to the workflow, intermediate processing dataset etc. C also

5.3 Membrane Inspired Dynamic Workflow Description 119

Figure 5.2: A Simple Workflow and its Membrane Representation

termed as the catalyst is the set of all the dataset and conditions that remain in

the membrane after the execution. The catalyst does not add to the final contents

or result, they help in faster execution of the work-item. µ is the set of all the

membranes or work-items with the resources in the workflow. wn is the initial

state of the membranes with which they start executing. tn is the final content

of the membrane once its execution is completed. Hence, for defining the work-

flow enactment in terms of P system, these are the minimal required elements.

In the move to execute membranes or work-items on the resources, evolution

rules are required. The definition shows two types of evolution rules: Rn - Data

Rules and R′n - Resource Provision and control flow Rules. Expressive power

of P systems enables them to specify both data-flow and control-flow rules in a

single evolution rule.

Figure 5.2 represents a simple workflow and its corresponding membrane

representation in a graphical manner. The same workflow can also be repre-

sented as:

[1[S5 [S4 [S3]S3 [S2]S2 [S1 [0]0]S1]S4]S5]1 (5.3)

5.3 Membrane Inspired Dynamic Workflow Description 120

5.3.2 Workflow Pattern using Membrane Computing

There are various workflow patterns [138] which we have solved using the P

systems, mainly utilizing membrane evolution rules. Few of the basic patterns

are:

Sequence: Any work-item in the workflow is executed only after the comple-

tion of its predecessor work-item. Evolution rules depicting the sequence pat-

tern involve dissolution operation after each successful enactment of a work-

item/membrane (as shown in rule (5.4), (5.5), (5.6)).

[1[S3 [S2 [S1a]S1]S2]S3]1 → [1[S3 [S2b]S2]S3]1δ (5.4)

[1[S3 [S2b]S2]S3]1 → [1[S3c]S3]1δ (5.5)

[1[S3c]S3]1 → [1d]1δ (5.6)

Figure 5.3: Sequential Execution of Work-items

Parallel Split: A parallel split is the point in a workflow where, a single work-

item feeds the data/control flow to multiple work-items. These multiple work-

items execute in parallel. Rule (5.7), (5.8) shows the parallel split:

[1[S1a]S1 [S2]S2 [S3]S3]1 → [1[S2b]S2 [S3b]S3]1δ (5.7)

[1[S2b]S2 [S3b]S3]1 → [1 c d]1 (5.8)

5.3 Membrane Inspired Dynamic Workflow Description 121

Figure 5.4: Parallel Split of Work-items

Synchronization: Synchronization in the workflow is the point when multiple

parallel work-items converge onto a single work-item. A condition involved

here is that all the parallel multiple work-items (that are converging) should have

been executed only once by following a certain order. Rules (5.9), (5.10), (5.11), (5.12)

shows the synchronization pattern:

[1[S1a]S1 [S2b]S2 [S3c]S3 [S4]S4]1
S1−−−−→

Control
[1[S2b]S2 [S3c]S3 [S4 d]S4]1δ (5.9)

[1[S2b]S2 [S3c]S3 [S4 d]S4]1
S2−−−−→

Control
[1[S3c]S3 [S4 d e]S4]1δ (5.10)

[1[S3c]S3 [S4 d e]S4]1 → [1[S4 d e f]S4]1δ (5.11)

[1[S4 d e f]S4]1 → [1 g]1δ (5.12)

Figure 5.5: Synchronization of Work-items

Exclusive Choice: This workflow pattern is to specify the decision condition,

where one of the several incoming work-items is chosen based on some condi-

5.3 Membrane Inspired Dynamic Workflow Description 122

tion. Rule (5.13) states that service S4 accepts d from the predecessor services

S1, S2, S3, where d is satisfying certain condition, which is not satisfied by e

and f . Here k1 ≥ d ≥ k2 where k1 and k2 are integers.

[1[S1a]S1 [S2b]S2 [S3c]S3 [S4]S4]1 → [1[S4 d]S4 e f]1δ∣∣∣∣ d := {k1 ≥ x ≥ k2 | x ∈ {a, b, c}} and e 6= d and f 6= d
(5.13)

Figure 5.6: Exclusive Choice from Work-items

Simple Merge: Merge pattern specifies that two or more work-items are con-

verging onto a single work-item without any synchronization.

[1[S1a]S1 [S2b]S2 [S3]S3]1 → [1[S2b]S2 [S3 d]S3]1δ (5.14)

[1[S2b]S2 [S3 d]S3]1 → [1[S3? f]S3? e]1δ (5.15)

[1[S3? f]S3? e]1 → [1 g e]1δ (5.16)

Rules (5.14), (5.15) and (5.16) shows the merging of work-items S1 and S2 in

work-item S3. Rule (5.15) has the dissolution and division of S3, this states the

non-parallel execution of work-items S2 and S1. (Symbol ? is used to show the

membrane left after division and dissolution).

Elastic workflow enactment is the unique feature of our model. There has

been several work on workflow execution in the literature, however, to the best

5.3 Membrane Inspired Dynamic Workflow Description 123

of our knowledge we are the first to investigate this through membrane comput-

ing paradigm. Elastic execution enables the workflow for dynamic procurement

of computing resources. This enables the pay-as-you-go models of current tech-

nologies on the workflow enactment as well as the load balancing by dynamic

provisioning of computing resources. We propose to use membrane division

rule for depicting elasticity in the formal notation of workflow.

Consider a membrane is executing a resource intensive task. In the middle

of the execution, the load-indicator sensed that new computing resource must be

provisioned in order to balance the load. Such a scenario can be shown by evo-

lution rule comprising of membrane devision. Furthermore, the advancements

in technology has enabled these computing resources to procure extra resources

as per requirement. The membrane is divided into multiple membrane depict-

ing the behavior of dynamic provisioning of computing resource. All the child

membranes, resulting from membrane division, have the same set of objects and

evolution rules. Hence, children membrane mimics the behavior of the parent

membrane.

Suppose a workflow comprises of three work-items S1, S2, S3. Work-item

S2 is resource intensive and require two extra replica of it. This can be shown

using the resource dependency operator with quantitative resource requirements.

[1[S3 [S2 [S1a]S1]S2]S3]1
(S,r,o)−−−−−→

Resource
[1[S3 [S2 b]S2 [S′

2
b]S′

2
[S′′

2
b]S′′

2
]S3]1δ∣∣∣∣ S ∈ {S2}, r ∈ {3}, o ∈ {S1}

(5.17)

5.4 Membrane Inspired Workflow Execution 124

5.4 Membrane Inspired Workflow Execution

As discussed, a membrane is considered as a service capable of realizing a single

‘workitem’. Each membrane has its fluid (local memory) capable of storing the

contextual information and local data (or molecules). The contextual informa-

tion includes the load-indicator parameters, the inner membranes (the succes-

sor workitems), the outer membranes (the predecessor workitems), the resource

pool etc (discussed below). The membranes communicate via the ‘symport’

rules to pass control to the subsequent membrane. The objects and data are

passed via the multiset. In the Future Internet, we envision both software and

human services to become tradable and executable, therefore the membrane can

be a Machine-Based Computing Element, a Human-Based Computing Element

[139] or a Network Provisioned Entity [140], thereby a membrane is capable of

virtualizing both humans and machines, and offer workflow as a service. The

data is equivalent to the proteins capable of penetrating the membrane structure.

The membranes do not pass data directly, but rather direct the subsequent mem-

branes to read from the stable storage location (the distributed shared memory).

The outermost membrane represents the skin membrane, the inner membranes

demonstrates the individual workitems. All membranes pass data and parame-

ters to the global multiset (implemented as a distributed shared memory). Each

membrane operate on the objects available in the multiset locally. After com-

pleting an execution, the membrane dissolved and left the transformed objects

in the multiset. This procedure is followed till the objects are pushed out to the

surrounding i.e. the execution of a workflow has completed. It should be noted

that when new child membranes are provisioned (resource elasticity property),

they (new membranes) also read and wrote to the same multiset. In this case,

it is the responsibility of the parent membrane to direct the newly ‘born’ child

membranes to the appropriate location.

5.4 Membrane Inspired Workflow Execution 125

It is understood that if the load of a application is huge, therefore the divi-

sion process will take some time. However, in the results section we show that

the division process, rather than slowing things down, actually speeds up the

process. While conducting the experiments, the location of the extra resources

were specified via the resource pool (Listing 1), this could be viewed as a dy-

namic registry (as discussed in Chapter 3). We believe, keeping a resource pool

does not involve any financial transactions, only invoking the resources requires

monetary arrangements. It should be noted here, the resource pool consisted of

the location of the resources to be provisioned, the resources were never used.

They were provisioned elastically, under duress only.

To dynamically divide a membrane, a load-indicator is instantiated with

each membrane. When a threshold value is reached, for either the response

time, the throughput, the queue size etc., the membrane division rule is invoked

and the parent membrane is divided into multiple child membranes. Whenever,

the load-indicator sensed the load has been lightened up, then the membrane

merging rule was invoked and the extra provisioned resources were released. It

is worth pointing out, during provisioning extra resources, the factors of cost,

quality and resource elasticity take a major toll on the application. Finding an

optimal balance between these factors is non-trivial and is out of the scope of

present work. In the experiments we conducted, we assumed the infrastructure

and financial aids are available in plenty.

The multiset is considered as a stable, semantically distributed shared mem-

ory offered as a service. Semantic space allow an inherent capability for paral-

lel processing and a distributed stable data management platform. This type of

platform allows huge volumes of data to be stored in a semantic format, with

event-driven and asynchronous mode of communication. Moreover, the data

stored in such a storage location can be retrieved via current access protocols.

5.4 Membrane Inspired Workflow Execution 126

Since, the discussion of semantic spaces is out of scope for this work, we direct

the interested reader to [141], [142].

As outlined earlier, while elastically increasing resources, the newly pro-

visioned resources have to be directed to the read and write locations. To ac-

complish this functionality, symport rules were utilized. In this case, the parent

membrane directly communicated and sent the location of the stable storage to

the child membranes. The motivation to include this feature (not direct messag-

ing) is explained below.

Consider a membrane is executing a data intensive task. In the middle of a

transaction, the load-indicator sensed that new resources must be provisioned.

In this scenario, since the processing of data has already begun, therefore re-

initiating the entire cycle from ground zero does not make sense. Hence, the

parent membrane sent whatever data has been processed so far to the stable

storage, and directed the new resources to the location. Consider the partially

processed data is of size 2 GBs. Writing the data of this size to a single child

membrane requires a total transfer of 4GBs (via the stable storage). On the other

hand, direct communication requires only 2 GBs of data. Though, a reduction of

2GBs is achieved, but it is noteworthy that if multiple child membranes are pro-

visioned, then every single time the parent membrane has to initiate the transfer.

Using a stable storage and directing the children to read from the location re-

duces the load on the parent. Furthermore, since the storage is stable, therefore

if the data is lost or corrupted during transmission, especially in case of mo-

bile membranes with availability issues, a copy will always remain unharmed.

Therefore, following this line of reasoning, directing the child membranes to

a storage location was considered to be a practical, an efficient and a viable

option.

In the membrane computing model, each membrane is assigned a specific

5.4 Membrane Inspired Workflow Execution 127

role. Moreover, the membranes are assigned a unique name and an identifier.

Membranes assigned to the same role can execute the same functionality. In the

Future Internet, the issue of reliability is inevitable, therefore redundant mem-

branes should be kept as back-up in case one fails in the middle of an execution.

Next, while executing a workflow there are certain input and output dependen-

cies that must be resolved before proceeding. In the proposed work, these de-

pendencies are specified in an XML format thereby providing a straightforward

mapping to a machine readable format. Since, a lot of work [125], [143], [144]

etc., has been done to resolve dependencies and automate the execution of tra-

ditional workflows, therefore we rely on those procedures to proceed with the

execution.

Listing 5.1: ResourcePool

< R e s o u r c e P o o l >

< Resource >

< Address >

h t t p : / / 1 0 . 2 0 0 . 4 0 . 1 3 9 / T r a f f i c / D i v e r t e / node1

< / Address >

< E n d po i n t >

.

.

< / E n d po i n t >

< / Resource >

< Resource >

< Address >

h t t p : / / 1 0 . 2 0 0 . 4 0 . 1 3 2 / T r a f f i c / D i v e r t e / node2

< / Address >

< E n d po i n t >

.

.

< / E n d po i n t >

< / Resource >

5.4 Membrane Inspired Workflow Execution 128

< Resource >

< Address >

h t t p : / / 1 0 . 2 0 0 . 4 0 . 1 3 1 / T r a f f i c / D i v e r t e / node4

< / Address >

< E n d po i n t >

.

.

< / E n d po i n t >

< / Resource >

< / R e s o u r c e P o o l >

Now, to begin with the execution, a workflow is specified to the multiset.

Every participating membrane read its corresponding dependencies (a low level

locking mechanism). In the experiments, we used an XML schema. The schema

is not limited and was constructed using the principles of domain specific lan-

guages. Therefore, any type of workflow can be mapped to a machine readable

and executable format, thereby presenting a language independent interface. In

that case, each membrane must be equipped to handle any type of description.

A question arises here: How do membranes understand these specifications? To

interpret these constructs, each membrane is equipped with a local interpreter.

Hence, an extra layer is added to the membranes to correctly interpret the work-

flow description (either XML or normal rules).

5.4 Membrane Inspired Workflow Execution 129

Figure 5.7: One of the Workflows for Experimentation

5.5 Results 130

5.5 Results

5.5.1 Experimental Setup

In order to evaluate the efficiency of the proposed work and the viability in actual

deployment scenarios, to execute different scientific workflows, we have con-

ducted experiments with multiple workflows collected from myexperiment.org.

The execution of these workflows was achieved in 1) Inside the Institute’s In-

tranet 2)Virtual Machines within the Computing Lab of the Institute. The dis-

tributed shared memory was deployed as a RESTful service. In this work, the

only a DSM2, MozartSpaces, was deployed (not semantic) on multiple nodes,

and after a specific interval of time, the sub-DSMs synchronized their databases

with each other. The application container for the services was Apache Tomcat

v7.0.41. However, any other application container for constrained environment

such as i-jetty, Tiny Java Web Server (TJWS) could be used.

To Study the effect of a low bandwidth environment, the networking capa-

bilities of each Virtual Machine (VM) was constrained. In this work, one of

our motive was to test the model’s performance and feasibility to execute a de-

centralized scientific workflow under duress with limited bandwith capabilities.

Under these conditions, we discuss the behavior of the model in the following

subsection.

5.5.2 Execution Efficiency

As outlined previously, we have chosen workflows from myexperiment. The

workflows are uploaded by the people in the research community, and spans

different fields viz. Bio-Informatics, Protein Sequence Analysis, nucleotide and
2http://www.mozartspaces.org/

5.5 Results 131

protein sequence analysis. Each workflow was executed multiple times. A total

of 13, 28, and 18 services were developed for workflow I3, II4, and III5.

Figure 5.8: Execution Time WF-I No Constraints

During the experiments, it was assumed that each of the discrete workitems

are realized by a web service. In Fig 5.8, we have shown the execution time of

the workflow I, with no constraints on the bandwidth capabilities. As visible,

the execution time of the workflow started at a normal pace. But, when the

invocations increased linearly, the execution time followed. The moment, the

load-indicator (of each individual membrane) sensed duress, a new resource or a

VM (each VM was assigned 1 GB of RAM) was provisioned from the resource

pool. The newly provisioned resource was made aware of the stable storage

location and access methodology.

After provisioning resources, the execution time experienced a sudden drop.

This is clearly visible in Fig 5.8. It should be noted here that in the experiments,

each workitem provisioned resources on its own, without a central orchestrator.

3http://www.myexperiment.org/workflows/244.html
4http://www.myexperiment.org/workflows/124.html
5http://www.myexperiment.org/workflows/1477.html

5.5 Results 132

The first reduction in the execution time is due to the fact that only a few mem-

branes provisioned an extra resource. Therefore, the drop is not that much steep.

However, a sudden decrement in the execution time at the end of the graph in-

dicate multiple VMs (or resources) were provisioned to complete the workflow.

We invoked the same workflow multiple times (in regular intervals) so as to test

the behavior of autonomously provisioning resources. It should be noted here,

when the membranes provisioned extra resources, it happened when the load

indicator sensed duress for the new incoming request. The already existing re-

quests were not dynamically migrated (live migration). In business terminology,

the SLAs were violated for the new requests only, there is no need to provision

resources for non-SLA violating requests (principles of cost elasticity).

Figure 5.9: Execution Time WF-III No Constraints

The same procedure was followed to execute workflows II and III. The result

demonstrating the execution time for workflow II is shown in Figure 5.9 (for

workflow III the execution behavior is similar to the one shown in 5.8). As

visible, the execution time dropped the moment the load indicator sensed an

increment in the load of the individual membrane. It can be seen from this

Figure, the execution does not experienced a steep drop, the drop is marginal.

It was also observed, the membranes provisioned only one or two (max) VMs.

5.5 Results 133

We believe, this is due to the configuration settings, and the structural design of

the workflow (a lot of waiting time to resolve the control dependencies). In the

experiments conducted so far, the bandwidth of each VM was not limited.

Figure 5.10: Execution Time WF-I Limited Bandwidth

Next, we limited the bandwidth of each VM deployed to 2KBytes/s. The

resulting graph for the execution time is shown in Fig 5.10 (workflow I). As

demonstrated in the Figure, the provisioning of extra resources resulted the

same sudden drop in the execution time. However, in this case the execution

time increased. This effect is due to the fact that the bandwidth is limited and

each individual membrane required some time to receive the data dependen-

cies. Moreover, it was observed that there were instances when the request was

dropped due to severe congestion.

Figure 5.11: Network Performance Limited Bandwidth

In Figures 5.11 and 5.12, we have shown the snapshots of the network per-

fromance of two VMs chosen at random. It can be seen from the Figures that

5.6 Related Work 134

Figure 5.12: Network Performance Limited Bandwidth

the network capabilities witnessed its peak during execution. It is at that instant,

the new incoming requests were dropped. Further, the performace showed that

whenever the load increased beyond the threshold limit, new VMs were provi-

sioned to balance the load.

5.6 Related Work

There are numerous techniques available in the literature on workflow manage-

ment and enactment. However, decentralized workflow enactment and dynamic

resource provisioning in workflow is rarely targeted. In related work section,

we present a brief discussion on these techniques and models.

Fernandez et al [145] propose executing a workflow using the chemical

paradigm. Similar to our work, the authors used a decentralized environment,

however, they used a centralized shared memory (hence, the authors suffered

from scalability issues). Moreover, they kept the services fixed to execute the

work-items, with no provision of dynamic adaptations. Further, the issues of

elasticity is not addressed in this work. Another work by Caeiro et al [146]

discuss about the dynamic workflow enactment using chemical analogy. The

authors presents a generalized notion of workflow representation using HOCL

(Higher Order Chemical Language). Another work by Németh et al [147]

present modern workflow execution on large scale computing devices and pro-

pose an enactment model using gamma calculus. In [148] Weske discuss about

the different aspects of flexible workflow management and presents workflow

5.6 Related Work 135

schema using object-oriented approach. There are several literature available on

workflow specifications by Leymann et. al. [120], Hollingsworth [135], Aalst

et.al. [136], Weske [148].

In literature, there are lot of techniques available to execute a workflow,

either centrally or decentrally. In the decentralized scenario, the services share

data and parameters either by passing messages directly or indirectly. However,

only a few are in the context of dynamically provisioning resources for scientific

workflows with actual deployment.

Nature inspired metaphors have caught some attention lately. Based on these

approaches we found two interesting metaphors 1) Chemistry 2) Physics. A de-

centralized framework to execute workitems, is proposed in [144], [121]. Fer-

nandez et al [121] propose executing a workflow using the chemical paradigm.

Similar to our work, the authors used a decentralized environment, however,

they used a centralized shared memory (hence, the authors suffered from scala-

bility issues). Moreover, they kept the services fixed to execute the workitems,

with no provision of dynamic adaptations. Further, the issues of elasticity is

not addressed. A similar method to achieve orcehstration and choreography

is proposed in [144]. The author used the same chemistry model to achieve

orchestration and choreography. Next, the work in physics, focus achieving mo-

tion co-ordination, using the notion of ‘Computational Fields’ [149]. However,

the focus is distributed motion co-ordination, not scientific workflow execution.

A similar to technique to synchronize the motion of ‘Unmanned aerial system

(UAS)’ is proposed in [150]. The author has used the notion of physics inspired

co-fields to accomplish this functionality.

A cloud based middleware is proposed in [130]. It is a platform proposed

to elastically provision resources at run time. However, the main focus of [130]

is not scientific workflow execution in a decentralized environment. In [129],

5.7 Summary 136

a comparison between the resource consumption between a high performance

computing machine and a cloud based environment is presented. The cloud ex-

periments are conducted on Amazon’s EC2. It was found that the resources pro-

visioned from the cloud were not as powerful when compared with a traditional

HPC machine. It was further found that though executing scientific workflow

was acceptable, the data transfer costs were high. This is one of the factors we

will be focusing on in future work. How to find an optimal balance between

resource and cost elasticity? [131] introduces the concept of scheduling data in-

tensive scientific workflows in a cloud based environment with virtual clusters.

The scheduling is based on the ‘iterative ordinal optimization’ algorithm. The

application of the algorithm produces a significantly lower processing overhead

involved in scheduling the workflows. In this work, we also achieved a decen-

tralized workflow execution based on real virtual clusters.

5.7 Summary

In this chapter, we introduced a membrane computing paradigm towards defin-

ing and realizing a workflow. The presented workflow model works well for

dynamic workflows in constrained environments. The model presented, how-

ever, is quite generic in nature and may also be used in other contexts such

as workflows involving business, scientific, mobile, cloud applications. The

model especially fits well for distributed, decentralized and elastic execution of

the workflow. The membranes act independently, following a global behavior,

and provision resources autonomously. It was demonstrated that using the pre-

sented methodology the resources can be provisioned autonomously at run-time,

thereby validating the technique for an actual deployment.

Chapter 6

Conclusion and Future Work

We can only see a short distance ahead, but we can see plenty there

that needs to be done.

-Alan Turing

This dissertation studies the gaps in the current Service-Oriented Architec-

ture paradigm for mobile environments. Subsequently, the dissertation provides

approaches to facilitate SOA over modern mobile environments. The proposed

approaches address the various challenges of mobile environments to provide

dynamic, decentralized, and light weight solutions. Further, our study empha-

sizes on the fact that the novels solution provided here should complement ex-

isting technologies instead of replacing them and thus actuate their applicability.

This dissertation is an endeavor to put together the entire triad of effective mod-

els for SOA implementation including Registering, Publishing, and Binding, in

a constrained environment. Further, efforts have been made at utilizing the ap-

proach used for conventional SOA implementations but with the customization

to make them as lightweight as possible to suit constrained environments. This

has been inspired from the ideology that a newer solution should be comple-

menting the existing solutions rather than replacing them for a wider accept-

ability.

Chapter 3 deals with the service registry of the SOA triad in the constrained

environment. For registering services, a novel approach employing XMPP is

presented. Such an approach is very simple, straightforward, and effective. The

138

idea has widely been used in instant messaging applications and hence its effi-

cacy is widely validated. We presented the approach to facilitate a decentralized

and dynamic mobile service registry. The approach makes use of XMPP for

managing a dynamic registry along with the availability information of mobile

services. A dedicated model suitable for web-services in constrained environ-

ments has been put together and demonstrated through a prototype implemen-

tation. The prototype demonstrated the feasibility of the approach in a practical

setting. The validation of its effectiveness is also done through comparison with

UDDI.

In chapter 4, a detailed, dynamic, and lightweight service description frame-

work is presented. Publishing of web services in constrained environments is

done through incremental addition of modules to WSDL2.0. The contents in-

cluded in description are especially designed for mobile environments, consid-

ering crucial aspects of mobile services such as isolated data source, collabo-

rating partners, and hardware aspects along with the functional, non-functional,

business, and contextual aspects. The description has been partitioned along

these lines and various parts of the description are distributed between service

registries and the mobile service providers. An up-to-date and light weight de-

scription has been achieved by this, without compromising on the overall con-

sistency of the description. The idea is to introduce a WSDL that is seamlessly

able to connect and compose web services dynamically irrespective of whether

they are available in the wired, conventional, wireless, and constrained domains.

The modified WSDL is also made light weight by eliminating certain content/-

modules that are not relevant for constrained environments. A prototype of the

proposed system has been implemented with the intent of validating the feasi-

bility and efficacy of the approach. The working prototype has been deployed

and tested over a small network of mobile devices.

139

Finally in chapter 5, the binding part of the model for constrained environ-

ments is presented. The use of ”Elastic Computing” through membrane com-

puting is presented. The approach provides the much required flexibility of

provisioning resources dynamically at runtime binding. The solution provides a

novel membrane inspired approach for decentralized workflow execution, with

autonomous provisioning of computing resources for dynamic environments.

This approach presents a novel mobile workflow description and thus can help

in decentralized orchestration of mobile web services. To demonstrate the via-

bility of the same in an actual deployment, we have developed a prototype with

real services. We execute real scientific workflows collected from myexperi-

ment and deploy the prototype to test the validity of the work. Moreover, the

same workflows are executed within the Institue’s Intranet on decentralized mo-

bile nodes. During validation, the services exchange data and parameters via a

decentralized stable storage space.

The presented works in dissertation are well suited for the dynamic con-

strained environments and addresses the unique requirements and features of the

environment. The proposed novel approaches facilitate the SOA in distributed

constrained environment without the need of wired and/or high end systems.

The presented works are lightweight, dynamic, extensible in nature. The pre-

sented contributions have resulted in an architecture with reduced Total Cost of

Ownership (TCO). The present contributions are the initial efforts in the field

and may interest the researchers to further explore the fields. The dissertation

have few of the open challenges that are yet to be explored such as security

and privacy issues in the constrained environment, reward mechanism for the

collaborators in crowd-sourced SOA, QoS aspects of mobile services. These

challenges are further discussed in the next subsection.

To summarize, the work presented in the dissertation handles three primary

140

challenges in mobile SOA: Dynamic Service Registry, Mobile Service Descrip-

tion, Decentralized Workflow description and enactment.

Future Work

The work presented in this thesis address the the challenge of effective imple-

mentation of SOA in mobile environments. There is, however, substantial room

for further research. We provide an overview of these open research areas that

we hope to get a chance to work on in future.

In the current work, we have evaluated our approach in a constrained labo-

ratory environment. It would be fascinating to evaluate the same approach for

several millions of real service and with real service consumers-providers.

QoS aware mobile web service composition is an open problem in the field

as the the nature of QoS expectations in mobile environments is very different

from conventional ones.

Security aspects in constrained environments is another open research issue.

Mobile services often involve personal data (location, personal information) that

is shared between multiple parties. Assessing the trustworthiness of these par-

ties is a challenging issue. Further, the assumption of the thesis is that all the

participating nodes (service provider and service consumers) are transparent. It

would be an interesting research challenge to incorporate varied levels of pri-

vacy in the offered services.

The application of the work of this thesis to a wider SOA scenario over

a sustained period of time is expected to throw up unexpected challenges and

would also provide data to further refine our findings. In-depth analysis of vari-

ous SOA environments and subsequent incorporation of the presented dynamic

141

registry, description, and workflow into such environments would again provide

an opportunity to enhance this study.

The employment of semantic techniques in the proposed research would

further facilitate the wider adaption of SOA in constrained environments.

142

Bibliography

[1] M. Weiser, “Hot topics - ubiquitous computing,” Computer, vol. 26,

no. 10, pp. 71–72, Oct 1993.

[2] M. P. Papazoglou and W.-J. van den Heuvel, “Service-oriented comput-

ing: State-of-the-art and open research issues,” IEEE Computer, vol. 40,

no. 11, 2003.

[3] S. N. Srirama, M. Jarke, and W. Prinz, “Mobile web service provision-

ing,” in Advanced International Conference on Telecommunications and

Int’l Conference on Internet and Web Applications and Services. IEEE,

2006, pp. 120–120.

[4] R. Tergujeff, J. Haajanen, J. Leppanen, and S. Toivonen, “Mobile soa:

service orientation on lightweight mobile devices,” in IEEE International

Conference on Web Services. IEEE, 2007, pp. 1224–1225.

[5] F. AlShahwan and K. Moessner, “Providing soap web services and restful

web services from mobile hosts,” in International Conference on Internet

and Web Applications and Services (ICIW). IEEE, 2010, pp. 174–179.

[6] S. Movassaghi, M. Abolhasan, J. Lipman, D. Smith, and A. Jamalipour,

“Wireless body area networks: A survey,” IEEE Communications Surveys

Tutorials, vol. 16, no. 3, pp. 1658–1686, Third 2014.

143

BIBLIOGRAPHY 144

[7] K. Sivashanmugam, K. Verma, and A. Sheth, “Discovery of web services

in a federated registry environment,” in IEEE International Conference

on Web Services, July 2004, pp. 270–278.

[8] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and

J. Miller, “Meteor-s wsdi: A scalable p2p infrastructure of registries for

semantic publication and discovery of web services,” Information Tech-

nology and Management, vol. 6, no. 1, pp. 17–39, 2005.

[9] Z. Du, J. Huai, and Y. Liu, “Ad-uddi: An active and distributed service

registry,” in Technologies for E-Services, ser. Lecture Notes in Computer

Science, C. Bussler and M.-C. Shan, Eds. Springer Berlin Heidelberg,

2006, vol. 3811, pp. 58–71.

[10] Oasis, “Uddi version 3.0.2 spec technical committee draft,”

http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf, 2004.

[11] F. Najmi, N. S. RosettaNet, I. Bedini, F. Telecom, K. Breininger,

J. Chiusano, P. Kacandes, M. MacKenzie, M. Martin, and D. Nickull,

“ebXML registry information model,” May 2005. [Online]. Available:

https://docs.oasis-open.org/regrep/v3.0/specs/regrep-rim-3.0-os.pdf

[12] W3C Recommendation, “Web services description language (WSDL)

version 2.0 part 1: Core language,” June 2007, [Accessed on August 10,

2016]. [Online]. Available: http://www.w3.org/TR/wsdl20/

[13] P. Kotler, G. Armstrong, J. Saunders, and V. Wong, Principles of Market-

ing. Pearson Education, Inc., Upper Saddle River, New Jersey, 1996.

[14] J. Harry Katzan, Foundations of Service Science: A Pragmatic Approach.

iUniverse, Inc., New York Bloomington, 2008.

https://docs.oasis-open.org/regrep/v3.0/specs/regrep-rim-3.0-os.pdf
http://www.w3.org/TR/wsdl20/

BIBLIOGRAPHY 145

[15] J. Wirtz, P. Chew, and C. Lovelock, Essentials of services marketing.

Pearson Education, Singapore, 2012.

[16] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services: Con-

cepts, Architectures and Applications, 1st ed., M. J. Carey and S. Ceri,

Eds. Springer Publishing Company, Incorporated, 2010.

[17] S. Berger, S. McFaddin, C. Narayanaswami, and M. Raghunath, “Web

services on mobile devices-implementation and experience,” in IEEE

Workshop on Mobile Computing Systems and Applications, Oct 2003,

pp. 100–109.

[18] M. P. Papazoglou, “Service-oriented computing: Concepts, characteris-

tics and directions,” in International Conference on Web Information Sys-

tems Engineering. IEEE, 2003, pp. 3–12.

[19] T. Erl, Soa: principles of service design. Prentice Hall Upper Saddle

River, 2008, vol. 1.

[20] M. Lanthaler and C. Gütl, “Hydra: A vocabulary for hypermedia-driven

web apis.” in Proceedings of the Workshop on Linked Data on the Web

(WWW2013), vol. 996. ACM, 2013.

[21] A. P. Sheth, K. Gomadam, and J. Lathem, “Sa-rest: Semantically inter-

operable and easier-to-use services and mashups,” IEEE Internet Com-

puting, vol. 11, no. 6, pp. 91–94, 2007.

[22] R. T. Fielding, “Architectural styles and the design of network-based soft-

ware architectures,” Ph.D. dissertation, University of California, 2000.

[23] J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6,

pp. 1–4, 2006.

BIBLIOGRAPHY 146

[24] M.-C. Yuen, I. King, and K.-S. Leung, “A survey of crowdsourcing sys-

tems,” in IEEE third International Conference on Social Computing (so-

cialcom) Privacy, Security, Risk and Trust (passat). IEEE, 2011, pp.

766–773.

[25] D. Schall, H. Psaier, M. Treiber, and F. Skopik, “Engineering service-

oriented crowdsourcing for enterprise environments,” 2010.

[26] D. Schall, Service-Oriented Crowdsourcing: Architecture, Protocols and

Algorithms. Springer Publishing Company, Incorporated, 2012.

[27] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile

cloud computing: Taxonomy and open challenges,” IEEE Communica-

tions Surveys Tutorials, vol. 16, no. 1, pp. 369–392, First 2014.

[28] S. Dustdar and M. Treiber, “A view based analysis on web service reg-

istries,” Distributed and Parallel Databases, vol. 18, no. 2, pp. 147–171,

2005.

[29] P. Saint-Andre, “Rfc 3920: Extensible messaging and presence protocol

(xmpp): Core,” Internet Engineering Task Force (IETF) proposed stan-

dard, Tech. Rep., 2004.

[30] M. Sabou, C. Wroe, C. Goble, and H. Stuckenschmidt, “Learning do-

main ontologies for semantic web service descriptions,” Web Semantics:

Science, Services and Agents on the World Wide Web, vol. 3, no. 4, pp.

340–365, 2005.

[31] M. Allahyari, K. Kochut, and M. Janik, “Ontology-based text classifica-

tion into dynamically defined topics,” in IEEE International Conference

on Semantic Computing (ICSC), June 2014, pp. 273–278.

BIBLIOGRAPHY 147

[32] M. Luby, “A simple parallel algorithm for the maximal independent set

problem,” SIAM Journal on Computing, vol. 15, no. 4, pp. 1036–1053,

1986.

[33] J.-S. Han, K.-J. Lee, J.-W. Song, and S.-B. Yang, “Mobile peer-to-peer

systems using super peers for mobile environments,” in International

Conference on Information Networking, Jan 2008, pp. 1–4.

[34] P. Saint-Andre, “Rfc 3921: Extensible messaging and presence protocol

(xmpp): Instant messaging and presence, october 2004,” Internet Engi-

neering Task Force (IETF) proposed standard, Tech. Rep., 2004.

[35] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M.

Mao, and L. Yang, “Accurate online power estimation and automatic

battery behavior based power model generation for smartphones,”

in IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis, ser. CODES/ISSS ’10. New

York, NY, USA: ACM, 2010, pp. 105–114. [Online]. Available:

http://doi.acm.org/10.1145/1878961.1878982

[36] A. Carroll and G. Heiser, “An analysis of power consumption in a smart-

phone.” in USENIX annual technical conference, vol. 14. Boston, MA,

2010.

[37] E. Guttman, “Service location protocol: Automatic discovery of ip net-

work services,” IEEE Internet Computing, vol. 3, no. 4, pp. 71–80, 1999.

[38] J. Waldo, “The jini architecture for network-centric computing,” Commu-

nications of the ACM, vol. 42, no. 7, pp. 76–82, 1999.

[39] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz,

“An architecture for a secure service discovery service,” in ACM/IEEE

http://doi.acm.org/10.1145/1878961.1878982

BIBLIOGRAPHY 148

international conference on Mobile computing and networking. ACM,

1999, pp. 24–35.

[40] B. A. Miller, T. Nixon, C. Tai, and M. D. Wood, “Home networking

with universal plug and play,” IEEE Communications Magazine, vol. 39,

no. 12, pp. 104–109, 2001.

[41] W. Hoschek, Peer-To-Peer Grid Databases for Web Service Discovery.

John Wiley & Sons, Ltd, 2003, pp. 491–539.

[42] M. B. Juric, A. Sasa, B. Brumen, and I. Rozman, “WSDL and UDDI

extensions for version support in web services,” Journal of Systems and

Software, vol. 82, no. 8, pp. 1326 – 1343, Aug 2009.

[43] D. Bernstein and D. Vij, “Intercloud directory and exchange protocol de-

tail using xmpp and rdf,” in World Congress on Services (SERVICES).

IEEE, 2010, pp. 431–438.

[44] H. Seto, S. Matsumoto, and M. Nakamura, “Ubi-regi: Service registry

for discovering service resources in ubiquitous network,” in International

Conference on Information Integration and Web-based Applications and

Services, ser. iiWAS ’11. New York, NY, USA: ACM, 2011, pp. 395–

398.

[45] Z. Feng, R. Peng, B. Li, K. He, C. Wang, J. Wang, and C. Zeng,

“A service registry meta-model framework for interoperability,” in In-

ternational Symposium on Autonomous Decentralized Systems (ISADS),

March 2011, pp. 389–398.

[46] Z. Feng, D. Chiu, and K. He, “A service evolution registry with alert-

based management,” in International Conference on Service Science and

Innovation (ICSSI), May 2013, pp. 123–130.

BIBLIOGRAPHY 149

[47] H. Lakshmi and H. Mohanty, “Extended service registry to support i/o

parameter-based service search,” pp. 145–155, 2015.

[48] N. Diehl, D. Grill, A. Held, R. Kroh, T. Reigber, and T. Ziegert, “System

integration for mobile computing and service mobility,” in IEEE Interna-

tional Conference on Distributed Platforms: Client/Server and Beyond:

DCE, CORBA, ODP and Advanced Distributed Applications, 1996, pp.

44–56.

[49] J. Beck, A. Gefflaut, and N. Islam, “Moca: A service framework for mo-

bile computing devices,” in ACM International Workshop on Data Engi-

neering for Wireless and Mobile Access, ser. MobiDe ’99. New York,

NY, USA: ACM, 1999, pp. 62–68.

[50] C. Doulkeridis, E. Valavanis, and M. Vazirgiannis, “Towards a context-

aware service directory,” in Technologies for E-Services, ser. Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2003, vol.

2819, pp. 54–65.

[51] R. Deepa and S. Swamynathan, “A service discovery model for mobile

ad hoc networks,” in International Conference on Recent Trends in In-

formation, Telecommunication and Computing (ITC), March 2010, pp.

135–139.

[52] Z. Chen, C. Liang-Tien, B. Silverajan, and L. Bu-Sung, “Ux-an architec-

ture providing qos-aware and federated support for uddi,” in IEEE Inter-

national Conference on Web Services, 2003.

[53] M. Bubak, T. Gubala, M. Kapalka, M. Malawski, and K. Rycerz, “Work-

flow composer and service registry for grid applications,” Future Gener-

ation Computer Systems, vol. 21, no. 1, pp. 79 – 86, 2005.

BIBLIOGRAPHY 150

[54] L. Baresi and M. Miraz, “A distributed approach for the federation of het-

erogeneous registries,” in International Conference on Service-Oriented

Computing (ICSOC), ser. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, 2006, vol. 4294, pp. 240–251.

[55] M. Treiber and S. Dustdar, “Active web service registries,” IEEE Internet

Computing, vol. 11, no. 5, pp. 66–71, Sept 2007.

[56] D. Shah, M. Agarwal, M. Mehra, and A. Mangal, “Global soa: Rss-

based web services repository and ranking,” in International Conference

on Internet and Web Applications and Services (ICIW), May 2010, pp.

256–261.

[57] D. Jaiswal, S. Mistry, A. Mukherjee, and N. Mukherjee, “Efficient dy-

namic service provisioning over distributed resources using chord,” in In-

ternational Conference on Signal-Image Technology Internet-Based Sys-

tems (SITIS), Dec 2013, pp. 257–264.

[58] J. Lin, X. Wu, C. Chen, and Y. Liu, “Hadoop-based service registry

for geographical knowledge service cloud: Design and implementa-

tion,” in International Conference on Information Science and Technol-

ogy (ICIST), March 2013, pp. 961–966.

[59] K. Elgazzar, H. S. Hassanein, and P. Martin, “Daas: Cloud-based mobile

web service discovery,” Pervasive and Mobile Computing, vol. 13, no. 0,

pp. 67 – 84, 2014.

[60] S. DasGupta, A. Aroor, F. Shen, and Y. Lee, “Smartspace: Multiagent

based distributed platform for semantic service discovery,” IEEE Trans-

actions on Systems, Man, and Cybernetics: Systems, vol. 44, no. 7, pp.

805–821, July 2014.

BIBLIOGRAPHY 151

[61] W. Zhang, S. Zhang, F. Qi, and M. Cai, “Self-organized p2p approach

to manufacturing service discovery for cross-enterprise collaboration,”

IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 44,

no. 3, pp. 263–276, March 2014.

[62] R. Handorean and G. C. Roman, “Service provision in ad hoc networks,”

in International Conference on Coordination Models and Languages, ser.

COORDINATION ’02. London, UK, UK: Springer-Verlag, 2002, pp.

207–219.

[63] S. Helal, N. Desai, V. Verma, and C. Lee, “Konark - a service discovery

and delivery protocol for ad-hoc networks,” in IEEE Wireless Communi-

cations and Networking Conference, vol. 3, March 2003, pp. 2107–2113

vol.3.

[64] C. Schmidt and M. Parashar, “A peer-to-peer approach to web service

discovery,” World Wide Web, vol. 7, no. 2, pp. 211–229, 2004.

[65] J. Tyan and Q. H. Mahmoud, “A comprehensive service discovery so-

lution for mobile ad hoc networks,” Mobile Networks and Applications,

vol. 10, no. 4, pp. 423–434, Aug. 2005.

[66] A. Golzadeh and M. Niamanesh, “Dsdst - a distributed service discovery

approach with service type for mobile ad hoc networks,” in International

Conference on Networking and Distributed Computing (ICNDC), Sept

2011, pp. 267–271.

[67] M. D’Souza and V. S. Ananthanarayana, “Enhanced lbs discovery in a

decentralized registry based web services environment,” Journal of Web

Engineering, vol. 13, no. 1&2, pp. 1–23, Mar. 2014.

BIBLIOGRAPHY 152

[68] H. J. Jo, J. H. Kwon, and I. Y. Ko, “Distributed service discovery in mo-

bile iot environments using hierarchical bloom filters,” in Engineering

the Web in the Big Data Era, ser. Lecture Notes in Computer Science.

Springer International Publishing, 2015, vol. 9114, pp. 498–514.

[69] S. N. Srirama, M. Jarke, and W. Prinz, “Mobile web service provision-

ing,” in Advanced International Conference on Telecommunications and

Int’l Conference on Internet and Web Applications and Services, Feb

2006, pp. 120–120.

[70] S.-T. Cheng, J.-P. Liu, J.-L. Kao, and C.-M. Chen, “A new framework

for mobile web services,” in Symposium on Applications and the Internet

(SAINT), 2002, pp. 218–222.

[71] M. Adacal and A. Bener, “Mobile web services: a new agent-based

framework,” IEEE Internet Computing,, vol. 10, no. 3, pp. 58–65, May

2006.

[72] M. Hassan, W. Zhao, and J. Yang, “Provisioning web services from re-

source constrained mobile devices,” in IEEE International Conference on

Cloud Computing (CLOUD), July 2010, pp. 490–497.

[73] F. AlShahwan, K. Moessner, and F. Carrez, “Distribute provision strate-

gies of restful-based mobile web services,” in IEEE Global Telecommu-

nications Conference (GLOBECOM), Dec 2011, pp. 1–6.

[74] L. O’Brien, L. Bass, and P. Merson, “Quality attributes and

service-oriented architectures,” Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-2005-TN-

014, 2005, [Accessed on August 10, 2016]. [Online]. Available:

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7405

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7405

BIBLIOGRAPHY 153

[75] J. O’Sullivan, “Towards a precise understanding of service properties,”

Ph.D. dissertation, Queensland University of Technology, 2006.

[76] A. D’Ambrogio, “A model-driven WSDL extension for describing the

QoS of web services,” in International Conference on Web Services, Sept

2006, pp. 789–796.

[77] K. Kritikos and D. Plexousakis, “Requirements for qos-based web service

description and discovery,” IEEE Transactions on Services Computing,

vol. 2, no. 4, pp. 320–337, Oct 2009.

[78] H. Banati, P. Bedi, and P. Marwaha, “Wsdl-temporal: An approach for

change management in web services,” in International Conference on

Uncertainty Reasoning and Knowledge Engineering (URKE), Aug 2012,

pp. 44–49.

[79] M. Bazire and P. Brézillon, “Understanding context before using it,” in

Modeling and Using Context, ser. Lecture Notes in Computer Science,

A. Dey, B. Kokinov, D. Leake, and R. Turner, Eds. Springer Berlin

Heidelberg, 2005, vol. 3554, pp. 29–40.

[80] K. Siau and M. Rossi, “Evaluation techniques for systems analysis and

design modelling methods : a review and comparative analysis,” Infor-

mation Systems Journal, vol. 21, no. 3, pp. 249–268, 2011.

[81] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana.

(2001, March) Web Services Description Language (WSDL) 1.1.

W3C. [Accessed on August 10, 2016]. [Online]. Available: http:

//www.w3.org/TR/wsdl

[82] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. Mc-

Dermott, S. A. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

BIBLIOGRAPHY 154

K. Sycara, “Daml-s: Web service description for the semantic web,”

in International Semantic Web Conference – The Semantic Web ISWC.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 348–363.

[83] C. Adams and S. Boeyen, “UDDI and WSDL extensions for web ser-

vice: A security framework,” in ACM Workshop on XML Security, ser.

XMLSEC ’02. New York, NY, USA: ACM, 2002, pp. 30–35.

[84] M. Morioka, Y. Yonemoto, T. Suzuki, and M. Etoh, “Scalable security

description framework for mobile web services,” in IEEE International

Conference on Communications, vol. 2, May 2003, pp. 804–808 vol.2.

[85] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,

S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne

et al., “OWL-S: Semantic markup for web services,” pp. 2007–04,

November 2004, [Accessed on August 10, 2016]. [Online]. Available:

https://www.w3.org/Submission/OWL-S/

[86] J. Hartmann, S. Rittmann, D. Wild, and P. Scholz, “Formal incremental

requirements specification of service-oriented automotive software sys-

tems,” in IEEE International Symposium on Service-Oriented System En-

gineering, ser. SOSE ’06. Washington, DC, USA: IEEE Computer So-

ciety, 2006, pp. 130–133.

[87] S. S. Yau and J. Liu, “Incorporating situation awareness in service speci-

fications,” in IEEE International Symposium on Object and Component-

Oriented Real-Time Distributed Computing, April 2006, pp. 8 pp.–.

[88] H. Pfeffer, D. Linner, C. Jacob, I. Radusch, and S. Steglich, “Towards

light-weight semantic descriptions for decentralized service-oriented sys-

tems,” in International Conference on Semantic Computing, Sept 2007,

pp. 295–303.

https://www.w3.org/Submission/OWL-S/

BIBLIOGRAPHY 155

[89] T. Vitvar, J. Kopecky, M. Zaremba, and D. Fensel, “Wsmo-lite:

lightweight semantic descriptions for services on the web,” in European

Conference on Web Services, Nov 2007, pp. 77–86.

[90] P. Fornasier, J. Webber, and I. Gorton, Component-Based Software Engi-

neering: 10th International Symposium, CBSE 2007, Medford, MA, USA,

July 9-11, 2007. Proceedings. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2007, ch. Soya: A Programming Model and Runtime Environ-

ment for Component Composition Using SSDL, pp. 227–241.

[91] T. Vitvar, J. Kopecký, J. Viskova, and D. Fensel, “The semantic web:

Research and applications,” Berlin, Heidelberg, pp. 674–689, 2008.

[92] M. Hadley, “Web application description language,” pp. 2007–04,

August 2009, [Accessed on August 10, 2016]. [Online]. Available:

http://www.w3.org/Submission/wadl/

[93] A. Charfi, B. Schmeling, F. Novelli, H. Witteborg, and U. Kylau, “An

overview of the unified service description language,” in IEEE European

Conference on Web Services (ECOWS), Dec 2010, pp. 173–180.

[94] C. Dai and Z. Wang, “A flexible extension of WSDL to describe non-

functional attributes,” in International Conference on e-Business and In-

formation System Security (EBISS), May 2010, pp. 1–4.

[95] C. Rolland, M. Kirsch-Pinheiro, and C. Souveyet, “An intentional ap-

proach to service engineering,” IEEE Transactions on Services Comput-

ing, vol. 3, no. 4, pp. 292–305, Oct 2010.

[96] N. Parimala and A. Saini, “Web service with criteria: Extending

WSDL,” in International Conference on Digital Information Manage-

ment (ICDIM), Sept 2011, pp. 205–210.

http://www.w3.org/Submission/wadl/

BIBLIOGRAPHY 156

[97] J. Keppeler, P. Brune, and H. Gewald, “A description and retrieval model

for web services including extended semantic and commercial attributes,”

in IEEE International Symposium on Service Oriented System Engineer-

ing (SOSE), April 2014, pp. 258–265.

[98] M. J. O’Sullivan and D. Grigoras, “Delivering mobile cloud services to

the user: Description, discovery, and consumption,” in IEEE Interna-

tional Conference on Mobile Services, June 2015, pp. 49–56.

[99] R. Verma and A. Srivastava, “Towards service description for mobile en-

vironments,” in IEEE International Conference on Services Computing

(SCC), June 2015, pp. 138–145.

[100] ——, “A novel web service directory framework for mobile environ-

ments,” in IEEE International Conference on Web Services (ICWS).

IEEE, June 2014, pp. 614–621.

[101] B. Flyvbjerg, “Five misunderstandings about case-study research,” Qual-

itative inquiry, vol. 12, no. 2, pp. 219–245, 2006.

[102] D. Schall, Human-Provided Services. New York, NY: Springer New

York, 2012, pp. 31–58.

[103] V. Agarwal and P. Jalote, “Enabling end-to-end support for non-

functional properties in web services,” in IEEE International Conference

on Service-Oriented Computing and Applications (SOCA), Jan 2009, pp.

1–8.

[104] S. Gao, L. You, Z. Gui, and H. Wu, “Extending WSDL for describing

complex geodata in gis service,” in International Conference on Agro-

geoinformatics, Aug 2014, pp. 1–6.

BIBLIOGRAPHY 157

[105] G. Scheithauer, S. Augustin, and G. Wirtz, Describing Services for Ser-

vice Ecosystems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,

pp. 242–255.

[106] J. A. Zachman, “A framework for information systems architecture,” IBM

Systems Journal, vol. 26, no. 3, pp. 276–292, 1987.

[107] K. Kritikos and D. Plexousakis, “Owl-q for semantic qos-based

web service description and discovery,” in International Conference

on Service Matchmaking and Resource Retrieval in the Semantic

Web, ser. SMRR’07, vol. 243. Aachen, Germany, Germany:

CEUR-WS.org, 2007, pp. 114–128. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=2889955.2889964

[108] J. Cardoso, A. Barros, N. May, and U. Kylau, “Towards a unified service

description language for the internet of services: Requirements and first

developments,” in IEEE International Conference on Services Computing

(SCC), July 2010, pp. 602–609.

[109] F. Galán, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil, and L. M. Va-

quero, “Service specification in cloud environments based on extensions

to open standards,” in International ICST Conference on COMmunica-

tion System softWAre and middlewaRE, ser. COMSWARE ’09. New

York, NY, USA: ACM, 2009, pp. 19:1–19:12.

[110] Y. L. Sun, T. Harmer, A. Stewart, and P. Wright, “Mapping application

requirements to cloud resources,” in International Conference on Paral-

lel Processing, ser. Euro-Par’11. Berlin, Heidelberg: Springer-Verlag,

2012, pp. 104–112.

http://dl.acm.org/citation.cfm?id=2889955.2889964
http://dl.acm.org/citation.cfm?id=2889955.2889964

BIBLIOGRAPHY 158

[111] D. Liu and J. Zic, “Cloud#: A specification language for modeling cloud,”

in IEEE International Conference on Cloud Computing (CLOUD), July

2011, pp. 533–540.

[112] L. Sun, H. Dong, and J. Ashraf, “Survey of service description languages

and their issues in cloud computing,” in International Conference on Se-

mantics, Knowledge and Grids (SKG), Oct 2012, pp. 128–135.

[113] D. Preuveneers, J. Van den Bergh, D. Wagelaar, A. Georges, P. Rigole,

T. Clerckx, Y. Berbers, K. Coninx, V. Jonckers, and K. De Boss-

chere, “Towards an extensible context ontology for ambient intelli-

gence,” in Ambient Intelligence, ser. Lecture Notes in Computer Science,

P. Markopoulos, B. Eggen, E. Aarts, and J. Crowley, Eds. Springer

Berlin Heidelberg, 2004, vol. 3295, pp. 148–159.

[114] H. Truong and S. Dustdar, “A survey on context aware web service sys-

tems,” International Journal of Web Information Systems, vol. 5, no. 1,

pp. 5–31, 2009.

[115] M. Poveda Villalon, M. C. Suárez-Figueroa, R. García-Castro, and

A. Gómez-Pérez, “A context ontology for mobile environments,” Pro-

ceedings of Workshop on Context, Information and Ontologies, vol. 626,

Oct 2010.

[116] C. Dorn and S. Dustdar, “Sharing hierarchical context for mobile web

services,” Distributed and Parallel Databases, vol. 21, no. 1, pp. 85–111,

Feb 2007.

[117] J. Knutson, G. Truty, and P. Wang, “Publishing multipart wsdl

files to url,” July 2005, US Patent App. 10/762,085 [Accessed on

August 10, 2016]. [Online]. Available: http://www.google.com/patents/

US20050160153

http://www.google.com/patents/US20050160153
http://www.google.com/patents/US20050160153

BIBLIOGRAPHY 159

[118] C. Pedrinaci, J. Cardoso, and T. Leidig, Linked USDL: A Vocabulary for

Web-Scale Service Trading. Cham: Springer International Publishing,

2014, pp. 68–82. [Online]. Available: http://dx.doi.org/10.1007/

978-3-319-07443-6_6

[119] J. M. Garcia, P. Fernandez, C. Pedrinaci, M. Resinas, J. Cardoso, and

A. Ruiz-Cortes, “Modeling service level agreements with linked usdl

agreement,” IEEE Transactions on Services Computing, vol. 10, no. 1,

pp. 52–65, Jan 2017.

[120] F. Leymann and D. Roller, “Production workflow: concepts and tech-

niques.” Prentice Hall, 2000.

[121] H. Fernandez, C. Tedeschi, and T. Priol, “A chemistry-inspired workflow

management system for a decentralized workflow execution,” in IEEE

Transactions on Services Computing, vol. PP, no. 99, March 2013, pp.

1–1.

[122] T. Dornemann, E. Juhnke, and B. Freisleben, “On-demand resource pro-

visioning for BPEL workflows using amazon’s elastic compute cloud,”

in IEEE/ACM International Symposium on Cluster Computing and the

Grid. IEEE, 2009, pp. 140–147.

[123] C. Lin and S. Lu, “SCPOR: An elastic workflow scheduling algorithm

for services computing,” in IEEE International Conference on Service-

Oriented Computing and Applications (SOCA). IEEE, 2011, pp. 1–8.

[124] G. Alonso, D. Agrawal, A. E. Abbadi, and C. Mohan, “Functionality

and limitations of current workflow management systems,” IEEE Expert,

vol. 12, 1997.

http://dx.doi.org/10.1007/978-3-319-07443-6_6
http://dx.doi.org/10.1007/978-3-319-07443-6_6

BIBLIOGRAPHY 160

[125] A. Barker, C. D. Walton, and D. Robertson, “Choreographing web ser-

vices,” IEEE Transactions on Services Computing, vol. 2, no. 2, pp. 152–

166, April 2009.

[126] G. Bell, T. Hey, and A. Szalay, “Beyond the data deluge,” Science,

vol. 323, no. 5919, pp. 1297–1298, 2009. [Online]. Available:

http://science.sciencemag.org/content/323/5919/1297

[127] G. Păun, “Computing with membranes,” Journal of Computer and System

Sciences, vol. 61, no. 1, pp. 108–143, 2000.

[128] G. Păun and M. J. Pérez-Jiménez, “Membrane computing: Brief intro-

duction, recent results and applications,” BioSystems, vol. 85, no. 1, pp.

11–22, 2006.

[129] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman, and

P. Maechling, “Scientific workflow applications on amazon ec2,” in IEEE

International Conference on E-Science Workshops, Dec 2009, pp. 59–66.

[130] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya,

“The aneka platform and qos-driven resource provisioning for elastic

applications on hybrid clouds,” Future Generation Computer Systems,

vol. 28, no. 6, pp. 861 – 870, 2012, including Special sections SS:

Volunteer Computing and Desktop Grids and SS: Mobile Ubiquitous

Computing. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0167739X11001397

[131] F. Zhang, J. Cao, K. Hwang, and C. Wu, “Ordinal optimized scheduling

of scientific workflows in elastic compute clouds,” in IEEE Third Inter-

national Conference on Cloud Computing Technology and Science, Nov

2011, pp. 9–17.

http://science.sciencemag.org/content/323/5919/1297
http://www.sciencedirect.com/science/article/pii/S0167739X11001397
http://www.sciencedirect.com/science/article/pii/S0167739X11001397

BIBLIOGRAPHY 161

[132] G. Păun, “Computing with membranes,” Journal of Computer and

System Sciences, vol. 61, no. 1, pp. 108 – 143, 2000. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0022000099916938

[133] J. M. Cecilia, J. M. García, G. D. Guerrero, M. A. M. del Amor,

I. Pérez-Hurtado, and M. J. Pérez-Jiménez, “Simulating a p system

based efficient solution to sat by using gpus,” The Journal of

Logic and Algebraic Programming, vol. 79, no. 6, pp. 317 – 325,

2010, membrane computing and programming. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1567832610000123

[134] T. Y. Nishida, Membrane Algorithms: Approximate Algorithms for

NP-Complete Optimization Problems. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2006, pp. 303–314. [Online]. Available: https:

//doi.org/10.1007/3-540-29937-8_11

[135] D. Hollingsworth, “The workflow reference model,” Workflow Manage-

ment Coalition, vol. Document Number TC00-1003, 1995.

[136] W. M. Van Der Aalst and A. H. Ter Hofstede, “Yawl: yet another work-

flow language,” Information systems, vol. 30, no. 4, pp. 245–275, 2005.

[137] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,

K. Blackburn, A. Lazzarini, A. Arbree, R. Cavanaugh et al., “Mapping

abstract complex workflows onto grid environments,” Journal of Grid

Computing, vol. 1, no. 1, pp. 25–39, 2003.

[138] W. M. van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P.

Barros, “Workflow patterns,” Distributed and parallel databases, vol. 14,

no. 1, pp. 5–51, 2003.

http://www.sciencedirect.com/science/article/pii/S0022000099916938
http://www.sciencedirect.com/science/article/pii/S1567832610000123
https://doi.org/10.1007/3-540-29937-8_11
https://doi.org/10.1007/3-540-29937-8_11

BIBLIOGRAPHY 162

[139] S. Dustdar and H. L. Truong, “Virtualizing software and humans for

elastic processes in multiple clouds- a service management perspective,”

International Journal of Next-Generation Computing (IJNGC), vol. 3,

2012.

[140] J. Cardoso, A. Barros, N. May, and U. Kylau, “Towards a unified service

description language for the internet of services: Requirements and first

developments,” in IEEE International Conference on Services Comput-

ing, July 2010, pp. 602–609.

[141] X. Wang, J. S. Dong, C. Y. Chin, S. R. Hettiarachchi, and D. Zhang,

“Semantic space: an infrastructure for smart spaces,” IEEE Pervasive

Computing, vol. 3, no. 3, pp. 32–39, July 2004.

[142] H. Zhuge, “Semantic grid: Scientific issues, infrastructure, and

methodology,” Communications of ACM, vol. 48, no. 4, pp. 117–119,

Apr. 2005. [Online]. Available: http://doi.acm.org/10.1145/1053291.

1053325

[143] J. M. Zaha, A. Barros, M. Dumas, and A. ter Hofstede, “Let’s dance: A

language for service behavior modeling,” in On the Move to Meaningful

Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE, R. Meers-

man and Z. Tari, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2006, pp. 145–162.

[144] C. Wang and J. L. Pazat, “A chemistry-inspired middleware for self-

adaptive service orchestration and choreography,” in IEEE/ACM Inter-

national Symposium on Cluster, Cloud, and Grid Computing, May 2013,

pp. 426–433.

http://doi.acm.org/10.1145/1053291.1053325
http://doi.acm.org/10.1145/1053291.1053325

BIBLIOGRAPHY 163

[145] H. Fernandez, C. Tedeschi, and T. Priol, “A chemistry-inspired workflow

management system for a decentralized workflow execution,” in IEEE

Transactions on Services Computing, vol. PP, no. 99, 2013, pp. 1–1.

[146] M. Caeiro, Z. Németh, and T. Priol, “A chemical model for dynamic

workflow coordination,” in Euromicro International Conference on Par-

allel, Distributed and Network-Based Processing (PDP). IEEE, 2011,

pp. 215–222.

[147] Z. Németh, C. Pérez, and T. Priol, “Distributed workflow coordination:

molecules and reactions,” in International Parallel and Distributed Pro-

cessing Symposium. IEEE, 2006, pp. 8–pp.

[148] M. Weske, “Formal foundation and conceptual design of dynamic adap-

tations in a workflow management system,” in Annual Hawaii Interna-

tional Conference on System Sciences. IEEE, 2001, pp. 10–pp.

[149] M. Mamei, F. Zambonelli, and L. Leonardi, “Distributed motion coor-

dination with co-fields: a case study in urban traffic management,” in

International Symposium on Autonomous Decentralized Systems, April

2003, pp. 63–70.

[150] H. Reza and K. Ogaard, “Modeling uas swarm system using concep-

tual and dynamic architectural modeling concepts,” in Conceptual Struc-

tures for Discovering Knowledge, S. Andrews, S. Polovina, R. Hill, and

B. Akhgar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,

pp. 331–338.

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF PUBLICATIONS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivation
	Research Context
	Contribution
	Organization of the Thesis

	Background
	Mobile Web Services
	Service-oriented Architecture
	Find : UDDI
	Publish : WSDL
	Bind : SOAP and REST

	Crowd-sourcing based Service Architecture
	Summary

	Dynamic Web Service Registry Framework
	Background
	Motivation
	Motivating Scenario
	Need for a Novel Mobile Service Registry
	Mobile Service Registry Requirements

	Proposed Approach
	Registry Details
	Design Concept

	Mobile Registry Operations
	Basic Registry Operations
	Mobile Specific Registry Operations

	Implementation
	Evaluation

	Related Work
	Centralized Service Registry:
	Centralized Mobile Service Registry:
	Distributed Service Registry:
	Distributed Mobile Service Registry:

	Summary

	Dynamic Web Service Description
	Background
	Problem Statement
	Proposed Approach
	Design Concept:
	Description Components:

	Evaluation
	Feature Comparison
	Empirical Evaluation: Prototype
	Conceptual Evaluation: Case Study

	Related Work
	Summary

	Dynamic Web Service Workflow
	Background
	Membrane Computing Paradigm
	Membrane Inspired Dynamic Workflow Description
	Workflow Definition
	Workflow Pattern using Membrane Computing

	Membrane Inspired Workflow Execution
	Results
	Experimental Setup
	Execution Efficiency

	Related Work
	Summary

	Conclusion and Future Work
	REFERENCES
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

